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Abstract. One-dimensional free energy local minimizers are viewed as three-dimensional lamel-
lar-type critical points in a box. To determine whether they model the lamellar phase of diblock
copolymers in the strong segregation region, we analyze their spectra. We obtain the asymptotic
expansions of their eigenvalues and eigenfunctions. Consequently we find that they are stable, i.e.,
are local minimizers in space, only if they have sufficiently many interfaces. Interestingly the one-
dimensional global minimizer is near the borderline of three-dimensional stability.
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1. Introduction. In a diblock copolymer melt a molecule is a linear chain con-
sisting of two subchains grafted covalently to each other. The first subchain has NA

type A monomer units, and the second subchain has NB type B monomer units. In
polymer systems even a weak repulsion between unlike monomers A and B induces a
strong repulsion between subchains. With many chain molecules in a polymer melt
the different type subchains tend to segregate below some critical temperature, but
as they are chemically bonded in chain molecules, even a complete segregation of
subchains cannot lead to a macroscopic phase separation. Only a local microphase
separation occurs: microdomains rich in A and B are formed. These microdomains
form morphological patterns/phases in a larger scale. The commonly observed phases
include the spherical, cylindrical, and lamellar, depicted in Figure 1.

We consider a scenario in which a diblock copolymer melt is placed in a domain
D and maintained at fixed temperature. D is scaled to have unit volume in space.
Let a = NA/(NA +NB) ∈ (0, 1) be the relative number of the A monomers in a chain
molecule. Similarly b = NB/(NA+NB), so a+b = 1. The relative A monomer density
field u is an order parameter. u ≈ 1 stands for high concentration of A monomers.
The melt is incompressible so the relative B monomer density is 1 − u, and u ≈ 0
stands for high concentration of B monomers.

Ohta and Kawasaki [10] introduced an equilibrium theory in which the free energy
of the system is a functional of the relative A monomer density:

I(u) =

∫
D

{
ε2

2
|∇u|2 +

σ

2
|(−∆)−1/2(u− a)|2 + W (u)

}
,(1.1)

defined in Xa = {u ∈ W 1,2(D) : u = a}, where u := 1
|D|
∫
D
u is the average of u on

D. The original formula in [10] is given for the whole space. The expression here on
a bounded domain D first appeared in Nishiura and Ohnishi [8].
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Fig. 1. The spherical, cylindrical, and lamellar morphology phases commonly observed in
diblock copolymer melts. The dark color indicates the concentration of type A monomer, and the
white color indicates the concentration of type B monomer.
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Fig. 2. The graphs of W and f =W ′.

ε and σ are positive dimensionless parameters that depend on various physical
quantities such as NA, NB , the average distance between two adjacent monomers
in a chain, the interaction between monomers, the temperature, and the size of the
sample. In the strong segregation region where morphology patterns form, ε is very
small. The size of σ in this paper is chosen to be of order ε; i.e., there is a fixed
positive constant γ so that σ = εγ. This particular parameter range is realized if we
take the sample size to be of the (NA + NB)2/3 order.1

The local function W is smooth and has the shape of a double well, as depicted
in Figure 2. It has the global minimum value 0 at two numbers: 0 and 1. To avoid
unnecessary technical difficulties we assume that W (p) = W (1 − p). The two global
minimum points are nondegenerate, i.e., W ′′(0) = W ′′(1) �= 0. A simple example is
W (u) = 1

4 ((u− 1
2 )2 − 1

4 )2.
The most mathematically interesting part in equation (1.1) is the nonlocal term

(−∆)−1/2(u− a) in the integrand. Let (−∆)−1(u− a) be the solution v of

−∆v = u− a in D, ∂νv = 0 on ∂D, v = 0,

where ∂νv is the outward normal derivative of v. (−∆)−1/2 in I is the square root
of the positive operator (−∆)−1 from {w ∈ L2(D) : w = 0} to itself. If we let

1See Choksi and Ren [3] for more on these parameters.
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Fig. 3. A one-dimensional local minimizer u with K = 6. The regions where u is close to 1
are microdomains with high concentration of A monomers, and the regions where u is close to 0 are
microdomains with high concentration of B monomers.

v = (−∆)−1(u− a), then an often more useful formula is

I(u) =

∫
D

{
ε2

2
|∇u|2 +

εγ

2
|∇v|2 + W (u)

}
.

Let f(u) = W ′(u) as in Figure 2. For the particular W (u) = 1
4 ((u − 1

2 )2 − 1
4 )2,

f(u) = u(u− 1
2 )(u− 1). The Euler–Lagrange equation of I is

−ε2∆u + εγ(−∆)−1(u− a) + f(u) − f(u) = 0, ∂νu = 0 on ∂D.(1.2)

The term f(u) is equal to the Lagrange multiplier corresponding to the constraint
u = a.

It is proved in Ren and Wei [13] using the Γ-limit theory that when D = (0, 1)
for any positive integer K there exists a local minimizer u with K interfaces and
K + 1 microdomains if ε is small enough.2 An example of u with K = 6 is shown
in Figure 3. u is close to 0 in three regions and close to 1 in four regions. These
regions are separated by sharp interfaces. That such u is energetically favored is not
too difficult to explain. Note that the W term in I likes to have u ≈ 0 or u ≈ 1. The
gradient term penalizes oscillation of u, but since it has a small coefficient it tolerates
a number of sharp interfaces. The best profile for the nonlocal term is u ≈ a. But this
is impossible due to the presence of the W term and the fact 0 < a < 1. The second

2See Theorem 2.1.
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best profile for the nonlocal term is for u to have wild oscillation about a. When all
the three terms are present in I, a compromise must be reached, and u as in Figure
3 emerges as a local minimizer.

Now we place such a one-dimensional (1-D) local minimizer in a three-dimensional
(3-D) box through trivial extension. The extended u becomes a 3-D critical point of
I, i.e., a solution of (1.2). We ask whether this u is a good model of the lamellar
phase depicted in plot 3 of Figure 1. In general a morphology phase must be at
least metastable in the sense that it is described by a local minimizer of I in space.
Such a 3-D local minimizer is also called a stable solution of (1.2). We take D =
(0, 1) × (0, 1) × (0, 1) and study the spectrum of u, i.e., the second variation of I at
u. The linearized operator at u is

L(φ) := −ε2∆φ + εγ(−∆)−1φ + f ′(u)φ− f ′(u)φ,

∂νφ = 0 on ∂D, φ ∈ W 2,2(D), φ = 0.(1.3)

This is an unbounded self-adjoint operator defined densely on {φ ∈ L2(D) : φ = 0}
whose spectrum consists of eigenvalues only.

We will obtain detailed information on the spectrum of u when ε is small. In
particular we will find the asymptotic expansions of the important eigenvalues of
small absolute values in terms of ε. We will also derive asymptotic expansions of the
corresponding eigenfunctions. The analysis in this paper culminates in the following
theorem.

Theorem 1.1. The eigenvalues λ of L are classified into λm by m = (m1,m2),
which is a pair of nonnegative integers. The following three statements hold when ε
is sufficiently small:

1. There exists M(K), depending on K but not ε, so that when |m| :=
√
m2

1 + m2
2

≥ M(K), λm ≥ Cε2 for some C > 0 independent of ε.
2. When m = (0, 0), there are K small positive λ(0,0)’s. One of them is of

order ε whose only eigenfunction is approximately
∑

j(hj(x)−hj). The other

K − 1 λ(0,0)’s are of order ε2. Their only eigenfunctions are approximately∑
j c

0
jhj(x) for some vectors c0 satisfying

∑
j c

0
j = 0. The remaining λ(0,0)’s

are positive and bounded below by a positive constant independent of ε.
3. When m �= (0, 0) and |m| < M(K), there are K λm’s of order ε2, which

are not necessarily positive, whose only eigenfunctions are approximately∑
j c

0
jhj(x) cos(m1πy1) cos(m2πy2). The remaining λm’s are positive and

bounded below by a positive constant independent of ε. Only when K is suf-
ficiently large or γ is sufficiently small are all the eigenvalues of L positive
and u stable.

Here a point in D is denoted by (x, y1, y2), where x is in the direction perpendic-
ular to the interfaces of a lamellar phase, the up direction in plot 3, Figure 1. The
functions hj are defined in (3.5), and the c0 vectors are given in sections 5 and 7. The
λ(0,0) eigenvalues are just the eigenvalues in the 1-D problem. That they are positive,
as noted in statement 2, is consistent with the fact that u is a 1-D local minimizer.

The most exciting discovery is apparently statement 3. The presence of the λm’s
there is a 3-D phenomenon. A 1-D local minimizer is not necessarily a local minimizer
in three dimensions. Not all 1-D local minimizers may be used to model the lamellar
phase of diblock copolymers. Only the ones with sufficiently many interfaces, or in
other words with sufficiently thin microdomains, are suitable candidates.

Of particular interest is the 1-D global minimizer, which is one of the 1-D local

minimizers with K ≈ (a
2b2γ
3τ )1/3, where τ is a positive number specified in (2.7). Since



SPECTRA OF LAMELLAR SOLUTIONS 5

its energy is lower than that of any other 1-D local minimizer, it is thermodynamically
more preferred. But if it were unstable in three dimensions, then the lamellar phase
would only be a transient metastable phase. Thermal fluctuation would eventually
destroy any metastable lamellar phase. It turns out that the 1-D global minimizer
has a delicate spectral property. It actually lies near the borderline of the stability of
lamellar solutions.3

The stability of a solution of (1.2) may also be defined by a dynamic problem.
As observed in [8] one may consider negative gradient flows of I in various function
spaces. The simplest one is probably

ut = ε2∆u− εγ(−∆)−1(u− a) − f(u) + f(u), ∂νu = 0 on ∂D × (0,∞).(1.4)

A physically more realistic dynamic model is the Cahn–Hilliard-like [1] fourth order
problem:

ut = ∆(−ε2∆u+ εγ(−∆)−1(u−a)+f(u)), ∂ν∆u = ∂νu = 0 on ∂D× (0,∞).(1.5)

The stability of steady states of (1.4) or (1.5) agrees with our static stability definition
that a stable solution of (1.2) is a local minimizer of I.

Some preliminary work is done in section 2. We derive inner and outer asymptotic
expansions of the lamellar solution u in a rigorous way. The first statement of the
theorem is proved in section 3, the second in sections 4 and 5, and the third in sections
6 and 7. In the last section we discuss the spectrum of the 1-D global minimizer.

To avoid clumsy notation a quantity’s dependence on ε is usually suppressed. For
example, we write u, the lamellar solution, instead of uε. On the other hand we often
emphasize a quantity’s independence of ε with a superscript 0. For example, the limit
of a lamellar solution u as ε → 0 is denoted by u0. In estimates, C is always a positive
constant independent of ε. Its value may vary from line to line. The shorthand e.s.
stands for a quantity that is exponentially small, i.e., equals O(e−C/ε). The L2 inner
product is denoted by 〈·, ·〉 and the Lp norm by ‖ · ‖p.

References on the mathematical aspects of the block copolymer theory include, in
addition to the ones cited already, Ohnishi et al. [9], Choksi [2], Fife and Hilhorst [4],
Henry [6], and Ren and Wei [11, 14] on diblock copolymers. On triblock copolymers
we refer to Ren and Wei [15, 16].

2. The lamellar solution u. The lamellar solutions we consider in this paper
were constructed in [13] by the Γ-limit theory.

Theorem 2.1 (Ren and Wei [13]). In 1-D for each positive integer K the func-
tional

I1(u) :=

∫ 1

0


ε2

2

(
du

dx

)2

+
εγ

2

∣∣∣∣∣
(
− d2

dx2

)−1/2

(u− a)

∣∣∣∣∣
2

+ W (u)


 dx(2.1)

in {u ∈ W 1,2(0, 1) : u = a} has a local minimizer u near u0, under the L2 norm,
when ε is sufficiently small. It satisfies the Euler–Lagrange equation

−ε2u′′ + f(u) − f(u) + εγG0[u− a] = 0, u′(0) = u′(1) = 0

3This phenomenon compares well with the marginal stability, observed in Muratov [7], of the
corresponding 1-D global minimizer in the Γ-limit.
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and the properties

lim
ε→0

‖u− u0‖2 = 0 and lim
ε→0

ε−1I1(u) = τK +
γ

2

∫ 1

0

|(v0)′| dx.

Here u0 is a step function defined to be

u0(x) = 1 on (0, x0
1), 0 on (x0

1, x
0
2), 1 on (x0

2, x
0
3), 0 on (x0

3, x
0
4), 1 on (x0

4, x
0
5), . . .

with (recall b = 1 − a)

x0
1 =

a

K
, x0

2 =
1 + b

K
, x0

3 =
2 + a

K
, x0

4 =
3 + b

K
, x0

5 =
4 + a

K
, . . . ,

v0 = G0[u0 − a]. G0 is the solution operator of −v′′ = g, v′(0) = v′(1) = 0, v = 0.
The constant τ is positive and defined in (2.7).

There is another K-interface lamellar solution whose limiting value as ε → 0 is 0
instead of 1 on the first interval (0, b/K). This solution has the same properties as u
does, so we focus on u, the solution of the first type, only.

Remark 2.2. This second solution is just 1 − ũ, where ũ is a solution of the first
type, but with ũ = 1 − a.

In this section we learn more about u. In particular u is periodic.
Theorem 2.3. When ε is small, for every x ∈ (0, 1/K),

u(x) = u

(
2

K
− x

)
= u

(
x +

2

K

)
= u

(
4

K
− x

)
= u

(
x +

4

K

)
= · · ·

=

{
u(1 − x) if K is even,
u(x + K−1

K ) if K is odd.

Moreover when ε is small, u is the unique local minimizer of I1 in an L2 neighborhood
of u0. If u on ((j − 1)/K, j/K) for some j = 1, 2, . . . ,K is scaled to a function on
(0, 1), then it is exactly a one-layer local minimizer of (2.1) with ε and γ replaced by
ε̃ = εK and γ̃ = γ/K3.

The nuts and bolts needed to prove this theorem are available in [11]. We give the
proof in Appendix A, so the reader may skip it first in order to focus on the spectral
properties of u in the following sections.

For that purpose we need asymptotic expansions of u in terms of ε. By Lemma
A.1 in Appendix A there exist exactly K points xj , j = 1, 2, . . . ,K, in (0, 1) so that
u(xj) = 1/2. These K points identify the interfaces of u. Theorem 2.3 implies that
x2 = 2

K − x1, x3 = 4
K − x2, x4 = 6

K − x3, etc. The first approximation of u is

w(x) = H

(
−x− x1

ε

)
+ H

(
x− x2

ε

)
+ H

(
−x− x3

ε

)
− 1 + · · ·

+

{
H(x−xKε ) if K is even,
H(−x−xK

ε ) − 1 if K is odd.
(2.2)

Here H is the heteroclinic solution of

−H ′′ + f(H) = 0, H(−∞) = 0, H(∞) = 1, H(0) = 1/2.

In the case W (u) = 1
4 ((u − 1

2 )2 − 1
4 )2, it is explicitly known that H(t) =

(1/2)(tanh t
2
√

2
+ 1). H(t) converges to 1 as t → ∞ (and to 0 as t → −∞) expo-

nentially fast. Also H ′(t) and H ′′(t) decay to 0 exponentially fast as t → ±∞. H,
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or H(−·), gives the profile of interfaces between the microdomains of u. At every
x �= x0

j , j = 1, 2, . . . ,K, limε→0 w(x) = u0(x).
Next we define

z0(x) = −γ(v0(x) − v0(x0
j ))

f ′(0)
.(2.3)

Let us compute

(v0)′(x) =




(a− 1)x on (0, x0
1),

a(x− 1
K ) on (x0

1, x
0
2),

(a− 1)(x− 2
K ) on (x0

2, x
0
3),

a(x− 3
K ) on (x0

3, x
0
4),

(a− 1)(x− 4
K ) on (x0

4, x
0
5),

. . . .

(2.4)

If we integrate (v0)′ over an interval (x0
j−1, x

0
j ), we get 0. So v0(x0

j ) is independent of

j, and the definition of z0 makes sense. Note that z0 is independent of ε.
Lemma 2.4. Let z be defined by u = w + εz. Then ‖z − z0‖∞ = O(ε).
Proof. Combine Lemma A.3 in Appendix A and Theorem 2.3.
Lemma 2.5. There exists a constant C > 0 independent of ε so that |ε−1z(xj +

εt)| ≤ C(1+ |t|) for all t ∈ (−xj
ε ,

1−xj
ε ). ε−1z(xj +ε·) converges to P in C2

loc(−∞,∞),
where P (t) is the solution of

−P ′′ + f ′(H)P = −γ(v0)′(x0
j )t, P ⊥ H ′

in (−∞,∞).
There are two different P ’s depending on whether j is odd or even. But they just

differ by a sign, and it is always easy to tell from the context which one is referred
to. Once j is given, there exists a unique P since the right side of its equation is
perpendicular to the kernel H ′.

Proof. Without the loss of generality we assume that j is even. Define Z(t) =
z(xj + εt). Lemma 2.4 implies Z = O(1) and hence, with the help of Lemma A.4,

f(u) = O(ε). From the 1-D Euler–Lagrange equation in Theorem 2.1, which u satis-
fies, we find the equation for Z:

−Z ′′ + f ′(H)Z + O(ε)Z2 + γG0[u− a] − ε−1f(u) = 0.

From this equation we also have Z ′′ = O(1) and Z ′ = O(1). Multiply the equation
by H ′ and integrate. Set v(x) = G0[u− a](x). Then

e.s. =

∫ (1−xj)/ε

−xj/ε
(−Z ′′H ′ + f ′(H)ZH ′) dt

=

∫ (1−xj)/ε

−xj/ε
(−O(ε)Z2 − γv(xj + εt) + ε−1f(u))H ′ dt

= −γv(xj) + ε−1f(u) + O(ε).

Hence γv(xj) − ε−1f(u) = O(ε) and γv(x) − ε−1f(u) = O(ε) + O(ε)t. The equation
for Z is now simplified to

−Z ′′ + f ′(H)Z + O(ε) + O(ε)t = 0.
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As ε → 0, Z → cH ′ in C2
loc(−∞,∞) for some c. But Z(0) = e.s. implies c = 0 since

H ′(0) �= 0. Therefore Z → 0 in C2
loc(−∞,∞).

Next we study ε−1Z, whose equation is written as

−(ε−1Z)′′ + f ′(H)(ε−1Z) + O(1)Z2 + γε−1v − ε−2f(u) = 0.

We again multiply by H ′ and integrate:

e.s. =

∫ (1−xj)/ε

−xj/ε
(−ε−1Z ′′H ′ + f ′(H)ε−1ZH ′) dt

=

∫ (1−xj)/ε

−xj/ε
(−O(1)Z2 − γε−1v(xj + εt) + ε−2f(u))H ′ dt

=

∫ (1−xj)/ε

−xj/ε
(−O(1)Z2 − γε−1v(xj) − γv′(xj)t + O(ε)t2 + ε−2f(u))H ′ dt

= −γε−1v(xj) + ε−2f(u) + o(1),

where we have used the facts that Z → 0 locally and
∫ (1−xj)/ε
−xj/ε tH ′ dt = e.s. Hence

γε−1v(xj) − ε−2f(u) = o(1), which simplifies the equation for ε−1Z to

−(ε−1Z)′′ + f ′(H)(ε−1Z) + O(1)Z2 + γv′(xj)t + O(ε)t2 + o(1) = 0.(2.5)

Next we show that |ε−1Z(t)| ≤ C(1 + |t|). Without the loss of generality we
consider t > 0. Let ε−1Z(t) = (1 + t)R(t), where R satisfies

−R′′− 2R′

1 + t
+f ′(H)R+O(1) = 0 in

(
0,

1 − xj
ε

)
, R(0) = e.s., R

(
1 − xj

ε

)
= O(1).

Suppose that R = O(1) is invalid. We let R̂ = R/‖R‖L∞ , which satisfies

−R̂′′ − 2R̂′

1 + t
+ f ′(H)R̂ + o(1) = 0, R̂(0) = e.s., R̂

(
1 − xj

ε

)
= o(1).

From this equation we see that |R̂| must attain its maximum value 1 in a bounded
region around 0. In the limit R̂ approaches in C2

loc[0,∞) to a nonzero, bounded
solution of

−R̂′′
∞ − 2R̂∞

1 + t
+ f ′(H)R̂∞ = 0 in (0,∞), R̂∞(0) = 0.

Then (1 + t)R̂∞ satisfies

−((1 + t)R̂∞)′′ + f ′(H)(1 + t)R̂∞ = 0 in (0,∞).

Thus, (1 + t)R̂∞(t) = cH ′(t) for some c. This is because |(1 + t)R̂∞(t)| grows at
most like t, and any other solution, independent of H ′, of the last equation grows
exponentially fast. Since (1 + 0)R̂∞(0) = 0 and H ′(0) �= 0, we derive c = 0 and
R̂∞ = 0, a contradiction.

Since |ε−1Z(t)| ≤ C(1 + |t|), we may send ε → 0 in (2.5) and find that ε−1Z
approaches in C2

loc(−∞,∞) to a solution of

−P ′′ + f ′(H)P = −γ(v0)′(x0
j )t in (−∞,∞).
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We write the solution family as P + cH ′ with P ⊥ H ′. Here P (0) = 0, and P (0) +
cH ′(0) = cH ′(0), where H ′(0) �= 0. Since ε−1Z(0) = e.s., we must have c = 0, and
ε−1Z → P in C2

loc(−∞,∞).
In the language of singular perturbation theory, the last two lemmas assert that

the outer expansion of u is u0 + εz0 + · · · and the inner expansion at xj (when j is
even) is H + ε2P + · · · . The fact that z0(x0

j ) = 0 matches the absence of the ε order
term in the inner expansion. The function w defined in (2.2) is the 0th order uniform
approximation of u.

We close this section by defining two frequently used constants. The first one is

s :=

∫ ∞

−∞
f ′′(H(t))(H ′(t))2P (t) dt = −γab

K
.(2.6)

Here P is associated with an even j. When P is associated with an odd j in this
paper, f ′′(H(t)) will always be changed to f ′′(H(−t)) = −f ′′(H(t)), so s remains the
same. To verify the equality in (2.6) we differentiate the equation for P , multiply by
H ′, and integrate. The right side becomes −γ(v0)′(x0

2). The left side becomes∫ ∞

−∞
(−P ′′′H ′ + f ′(H)P ′H ′ + f ′′(H)(H ′)2P ) dt =

∫ ∞

−∞
f ′′(H)(H ′)2P dt,

where the first two terms on the left side cancel after integration by parts and using
−H ′′′ + f ′(H)H ′ = 0, which follows after differentiating the equation for H. From
(2.4) we find (v0)′(x0

2) = ab/K and s = −γab/K.
The second constant is

τ :=

∫ ∞

−∞
(H ′(t))2 dt > 0.(2.7)

Because the equation for H has a first integral − (H′)2

2 + W (H) = 0, then τ =∫∞
−∞

√
2W (H(t))H ′(t) dt =

∫ 1

0

√
2W (p) dp.4 In the special case W (u) = 1

4 ((u −
1
2 )2 − 1

4 )2, τ =
√

2
12 .

3. Linearization at u. The 1-D local minimizer u of I1 is now viewed as a
function on D through extension to the second and third dimensions trivially, so
u(x, y1, y2) = u(x). It is a solution of (1.2) and I1(u) = I(u).

For an eigenpair (λ, φ) of (1.3) we separate variables so that

φ(x, y1, y2) =

∞∑
m1,m2=0

φm(x) cos(m1πy1) cos(m2πy2).(3.1)

We set m = (m1,m2) and let m2 = m2
1 + m2

2. Note that

(−∆)−1{φm(x) cos(m1πy1) cos(m2πy2)} = X(x) cos(m1πy1) cos(m2πy2),

where X is the solution of

−X ′′ = φ(0,0), X ′(0) = X ′(1) = 0, X = 0 if m = (0, 0)

or

−X ′′ + m2π2X = φm, X ′(0) = X ′(1) = 0 if m �= (0, 0).

4In [13, 14, 16] this constant is defined by the last integral.
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The solution operator of the first equation is G0, already defined. Let Gm[·] be the
solution operator of the second equation. They are identified with the Green functions
Gm(·, ·) in this paper. Therefore X = Gm[φm]. The eigenvalue problem Lφ = λφ now
becomes∑
m

{−ε2(φ′′
m −m2π2φm) + εγGm[φm] + f ′(u)φm} cos(m1πy1) cos(m2πy2) − f ′(u)φ0

= λ
∑
m

φm(x) cos(m1πy1) cos(m2πy2).

Here we have used the fact that f ′(u)φm(x) cos(m1πy1) cos(m2πy2) = 0 if m �= (0, 0).
Multiplying the equation by cos(m1πy1) cos(m2πy2) and integrating with respect

to y1 and y2, we find two cases:
1. When m = (0, 0),

−ε2φ′′
(0,0) + εγG0[φ(0,0)] + f ′(u)φ(0,0) − f ′(u)φ(0,0) = λφ(0,0),

(3.2)
φ′

(0,0)(0) = φ′
(0,0)(1) = φ(0,0) = 0.

2. When m �= (0, 0),

−ε2(φ′′
m −m2π2φm) + εγGm[φm] + f ′(u)φm = λφm,

(3.3)
φ′
m(0) = φ′

m(1) = 0.

Because the λ’s are classified by m, we use λm to denote an eigenvalue that is asso-
ciated with m. The corresponding eigenfunction is φm(x) cos(m1πy1) cos(m2πy2).

Proof of Theorem 1.1, statement 1. We first consider the local eigenvalue problem

E(φ) := −ε2φ′′ + f ′(u)φ = νφ, φ′(0) = φ′(1) = 0.(3.4)

In this proof an eigenpair of (3.4) is denoted by (ν, φ). We will prove that ν ≥ −Cε2
for some C > 0.

Claim 1. If ν → ν0 as ε → 0, then ν0 ≥ 0.
Suppose on the contrary that ν0 < 0. Let y ∈ [0, 1] so that φ(y) = max |φ| = 1.

Then y−xj = O(ε) for some j. Otherwise −ε2φ′′(y) ≥ 0, f ′(u(y))φ(y) > 0, νφ(y) < 0,
and hence (3.4) is not satisfied. Then we consider Φ(t) = φ(xj + εt), which satisfies
−Φ′′ + f ′(u)Φ = νΦ in (−xj/ε, (1 − xj)/ε). As ε → 0, Φ approaches Φ∞ �≡ 0
in C2

loc(−∞,∞), which satisfies −Φ′′
∞ + f ′(H)Φ∞ = ν0Φ in (−∞,∞). But this is

impossible since the last equation has no negative eigenvalues. This proves the claim.
The case ν0 > 0 does not concern us, so we assume ν → 0. We introduce, for

j = 1, 2, . . . ,K,

hj(x) = H ′
(
x− xj

ε

)
+ e.s.(3.5)

Here e.s. is an exponentially small correction term. It is chosen so that hj(0) = hj(1) =

h′j(0) = h′j(1) = 0, ‖h′j − ε−1H ′′( ·−xj
ε )‖∞ = e.s., and ‖h′′j − ε−2H ′′′( ·−xj

ε )‖∞ = e.s.
Remark 3.1. Should we weaken the condition W (p) = W (1 − p), H ′ would no

longer be even and we would set

hj(x) =

{
H ′(x−xjε ) + e.s. if j is even,

H ′(−x−xj
ε ) + e.s. if j is odd.
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Consider the subspace of L2(0, 1) generated by hj . Decompose φ =
∑

j cjhj +ψ,
so that hj ⊥ ψ for each j = 1, 2, . . . ,K. Note that

E(hj) = (f ′(u) − f ′(H))hj + e.s.,

and by Lemma 2.5,

|(f ′(u) − f ′(H))hj | = |(f ′(w(xj + εt) + εz(xj + εt)) − f ′(H(t)))H ′(t)| + e.s.

= |f ′′(H(t))εz(xj + εt)H ′(t)| + O(ε4) = O(ε2).(3.6)

Hence we deduce

E(hj) = O(ε2).(3.7)

We write (3.4) as

K∑
j=1

cjE(hj) + E(ψ) = ν
∑
j

cjhj + νψ.(3.8)

Claim 2. 〈E(ψ), ψ〉 ≥ C‖ψ‖2
2 for some C > 0 independent of ε.

When we minimize the quotient 〈E(ψ̃),ψ̃〉
‖ψ̃‖2

2

among nonzero ψ̃ subject to ψ̃ ⊥ hj for

every j, the minimizer, denoted by ψ̃ in this paragraph, satisfies

−ε2ψ̃′′ + f ′(u)ψ̃ = ιψ̃ +
∑
j

djhj .(3.9)

The constant ι = 〈E(ψ̃),ψ̃〉
‖ψ̃‖2

2

. Suppose that Claim 2 is false. Then limε→0 ι = ι0 ≤ 0. We

multiply ψ̃ by a proper constant so there exists y ∈ [0, 1] such that ψ̃(y) = max |ψ̃| = 1.
Now we multiply (3.9) by hk and integrate.

〈E(hk), ψ̃〉 =
∑
j

dj〈hj , hk〉.

The left side is O(ε2) by (3.7). The right side is

∫ 1

0

∑
j

djhjhk =
∑
j

εdjτδjk + e.s.|d| = ετdk + e.s.|d|,

where δjk = 1 if j = k and 0 otherwise, and |d| =
√
d2
1 + d2

2 + · · · + d2
K is the norm of

the vector d. Therefore dk = O(ε). As in the proof of Claim 1, y−xj = O(ε) for some

j. Moreover we consider Ψ(t) = ψ̃(xj + εt), which satisfies −Ψ′′ +f ′(u)Ψ = ιΨ+o(1).
Passing to the limit we find a nonzero Ψ∞ which satisfies −Ψ′′

∞ + f ′(H)Ψ∞ = ι0Ψ∞
in (−∞,∞). Therefore ι0 = 0 and Ψ∞ is proportional to H ′. But on the other hand
ψ̃ ⊥ hj implies Ψ∞ ⊥ H ′. Hence Ψ∞ = 0, contradicting the fact that Ψ∞ is nonzero.
This proves Claim 2.

We now return to (3.8). Multiply it by ψ and integrate. Use (3.7) to deduce

|c|O(ε2)‖ψ‖2 + 〈E(ψ), ψ〉 = ν

∫ 1

0

ψ2.
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Then Claim 2 implies

‖ψ‖2 = O(ε2)|c|.(3.10)

Next we multiply (3.8) by hk and integrate. The left side is

∫ 1

0


E(hk)ψ +

∑
j

cjE(hj)hk




(3.11)

=

∫ 1

0


(f ′(u) − f ′(H))hkψ + e.s.ψ +

∑
j

cj((f
′(u) − f ′(H))hjhk + e.s.)


 ,

in which ∣∣∣∣
∫ 1

0

(f ′(u) − f ′(H))hkψ

∣∣∣∣ ≤ ‖(f ′(u) − f ′(H))hk‖∞‖ψ‖2 = O(ε4)|c|

by (3.6) and (3.10), and∫ 1

0

(f ′(u) − f ′(H))hjhk

= ε

∫ (1−xj)/ε

−xj/ε
{f ′(w(xj + εt) + εz(xj + εt)) − f ′(H(t))}H ′(t)H ′(t + (xj − xk)/ε) dt + e.s.

= ε

∫ (1−xj)/ε

−xj/ε
{f ′′(H(t))εz(xj + εt) + O(ε2)z2(xj + εt)}H ′(t)H ′(t + (xj − xk)/ε) dt + e.s.

= ε3
∫ (1−xj)/ε

−xj/ε
f ′′(H(t))P (t)H ′(t)H ′(t + (xj − xk)/ε) dt + o(ε3)

= ε3sδjk + o(ε3)

(3.12)

by Lemma 2.5. The above argument applies to the case when j is even. When j is
odd, f ′′(H(t)) becomes f ′′(H(−t)) = −f ′′(H(t)) and P (t) has a different sign, but
the final result remains unchanged. Hence (3.11) becomes ε3sck + o(ε3)|c|. The right
side of (3.8) multiplied by hk and integrated is νετck + e.s.|c|. Equating the last two
quantities, we find that for every k

sck + o(1)|c| =
ντ

ε2
ck.

Therefore ν ≥ −Cε2 for some C > 0 independent of ε.
Since Gm is a bounded, positive operator in the eigenvalue problem

−ε2φ′′ + εγGm[φ] + f ′(u)φ = νφ, φ′(0) = φ′(1) = 0,(3.13)

we again have ν ≥ −Cε2 for some C > 0 independent of ε. This can be seen easily by
comparing the variational characterization of the principle eigenvalue of (3.13),

inf

{∫ 1

0

{ε2(φ′)2 + εγGm[φ]φ + f ′(u)φ2} dx : φ ∈ W 1,2(0, 1), ‖φ‖2 = 1

}
,

to a similar one without the εγGm[φ]φ term for (3.4). Finally, in (3.3), by setting m2

large enough, we find λm ≥ Cε2.
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4. m = (0, 0) eigenvalues. Here we study the m1 = m2 = 0 problem (3.2).
Denote the linear operator there by L0. An eigenpair of (3.2) is denoted by (λ, φ)
in this section. Since (3.2) is precisely the linearized operator of the 1-D problem I1
defined in (2.1) at a 1-D local minimizer u, we have λ ≥ 0. The case λ → λ0 > 0 as
ε → 0 does not concern us. So we assume λ → 0 along a subsequence throughout the
rest of this section.

We decompose φ =
∑

j cj(hj −hj) +ψ, where ψ ⊥ hj −hj for every j. Note that

L0(hj − hj) = (f ′(u) − f ′(H))hj + εγG0[hj − hj ] + (f ′(u) − f ′(u))hj − f ′(u)hj + e.s.

A few terms on the right side are estimated once and for all.

εγG0[hj − hj ](x) = γε2G0[(hj − hj)/ε](x) = γε2G0(x, xj) + O(ε3).(4.1)

f ′(u)hj = ε

∫ (1−xj)/ε

−xj/ε
f ′(w(xj + εt) + εz(xj + εt))H ′(t) dt + e.s.

= ε

∫ (1−xj)/ε

−xj/ε
(f ′(H(t)) + f ′′(H(t))εz(xj + t) + O(ε4))H ′(t) dt + e.s.

= ε2
∫ ∞

−∞
f ′′(H(t))z(xj + εt)H ′(t) dt + O(ε5) = O(ε3),(4.2)

where the last line follows from Lemma 2.5. The next estimate is not the sharpest.

|(f ′(u) − f ′(u))hj | = |(f ′(u) − f ′(u))|(ε + e.s.) = O(ε).(4.3)

So based on the last three estimates and (3.6) we find

L0(hj − hj) = O(ε).(4.4)

We also need an L1 version of (4.3):

‖(f ′(u)− f ′(u))hj‖1 = O(ε)‖f ′(u)− f ′(u)‖1 = O(ε)‖f ′(w)− f ′(w) +O(ε)‖1 = O(ε2),

so we obtain

‖L0(hj − hj)‖1 = O(ε2).(4.5)

Rewrite (3.2) as∑
j

cjL0(hj − hj) + L0ψ = λ
∑
j

cj(hj − hj) + λψ.(4.6)

Lemma 4.1. 〈L0(ψ), ψ〉 ≥ C‖ψ‖2
2 for some C > 0 independent of ε.

Proof. When we minimize the quotient 〈L0(ψ̃),ψ̃〉
‖ψ̃‖2

2

among nonzero ψ̃ of zero average

subject to ψ̃ ⊥ hj−hj for every j, the minimizer, denoted by ψ̃ in this proof, satisfies

−ε2ψ̃′′ + εγG0[ψ̃] + f ′(u)ψ̃ − f ′(u)ψ̃ = ιψ̃ +
∑
j

dj(hj − hj).

The constant ι = 〈L0(ψ̃),ψ̃〉
‖ψ̃‖2

2

. Suppose the lemma is false. Then limε→0 ι = ι0 ≤ 0. We

multiply ψ̃ by a proper constant so there exists y ∈ [0, 1] such that ψ̃(y) = max |ψ̃| = 1.
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Now we multiply the last equation by hk − hk and integrate: 〈L0(hk − hk), ψ̃〉 =∑
j dj〈hj − hj , hk − hk〉. The left side is O(ε2) by (4.5). The right side is∫ 1

0

∑
j

dj(hj − hj)(hk − hk) = ετdk + O(ε2)|d|.

Therefore dk = O(ε). The rest of the proof is the same as that of Claim 2 in section
3, since the additional terms in the equation satisfy

εγG0[ψ̃] = O(ε),

f ′(u)ψ̃ = (f ′(u) − f ′(0))ψ̃ = O(1)‖f ′(u) − f ′(0)‖1 = O(ε).

A minor difference is that ψ̃ ⊥ hj here is a consequence of ψ̃ ⊥ hj−hj and ψ̃ = 0.
Multiply (4.6) by ψ and integrate. Using (4.4) we find

|c|O(ε)‖ψ‖2 + 〈L0(ψ), ψ〉 = λ‖ψ‖2
2.

Lemma 4.1 implies that

‖ψ‖2 = O(ε)|c|.(4.7)

Remark 4.2. As a comparison we compute∥∥∥∥∥∥
∑
j

cj(hj − hj)

∥∥∥∥∥∥
2

=



∑
j

c2j

∫ 1

0

h2
j + O(ε2)|c|2




1/2

= {ετ |c|2+O(ε2)|c|2}1/2 ∼ ε1/2|c|.

So in the decomposition of φ,
∑

j cj(hj − hj) is more prominent than ψ.

Multiply (4.6) by hk − hk and integrate:∫ 1

0

L0ψ(hk−hk)+
∑
j

cj

∫ 1

0

L0(hj−hj)(hk−hk) = λ
∑
j

cj

∫ 1

0

(hj−hj)(hk−hk).

(4.8)
The first term on the left side is written as∫ 1

0

L0(ψ)(hk − hk) =

∫ 1

0

L0(hk − hk)ψ

=

∫ 1

0

{(f ′(u) − f ′(H))hkψ + εγG0[hk − hk]ψ + (f ′(u) − f ′(u))hkψ − f ′(u)hkψ + e.s. ψ}

=

∫ 1

0

{(f ′(u) − f ′(H))hkψ + εγG0[ψ]hk + (f ′(0) − f ′(u))hkψ + e.s. ψ}.
(4.9)

The four terms are estimated as follows:∣∣∣∣
∫ 1

0

(f ′(u) − f ′(H))hkψ

∣∣∣∣ ≤ ‖(f ′(u) − f ′(H))hk‖∞‖ψ‖2 = O(ε2)‖ψ‖2 = O(ε3)|c|,
∫ 1

0

εγG0[ψ]hk = O(ε)‖G0[ψ]‖∞‖hk‖1 = O(ε2)‖ψ‖2 = O(ε3)|c|,
∫ 1

0

(f ′(0) − f ′(u))hkψ = ‖f ′(u) − f ′(0)‖2O(ε)‖ψ‖2 = O(ε2.5)|c|,
∫ 1

0

e.s. ψ = e.s.‖ψ‖2 = e.s.|c|.
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Note that the first estimate follows from (3.6). The second term on the left of (4.8)
is, for each j, by (4.1) and (4.2),

∫ 1

0

L0(hj − hj)(hk − hk) =

∫ 1

0

L0(hj − hj)hk

=

∫ 1

0

{(f ′(u) − f ′(H))hjhk + εγG0[hj − hj ]hk + (f ′(u) − f ′(u))hjhk − f ′(u)hjhk + e.s.}

= ε3sδjk + γε3G0(xj , xk) + ε2f ′(u) + o(ε3).

(4.10)

The last line follows from the estimates (3.12), (4.1), (4.2), and

∫ 1

0

(f ′(u) − f ′(u))hjhk = (ε + e.s.)

{
f ′(u)(ε + e.s.) −

∫ 1

0

f ′(u)hk

}

= ε2f ′(u) − ε

∫ 1

0

f ′(u)hk + e.s.

= ε2f ′(u) − ε2
∫ (1−xk)/ε

−xk/ε
(f ′(H) + O(ε2))H ′(t) dt + e.s. = ε2f ′(u) + O(ε4).

The right side of (4.8) is

λ
∑
j

cj

∫ 1

0

(hj − hj)(hk − hk) = λ(ετck + O(ε2)|c|).(4.11)

In summary, for every k

ε3sck+
∑
j

{γε3G(xj , xk)+ε2f ′(u)+o(ε3)}cj+O(ε2.5)|c| = λ(τεck+O(ε2)|c|).(4.12)

If we consider the ck of the largest absolute value, since ε2f ′(u) ∼ ε2, λ = O(ε). On
the left side of (4.12), ε2f ′(u) is the largest term. Because ε2f ′(u) is multiplied by∑

j cj , a dichotomy appears at this point, unless K = 1.

Case 1.

∑
k
ck

|c| �→ 0. Note that when K = 1, this is the only case. We rewrite

(4.12) as

f ′(u)
∑
j

cj + O(ε1/2)|c| =
λτ

ε
ck.(4.13)

In the limit we have

f ′(0)
∑
j

c0j = ητc0k,
∑
j

c0j �= 0,(4.14)

since limε→0 f ′(u) = f ′(0). Here η = limε→0 λ/ε and limε→0 cj = c0j . Solving (4.14)
we find

η =
f ′(0)K

τ
, c01 = c02 = · · · = c0K .(4.15)
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Thus we obtain the asymptotic expansions for one eigenpair λ(0,0) = λ and φ(0,0) = φ
of (3.2):

λ(0,0) =
εf ′(0)K

τ
+ o(ε), φ(0,0) ≈

∑
j

(hj − hj).(4.16)

Note that this λ(0,0) is positive.

Case 2.

∑
k
ck

|c| → 0. This occurs when K ≥ 2. To study this case, we rewrite

L0(φ) = λφ as

L0(ψ) = −
∑
j

cjL0(hj − hj) + λ
∑
j

cj(hj − hj) + λψ.

Note that

∑
j

cjL0(hj−hj) = O(ε2)|c|+
∑
j

cj(f ′(u)−f ′(u))hj = O(ε2)|c|+

∑

j

cj


O(ε) = o(ε)|c|

by the assumption and by (4.1), (4.2), (3.6), and (4.3). Hence

L0(ψ) = o(ε)|c| + |λ|O(1)|c| + λψ.(4.17)

Lemma 4.3. ‖ψ‖∞ = o(ε)|c| + |λ|O(1)|c|.
Proof. Suppose that the lemma is false. Replacing ψ by ± ψ

‖ψ‖∞
in (4.17) we

obtain L0(ψ) = o(1) +λψ, where at some y ∈ [0, 1], ψ(y) = ‖ψ‖∞ = 1. We show that
y − xj = O(ε) for some j. Otherwise −ε2ψ′′(y) ≥ 0, εγG0[ψ] = O(ε), f ′(u)ψ(y) →
f ′(0) > 0, −f ′(u)ψ = O(ε), and λψ(y) = O(ε). Hence the equation L0(ψ) = o(1)+λψ
is not satisfied. Then we set Ψ(t) = ψ(xj + εt), which satisfies −Ψ′′ + f ′(u)Ψ = o(1)
in (−xj/ε, (1 − xj)/ε). As ε → 0, Ψ → Ψ∞ �≡ 0 in C2

loc(−∞,∞) and Ψ∞ satisfies
−Ψ′′

∞ + f ′(H)Ψ∞ = 0. Hence Ψ∞ is proportional to H ′. On the other hand ψ ⊥ hj
implies

∫∞
−∞ Ψ∞H ′ = 0. Thus Ψ∞ = 0, contradicting the fact that Ψ∞ �≡ 0.

With this lemma we return to (4.8) and recall∫ 1

0

(f ′(u) − f ′(H))hkψ = O(ε2)‖ψ‖2,

∫ 1

0

εγG0[ψ]hk = O(ε2)‖ψ‖2.

Rederive∫ 1

0

(f ′(0) − f ′(u))hkψ = ‖f ′(u) − f ′(0)‖1O(ε)‖ψ‖∞ = O(ε2)‖ψ‖∞.

Therefore ∫ 1

0

L0(ψ)(hk − hk) = o(ε3)|c| + |λ|O(ε2)|c|,(4.18)

and from (4.10)

∑
j

cj

∫ 1

0

L0(hj − hj)(hk − hk) = ε3sck +
∑
j

(γε3G0(xj , xk) + ε2f ′(u))cj + o(ε3)|c|

= O(ε3)|c| + ε2f ′(u)


∑

j

cj


 = o(ε2)|c|.
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This estimate and (4.18), (4.11) turn (4.8) into

|λ|O(ε2)|c| + o(ε2)|c| = λ(ετck + O(ε2)|c|).
From the ck of the largest absolute value, we find, with the help of Lemma 4.3,

λ = o(ε), ‖ψ‖∞ = o(ε)|c|.(4.19)

So (4.18) is improved to o(ε3)|c| and (4.8) reads

ε3sck +
∑
j

(γε3G0(xj , xk) + ε2f ′(u))cj + o(ε3)|c| = λετck.(4.20)

We sum over k.
∑

kG0(x0
j , x

0
k) is independent of j, an issue further addressed in

the next section, so we denote it by g. Then after dividing by ε2|c| we obtain, using
(4.19), ∑

j cj

|c| (εs + γεg + f ′(u)K) + o(ε) = o(1)

∑
j cj

|c| .

Since f ′(u) ∼ 1,

∑
j
cj

|c| = o(ε). Return to (4.20). Divide by ε3. Since f ′(u)
∑

j cj =

o(ε)|c|,

sck + γ
∑
j

G0(xj , xk)cj + o(1)|c| =
λ

ε2
τck(4.21)

for all k. In the limit we have

sc0k + γ
∑
j

G0(x0
j , x

0
k)c0j = ητc0k,

∑
j

c0j = 0.(4.22)

Here η = limε→0 λ/ε
2 and c0j = limε→0 cj . In the next section we will solve (4.22) to

find K − 1 pairs of η and c0. Once they are determined we obtain the asymptotic
expansions of K − 1 eigenpairs λ(0,0) = λ and φ(0,0) = φ of (3.2):

λ(0,0) = ε2η + o(ε2), φ(0,0) ≈
∑
j

c0jhj .(4.23)

Here the hj terms drop out in φ(0,0) since
∑

j c
0
jhj =

∑
j(1 + e.s.)c0j = e.s.|c| is

negligible.

5. The spectrum of [G0(x
0
j , x

0
k)]. To understand (4.22) we must find the

spectrum of the K by K matrix G0(x0
j , x

0
k). Suppose for every k that

∑
j

G0(x0
j , x

0
k)bj = Λbk.

Note that from (4.22) s + γΛ = τη. From the formula

G0(x, y) =




x2

2 + (1−y)2
2 − 1

6 if x < y,

(1−x)2
2 + y2

2 − 1
6 if x > y
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we see by straight computation that
∑

kG0(x0
j , x

0
k) is independent of j. This number

is an eigenvalue whose associated eigenvector is (1, 1, . . . , 1)T , where the superscript
T denotes the transpose of a vector. However, this eigenpair is discarded since by
(4.22) we require that

∑
j bj = 0.

To find other eigenpairs we let ζ =
∑

j G0(x0
j , ·)bj . Then ζ satisfies −ζ ′′ =∑

j(δ(· − x0
j ) − 1)bj =

∑
j δ(· − x0

j ), ζ
′(0) = ζ ′(1) = 0. Moreover ζ(xk) = Λbk and

[−ζ ′]x0
j

= bj . Then for every k, [−ζ ′]x0
j

= (1/Λ)ζ(x0
k). We need to express [−ζ ′]x0

j
in

terms of ζ(x0
k). In other words we find a K by K matrix T so that (T<ζ)j = [−ζ ′]x0

j
,

where <ζ = (ζ(x0
1), ζ(x0

2), . . . , ζ(x0
K))T . This way the original eigenvalue problem is

converted to

T<ζ =
1

Λ
<ζ with b =

1

Λ
<ζ.(5.1)

To find T note that −ζ is affine between the x0
j ’s. From (0, x0

1) we deduce

−ζ ′(x0
1−) =

−ζ(x0
1) + ζ(x0

0)

a/K
= 0

since ζ ′(0) = 0. From (x0
1, x

0
2) we obtain

−ζ ′(x0
1+) =

−ζ(x0
2) + ζ(x0

1)

2b/K
.

Hence

[−ζ ′]x0
1

=
K

2b
ζ(x0

1) − K

2b
ζ(x0

2).

On the other intervals we find

[−ζ ′]x0
j

=

(
K

2a
+
K

2b

)
ζ(x0

j ) −




K

2b
ζ(x0

j−1) − K

2a
ζ(x0

j+1) if j is even,

K

2a
ζ(x0

j−1) − K

2b
ζ(x0

j+1) if j is odd.

When K = 2 we have

T =

[
K/(2b) −K/(2b)
−K/(2b) K/(2b)

]
.

Therefore after discarding the 0 eigenvalue of the matrix, we find Λ = b
K . And for

(4.22)

η =
1

τ

(
−γab

K
+
γb

K

)
, c0 =

[
1

−1

]
.(5.2)

Note that η > 0. When K ≥ 3 we have T = (α+ β)IK×K −Q, where IK×K is the K
by K identity matrix, α = K/(2a), β = K/(2b), and

Q =




α β
β 0 α

α 0 β
β 0 α

. . .


 .
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The K distinct eigenvalues of Q are found in (B.5) of Appendix B. One of them, α+β,
is discarded, for its eigenvector is (1, 1, . . . , 1)T . If we denote the rest of them by q1,
q2, . . . , qK−1, we have K − 1 Λ’s:

Λ =
1

α + β − qj
, j = 1, 2, . . . ,K − 1.

Therefore K − 1 pairs of

η =
1

τ

(
−γab

K
+

γ

α + β − qj

)
, c0 = <ζ(5.3)

for (4.22) are found.
When concerned with the positivity of η, we consider the smallest Λ, which

is associated with the smallest qj . According to equation (B.5), the smallest qj is

−
√
α2 + β2 + 2αβ cos θ, where θ = 2π/K. Hence the smallest Λ is

Λ =
1

α + β +
√
α2 + β2 + 2αβ cos θ

>
1

2(α + β)
=

ab

K
.

Therefore the smallest η of (4.22) is

η =
s + γΛ

τ
>

1

τ

(
−γab

K
+
γab

K

)
= 0.

Thus the η’s in both (5.2) and (5.3) are positive.
Finally, we show that L0 has exactly K simple eigenpairs with the asymptotic

expansions (4.16) and (4.23). Let F be the linear subspace generated by small eigen-
values. It is defined nonambiguously by F = span{φ ∈ L2(0, 1) : φ = 0, L0(φ) =
λφ, |λ| < ε1/2}. Since the small eigenvalues of L0 are of order ε2 or ε, F addresses all
the small eigenvalues when ε is small enough.

First dim F , the dimensional of F , is at most K. Suppose that this is not the
case. There exist two distinct eigenpairs (λ, φ) and (λ′, φ′) with the same asymptotic
behavior. That is,

λ = ε2η + o(ε2), λ′ = ε2η + o(ε2), or λ = εη + o(ε), λ′ = εη + o(ε),

φ =
∑
j

cj(hj − hi) + ψ, φ =
∑
j

c′j(hj − hi) + ψ′, lim
ε→0

cj = lim
ε→0

c′j = c0j .

However, the two eigenfunctions must be orthogonal, so

0 = 〈φ, φ′〉
=
∑
j,k

cjck〈hj − hi, hk − hk〉 + O(|c|)‖ψ‖2‖hj‖2 + O(|c|)‖ψ′‖2‖hj‖2 + ‖ψ‖2‖ψ′‖2

=
∑
j

c2j

∫ 1

0

h2
j dx + o(ε)|c|2 = ε|c0|2

∫ ∞

−∞
(H ′(t))2 dt + o(ε)|c0|2

by Remark 4.2. This is obviously impossible when ε is sufficiently small.
Next dim F is at least K. Suppose instead that dim F < K. Define a subspace

of {φ ∈ L2(0, 1) : φ = 0}: S = span{∑j c
0
j (hj − hj) : all c0 found in (5.3)}. We use
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a perturbation argument. The asymmetric distance between the closed subspaces S
and F is

d(S, F ) = sup{d(ϕ, F ) : ϕ ∈ S, ‖ϕ‖2 = 1},
where d(x, F ) = inf{‖x−y‖2 : y ∈ F}. Since dim F < dim S, there exists

∑
j c

0
j (hj−

hj) ∈ S such that for every eigenvector in F which may be written as
∑

j c
′
j(hj −

hj) + ψ with ‖ψ‖2 = O(ε)|c′| according to (4.7),
∑

j

c′j
|c′|

c0j
|c0| = o(1). Then a straight

computation shows〈 ∑
j c

′
j(hj − hj) + ψ

‖∑j c
′
j(hj − hj) + ψ‖2

,

∑
j c

0
j (hj − hj)

‖∑j c
0
j (hj − hj)‖2

〉
= o(1).

So if we use

ϕ =

∑
j c

0
j (hj − hj)

‖∑j c
0
j (hj − hj)‖2

,

d(ϕ, F ) = 1 − o(1) and d(S, F ) = 1 − o(1). The following lemma due to Helffer and
Sjöstrand [5] will give us a contradiction.

Lemma 5.1. Let L be a self-adjoint operator on a Hilbert space H, let R be a
compact interval in (−∞,∞), and let e1, e2, . . . , eK be normalized linearly independent
elements in the domain of L. Assume that the following are true:

1. L(ek) = pkek + rk, ‖rj‖ ≤ ε′, and pj ∈ R, k = 1, 2, . . . ,K.
2. There is ω > 0 so that R is ω-isolated in the spectrum of L, i.e., (σ(L)\R) ∩

(R + (−ω, ω)) = ∅.
Then d(S, F ) ≤ K1/2ε′

ωκ1/2 , where S = span{e1, . . . , eK}, F = the closed subspace associ-
ated with σ(L) ∩R, and κ equals the smallest eigenvalue of the matrix [〈ej , ek〉].

Here we take L = L0, each ek ∝∑j c
0
j (hj − hj) for each one of the K vectors c0,

and S, F as before. ω and κ are positive and bounded away from 0 as ε → 0. Set
pk = ηε2 or ηε depending on c0 and R = [−ε1/2, ε1/2]. From (4.4) we find

L0


∑

j

c0j (hj − hj)


− pk

∑
j

c0j (hj − hj) = O(ε)|c0|,

and on the other hand ‖∑j c
0
j (hj − hj)‖2 ∼ ε1/2|c0|, as discussed in Remark 4.2.

Therefore ‖rk‖2 = O(ε1/2). Consequently d(S, F ) = o(1), a contradiction. Statement
2 of Theorem 1.1 is proved.

6. m �= (0, 0) eigenvalues. Rewrite (3.3) as

Lm(φ) := −ε2φ′′ + εγGm[φ] + f ′(u)φ = µφ,(6.1)

where µ = λm − ε2m2π2. In this section an eigenpair of (6.1) is denoted by (µ, φ).
Lemma 6.1. If µ → µ0 as ε → 0, then µ0 ≥ 0.
The proof of this lemma is almost identical to that of Claim 1 in section 3, and

we skip it, because the extra term εγGm[φ] is of order O(ε). The case µ0 > 0 does
not concern us, so we assume µ → 0. Decompose φ =

∑
j cjhj + ψ, where ψ ⊥ hj ,

j = 1, 2, . . . ,K. Note that

Lm(hj) = (f ′(u) − f ′(H))hj + εγGm[hj ] + e.s.
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Because of (3.6) and

εγGm[hj ](x) = γε2Gm

[
hj
ε

]
(x) = γε2Gm(x, xj) + O(ε3),

we deduce

Lm(hj) = O(ε2).(6.2)

We write (6.1) as

K∑
j=1

cjLm(hj) + Lm(ψ) = µ
∑
j

cjhj + µψ.(6.3)

Lemma 6.2. 〈Lm(ψ), ψ〉 ≥ C‖ψ‖2
2 for some C > 0 independent of ε.

We skip the proof of this lemma since it is similar to that of Claim 2 in section
3. Multiply (6.3) by ψ and integrate. Use (6.2) to deduce

|c|O(ε2)‖ψ‖2 + 〈Lm(ψ), ψ〉 = µ‖ψ‖2
2.

Then Lemma 6.2 implies

‖ψ‖2 = O(ε2)|c|.(6.4)

Next we multiply (6.3) by hk and integrate. The left side is

∫ 1

0


Lm(ψ)hk +

∑
j

cjLm(hj)hk


 =

∫ 1

0


Lm(hk)ψ +

∑
j

cjLm(hj)hk




=

∫ 1

0

{(f ′(u) − f ′(H))hkψ + εγGm[hk]ψ + e.s. ψ}

+
∑
j

cj

∫ 1

0

{(f ′(u) − f ′(H))hjhk + Gm[hj ]hk + e.s. hk}.(6.5)

All terms in (6.5) are estimated.∣∣∣∣
∫ 1

0

(f ′(u) − f ′(H))hkψ

∣∣∣∣ ≤ ‖(f ′(u) − f ′(H))hk‖∞‖ψ‖2 = O(ε4)|c|

by (3.6) and (6.4).∫ 1

0

εγGm[hk]ψ = O(ε)

∫ 1

0

Gm[ψ]hk = O(ε)‖Gm[ψ]‖∞‖hk‖1 = O(ε2)‖ψ‖2 = O(ε4)|c|

by (6.4). The rest of (6.5) are estimated as in section 4:∫ 1

0

(f ′(u)− f ′(H))hjhk = ε3sδjk +O(ε4),

∫ 1

0

εγGm[hj ]hk = γε3Gm(xj , xk) + o(ε3).

Hence (6.5) becomes

ε3sck +
∑
j

cjγε
3Gm(xj , xk) + o(ε3)|c|.
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The right side of (6.3) multiplied by hk and integrated is∫ 1

0

µ
∑
j

cjhjhk =
∑
j

µεcjτδjk + e.s.|c| = µετck + e.s.|c|.

Equating the last two quantities, we find that µ = O(ε2) and, for every k,

sck + γ
∑
j

Gm(xj , xk)cj + o(1)|c| =
µτ

ε2
ck.(6.6)

So in the limit

sc0k + γ
∑
j

Gm(x0
j , x

0
k)c0j = ητc0k.(6.7)

Here η = limε→0 µ/ε
2 = and c0j = limε→0 cj . In the next section we will solve (6.7)

to determine η and c0. Once they are found we obtain the asymptotic expansions for
the eigenpair λm = µ + ε2m2π2 and φm = φ:

λm = ε2(η + m2π2) + o(ε2), φm ≈
∑
j

c0jhj .(6.8)

7. The spectrum of [Gm(x0
j , x

0
k)]. When dealing with∑

j

Gm(x0
j , x

0
k)bj = Λbk,

we first consider the simplest case K = 1. Then Λ = Gm(x0
1, x

0
1). On (0, x0

1)

Gm(x, x0
1) =

Gm(x0
1, x

0
1)

cosh m̃x0
1

cosh m̃x,

where m̃ = π
√
m2

1 + m2
2, and on (x0

1, 1)

Gm(x, x0
1) =

Gm(x0
1, x

0
1)

cosh m̃(1 − x0
1)

cosh m̃(1 − x).

Then

1 = [−G′
m(·, x0

1)]x0
1

=

{
m̃ sinh m̃x0

1

cosh m̃x0
1

+
m̃ sinh m̃(1 − x0

1)

cosh m̃(1 − x0
1)

}
Gm(x0

1, x
0
1).

Therefore

Λ =
1

m̃(tanh m̃a + tanh m̃b)
,

and in (6.7)

η =
1

τ

(
−γab +

γ

m̃(tanh m̃a + tanh m̃b)

)
, c0 = 1.(7.1)

To see the sign of λm, we recall

lim
ε→0

λm
ε2

= η + m2π2 =
1

τ

(
−γab +

γ

m̃(tanh m̃a + tanh m̃b)

)
+ m2π2.
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The right side is positive for all m �= (0, 0) if γ is small enough, because m2π2

dominates the negative term. However, when γ is sufficiently large, we may find some
large m̃ that makes the right side negative. To see this we first take m̃ large enough
so that sum of the two terms in the parentheses is negative. Then we take γ large
enough so the entire right side is negative.

When K ≥ 2,
∑

j Gm(x0
j , x

0
k)bj = Λbk is a more complex problem. Let ζ be the

solution of −ζ ′′ + m2π2ζ =
∑

j δ(· − x0
j )bj , ζ

′(0) = ζ ′(1) = 0. Hence [−ζ ′]x0
k

= bk

and ζ(x0
k) = Λbk. Then for every k, [−ζ ′]x0

k
= 1

Λζ(x0
k). As in section 5 we express

[−ζ ′]x0
k

= (T<ζ)k in order to convert to the new eigenvalue problem T<ζ = (1/Λ)<ζ.

Away from x0
j , ζ = g1 cosh m̃x + g2 sinh m̃x. From here we write, in the matrix

notation, [
ζ(x0

j−1)
ζ(x0

j )

]
=

[
cosh m̃x0

j−1 sinh m̃x0
j−1

cosh m̃x0
j sinh m̃x0

j

] [
g1
g2

]
.

We denote the 2 by 2 matrix by AL for the left of x0
j . To the right we have similarly[

ζ(x0
j )

ζ(x0
j+1)

]
=

[
cosh m̃x0

j sinh m̃x0
j

cosh m̃x0
j+1 sinh m̃x0

j+1

] [
g1
g2

]
,

with the 2 by 2 matrix denoted by AR. Hence[
g1
g2

]
= A−1

L

[
ζ(x0

j−1)
ζ(x0

j )

]
on (x0

j−1, x
0
j ),

[
g1
g2

]
= A−1

R

[
ζ(x0

j )
ζ(x0

j+1)

]
on (x0

j , x
0
j+1).

Then

−ζ ′(x0
j−) = −m̃[sinh m̃x0

j , cosh m̃x0
j ]A

−1
L

[
ζ(x0

j−1)
ζ(x0

j )

]
,

−ζ ′(x0
j+) = −m̃[sinh m̃x0

j , cosh m̃x0
j ]A

−1
R

[
ζ(x0

j )
ζ(x0

j+1)

]
,

and

[−ζ ′]x0
j

= m̃[sinh m̃x0
j , cosh m̃x0

j ]

{
A−1
L

[
ζ(x0

j−1)
ζ(x0

j )

]
−A−1

R

[
ζ(x0

j )
ζ(x0

j+1)

]}
.

We also compute

A−1
L =

1

sinh m̃(x0
j − x0

j−1)

[
sinh m̃x0

j − sinh m̃x0
j−1

− cosh m̃x0
j cosh m̃x0

j−1

]
,

A−1
R =

1

sinh m̃(x0
j+1 − x0

j )

[
sinh m̃x0

j+1 − sinh m̃x0
j

− cosh m̃x0
j+1 cosh m̃x0

j

]
.

Thus T is a triagonal matrix. The three entries of the jth row where j �= 1,K are

−m̃csch m̃(x0
j − x0

j−1), m̃ coth m̃(x0
j − x0

j−1) + m̃ coth m̃(x0
j+1 − x0

j ),

−m̃csch m̃(x0
j+1 − x0

j ).
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For the first row,

ζ(x) =
ζ(x0

1)

cosh m̃x0
1

cosh m̃x

and

[−ζ ′]x0
1

= m̃(tanh m̃x0
1 + coth m̃(x0

2 − x0
1))ζ(x0

1) − m̃csch m̃(x0
2 − x0

1)ζ(x0
2).

When K = 2 the matrix T is

m̃

[
tanh m̃a/2 + coth m̃b −csch m̃b
−csch m̃b tanh m̃b/2 + coth m̃a

]

= m̃(coth m̃a + coth m̃b)IK×K − m̃

[
csch m̃a csch m̃b
csch m̃b csch m̃a

]
.

The two (1/Λ)’s are

m̃(coth m̃a + coth m̃b− csch m̃a− csch m̃b),

m̃(coth m̃a + coth m̃b− csch m̃a + csch m̃b),

which again lead to η for (6.7). To see the sign of λm, we take the smaller Λ so that
the smaller λm satisfies

lim
ε→0

λm
ε2

= η+m2π2 =
1

τ

(
−γab

2
+

γ

m̃(coth m̃a + coth m̃b− csch m̃a + csch m̃b)

)
+m2π2.

As in the K = 1 case the right side is positive for all m �= (0, 0) if γ is small, and is
negative for some m if γ is large.

When K ≥ 3 we write T = d IK×K −Q with

Q =




α β
β 0 α

α 0 β
β 0 α

. . .


 ,

where

α = m̃csch
2m̃a

K
, β = m̃csch

2m̃b

K
, d = m̃ coth

2m̃a

K
+ m̃ coth

2m̃b

K
.

Because of diagonal domination the matrix d IK×K −Q is positive definite. The
K eigenvalues of Q are found in (B.5) of Appendix B. We again denote them by qj ,
j = 1, 2, . . . ,K. Then Λ = 1

d−qj , and for (6.7), K eigenpairs

η =
1

τ

(
−γab

K
+

γ

d− qj

)
, c0 = <ζ(7.2)

are found. To see the sign of λm, we focus on the smallest η, which is associated with
qj = −

√
α2 + β2 + 2αβ cos θ, where θ = 2π/K. For this qj

lim
ε→0

λm
ε2

= η + m2π2 =
1

τ

(
−γab

K
+

γ

d− qj

)
+ m2π2

=
1

τ

(
−γab

K
+

γ

d +
√
α2 + β2 + 2αβ cos θ

)
+ m2π2.
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Fig. 4. A lamellar solution u and its deformation in a cross section perpendicular to y2.

The dependence of the positivity of the right side on γ is still the same; i.e., the right
side is positive for all m if γ is small and negative for some m if γ is large. The
dependence of the positivity on K is also clear. When K is large, m2π2 dominates
the negative term, so the whole quantity is positive for all m.

Remark 7.1. If γ and K are held fixed, then the last line is positive if |m| is
sufficiently large. This is consistent with statement 1 of Theorem 1.1.

We omit the proof that Lm has exactly K simple eigenpairs with small eigenvalues,
because it is similar to that for L0. This concludes the proof of statement 3, Theorem
1.1.

To visualize statement 3, Theorem 1.1, consider the example a = 0.4 and K = 6.
We study m = (8, 0) and find the c0 associated with the smallest λ(8,0) by numerically
diagonalizing Q:

c0 = (0.0424, −0.4774, 0.5199, −0.5199, 0.4774, −0.0424)T .

The eigenfunction of L associated with this λ(8,0) and with c0 is approximately∑
j c

0
jhj(x) cos(8πy1). When γ is sufficiently large, we have λ(8,0) < 0. Then the

unstable lamellar solution u may easily be deformed in the direction of this eigenfunc-
tion. In Figure 4 we make a cross section of D, perpendicular to the y2 direction. The
first plot shows u on this cross section, where the black color indicates u ≈ 1 and the
white color indicates u ≈ 0. The second plot shows u deformed by the eigenfunction.
Note that under this deformation the straight interfaces in u become wriggled curves.
See [7] for a heuristic argument for this change of shape.

8. The 1-D global minimizer. The integral
∫ 1

0
|(v0)′|2 dx in the conclusion of

Theorem 2.1 may be calculated as

∫ 1

0

|(v0)′|2 dx = K

∫ a/K

0

|(v0)′|2 dx + K

∫ 1/K

a/K

|(v0)′|2 dx

= K

∫ a/K

0

(1 − a)2x2 dx + K

∫ 1/K

a/K

a2

(
x− 1

K

)2

dx

=
a3b2

3K2
+
a2b3

3K2
=

a2b2

3K2
.
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Hence

lim
e→0

ε−1I1(u) = τK +
γa2b2

6K2
.(8.1)

It was shown in [13] that the 1-D global minimizer is a 1-D local minimizer whose
number of interfaces K∗ minimizes the right side of (8.1). Note that in some less likely
cases two integers K∗ and K∗ + 1 may both minimize the right side of (8.1). Then
we may have two global minimizers with K∗ and K∗ + 1 interfaces, respectively.5 If
we pretend that K is a positive real number and minimize the right side with respect
to K, then the minimum is achieved at

K∗ =

(
a2b2γ

3τ

)1/3

.(8.2)

We set t = m̃/K. Consider the eigenvalue λm that is associated with the smallest
η of section 7.

lim
ε→0

λm
ε2

τm̃

γ
=

τm̃(η + m2π2)

γ

=−abt+ 1

coth 2at+coth 2bt+
√

(csch 2at)2+(csch 2bt)2+2csch 2atcsch 2bt cos θ
+
τK3t3

γ
.

For the 1-D global minimizer, we use K∗ in (8.2) for K to find

lim
ε→0

λm
ε2

τm̃

γ
=

τm̃(η + m2π2)

γ

=−abt+ 1

coth 2at+coth 2bt+
√

(csch 2at)2+(csch 2bt)2+2csch 2atcsch 2bt cos θ
+
a2b2t3

3
.

(8.3)
Note that a natural lower bound for the second term in (8.3) is

1

coth 2at + coth 2bt + csch 2at + csch 2bt

=
sinh at sinh bt

sinh t
= abt− a2b2t3

3
+

(a2b2 + 2a3b3)t5

45
+ · · ·

by replacing cos θ by 1. This lower bound is sharp if K∗ is large, i.e., γ is large.
The first three terms of the Taylor expansion are given. We observe that the first
two terms in the Taylor expansion are exactly canceled by the first and third terms in
(8.3). This is certainly no coincidence. The fifth order term is positive. Our numerical
tests confirm that all of (8.3) remains positive. The particular K∗ of (8.2) is barely
large enough to overcome the negative third order term in sinh at sinh bt

sinh t .
To contemplate the physical significance of the shaky stability property of the

1-D global minimizer, we first note that the value (8.2) for K∗ is only approximate.
But the 1-D global minimizer is very close to the borderline of 3-D stability. 1-D local
minimizers with larger K are likely to be stable in three dimensions, and 1-D local
minimizers with smaller K are likely to be unstable in three dimensions. In the real

5Actually there are four global minimizers because of Remark 2.2 if we include solutions of both
types.
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physical system only the 3-D global minimizer, which is unlikely to be lamellar, is the
thermal equilibrium. Other stable solutions of (1.2) are only transient, metastable
states. In general lamellar phases, including the 1-D global minimizer, are transient.
They are vulnerable to perturbations of the form

∑
j c

0
jhj(x) cos(m1πy1) cos(m2πy2)

found in statement 3 of Theorem 1.1, which push the straight interfaces in a lamellar
state to a wriggled shape; see Figure 4. In a forthcoming paper [12] we will actually
prove, using bifurcation analysis, that (1.2) admits wriggled solutions for some values
of γ.

Appendix A. Proof of Theorem 2.3.
Lemma A.1. u has exactly K transition layers in the sense that there are ex-

actly K points, x1, x2, . . . , xK , in (0, 1), so that u(xj) = 1/2, j = 1, 2, . . . ,K, and
limε→0 xj = x0

j .
The proof of this lemma is similar to that of [11, Proposition 8.2].
Lemma A.2. The derivative of v = G0[u − a] has exactly K − 1 zeros, denoted

by y1, y2, . . . , yK−1, in (0, 1), such that limε→0 yj = j/K.
Proof. The derivative of v0 = G0[u0 − a] has zeros at 1/K, 2/K, . . . , (K − 1)/K.

The convergence of v′ to (v0)′ implies that v′ has exactly K − 1 zeros yj with the
property limε→0 yj = j/K.

We set y0 = 0 and yK = 1. Let li = yi − yi−1, i = 1, . . . ,K. Between two zeros of
v′ we integrate the equation −v′′ = u − a and find 1

li

∫ yi
yi−1

u dx = a. This allows us

to localize the energy of u on (yi−1, yi). If we set liξ + yi−1 = x, Ui(ξ) = u(x), and

Vi(ξ) = l−2
i v(x) = l−2

i G0[u− a](x), then
∫ 1

0
Ui dz = a, −V ′′

i = Ui− a, V ′
i(0) = V ′

i(1) =
0. More importantly,

I1(u) =

K∑
i=1

∫ yi

yi−1

{
ε2

2
|u|2 +

γε

2
|v′|2 + W (u)

}
dx

=

K∑
i=1

li

∫ 1

0

{
ε2

2l2i
|U ′
i |2 +

l2i γε

2
|V ′
i|2 + W (Ui)

}
dξ =

K∑
i=1

liJli(Ui)(A.1)

if we define a new variational problem:

Jl(U) =

∫ 1

0


 ε2

2l2
|U ′|2 +

l3γ

2

ε

l

∣∣∣∣∣
(
− d2

dξ2

)−1/2

(U − a)

∣∣∣∣∣
2

+ W (U)


 dξ, U ∈ Xa.

(A.2)
This new Jl is similar to the original I1. l lies in a compact subinterval of (0, 1),

so we take l ∼ 1. We consider a one-layer local minimizer U that is close to U0, which
is 0 on (0, 1− a) and 1 on (1− a, 0). The dependence of U on l and ε is suppressed in
the notation. It is proved in Proposition 9.2 of [11] that this local minimizer is unique
in an L2 ball centered at U0 of radius δ. δ is small but independent of ε. Denote the
transition point of U by χ, i.e., U(χ) = 1/2. This one-layer local minimizer has the
following asymptotic expansion.

Lemma A.3. Let ε̃ = ε
l and γ̃ = l3γ. Then U = H( ·−χ

ε̃ ) + ε̃Z with ‖Z −Z0‖∞ =

O(ε̃). Here Z0 = − γ̃(V0−V0(1−a))
f ′(0) , V0 = G0[U0 − a]. Note that Z0(1 − a) = 0.

Proof. See Proposition 8.3 in [11].
Lemma A.4. Let F ∈ C2(−∞,∞) be such that F (0) = F (1) = 0. Then∫ 1

0

F (U) dξ = ε̃

∫ ∞

−∞
F (H) dt + ε̃

∫ 1−a

0

F ′(0)Z0 dξ + ε̃

∫ 1

1−a
F ′(1)Z0 dξ + O(ε̃2).
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Proof. See Lemma 8.4 in [11].
Lemma A.5. Let W = ∂U

∂l . Then

W(ξ) = H ′
(
l(ξ − χ)

ε

)
ξ − χ

ε
−H ′

(
l(ξ − χ)

ε

)
ξ − χ

ε
+ ϕ,

with ‖ϕ‖2 = O(1). And ϕ = c(h − h) + ψ, with h = H ′( l(ξ−χ)
ε ), h − h ⊥ ψ, c =

O(ε−1/2), and ‖ψ‖2 = O(ε).
Proof. The brief argument here summarizes the more elaborate proof of the

similar Proposition 9.3 in [11]. Differentiate the Euler–Lagrange equation of (A.2)
with respect to l to obtain

−
(ε
l

)2

W ′′+γεl2G0[W]+f ′(U)W+4γεlG0[u−a]+
2

l
f(U)− 2

l
f(U) =

df(U)

dl
(A.3)

for W. Define g(ξ) = H ′( l(ξ−χ)
ε ) ξ−χε + e.s. so that g and its derivative vanish at 0 and

1, and ϕ = W − (g − g). Here g satisfies the equation

−
(ε
l

)2

g′′ + f ′(H)g +
2

l
f(H) = e.s.

Subtract this from (A.3) and use the facts ‖g‖2 = O(ε1/2), g = O(ε), and (f ′(U)−
f ′(H))(g − g) = O(ε2), where the last one follows from Lemma A.3, to deduce the
equation for ϕ:

−
(ε
l

)2

ϕ′′ + εγl2G0[ϕ] + f ′(U)ϕ + O(ε) = Const.,(A.4)

where we simply write Const. for a constant since its exact value is not needed in this
proof. We multiply this equation by ϕ and integrate:∫ 1

0

{(ε
l

)2

|ϕ′|2 + εγl2G0[ϕ]ϕ + f ′(U)ϕ2

}
dz = O(ε)‖ϕ‖2.

By Proposition 9.1 in [11] we find ‖ϕ‖2 = O(1).

Decompose ϕ = c(h − h) + ψ, where h = H ′( l(ξ−χ)
ε ) + e.s. and h − h ⊥ ψ. The

exponentially small correction term e.s. is added so that h and h′ vanish at 0 and 1.
Then

c =

∫ 1

0
ϕ(h− h) dz

‖h− h‖2
2

≤ ‖ϕ‖2

‖h− h‖2

= O(ε−1/2).

The equation satisfied by ψ is

−
(ε
l

)2

ψ′′ + f ′(U)ψ + O(ε) = Const.,

where we have used the fact (f(U)−f ′(H))h = O(ε2), again a consequence of Lemma

A.3. Argue as in Lemma 4.1 to deduce
∫ 1

0
{−( εl )

2ψ′′ + f ′(U)ψ}ψ dξ ≥ C‖ψ‖2
2, which

implies ‖ψ‖2 = O(ε).
Lemma A.6. Let E(l) = lJl(U). Then E(l) is strictly convex in l in any compact

subset of (0, 1).
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Proof. This lemma is similar to Proposition 10.1 in [11]. Differentiating E with
respect to l yields

∂E

∂l
=

∫ 1

0

{
− ε2

2l2
|U ′|2 + W (U) +

3εγl2

2
|V ′|2

}
dξ,(A.5)

where V = G0[U − a]. We have used the fact that U is a critical point of Jl. Differ-
entiate (A.5) with respect to l:

∂2E

∂l2
=

∫ 1

0

{
ε2

l3
|U ′|2 + 3εγl|V ′|2

}
dξ +

∫ 1

0

{2f(U)W + 4εγl2VW} dξ.

Call the first integral on the right side T1 and the second integral T2. Multiplying the
Euler–Lagrange equation of U by U − a and integrating by parts, we find the useful
integral identity

∫ 1

0

{(ε
l

)2

|U ′|2 + f(U)(U − a) + εγl2|V ′|2
}
dξ = 0.

Using this identity and Lemma A.4, we obtain

T1 =
1

l

∫ 1

0

{−f(U)(U − a) + 2εγl2|V ′|2} dξ

=
ε

l2

∫ ∞

−∞
−f(H)(H − a) dt +

εγla2b2

3
+

2εγla2b2

3
+ O(ε2)

=
ε

l2

∫ ∞

−∞
−f(H)H dt + εγla2b2 + O(ε2).

Here we have used∫ 1

0

|V ′|2 dξ =

∫ 1

0

|V ′
0|2 dξ + O(ε) =

a2b2

3
+ O(ε),

which follows from (8.17) in [11]. By Lemmas A.3 and A.5

T2 =

∫ 1

0

(2f(H) + O(ε))

(
ξ − χ

ε
H ′ + +cH ′ − cH ′ + ψ

)
dξ

=
ε

l2

∫ l(1−χ)/ε

−lχ/ε
2f(H(t))H ′(t)t dt + O(ε1.5) =

ε

l2

∫ ∞

−∞
−2W (H) dt + O(ε1.5).

We have used the estimates∫ 1

0

∣∣∣∣ξ − χ

ε
H ′
∣∣∣∣ dξ =

ε

l2

∫ l(1−χ)/ε

−lχ/ε
|H ′(t)t| dt = O(ε),

∫ 1

0

|f(H)| dξ =
ε

l

∫ l(1−χ)/ε

−lχ/ε
|f(H(t))| dt = O(ε),

‖2f(H) + O(ε)‖2 = O(ε1/2),∫ 1

0

f(H)H ′ dξ = e.s.
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Adding T1 and T2, since
∫∞
−∞(f(H)H + 2W (H)) dt = 0 (a consequence of the integral

identity
∫∞
−∞{(H ′)2 + f(H)H} dt = 0 and the first integral of H), we arrive at

∂2E

∂l2
= εlγa2b2 + O(ε1.5),(A.6)

proving the lemma.
Proof of Theorem 2.3. We construct a particular periodic solution u∗ with K

transition layers and show that u = u∗. Let U be the unique minimum of Jl in
a δ neighborhood of U0, with l = 1/K, and let UR = U(1 − ·) be its reversal.
Set u∗(x) = UR(Kx) for x ∈ (0, 1/K). Extend u∗ antiperiodically to (0, 1), i.e.,
u∗(x) = U(Kx−1) for x ∈ (1/K, 2/K), u∗(x) = UR(Kx−2) for x ∈ (2/K, 3/K), . . . .
Clearly u∗ is periodic with K/2 periods.

For small ε, u and u∗ belong to the same small L2 neighborhood in which u is a
minimizer. Using the strict convexity of E in Lemma A.6 and (A.1), we find

I(u∗) ≥ I(u) =

K∑
i=1

liJli(u(li · +yi−1)) ≥
K∑
i=1

E(li) ≥ KE

(
1

K

)
= I(u∗).

All the inequalities above must be equalities. Therefore li = 1/K, yi = i/K for all
i, and liJli(u(li · +yi−1)) = E(li). Moreover u((1/K) · +yi−1) = U when i is even or
= UR when i is odd by the local uniqueness of U and UR [11, Proposition 9.2]. Thus
u = u∗.

Appendix B. The matrix Q. Consider a matrix Q like those in sections 5
and 7 with α, β > 0. In this appendix Q, whose size is at least 3 by 3, acts on the
complex vector space CK . Let <q = (z, tz2, z3, tz4, . . .)T , where z, t ∈ C and |z| = 1.
Suppose the eigenvalue problem Q<q = q<q holds for the second through the next-to-last
equations, excluding the first and the last. In these K − 2 equations

αtzl−1 + βtzl+1 = qzl if l is odd,
βzl−1 + αzl+1 = qtzl if l is even.

(B.1)

They imply

t = ± αz + βz

|αz + βz| .(B.2)

In particular |t| = 1. In order to have the first and the last equations satisfied, we let
<h = A<q + B<q and study Q<h = q<h.

If the vector <q is extended by t as the 0th entry and by tzK+1 as the (K + 1)th
entry if K is odd, or by zK+1 as the (K + 1)th entry if K is even, then the first and

the last equations of Q<h = q<h are satisfied if the 0th entry is equal to the first entry
and the Kth entry is equal to the (K + 1)th entry. That is,{

Az + Bz = At + Bt
AzK + BzK = AtzK+1 + BtzK+1 if K is odd;(B.3)

{
Az + Bz = At + Bt
AtzK + BtzK = AzK+1 + BzK+ if K is even.(B.4)
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They should have nontrivial solutions for A and B. In the case of (B.3) this means

(z − t)(1 − tz)zK = (z − t)(1 − tz)zK

or, since |z| = |t| = 1, z2K = 1. The case (B.4) gives the same condition. Define

θ = 2π(j−1)
K , j = 1, 2, . . . , 2K. Then z = eiθ/2. From (B.1) we find

q = αtz + βtz = ±
√
α2 + β2 + 2αβ cos θ.

Here θ ranges from 0 to 4π − (2π/K), which is too wide a range. We restrict
j to 1, 2, . . . , (K + 1)/2 if K is odd and j = 1, 2, . . . ,K/2 + 1 if K is even. Even
then we have some extra values. When z = 1 and t = −1, which occur if θ = 0 and
q = −(α + β), we find A + B = 0 and <h = <0, which is not an eigenvector. Also when
K is even, z = i, and t = −i, which occur if θ = π, and q = β −α, we find A−B = 0
and again <h = <0. In summary the K distinct eigenvalues of Q are

α + β, ±
√
α2 + β2 + 2αβ cos θ

(
θ =

2π(j − 1)

K
, j = 2, 3, . . . ,

K + 1

2

)
if K is odd;

(B.5)

α + β, ±
√
α2 + β2 + 2αβ cos θ

(
θ =

2π(j − 1)

K
, j = 2, 3, . . . ,

K

2

)
, α− β if K is even.
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HOMOGENIZATION OF HIGH-CONDUCTIVITY
PERIODIC PROBLEMS: APPLICATION TO A GENERAL

DISTRIBUTION OF ONE-DIRECTIONAL FIBERS∗
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Abstract. This article is devoted to the asymptotic study, as ε→ 0, of the Dirichlet problem{
− div

(
Aε(

x
ε
)∇uε

)
= f in Ω,

uε = 0 on ∂Ω,

where Ω is an x3-axis bounded open cylinder of R
3, and Aε is a positive measurable function which

does not depend on the variable x3, periodic with respect to the two-dimensional torus Y2. The
conductivity Aε is not uniformly bounded in an open set of small measure Qε ⊂ Y2 and is equal to 1
elsewhere.

We propose a new approach to solving this high-conductivity homogenization problem. It is
based on the study of the asymptotic behavior of the periodic spectral problem weighted by the
conductivity function Aε:

− div
(
Aε∇Vk,ε

)
= Λk(ε)Aε Vk,ε in Y2, k ∈ N,

where the eigenfunctions Vk,ε are Y2-periodic.
On the one hand, under suitable conditions on Qε we prove that nonlocal effects appear through

a coupling in the limit problem if and only if the sequence (Λ1(ε)
ε2

)ε>0 is bounded, where Λ1(ε) is
the first nonzero eigenvalue of the previous spectral problem.

On the other hand, when Qε is composed of N smooth connected open subsets of small diameter,
we prove that the limit problem is a coupled system of second order linear PDEs whose size is

n ≤ N + 1. The number n is equal to the smallest integer such that the sequence (Λn(ε)
ε2

)ε>0 tends
to +∞ as ε tends to 0. We illustrate this result by studying the case of N = 2 highly conducting
cylinders in the period cell of the same radius rε � 1 and separated by distance dε > 0.

Key words. homogenization, periodic microstructure, high conductivity, nonlocal effects, spec-
trum

AMS subject classifications. 35B27, 35J25, 74Q15, 76M50

DOI. 10.1137/S0036141001398666

1. Introduction. In this paper we study the asymptotic behavior of a class of
conduction problems with nonuniformly bounded coefficients. This class is defined as
follows:

Let Ω2 be a bounded domain of R
2 and let Ω be the open cylinder of R

3 defined
by Ω := Ω2× ]0, 1[ along the x3-axis. We consider the conduction problem in Ω:{

−div (aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(1.1)

where f is a given function in L2(Ω). The conductivity aε is independent of x3 and
is assumed to be a highly oscillating function defined by

aε(x) := Aε

(x
ε

)
for almost every x ∈ Ω,(1.2)
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where Aε is a Y2-periodic (Y2 := R
2/Z2 is the two-dimensional torus) measurable

positive function in L∞(R2). We assume that there exists an open subset Qε of Y2,
of small measure such that

Aε := 1 a.e. in Y2 \Qε, Aε ≥ 1 a.e. in Qε, and

∫
Qε

Aε −→
ε→0

κ ∈ ]0,+∞[.

(1.3)

Therefore Aε is uniformly bounded from below by a positive constant but nonuni-
formly bounded from above.

Problem (1.1) is a conduction problem in an ε-periodic medium composed of a
moderately conducting material and a highly conducting one. The model compos-
ite medium is a matrix periodically reinforced by highly conducting one-directional
fibers. We study the asymptotic behavior of problem (1.1) when the period ε tends
to zero. Our aim is to determine the homogenized problem satisfied by the limit u
of the solution uε of (1.1). In general the limit problem is not a conduction problem
like (1.1). It may be a coupled system of linear second order PDEs, which expresses
nonlocal effects in the homogenization process. Such nonlocal effects are induced by
the interaction between the conduction in the matrix and the conduction in the highly
conducting fibers.

Fenchenko and Khruslov [11] (see also [12]) studied similar conduction problems
with more general nonuniformly bounded coefficients but for Neumann boundary
conditions. Under rather complicated assumptions satisfied by the coefficients, they
show that the limit of the conduction problem is a coupled system of linear second
order PDEs of size 2 satisfied by the limit u of uε in H1(Ω) and the limit of the
rescaled potential in the small size region of high conductivity.

In terms of the strongly local energy

Eε(u) :=

∫
Ω

aε |∇u|2 ,(1.4)

this coupled system corresponds to the appearance of a nonlocal term in the limit
energy. From a theoretical point of view Mosco [13] showed, thanks to the Beurling–
Deny [2] representation formula of the Dirichlet forms, that the Γ-limit E0 of strongly
local forms of type (1.4) can always be written, for any u ∈ C1

0 (Ω),

E0(u) =

∫
Ω

a(dx)∇u · ∇u+

∫
Ω

u2 k(dx) +

∫
Ω×Ω\diag

(u(x)− u(y))2 j(dx, dy),(1.5)

where a, k are Radon measures on Ω and the so-called jumping measure j is a Radon
measure on Ω×Ω \ diag which represents the nonlocal term. The work of Fenchenko
and Khruslov [11] thus gives sufficient conditions in order to obtain nonlocal effects.
More recently Camar-Eddine and Seppecher [8] proved that a large class of mea-
sures k, j can be attained from the convergence of strongly local energies (1.4). An
explicit construction is given by Tchou and the author [5] in order to obtain the
product Lebesgue measure dx⊗ dy as a jumping measure j in (1.5)

Revisiting the work of Fenchenko and Khruslov, Bellieud and Bouchitté [1] stud-
ied in a complete way (for a nonlinear conduction problem with mixed boundary
conditions) an example from [11] by using the Γ-convergence of functionals. This ex-
ample corresponds to the case where the highly conducting set Qε is a disk of radius
rε � 1. They prove that nonlocal effects arise if and only if the limit of ε2 |ln rε|
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is positive. Moreover they extend the example of [11] by considering an overlapping
of (n − 1) highly conducting cylinders of different radius and conductivity. For this
geometry they obtain a limit coupled system of size n satisfied by the limit u of uε
and the limit of the rescaled potentials associated with each cylinder.

In this article we propose a completely different approach to the homogenization
in periodic media which are reinforced by highly conducting one-directional fibers.
This work extends the results of [11] since we obtain limit problems of arbitrary large
size, as well as that of [1] since the distribution of the fibers is quite general. Our
approach is based on the asymptotic behavior of the “cross-sectional” period cell
spectral problem

−div (Aε∇Vk,ε) = Λk(ε)Aε Vk,ε in Y2.(1.6)

The solutions of (1.6) make an orthonormal basis (Vk,ε)k≥0 of L2
#(Y2) provided with

the weighted Hilbert norm

‖V ‖ε :=
(∫

Y2

Aε V
2

) 1
2

, V ∈ L2
#(Y2),(1.7)

and are associated with the sequence of eigenvalues

Λ0(ε) = 0 < Λ1(ε) ≤ · · · ≤ Λk(ε) ≤ Λk+1(ε) ≤ · · · .(1.8)

In the first section of the paper we prove the following result (see Theorem 2.1
for precise statements).

Theorem 1.1. Assume that the eigenfunction V1,ε is not concentrated in the
set Qε defined by (1.3), that the capacity of Qε tends to zero, and that there exists, for
any µ ∈ R

2, a smooth Y2-periodic function whose gradient is equal to µ in Qε. Then
if the eigenvalues Λ1(ε),Λ2(ε) of (1.6) satisfy

lim
ε→0

Λ1(ε)

ε2
∈ ]0,+∞[ and lim

ε→0

Λ2(ε)

ε2
= +∞,(1.9)

the limit problem of (1.1) is a coupled system of size 2.
More precisely the limit coupled system is satisfied by the averaged potential u

in the matrix and the averaged (rescaled) potential v in the fibers. Following [1] the
function v can be expressed in an integral form of u. The coupled system is thus
equivalent to a nonlocal equation satisfied by the limit u (see Remark 2.2).

In [3] we studied the case where Λ1(ε)
ε2 tends to +∞ in a more general framework.

We then obtain a classical conduction problem without coupling or, equivalently,
a strongly local limit energy. Therefore (1.9) can be considered as a necessary and
sufficient condition of appearance of nonlocal effects under suitable assumptions onQε.

In the second section of the paper we prove a more general result from the point
of view of the asymptotic behavior of the spectrum but more restrictive at the level
of the geometry of the highly conducting set Qε (see Theorem 2.4 and Figure 1).

Theorem 1.2. Assume that Qε is composed of an arbitrary number N of two-by-
two disjoint open subsets Qi,ε with small diameter and which satisfy a uniform (with
respect to ε) Poincaré–Wirtinger inequality. Then there exists a smallest integer n

with 1 ≤ n ≤ N +1 such that the sequence (Λn(ε)
ε2 )ε>0 is not bounded. Moreover if we

assume that, for this particular integer n, the eigenvalues of problem (1.6) satisfy

∀ k = 1, . . . , n− 1, lim
ε→0

Λk(ε)

ε2
∈ ]0,+∞[ and lim

ε→0

Λn(ε)

ε2
= +∞,(1.10)

the limit problem of (1.1) is then a coupled system of size n.
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Contrary to Theorem 1.1 the averaged potential in the fibers has several (n− 1)
components which depend on the number N of fibers by period cell. In general the
number of components is not equal to N , but it is equal to the number of eigenvalues
of order ε2 of the spectral problem (1.6) according to (1.10). In fact the spectrum
connected with (1.6) contains the geometrical information of the distribution of the
fibers, which controls the degree of coupling of the limit problem (see Remark 2.5).

In Example 2.6 we illustrate the previous result by considering the case of N = 2
disks Q1,ε, Q2,ε of the same radius rε and separated by distance dε ∈ ]0, 1[. According
to the asymptotic behavior of ε2 |ln rε| and ln dε

ln rε
, we obtain a limit system of size n =

1, 2, or 3 (see Proposition 2.7).
Theorem 1.2 extends the result of [1] to a general periodic distribution of highly

conducting one-directional fibers whose sections are the sets Qi,ε in the period cell.
This result shows that the limit problem and in particular its size are completely
determined by the asymptotic behavior of the spectrum (1.6) and not by the number
of fibers by period cell.

We have already used a similar spectral approach in [4] for low-conductivity prob-
lems with isolating regions. In the present context the geometrical assumptions are
quite different, and contrary to [4] the reference spectral problem (1.6) is weighted
by the conductivity function Aε. However the conclusion concerning the spectral
approach is the same. In the periodic framework the asymptotic behavior of the spec-
trum (1.6) is a good tool to measure the nonlocal effects arising in fiber-reinforced
media.

2. Statement of the results.

2.1. Appearance of nonlocal effects. We denote by (e1, e2, e3) the canonic
basis of R

3 and by |E| the Lebesgue measure of any measurable subset E of R
2 or R

3.
Let Ω2 be a smooth bounded open subset of R

2 and let Ω := Ω × ]0, 1[ be the
cylinder of R

2, parallel to e3, of bottom Ω and height 1.
Let Y2 be the two-dimensional torus identified as [0, 1[2. We denote by L2

#(Y2),

resp., H1
#(Y2), the set of the Y2-periodic functions which are locally in L2(R2), resp.,

H1(R2).
For any ε > 0 let Aε : R

2 −→ R
∗
+ be a positive measurable function Y2-periodic,

i.e.,

Aε(y1+1, y2) = Aε(y1, y2+1) = Aε(y) for almost every y = (y1, y2) ∈ R
2,(2.1)

and bounded from above and below by positive constants

infess
R2

Aε = 1 and supess
R2

Aε = βε < +∞.(2.2)

We assume that there exists an open subset Qε of Y2 such that

Aε := 1 a.e. in Y2 \Qε, lim
ε→0

|Qε| = 0, and lim
ε→0

∫
Qε

Aε = κ ∈ ]0,+∞[.(2.3)

We extend Aε to R
3 by setting Aε(y1, y2, y3) := Aε(y1, y2), and we define the rescaled

function

aε(x) := Aε

(x
ε

)
for almost every x ∈ Ω.(2.4)
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Our aim is to study the asymptotic behavior of the high-conductivity problem{
−div (aε∇uε) = f in Ω,

uε = 0 on ∂Ω,
(2.5)

where f is a given function in L2(Ω).
We will prove that the asymptotic behavior of the Dirichlet problem (2.5) is

completely determined by the asymptotic behavior of the spectrum

Λ0(ε) = 0 < Λ1(ε) ≤ Λ2(ε) ≤ · · ·(2.6)

associated with the periodic eigenfunctions Vk,ε ∈ H1
#(Y2), k ∈ N, solutions of

−div (Aε∇Vk,ε) = Λk(ε)Aε Vk,ε in Y2 and

∫
Y2

Aε V
2
k,ε = 1.(2.7)

In this section we are only interested in the appearance of nonlocal effects. In [3] we

proved, in a more general way, that the limit of Λ1(ε)
ε2 is a critical barrier for nonlocal

effects. In the present context we will prove that nonlocal effects appear if and only
if this limit is finite.

The main result of the section is the following.
Theorem 2.1. Assume that

lim
ε→0

Λ1(ε)

ε2
= λ1 ∈ ]0,+∞[ and lim

ε→0

Λ2(ε)

ε2
= +∞,(2.8)

and that the eigenfunction V1,ε associated with Λ1(ε) by (2.7) satisfies

lim
ε→0

∫
Y2

V 2
1,ε > 0.(2.9)

Assume that the function Aε and the set Qε satisfy conditions (2.1) to (2.3). Also
assume that Qε has a vanishing capacity in the torus, i.e.,

cap (Qε) := inf

{∫
Y2

|∇Φ|2
∣∣∣ Φ ∈ H1

#(Y2), Φ = 0 in Qε, and

∫
Y2

Φ = 1

}
−→
ε→0

0,

(2.10)

and that there exists, for any µ ∈ R
2, a periodic function Ψµ such that

Ψµ ∈ C1
#(Y2) and ∇Ψµ = µ in Qε.(2.11)

Then the solution uε of problem (2.5) weakly converges in H1(Ω) to the solution u of
the coupled system 



−∆u− a
∂2u

∂x2
3

+ γ (u− v) = f in Ω,

− b
∂2v

∂x2
3

+ γ (v − u) = 0 in Ω,

u = 0 on ∂Ω,

v(x1, x2, 0) = v(x1, x2, 1) = 0 in Ω2,

(2.12)
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where

c1 := lim
ε→0

∫
Y2

V1,ε,(2.13)

a :=
κ− (1+κ) c21
1 + (1+κ) c21

, b :=
(1+κ)2 c21

1 + (1+κ) c21
, γ := λ1

(
(1+κ) c1

1 + (1+κ) c21

)2

.(2.14)

Remark 2.2. In the homogenized system (2.12) the function u represents the
averaged potential in the matrix and v the averaged (rescaled) potential in the fibers.
The two potentials are coupled by the second equation of (2.12) thanks to the capac-
itary parameter γ. If γ < +∞, by following Bellieud and Bouchitté [1] this equation
also reads as

v(x1, x2, x3) =

∫ 1

0

G(x3, t)u(x1, x2, t) dt,(2.15)

where the kernel G can be explicitly computed. By substituting v by (2.15) in the
first equation of (2.12) one obtains the nonlocal limit equation satisfied by u:

−∆u− a
∂2u

∂x2
3

+ γ

(
u−

∫ 1

0

G(x3, t)u(x1, x2, t) dt

)
= f.(2.16)

We proved in [3] that if γ = +∞, the averaged potentials u and v are equal. The
limit equation then reads as

−∆u− (a+ b)
∂2u

∂x2
3

= f,(2.17)

in which only the residual conductivity (a+ b) attests to the reinforcement by fibers.
For example (see [11], [1], or [3]), when Qε is a disk of small radius rε the coupling

and thus the nonlocal effect appears if and only if rε is sufficiently small, namely,
| ln rε| ≥ c ε−2, where c is a positive constant.

In a more general framework we proved in [3] that there is no coupling and hence

no nonlocal effect if the limit of Λ1(ε)
ε2 is infinite. Under assumptions (2.10) and (2.11)

we can thus claim that a nonlocal effect appears if and only if the sequence Λ1(ε)
ε2 is

bounded.
Under assumption (2.8) we obtain a coupled system of two equations. In the

next section we will obtain a coupled system of arbitrary size under a more general
assumption on the spectrum.

2.2. A general distribution of one-directional fibers. In this section we
consider a general distribution of N ≥ 1 highly conducting x3-directional fibers in
the period cell. More precisely the fibers’ cross sections are represented in the two-
dimensional torus Y2 by the set

Qε :=

N⋃
i=1

Qi,ε,(2.18)

where Qi,ε are disjoint regular connected open subsets of Y2. The closures of two sets
Qi,ε, Qj,ε may have a nonempty intersection as shown in Figure 1.
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Q9,ε

Q1,ε

Q2,ε

Q3,ε

Q4,ε

Q5,ε

Q6,ε

Q7,ε

Q8,ε

rε

dε

Fig. 1. The cross section of the period cell with N = 9 fibers.

Moreover we assume that, for any i = 1, . . . , N ,

lim
ε→0

diam (Qi,ε) = 0,(2.19)

and that there exists a positive constant Ci such that the following uniform Poincaré–
Wirtinger inequality holds true:

∀V ∈ H1
#(Qi,ε),

∥∥∥∥∥V −−
∫
Qi,ε

V

∥∥∥∥∥
L2(Qi,ε)

≤ Ci ‖∇V ‖L2(Qi,ε)
.(2.20)

The conductivity of the fiber-reinforced medium is defined by

Aε :=

{
1 in Y2 \Qε,
αi,ε in Qi,ε, where lim

ε→0
αi,ε |Qi,ε| = κi ∈ ]0,+∞[.

(2.21)

We also set

κ := κ1 + · · ·+ κN , where κi := lim
ε→0

αi,ε |Qi,ε|.(2.22)

This geometry is more restrictive than in the first section, but we will consider a more
general assumption for the asymptotic behavior of the spectrum (2.7).
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Before stating the result we need some notation.
Notation 2.3. Let us define the following weighted scalar product and norm in

L2
#(Y2):

∀V,W ∈ L2
#(Y2), 〈V,W 〉ε :=

∫
Y2

Aε V W and ‖V ‖ε :=
√

〈V, V 〉ε.(2.23)

We extend in L2(Ω) by

∀ v, w ∈ L2(Ω), 〈v, w〉ε :=
∫

Ω

aε v w and ‖v‖ε :=
√

〈v, v〉ε.(2.24)

Let us denote by ≈ε the following approximation in L2
#(Y2):

∀Vε,Wε ∈ L2
#(Y2), Vε ≈ε Wε if lim

ε→0
‖Vε −Wε‖ε = 0.(2.25)

We extend in L2(Ω) by

∀ vε, wε ∈ L2(Ω), vε ≈ε wε if lim
ε→0

∫
Ω

aε (vε − wε)
2 = 0.(2.26)

Let T0,1 be the truncature defined by

T0,1(t) :=
1

2
(1 + |t| − |t− 1|) =




t if t ∈ [0, 1],
0 if t < 0,
1 if t > 1.

(2.27)

In what follows we will denote in the same way any function v defined on R
2 and its

extension to R
3, i.e., v(x1, x2, x3) = v(x1, x2).

Let us now state the main result of this section.
Theorem 2.4. Let Qε be the set defined by (2.18) and conditions (2.19), (2.20),

and let Aε be the conductivity defined by (2.21).
(i) Then there exists a smallest integer n with

1 ≤ n ≤ N + 1(2.28)

such that the sequence (Λn(ε)
ε2 )ε>0 is not bounded.

We assume that, for this particular integer n, the eigenvalues of problem (2.7)
satisfy

∀ k = 1, . . . , n− 1, lim
ε→0

Λk(ε)

ε2
= λk ∈ ]0,+∞[ and lim

ε→0

Λn(ε)

ε2
= +∞.(2.29)

Let (V0,ε, . . . , Vn−1,ε) (V0,ε := ‖1‖−1
ε ) be a family of associated eigenfunctions which

is orthonormal with respect to the scalar product 〈·, ·〉ε defined by (2.23).
Then there exists an “asymptotic” partition of the unity (V̂1,ε, . . . , V̂n,ε) composed

by n functions in H1
#(Y2) which satisfy the following properties:

∀ k := 1, . . . , n, V̂k,ε ⇀ δk,1 weakly in H1
#(Y2) and V̂1,ε + · · ·+ V̂n,ε ≈ε 1,

(2.30)
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where δk,1 is the Kronecker symbol and ≈ε is defined by (2.25),

∀h �= k, lim
ε→0

〈V̂h,ε, V̂k,ε〉ε = 0 and lim
ε→0

‖V̂k,ε‖ε > 0,(2.31)

∀ k = 1, . . . , n, T0,1(V̂k,ε) ≈ε V̂k,ε,(2.32)

where T0,1 is defined by (2.27), and

∀ i = 0, . . . , n− 1, Vi,ε =

n∑
k=1

ĉi,kV̂k,ε, where ĉi,k ∈ R.(2.33)

(ii) The solution uε of the Dirichlet problem (2.5), defined with the conductivity Aε
of (2.21), weakly converges in H1(Ω) to the solution u of the coupled system of size n:




−∆u− (κ̂1 − 1)
∂2u

∂x2
3

+

n−1∑
i=1

κ̂1ĉi,1λi

(
κ̂1ĉi,1 u+

n∑
h=2

κ̂hĉi,h vh

)
= f in Ω,

− κ̂k
∂2vk
∂x2

3

+

n−1∑
i=1

κ̂k ĉi,kλi

(
κ̂k ĉi,k u+

n∑
h=2

κ̂hĉi,h vh

)
= 0 in Ω,

u = 0 on Ω,

vk(x1, x2, 0) = vk(x1, x2, 1) = 0 in Ω2,

(2.34)

where ∀ k = 1, . . . , n, κ̂k := lim
ε→0

〈V̂k,ε, 1〉ε = lim
ε→0

‖V̂k,ε‖2
ε.(2.35)

Remark 2.5. In the homogenized system (2.34) and contrary to the case of
Theorem 2.1, the averaged potential in the fibers is divided into several potentials
v2, . . . , vn−1. Each function vk corresponds to the averaged contribution of a group
of fibers among the N fibers in the period cell. The number (n− 1) of groups is not
necessarily equal to the number N of fibers by cell, but it is controlled by the rescaled

spectrum (Λk(ε)
ε2 )k∈N of problem (2.7) according to condition (2.29). Of course the

spectrum (2.7) strongly depends on the geometry of the distribution of the fibers but,
inversely, it contains implicitly the information of geometrical nature. That is the
main interest of this spectral approach.

For instance, Example 2.6 below shows that the degree of coupling in the limit
problem depends in particular on the closeness of the fibers in the period cell. So two
fibers in the period cell (N = 2) will induce the same averaged potential in the fibers
(n = 1) if they are sufficiently neighboring, and two different averaged potentials
(n = 2) elsewhere.

Example 2.6. The case of N = 2 neighboring fibers.
We consider the case where the set Qε is composed of two disjoint open disks

Q1,ε, Q2,ε of the same radius rε � 1 and separated by distance dε ∈ ]0, 1[, as shown in
Figure 1. Then the size n of the limit system is determined by the following result.

Proposition 2.7. (i) Assume that

lim
ε→0

(
2π

ε2 |ln rε|
)

= δ ∈ ]0,+∞] and lim
ε→0

∣∣∣∣ ln dεln rε

∣∣∣∣ = γ ∈ [0,+∞].(2.36)



42 MARC BRIANE

Then we have 


δ = +∞ ⇔ n = 1,

δ < +∞ and γ ≥ 1 ⇒ n = 2,

δ < +∞ and γ < 1 ⇒ n = 3.

(2.37)

(ii) In particular assume that δ < +∞, γ = 0, and κ1 = κ2 defined in (2.22).
Then the asymptotic behavior of the eigenvalues Λ1(ε),Λ2(ε) of problem (2.7) is given
by

λ1 = lim
ε→0

Λ1(ε)

ε2
=

δ

κ1
and λ2 = lim

ε→0

Λ2(ε)

ε2
=

δ

κ1
(1 + 2κ1),(2.38)

and the limit system (2.34) reads as


−∆u+ 2 δ u− δ v2 − δ v3 = f in Ω,

−κ1
∂2v2

∂x2
3

− δ u+ δ v2 = 0 in Ω,

−κ1
∂2v3

∂x2
3

− δ u+ δ v3 = 0 in Ω.

(2.39)

3. Proof of the results.

3.1. Proof of Theorem 2.1. The proof of Theorem 2.1 is divided into three
steps. In the first step we build an asymptotic partition of the unity in H1

#(Y2),

(V̂1,ε, 1− V̂1,ε), which is characterized by Lemma 3.1 below. This partition is the
key ingredient of the proof and induces the coupling (2.12). It is also related to the
spectral problem (2.7) since both functions V̂1,ε and 1−V̂1,ε span the same space as the
first eigenfunctions 1 and V1,ε associated with the eigenvalues Λ0(ε) = 0 and Λ1(ε).
We then define the rescaled functions

v̂1,ε(x) := V̂1,ε

(x
ε

)
and v̂2,ε(x) := 1− V̂1,ε

(x
ε

)
for almost every x ∈ Ω.(3.1)

In the second step we give the weak ∗ limits of aε v̂i,ε uε and aε v̂i,ε∇uε, i = 1, 2, in
terms of the solutions u and v of (2.12). In the third step we determine the limit
problem (2.12) using v̂1,ε (3.1) as a test function in problem (2.5). In particular we
prove in Lemma 3.2 below that aε∇v̂1,ε uε weakly ∗ tends to 0 in the distributions
sense thanks to the assumptions (2.10) and (2.11) satisfied by the set Qε.

In the following all the limits hold true up to a subsequence of ε still denoted ε
for the sake of simplicity. We will also denote by c an arbitrary positive constant.

First step. Partition of the unity (V̂1,ε, 1−V̂1,ε). This step is contained in the
following result.

Lemma 3.1. Let V̂1,ε be the function defined by

V̂1,ε := α+ β V1,ε with α :=
1

1 + (1+κ) c21
and β :=

(1+κ) c1
1 + (1+κ) c21

,(3.2)

where V1,ε is defined by (2.7), κ by (2.3), and c1 by (2.13). Then the function V̂1,ε

satisfies the following properties (see Notation 2.3.):

V̂1,ε ⇀ 1 H1
#(Y2) weak ∗, V̂1,ε /≈ε 1, T0,1(V̂1,ε) ≈ε V̂1,ε, 〈V̂1,ε, 1−V̂1,ε〉ε → 0.

(3.3)
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Proof of Lemma 3.1. By assumption (2.8) the eigenfunction V1,ε associated with
the eigenvalue Λ1(ε) by (2.7) satisfies∫

Y2

|∇V1,ε|2 ≤
∫
Y2

Aε |∇V1,ε|2 = Λ1(ε) = O(ε2) −→
ε→0

0.

Then by the Poincaré–Wirtinger inequality in Y2, the sequence V1,ε strongly converges
in H1

#(Y2) to a constant which is equal to the limit of its averaged value, i.e., c1
by (2.13). Since V 2

1,ε strongly converges to c21 in L1(Y2), assumption (2.9) implies
that c1 �= 0. We can assume that c1 > 0 even if it means replacing V1,ε by −V1,ε.
This choice uniquely determines the eigenfunction V1,ε since its multiplicity is equal
to 1 by (2.8). Therefore we obtain the following by the definitions of (3.2) and the
orthogonality of the eigenfunctions 1, V1,ε with respect to the scalar product 〈·, ·〉ε
of (2.23):

V̂1,ε ⇀ α+ β c1 = 1 weakly in H1
#(Y2),

‖V̂1,ε − 1‖ε = (α− 1)2
∫
Y2

Aε + β2 −→
ε→0

(1+κ) (α− 1)2 + β2 > 0,

〈V̂1,ε, 1−V̂1,ε〉ε = α (1− α)

∫
Y2

Aε − β2 −→
ε→0

(1+κ) (α− α2)− β2 = 0.

It remains to prove that T0,1(V̂1,ε) ≈ε V̂1,ε. Let V ∈ H1
#(Y2). By the Courant–Fisher

formulas we have∥∥∥∥V − 〈V, 1〉ε
〈1, 1〉ε 1− 〈V, V1,ε〉ε V1,ε

∥∥∥∥
2

ε

≤ 1

Λ2(ε)
‖∇V − 〈V, V1,ε〉ε∇V1,ε‖2

ε .(3.4)

Then for any Lipschitz function T : R −→ R and for any function Vε ∈ Span (1, V1,ε)
we have |∇T (Vε)| ≤ cT |∇Vε| and ‖∇V1,ε‖2

ε ≤ Λ1(ε), whence by (2.8)∥∥∥∥T (Vε)− 〈T (Vε), 1〉ε
〈1, 1〉ε 1− 〈T (Vε), V1,ε〉ε V1,ε

∥∥∥∥
2

ε

≤ c
Λ1(ε)

Λ2(ε)
−→
ε→0

0.

Therefore we obtain (up to a subsequence)

T (Vε) ≈ε a+ b V1,ε, where a := lim
ε→0

〈T (Vε), 1〉ε
〈1, 1〉ε and b := lim

ε→0
〈T (Vε), V1,ε〉ε.

(3.5)

In particular there exist two constants a1, b1 ∈ R such that |V̂1,ε| ≈ε a1+b1 V1,ε. Since

V̂1,ε strongly converges to 1 in L2
#(Y2) we have

1 = a1 + b1 c1 = α+ β c1.

Moreover the equality |V̂1,ε|2 = V̂ 2
1,ε yields∫

Y2

Aε (a1 + b1 V1,ε)
2 + o(1) =

∫
Y2

Aε (α+ β V1,ε)
2;

then by passing to the limit we obtain

(1+κ) a2
1 + b21 = (1+κ)α2 + β2 =

1+κ

1 + (1+κ) c21
.
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We deduce from both previous equalities that b1 is a solution of

(
1 + (1+κ) c21

)
b21 − 2 (1+κ) c1 b1 +

(1+κ)2 c21
1 + (1+κ) c21

= 0,

which has a unique solution β, whence b1 = β and a1 = α. We thus obtain |V̂1,ε| ≈ε
V̂1,ε.

Similarly there exist two constants a2, b2 ∈ R such that |1− V̂1,ε| ≈ε a2 + b2 V1,ε

with

a2 + b2 c1 = 0 and (1+κ) a2
2 + b22 = (1+κ) (α− 1)2 + β2 =

(1+κ)2 c21
1 + (1+κ) c21

,

whence b2 = ±β. Moreover by applying (3.5) with Vε := |1− V̂1,ε|, we obtain a2 ≥ 0
and thus b2 ≤ 0, whence b2 = −β and a2 = c1 β = 1 − α. Therefore we have
|1− V̂1,ε| ≈ε 1− V̂1,ε and |V̂1,ε| ≈ε V̂1,ε, which imply T0,1(V̂1,ε) ≈ε V̂1,ε and (3.3). This
concludes the proof of Lemma 3.1 and the first step.

Second step. Limits of aε v̂i,ε uε and aε v̂i,ε∇uε, i = 1, 2.
Since the function aε defined by (2.4) does not depend on the variable x3 and uε

is equal to 0 on Ω2 × {0, 1} the following estimate holds:∫
Ω

aε u
2
ε ≤ c

∫
Ω

aε

(
∂uε
∂x3

)2

≤ c

∫
Ω

aε |∇uε|2.

By the Poincaré inequality

∫
Ω

aε |∇uε|2 =

∫
Ω

f uε ≤ ‖f‖L2(Ω) ‖uε‖L2(Ω) ≤ c ‖∇uε‖L2(Ω) ≤ c

(∫
Ω

aε |∇uε|2
) 1

2

,

whence the following a priori estimate:∫
Ω

aε u
2
ε +

∫
Ω

aε |∇uε|2 ≤ c.(3.6)

By definitions (3.1), (2.26) and by the third property of (3.3) we have T0,1(v̂i,ε) ≈ε v̂i,ε
for i = 1, 2, which combined with estimate (3.6) and assumption (2.3) implies that the
sequence aε v̂i,ε uε is bounded in L1(Ω). In the beginning of the proof of Lemma 3.1
we showed that the constant c1 of (2.13) is not equal to 0, whence the constant b
in (2.14) is positive. We can then define a Radon measure v by the weak convergence

aε v̂2,ε uε ⇀ bv weakly in M(Ω).(3.7)

In the following we will prove that the weak limits u of uε in H1(Ω) and v satisfy

v ∈ H1
0 (0, 1;L

2(Ω2)),(3.8)

aε v̂1,ε uε ⇀ (1+κ)αu weakly in D′(Ω),(3.9)

aε v̂1,ε∇uε ⇀ ∇u+ a
∂u

∂x3
e3 weakly in D′(Ω;R3),(3.10)

aε v̂2,ε∇uε ⇀ b
∂v

∂x3
e3 weakly in D′(Ω;R3),(3.11)

where a, b are defined by (2.14) and α by (3.2).
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Proof of (3.8). Let ϕ ∈ C0(Ω). By the Cauchy–Schwarz inequality and esti-
mate (3.6) we have

∣∣∣∣
∫

Ω

aε T0,1(v̂2,ε)uε ϕ

∣∣∣∣ ≤ c

(∫
Ω

aε ϕ
2

) 1
2

,

and since T0,1(v̂2,ε) ≈ε v̂2,ε,

∣∣∣∣
∫

Ω

aε v̂2,ε uε ϕ+ o(1)

∣∣∣∣ ≤ c

(∫
Ω

aε ϕ
2

) 1
2

.

Moreover the periodicity of Aε combined with the second limit of (2.3) implies that aε
weakly ∗ converges to 1+κ in M(Ω). Then passing to the limit in the previous
inequality, thanks to (3.7), yields∣∣∣∣

∫
Ω

v ϕ

∣∣∣∣ ≤ c ‖ϕ‖L2(Ω) for any ϕ ∈ C0(Ω),

which implies that v ∈ L2(Ω). Similarly, since aε v̂2,ε does not depend on x3 and
uε = 0 on ∂Ω, we obtain, thanks to an integration by parts, for any ϕ ∈ C1(Ω),

∣∣∣∣
∫

Ω

aε T0,1(v̂2,ε)uε
∂ϕ

∂x3

∣∣∣∣ =
∣∣∣∣
∫

Ω

aε T0,1(v̂2,ε)
∂uε
∂x3

ϕ

∣∣∣∣ ≤ c

(∫
Ω

aε ϕ
2

) 1
2

by (3.6),

whence by passing to the limit∣∣∣∣
∫

Ω

v
∂ϕ

∂x3

∣∣∣∣ ≤ c ‖ϕ‖L2(Ω) for any ϕ ∈ C1(Ω),

which implies that ∂v
∂x3

∈ L2(Ω) and v = 0 on Ω2 × {0, 1}. Therefore (3.8) holds.

Proof of (3.9). By estimate (3.4) we have for any V ∈ H1
#(Y2)

∥∥∥∥V − 〈V, 1〉ε
〈1, 1〉ε 1− 〈V, V1,ε〉ε V1,ε

∥∥∥∥
ε

≤ c

(
Λ1(ε)

Λ2(ε)

) 1
2

‖V ‖ε + Λ2(ε)
− 1

2 ‖∇V ‖ε,

which implies the estimate∣∣∣∣ 〈V̂1,ε, V 〉ε − 〈V̂1,ε, 1〉ε
∫
Y2

V

∣∣∣∣ ≤ c ηε ‖V ‖ε + cΛ2(ε)
− 1

2 ‖∇V ‖ε,(3.12)

where by (3.2) and (2.8)

ηε :=

∣∣∣∣ 〈V̂1,ε, V1,ε〉ε − 〈V̂1,ε, 1〉ε
∫
Y2

V1,ε

∣∣∣∣+
(
Λ1(ε)

Λ2(ε)

)1
2

−→
ε→0

|β − (1+κ)α c1| = 0.

(3.13)

On the other hand, since Aε V̂1,ε − 〈V̂1,ε, 1〉ε has a zero Y2-averaged value, by the
Lax–Milgram theorem there exists Wε ∈ H1

#(Y2), defined up to an additive constant,
solution of the problem

−div (Aε∇Wε) = Aε V̂1,ε − 〈V̂1,ε, 1〉ε in Y2,(3.14)
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whose variational formulation is

∀V ∈ H1
#(Y2), 〈Wε, V 〉ε = 〈V̂1,ε, V 〉ε − 〈V̂1,ε, 1〉ε

∫
Y2

V.(3.15)

We choose Wε such that 〈Wε, 1〉ε = 0, which implies ‖Wε‖2
ε ≤ Λ1(ε)

−1 ‖∇Wε‖2
ε by

the definition of the eigenvalue Λ1(ε). Then by puttingWε in (3.15) we obtain, thanks
to estimate (3.12),

‖∇Wε‖ε ≤ c
(
ηε Λ1(ε)

− 1
2 + Λ2(ε)

− 1
2

)
.(3.16)

Let ϕ ∈ D(Ω). Putting ϕuε in the rescaled equation (3.14) yields

ε

∫
Ω

aε∇yWε(
x
ε ) · ∇(ϕuε) =

∫
Ω

aε v̂1,ε ϕuε − 〈V̂1,ε, 1〉ε
∫

Ω

ϕuε.(3.17)

Moreover, by estimates (3.6) and (3.16) the left-hand side of (3.17) is bounded by the

sequence ηε εΛ1(ε)
− 1

2 +εΛ2(ε)
− 1

2 , which tends to zero by (3.13) and (2.8). Therefore,
passing to the limit in (3.17) yields∫

Ω

aε v̂1,ε ϕuε −→
ε→0

(1+κ)α

∫
Ω

ϕu for any ϕ ∈ D(Ω),

whence (3.9).
Proof of (3.10). Let ωε be the set of high conductivity whose period is εQε. Since

uε is bounded in H1(Ω), v̂1,ε strongly converges to 1 in L2(Ω), and |ωε| → 0, we have

1Ω\ωεaε T0,1(v̂1,ε)∇uε ⇀ ∇u weakly in L2(Ω;R3),

and since T0,1(v̂1,ε) ≈ε v̂1,ε in the sense of definition (2.26) we also have

1Ω\ωεaε v̂1,ε∇uε − 1Ω\ωεaε T0,1(v̂1,ε)∇uε −→ ∇u strongly in L2(Ω;R3),

whence the weak convergence

1Ω\ωεaε v̂1,ε∇uε ⇀ ∇u weakly in D′(Ω;R3).

It thus remains to prove the following convergence:

1ωεaε v̂1,ε∇uε ⇀ a
∂u

∂x3
e3 weakly in D′(Ω;R3).(3.18)

Consider µ ∈ (e3)
⊥ to be a vector of R

2. By combining assumptions (2.10) and (2.11)
the function Ψµ,ε := (1− Φε)Ψµ, where cap (Qε) = ‖∇Φε‖2

L2(Y2)
, satisfies

Ψµ,ε −→ 0 strongly in H1
#(Y2) and ∇Ψµ,ε = µ in Qε.(3.19)

We can also assume that Ψµ,ε is uniformly bounded by using a truncature of Φε. By
the definition of problem (2.5) we have

ε aε∇uε · ∇
(
T0,1(v̂1,ε)Ψµ,ε(

x
ε )
)
⇀ 0 weakly in D′(Ω),

and since aε∇uε ·∇T0,1(v̂1,ε) is bounded in L1(Ω) by (3.6) and by (2.8) (which implies

‖∇V̂1,ε‖ε = O(ε)), we also have

ε aε∇uε · ∇T0,1(v̂1,ε)Ψµ,ε(
x
ε ) −→ 0 strongly in L1(Ω),
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whence the convergence

aε∇uε · ∇yΨµ,ε(
x
ε )T0,1(v̂1,ε) ⇀ 0 weakly in D′(Ω).(3.20)

However, by the strong convergence of (3.19) we have

1Ω\ωεaε∇uε · ∇yΨµ,ε(
x
ε )T0,1(v̂1,ε) = 1Ω\ωε∇uε · ∇yΨµ,ε(

x
ε )T0,1(v̂1,ε) −→ 0 in L1(Ω).

This, combined with convergence (3.20) and the equality of (3.19), yields

1ωεaε∇uε · ∇yΨµ,ε(
x
ε )T0,1(v̂1,ε) = 1ωεaε T0,1(v̂1,ε)∇uε · µ ⇀ 0 weakly in D′(Ω),

and since T0,1(v̂1,ε) ≈ε v̂1,ε in the sense of (2.26), we obtain

1ωεaε v̂1,ε∇uε · µ ⇀ 0 weakly in D′(Ω).(3.21)

On the other hand, since aε and v̂1,ε are independent of x3 we have

1ωεaε v̂1,ε
∂uε
∂x3

=
∂

∂x3
(1ωεaε v̂1,ε uε) ,

and by (3.9), (3.3) we have

1ωεaε v̂1,ε uε = aε v̂1,ε uε − 1Ω\ωε v̂1,ε uε ⇀ (1+κ)αu− u = a u weakly in D′(Ω),

whence the convergence

1ωεaε v̂1,ε
∂uε
∂x3

⇀ a
∂u

∂x3
weakly in D′(Ω).

This, combined with (3.21), yields the desired convergence (3.18) and thus (3.10).
Proof of (3.11). It is quite similar to the proof of (3.10) by using the definition (3.7)

of the function v.
Third step. Determination of the limit problem.
Let ϕ ∈ D(Ω). We put the function ϕ v̂1,ε defined by (3.1) as a test function in

problem (2.5), whence∫
Ω

aε∇uε · ∇v̂1,ε ϕ+

∫
Ω

aε∇uε · ∇ϕ v̂1,ε =

∫
Ω

f ϕ v̂1,ε.

Then by the convergence (3.10) of the second step we obtain∫
Ω

aε∇uε · ∇v̂1,ε ϕ −→
ε→0

∫
Ω

f ϕ−
∫

Ω

∇u · ∇ϕ−
∫

Ω

a
∂u

∂x3

∂ϕ

∂x3
.(3.22)

For the limit of the left-hand side of (3.22) we need the following result.
Lemma 3.2. Let vε be a function in H1

0 (Ω) such that the sequence ‖vε‖ε+‖∇vε‖ε
(see notation (2.24)) is bounded. Then the rescaled function v1,ε(x) := V1,ε(

x
ε ), where

V1,ε is the eigenfunction of (2.7), satisfies∫
Ω

aε∇v1,ε vε −→
ε→0

0.(3.23)
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By the definition (3.2) of V̂1,ε and by rescaling the spectral problem (2.7) we have∫
Ω

aε∇uε · ∇v̂1,ε ϕ = β

∫
Ω

aε∇v1,ε · ∇(ϕuε)− β

∫
Ω

aε∇v1,ε · ∇ϕuε

=
Λ1(ε)

ε2

∫
Ω

aε uε (v̂1,ε − α)ϕ− β

∫
Ω

aε∇v1,ε · ∇ϕuε,

which, combined with the limit (3.23) of Lemma 3.2, yields∫
Ω

aε∇uε · ∇v̂1,ε ϕ− Λ1(ε)

ε2

∫
Ω

aε uε (v̂1,ε − α)ϕ −→
ε→0

0.

Moreover by assumption (2.8), by the convergences (3.9), (3.7) combined with the
estimate v̂1,ε + v̂2,ε ≈ε 1, and by the definitions (2.14) we have

Λ1(ε)

ε2
aε uε (v̂1,ε − α) −→

ε→0
λ1 (1+κ) (α− α2)u− λ1 α b v = γ (u− v) weakly in D′(Ω).

From both previous limits we deduce that∫
Ω

aε∇uε · ∇v̂1,ε ϕ −→
ε→0

∫
Ω

γ (u− v),(3.24)

which, combined with (3.22), yields∫
Ω

∇u · ∇ϕ+

∫
Ω

a
∂u

∂x3

∂ϕ

∂x3
+

∫
Ω

γ (u− v)ϕ =

∫
Ω

f ϕ.

This equality is the variational formulation of the first equation of (2.12).
Similarly by using the test function (1 − v̂1,ε)ϕ and convergences (3.11), (3.24)

we obtain ∫
Ω

a
∂v

∂x3

∂ϕ

∂x3
+

∫
Ω

γ (v − u) = 0,

which is the variational formulation of the second equation of problem (2.12). Theo-
rem 2.1 is thus proved.

Proof of Lemma 3.2. Let (1, V1,ε)
⊥ε be the space of the functions in L2

#(Y2) which
are orthogonal to the functions 1, V1,ε in the sense of the scalar product 〈·, ·〉ε of (2.23).
The idea is to consider, for µ ∈ R

2, the orthogonal projection of ∇V1,ε ·µ on the space
(1, V1,ε)

⊥ε . So for µ ∈ R
2, let us define the function Σε by

εΣε = ∇V1,ε · µ− 〈∇V1,ε · µ, 1〉ε
〈1, 1〉ε − 〈∇V1,ε · µ, V1,ε〉ε V1,ε.(3.25)

By the Lax–Milgram theorem there exists a unique solution Xε in H
1
#(Y2)∩(1, V1,ε)

⊥ε
of the problem

∀V ∈ H1
#(Y2) ∩ (1, V1,ε)

⊥ε , 〈∇Xε,∇V 〉ε = 〈Σε, V 〉ε.(3.26)

Since Xε,Σε ∈ (1, V1,ε)
⊥ε , we have 〈∇Xε,∇V1,ε〉ε = Λ1(ε) 〈Xε, V1,ε〉ε = 0 and

∀V ∈ H1
#(Y2), 〈Σε, V 〉ε = 〈∇Xε,∇V 〉ε − 〈∇Xε,∇V1,ε〉ε 〈V1,ε, V 〉ε = 〈∇Xε,∇V 〉ε,

whence AεΣε = −div (Aε∇Xε) in Y2.
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Set σε := Σε(
x
ε ) and χε(x) := Xε(

x
ε ). Then by rescaling the previous equation we

obtain

aε σε = − ε2 div (aε∇χε) in D′(Ω).(3.27)

Moreover, by putting the function Xε in problem (3.26) and applying estimate (3.4)
with V := Xε ∈ (1, V1,ε)

⊥ε we have

‖∇Xε‖2
ε ≤ ‖Σε‖ε ‖Xε‖ε ≤ 1

Λ2(ε)
‖Σε‖ε ‖∇Xε‖ε,

whence by the definitions (3.25) of Σε and (2.7) of V1,ε the following estimate:

‖∇Xε‖ε ≤ c

εΛ2(ε)
‖∇V1,ε‖ε ≤ c

Λ2(ε)
1
2

.(3.28)

Now let vε be a function such that the sequence ‖vε‖ε+‖∇vε‖ε is bounded. We have,
by using successively the Cauchy–Schwarz inequality, estimate (3.28), and assump-
tion (2.8),∣∣∣∣ ε2

∫
Ω

aε∇χε · ∇vε
∣∣∣∣ ≤ ε2 ‖∇χε‖ε ‖∇vε‖ε ≤ c ε ‖∇Xε‖ε ≤ c ε

Λ2(ε)
1
2

−→
ε→0

0.

By putting vε as a test function in (3.27) we deduce from both previous limits that∫
Ω

aε σε vε −→
ε→0

0.(3.29)

Finally by the definition (3.25) of Σε we have

aε∇v1,ε · µ vε = aε σε vε +
1

ε

〈∇V1,ε · µ, 1〉ε
〈1, 1〉ε aε vε +

1

ε
〈∇V1,ε · µ, V1,ε〉ε aε v1,ε vε.

Then by taking into account limit (3.29) it remains to prove that

lim
ε→0

1

ε
〈∇V1,ε · µ, 1〉ε = lim

ε→0

1

ε
〈∇V1,ε · µ, V1,ε〉ε = 0(3.30)

in order to establish Lemma 3.2.
SetW1,ε :=

1
ε (V1,ε−

∫
Y2
V1,ε). The sequenceW1,ε is bounded in H1

#(Y2) thanks to

the Poincaré–Wirtinger inequality combined with assumption (2.8). Therefore W1,ε

weakly converges to some W1 in H1
#(Y2) up to a subsequence. By assumption (2.10)

there exists a function Φε in H1
#(Y2) which strongly converges to 1 in H1

#(Y2) and

which is equal to zero in the set Qε. Let V ∈ C1
#(Y2). We have, by the definition (2.7)

of the eigenfunction V1,ε and by assumption (2.8),

1

ε
〈∇V1,ε,∇(Φε V )〉ε = Λ1(ε)

ε
〈V1,ε,Φε V 〉ε = O(ε) −→

ε→0
0,

and we also have

1

ε
〈∇V1,ε,∇(Φε V )〉ε =

∫
Y2

∇W1,ε · ∇V Φε +

∫
Y2

∇W1,ε · ∇Φε V

=

∫
Y2

∇W1,ε · ∇V + o(1),

whence

∫
Y2

∇W1 · ∇V = 0 for any V ∈ H1
#(Y2).
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Therefore W1 = 0 and W1,ε weakly converges to 0 in H1
#(Y2). On the other hand we

have by assumption (2.11) and for any µ ∈ R
2,

1

ε
〈∇V1,ε,∇Ψµ〉ε =

∫
Y \Qε

∇W1,ε · ∇Ψµ +
1

ε

∫
Qε

Aε∇V1,ε · µ

=
Λ1(ε)

ε
〈V1,ε,Ψµ V 〉ε = O(ε) −→

ε→0
0,

whence
1

ε

∫
Qε

Aε∇V1,ε · µ = −
∫
Y \Qε

∇W1,ε · ∇Ψµ + o(1) −→
ε→0

−
∫
Y2

∇W1 · ∇Ψµ = 0.

Finally we obtain

1

ε
〈∇V1,ε · µ, 1〉ε =

∫
Y \Qε

∇W1,ε · µ+
1

ε

∫
Qε

Aε∇V1,ε · µ −→
ε→0

∫
Y2

∇W1 · µ = 0,

which yields the first limit of (3.30).
Similarly we obtain the second limit of (3.30) by starting from the equality

1

ε
〈∇V1,ε,∇(V1,εΨµ)〉ε = Λ1(ε)

ε
〈V1,ε, V1,εΨµ〉ε = O(ε)

and by using the strong convergence of V1,ε to c1 in L2
#(Y2). Lemma 3.2 is proved,

which also concludes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.4.
Proof of part (i) of Theorem 2.4. Let n ≥ 1 be an integer such that the eigen-

values Λ1(ε), . . . ,Λn−1(ε) of problem (2.7) are O(ε2). Let i = 0, . . . , n − 1. Since
the eigenfunction Vi,ε of (2.7) satisfies ‖Vi,ε‖ε = 1 and ‖∇Vi,ε‖2

ε = Λi(ε) = O(ε2) by
assumption, there exists a constant ci such that (up to a subsequence)

Vi,ε ⇀ ci weakly in H1
#(Y2).(3.31)

Moreover, for any j = 1, . . . , N , since the conductivity αj,ε in Qj,ε satisfies the limit
αj,ε |Qj,ε| → κj > 0, we have by the Cauchy–Schwarz inequality∣∣∣∣∣−

∫
Qj,ε

Vi,ε

∣∣∣∣∣ ≤ 1

|Qj,ε| 12
‖Vi,ε‖L2(Qj,ε) ≤ c ‖Vi,ε‖ε = c.

Then we have (up to a subsequence)

−
∫
Qj,ε

Vi,ε −→
ε→0

ci,j for j = 1, . . . , N.(3.32)

The limit of Vi,ε is thus characterized by the sequence of R
N+1:

ċi := (ci, ci,1, . . . , ci,N ) for i = 0, . . . , n− 1.(3.33)

Moreover by the orthonormality of the family (V0,ε, . . . , Vn−1,ε) with respect to the
scalar product 〈·, ·〉ε of (2.23), the limit family (ċ0, . . . , ċn−1) is also orthonormal with
respect to the following scalar product of R

N+1:

〈ȧ, ḃ〉 := a0 b0 +

N∑
j=1

κj aj bj , ȧ, ḃ ∈ R
N+1,(3.34)
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which implies n ≤ N +1. Hence there exists a largest integer n satisfying (2.28) such
that all the eigenvalues Λ1(ε), . . . ,Λn−1(ε) are O(ε2); n is thus the smallest integer

such that the sequence Λn(ε)
ε2 is not bounded.

Now we can assume that condition (2.29) is satisfied with this integer n.
We will use as in [3] an argument based on truncatures of the orthonormal family

of eigenfunctions (V0,ε, . . . , Vn−1,ε) of (2.7), where V0,ε := ‖1‖−1
ε , in order to build the

desired asymptotic partition.
Let i = 0, . . . , n−1 and let T be a Lipschitz function in C1(R;R). By the Courant–

Fisher formula applied to the eigenvalue Λn(ε) we have by assumption (2.29)∥∥∥∥∥T (Vi,ε)−
n−1∑
h=0

〈T (Vi,ε), Vh,ε〉ε Vh,ε
∥∥∥∥∥
ε

≤ Λn(ε)
− 1

2

∥∥∥∥∥∇T (Vi,ε)−
n−1∑
h=1

〈T (Vi,ε), Vh,ε〉ε∇Vh,ε
∥∥∥∥∥
ε

≤ c εΛn(ε)
− 1

2 −→
ε→0

0,

whence the existence of constants ai,h such that we have according to notation (2.25)

T (Vi,ε) ≈ε
n−1∑
h=0

ai,h Vh,ε for i = 0, . . . , n− 1.(3.35)

On the other hand by using successively the Jensen inequality, the Cauchy–Schwarz
inequality, the Poincaré–Wirtinger inequality (2.20), the assumption αj,ε |Qj,ε| →
κj > 0, and estimate (2.29) we have for any j = 1, . . . , N∣∣∣∣∣T

(
−
∫
Qj,ε

Vi,ε

)
−−
∫
Qj,ε

T (Vi,ε)

∣∣∣∣∣ ≤ −
∫
Qj,ε

∣∣∣∣∣T
(
−
∫
Qj,ε

Vi,ε

)
− T (Vi,ε)

∣∣∣∣∣
≤ |Qj,ε|− 1

2

∥∥∥∥∥T
(
−
∫
Qj,ε

Vi,ε

)
− T (Vi,ε)

∥∥∥∥∥
L2(Qj,ε)

≤ ‖T ′‖∞ |Qj,ε|− 1
2

∥∥∥∥∥Vi,ε −−
∫
Qj,ε

Vi,ε

∥∥∥∥∥
L2(Qj,ε)

≤ c ‖∇Vi,ε‖ε ≤ cΛi(ε)
1
2 −→

ε→0
0,

whence by convergence (3.32)

−
∫
Qj,ε

T (Vi,ε) −→
ε→0

T (ci,j) for j = 1, . . . , N.

Moreover by convergence (3.31) T (Vi,ε) weakly converges to T (ci) in H1
#(Y2). These

convergences combined with estimate (3.35) and definition (3.33) yield

T (ċi) := (T (ci), . . . , T (ci,N )) =

n−1∑
h=0

ai,h ċh for i = 0, . . . , n− 1.

Therefore the subspace F := Span (ċ0, . . . , ċn−1) of R
N+1 satisfies the following

truncature property:

for any Lipschitz function T ∈ C1(R,R), T (F ) ⊂ F.(3.36)
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Moreover the family (ċ0, . . . , ċn−1) is an orthonormal basis of the space F provided
with the scalar product (3.34) and the vector (1, . . . , 1) = 1√

1+κ
ċ0 belongs to F .

Then, by virtue of Lemma 3.1 of [4], the properties of the space F imply the
existence of a partition (Î1, . . . , În) of the set {0, . . . , N} composed of n nonempty
sets such that 0 ∈ Î1 and for any i = 0, . . . , n− 1,{

∀ j ∈ Î1 \ {0}, ĉi,1 := ci = ci,j ,

∀ j1, j2 ∈ Îk, ĉi,k := ci,j1 = ci,j2 for k = 2, . . . , n.
(3.37)

This means that for any i = 0, . . . , n− 1, the limits ci,j of (3.32) are equal in a given

set Îk. We also set from definition (2.22)

κ̂1 := 1 +

∑
h∈Î1\{0}

κh,

κ̂k :=
∑
h∈Îk

κh for k = 2, . . . , n.
(3.38)

On the first side the existence of such a partition implies inequality (2.28): n ≤ N+1.
On the other side we will prove that the functions

V̂k,ε :=

n−1∑
i=0

κ̂k ĉi,k Vi,ε for k = 1, . . . , n(3.39)

define the desired asymptotic partition of the unity.
Since the family (V0,ε, . . . , Vn−1,ε) is orthonormal with respect to the scalar prod-

uct 〈·, ·〉ε of (2.23) we have for any i, j = 0, . . . , n− 1

δi,j = 〈Vi,ε, Vj,ε〉ε −→
ε→0

ci cj +

N∑
h=1

κh ci,h cj,h = δi,j ,(3.40)

where δi,j denotes the Kronecker symbol, whence by definition (3.37)

n∑
k=1

κ̂k ĉi,k ĉj,k = δi,j for any i, j = 0, . . . , n− 1;(3.41)

i.e., the (n × n) matrix Ĉ :=
[√

κ̂k ci,k
]
0≤i≤n−1,1≤k≤n is orthogonal. From the or-

thonormality of the columns of Ĉ we deduce that

n−1∑
i=0

√
κ̂h κ̂k ĉi,h ĉi,k = δh,k =

n−1∑
i=0

κ̂k ĉi,h ĉi,k for any h, k = 1, . . . , n.(3.42)

On the other hand, thanks to the Poincaré–Wirtinger inequalities in Y2 and (2.20)
in Qj,ε, any sequence Vε in H1

#(Y2) such that the sequence ‖V ‖ε is bounded and
‖∇Vε‖ε → 0 (according to notation (2.23)) can be replaced by its averaged values
in Y2 and in any set Qj,ε in such a way that (according to notation (2.25))

Vε ≈ε
(∫

Y2

Vε

)
1Y2\Qε +

N∑
j=1

(
−
∫
Qj,ε

Vε

)
1Qj,ε .(3.43)



HOMOGENIZATION OF HIGH-CONDUCTIVITY PERIODIC PROBLEMS 53

Let us now prove the properties (2.30) to (2.33) which define the asymptotic partition
of the unity.

Proof of (2.30). By definitions (3.37), (3.39) and by equalities (3.42) we have for
any h, k = 1, . . . , n



∫
Y2

V̂k,ε −→
ε→0

n−1∑
i=0

κ̂k ĉi,k ĉi,1 = δk,1,

−
∫
Qj,ε

V̂k,ε −→
ε→0

n−1∑
i=0

κ̂k ĉi,k ĉi,h = δk,h for any j ∈ Îh.

(3.44)

Then by applying estimate (3.43) with Vε := Vk,ε and by taking into account lim-
its (3.44) we obtain estimate (2.30).

Proof of (2.31). By applying again estimate (3.43) with the functions V̂k,ε, V̂h,ε
we obtain for any h, k ∈ {1, . . . , n}

〈V̂h,ε, V̂k,ε〉ε =
(∫

Y2

V̂h,ε

)(∫
Y2

V̂k,ε

)
+

N∑
j=1

αj,ε |Qj,ε|
(
−
∫
Qj,ε

V̂h,ε

)(
−
∫
Qj,ε

V̂k,ε

)
+ o(1),

which, combined with limits (3.44), (2.21) and definitions (3.38), yields

〈V̂h,ε, V̂k,ε〉ε −→
ε→0

δ1,k δ1,h +
∑

j∈Îk∩Îh\{0}
κj = δk,hκ̂k,

whence (2.31) and (2.35).
Proof of (2.32). Let k = 1, . . . , n. Since V̂k,ε weakly converges to 0 or 1 in H1

#(Y2)
we have by the definition of the truncature (2.27)

lim
ε→0

(∫
Y2

T0,1(V̂k,ε)

)
= lim
ε→0

(∫
Y2

V̂k,ε

)
,

and by the Poincaré–Wirtinger inequality (2.20) combined with ‖∇V̂k,ε‖ε → 0 we also
have for any j = 1, . . . , N

lim
ε→0

(
−
∫
Qj,ε

T0,1(V̂k,ε)

)
= lim
ε→0

T0,1

(
−
∫
Qj,ε

V̂k,ε

)
= lim
ε→0

(
−
∫
Qj,ε

V̂k,ε

)

since the last limit is equal to 0 or 1 by (3.44). We then deduce (2.32) from the
previous equalities and from the estimate (3.43) with Vε := T0,1(V̂k,ε)− V̂k,ε.

Proof of (2.33). Let i = 0, . . . , n− 1. We have by the definition (3.39) of V̂k,ε and
by equalities (3.41)

n∑
k=1

ĉi,k V̂k,ε =

n∑
k=1

ĉi,k


n−1∑
j=0

κ̂k ĉj,k Vj,ε


 =

n−1∑
j=0

(
n∑
k=1

κ̂k ĉi,k ĉj,k

)
Vj,ε = Vi,ε,

which implies (2.33) and concludes the proof of part (i) of Theorem 2.4.
Proof of part (ii) of Theorem 2.4. The proof is quite similar to the second and

third steps of the proof of Theorem 2.1 in that it uses the asymptotic partition
(V̂1,ε, . . . , V̂n,ε) defined in part (i). Therefore we recall only the main steps of the
proof without details.
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First we define the rescaled test functions

v̂k,ε(x) := V̂k,ε

(x
ε

)
for almost every x ∈ Ω, k = 1, . . . , n.(3.45)

From the conditions (2.30) and (2.32) satisfied by the partition (V̂1,ε, . . . , V̂n,ε) we
easily deduce the following strong convergences:

v̂1,ε → 1 strongly in L2(Ω) and v̂k,ε → 0 strongly in L2(Ω) for k = 2, . . . , n.

(3.46)

Moreover by the truncature property (2.32) and the positivity of κ̂k in (3.38) there
exists, for any k = 2, . . . , n, a Radon measure vk such that

aε v̂k,ε uε ⇀ κ̂k vk weakly ∗ in M(Ω).(3.47)

Proceeding as in the second step of the proof of (2.1) we obtain that vk ∈ H1
0 (0, 1;L

2(Ω2)).
Then the following convergences hold true:




aε v̂1,ε uε ⇀ κ̂1 u weakly in D′(Ω),

aε v̂1,ε∇uε ⇀ ∇u+ (κ̂1 − 1)
∂u

∂x3
weakly in D′(Ω;R3),

aε v̂k,ε∇uε ⇀ κ̂k
∂vk
∂x3

weakly in D′(Ω;R3) for k = 2, . . . , n,

(3.48)

where u is the weak limit of uε in H1
0 (Ω). The proof of (3.48) is quite similar to the

second step of Theorem 2.1 in that it takes into account the following result, the proof
of which is given at the end of the section.

Lemma 3.3. Under the geometrical assumptions (2.18) and (2.19) of the distri-
bution of the fibers, the conditions (2.10) and (2.11) of Theorem 2.1 are satisfied.

Finally for any k = 1, . . . , n and ϕ ∈ D(Ω), we put ϕ v̂k,ε as test function in the
conduction problem (2.5) in order to obtain the desired limit system (2.34) of size n.
The proof is quite similar to the third step of Theorem 2.1 in that it uses the strong
convergences (3.46), the expression (3.39) of the function v̂k,ε (3.45) in terms of the
rescaled eigenfunctions vi,ε(x) := Vi,ε(

x
ε ), the assumption (2.29) on the eigenvalues,

as well as the weak convergences

aε∇vi,ε uε ⇀ 0 weakly in D′(Ω;R3) for i = 0, . . . , n− 1.(3.49)

The proof of convergences (3.49) is quite similar to the proof of Lemma 3.2. Indeed by
considering the orthogonal projection of 1

ε Aε∇Vi,ε in the space (V0,ε, . . . , Vn−1,ε)
⊥ε

(where ⊥ε is the orthogonality according to (2.23)) we obtain for any i = 0, . . . , n− 1
the following convergence:

aε∇vi,ε uε −
n−1∑
j=0

1

ε
〈∇Vi,ε, Vj,ε〉ε aε vj,ε uε ⇀ 0 weakly in D′(Ω;R3).(3.50)

We then deduce (3.49) from (3.50) combined with the limits

1

ε
〈∇Vi,ε, Vj,ε〉ε −→

ε→0
0 for i, j = 0, . . . , n− 1.(3.51)
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Proceeding as in the proof of Lemma 3.2, we see that the limits (3.51) are a conse-
quence of conditions (2.10) and (2.11), which are given by Lemma 3.3. It thus remains
to prove this lemma in order to conclude the proof of Theorem 2.4.

Proof of Lemma 3.3.
Proof of (2.10). We can regroup the neighboring sets Qi,ε of (2.18), i = 1, . . . , N ,

in such a way that the distance between two sets Qi,ε, Qj,ε of the same group tends to
zero and the distance between two different groups is greater than a positive constant.
Let us denote by Q̂1,ε, . . . , Q̂p,ε the p groups defined in this way. By construction for

any k = 1, . . . , p, Q̂k,ε is contained in an open ball B(yk,ε, rk,ε) in the torus Y2, of
center yk,ε and of radius rk,ε → 0. Let Φε be the function of H1

#(Y2) defined by




Φε(y) := 0 if y ∈
p⋃
k=1

B(yk,ε, rk,ε),

Φε(y) := 1 if y /∈
p⋃
k=1

B(yk,ε,
√
rk,ε),

Φε(y) :=
ln |y − yk,ε| − ln rk,ε
ln
√
rk,ε − ln rk,ε

if rk,ε ≤ |y − yk,ε| < √
rk,ε, k = 1, . . . , p.

(3.52)

We have Φε = 0 in Qε since by definition

Qε ⊂
p⋃
k=1

Q̂k,ε ⊂
p⋃
k=1

B(yk,ε, rk,ε).

The sequence Φε strongly converges to 1 in L2
#(Y2) since

0 ≤ Φε ≤ 1 and

∣∣∣∣∣
p⋃
k=1

B(yk,ε,
√
rk,ε)

∣∣∣∣∣ −→
ε→0

0.

We also have ∫
Y2

|∇Φε|2 =

p∑
k=1

4π

|ln rk,ε| −→
ε→0

0,

whence∇Φε strongly converges to 0 in L2
#(Y2). Therefore the capacity condition (2.10)

is satisfied with the sequence 1∫
Y2

Φε
Φε.

Proof of (2.11). Let µ ∈ R
2. Since the distance between two sets Q̂h,ε, Q̂k,ε is

greater than a positive constant and the diameter of Q̂k,ε tends to zero, there exist
fixed open balls B(yk, rk), B(yk, r

′
k) in the torus Y2, with radius rk < r′k < 1

2 , such

that Q̂k,ε ⊂ B(yk, rk) for any k = 1, . . . , p and the balls B(yk, r
′
k) are two-by-two

disjoint. We then define a smooth Y2-periodic function Ψµ by

Ψµ(y) := µ · (y − τ) if y ∈ τ +B(yk, rk) for any τ ∈ Z

2 and k := 1, . . . , p,

Ψµ(y) := 0 if y /∈
⋃
τ∈Z2

p⋃
k=1

(τ +B(yk, r
′
k)) .

This definition is consistent since all the balls τ + B(yk, rk) are two-by-two disjoint
closures in R

2 by construction. Therefore condition (2.11) is also satisfied, which
concludes the proof of Lemma 3.3.
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3.3. Proof of Proposition 2.7. Proof of part (i) of Proposition 2.7.
Case n = 1. Let Ai,ε, i = 1, 2, be the function defined by

Ai,ε :=

{
1 in Y2 \Qi,ε,
αi,ε in Qi,ε.

(3.53)

By the definitions (3.31) and (3.32), the eigenfunction V1,ε satisfies for i = 1, 2

∫
Y2

Ai,ε

(
V1,ε −

∫
Y2
Ai,εV1,ε∫
Y2
Ai,ε

)2

−→
ε→0

(
c1 − c1 + κic1,i

1 + κi

)2

+ κi

(
c1,i − c1 + κic1,i

1 + κi

)2

= d (c1 − c1,i)
2,

where d is a positive constant. We cannot have c1 = c1,1 = c1,2 since the orthonor-
mality equalities (3.40) for N = 2 are the following:

ci + κ1 ci,1 + κ2 ci,2 = 0 and c2i + κ1 c
2
i,1 + κ2 c

2
i,2 = 1 for i = 1, 2.(3.54)

Hence there exist i = 1, 2 and a positive constant c such that

Ii,ε :=

∫
Y2

Ai,ε

(
V1,ε −

∫
Y2
Ai,εV1,ε∫
Y2
Ai,ε

)2

> c.

Then the first nonzero eigenvalue Λ1,i(ε) of the problem (2.7) defined with the func-
tion Ai,ε satisfies the estimate

Λ1(ε) =

∫
Y2

Aε |∇V1,ε|2 ≥
∫
Y2

Ai,ε |∇V1,ε|2 = Ii,ε

∫
Y2
Ai,ε |∇V1,ε|2

Ii,ε
≥ cΛ1,i(ε).

(3.55)

Now assume that δ = +∞, i.e., ε2 |ln rε| → 0. Proposition 2.4 of [3] for one fiber by

cell implies that
Λ1,i(ε)
ε2 → +∞, whence by (3.55) Λ1(ε)

ε2 → +∞. Therefore n = 1 by
the definition of n in part (i) of Theorem 2.4.

Inversely assume that δ < +∞, i.e., lim
ε→0

ε2 |ln rε| > 0. Let Ŵi,ε, i = 1, 2, be the

Y2-periodic function defined for y ∈ Y2 by

Ŵi,ε(y) :=




0 if r < rε or equivalently y ∈ Qi,ε,

1 if r > ρε where | ln ρε| � | ln rε|,
ln r − ln rε
ln ρε − ln rε

if rε ≤ r ≤ ρε,

(3.56)

where r represents the distance between y and the center of the disk Qi,ε.
It is easy to check that

‖∇(Ŵ1,εŴ2,ε)‖2
ε ≤

c

| ln rε| = O(ε2),

and since Ŵ1,εŴ2,ε = 0 in Qε we also have, in the sense of definition (2.25),

Ŵ1,εŴ2,ε /≈ε 〈Ŵ1,εŴ2,ε, 1〉ε
〈1, 1〉ε −→

ε→0

1

1 + κ1 + κ2
> 0.
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From both previous estimates we deduce that

Λ1(ε) ≤ ‖∇(Ŵ1,εŴ2,ε)‖2
ε∥∥∥Ŵ1,εŴ2,ε − 〈Ŵ1,εŴ2,ε,1〉ε

〈1,1〉ε

∥∥∥2

ε

= O(ε2).(3.57)

Moreover by (3.55) we have Λ1(ε) ≥ cΛ1,1(ε). By comparing the result of [1] to

Theorem 2.1 (see also the proof of part (ii) of Proposition 2.7) we also have
Λ1,1(ε)
ε2 → δ.

From these results we deduce the estimate Λ1(ε) ≥ c ε2, which, combined with (3.57),

implies that (up to a subsequence) Λ1(ε)
ε2 → λ1 ∈ ]0,+∞[. We then obtain n ≥ 2

thanks to part (i) of Theorem 2.4. Therefore the first equivalence of (2.37) has been
proved.

Case n = 2. Assume that the left-hand side of the second implication of (2.37)
holds true. By the first equivalence of (2.37) and part (i) of Theorem 2.4 the integer n
is equal to 2 or 3. Then assume by contradiction that n = 3.

We will use the following result.
Lemma 3.4. There exists a positive constant c such that

∀V ∈ H1
#(Y2),

∣∣∣∣∣−
∫
Q1,ε

V −−
∫
Q2,ε

V

∣∣∣∣∣ ≤ c
(√

ln (dε + rε)− ln rε + 1
)
‖∇V ‖L2(Y2).

(3.58)

By studying the cases where the limit of dεrε is finite or is not, it is easy to prove
the implication

lim
ε→0

∣∣∣∣ ln dεln rε

∣∣∣∣ = γ ≥ 1 ⇒ lim
ε→0

∣∣∣∣ ln (dε + rε)

ln rε

∣∣∣∣ = 1,

and since the first limit is satisfied by assumption, the second one thus holds true.
Then, thanks to estimate (3.58) applied to the eigenfunction Vj,ε, j = 1, 2, we obtain∣∣∣∣∣−

∫
Q1,ε

Vj,ε −−
∫
Q2,ε

Vj,ε

∣∣∣∣∣ = o
(√

| ln rε|
)
‖∇Vj,ε‖L2(Y2) = o

(
ε
√
| ln rε|

)
−→
ε→0

0,

whence cj,1 = cj,1 for j = 1, 2. These equalities, combined with the orthonormality
equalities (3.54), yield

c1 + (κ1 + κ2) c1,1 = c2 + (κ1 + κ2) c2,1 = c1 c2 + (κ1 + κ2) c1,1 c2,1 = 0,

which implies c1,1 c2,1 = 0. For instance, c1,1 = 0, whence c1 = c1,1 = c1,2 = 0, which
contradicts the second equality of (3.54). The second implication of (2.37) has thus
been proved.

Case n = 3. Assume that the left-hand side of the third implication of (2.37)
holds true. The integer n is still equal to 2 or 3. Assume by contradiction that n = 2,

whence by Theorem 2.4 we have Λ2(ε)
ε2 → +∞. Let i = 1, 2. Since by definition (3.56)

we have ‖∇Ŵi,ε‖ε = O(ε), the Courant–Fisher formula for Λ2(ε) yields∥∥∥∥∥ Ŵi,ε − 〈Ŵi,ε, 1〉ε
〈1, 1〉ε − 〈Ŵi,ε, V1,ε〉ε V1,ε

∥∥∥∥∥
ε

≤ cΛ2(ε)
− 1

2 −→
ε→0

0,
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which implies (according to notation (2.25)) that

Ŵi,ε ≈ε ai + bi V1,ε, where ai, bi are two constants.

Since by hypothesis dε � rε we also have for i �= j

−
∫
Qj,ε

Ŵi,ε =
ln (dε + rε)− ln rε

ln ρε − ln rε
+ o(1) −→

ε→0
1− γ.

Therefore, for j �= i, ai, bi satisfy


1 = ai + bi c1 by the limit in Y2 \Qε,
0 = ai + bi c1,i by the limit in Qi,ε,

1− γ = ai + bi c1,j by the limit in Qj,ε,

whence c1,j = γ c1,i+(1−γ) c1. Similarly with Ŵj,ε we obtain c1,i = γ c1,j+(1−γ) c1.
Since γ �= 1 we then deduce from both previous equalities c1,i = c1,j and c1 = c1,1 =
c1,2 = 0, which again contradicts the second equality of (3.54).

Proof of Lemma 3.4. Let Ri,ε, i = 1, 2, be the disk of radius dε + rε and of the
same center as Qi,ε. On the first side by using polar coordinates it is easy to check
that for any V ∈ H1

#(Y2) we have∣∣∣∣∣−
∫
∂Qi,ε

V −−
∫
∂Ri,ε

V

∣∣∣∣∣ ≤ c
√
ln (dε + rε)− ln rε ‖∇V ‖L2(Ri,ε).

We also have ∣∣∣∣∣−
∫
Qi,ε

V −−
∫
∂Qi,ε

V

∣∣∣∣∣ ≤ c ‖∇V ‖L2(Qi,ε),

and the same estimate for the disk Ri,ε. From these estimates we easily deduce the
new estimate,∣∣∣∣∣−

∫
Qi,ε

V −−
∫
Ri,ε

V

∣∣∣∣∣ ≤ c
(√

ln (dε + rε)− ln rε + 1
)
‖∇V ‖L2(Ri,ε).(3.59)

On the other side let Rε be the disk of radius 3 (dε+ rε) whose center is the middle of
both centers of Q1,ε, Q2,ε. In particular we have R1,ε ∪R2,ε ⊂ Rε. By rescaling with
the scale (dε + rε) we obtain that there exists a positive constant c such that∣∣∣∣∣−

∫
R1,ε

V −−
∫
R2,ε

V

∣∣∣∣∣ ≤ c ‖∇V ‖L2(Rε).

This, combined with (3.59), implies the desired estimate (3.58), which concludes the
proof of Lemma 3.4.

Proof of part (ii) of Proposition 2.7. We will use the result of Lemma 1 in [5],
which consists of the following estimate satisfied by the function Ŵi,ε, i = 1, 2, defined
by (3.56): for any V ∈ H1

#(Y2),∣∣∣∣∣
∫
Y2

∇Ŵi,ε · ∇V − 2π

|ln rε|

(
−
∫
Y2\Qi,ε

V −−
∫
Qi,ε

V

)∣∣∣∣∣
≤ C

| ln rε|
(√

| ln ρε| ‖∇V ‖L2(Y2) +
1

rε
‖∇V ‖L2(Qi,ε)

)
.

(3.60)
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Since γ = 0 in (2.36) we can choose ρε in (3.56) such that ρε � dε. By this choice we
have ∇Ŵi,ε = 0, i = 1, 2, in Qε, whence by the definition (2.7) of the eigenfunctions
Vj,ε, j = 1, 2, we have∫

Y2

∇Ŵi,ε · ∇Vj,ε = 〈∇Ŵi,ε,∇Vj,ε〉ε = Λj(ε) 〈Ŵi,ε, Vj,ε〉ε.

Then by taking V := Vj,ε in estimate (3.60) the condition δ < +∞, combined with
the assumption of (2.21) αi,ε πr

2
ε → κi > 0 and the assumption (2.29) satisfied by the

eigenvalues, implies that for any i, j = 1, 2,

Λj(ε)

ε2
〈Ŵi,ε, Vj,ε〉ε − 2π

ε2 |ln rε|

(
−
∫
Y2\Qi,ε

Vj,ε −−
∫
Qi,ε

Vj,ε

)

= O
(
ε
√
| ln ρε|+ ε

)
−→
ε→0

0.

(3.61)

Since Ŵi,ε = 0 in Qi,ε and Ŵ3−i,ε = 1 in Q3−i,ε by the choice of ρε, by passing to the
limit in (3.61) with definitions (3.31), (3.32) we thus have

λj (cj + κ3−i cj,3−i)− δ (cj − cj,i) = 0,

which, combined with the first equality of (3.54), yields

λj κi cj,i = δ (cj,i − cj) for i, j = 1, 2.(3.62)

We have cj,i �= 0. Otherwise (3.62), combined with the first equality of (3.54), leads
to a contradiction. Then equalities (3.62) for i = 1, 2 and κ1 = κ2 imply that cj = 0
or cj,1 = cj,2. Since λ1 ≤ λ2 we thus obtain with (3.54)

c1 = 0, c1,1 = −c1,2 =
±1√
2κ1

and c2 = −±
√

2κ1

1+2κ1
, c2,1 = −c2,2 =

±1√
2κ1+4κ2

1

,

as well as the values (2.38) for λ1, λ2. Finally by the definitions (2.35) of the con-
stant κ̂k with respect to κi and the definitions (3.37) of the constant ĉk,i with respect
to ci,j , we easily deduce the desired limit system (2.39) from the general one, (2.34)
of Theorem 2.4. Proposition 2.7 has thus been proved.
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Abstract. In this work, we formulate a new minimizing flow for the optimal mass transport
(Monge–Kantorovich) problem. We study certain properties of the flow, including weak solutions as
well as short- and long-term existence. Optimal transport has found a number of applications, includ-
ing econometrics, fluid dynamics, cosmology, image processing, automatic control, transportation,
statistical physics, shape optimization, expert systems, and meteorology.
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1. Introduction. In this paper, we derive a novel gradient descent flow for the
computation of the optimal transport map (when it exists) in the Monge–Kantorovich
framework. Besides being quite useful for the efficient computation of the transport
map, we believe that the flow presented here is quite interesting from a theoretical
point of view as well. In the present work, we undertake a study of some of its key
properties.

The mass transport problem was first formulated by Monge in 1781 and concerned
finding the optimal way, in the sense of minimal transportation cost, of moving a pile
of soil from one site to another. This problem was given a modern formulation in the
work of Kantorovich [13] and so is now known as the Monge–Kantorovich problem.
We recall the formulation of the Monge–Kantorovich problem for smooth densities
and domains in Euclidean space. For more general measures, see [1]. Let Ω0 and Ω1

be two diffeomorphic connected subdomains of R
d, with smooth boundaries, and let

µ0, µ1 be Borel measures on Ω0 and Ω1, each with a positive density function µ0 and
µ1, respectively. We assume

µ0(Ω0) = µ1(Ω1),

i.e., ∫
Ω0

µ0(x)dx =

∫
Ω0

µ1(x)dx,

so that the same total mass is associated with Ω0 and Ω1, and we consider diffeomor-
phisms u : Ω0 → Ω1 which map one density to the other in the sense that

µ0 = det(∇u)µ1 ◦ u,(1)
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where det∇u denotes the determinant of the Jacobian map ∇u. This is the well-
known Jacobian equation, which constrains the mapping u to be mass preserving
with respect to µ0 and µ1.

There may be many such mappings, and we want to pick out an optimal one in
some sense. Accordingly, we define a generalized Monge–Kantorovich functional as

M(u) =

∫
Φ(x, u(x)) dµ0(x),

where Φ : Ω̄0 × Ω̄1 → R is a positive C1 cost function. A Φ-optimal mass preserving
map, when it exists, is a diffeomorphism which satisfies (1) and minimizes this integral.

In particular, the L2 Monge–Kantorovich problem, corresponding to the cost func-
tion Φ(x, ξ) = 1

2 |x−ξ|2, has been studied in statistics, functional analysis, atmospheric
sciences, automatic control, computer vision, statistical physics, and expert systems.
See [3, 5, 8, 15, 16] and the references therein. This functional is seen to place a
quadratic penalty on the distance the map u moves each bit of material, weighted by
the material’s mass. A fundamental theoretical result for the L2 case [14, 4, 9] is that
there is a unique optimal mass preserving u, and that this u is characterized as the
gradient of a convex function p, i.e., u = ∇p.

1.1. Reallocation measures. It turns out to be very convenient to use Kan-
torovich’s generalization of the notion of a measure preserving map u : (Ω0, µ0) →
(Ω1, µ1). Instead of considering a map u we introduce its graph

{(x, u(x)) | x ∈ Ω0} ⊂ Ω0 × Ω1

and, more importantly, the measure

γu = (id× u)#µ0(2)

on Ω0 × Ω1 supported on this graph.
The measures γ that arise in this way all satisfy1

(
p0

)
#
γ = µ0 and

(
p1

)
#
γ = µ1.(3)

We define X to be the space of nonnegative Borel measures on Ω̄0 × Ω̄1 which satisfy
(3).

The Monge–Kantorovich cost functional extends in a natural way to the space of
measures X by

M(γ) =

∫
Ω0×Ω1

Φ(x, y) dγ(x, y).

We may think of a measure γ ∈ X as a “multivalued map,” which, rather than sending
a point x ∈ Ω0 to one other point u(x), assigns a probability measure Px on the range
space Ω1 and “smears the point x out over Ω1 according to the probability measure
Px.” The measure γ is reconstructed from the family of probability measures {Px}
by specifying∫

Ω0×Ω1

φ(x, y) dγ(x, y) =

∫
Ω0

{∫
Ω1

φ(x, y) dPx(y)

}
dµ0(x).(4)

1If X and Y are sets with σ-algebras M and N , and if f : X → Y is a measurable map, then
we write f#µ for the pushforward of any measure µ on (X,M), i.e., for any measurable E ⊂ Y we
define f#µ(E) = µ

(
f−1(E)

)
.



MINIMIZING FLOWS FOR THE MONGE–KANTOROVICH PROBLEM 63

See [1] for a rigorous measure-theoretic account of this way of decomposing γ. In this
paper we will write for any bounded Borel measurable function φ : Ω0 × Ω1 → R

Eγ(φ(x, y) | x) =
∫

Ω1

φ(x, y) dPx(y)

for the expectation of φ(x, ·) with respect to the probability measure Px. See Lemma
3.1, where we define this expectation directly without using the probability measures
Px. The principal role of the expectation Eγ(φ(x, y) | x) is as generalization of the
expression φ(x, u(x)). Indeed, when γ = (id× u)#µ0, then both expressions coincide.

1.2. The gradient flow. To reduce the Monge–Kantorovich cost M(u) of a
map u0 : Ω0 → Ω1 we “rearrange the points in the domain of the map”; i.e., we
replace the map u0 by a family of maps ut for which one has ut ◦ st = u0 for some
family of diffeomorphisms st : Ω0 → Ω0 (see figure below). If the initial map u0

sends the measure µ0 to µ1 (if it satisfies (1)), and if the diffeomorphisms st preserve

the measure µ0, then the maps ut = u0 ◦ (st)−1
will also send µ0 to µ1. Thus the

group Diff1
µ0
(Ω0) of C

1, µ0 preserving diffeomorphisms acts on the space of measure

preserving maps u : (Ω0, µ0) → (Ω1, µ1). The group action of Diff1
µ0
(Ω0) can be

extended to an action on X by

s · γ =
(
s× idΩ1

)
#
γ.

Any sufficiently smooth family of diffeomorphism st : Ω0 → Ω0 is determined by its
velocity field, defined by ∂ts

t = vt ◦ st.

st

ut

u0

Rearranging a map to improve
its cost functional

(Ω0, µ0)

(Ω1, µ1)

(Ω0, µ0)

In section 3 we compute the change in M(γt) for measures γt = st · γ0 ∈ X
obtained by letting a family of diffeomorphisms st ∈ Diff1

µ0
(Ω0) act on an initial

measure γ0 ∈ X. We find that steepest descent is achieved by a family st ∈ Diff1
µ0
(Ω0),

whose velocity is given by

vt = − 1

µ0(x)
P (Eγt(Φx | x)) .(5)

Here P is the Helmholtz projection, which extracts the divergence-free part of vector
fields on Ω0 (see section 7).
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In the special case where the measures γt are given by graph measures γt = γut as
in (2) we get the following equations for the evolution of the map ut. From u0 = ut◦st
we get the transport equation

∂ut

∂t
+ vt · ∇ut = 0.(6)

The velocity field is still given by (5) above, but this now simplifies to

vt =
−1

µ0(x)
P{Φx(x, u

t(x))
}
.

This equation, together with the transport equation (6), determines an initial value
problem for the map ut.

We will show the following.
Theorem 1.1. Let 0 < α < 1. For any C1,α, measure preserving initial map

u0 a smooth (C1,α) family of maps {ut | 0 ≤ t < T} exists such that the maps st

generated by the vector field vt given by (5) satisfy u0 = ut ◦ st.
The existence time T of the smooth solution depends on the C1,α norm of the

initial map u0.
See Lemma 11.1 for more detail.
It is not clear if these smooth solutions exist for all t > 0 (we make no geometric

assumptions on Ω0 or the cost function Φ at all). To construct global solutions we
modify the equation by introducing a smoothing operator A. This operator acts on
the space H of all L2 vector fields on Ω0. We choose A to be an operator which
approximates the identity and for which Aw will always be smooth for all w ∈ H.
The operators A we use are versions of a parabolic operator A = eε∆. See section 8
for more detail.

Instead of considering the gradient flow generated by the velocity field (5), we
smooth out vt and consider

vt = − 1

µ0(x)
PA2P(W t) = − 1

µ0(x)
PA2P (Eγt(Φx | x)) .(7)

We refer to the corresponding initial value problem as the regularized problem. Since
the velocity field here is smooth for any possible γt ∈ X, no singularities can occur,
and we can prove the following.

Theorem 1.2. Under appropriate assumptions on the smoothing operator A
solutions to the initial value problem exist for all time t ≥ 0 and for any initial
measure γ0 ∈ X.

See Theorem 9.1 for a more precise statement.
In fact, assuming the smoothing operator is injective, it follows that the initial

value problem corresponding to the velocity field (7) generates a continuous semiflow
on X and that the Monge–Kantorovich functional M(γ) acts as a Lyapunov function
for this flow. Thus all orbits exist for all t > 0, and all orbits have ω-limit sets
consisting of critical points only. Here a critical point of the flow is measure γ ∈ X
whose velocity field defined in (7) vanishes. Injectivity of A implies that critical points
can be characterized independently of the smoothing operator A: A critical point is
a measure γ ∈ X for which

Eγ

(
Φx | x) = ∇p
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for some Lipschitz continuous function p : Ω0 → R. These are precisely the measures
γ ∈ X whose Monge–Kantorovich cost M(γ) cannot be reduced by the action of some
s ∈ Diff1

µ0
(Ω0) infinitesimally close to the identity.

If the measure γ is given by γ = (id × u)#µ0 for some measure preserving u :
Ω0 → Ω1, then γ = γu is a critical point exactly when the map u satisfies

Φx(x, u(x)) = ∇p(x) a.e. on Ω0

for some Lipschitz function p : Ω0 → R. This is very important since it motivates
our approach for finding a flow which in a certain sense kills the curl of a vector field
(see our discussion in section 3.2). In particular, if the cost function is quadratic,
Φ(x, y) = 1

2 |x − y|2, then a measure preserving map u : Ω0 → Ω1 whose reallocation
measure γu ∈ X is a critical point also satisfies

u(x) = x−∇p(x)

for some Lipschitz function p.
Our gradient flows (both regularized and unregularized) move measures γ ∈ X

around on orbits of the group action Diff1
µ0
(Ω0)× X → X.

A pertinent example is the group orbit of a C1 diffeomorphism û : Ω̄0 → Ω̄1, or,
rather, the measure γu associated to such a map. This orbit consists of all measures
of the form s · γu = γu◦s−1 . Since any other diffeomorphism ũ : Ω̄0 → Ω̄1 is of the
form ũ = û ◦ s−1 for some s ∈ Diff1

µ0
(Ω0) we see that the set{

γu | u : Ω̄0 → Ω̄1 is a C1 measure preserving diffeomorphism
}

is exactly one orbit of the group action. So, if we have an initial measure γ = γu which
is generated by some map u and solve the initial value problem, then the solution we
get will again consist of measures of the form γt = γut .

Unfortunately, such group orbits are not always closed, so if {γt = st · γ0 | t ≥ 0}
is a trajectory of one of our gradient flows, then its ω-limit set might not be contained
in the same orbit of the group action; i.e., if γ̂ belongs to the ω-limit set, then it is
possible that γ̂ is not of the form s · γ0 for any s ∈ Diff1

µ0
(Ω0). In particular, if we

start with γ0 = γu0 , then the corresponding solution γt to the regularized flow will
be of the form γt = γut for a family of maps ut = u0 ◦ (st)−1, but, as t ↗ ∞, the
γt might converge to a measure γ̃ ∈ X, which does not correspond to any map. (For
example, if Ω0 = Ω1 is the unit disc, µ0 = µ1 is Lebesgue measure, u0 = idΩ0 , and
st is defined by st(z) = eit|z|z in complex notation, then the measures γut converge
weakly to γ̄ ∈ X. The limiting measure γ̄ is described as in (4) with Px the uniform
distribution on the circle of radius |x|. In other words, instead of corresponding to
a map, the limiting measure γ̄ takes each point x ∈ Ω0 and spreads it out uniformly
over the circle through x, centered at the origin. See Figure 1.)

We must therefore study the gradient flow(s) on all of X.
It turns out that there is always one stationary measure, namely,

γ× = µ0 × µ1.(8)

This measure takes each point in Ω0 and spreads it out evenly (with a probability
measure proportional to µ1) over Ω1. This measure must be a critical measure, for it
is a fixed point for the group action; i.e., for all s ∈ Diff1

µ0
one has

s · γ× =
(
s× idΩ1

)
#
γ× = (s#µ0)× µ1 = µ0 × µ1 = γ∞.
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A

B

A' B'

ut

Fig. 1. The map ut spreads the short line segment AB out over the spiral A′B′.

Therefore any of the gradient flows γ �→ st · γ we construct here act trivially on γ×.
Although we have no global existence result for the unregularized flow, we can

choose a family of smoothing operators Aε = eε∆ which approximate the identity
operator as ε ↘ 0 and consider the solutions {γtε | t ≥ 0} of the regularized flows
whose existence we have already proved. We then show in section 10.2 that the
γtε converge weakly to a family of measures γ̃t whose Monge–Kantorovich cost is
decreasing and whose ω-limit set consists of critical measures (Proposition 10.1.)

1.3. Computations. Our interest in Monge–Kantorovich arose because of cer-
tain problems in computer vision and image processing, including image registration
and image warping [2, 11, 12]. Image registration is the process of establishing a
common geometric reference frame between two or more data sets possibly taken at
different times. In [11, 12], we present a method for computing elastic registration
maps based on the Monge–Kantorovich problem of optimal mass transport.

For image registration, it is natural to take Φ(x, y) = 1
2 |x − y|2 and Ω0 = Ω1

to be a rectangle. Extensive numerical computations show that the solution to the
unregularized flow converges to a limiting map for a large choice of measures and
initial maps. Indeed, in this case, we can write the minimizing flow in the following
“nonlocal” form:

∂ut

∂t
= − 1

µ0

(
ut −∇∆−1 div(ut)

) · ∇ut.(9)

In section 12, we give some details on our numerical methods as well as some illus-
trative examples.

2. Reallocation measures. The search for minimizers ofM(u) simplifies greatly
if one suitably generalizes the notion of “mapping from Ω0 to Ω1.” The standard
way to do this in the present context is to identify the measure preserving map
u : (Ω0, µ0) → (Ω1, µ1) with its graph, or, rather, with the Borel measure γu on
Ω0 × Ω1 defined by

γu(E) = µ0

({x ∈ Ω0 : (x, u(x)) ∈ E}).
This measure is supported on the graph of the map u; it is the pushforward of µ0

under the map id× u, so γu = (id× u)#(µ0).
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The map u is measure preserving if and only if the measure γu satisfies (p0)#(γu) =
µ0 and (p1)#(γu) = µ1, where pj : Ω0 × Ω1 → Ωj is the canonical projection. This
prompts us to consider the space

X = {Borel measures γ ≥ 0 on Ω0 × Ω1 | (pj)#γ = µj for j = 0, 1}.
If the measure γ has a density, so that dγ(x, y) = µ(x, y)dxdy, then γ ∈ X exactly
when ∫

Ω0

µ(x, y)dx = µ1(y) for µ1 almost all y ∈ Ω1(10)

and ∫
Ω1

µ(x, y)dy = µ0(x) for µ0 almost all x ∈ Ω0.(11)

All measures γ ∈ X have total mass

γ(Ω0 × Ω1) = µ0(Ω0) = µ1(Ω1).(12)

The space X with the weak* topology is a compact metrizable space. (It is a closed and
convex subset of the dual of C0(Ω0 × Ω1).) The Monge–Kantorovich cost functional
is linear on X. It is simply given by

M(γ) = 〈γ,Φ〉 =
∫

Ω0×Ω1

Φ(x, y)dγ(x, y).

As such, there is always a minimizer for the cost functional (although in general it
is only known to be a measure γ ∈ X, and it does not follow from general principles
that γ is of the form γu for some measure preserving map).

3. Steepest descent. The group G of µ0 measure preserving transformations
on s : Ω0 → Ω0 acts on X by s ·γ �→ (s× idΩ1)γ. We propose to study a cost reducing
flow on X which is defined by the group action G × X → X. Rather than applying
arbitrary measurable maps s ∈ G, we restrict ourselves to smooth (C1) orientation
preserving diffeomorphisms s : Ω0 → Ω0.

3.1. The first variation. If we have a one-parameter family of µ0 preserving
C1 diffeomorphisms st : Ω0 → Ω0 with velocity field vt, and we write γt = st · γ for
some γ ∈ X, then the first variation of the Monge–Kantorovich cost functional is

dM(γt)

dt
=

d

dt

∫
Ω0×Ω1

Φ(x, y)d(st × id)#γ(x, y)(13)

=
d

dt

∫
Ω0×Ω1

Φ(st(x), y)dγ(x, y)

=

∫
Ω0×Ω1

vt(st(x)) · Φx(s
t(x), y)dγ(x, y)

=

∫
Ω0×Ω1

vt(x) · Φx(x, y)dγ
t(x, y).

Lemma 3.1. For any bounded measurable function F : Ω0 ×Ω1 → R there exists
a bounded measurable function F̃ : Ω0 → R for which∫

Ω0×Ω1

φ(x)F (x, y)dγ(x, y) =

∫
Ω0

φ(x)F̃ (x)dµ0(x)
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holds for all φ ∈ L1(Ω0; dµ0).
Proof. The left-hand side defines a bounded linear functional on L1(Ω0,dµ0), so

the existence and uniqueness of F̃ is guaranteed.
We will denote the function F̃ by

F̃ (x) = Eγ(F | x) or F̃ (x) = Eγ(F (x, y) | x).(14)

If the measure γ has a density µ(x, y), then F̃ (x) is given by

Eγ(F | x) =
∫

Ω1

F (x, y)
µ(x, y)

µ0(x)
dy.(15)

Fubini’s theorem implies that this integral exists for µ0 almost all x ∈ Ω0. The

condition µ(x, y)dxdy ∈ X implies that µ(x,y)
µ0(x) dy is a probability measure on Ω1 for

every x ∈ Ω0, and F̃ (x) is just the expectation of F (x, y) for this probability measure.
This justifies the notation in (14).

If the measure is of the form γ = γu for some measure preserving map u : Ω0 →
Ω1, then F̃ is given by

Eγ(F | x) = F (x, u(x)).(16)

One may think of (16) as a special case of (15) in which the “density” µ(x, y) is given
by µ(x, y) = µ0(x)δ(y−u(x)) (δ being the Dirac delta-function). Here the probability

measure µ(x,y)
µ0(x) dy puts probability one at y = u(x), and thus the expectation of F (x, y)

for this measure is just F (x, u(x)).
With this notation we now complete our computation (13) of the first variation:

dM(γt)

dt
=

∫
Ω0

vt(x) ·W t(x)dµ0(x),(17)

where

W t(x) = Eγt(Φx(x, y) | x).(18)

When the measure γ ∈ X is of the form γ = γu for some map u : Ω0 → Ω1, one has
γt = γut with ut ◦ st = u, and thus (18) reduces to

W t(x) = Φx(x, u
t(x)).

In the case of a quadratic cost function Φ(x, y) = 1
2 |x − y|2 but general measure

γt ∈ X, one has

W t(x) = Eγt(x− y | x) = x− Y t(x),

where

Y t(x) = Eγt(y|x)
is the expected y value to which the measure γt reallocates the point x.

If the cost function is quadratic, and if the measure γt is of the form γut , then
we get Y t(x) = ut(x), and hence

W t(x) = x− ut(x).
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3.2. Steepest descent. To reduce the cost functional we choose the velocity
field vt so as to minimize

∫
vt · W tdµ0 subject to a constraint on ‖vt‖L2 (or some

similar quadratic norm) and subject to the constraint that vt preserve the measure
µ0, i.e., divµ0v

t = 0.
To this end we use the Helmholtz projection to split W t into a gradient and its

divergence-free part,

W t = ∇pt + P(W t),

where

divP(W t) = 0,

and where P(W t) |∂Ω0 is tangential to the boundary of Ω0. Such a decomposition is
always possible, and P can be interpreted as orthogonal projection in L2(Ω0) ⊗ R

d.
See section 7, where we discuss P in more detail.

If the velocity field satisfies divµ0v
t = 0, then we get

dM(γt)

dt
=

∫
Ω0

µ0(x)v
t(x) ·W tdx(19)

=

∫
Ω0

µ0(x)v
t(x) · {∇pt + P(W t)}dx

=

∫
Ω0

{−pt∇ · (µ0v
t) + µ0v

t · P(W t)}dx

=

∫
Ω0

µ0(x)v
t(x) · P(W t)dx.

We choose the following velocity field:

vt = − 1

µ0(x)
PA2P(W t) = − 1

µ0(x)
PA2P (Eγt(Φx | x)) .(20)

Here A is an operator on the Hilbert space

H
def
= L2(Ω0)⊗ R

d.

Throughout this paper we will assume that A satisfies

A is a bounded, symmetric, and injective operator on H.(21)

Thus A2 is positive definite, and PA2P is positive definite on divergence-free vector
fields on Ω0.

The most natural choice for A would be A = IH, the identity operator on H. In
that case PA2P = P, so that

vt = − 1

µ0(x)
PEγt(Φx | x).

In what follows we are also interested in the case where the operator A is an approx-
imate identity, e.g., A could be defined by running a heat equation for a short time,
Af = eε∆f . In section 8 we specify a class of operators A to which the theory in this
paper is applicable.
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3.3. Evolution equation for the measure γt. Let γt = (st× id)#γ0 for some
initial measure γ0 ∈ X. Here we compute the distributional time derivative of the γt

assuming the diffeomorphisms st have velocity field vt given by (20).
Let ϕ ∈ C1(Ω̄0 × Ω̄1) be a test function. Then 〈γt, ϕ〉 = 〈

γ0, ϕ ◦ (st × id)
〉
, so

that one has

d

dt

〈
γt, ϕ

〉
=
〈
γ0, (vt · ∇xϕ) ◦ (st × id)

〉
(22)

=
〈
γt, vt · ∇xϕ

〉
=
〈−∇ · (vtγt), ϕ〉 ,

where ∇xf(x, y) represents the gradient in the x ∈ Ω0 variable for any function
f : Ω0 × Ω1 → R.

Thus we have found that the family of measures γt satisfies

∂γt

∂t
+∇x ·

(
vt(x)γt

)
= 0(23)

in the sense of distributions. This equation, combined with (20), which prescribes vt

in terms of γt, gives an initial value problem for γt,

∂γt

∂t
= ∇x ·

(
1

µ0(x)
PA2P(Eγt(Φx | x))γt).(24)

3.4. A PDE for the map ut. If the measure γt is given by γt = γut for some
family of measure preserving maps ut : (Ω0, µ0) → (Ω1, µ1), then we have u0 = ut ◦st,
so that the ut satisfy the transport equation

∂ut

∂t
+ vt · ∇ut = 0.(25)

Since for γt = γut one has

Eγt(Φx | x) = Φx(x, u
t(x)),

the velocity field is given by

vt =
−1

µ0(x)
PA2P{Φx(x, u

t(x))
}
.(26)

Together, (25) and (26) determine an evolution equation for the map ut.

3.5. Evolution of the rearrangement st. We return to the case where γt is a
general measure in X. Let us assume that the operator PA2P can be represented as
an integral operator with kernel K(x, ξ), so that for any vector field W ∈ L2(Ω0;R

n)
one has

(PA2PW )(x) =

∫
Ω0

K(x, ξ) ·W (ξ)dξ.(27)

Here dy is the Lebesgue measure, K(x, y) is an n × n matrix-valued function, and
K(x, y) ·W (y) is pointwise matrix multiplication.
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Self-adjointness of the operator PA2P implies

K(x, ξ) = K(ξ, x)T .(28)

When A is the identity operator on H, the kernel K(x, ξ) is a singular integral kernel.
When A is given by solving a heat equation, Af = eε∆f , then the kernel K(x, ξ) is a
C1,α function on Ω̄0 × Ω̄1. (See section 8 for more details.)

The velocity field is given by

vt(x) =
−1

µ0(x)

∫
Ω0

K(x, ξ)Eγt(Φx(ξ, η) | ξ) dξ(29)

=
−1

µ0(x)

∫
Ω0×Ω1

K(x, ξ) · Φx(ξ, η)
dγt(ξ, η)

µ0(ξ)

= −
∫

Ω0×Ω1

K(x, ξ)

µ0(x)µ0(ξ)
· Φx(ξ, η) dγ

t(ξ, η).

Since the rearrangement maps st : Ω0 → Ω0 are related to the velocity field vt by
∂ts

t = vt ◦ st, we find the following integral-differential equation for st:

∂st

∂t
= −

∫
Ω0×Ω1

K(st(x), ξ)

µ0(st(x))µ0(ξ)
· Φx(ξ, η) dγ

t(ξ, η)(30)

= −
∫

Ω0×Ω1

K(st(x), st(ξ))

µ0(st(x))µ0(st(ξ))
· Φx(s

t(ξ), η) dγ0(ξ, η),

where we have used γt = (st × id)#γ0, with γ0 the initial measure.

3.6. An alternative steepest descent flow. We can also derive a related
flow in the following manner. Instead of using the Helmholtz projection to get a
divergence-free vector field out of W t, as we did in section 3.2, we set

µ0v
t = ∇divW t −∆W t.(31)

It is straightforward to check that in this case div(µ0v
t) = 0 and

Mt = −
∫

Ω0

W t · µ0v
t dx

= −
∫

Ω0

W t · (∇(∇ ·W t)−∆W t
)
dx

= −
∫

Ω0

(W t)k((W t)llk − (W t)kll) dx,

where we’ve used superscripts to denote vector components and subscripts for spa-
tial derivatives, with the standard convention of summation over repeated indices.
Integrating by parts, and ignoring the boundary for the sake of exposition, gives

Mt = −
∫

Ω0

−(W t)kl ((W
t)lk − (W t)kl ) dx(32)

= −1

2

∫
Ω0

((W t)lk − (W t)kl )
2 dx

= −1

2

∫
Ω0

| curlW t|2 dx

≤ 0.
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If the measures γt are of the form γt = (id×ut)#(µ0), then we haveW t = Φx(x, u
t(x)),

resulting in the evolution equation

∂ut

∂t
= − 1

µ0(x)

(∇divΦx(x, u
t)−∆Φx(x, u

t)
) · ∇ut(33)

for ut corresponding to (31), and (32) shows that at optimality we must again have
curl W t = 0, so W t = ∇p for some function p.

For the quadratic cost function Φ(x, ξ) = 1
2 |x − ξ|2 we have Φx(x, ξ) = x − ξ, so

we get the following PDE:

∂ut

∂t
=

1

µ0(x)

(∇(∇ · ut)−∆ut) · ∇ut.

We plan to study this equation in future work.

4. Weak solutions. Let γt = (st× id)#γ0 for some smooth family of diffeomor-
phisms st : Ω̄0 → Ω̄0, whose velocity field satisfies (20).

In section 3.3 we observed that for any test function ϕ ∈ C1(Ω̄0 × Ω̄1) one has

d

dt

〈
γt, ϕ

〉
=
〈
γt, vt · ∇xϕ

〉
.

Using (20) we get

d

dt

〈
γt, ϕ

〉
=

〈
γt,

−1
µ0(x)

ϕx · PA2P(Eγt(Φx | x))〉 ,

which implies

d

dt

〈
γt, ϕ

〉
=
(
Eγt(ϕx | x),PA2PEγt(Φx | x))

H
(34)

=
(APEγt(ϕx | x),APEγt(Φx | x))

H
.

Integrate this in time, and you get

∫ t1

t0

(APEγt(ϕx | x),APEγt(Φx | x))
H
dt =

〈
γt0 , ϕ

〉− 〈
γt1 , ϕ

〉
.(35)

For any measure γ ∈ X and any ϕ ∈ C1(Ω̄0 × Ω̄1) the functions Eγ(ϕx | x) are
bounded and measurable, and hence Eγt(ϕx | x) ∈ H = L2(Ω0;R

d) will always hold.
Since P and A are bounded operators on H, both sides of the equation in (35) are
defined for any weak∗ continuous family of measures γt ∈ X.

Definition 4.1 (weak solution). A weak solution to the initial value problem
(24) is a map t ∈ [0, T ) �→ γt ∈ X which is weak∗ continuous, and which satisfies (35)
for all test functions ϕ ∈ C1(Ω̄0 × Ω̄1) and for all 0 ≤ t0 < t1 < T .

If {γt, 0 ≤ t < T} is a weak solution, then (35) implies that 〈γt, ϕ〉 is an absolutely
continuous function of t and that (34) holds for almost all t.

We could also introduce the notion of classical solution by requiring a classical
solution to be a family of measures {γt, t ∈ [0, T )} which is of the form γt = (st ×
id)#γ0 for some family of C1 diffeomorphisms st : Ω0 → Ω0 whose velocity field
vt = (∂ts

t) ◦ (st)−1 satisfies µ0v
t = −PA2P {Eγt(Φx | x)}.
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Lemma 4.2. If the kernel K(x, ξ) of the operator PA2P is C1, and if {γt, 0 ≤
t < T} is a weak solution, then there is a C1 family of diffeomorphisms st : Ω̄0 → Ω̄0

such that γt = (st × id)#γ0; i.e., {γt} is a classical solution.
Proof. The velocity field vt defined by the first line in (30), i.e.,

vt(s) = −
∫

Ω0×Ω1

K(s, ξ)

µ0(s)µ0(ξ)
· Φx(ξ, η) dγ

t(ξ, η),

is C1 in s ∈ Ω̄0. Therefore the ODE ṡ = vt(s) defines a unique family of diffeomor-
phisms st, 0 ≤ t < T , with s0(x) ≡ x. We now verify that γt = (st × id)#γ0.

Consider the measure λt =
(
(st)−1 × id

)
#
γ0. We have γt = (st × id)#λt, and

λ0 = γ0. We will show that λt is constant.
For any test function ϕ ∈ C1(Ω̄0 × Ω̄1) we differentiate

d

dt

〈
λt, ϕ ◦ (st × id)

〉
=

d

dt

〈
γt, ϕ

〉
(using the fact that γt is a weak solution)

=
〈
γt, ϕx(x, y) · vt(x)

〉
=

〈
γt,

∂ϕ ◦ (st × id)

∂t
◦ ((st)−1 × id)

〉

=

〈
λt,

∂

∂t

(
ϕ ◦ (st × id)

)〉
.

On the other hand we also have

d

dt

〈
λt, ϕ ◦ (st × id)

〉
=

〈
∂λt

∂t
, ϕ ◦ (st × id)

〉
+

〈
λt,

∂

∂t

(
ϕ ◦ (st × id)

)〉
.

We see that 〈∂tλt, ϕ ◦ (st × id)〉 vanishes for arbitrary test functions ϕ. Since st is C1,
this implies that ϕ̃ = ϕ ◦ (st × id) can also be any C1 test function, and we conclude
that ∂tλ

t = 0.
Since λ0 = γ0, we get λt = γ0 for all t, and finally, γt = (st×id)#λt = (st×id)#γ0,

as claimed.

5. General energy bounds. By setting ϕ = Φ in (35) we get the following.
Lemma 5.1 (energy identity). For any weak solution {γt, t ∈ [0, T )} and any

0 ≤ t0 < t1 < T one has

M(γt1) +

∫ t1

t0

‖APEγt(Φx | x)‖2
H dt = M(γt0).

This immediately leads to the following lemma.
Lemma 5.2. For any weak solution {γt, t ∈ [0, T )} the Monge–Kantorovich cost

functional is nonincreasing. It remains constant if and only if PEγt(Φx | x) = 0 for
almost all t ∈ [0, T ), i.e., if and only if

Eγt(Φx | x) = ∇pt

for some function pt : Ω0 → R and almost all t ∈ [0, T ).
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Proof. It is clear that M(γt) cannot increase. If M(γt1) = M(γt0) for certain
t0 < t1, then (35) implies that AP (Eγt(Φx | x)) = 0 for almost all t0 < t < t1. Since
we assume the smoothing operator A is injective, this forces P (Eγt(Φx | x)) = 0.

Lemma 5.3 (uniform Lipschitz bound). If {γt, 0 ≤ t < T} is a weak solution to
(24), then for any test function ϕ ∈ C1(Ω̄0 × Ω̄1) the function t �→ 〈γt, ϕ〉 is Lipschitz
continuous, with ∣∣∣∣d 〈µtn, ϕ〉dt

∣∣∣∣ ≤ ‖A‖2
L(H)

∥∥∥∥∂ϕ∂x
∥∥∥∥
L∞

∥∥∥∥∂Φ∂x
∥∥∥∥
L∞

.(36)

One could formulate this lemma as follows: weak solutions γt are uniformly Lip-
schitz continuous functions of t with values in

(
C1(Ω̄0×Ω̄1)

)∗
(the dual of C1 functions

on Ω̄0 × Ω̄1), with Lipschitz constant depending only on the smoothing operator ‖A‖
and the cost function Φ.

Proof. This follows directly from (34) and the fact that for almost all x ∈ Ω0

|Eγ(f(x, y) | x)| ≤ ess sup
y∈Ω1

|f(x, y)|

for any f ∈ L∞(Ω0 × Ω1).
Lemma 5.4 (equicontinuity). For any ϕ ∈ C0(Ω̄0 × Ω̄1) there is a modulus of

continuity σ : R+ → R+ which depends only on ϕ, ‖A‖L(H), ‖Φx‖L∞ , and the total
mass µ0(Ω0) such that ∣∣〈γt1 , ϕ〉− 〈

γt0 , ϕ
〉∣∣ ≤ σ(|t1 − t0|).

Proof. For test functions ϕ̃ ∈ C1(Ω̄0 × Ω̄1) the previous lemma gives us a uniform
Lipschitz bound. We now approximate our given ϕ ∈ C0 by a ϕ̃ ∈ C1 and compute∣∣〈γt1 , ϕ〉− 〈

γt0 , ϕ
〉∣∣ = ∣∣〈γt1 − γt0 , ϕ

〉∣∣
≤ ∣∣〈γt1 − γt0 , ϕ̃

〉∣∣+ ∣∣〈γt1 − γt0 , ϕ̃− ϕ
〉∣∣

≤ C‖ϕ̃x‖∞δ + 2µ0(Ω0)‖ϕ− ϕ̃‖∞,

where C = ‖A‖2‖Φx‖∞, and where we have used the fact that all measures γt have
the same total mass γt(Ω0 × Ω1) = µ0(Ω0) (see (12)) to estimate the second term.

Thus we see that the modulus of continuity σ is given by

σ(δ) = inf
ϕ̃∈C1

{‖A‖2‖Φx‖∞‖ϕ̃x‖∞δ + 2µ0(Ω0)‖ϕ− ϕ̃‖∞
}
.

Clearly σ(δ) is monotone in δ > 0, and limδ→0 σ(δ) = 0, which makes σ a modulus of
continuity.

We note that the modulus of continuity σ(δ) is actually bounded by

σ(δ) ≤ C sup
|x−x′|+|y−y′|<δ

|ϕ(x, y)− ϕ(x′, y′)|,

where C depends only on ‖A‖L(H) and ‖Φx‖∞.

6. Weak compactness. In this section, we study limits of sequences of weak
solutions.

Lemma 6.1. Let An be a sequence of operators satisfying (21) and let Φn ∈
C1(Ω̄0 × Ω̄1) be a sequence of cost functions. Assume the An are uniformly bounded
in L(H) and the Φn are uniformly bounded in C1(Ω̄0 × Ω̄1).
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Given a family of weak solutions {γtn, t ∈ [0, T )}, to (24) with A = An, Φ = Φn,
there is a subsequence such that γtnk ⇀ γt∞ for some weak∗ continuous family of
measures {γt∞, t ∈ [0, T )}.

Proof. Given any t ∈ [0, T ) weak∗ compactness of X enables us to find a subse-
quence of {γtn} which weak∗ converges. Given a finite subset {t1, . . . , tm} ⊂ [0, T ) we
can repeat this argument m times and obtain a subsequence nk ∈ N such that µtnk
weak∗ converges for t = t1, t2, . . . , tm. A diagonalization trick then gives us a further
subsequence nk ∈ N such that µtnk weak∗ converges for all rational t ∈ [0, T ).

We now argue that this subsequence γtnk actually weak
∗ converges for all t ∈ [0, T )

rather than just for all rational t.
Let ϕ ∈ C0(Ω̄0 × Ω̄1) and some t ∈ [0, T ) be given. By Lemma 5.4 the functions

t �→ 〈
γtnk , ϕ

〉
are equicontinuous. By Ascoli–Arzelà they form a precompact subset of

C0([0, T )). Since they converge pointwise on a dense subset of the interval [0, T ) they
must converge uniformly for 0 ≤ t < T .

It follows that
〈
γtnk , ϕ

〉
converges for all t ∈ [0, T ), as claimed.

To complete the proof we check weak∗ continuity in time of the limit measures
γt. But this is immediate since the µtn all share the same modulus of continuity
from Lemma 5.4. Passing to the limit we find that γt also has this modulus of
continuity.

Proposition 6.2. Let γtn, An, and Φn be as in the previous lemma.
Assume that the operators An converge strongly to some operator A∞. Assume

also that the cost functions Φn converge in C1 to some Φ∞ ∈ C1.

Then W t
n

def
= Eγtn

(Φn,x | x) weak∗ converges in L∞(Ω0;R
d) = L1(Ω0;R

d)∗ to

W t
∞

def
= Eγt∞(Φ∞,x | x).
The limiting family γt∞ satisfies the energy inequality

M(γt1) +

∫ t1

t0

∥∥A∞PW t
∞
∥∥2

L2 dt ≤ M(γt0)(37)

for all 0 ≤ t0 < t1 < T .
Proof. For any ζ ∈ L1(Ω0) we have∫

W t
n(x) · ζ(x)dµ0(x) =

∫∫
Ω0×Ω1

ζ(x) · ∂Φn(x, y)

∂x
dµtn(x, y)

→
∫∫

Ω0×Ω1

ζ(x) · ∂Φ∞(x, y)

∂x
dµt∞(x, y) as n → ∞

=

∫
W t

∞(x) · ζ(x)dµ0(x),

which establishes the weak∗ convergence of the W t
n.

Since M(γtn) = 〈γtn,Φn〉 weak∗ convergence of the measures γtn directly implies
convergence of the corresponding costs,

lim
n→∞M(γtn) = M(γt∞),

for all t ∈ [0, T ).
To prove the energy inequality (37) we need the following.
Lemma 6.3. AnPW t

n converges weakly to A∞PW t
∞ in H, and hence

‖A∞PW t
∞‖ ≤ lim inf

n→∞ ‖AnPW t
n‖.
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Given this lemma, we use Fatou’s lemma to get∫ t1

t0

∥∥APW t
∞
∥∥2

L2 dt ≤ lim inf
k→∞

∫ t1

t0

∥∥APW t
k

∥∥2

L2 dt.

The energy identity in Lemma 5.1 then directly leads to the energy inequality (37).
It therefore remains only to verify Lemma 6.3. To this end we recall that the

W t
n converge in the weak∗ topology on L∞(Ω0) ⊗ R

d and hence converge weakly in
L2(Ω0)⊗ R

d = H.
The Helmholtz projection P is bounded on H, so PW t

n converges weakly to PW t
∞.

The operators An converge strongly to A∞, so for an arbitrary f ∈ H we have
‖Anf −A∞f‖H → 0.

Altogether this gives us

(f,AnPW t
n)H = (Anf,PW t

n)H → (A∞f,PW t
∞)H = (f,A∞PW t

∞)H

as n → ∞ and for arbitrary f ∈ H; i.e., we find that AnPW t
n converges weakly to

A∞PW t
∞, and we are done.

At this point it is not clear whether the limiting family {γt∞, t ∈ [0, T )} is a weak
solution.

Lemma 6.4. Assume that the integral kernel K(x, ξ) of the operator PA2P is a
continuous function on Ω̄0 × Ω̄1.

Then any weak∗ limit {γt∞} of weak solutions {γtk} is again a weak solution.
Proof. Since the γtk weak∗ converge to γt∞, the product measures γtk × γtk also

weak∗ converge2 to γt∞ × γt∞.
The measures γtn are uniformly bounded (their total mass is fixed by (12)), so,

using the dominated convergence theorem, one easily shows that the Borel measures
dγtn × dγtn × dt on Ω̄0 × Ω̄0 × [0, T ) converge weakly to dγt∞ × dγt∞ × dt.

To prove that γt∞ is a weak solution to (24) we must show that γt∞ satisfies (35)
for all test functions ϕ. Using the integral kernel K(x, ξ) we rewrite (35) as∫ t1

t0

∫
Ω0

Eγt(ϕx | x) · PA2P{Eγt(Φx | x)} dx dt =
〈
γt0 , ϕ

〉− 〈
γt1 , ϕ

〉
,

i.e.,∫ t1

t0

∫∫
Ω0×Ω0

Eγt(ϕx | x) ·K(x, ξ) · Eγt(Φx | ξ) dxdξ dt = 〈
γt0 , ϕ

〉− 〈
γt1 , ϕ

〉
.

Using the definition of Eγt(· | ·) we see that (35) is equivalent to

(38)

∫ t1

t0

∫∫
(Ω0×Ω1)2

ϕx(x, y) ·K(x, ξ) · Φx(ξ, η)

µ0(x)µ0(ξ)
dγt(x, y)dγt(ξ, η) dt

=
〈
γt0 , ϕ

〉− 〈
γt1 , ϕ

〉
.

2If Borel measures µn and νn on compact Hausdorff spaces X and Y , respectively, converge
weakly to measures γ and ν, then the product measures µn × νn converge weakly to γ × ν. Indeed,
the µn × νn are uniformly bounded so one only has to check 〈µn × νn, f〉 → 〈γ × ν, f〉 for a dense
set of f ∈ C0(X × Y ). By the Stone–Weierstraß theorem we may therefore assume that f(x, y) =
g1(x)h1(y) + · · · + gk(x)hk(y) for continuous functions gi and hi. By linearity we may assume
that k = 1. But if f(x, y) = g1(x)h1(y), then 〈µn × νn, f〉 = 〈µn, g1〉 〈νn, h1〉, which converges to
〈γ, g1〉 〈ν, h1〉 = 〈γ × ν, f〉.
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All measures γtn satisfy (38) since they are weak solutions. Our hypotheses are such
that the integrand in the triple integral in (38) is a continuous function for any choice
of the test function ϕ. Weak∗ convergence of the measures dγtn×dγtn×dt then allows
us to complete the proof by passing to the limit in (35).

7. The Helmholtz decomposition. Any vector field w : Ω0 → R
d can be

decomposed into a divergence-free part and a gradient; i.e., one can find a vector field
Pw and a function p = pw such that

w = Pw +∇p, divPw = 0(39)

holds. We call Pw the Helmholtz projection of w, and by analogy with fluid dynamics
we will call pw the corresponding pressure. The pressure pw is determined by (39)
up to an additive constant, at best. We can remove this freedom by imposing some
normalization on pw, such as ∫

Ω0

pw(x) dx = 0.

To uniquely specify Pw and pw we must impose boundary conditions: we will always
require Pw to be tangential to the boundary. Thus if ν denotes the outward unit
normal to ∂Ω0, then we require

ν · ∇(Pw) = 0, or, equivalently, ν · ∇pw = ν · w on ∂Ω0.(40)

A brief construction of Pw uses Hilbert space theory. Indeed, let Hdiv be the closed
subspace of H = L2(Ω;Rd) determined by

Hdiv = {w ∈ H | (w,∇ϕ)H = 0 for all ϕ ∈ C1(Ω̄)}.
Then the Helmholtz projection P is simply the orthogonal projection of H onto Hdiv.
This implies the following.

Lemma 7.1. The operator P is bounded on H, with ‖P‖L(H) = 1.
This construction does not show how P preserves smoothness of the vector field

w. Therefore we now recall a different description of the Helmholtz decomposition.

7.1. Smooth domains. The defining equations (39) and (40) imply{
∆pw = divw on Ω0,

ν · ∇pw = ν · w on ∂Ω0.
(41)

Standard elliptic theory tells us that under minimal smoothness assumptions on ∂Ω0

and w a solution in the weak sense exists for this boundary value problem. Moreover,
the vector field Pw defined by

Pw := w −∇pw

is divergence free and tangential to the boundary.
Lemma 7.2. Assume the boundary ∂Ω0 is C1,α smooth. Then the Helmholtz pro-

jection is a bounded operator on C1,α(Ω0;R
d); i.e., for any vector field w ∈ C1,α(Ω0;R

d)
one has Pw ∈ C1,α(Ω0;R

d) and ‖Pw‖C1,α ≤ C‖w‖C1,α .
Proof. If w ∈ C1,α, then w ∈ C0,α, while ν · w ∈ C1,α. Furthermore the data

satisfy ∫
∂Ω0

ν · w =

∫
Ω0

divw,
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so the boundary value problem (41) has a unique solution pw ∈ C2,α(Ω0) with∫
Ω0

pw dx = 0 (see [10]). One has

‖pw‖C2,α ≤ Cα,Ω {‖ν · ∇pw‖C1,α + ‖∆pw‖Cα}
= Cα,Ω

{‖ν · w‖C1,α(∂Ω0) + ‖divw‖Cα(Ω0)

}
for some constant Cα,Ω0 . The representation Pw = w − ∇pw then implies the
lemma.

7.2. Helmholtz decomposition on rectangles. In the case that Ω0 is a rec-
tangle, i.e., Ω0 = [0, L1] × · · · × [0, Ld], we can give a more explicit representation of
the Helmholtz projection by using Fourier series.

Assume for simplicity of notation that all sides of Ω0 have length π, i.e., Lj = π.
Then one can write any w ∈ H as a series,

w(x) =

d∑
j=1

∑
�1,...,�d≥0

ŵj,�1,...,�d cos(11x1) · · · sin(1jxj) · · · cos(1dxd)ej .(42)

Observe that due to the presence of the factor sin 1jxj the term with 1 = 0, i.e., with
11 = · · · = 1d = 0, is absent from the sum. We will not try to incorporate this fact
into our notation, but it will allow us to divide by |1| in what follows.

The L2(Ω0;R
d) = H-norm of such a vector field is

‖w‖2
H =

(π

2

)d d∑
j=1

∑
�1,...,�d≥0

2C� |ŵj,�1,...,�d |2 ,(43)

where C� denotes the number of components of 1 = (11, . . . , 1d) which vanish.
Any L2 vector field given by (42) extends to a vector field on all of R

d which is
2π periodic in each of the variables x1, . . . , xd. Moreover, any w given by (42) has
the symmetry

w(Rjx) = Rj

(
w(x)

)
for j = 1, . . . , d,(44)

in which Rj is the reflection Rj(x1, . . . , xd) = (x1, . . . , xj−1,−xj , xj+1, . . . , xd). See
Figure 2. Conversely, any vector field w ∈ L2

(
[−π, π]d;Rd

)
which has the symmetries

(44) can be written as a Fourier series of the form (42).
The Helmholtz projection of w is then given by

Pw(x) =

d∑
j=1

∑
�1,...,�d≥0

(̂Pw)j,�1,...,�d cos(11x1) · · · sin(1jxj) · · · cos(1dxd)ej ,(45)

with

(̂Pw)j,� =

d∑
k=1

(
δjk − 1j1k

|1|2
)

ŵj,�

and where |1|2 = 121 + · · ·+ 12d. The corresponding “pressure” is given by

pw =
∑
|�|>0

(̂pw)� cos(11x1) · · · cos(1dxd),
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w(x)

x

Ω0

Fig. 2. The symmetry (44).

with

(̂pw)� =
11ŵ1,� + · · ·+ 1dŵd,�

|1|2 .

Let C1,α(Td;Rd) be the space of all C1,α vector fields on R
d which are 2π periodic in

all variables x1, . . . , xd, and let C1,α be the closed subspace of C1,α(Td;Rd) consisting
of all vector fields which have the symmetry (44).

Lemma 7.3. The Helmholtz projection is a bounded operator on C1,α(Td;Rd)
which leaves the subspace C1,α invariant.

Proof. We can write P on C1,α(Td;Rd) as P = I−grad ◦(∆)−1◦div, where for any
f with

∫
[−π,π]d

fdx = 0 we define u = (∆)−1f to be the unique solution of ∆u = f

with
∫
[−π,π]d

udx = 0. Classical Schauder estimates imply that (∆)−1 is bounded

from C0,α to C2,α. This implies that P = I − grad ◦(∆)−1 ◦ div is bounded on C1,α

vector fields.

The Helmholtz decomposition is easily seen to commute with the symmetries (44),
so that C1,α is an invariant subspace.

8. The smoothing operator A. In this section, we exhibit smoothing opera-
tors A which satisfy all assumptions made so far.

8.1. Smoothing vector fields on C1,α domains. Many different smoothing
operators can be constructed. The following is one choice.
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Lemma 8.1. Let Ω0 be a domain with C1,α boundary, and let Aε be the operator

Aε = eε∆N , i.e., Aεw =
(
eε∆Nw1, . . . , e

ε∆Nwd

)
,

where ∆N is the Neumann–Laplacian on Ω0.
Then Aε is a bounded, injective, self-adjoint operator on H, with ‖Aε‖L(H) ≤ 1

for any ε > 0.
The operator Aε is also bounded from C1,α to C1,α, with ‖Aε‖L(C1,α) ≤ C for

some C that does not depend on ε > 0.
Proof. The operator Aε acts on each individual component wi of a vector field w

in the same way. The fact that eε∆N is a contraction of L2 and uniformly bounded
on C1,α respectively follows from linear parabolic theory.

The Neumann Laplacian is well known to be a self-adjoint operator on L2(Ω0),
so that Aε is self-adjoint. Self-adjointness of ∆N implies via the spectral theorem for
self-adjoint operators that eε∆N is injective for all ε > 0.

Lemma 8.2. Let A be as above.
The operator PA2P is bounded from H to C1,α(Ω;Rd) for any 0 < α < 1.
The operator PA2P has an integral kernel K ∈ C1,α(Ω̄0 × Ω̄0).
Proof. Boundedness of A : H → C1,α follows from the smoothing property of the

heat equation. (But the operator norm ‖A‖L(H,C1,α) blows up as ε ↘ 0.) Since P is
bounded on both H and C1,α it follows that PA2P is bounded from H to C1,α.

To study the kernel of the operator PA2P we write PA2P as T ◦ T ∗, where
T = PA, and show that T has an integral kernel.

Let Γyε(x) be the heat kernel for ∆N ; i.e., for any function φ ∈ L1(Ω0) one has

eε∆N f(x) =

∫
Ω0

φ(y)Γyε(x) dy.(46)

Then (x, y) �→ Γy(x) is a C1,α function.
We expand the vector-valued function f into its components, f(x) = f1(x)e1 +

· · ·+fd(x)ed, f1, . . . , fd being scalar L
2 functions. From (46) we then get the following

representation for PAf :

PAf =

d∑
j=1

∫
Ω0

fj(y)P(Γyε ⊗ ej) dy.

Let Ny
j (x) be the function Ny

j = P(Γyε ⊗ ej). We get

PAf(x) =

∫
Ω0

d∑
j=1

Ny
j (x)fj(y) dy,

which means that PA is an integral operator with matrix-valued kernel

N(x, y) =
[
Ny

1 (x), . . . , N
y
d (x)

]
;

i.e., the jth column of the matrix N(x, y) is Ny
j (x).

For each y ∈ Ω0 we have Γyε ∈ C1,α(Ω̄0), so by Lemma 7.2 we get PΓyε ∈
C1,α(Ω̄0;R

d). Moreover, Γyε ∈ C1,α(Ω̄0;R
d) depends C1,α smoothly on y, so we see

that the kernel N is a C1,α function on Ω̄0 × Ω̄0.
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The operator PA2P = (PA)(PA)∗ must now also be an integral operator, and
its kernel must be

K(x, ξ) =

∫
Ω0

N(x, y)N(ξ, y)T dy.

This is clearly again a C1,α function on Ω̄0 × Ω̄0.
The operators Aε do not preserve the boundary condition n · w = 0, so they will

not commute with the Helmholtz projection P.
8.2. Smoothing operator on a rectangle. In the case that Ω0 is a rectangle,

i.e., Ω0 = [0, π]d, we can construct a different smoothing operator by using the Fourier
series (42).

We define the smoothing operator Aε by

Aεw =
(
eε∆1w1, . . . , e

ε∆dwd

)
,

in which ∆j is the Laplacian with Neumann boundary conditions on the sides xj = 0
and xj = π, and Dirichlet boundary conditions on all other sides of the rectangle Ω0.

An equivalent description of Aε goes like this: to compute Aεw for some vector
field w on Ω0 = [0, π]d extend w to a vector field w̃ on all of R

d by imposing the
symmetries (44) and by requiring the extension to be 2π periodic in all variables. We
then set Aε = eε∆w̃, in which eε∆ is the standard heat semigroup on R

d; i.e., we have

Aεw(x) =
(
4πε

)−d/2
∫

Rd

e−|x−ξ|2/4εw̃(ξ) dξ.(47)

If w is given by the Fourier series (42), then Aεw is given by

Aεw(x) =

d∑
j=1

∑
�1,...,�d≥0

(̂Aεw)j,�1,...,�d cos(11x1) · · · sin(1jxj) · · · cos(1dxd)ej ,

with

(̂Aεw)j,� = e−ε|�|2ŵj,�.(48)

Lemma 8.3. The smoothing operators Aε are uniformly bounded on H and C1,α.
They are self-adjoint and injective, and they commute with the Helmholtz projection.

Proof. The statements concerning the behavior of the operators on the Hilbert
space H follow directly from the series expansion (42), the Fourier multiplier descrip-
tions (45) and (47) of P and Aε, respectively, and the Plancherel identity (43).

The C1,α bounds follow from the representation (47).
Lemma 8.4. Let A = Aε be as above.
The operator PA2P is bounded from H to C1,α(Ω;Rd) for any 0 < α < 1.
The operator PA2P has an integral kernel K ∈ C1,α(Ω̄0 × Ω̄0).
The kernel K(x, ξ) satisfies

K(Rjx, ξ) = RjK(x, ξ), j = 1, . . . , d.(49)

Proof. This lemma is analogous to Lemma 8.2, and its proof proceeds along the
same lines.
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Boundedness from H to C1,α again follows from the smoothing property of the
heat equation, i.e., of eε∆. The integral kernel is constructed in the same way, starting
from the explicit representation (47) of eε∆w.

For any vector field f ∈ H the smoothed-out projection w = PA2Pf belongs
to C1,α. We therefore may conclude from w(Rjx) ≡ Rjw(x) that∫

Ω0

K(Rjx, ξ)f(ξ) dξ = Rj

∫
Ω0

K(x, ξ)f(ξ) dξ

for all x ∈ R
d, j = 1, . . . ,d, and all f ∈ H. This implies (49).

9. Existence and well-posedness for the regularized flow. In this section,
we construct classical solutions γt of the initial value problem (24) by writing them
as γt = (st × id)#(γ

0) and solving the initial value problem (30)

∂st

∂t
= −

∫
Ω0×Ω1

K(st(x), st(ξ))

µ0(st(x))µ0(st(ξ))
· Φx(s

t(ξ), η) dγ0(ξ, η),(50)

s0(x) = x (x ∈ Ω)(51)




for st.
Theorem 9.1. Let the cost function Φ be C1. Assume also that the smoothing

operator A is such that the kernel K is C1,α. Then for any initial measure γ0 ∈ X
the initial value problem (50) has a solution {st ∈ C1,α(Ω̄0; Ω̄0) : 0 ≤ t < ∞}.

If the cost function Φ is C2, then the solution {st : t ≥ 0} is unique.
We begin the proof by observing that (50) is of the form

∂st

∂t
=

∫
Ω0×Ω1

F (st(x), st(ξ); ξ, η) dγ0(ξ, η),(52)

where the map F : Ω0 × Ω0 × Ω0 × Ω1 → R
d is given by

F (s, σ; ξ, η) =
K(s, σ) · Φx(σ, η)

µ0(s)µ0(σ)
.(53)

If Ω0 = [0, π]d is a rectangle, then K(s, σ) is defined for all s ∈ R
d. We agree to

extend µ0(x) to be 2π periodic and even in each variable so that F (s, σ; ξ, η) is also
defined for s ∈ R

d.
Lemma 9.2.
(A) The map (s, σ; ξ, η) �→ F (s, σ; ξ, η) is continuous.
(B) F (s, σ; ξ, η) is also C1 in s ∈ Ω0, and the partial derivative ∂F

∂s is uniformly
bounded: ∣∣∣∣∂F∂s (s, σ; ξ, η)

∣∣∣∣ ≤ C,(54)

with C < ∞ independent of s, σ, ξ, and η.
(C1) If ∂Ω0 is C1,α smooth, and if s ∈ ∂Ω0, then s · F (s, σ, ξ, η) = 0 for all

σ, ξ ∈ Ω0 and η ∈ Ω1.
(C2) If Ω0 = [0, π]d, then F (s, σ; ξ, η) is 2π periodic in each component of s =

(s1, . . . , sd), and s �→ F (s, σ; ξ, η) satisfies the symmetries (44), i.e.,

F (Rjs, σ; ξ, η) = RjF (s, σ; ξ, η).
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Proof. (A) and (B) are immediate from the representation (53), the known con-
tinuity and smoothness properties of the kernel K, and the cost function Φ.

(C1). The kernel K(x, ξ) satisfies x · K(x, ξ) = 0, since for any vector field
w ∈ L2(Ω;Rd) the vector field PA2Pw(x) =

∫
Ω0

K(x, ξ)w(ξ)dξ is everywhere tangent
to ∂Ω. This implies

x · PA2Pw(x) =

∫
Ω0

x ·K(x, ξ) · w(ξ)dξ = 0

for arbitrary w, which can happen only if x · K(x, ξ) ≡ 0. Equation (53) then im-
plies (C1).

The kernel K(s, σ) and the density µ0(s) are periodic and have the appropriate
symmetries, so (C2) follows immediately from (53).

9.1. Construction of a solution to (50). We regard the initial value problem
(50) as a fixed point problem for the map F : σ �→ s, where s = F(σ) is the solution
of the ODE

∂st(x)

∂t
=

∫
Ω0

F (st(x), σt(ξ), ξ, η) dγ0(ξ, η),

with initial data s0 = id, i.e., s0(x) ≡ x.
To set up a fixed point argument (and, in particular, to use the Brouwer–Leray–

Schauder fixed point theorem) we must overcome a technical difficulty, namely, the
space of maps {st : Ω0 → Ω0, 0 ≤ t ≤ T} is not a linear space, since the target Ω0 is
not a vector space. To deal with this we extend the domain of the definition of the
nonlinear map F (s, σ; ξ, η) to include all (s, σ, ξ, η) ∈ R

d × R
d × Ω0 × Ω1; in other

words, we lift the restriction s, σ ∈ Ω0. Then we can regard maps st : Ω0 → Ω0 as
maps st : Ω0 → R

d, and the space of such maps (defined below as CT ) is a vector
space.

We only have to go through this extension process in the case where Ω0 is a
smoothly bounded domain. When Ω0 is a rectangle the function F (s, σ; ξ, η) is already
defined for all s, σ ∈ R

d.

9.1.1. Extending F . We choose a defining function 4 ∈ C1,α(Rd) for Ω0. This
means that Ω0 = {x ∈ R

d : 4(x) > 0} and ∇4 �= 0 on ∂Ω0. We can choose 4 so that
∇4(x) �= 0 if −1 ≤ 4(x) ≤ 1, while 4(x) = −2 outside some compact set K ⊃ Ω̄0.

Let U = {x ∈ R
d : 4(x) ≥ −1}, and choose a retraction π : U → Ω̄0. One possible

choice is π(x0) = x0 for x0 ∈ Ω̄0, and

π(x0) =



the first point in Ω̄0 on the orbit x(t) of
the gradient flow ẋ = ∇4(x) which starts
at x(0) = x0 ∈ U \ Ω̄0




for all x0 ∈ U \ Ω̄0. The retraction π is Lipschitz continuous on U and even C1 on
U \ ∂Ω0.

The extension F∗ of F will now be defined in several stages. First we introduce a
map F1 : U × U × Ω0 × Ω1 → R

d given by

F1(s, σ, ξ, η) = F (π(s), π(σ), ξ, η).

Next, let χ : R → R be a Lipschitz cutoff function, e.g., χ(t) = 1 for t ≥ 0, 1 + t for
−1 ≤ t ≤ 0, and 0 for t ≥ −1. Put

F2(s, σ, ξ, η) = χ(4(s))χ(4(σ))F1(s, σ, ξ, η)
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when (s, σ) ∈ U ×U , and F2(s, σ, ξ, η) = 0 otherwise. Then F2 : R
d×R

d×Ω0×Ω1 →
R
d is an extension of F which is uniformly Lipschitz continuous in (s, σ) ∈ R

d × R
d

and continuous in ξ ∈ Ω0, η ∈ Ω1.
Finally, we define F∗ : R

d × R
d × Ω0 × Ω1 → R

d by setting

F∗(s, σ, ξ, η) =




F2 for s ∈ Ω̄0,

F2 − ∇4(s) · F2

|∇4(s)|2 ∇4(s) for s ∈ U \ Ω̄0,

0 for s ∈ R
d \ U,

(55)

where F2 = F2(s, σ, ξ, η).
Lemma 9.3. The extension F∗ : R

d × R
d × Ω0 × Ω1 → R

d of F is continuous in
(s, σ) and uniformly Lipschitz in s ∈ R

d; i.e., for all σ ∈ R
d and ξ ∈ Ω0, η ∈ Ω1 one

has

|F∗(s, σ, ξ, η)− F∗(s′, σ, ξ, η)| ≤ M |s− s′|(56)

for some M < ∞. Furthermore, F∗ is uniformly bounded,

|F∗(s, σ, ξ, η)| ≤ M ′(57)

for some constant M ′ < ∞ and for all s, σ ∈ R
d and ξ ∈ Ω0, η ∈ Ω1.

If the cost function Φ is C2, then F∗(s, σ, ξ, η) is uniformly Lipschitz in (s, σ) ∈
R
d; i.e., for some finite M ′′ one has

|F∗(s, σ, ξ, η)− F∗(s′, σ′, ξ, η)| ≤ M ′′{|s− s′|+ |σ − σ′|}(58)

for all s, s′, σ, σ′ ∈ R
d and ξ ∈ Ω0, η ∈ Ω1.

Finally, F∗ satisfies

∇4(s) · F∗(s, σ, ξ, η) = 0 when 4(s) ≤ 0.(59)

9.1.2. The fixed point argument. We prove existence and uniqueness of so-
lutions for the case where ∂Ω0 is C1,α smooth. The same arguments with minor
modifications apply to the case Ω0 = [0, π]d.

With the extended F in hand we can set up the fixed point problem. Let CT be
the Banach space

CT = C0([0, T ]× Ω0;R
d).

Lemma 9.4 (definition of F). Let σ ∈ CT be given. Define s = F(σ) to be the
solution of

∂st

∂t
=

∫
Ω0

F∗(st(x), σt(ξ); ξ, η) dγ0(ξ, η), s0(x) = x.(60)

Then ∣∣∣∣∂st∂t

∣∣∣∣ ≤ M ′|Ω0|(61)

and

|st(x)− st(x′)| ≤ eM |Ω0|t|x− x′|.(62)
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Proof. Equation (60) is an ODE for st(x) of the form ∂ts
t = vt(st), where

vt(s) =

∫
Ω0

F∗(s, σt(ξ); ξ, η) dγ0(ξ, η).

The estimates (56) and (57) for F∗ imply that |vt(s)| ≤ M ′|Ω0| and |vt(s)− vt(s′)| ≤
M |Ω0||s− s′|. Standard theorems for ODEs then imply (61), (62).

Lemma 9.5. Let st, 0 ≤ t ≤ T , be the solution of (60) for some σ ∈ CT . Then
the st are C1 diffeomorphisms of Ω̄0.

Proof. The st are the flow of a vector field vt, so we only have to show that
st(Ω̄0) = Ω̄0. But our construction of F∗ is such that vt(s) · ∇4(s) = 0 whenever
4(s) ≤ 0. Indeed, one has

vt(s) · ∇4(s) =

∫
Ω0

∇4(s) · F∗(s, σt(ξ); ξ, η) dγ0(ξ, η) = 0

by (59). Therefore 4 is a conserved quantity outside of Ω0, and in particular ∂Ω0 is
invariant under the flow of vt. So st(Ω̄0) = Ω̄0.

Since the vector field vt is C1 on Ω̄ the flow st is also C1.
Existence. The estimates (61) and (62) imply that F maps all of CT into a compact

subset of CT . Hence the Brouwer–Leray–Schauder fixed point theorem applies, and we
can conclude the existence of a fixed point sT ∈ CT for F . The initial value problem
for the rearrangement map st therefore has a solution on any finite time interval
0 ≤ t ≤ T . Since we have not established uniqueness of the solution, the solutions
sT might actually depend on T . However, they all satisfy the a priori estimates (61),
(62) so, as T ↗ ∞, one can extract a subsequence which converges uniformly on any
finite time interval. The limit of this subsequence is then a global solution {st}t≥0.

Uniqueness. If the cost function Φ is C2, then there is only one solution. To
see this let s, s̄ ∈ CT be any two solutions and consider their difference wt(x) =
st(x)− s̄t(x).

Both s and s̄ are solutions to (52), so subtracting the two equations we get

|∂twt(x)| ≤ M ′′|Ω0| sup
ξ∈Ω0

|wt(ξ)|,

where we have used that F∗(s, σ, ξ, η) is uniformly Lipschitz in (s, σ) ∈ R
d × R

d

(by (58)).
This implies that sup |wt| ≤ eM

′′|Ω0|t sup |w0|. Since w0 = s0 − s̄0 = 0 we find
that wt ≡ 0.

9.2. The regularized flow on X. If the cost function Φ is C2, then there is
another way of proving existence and uniqueness of solutions to (50). Namely, we
observe that (50) is an ODE on a Banach space. One can write (50) as

∂st

∂t
= V(s),

where V is given by

V(s)(x) =

∫∫
Ω0×Ω1

F∗(st(x), st(ξ); ξ, η) dγ0(ξ, η).

Here F∗ is the extension of F constructed in section 9.1.1.
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The properties of F∗ derived in Lemma 9.3 imply that V is a globally Lipschitz
vector field on the Banach space Z = C0(Ω̄0;R

d). It follows immediately that ∂ts
t =

V(st) generates a global flow on Z, since t �→ st(x) is a solution of the ODE

ds

dt
= vt(s),

where

vt(σ) =

∫∫
Ω0×Ω1

F∗(σ, st(ξ); ξ, η) dγ0(ξ, η).

Thus st = St ◦ s0, where St is the flow of the vector field vt.

9.3. ω-limit sets of the regularized flow. Let γ0 ∈ X be any initial measure,
and let {γt, t ≥ 0} be a solution of (24) starting at γ0. In dynamical systems one
defines the ω-limit set of the solution {γt} to be

ω({γt}) = {
λ ∈ X | ∃tk ↗ ∞ : γtk ⇀ λ

}
=
⋂
s≥0

{γt | t ≥ s}.

The second description shows that ω({γt}) is a closed (hence compact) and connected
subset of X.

Proposition 9.6. ω({γt}) consists of critical points for (24).
Proof. For given λ ∈ ω({γt}) we choose a sequence tk ↗ ∞ with γtk ⇀ λ and

consider the weak solutions λtk = γtk+t. By Lemma 6.4 we can find a subsequence
tkj for which the λtk weak∗ converge to a new weak solution λt†. The λt†, being weak
solutions, satisfy the energy identity from Lemma 5.1. Furthermore,

M(λt†) = lim
j→∞

M(λtkj ) = lim
j→∞

M(γtkj+t) = lim
t→∞M(γt),

where the latter limit must exist since M(γt) is a nonincreasing and bounded quantity.
The energy identity for λt† together with constancy of M(λt†) imply that the λt†

are critical points. In particular, λ0
† = limj→∞ γtkj = λ must be a critical point, as

claimed.

10. The unregularized flow. In the unregularized case, where one takes A =
IH, one can try to construct weak solutions of (35) by solving the equation for a
sequence of smoothing operators A which approximate the identity, and extract a
weak limit of the solutions of the regularized equations. In this section, we study the
limits of weak solutions which arise in this way. Although we do not show they are
weak solutions, these limits still have many of the properties of weak solutions.

10.1. Choice of Aε. We let Aε be given by the heat equation with Neumann
boundary conditions, Aε = eε∆N . It is classical that the heat equation defines a
strongly continuous semigroup on L2(Ω0;R

d), so that the Aε converge strongly to the
identity operator on H as ε ↘ 0.

If Ω0 is a rectangle, then we choose Aε as in (47), (48).

10.2. Construction of a generalized solution. Let γ0 ∈ X be a given initial
measure, and denote by {γtε, t ≥ 0} the global solutions to (35) with A = Aε which
exist by Theorem 9.1.

Lemma 6.1 provides us with a convergent sequence γtεk : write γt† for the weak
limit. We declare this family of measures to be a generalized solution of (24).
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By Proposition 6.2 any generalized solution we construct in this way satisfies the
energy inequality (37). Thus a generalized solution decreases the cost functional at
least as fast as a smooth solution would, i.e.,

d

dt
M(γt†) ≤ −

∥∥∥PEγt†(Φx | x)
∥∥∥2

H
.

10.3. ω-limit sets of generalized solutions. We define

ω({γt†, t ≥ 0}) =
{
λ ∈ X | ∃tj ↗ ∞ : γ

tj
† ⇀ λ

}
=
⋂
s≥0

{γt† | t ≥ s}.

Proposition 10.1. The ω-limit set of a generalized solution is a closed and
connected subset of X which consists of critical points for the Monge–Kantorovich
functional.

Proof. Connectedness and closedness follow through entirely conventional argu-
ments from the second description of ω({γt†}) given above.

Let ν ∈ ω({γt†}) be given. Choose a sequence of times tk ↗ ∞ from which

γtk† ⇀ ν, and consider the families of measures νtk = γtk+t
† , t ∈ R. The arguments

in the proof of Proposition 6.2 imply that we can select a subsequence νtkj which

weak∗ converges for all t. The limit νt† of this subsequence again satisfies the energy

inequality. Moreover, the cost functional is constant on νt†, since

M(νt†) = lim
k→∞

M(γtk+t
† ) = lim

t→∞M(γt†).

The last limit must exist because M(γt†) is a nonincreasing bounded quantity.

The energy inequality for νt† states that∫ t1

t0

‖PEνt†(Φx | x)‖2
H dt ≤ M(νt0† )−M(νt1† ) = 0

so that PEνt†(Φx | x) = 0 for almost all t. Weak∗ continuity of νt with respect to t

strengthens this to PEνt†(Φx | x) = 0 for all t.

Recalling that ν = ν0
† , we conclude that PEν(Φx | x) = 0; i.e., ν ∈ ω({γt†}) is a

critical point.

11. The unregularized flow—smooth solutions. If we omit the smoothing
operator, i.e., if we set A = IH, then (30) for the rearrangement map st,

∂st(x)

∂t
= −

∫
Ω0×Ω1

K(st(x), st(ξ))

µ0(st(x))µ0(st(ξ))
· Φx(s

t(ξ), η) dγ0(ξ, η),

is highly singular, since the kernel K now is the kernel of the Helmholtz projection.
The fixed point arguments of section 9 no longer work. Nonetheless, it turns out that
a short time existence theorem for solutions of this equation does hold if one assumes
the initial data are sufficiently regular. In this section we prove such a theorem.

We will assume in this section that the measures γt are all defined by measure
preserving maps ut : Ω0 → Ω1, i.e., γ

t = (id× ut)#(µ0).
Our strategy will be to consider the regularized equation in which A = Aε is given

by a heat operator, as in section 10.1. For each positive ε we have already shown that
a global solution exists. The heart of this section is an estimate for how fast the C1,α
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norm of the map utε grows with time. The estimate is independent of the mollifying
parameter ε if the initial data is smooth. Letting ε ↘ 0 then gives an estimate and
short time existence result in C1,α for the unregularized equation.

Lemma 11.1. Let st : Ω0 → Ω0 be a solution of the regularized equation (30) with
s0 = id. If the initial map u0 : Ω0 → Ω1 is C1,α, then st remains C1,α for a short
time T∗ > 0, and one has ‖dst‖0,α ≤ C∗ for 0 ≤ t ≤ T∗, where C∗ and T∗ depend on
the initial data but not on ε > 0.

11.1. Notation for Hölder norms. For any map f : Ω0 → R
N , we write

[f ]α = sup
x,x′∈Ω0

|f(x)− f(x′)|
|x− x′|α ,

‖f‖0,α = ‖f‖∞ + [f ]α,

‖f‖1,α = ‖f‖∞ + ‖df‖∞ + [f ]α.

The Hölder seminorm [·]α satisfies the “product-rule estimate,”

[f · g]α ≤ ‖f‖∞[g]α + ‖g‖∞[f ]α,

which one easily derives from f(x)g(x)−f(y)g(y) = f(x)g(x)−f(x)g(y)+f(x)g(y)−
f(y)g(y). One then also finds

‖f · g‖0,α ≤ ‖f‖0,α ‖g‖0,α.

11.2. Estimates of inverses and compositions. The following proposition
shows that we will never have to bother with the case of small ‖s‖∞.

Proposition 11.2. If s : Ω̄0 → Ω̄0 is a C1 diffeomorphism, then ‖ds‖∞ ≥ 1.
Consequently we also have ‖s‖1,α ≥ ‖ds‖∞ ≥ 1.
Proof. Since s(∂Ω0) = ∂Ω0, s cannot be a contraction on all of ∂Ω0, so somewhere

on ∂Ω0 one has |ds| ≥ 1.
Let s : Ω0 → Ω0 be a C1 diffeomorphism which preserves µ0, i.e., for which

µ0(s(x)) det ds(x) = µ0(x)(63)

holds.
Lemma 11.3. Assume the diffeomorphism s : Ω0 → Ω0 satisfies (63). If

K = max
x,x′∈Ω0

µ0(x)

µ0(x′)
,

then

sup
Ω0

|(ds(x))−1| ≤ Cd

(
K sup

Ω0

|ds(x)|
)d−1

for some constant Cd which only depends on the dimension d. In particular, if s is
Lipschitz continuous with Lipschitz constant L, then s−1 is Lipschitz continuous with
constant at most Cd(KL)d−1.

Proof. We represent ds(x) as a d× d matrix. Then

(ds(x))−1 =
1

det ds(x)
(ds(x))# =

µ0(x)

µ1(s(x))
(ds(x))#,(64)
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where dst(x)# is the cofactor matrix. This matrix is a polynomial of degree d− 1 in
the entries of the matrix dst, hence the lemma.

Lemma 11.4. Assume the diffeomorphism s : Ω0 → Ω0 satisfies (63). If s ∈ C1,α,
then s−1 ∈ C1,α, and

‖s−1‖1,α ≤ C‖s‖(d−1)(2+α)+1
1,α ,(65)

where the constant C only depends on µ0 and the dimension d.
Proof. We will henceforth write ds(x) = dsx if it seems to improve the notation.
We get an estimate for the supremum norm of d(s−1) from the inverse function

theorem, which says d(s−1) = (ds)−1 ◦ s−1, so that ‖d(s−1)‖∞ = ‖(ds)−1‖∞ ≤
C‖ds‖d−1

∞ .
To estimate the Hölder seminorm [ds−1]α we compute for x, y ∈ Ω0

|d(s−1)(x)− d(s−1)(y)| =
∣∣∣(ds)−1

s−1(x) − (ds)−1
s−1(y)

∣∣∣
=
∣∣∣(ds)−1

s−1(y)

{
dss−1(x) − dss−1(y)

}
d(s−1)s−1(x)

∣∣∣
≤ ‖(ds)−1‖2

∞
∥∥dss−1(x) − dss−1(y)

∥∥
≤ ‖(ds)−1‖2

∞[ds]α
∣∣s−1(x)− s−1(y)

∣∣α
≤ ‖(ds)−1‖2+α

∞ [ds]α|x− y|α
≤ C‖ds‖(d−1)(2+α)

∞ [ds]α|x− y|α.
Hence we get

[d(s−1)]α ≤ C‖ds‖(d−1)(2+α)
∞ [ds]α ≤ C‖s‖(d−1)(2+α)+1

1,α .

To estimate the full C1,α norm of s−1 we add the lower order terms,

‖s−1‖1,α = ‖s−1‖∞ + ‖ds−1‖∞ + [d(s−1)]α

≤ C + C‖ds‖d−1
∞ + C‖s‖(d−1)(2+α)+1

1,α

≤ C + C‖s‖(d−1)(2+α)+1
1,α .

Finally we use ‖s‖1,α ≥ 1 to get (65).
We will occasionally use the following crude estimate for the C1,α norm of the

composition of two maps.
Lemma 11.5. For two C1,α maps f, g one has

[f ◦ g]α ≤ ‖dg‖∞ · [f ]α,
‖f ◦ g‖0,α ≤ (

1 + ‖dg‖α∞
) ‖f‖0,α,

‖f ◦ g‖1,α ≤ 3
(
1 + ‖g‖1+α

1,α

)‖f‖1,α.

Proof. The first inequality follows directly from

|f(g(x))− f(g(y))| ≤ [f ]α|g(x)− g(y)|α ≤ [f ]α‖dg‖α∞ |x− y|α.
The second inequality follows from

‖f ◦ g‖0,α = ‖f ◦ g‖∞ + [f ◦ g]α

≤ ‖f‖∞ + ‖dg‖α∞ · [f ]α
≤ ‖f‖0,α + ‖dg‖α∞‖f‖0,α.
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To prove the third inequality, we compute

‖f ◦ g‖1,α = ‖f ◦ g‖∞ + ‖(df ◦ g) · dg‖0,α

≤ ‖f‖∞ + ‖df ◦ g‖0,α‖dg‖0,α

≤ ‖f‖∞ +
(
1 + ‖dg‖α∞

)‖df‖0,α‖dg‖0,α

≤ (
1 + ‖dg‖0,α + ‖dg‖1+α

0,α

)‖f‖1,α

≤ 3
(
1 + ‖dg‖1+α

0,α

)‖f‖1,α

since 1 + x+ x1+α ≤ 3(1 + x1+α) for all x ≥ 0.

11.3. Proof of Lemma 11.1. We summarize the relations that define the
maps ut.

First, ut and the initial map u0 are related by

ut = u0 ◦ (st)−1.(66)

The rearrangement maps st move with velocity field vt. This gives two equations, one
for st and one for its space derivative:

∂st

∂t
= vt ◦ st,

∂dst

∂t
= (dvt ◦ st) · dst.(67)

The velocity field vt is determined by the map ut via

vt(x) =
−1

µ0(x)
PA2

εPW t,(68)

while W t is given by W t = Eγt(Φx | x), i.e., by
W t(x) = Φx(x, u

t(x)).(69)

We begin our estimate of ‖∂tst‖1,α as follows:∥∥∥∥ ∂

∂t
st
∥∥∥∥

1,α

= ‖∂tst‖∞ +

∥∥∥∥ ∂

∂t
dst

∥∥∥∥
0,α

(70)

= ‖vt‖∞ + ‖(dvt ◦ st) · dst‖0,α

≤ ‖vt‖∞ + ‖dvt ◦ st‖0,α · ‖dst‖0,α

≤ ‖vt‖∞ + ‖dvt‖0,α

(
1 + ‖dst‖α∞

)‖dst‖0,α

≤ ‖vt‖∞ + 2‖dvt‖0,α‖dst‖1+α
0,α

≤ ‖vt‖∞ + 2‖vt‖1,α‖st‖1+α
1,α

≤ 3‖vt‖1,α‖st‖1+α
1,α ,

where we have used ‖dst‖∞ ≥ 1 again.
Next, we estimate the C1,α norm of the velocity field:

‖vt‖1,α =

∥∥∥∥ −1
µ0(x)

PA2P(Φx(x, u
t(x))

)∥∥∥∥
1,α

(71)

≤ C‖Φx(x, u
t(x))‖1,α

≤ 3C‖Φ‖2,α

(
1 + ‖ut‖1+α

1,α

)
≤ C

(
1 + ‖ut‖1+α

1,α

)
.
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Here we have used the facts that µ0 ∈ C1,α, that the smoothing operators A are
uniformly bounded from C1,α to C1,α, and that the Helmholtz decomposition is also
bounded on C1,α.

Finally we estimate ‖ut‖1,α in terms of ‖st‖1,α. We have

‖ut‖1,α = ‖u0 ◦ (st)−1‖1,α(72)

≤ 3
(
1 + ‖(st)−1‖1+α

1,α

) ‖u0‖1,α

≤ C ‖(st)−1‖1+α
1,α ‖u0‖1,α

≤ C ‖st‖(d−1)(2+α)(1+α)+1+α
1,α .

Combining (70), (71), and (72), we arrive at

d

dt
‖st‖1,α ≤ ‖∂tst‖1,α ≤ C

(‖st‖1,α

)κ
,(73)

where

κ = {(d− 1)(2 + α)(1 + α) + 1 + α}(1 + α) + 1 + α

=
(
(d− 1)α2 + 3(d− 1)α+ 2d

)
(1 + α).

Integrate this ODE, using the initial data ‖s0‖1,α = 1 which derives from s0 = id,
and you get

‖st‖1,α ≤ (
1− Ct

)− 1
κ−1 .

The constant C depends on the initial map u0 but not on the smoothing parameter
ε > 0, as claimed in Lemma 11.1.

12. Numerical methods and examples. In this section, we describe some of
the techniques we use to numerically solve (9), as well as how we compute the initial
mapping. Briefly, we have employed an upwinding scheme when computing ∇ut and
the FFT when inverting the Laplacian on a rectangular grid. Standard centered
differences were used for the other spatial derivatives. In practice, we iterate until the
mean absolute curl is sufficiently small. More details of the numerical implementation
for solving (9) are given below. See also [11, 12].

12.1. Finding an initial mapping. In this section, we describe our procedure
for finding the initial mass preserving mapping u for (9). We work here on the unit
square. An initial mapping for general domains can also be obtained using a method
of Moser [6].

So we work in R
2 and assume Ω0 = Ω1 = [0, 1]2, the generalization to higher

dimensions being straightforward. The idea of this construction is that we solve a
family of one-dimensional mass transport problems. In one dimension, the optimal
transport map can be found by simple quadrature. We first transport mass along
lines parallel to the x-axis, and then afterward transport mass along lines parallel to
the y-axis. Accordingly, we define a function a = a(x) by the equation

∫ a(x)

0

∫ 1

0

µ1(η, y) dy dη =

∫ x

0

∫ 1

0

µ0(η, y) dy dη,(74)
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which gives by differentiation with respect to x

a′(x)
∫ 1

0

µ1(a(x), y) dy =

∫ 1

0

µ0(x, y) dy.(75)

We may now define a function b = b(x, y) by the equation

a′(x)
∫ b(x,y)

0

µ1(a(x), ρ) dρ =

∫ y

0

µ0(x, ρ) dρ(76)

and set u(x, y) = (a(x), b(x, y)). Since ay = 0, |Du| = axby, and differentiating (76)
with respect to y we find

a′(x) by(x, y) µ1(a(x), b(x, y)) = µ0(x, y),

|Du| µ1 ◦ u = µ0,

which is the mass preserving property we need. In practice, a and b can be found
with simple numerical integration techniques.

12.2. Defining the warping map. Typically in elastic registration, one wants
to see an explicit warping which smoothly deforms one image into the other [11]. This
can easily be done using the solution of the Monge–Kantorovich problem. Thus, we
assume now that we have applied our gradient descent process as described above and
that it has converged to the optimal L2 Monge–Kantorovich mapping uMK .

Following the work of Benamou and Brenier [3] (see also [9]), we consider the
related problem

inf

∫ ∫ 1

0

µ(t, x)|v(t, x)|2 dt dx(77)

over all time varying densities µ and velocity fields v satisfying

∂µ

∂t
+ div(µv) = 0,(78)

µ(0, ·) = µ0, µ(1, ·) = µ1.(79)

It is shown in [3] that this infimum is attained for some µmin and vmin, and that
it is equal to the L2 Kantorovich–Wasserstein distance between µ0 and µ1. Recall that
this distance is defined by

d2(µ0, µ1)
2 := inf

u

∫
Ω0

|u(x)− x|2 dx,

the infimum taken over all diffeomorphisms which satisfy the Jacobian condition (1).
Further, the flow X = X(x, t) corresponding to the minimizing velocity field vmin via

X(x, 0) = x, Xt = vmin ◦X(80)

is given simply as
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Fig. 3. Density µ1 on Ω0.
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Fig. 4. Density µ1 on Ω1.

X(x, t) = x+ t (uMK(x)− x).(81)

Note that when t = 0, X is the identity map, and when t = 1, it is the solution uMK to
the Monge–Kantorovich problem. This analysis provides appropriate justification for
using (81) to define our continuous warping map X between the densities µ0 and µ1.

13. Implementation and examples. We illustrate our methods with the fol-
lowing examples. The first is the mapping of one synthetic density onto another.
Figure 3 shows a mass distribution µ0 on Ω0, with dark regions representing little
mass, lighter regions representing more. Similarly, Figure 4 indicates the density µ1

on Ω1. Figure 5 represents the initial mapping u, which was obtained by the method
described above. The shading in this figure represents the Jacobian of u. Figure 6
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Fig. 5. Initial mapping from Ω0 to Ω1.
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Fig. 6. Final Monge–Kantorovich mapping from Ω0 to Ω1.

shows the nearly optimal Monge–Kantorovich mapping obtained using the nonlocal
first order equation (9). One can see that the effect of removing the curl is to straighten
out the grid lines somewhat. On a Sun Ultra10, this process took just a few seconds.

In Figures 7 through 10 we show a brain deformation sequence obtained with
MRI. The first and last images were given, and the intermediate two were found
using our process. This type of elastic brain deformation occurs during surgery, after
the skull is opened. These two-dimensional slices were extracted from an original
three-dimensional data set (256 × 256 × 124) to which the registration algorithm
was applied. We should note that in contrast to other elastic approaches based on
fluid and continuum mechanics ideas (see [17], especially Chapters 1 and 18 for a
general discussion) in which the computations may take hours, in our case the three-
dimensional set was processed in about half an hour with very reasonable results.
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Fig. 7. Brain warping: t = 0.00.

Fig. 8. Brain warping: t = 0.33.

In general, the target domain Ω1 need not be rectangular when using the nonlocal
method. However, we note that if the periodic boundary conditions are used on the
displacement, as in section 7.1, then the Laplacian in (9) can be inverted using the
FFT alone, without the need to solve a subsequent matrix system. For the brain
warp, this reduced the processing time by about 1/3.

Acknowledgment. We would like to thank Robert McCann of the University
of Toronto for some very useful discussions about the Monge–Kantorovich problem.
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Fig. 9. Brain warping: t = 0.66.

Fig. 10. Brain warping: t = 1.00.
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Abstract. This paper considers the viscous approximations to conservation laws with nonconvex
flux function. It is shown that if the entropy solutions are piecewise smooth, then the rate of L1-
convergence is a fractional number in (0.5, 1]. This is in contrast to the corresponding result for
the convex conservation laws. Numerical experiments indicate that the theoretical prediction for the
convergence rate is optimal.
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1. Introduction. In this paper, we consider the initial value problem for non-
convex conservation laws

∂tu+ ∂xf(u) = 0, t > 0 , x ∈ R,(1.1)

which is subject to the initial condition prescribed at t = 0,

u(x, 0) = u0(x),(1.2)

where f ∈ C2. We shall investigate viscous approximations to the entropy solution of
(1.1):

∂tu
ε + ∂xf(u

ε) = ε∂xxu
ε(1.3)

subject to the initial data

uε(x, 0) = u0(x).(1.4)

In this work, we assume that f ′′(u) vanishes at a finite number of points. It is also
assumed that the entropy solution to (1.1) and (1.2) is piecewise smooth with finitely
many shock discontinuities. The existence and uniqueness of the solutions to (1.1) in
the class of piecewise smooth weak solutions were studied by Ballou [1].

When the flux f is convex, the solution structure for (1.1) and (1.2) has been
obtained; see, e.g., Lax [10] and Dafermos [2]. If f has inflection points, then the
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situation is more complicated. In this case, some analysis for the solution structure
and asymptotic behavior has been done; see, e.g., Dafermos [3], Liu [11], and Zumbrun
[32]. However, we are still far from having a complete understanding of this general
case, since the geometric structure of the solution, when f changes convexity, is much
more complicated due to the presence of contact discontinuities, and there is a large
variety of asymptotic states.

The asymptotic convergence of solutions to the viscous problem (1.3) and (1.4)
to the corresponding discontinuous solutions of the inviscid problem (1.1) and (1.2)
has been the main driving force for the mathematical theory of shock waves from
both theoretical and numerical points of view. Substantial progress has been made
in the past in this regard (see [29, 20] and the references therein), pioneered by Hopf,
Lax [10], Oleinik [18], and Krushkov [7], to name a few. For BV entropy solutions,
Kuznetsov [8] was the first to establish the half-order rate of L1-convergence for
viscosity approximation and monotone schemes. It was proved by Tang and Teng
[25] that this half-order rate of convergence is optimal in the BV solution class;
see also Sabac [19]. However, for convex conservation laws with piecewise smooth
solutions the L1-convergence rate can be improved to first-order; see, e.g., Teng and
Zhang [27] for the monotone scheme, Tang and Teng [24] for viscosity approximation,
and Teng [26] for the relaxation method. The basic method in obtaining the first-
order rate of convergence is the matching asymptotic method developed by Goodman
and Xin [5] and Liu and Xin [14]. One of the key ingredients in this method is the
nonlinear large asymptotic stability of viscous shock profiles. For systems of viscous
conservation laws, this stability theory has been extensively studied in the past decade.
Important progress has been made by Goodman [4], Matsumura and Nishihara [16],
Liu [12], and Szepessy and Xin [21]; see also some recent new approaches by Howard
and Zumbrun [6], Liu [13], and Kreiss and Kreiss [9]. In particular, convergence
with a rate to viscous shock profiles was obtained by Liu [13] by using a pointwise
estimate for the approximate Green’s function. Even in the case of nonconvex fluxes,
the nonlinear large time asymptotic stability has been established for some special
systems; see, e.g., [15] and [17]. The convergence of viscous solutions to piecewise
smooth solutions for general systems was established by Goodman and Xin [5]; see
also [31] for a recent improvement. For the convergence of viscous solutions in the
presence of physical boundaries, we refer to [30] and the references therein. We also
point out that there are some first-order pointwise convergence results for viscous
approximations to convex conservation laws; see, e.g., Tadmor and Tang [22, 23], who
used the energy method with some bootstrap extrapolation technique. It is proved
in [24] that, for convex conservation laws whose entropy solution consists of finitely
many discontinuities, the L1-error between the viscosity solution uε and its inviscid
limit u is bounded by O(ε| ln ε|). If neither central rarefaction waves nor spontaneous
shocks occur, the error bound is improved to O(ε); see also [28]. In this work, we
will show that for nonconvex conservation laws, the L1-error between the viscosity
solution and its inviscid limit is bounded by O(εα| ln ε|), where 1

2 < α ≤ 1, even in the
piecewise smooth solution class. The constant α is determined by the index numbers
of shock curves to be defined in the next section. Based on the form of the flux
function, the rate α can be any number between 1

2 and 1. This result suggests that
for the viscous approximations the L1-convergence rate of the nonconvex conservation
laws is substantially different from that of the convex ones.

We close the introduction by outlining the rest of the paper. In the next section,
we give some preliminaries, define an index number for a shock discontinuity, and list
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some properties of the index number. In section 3, we state our main convergence
theorem, whose proof occupies section 4 to section 8. Finally, in section 9 numerical
experiments are performed to verify the theoretical estimates.

2. Piecewise smooth solution. Throughout this paper, we assume that the
entropy solution of (1.1) and (1.2) is piecewise smooth, with finitely many shock
discontinuities. More precisely, we can divide the given time interval [0, T ] into finite
intervals {[tm−1, tm]}Mm=1 such that in each interval [tm−1, tm] the entropy solution
is a finite combination of the cases plotted in Figures 1 and 2 (demonstrated in the
case with three inflection points for f(u)). Thus, if we denote by S(t) the set of the
discontinuous curve of u(·, t) in the time interval [tm−1, tm], then it consists of finitely
many shocks:

S(t) := {(x, t) |x = Xk(t), 1 ≤ k ≤ K; tm−1 ≤ t ≤ tm},

where Xk(t) < Xk+1(t) for t ∈ (tm−1, tm). It is understood that u is smooth with
bounded limits u(Xk(t)± 0, t) (denote by u±

k (t)) and ux(Xk(t)± 0, t). For simplicity,
we will not consider the newly formed shock wave here, although this case was inves-
tigated extensively in [24]. As a consequence, we always have u+

k (t)− u−
k (t) 
= 0. For

ease of notation we omit the dependence of S(t), Xk(t), and K on m. Each of the
noncontact shocks Xk(t), plotted in Figure 1, satisfies the Rankine–Hugoniot and the
Lax conditions

X ′
k(t) = σ(u+

k (t), u
−
k (t)) :=

f(u+
k (t))− f(u−

k (t))

u+
k (t)− u−

k (t)
,(2.1)

a(u−
k (t)) > X ′

k(t) > a(u+
k (t)), where a(v) := f ′(v).(2.2)

Each of the contact shocks Xk(t), plotted in Figure 2, satisfies the Rankine–Hugoniot
and the contact conditions

X ′
k(t) = σ(u+

k (t), u
−
k (t)),(2.3)

a(u−
k (t)) > X ′

k(t) = a(u+
k (t)), and/or(2.4)

a(u−
k (t)) = X ′

k(t) > a(u+
k (t)).(2.5)

We now define index numbers β±
k for a shock curve x = Xk(t):

1. If X ′
k(t) > a(u+

k ), then the index number β+
k = 0.

2. If X ′
k(t) = a(u+

k ) and there exists a positive number β > 0 such that

|a(u+
k )− a(u)| ∼ |u+

k − u|β as u → u+
k ,(2.6)

then the index number β+
k = β. In (2.6), the notation “ ∼ ” means equiv-

alence. More precisely, g(u) ∼ h(u) as u → c means that there exists a
constant D > 0 such that D−1h ≤ g ≤ Dh as u → c.

3. Similarly, we can define β−
k for the shock curve x = Xk(t).

The following result gives a rule for calculating the index number.
Theorem 2.1. If f(u) ∈ Cr(R), σ(u+

k , u
−
k ) = a(u+

k ), the derivative of a(u) is
zero at u = u+

k up to (r − 1)th order but a(r)(u+
k ) 
= 0, then β+

k = r.
Proof. Applying Taylor’s theorem to a(u) gives

a(u)− a(u+
k ) =

1

r!
a(r)(u+

k )(u− u+
k )

r + o(|u− u+
k |r).
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Fig. 1. Illustration of noncontact shocks: Thin lines are characteristics, and thick ones are
noncontact shock curves. Here characteristics come into shocks from both sides.
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Fig. 2. Illustration of contact shocks: Thin lines are characteristics, and thick ones are contact
shock curves. Here characteristics are tangent to shocks at least in one side.

This means that |a(u)− a(u+
k )| ∼ |u−u+

k |r as u → u+
k . Therefore, it follows from the

definition (2.6) that β+
k = r.

The following result is an immediate consequence of the above theorem.
Corollary 2.1. If f ′′(u) has only a finite number of zero points, then the index

number can take only a finite number of values.
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Example 2.1. Let f(u) = u2m+1. Assume the entropy solution is of the form

u(x, t) =

{
u− for x < σ(u+, u−)t,
u+ for x ≥ σ(u+, u−)t,

(2.7)

where u− > 0 is a given number, and u+ < 0 is the solution of the equation
σ(u+, u−) = a(u+). In other words, u+ is determined by

2m∑
s=0

(u+)
2m−s(u−)s = (2m+ 1)(u+)

2m.

It is easy to show that a(u−) > σ(u+, u−) = a(u+), and hence β− = 0. Since
a′(u+) > 0, it follows from Theorem 2.1 that β+ = 1.

Example 2.2. If f(u) = (1− u)p(1 + u)q with p ≥ 1, q ≥ 1, and p+ q > 2 and an
entropy solution is given by

u(x, t) =

{ −1, x < 0,
+1, x ≥ 0,

(2.8)

then the curve x = X(t) = 0 is a contact shock with σ(1,−1) = a(1) = a(−1), and
the index numbers are β+ = p− 1 and β− = q − 1.

3. Main theorem. In this section, the main result of this paper presented; its
proof will be given in the next few sections.

Theorem 3.1. Let f ∈ C2 and assume that f ′′ may change its sign at most at
a finite number of points. Let u be the piecewise smooth entropy solution of (1.1)–
(1.2) with finitely many shock discontinuities, and let uε be the viscosity solution of
(1.3)–(1.4). Then the following error estimates hold for any 0 < t ≤ T :

‖uε(·, t)− u(·, t)‖L1(R) ≤
{

C(T )ε| ln ε| for β̄ < 1,

C(T )ε(1+1/β̄)/2| ln ε| for β̄ ≥ 1,
(3.1)

where β̄ = max0≤t≤T β(t), β = max{β+, β−}, β± = maxk{β±
k }, and β±

k are index
numbers defined by (2.6).

The above theorem will be established by using a matched asymptotic analysis,
a stability lemma, and some detailed analysis for the traveling wave solution. The
stability lemma to be used is valid only for the scalar conservation laws, which makes
the present analysis much simpler than the system case. For the hyperbolic system,
Goodman and Xin [5] constructed high-order approximations in obtaining a local
first-order rate of convergence for the viscous approximations.

In the analysis of this work, we have to deal with the L1 estimate of piecewisely
continuous functions, some of which involve derivatives of some other piecewisely
continuous functions; see, e.g., (7.10). In order to avoid confusion, we define the
L1-norm for a piecewisely smooth function q by

‖q(·)‖pis(R) =

I+1∑
i=1

‖q(·)‖L1(Yi−1, Yi),

where Yi, with Y0 := −∞ and YI+1 := ∞, are all the possible discontinuous points of
q(x). The proof of the following stability lemma can be found in [24].
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Lemma 3.1. Let uε be the viscous solution of (1.3)–(1.4). Let vε ∈ C(R×[0, T ]) be
a piecewisely smooth function with jumps in the derivative in the set A = {(x, t) |x =
Yi(t), 1 ≤ i ≤ I}. If vε satisfies

∂tv
ε + ∂xf(v

ε) = ε∂xxv
ε + g(x, t)(3.2)

everywhere except on the set A, then for any 0 ≤ τ < t ≤ T

‖uε(·, t)− vε(·, t)‖L1(R) ≤ ‖uε(·, τ)− vε(·, τ)‖L1(R)

+ ε

I∑
i=1

∫ t

τ

∣∣∣ [∂xvε(x, t)] |x=Yi(t)

∣∣∣dt+ ∫ t

τ

‖g(·, t)‖pis(R)dt,

where the jumps are defined by

[w(x, t)]|x=Y (t) := w(Y (t) + 0, t)− w(Y (t)− 0, t).

Remark 3.1. It will be seen in sections 7 and 8 that g(x, t) in (3.2) may involve
some derivatives of a discontinuous function, so we use the norm ‖ • ‖pis(R) to define
its L1-norm.

It follows from Theorem 3.1 that both first-order and fractional-order rates of
convergence may occur for nonconvex conservation laws, which is in contrast with that
for the convex conservation laws. We will demonstrate this fact with the following
examples.

Example 3.1. Let f(u) = u2m+1. If the entropy solution u(x, t) is defined by
(2.7), then it follows from Example 2.1 and Theorem 3.1 that

‖uε(·, t)− u(·, t)‖L1(R) ≤ C(T )ε| ln ε|.(3.3)

Example 3.2. Let f(u) = (1−u)p(1+u)q, with s := max(p, q) ≥ 1. If the entropy
solution u(x, t) is defined by (2.8), then it follows from Example 2.2 and Theorem 3.1
that

‖uε(·, t)− u(·, t)‖L1(R) ≤
{

C(T )ε| ln ε| for 1 ≤ s ≤ 2,

C(T )ε
s

2(s−1) | ln ε| for s > 2.
(3.4)

4. Traveling wave solution of viscous equation. Our construction of an ap-
proximation solution is based on some detailed properties of viscous shock profiles for
(1.3), whose nonlinear asymptotic stability was studied by Matsumura and Nishihara
[15]. We will summarize some of their results in this section, which will be used in
our error analysis. Some results not obtained in [15] can be derived by using the
techniques developed in [24]. Let

uε(x, t) = V ε(x− σt;u+, u−),(4.1)

which is subject to the boundary conditions

V ε(ξ;u+, u−) → u± as ξ → ±∞.

If V ε(x−σt;u+, u−) satisfies (1.3), then it is called a traveling wave solution of (1.3).
Applying the solution from (4.1) to (1.3) gives

εV ε
ξξ = −σV ε

ξ + f(V ε)ξ.(4.2)
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Integrating the above equation over (−∞, ξ) gives

εV ε
ξ = −σ(V ε − u−) + f(V ε)− f(u−).(4.3)

It is easy to show by rescaling η = ξ/ε that V ε(ξ;u+, u−) = V 1(ξ/ε;u+, u−). In
the following we will use the notation V (η;u+, u−) to denote V 1(η;u+, u−). We also
denote by V (η; a, b)a and V (η; a, b)b the partial derivatives of V with respect to a and
b, respectively. Note that V ε(ξ;u+, u−) = V (ξ/ε;u+, u−), which satisfies

V ′ = −σ(V − u−) + f(V )− f(u−).(4.4)

It is well known that a necessary and sufficient condition for the existence of a traveling
wave solution is that the constants u± and σ satisfy the Rankine–Hugoniot condition

−σ(u+ − u−) + f(u+)− f(u−) = 0(4.5)

and the entropy condition

Φ(u;u+, u−) =: −σ(u− u±) + f(u)− f(u±)
{

< 0 if u+ < u < u−,
> 0 if u− < u < u+.

(4.6)

Lemma 4.1. Let u± and σ satisfy (4.5)–(4.6) and

|Φ(u;u+, u−)| ∼ |u− u±|1+β± as u → u±(4.7)

with β± ≥ 0. Then there exists V (η;u+, u−), unique up to a shift, which is determined
by the ordinary differential equation (4.4). Moreover, for k = 1, 2

1. if β± = 0, then f ′(u+) < σ < f ′(u−) and for η → ±∞
|V (η;u+, u−)−H(η;u+, u−)| ∼ exp(−c|η|),
|V (k)(η;u+, u−)| ∼ exp(−c|η|),(4.8)

|V (η;u+, u−)u± − 1| ∼ exp(−c|η|),
where H(η;u+, u−) is the Heaviside function satisfying H = u+ for η > 0
and H = u− for η < 0;

2. if β+ > 0, then σ = f ′(u+) and for η → +∞
|V (η;u+, u−)− u+| ∼ |η|−1/β+ ,

|V (k)(η;u+, u−)| ∼ |η|−1/β+−k,(4.9)

|V (η;u+, u−)u+ − 1| ∼ |η|−1/β+ ;

3. if β− > 0, then σ = f ′(u−) and for η → −∞
|V (η;u+, u−)− u−| ∼ |η|−1/β− ,

|V (k)(η;u+, u−)| ∼ |η|−1/β−−k,(4.10)

|V (η;u+, u−)u− − 1| ∼ |η|−1/β− .

Proof. For completeness, we briefly outline the proof for this lemma. It follows
from (4.4) that V (η;u+, u−) can be defined implicitly by

η =

∫ V

(u++u−)/2

Φ(v;u+, u−)−1dv.(4.11)
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The proof of this lemma is mainly based on the above definition and the assumption
(4.7). Here we show only some of the estimates in (4.9); other estimates can be
obtained similarly. The assumption (4.7) implies

D−1|v − u−|1+β− |v − u+|1+β+ ≤ |Φ(v;u+, u−)| ≤ D|v − u−|1+β− |v − u+|1+β+ ,

where D > 0 is a constant. It follows from the above inequalities and (4.11) that, for
η > 0,

D−12−(1+β−)

∣∣∣∣ 2

u− − u+

∣∣∣∣
(1+β−)

∣∣∣∣∣
∫ V

(u++u−)/2

(v − u+)
−1−β+dv

∣∣∣∣∣
≤ η ≤ D

∣∣∣∣ 2

u− − u+

∣∣∣∣
(1+β−)

∣∣∣∣∣
∫ V

(u++u−)/2

(v − u+)
−1−β+dv

∣∣∣∣∣ .
Solving the above inequalities for V gives

∣∣∣∣u+ − u−
2

∣∣∣∣
(
1 +D2(1+β−)

∣∣∣∣u+ − u−
2

∣∣∣∣
1+β++β−

β+η

)−1/β+

≤ |V − u+| ≤
∣∣∣∣u+ − u−

2

∣∣∣∣
(
1 +D−1

∣∣∣∣u+ − u−
2

∣∣∣∣
1+β++β−

β+η

)−1/β+

.

This proves the first estimate in (4.9). It is easy to show that as η → +∞

|V ′(η;u+, u−)| = |Φ(V ;u+, u−)| ∼ |V − u+|1+β+

∼ |η|−1/β+(1+β+) = |η|−1/β+−1.

Thus the second estimate in (4.9) follows.
Corollary 4.1. If (4.7) holds and β± > 0, then

|a(u)− a(u±)| ∼ |u− u±|β± as u → u±.(4.12)

Corollary 4.2. Under the same assumptions as in Lemma 4.1, the following
results hold:

1. If β± = 0, then ∀η ∈ R and k = 1, 2

|V (η;u+, u−)−H(η;u+, u−)| ≤ C exp(−c|η|),(4.13)

|V (k)(η;u+, u−)| ≤ C exp(−c|η|).

2. If β+ > 0, then ∀η ∈ R+ and k = 1, 2

|V (η;u+, u−)− u+| ≤ C(1 + |η|)−1/β+ ,(4.14)

|V (k)(η;u+, u−)| ≤ C(1 + |η|)−1/β+−k.

3. If β− > 0, then ∀η ∈ R− and k = 1, 2

|V (η;u+, u−)− u−| ≤ C(1 + |η|)−1/β− ,(4.15)

|V (k)(η;u+, u−)| ≤ C(1 + |η|)−1/β−−k.
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4. If β± > 0, then ∀η ∈ R∣∣V (η;u+, u−)u+ u̇+ + V (η;u+, u−)u− u̇− −H(η; u̇+, u̇−)
∣∣(4.16)

≤ C(1 + |η|)−1/β ,

where β = max{β−, β+} and ẇ = w′(t).
Remark 4.1. It is noted that the constant C in the above inequalities depends

on |u+ − u−|−1. Since it is assumed that u+
k (t) − u−

k (t) 
= 0 on all [tm−1, tm], C can
be regarded as a constant uniform with respect to both t ∈ [0, T ] and k = 1, . . . ,K.

5. Construction of an approximate solution. In this section, we construct
an approximate solution ûε to u and uε by using the method of matching asymptotic
expansions. As in [5] and [24], the main idea of constructing ûε is that ûε is a small
perturbation of u in the smooth region that posseses a viscous shock profile in places
of discontinuities. We begin with the simpler case of one single shock.

5.1. An approximation to u and uε with one shock. Assume that there
is only one shock curve x = X1(t) in the entropy solution u(x, t) in the time inter-
val [tm−1, tm]. We construct a continuous approximate solution ûε to u and uε in
[tm−1, tm],

ûε(x, t) = m

(
x−X1(t)

εγ

)
I(x, t) +

(
1−m

(
x−X1(t)

εγ

))
O(x, t),(5.1)

where

I(x, t) = u(x, t) + V

(
x−X1(t)

ε
;u+(t), u−(t)

)
(5.2)

− H

(
x−X1(t)

ε
;u+(t), u−(t)

)
,

O(x, t) = u(x, t)(5.3)

are called first-order inner and outer solutions, respectively, u±(t) = u(X1(t) ± 0, t),
H(ξ;u+, u−) is the Heaviside function, 0 < γ < 1 is a constant to be determined later,
m(ξ) ∈ C∞(R) satisfying 0 ≤ m(ξ) ≤ 1, and

m(ξ) =

{
1, |ξ| ≤ 1,
0, |ξ| ≥ 2.

(5.4)

The approximate solution can also be written in an equivalent form:

ûε(x, t) = u(x, t) +m

(
x−X1(t)

εγ

)(
V −H

)(x−X1(t)

ε
;u+(t), u−(t)

)
.(5.5)

The following lemma shows that ûε is a good approximation to u in the L1 space.
Lemma 5.1. Assume that there is only one shock curve x = X1(t) for the entropy

solution u(x, t) in the time interval [tm−1, tm]. Then, for any t ∈ [tm−1, tm],

‖ûε(·, t)− u(·, t)‖L1(R) ≤
{

Cε, β̄ < 1,

Cεγ+(1−γ)/β̄ |ln ε|, β̄ ≥ 1,
(5.6)

where β̄ = maxt β(t) and β = max{β+
1 , β−

1 }.
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Proof. It follows from (5.5) and (5.4) that

‖ûε(·, t)− u(·, t)‖L1(R)

=

∫ 0

−2εγ
+

∫ 2εγ

0

m
( x

εγ
;u+(t), u−(t)

) ∣∣∣(V −H)
(x
ε
;u+(t), u−(t)

)∣∣∣ dx
=: I− + I+.

Using the change of variables ξ = x/ε and the estimate (4.14), we have for 0 < β+
1 ≤ 1

that

I+ = ε

∫ 2ε−1+γ

0

m(ε1−γξ)|V (ξ;u+, u−)−H(ξ;u+, u−)|dξ(5.7)

= Cε

∫ 2ε−1+γ

0

(1 + |ξ|)−1/β+
1 dξ ≤

{
Cε, 0 < β+

1 < 1,
Cε| ln ε|, β+

1 = 1.

On the other hand, for β+
1 > 1 using the change of variables ξβ

+
1 = x/ε gives

I+ = β+
1 ε

∫ 2
1/β

+
1 ε

−(1−γ)/β+
1

0

m
(
ε1−γξβ

+
1

)∣∣∣(V −H)
(
ξβ

+
1 ;u+, u−

)∣∣∣ξβ+
1 −1dξ

≤ Cε1−(1−γ)(β+
1 −1)/β+

1

∫ 2
1/β

+
1 ε

−(1−γ)/β+
1

0

(1 + |ξ|β+
1 )−1/β+

1 dξ

≤ Cε1−(1−γ)(β+
1 −1)/β+

1 | ln ε|.(5.8)

It follows from the above results that

I+ ≤



Cε, 0 < β+
1 < 1,

Cε| ln ε|, β+
1 = 1,

Cε1−(1−γ)(β+
1 −1)/β+

1 | ln ε|, 1 < β+
1 .

(5.9)

Similarly, we can obtain the estimates for I−:

I− ≤



Cε, 0 < β−
1 < 1,

Cε| ln ε|, β−
1 = 1,

Cε1−(1−γ)(β−
1 −1)/β−

1 | ln ε|, 1 < β−
1 .

(5.10)

Combining the estimates for I+ and I− gives the desired result (5.6).
We can also estimate the difference between ûε and uε. The result will be given

below, but its proof will be deferred to section 7.
Lemma 5.2. Assume that there is only one shock curve x = X1(t) for the entropy

solution u(x, t) in the time interval [tm−1, tm]. Then, for any t ∈ [tm−1, tm],

‖ûε(·, t)− uε(·, t)‖L1(R)(5.11)

≤ ‖ûε(·, tm−1)− uε(·, tm−1)‖L1(R) + Cε(1−γ)(β̄+1)/β̄ + Cεγ+(1−γ)/β̄ .

5.2. An approximation to u and uε with two shocks. Assume that in the
time interval [tm−1, tm] there exist two shock curves x = X1(t) and x = X2(t) for
the entropy solution u(x, t) which either collide at t = tm, i.e., X1(tm) = X2(tm),
or at t = tm−1, i.e., X1(tm−1) = X2(tm−1). We construct a continuous approximate
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solution ûε to u and uε in [tm−1, tm] by using the method of matching asymptotic
expansions:

ûε(x, t) = m

(
x−X1(t)

εγ

)
I1(x, t) +

(
1−m

(
x−X1(t)

εγ

))
O1(x, t)(5.12)

+ m

(
x−X2(t)

εγ

)
I2(x, t) +

(
1−m

(
x−X2(t)

εγ

))
O2(x, t),

where

Ii(x, t) = u(x, t) + (V −H)

(
x−Xi(t)

ε
;ui+(t), ui−(t)

)
, i = 1, 2,(5.13)

Oi(x, t) = u(x, t), i = 1, 2,(5.14)

are the first-order inner and outer solutions, respectively. Here, ui±(t) = u(Xi(t) ±
0, t), H(ξ;u+, u−) is the Heaviside function, γ is a constant to be determined later.
This approximation can be also written in an equivalent form:

ûε(x, t) = u(x, t) +m

(
x−X1(t)

εγ

)
(V −H)

(
x−X1(t)

ε
;u1+(t), u1−(t)

)

+ m

(
x−X2(t)

εγ

)
(V −H)

(
x−X2(t)

ε
;u2+(t), u2−(t)

)
.(5.15)

Lemma 5.3. Assume that in the time interval [tm−1, tm] there exist two shock
curves x = X1(t) and x = X2(t) for the entropy solution u(x, t) which either collide
at t = tm or at t = tm−1. Then, for any t ∈ [tm−1, tm],

‖ûε(·, t)− u(·, t)‖L1(R) ≤
{

Cε, β̄ < 1,

Cεγ+(1−γ)/β̄ |ln ε|, β̄ ≥ 1,
(5.16)

where β̄ = maxt β(t) and β = max{β+
1 , β−

1 , β+
2 , β−

2 }.
Lemma 5.4. Assume that in the time interval [tm−1, tm] there exist two shock

curves x = X1(t) and x = X2(t) for the entropy solution u(x, t) which either collide
at t = tm or at t = tm−1. Then, for any t ∈ [tm−1, tm],

‖ûε(·, t)− uε(·, t)‖L1(R)(5.17)

≤ ‖ûε(·, tm−1)− uε(·, tm−1)‖L1(R) + Cε(1−γ)(β̄+1)/β̄ + Cεγ+(1−γ)/β̄ + Cε2γ .

The proof of Lemma 5.3 is similar to that of Lemma 5.1 and will be omitted here.
We defer the proof of Lemma 5.4 to section 8.

6. Proof of main theorem. We will prove Theorem 3.1 by considering only
the case β̄ ≥ 1, i.e., the nonconvex case; the convex result was obtained in [24]. Recall
that it is assumed in each time interval [tm−1, tm] the entropy solution u is a finite
combination of some noncontact shocks, contact shocks, etc. Theorem 3.1 will be
established by induction on m. Namely, we will prove

‖u(·, tm)− uε(·, tm)‖L1(R) ≤
{

C(T )ε| ln ε| for β̄ < 1,

C(T )ε(1+1/β̄)/2| ln ε| for β̄ ≥ 1
(6.1)

under the induction assumption

‖u(·, tm−1)− uε(·, tm−1)‖L1(R) ≤
{

C(T )ε| ln ε| for β̄ < 1,

C(T )ε(1+1/β̄)/2| ln ε| for β̄ ≥ 1.
(6.2)
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The induction assumption holds for m = 1 due to the fact u(x, 0) = uε(x, t). Observe
that

‖u(·, tm)− uε(·, tm)‖L1(R)(6.3)

≤ ‖u(·, tm)− v̂ε(·, tm)‖L1(R) + ‖v̂ε(·, tm)− uε(·, tm)‖L1(R).

It follows from Lemmas 5.1 and 5.3 that

‖u(·, tm)− v̂ε(·, tm)‖L1(R) ≤ Cεγ+(1−γ)/β̄ | ln ε|.(6.4)

On the other hand, Lemmas 5.2 and 5.4 imply that

‖v̂ε(·, tm)− uε(·, tm)‖L1(R)(6.5)

≤ ‖v̂ε(·, tm−1)− uε(·, tm−1)‖L1(R) + Cε(1−γ)(β̄+1)/β̄ + Cεγ+(1−γ)/β̄ + Cε2γ .

Using the induction assumption (6.2) and (6.3)–(6.5) gives

‖u(·, tm)− uε(·, tm)‖L1(R)

≤ Cεγ+(1−γ)/β̄ | ln ε|+ Cε(1+1/β̄)/2| ln ε|+ Cε(1−γ)(β̄+1)/β̄ + Cεγ+(1−γ)/β̄ + Cε2γ .

Setting γ = 1/2 in the above estimate leads to (6.1), which completes the induction
proof.

7. Proof of Lemma 5.2. The main tool for establishing Lemma 5.2 is the
stability lemma, Lemma 3.1. Let vε = ûε as defined by (5.1). Then vε satisfies (3.2)
on its smooth region {(x, t) : x 
= X1(t)}, with

g(x, t) = ut + (m(V −H))t + f(u+m(V −H))x − ε(uxx + (m(V −H))xx)

= −a(u)ux +mt(V −H)−mV ′ Ẋ1(t)

ε
+m(V −H)u+

u̇+ +m(V −H)u− u̇−

+ (a(u+m(V −H))

(
ux +mx(V −H) +mV ′ 1

ε

)

− ε

(
uxx +mxx(V −H) + 2mxV

′ 1
ε
+mV ′′ 1

ε2

)
.

It follows from Lemma 3.1 that, for any t ∈ [tm−1, tm],

‖ûε(·, t)− uε(·, t)‖L1(R)(7.1)

≤ ‖ûε(·, tm−1)− uε(·, tm−1)‖L1(R)

+ ε

∫ t

tm−1

∣∣∣ [∂xûε(x, t)] |x=X1(t)

∣∣∣dt+ ∫ t

tm−1

‖g(·, t)‖pis(R)dt

≤ ‖ûε(·, tm−1)− uε(·, tm−1)‖L1(R) + Cε+

∫ t

tm−1

‖g(·, t)‖pis(R)dt,

where we have used the facts that [∂xû
ε(x, t)] |x=X1(t) = [ux(x, t)] |x=X1(t) and the

limits of ux(X(t)± 0, t) are uniformly bounded on [tm−1, tm]. We now claim that g is
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sufficiently small such that ûε satisfies (1.3) approximately. To this end, we rewrite g
as follows:

g(x, t) = m
((

a(u+m(V −H))− Ẋ1(t)
)
V ′ − V ′′

)
ε−1

+
(
a(u+m(V −H))− a(u)

)
ux

+
((

a(u+m(V −H))− Ẋ1(t)
)
m′ −m′′ε1−γ

)
ε−γ(V −H)

− 2m′ε−γV ′ − εuxx +m(V −H)u+
u̇+ +m(V −H)u− u̇−

=
(
a(u+m(V −H))− Ẋ1(t)

) (
mV ′ε−1 + ux +m′(V −H)ε−γ

)
− mV ′′ε−1 + (Ẋ1(t)− a(u))ux −m′′(V −H)ε1−2γ − 2m′ε−γV ′ − εuxx

+ m
(
Vu+ u̇+ + Vu− u̇− −H

(
x−X1(t); u̇+(t), u̇−(t)

))
.

Using the traveling wave equation V ′′ = (a(V )− Ẋ1(t))V
′ gives

g(x, t) =
(
a(u+m(V −H))− a(V )

)
mV ′ε−1(7.2)

+
(
a(u+m(V −H))− Ẋ1(t)

) (
ux +m′(V −H)ε−γ

)
+ (Ẋ1(t)− a(u))ux −m′′(V −H)ε1−2γ − 2m′ε−γV ′ − εuxx

+ m
(
Vu+ u̇+ + Vu− u̇− −H

(
x−X1(t); u̇+(t), u̇−(t)

))
.

Without loss of generality, we will consider only contact shock curves, i.e., β±
1 ≥ 1.

The assumption β±
1 ≥ 1 implies that Ẋ1(t) = a(u±), which leads to

g(x, t) =
(
a(u+m(V −H))− a(V )

)
mV ′ε−1(7.3)

+
(
a(u+m(V −H))− a(u±)

) (
ux +m′(V −H)ε−γ

)
+ (a(u±)− a(u))ux −m′′(V −H)ε1−2γ − 2m′ε−γV ′ − εuxx

+ m
(
Vu+ u̇+ + Vu− u̇− −H

(
x−X1(t); u̇+(t), u̇−(t)

))
.

We now split ‖g(·, t)‖pis(R) into the following three parts:

‖g(·, t)‖pis(R) =

∫
0<|x−X1(t)|≤εγ

+

∫
εγ≤|x−X1(t)|≤2εγ

+

∫
|x−X1(t)|≥2εγ

|g(x, t)|dt

= I + II + III.(7.4)

7.1. Piecewise constant solution. In order to estimate I, II, and III above
we first consider a simple but important case: the piecewise constant solution, i.e.,

u(x, t) =

{
u+, x > X1(t),
u−, x ≤ X1(t),

(7.5)

where u+ and u− are constants and Ẋ1(t) = (f(u−) − f(u+))/(u− − u+). It is easy
to show that g(x, t) = 0 for 0 < |x − X1(t)| ≤ εγ and |x − X1(t)| > 2εγ . Therefore
I = III = 0, and what we need to estimate is the term II. Let

II = II+ + II−,(7.6)

where
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II± =: ±
∫ X1(t)±2εγ

X1(t)±εγ

∣∣∣(a(u± +m(V − u±))− a(V )
)
mV ′ε−1

+
(
a(u± +m(V − u±))− a(u±)

)
m′(V − u±)ε−γ

− m′′(V − u±)ε1−2γ − 2m′ε−γV ′
∣∣∣dx(7.7)

= ±
∫ X1(t)±2εγ

X1(t)±εγ

∣∣∣(a(u± +m(V − u±))− a(u±)
)(
mV ′ε−1 +m′(V − u±)ε−γ

)
− (a(V )− a(u±))mV ′ε−1 −m′′(V − u±)ε1−2γ − 2m′ε−γV ′

∣∣∣dx.
Using the change of variables ξ = (x−X1(t))/ε

γ gives

II± = ±
∫ ±2

±1

∣∣∣(a(u± +m(V − u±))− a(u±)
)(
mV ′ε−1+γ +m′(V − u±)

)
− (a(V )− a(u±))mV ′ε−1+γ −m′′(V − u±)ε1−γ − 2m′V ′

∣∣∣dξ,(7.8)

where m = m(ξ) and V = V (ξ/ε1−γ). The following estimates can be obtained from
Lemma 4.1 and Corollary 4.1:

|V − u±| ≤ Cε(1−γ)/β±
1 , |V ′| ≤ Cε(1−γ)(1+1/β±

1 ),

|a(u± +m(V − u±))− a(u±)| ≤ C|V − u±|β
±
1 ≤ Cε1−γ ,

|a(V )− a(u±)| ≤ C|V − u±|β
±
1 ≤ Cε1−γ ,

provided ε is sufficiently small. It follows from (7.8) and the above estimates that

II± ≤ Cε(1−γ)(1+1/β±
1 ).(7.9)

The above results, together with the facts I = III = 0, give the desired upper bound
for ‖g(·, t)‖pis(R). Therefore, Lemma 5.2 is established in the case of the piecewise
constant solution.

7.2. Piecewise smooth solution. We now consider a more general case, i.e., u
is piecewise smooth. It follows from (7.3) that g(x, t) = −εuxx for |x−X1(t)| > 2εγ ,
and

g(x, t) =
(
a(u+ (V −H))− a(V )

)
V ′ε−1(7.10)

+
(
a(u+ (V −H))− a(u)

)
ux − εuxx

+ Vu+ u̇+ + Vu− u̇− −H(x−X1(t); u̇+, u̇−)

for 0 < |x−X1(t)| ≤ εγ . It is easy to see from (7.4) that

III = ε

∫
|x−X1(t)|≥2εγ

|uxx|dx ≤ Cε,(7.11)

where uxx(·, t) is assumed piecewisely in L1. It follows from (7.10) that

I ≤ I1 + I2 + I3 + I4,(7.12)
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where

I1 =

∫
0<|x−X1(t)|≤εγ

−|a(u+ (V −H))− a(V )|V ′ε−1dx,

I2 =

∫
0<|x−X1(t)|≤εγ

∣∣(a(u+ (V −H))− a(u)
)
ux

∣∣dx,
I3 =

∫
0<|x−X1(t)|≤εγ

ε|uxx|dx,

I4 =

∫
0<|x−X1(t)|≤εγ

∣∣Vu+ u̇+ + Vu− u̇− −H(x−X1(t); u̇+, u̇−)
∣∣dx.

We now estimate Ii, 1 ≤ i ≤ 4. Since u is piecewise smooth and u − H → 0 as
x → X1(t)± 0, we have

|a(u+ (V −H))− a(V )| = |a′(V + θ(u−H))(u−H)|
≤ C|x−X1(t)|.

Therefore, we can find a positive function A(ξ) such that ∀x ∈ (−∞,∞)
• |a(u+ (V −H))− a(V )| ≤ A (x−X1(t));
• A(ξ) ≤ C|ξ|;
• |A′(ξ)| ≤ M ,

where M is a constant. It follows from the above auxiliary function A and the esti-
mates (4.9) and (4.10) that

I1 ≤
∫
|x−X1(t)|≤εγ

−A(x−X1(t))V
′((x−X1(t))/ε)ε

−1dx(7.13)

=

∫ εγ−1

−εγ−1

−A(εξ)V ′(ξ)dξ

=

∫ εγ−1

−εγ−1

−A(εξ)
(
V (ξ)−H(ξ)

)′
dξ (using the fact A(0) = 0)

≤ A(εγ)|V (εγ−1)−H(εγ−1)|+A(−εγ)|V (−εγ−1)−H(−εγ−1)|

+Mε

∫ εγ−1

−εγ−1

|V (ξ)−H(ξ)|dξ (using integration by parts)

≤ Cεγ+(1−γ)/β + Cε1−(1−γ)(1−1/β) ≤ εγ+(1−γ)/β .

Observe that |a(u+ (V −H))− a(u)| ≤ C|V −H|, which, if applied to I2, gives

I2 ≤ C

∫
|x−X1(t)|≤εγ

|V −H|dx(7.14)

≤ Cε

∫ εγ−1

−εγ−1

|V (ξ)−H(ξ)|dξ

≤ Cε

∫ εγ−1

−εγ−1

(1 + |ξ|)−1/βdξ

≤ Cε1−(1−γ)(1−1/β) = Cεγ+(1−γ)/β .
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Moreover, by the definition of I3 we can easily obtain I3 ≤ Cε1+γ . Using the change
of variables ξ = (x−X1(t))/ε and the estimate (4.16) gives

I4 ≤ Cε

∫ εγ−1

−εγ−1

(1 + |ξ|)−1/βdξ ≤ Cε1−(1−γ)(1−1/β) = Cεγ+(1−γ)/β .(7.15)

Combining the above estimates yields

I ≤ C
(
εγ+(1−γ)/β + εγ(1+β) + ε| ln ε|+ ε(1+γ)

)
.(7.16)

It remains to estimate II. It follows from (7.3) that

II ≤ II+ + II− +

5∑
i=1

II
(i)
+ +

5∑
i=1

II
(i)
− ,

where II± is defined by (7.7) and

II
(1)
± = ±

∫ X1(t)±2εγ

X1(t)±εγ
|(a(u+m(V −H))− a(u± +m(V −H)))mV ′|ε−1dx,

II
(2)
± = ±

∫ X1(t)±2εγ

X1(t)±εγ
|(a(u+m(V −H))− a(u))ux|dx,

II
(3)
± = ±

∫ X1(t)±2εγ

X1(t)±εγ
|(a(u+m(V −H))− a(u± +m(V −H)))m′(V −H)|ε−γdx,

II
(4)
± = ±

∫ X1(t)±2εγ

X1(t)±εγ
ε|uxx|dx,

II
(5)
± = ±

∫ X1(t)±2εγ

X1(t)±εγ
m|Vu+

u̇+ + Vu− u̇− −H(x−X1(t); u̇+, u̇−)
∣∣dx.

It follows from (7.9) that

II± ≤ Cε(1−γ)(1+1/β±
1 ).(7.17)

The estimate for II
(1)
± is similar to that for I1, with the same error bound as (7.13),

namely,

II
(1)
± ≤ Cεγ+(1−γ)/β .(7.18)

The estimate for II
(2)
± is similar to that for I2, with the same error bound as (7.14),

namely,

II
(2)
± ≤ C

(
εγ(1+β) + ε| ln ε|

)
.(7.19)

The estimate for II
(5)
± is similar to that for I4, with the same error bound as (7.15),

namely,

II
(5)
± ≤ Cε1−(1−γ)(1−1/β) = Cεγ+(1−γ)/β .(7.20)
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Using the facts that a(u + m(V − H)) − a(u± + m(V − H)) = a′(•)(u − u±), and
|u− u±| ≤ C|x−X1(t)| for ±(x−X1(t)) > 0, we obtain

II
(3)
± ≤ ±Cεγ

∫ X1(t)±2εγ

X1(t)±εγ
|(V −H)|ε−γdx.

Applying the change of variables (x−X1(t))/ε = ξ to the above integration gives

II
(3)
± ≤ ±Cε

∫ ±2εγ−1

±εγ−1

|V (ξ)−H(ξ)|dξ.

It then follows from (4.14) and (4.15) that

II
(3)
± ≤ ±Cε

∫ ±2εγ−1

±εγ−1

(1 + |ξ|)−1/β±
1 dξ ≤ Cε1−(1−γ)(1−1/β±

1 )(7.21)

= Cεγ+(1−γ)/β±
1 .

Moreover, using the definition of II
(4)
± gives

II
(4)
± ≤ ±C

∫ X1(t)±2εγ

X1(t)±εγ
ε|uxx|dx ≤ Cε1+γ .(7.22)

Combining the estimates (7.17)–(7.22) leads to

II ≤ C
(
ε(1−γ)(1+1/β) + εγ+(1−γ)/β) + εγ(1+β) + ε| ln ε|+ ε1+γ

)
(7.23)

≤ C
(
ε(1−γ)(1+1/β) + εγ+(1−γ)/β)

)
.

Adding the estimates for I, II, and III gives

‖g(·, t)‖pis(R) ≤ C
(
εγ+(1−γ)/β + ε(1−γ)(1+1/β)

)
(7.24)

≤ C
(
εγ+(1−γ)/β̄ + ε(1−γ)(1+1/β̄)

)
.

This completes the proof for Lemma 5.2.

8. Proof of Lemma 5.4. The main difference between Lemmas 5.2 and 5.4 is
that Lemma 5.2 deals with only one shock, while the latter deals with two interact-
ing shocks. The main tool for the proof of Lemma 5.4 is still the stability lemma,
Lemma 3.1. Let vε = ûε, which is defined by (5.15). Then vε satisfies (3.2) on its
smooth region {(x, t) : x 
= Xi(t), i = 1, 2}, with
g(x, t) = (a(u+m1(V1 −H1) +m2(V2 −H2))− a(u))ux

+ m′
1 (a(u+m1(V1 −H1) +m2(V2 −H2))− a(H1)) (V1 −H1)ε

−γ

+ m′
2(a(u+m1(V1 −H1) +m2(V2 −H2))− a(H2))(V2 −H2)ε

−γ

+ m1(a(u+m1(V1 −H1) +m2(V2 −H2))− a(V1))V
′
1ε

−1

+ m2(a(u+m1(V1 −H1) +m2(V2 −H2))− a(V2))V
′
2ε

−1

− εuxx − (m′′
1(V1 −H1) +m′′

2(V2 −H2)) ε
1−2γ − 2 (m′

1V
′
1 +m′

2V
′
2) ε

−γ

+ m1(V1u+ u̇1+ + V1u− u̇1− − Ḣ1) +m2(V2u+ u̇2+ + V2u− u̇2− − Ḣ2)

:= g1 + g2 + g3 + g4 + g5 + g6 + g7,
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where for i = 1, 2

mi = m((x−Xi(t))/ε
γ), ui±(t) = lim

x→Xi±0
u(x, t),

u̇i±(t) =
d

dt
ui±(t), Vi = V ((x−Xi(t))/ε;ui+, ui−),

Hi = H((x−Xi(t))/ε;ui+, ui−), Ḣi = H((x−Xi(t))/ε; u̇i+, u̇i−).

Similarly, it follows from Lemma 3.1 that, for any t ∈ [tm−1, tm],

‖ûε(·, t)− uε(·, t)‖L1(R)(8.1)

≤ ‖ûε(·, tm−1)− uε(·, tm−1)‖L1(R)

+ ε

2∑
i=1

∫ t

tm−1

∣∣∣ [∂xûε(x, t)] |x=Xi(t)

∣∣∣dt+ ∫ t

tm−1

‖g(·, t)‖pis(R)dt

≤ ‖ûε(·, tm−1)− uε(·, tm−1)‖L1(R) + Cε+

∫ t

tm−1

‖g(·, t)‖pis(R)dt.

In order to estimate the last term above we need to estimate
∫ t

tm−1
‖gi(·, t)‖pis(R)dt,

1 ≤ i ≤ 7. It is noticed that the estimates for ‖g6‖pis(R) and ‖g7‖pis(R) are similar
to those in one shock case, so they can be bounded above by the right-hand side of
(7.24). Therefore, we just need to estimate ‖gi‖pis(R) for 1 ≤ i ≤ 5.

In what follows we assume that the two shock curves start at a same point, i.e.,

X1(tm−1 + 0) = X2(tm−1 + 0),(8.2)

but do not become tangent to each other at this point:

Ẋ1(tm−1 + 0) < Ẋ2(tm−1 + 0).(8.3)

This implies that there is a constant c > 0 such that

δ(t) := X2(t)−X1(t) ≥ c(t− tm−1) for t ∈ [tm−1, tm].(8.4)

Note that the support of m((· − Xi(t))/ε
γ) is [Xi(t) − 2εγ , Xi(t) + 2εγ ]. Hence, if

X2(t)−X1(t) ≥ 4εγ , then for each x ∈ R only one of m1 and m2 appears in g(x, t).
Therefore, when X2(t)−X1(t) ≥ 4εγ , the estimates for ‖gi‖L1 , 1 ≤ i ≤ 5, are similar
to those for the one shock case. Let τ ∈ (tm−1, tm) such that

X2(τ)−X1(τ) = 4εγ and X2(t)−X1(t) > 4εγ for t ∈ (τ, tm].(8.5)

The above analysis implies that we only need to estimate ‖gi‖L1 , 1 ≤ i ≤ 5, for
t ∈ [tm−1, τ ].

We first estimate ‖g1‖L1 for t ∈ [tm−1, τ ]. Observe that

‖g1(·, t)‖pis(R) =

∫
{x≤X1(t)−2εγ}∪{x≥X2(t)+2εγ}

|g1|dx(8.6)

+

∫
X1(t)−2εγ<x<X2(t)+2εγ

|g1|dx

:= G11 +G12.
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Since only one of m1 and m2 appears in G11, the estimate of G11 is similar to that of

II
(2)
± in the one shock case, and it follows from (7.19) that

G11 ≤ C
(
εγ(1+β) + ε| ln ε|

)
,(8.7)

where β = max{β1, β2}. The integrand of G12 is bounded, and therefore

G12 ≤ C
(
X2(t)−X1(t) + εγ

)
.

It follows from (8.5), (8.4), and (8.2) that τ − tm−1 ≤ Cεγ and X2(t) − X1(t) ≤
C(t− tm−1) as t → tm−1 + 0. Therefore,∫ τ

tm−1

G12dt ≤ Cε2γ ,

which, together with (8.7), gives∫ τ

tm−1

‖g1(·, t)‖pis(R)dt ≤ C
(
ε2γ + εγ(2+β) + ε1+γ | ln ε|

)
.(8.8)

Next we estimate ‖g2‖pis(R). Observe that

‖g2‖pis(R) =

∫
2εγ>|x−X1(t)|≥εγ

|g2(x, t)|dx ≤ C

∫
2εγ>|x−X1(t)|≥εγ

|V1 −H1|ε−γdx

=

∫
2>|ξ|>1

|V1(ξ/ε
1−γ)−H1(ξ/ε

1−γ)|dξ ≤ Cε(1−γ)/β1 .

Therefore, ∫ τ

tm−1

‖g2(·, t)‖pis(R)dt ≤ Cε(1−γ)/β1+γ .(8.9)

Similarly, it can be shown that∫ τ

tm−1

‖g3(·, t)‖pis(R)dt ≤ Cε(1−γ)/β2+γ .(8.10)

We now estimate ‖g4‖pis(R). Note that

‖g4(·, t)‖pis(R) =

∫
0<|x−X1(t)|<εγ

+

∫
|x−X1(t)|≥εγ

|g4(x, t)|dx(8.11)

:= G41 +G42.

The integrand in G41 satisfies the following inequality:

|g4| in G41 = |a(u+ (V1 −H1) +m2(V2 −H2))− a(V1)|(−V ′
1)ε

−1

≤ |a(u+ (V1 −H1) +m2(V2 −H2))− a(V1 +m2(V2 −H2))|(−V ′
1)ε

−1

+ |a(V1 +m2(V2 −H2))− a(V1)|(−V ′
1)ε

−1

:= |g41|+ |g42|.
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The integration of |g41| is similar to that of (7.13), so it follows from (7.13) that∫
{0<|x−X1|≤εγ}

|g41|dx ≤ Cεγ+(1−γ)/β1 .(8.12)

We estimate the integral of g42 by observing∫
{0<|x−X1|≤εγ}

|g42|dx

=

∫
{|x−X1|≤εγ}∩{|x−X2|≤δ(t)/2}

|g42|dx+

∫
{|x−X1|≤εγ}∩{|x−X2|>δ(t)/2}

|g42|dx

:= G411 +G412,

where δ(t) := X2(t)−X1(t). Since |g42| ≤ −CV ′
1ε

−1, we have

G411 ≤ Cε−1

∫
|x−X2(t)|≤δ(t)/2

−V ′
1((x−X1(t))/ε)dx

≤ Cε−1

(
2ε

δ(t)

)1/β1+1

δ(t) ≤ C

(
ε

δ(t)

)1/β1

,

which leads to ∫ τ

tm−1

G411dt ≤ Cε1/maxt β1(t− tm−1)
1−1/maxt β1

∣∣τ
tm−1

= Cε1/maxt β1(τ − tm−1)
1−1/maxt β1 ,

where we have applied the inequality (8.4) to the above integration. Since τ − tm−1 ≤
Cεγ we have ∫ τ

tm−1

G411dt ≤ Cεγ+(1−γ)/maxt β1 .(8.13)

On the other hand,

|g42| ≤ C|V2 −H2|(−V ′
1)ε

−1

by the mean value theorem. Substituting this inequality into G412 yields

G412 =

∫
{|x−X1|≤εγ}∩{|x−X2|>δ(t)/2}

|g42|dx

≤ C

∣∣∣∣V2

(
δ(t)

2ε

)
−H2

(
δ(t)

2ε

)∣∣∣∣
∫ ∞

−∞
(−V ′

1((x−X1)/ε))ε
−1dx

≤ C

(
2ε

δ(t)

)1/β2
∫ ∞

−∞
−V ′

1(ξ)dξ ≤ C

(
2ε

δ(t)

)1/β2

.

Therefore, on account of δ(t) ≥ c(t− tm−1) and τ − tm−1 ≤ Cεγ , we obtain∫ τ

tm−1

G412dt ≤ Cε1/maxt β2εγ(1−1/maxt β2) = Cεγ+(1−γ)/maxt β2 .(8.14)
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This result, together with (8.13) and (8.12), yields

∫ τ

tm−1

G41dt ≤ Cεγ+(1−γ)/β̄ ,(8.15)

where β̄ = max{maxt β1,maxt β2}. In order to estimate G42 in (8.11), we first split
it into two parts:

G42 =

∫
{εγ<|x−X1|≤2εγ}∩{|x−X2|≤δ(t)/2}

(8.16)

+

∫
{εγ<|x−X1|≤2εγ}∩{|x−X2|>δ(t)/2}

|g4|dx

:= G421 +G422.

The integrand |g4| in G422 can be estimated as

|g4| in G422 = m1|a(u+m1(V1 −H1) +m2(V2 −H2))− a(V1)|(−V ′
1)ε

−1

≤ m1|a(u+m1(V1 −H1) +m2(V2 −H2))

− a(H1 +m1(V1 −H1) +m2(V2 −H2))|(−V ′
1)ε

−1

+ m1

(|a(H1 +m1(V1 −H1) +m2(V2 −H2))− a(H1)|
+ |a(H1)− a(H1 + V1 −H1)|

)
(−V ′

1)ε
−1

≤ C
(
|u−H1|+ |V1 −H1|β1 + |V2 −H2|β1

)
(−V ′

1)ε
−1,

where we have used the facts that |V1 − H1| → 0 and |V2 − H2| → 0 as ε → 0 for
{εγ < |x−X1| ≤ 2εγ} ∩ {|x−X2| > δ(t)/2}. Therefore,

G422 ≤ C

∫
{εγ<|x−X1|≤2εγ}∩{|x−X2|>δ(t)/2}

|u−H1|(−V ′
1)ε

−1dx

+ C

∫
{εγ<|x−X1|≤2εγ}∩{|x−X2|>δ(t)/2}

|V1 −H1|β1(−V ′
1)ε

−1dx

+ C

∫
{εγ<|x−X1|≤2εγ}∩{|x−X2|>δ(t)/2}

|V2 −H2|β1(−V ′
1)ε

−1dx

=: J1 + J2 + J3.

The estimate for J1 is similar to that of I1, with an upper bound the same as (7.13),
namely,

J1 ≤ Cεγ+(1−γ)/β1 .(8.17)

It follows from (4.9) and (4.10) that

J2 ≤ Cε1−γε(1−γ)(1+1/β1)ε−1εγ ≤ Cε(1−γ)(1+1/β1).(8.18)
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Observe that

J3 = C

∫
{|x−X1|≤2εγ}∩{|x−X2|>δ(t)/2}

|V2 −H2|β1(−V ′
1)ε

−1dx

≤ C

∣∣∣∣V2

(
δ(t)

2ε

)
−H2

(
δ(t)

2ε

)∣∣∣∣
β1
∫ ∞

−∞
(−V ′

1((x−X1)/ε))ε
−1dx

≤ C

(
2ε

δ(t)

)β1/β2
∫ ∞

−∞
−V ′

1(ξ)dξ

≤ C

(
2ε

δ(t)

)β1/β2

≤ C

(
2ε

δ(t)

)1/β2

.

Therefore, on account of δ(t) ≥ c(t− tm−1) and τ − tm−1 ≤ Cεγ , we have∫ τ

tm−1

J3dt ≤ Cε1/maxt β2εγ(1−1/maxt β2) = Cεγ+(1−γ)/maxt β2 .(8.19)

This, together with (8.17) and (8.18), yields∫ τ

tm−1

G422dt ≤ C
(
εγ+(1−γ)/β̄ + ε(1−γ)(1+1/β̄)

)
,(8.20)

where β̄ = max{maxt β1,maxt β2}. Since |g4| ≤ −CV ′
1ε

−1, we have

G421 ≤ Cε−1

∫
|x−X2(t)|≤δ(t)/2

−V ′
1((x−X1(t))/ε)dx

≤ Cε−1

(
2ε

δ(t)

)1/β1+1

δ(t) ≤ C

(
ε

δ(t)

)1/β1

.

Thus ∫ τ

tm−1

G421dt ≤ Cε1/maxt β1(t− tm−1)
1−1/maxt β1

∣∣τ
tm−1

= Cε1/maxt β1(τ − tm−1)
1−1/maxt β1 ,

where we have used the inequality (8.4). Since τ − tm−1 ≤ Cεγ , we have∫ τ

tm−1

G421dt ≤ Cεγ+(1−γ)/maxt β1 .

This result, together with (8.20), gives∫ τ

tm−1

G42dt ≤ C
(
εγ+(1−γ)/β̄ + ε(1−γ)(1+1/β̄)

)
.

Combining the above result and (8.15) gives∫ τ

tm−1

‖g4(·, t)‖pis(R)dt ≤ C
(
εγ+(1−γ)/β̄ + ε(1−γ)(1+1/β̄)

)
.(8.21)

Similarly, it can be shown that∫ τ

tm−1

‖g5(·, t)‖pis(R)dt ≤ C
(
εγ+(1−γ)/β̄ + ε(1−γ)(1+1/β̄)

)
.(8.22)
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Therefore, we have proved that∫ τ

tm−1

‖g(·, t)‖pis(R)dt ≤ C
(
εγ+(1−γ)/β̄ + ε(1−γ)(1+1/β̄)

)
.(8.23)

This result and (8.1) yield Lemma 5.4.

9. Numerical experiments. To verify the theoretical results obtained in this
work, we shall carry out a computational study in this section. The main purpose
is to demonstrate the existence of the fractional rate of convergence. It is generally
believed that monotone schemes have the same rate of convergence as that for the
viscosity approximation. Therefore, to make the numerical verification available, we
consider the (generalized) Lax–Friedrichs scheme

un+1
j = un

j − λ

2

(
f(un

j+1)− f(un
j−1)

)
+

µ

2

(
un
j+1 − 2un

j + un
j−1

)
(9.1)

to approximate the conservation law (1.1), where un
j is an approximation of u(xj , tn),

and xj = j∆x, and tn = n∆t, with ∆x and ∆t being the spatial and temporal grid
sizes, respectively; µ is a constant satisfying 0 < µ < 1, and the temporal and spatial
grid ratio λ = ∆t/∆x satisfies a Courant–Friedrichs–Levy condition,

λ sup
|u|≤‖u0‖∞

|f ′(u)| ≤ µ.

The theoretical properties of the scheme (9.1) were investigated by Liu and Xin [14].
Example 9.1. In the first example, we approximate

∂tu+ ∂xf(u) = 0, f(u) = (1− u2)3,

with the initial data u0(x) = sgn(x), by using the Lax–Friedrichs scheme (9.1).
The entropy solution for the above Riemann problem is u(x, t) = u0(x). It can

be verified that max|u|≤1 |f ′(u)| ≤ 6/
√
5. We then choose µ = 0.5, T = 1, and

λ =
√
5µ/6. It follows from Theorem 3.1 that the rate of convergence should be

(1 + 1
2 )/2 = 3

4 . It is observed from Table 1 that the numerical rate of convergence
agrees very well with the theoretical prediction.

Table 1
The L1-error and the convergence order for Example 9.1.

Mesh ∆x 1
8

1
16

1
32

1
64

1
128

L1-error 3.22× 10−1 2.01× 10−1 1.23× 10−1 7.44× 10−2 4.46× 10−2

Order 0.680 0.709 0.725 0.738

Example 9.2. In the second example, we approximate

∂tu+ ∂xf(u) = 0, f(u) = (1− u)3(1 + u)4,

with the initial data u0(x) = sgn(x), by using the Lax–Friedrichs scheme (9.1).
The entropy solution for the above Riemann problem is again u(x, t) = u0(x). It

can be verified that max|u|≤1 |f ′(u)| ≤ 2. We then choose µ = 0.5, T = 1, and λ =

µ/2. It follows from Theorem 3.1 that the rate of convergence should be (1+ 1
3 )/2 = 2

3 .
It is observed from Table 2 that the numerical result is again in excellent agreement
with the theoretical prediction.
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Table 2
The L1-error and the convergence order for Example 9.2.

Mesh ∆x 1
8

1
16

1
32

1
64

1
128

L1-error 2.79× 10−1 1.89× 10−1 1.25× 10−1 8.05× 10−2 5.11× 10−2

Order 0.562 0.597 0.635 0.656
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Abstract. In this paper, we study the long time behavior of solutions to the Cauchy problem of
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1. Introduction. In this paper, we study the long time behavior of solutions to
the Cauchy problem

(I)

{ Lu := ut − div(|∇u|p−2∇u) = −uq in Rn × (0,∞),
u(x, 0) = φ(x) in Rn,

where 2n/(n + 1) < p < 2, q > 1, and φ is a nonnegative continuous function
which decays to 0 as |x| → ∞. The existence, uniqueness, and Hölder continuity of
nonnegative weak solutions of (I) are well established by Chen and DiBenedetto [1, 2]
and DiBenedetto and Herrero [7] under much weaker conditions, say, if φ ∈ L1

loc(R
n).

Therefore, our continuity assumption on φ is more than necessary and is used only
for the convenience of stating our results.

Our major concern is the behavior of u(·, t) as t→ ∞ and how it is influenced by
(a) the decay rate of φ(x) as |x| → ∞, and
(b) the competition between the diffusion div(|∇u|p−2∇u) and the absorption uq.
It turns out that a critical decay rate for φ is O(|x|−µ), and a critical exponent

of absorption is q∗, where µ and q∗ are defined by

q∗ := p− 1 +
p

n
, µ :=

p

q + 1− p =
n

1 + n(q − q∗)/p .(1.1)

The exponents µ and q∗ arise naturally from finding radially symmetric and scaling
invariant solutions, i.e., self-similar solutions of the form t−βw(|x|t−γ). For later
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references, we cite several relevant results on self-similar solutions [3, 5, 6, 8, 9, 14,
15, 17, 20, 21, 22].

Proposition 1.1. Let p > 2n/(n+ 1) and Lu = ut − (|∇u|p−2∇u).
(1) A self-similar solution to Lu = 0 has the form tγνw(xtγ) with γ = −1/[p +

(p−2)ν] and some ν ∈ R. Self-similar solutions to Lu = −uq have the form tγµw(xtγ)
with γ = −1/[p+ (p− 2)µ].

(2) For every ν ∈ (0, n) and B ≥ 0, the solution Gν
B to Lu = 0 with initial value

B|x|−ν is self-similar of the form t−γνw(|x|t−γ) with γ = 1/[p+ (p− 2)ν].
For each c > 0, there is a unique fundamental solution Ec of Lu = 0 with initial

mass c. It is self-similar of the form t−γnw(|x|t−γ) with γ = 1/[p+ (p− 2)n].
(3) For each A > 0, there is a unique radially symmetric self-similar solution WA

to Lu = −uq such that W (x, 0+) = A|x|−µ for all x �= 0.
When 1 < q < q∗ (i.e., µ > n), WA is monotonic in A, and W0 := limA↘0WA

is the unique very singular solution (VSS) of Lu = −uq in the sense that

lim
t↘0

sup
|x|>ε

W0(x, t) = 0 and lim
t↘0

∫
|x|≤ε

W0dx = ∞ ∀ ε > 0.

Also, for every c > 0, Lu = −uq admits a unique fundamental solution uc with
initial mass c. Fundamental solutions are not self-similar, but limc→∞ uc =W0 is the
self-similar VSS.

When q = q∗ (i.e., µ = n), WA is monotonic in A and limA↘0WA = 0 in
R
n × (0,∞). There are neither fundamental solutions nor VSSs to Lu = −uq∗ .
When q > q∗ (i.e., µ < n), WA is the solution with the initial data A|x|−µ ∈

L1
loc(R

n). There are neither fundamental solutions nor VSSs to Lu = −uq.
In what follows, W0 ≡ 0 when q ≥ q∗, and W0 is the VSS when 1 < q < q∗.
To study the long time behavior of solutions of (I), it is convenient to divide the

decay rates of φ (φ �≡ 0) as follows:
(A1) lim|x|→∞ |x|µφ(x) = ∞;
(A2) lim|x|→∞ |x|µφ(x) = A ∈ [0,∞);
(B1) q > q∗ and lim|x|→∞ |x|νφ(x) = B ∈ [0,∞) for some ν ∈ (µ, n);
(B2) q > q∗ and φ ∈ L1(Rn).
(B3) q = q∗ and limx→∞ |x|αφ(x) = A > 0 for some α > n.
Note that the analogues of (B1), (B2) are not needed for 1 < q < q∗ since µ > n

then.
For p = 2, questions (a) and (b) have been discussed by Gmira and Veron [12],

Kamin and Peletier [14, 15], Escobedo and Kavian [9], and recently by Escobedo,
Kavian, and Matano [10] and Herraiz [13].

Proposition 1.2. Let p = 2, q > 1, and u solve (I). Set q∗ = 1 + 2/n, µ =
2/(q − 1), and γ = 1/2.

(1) (See [12].) If (A1) holds, then

lim
t→∞ sup

|x|≤atγ
|t1/(q−1)u(x, t)− (q − 1)−1/(1−q)| = 0 ∀ a > 0.(1.2)

(2) (See [10].) If 1 < q < q∗ and (A2) holds, then

lim
t→∞ sup

|x|<atγ
t1/(q−1)|u(x, t)−WA(x, t)| = 0 ∀ a > 0.(1.3)

(3) (See [15].) If (B1) holds, then

lim
t→∞ sup

|x|≤atγ
tγν |u(x, t)−Gν

B(x, t)| = 0 ∀ a > 0.(1.4)
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(4) (See [12].) If (B2) holds, then for some c ∈ [0,∞)

lim
t→∞ sup

|x|<atγ
tγn|u(x, t)− Ec(x, t)| = 0 ∀ a > 0.(1.5)

(5) (See [13].) If q > q∗ and lim|x|→∞ |x|nφ(x) = B > 0, then

lim
t→∞ sup

|x|<atγ
tγn|u/ log t− Ec(x, t)| = 0 ∀ a > 0,(1.6)

where c = ωnB/2 with ωn the area of unit sphere S
n−1.

(6) (See [13].) If (B3) holds, then

lim
t→∞ sup

|x|<atγ
tn/2|u(x, t)(log t)n/2 − ECn(x, t)| = 0 ∀ a > 0(1.7)

for a unique constant Cn > 0.
Remark. It is of great interest to know whether the results in Propositions 1.1 and

1.2 are still valid if the precise pointwise assumptions on initial values are replaced
by more general integral estimates. However, we do not have a clear idea of how to
approach a situation like that. One possible difficulty is the loss of scaling laws.

For p �= 2, similar but not as complete results were obtained by Zhao [23].
Proposition 1.3. Let p > 2n/(n+ 1), q > 1, and u solve (I).
(1) If lim|x|→∞ |x|µ−εφ(x) = ∞ for some ε > 0, then (1.2) holds with γ = 1/[p+

(p− 2)µ].
(2) If 1 < q < q∗ and lim|x|→∞ |x|µ+εφ(x) = 0 for some ε > 0, then (1.3) holds

with A = 0 and γ = 1/[p+ (p− 2)µ]. (The result for when p > 2 and φ has compact
support was obtained by Kamin and Vasquez [17].)

(3) If (B1) holds, so does (1.4) with γ = 1/[p+ (p− 2)ν].
(4) If lim|x|→∞ |x|n+εφ(x) = 0 for some ε > 0, then (1.5) holds with γ = 1/[p +

(p− 2)n] and some c ∈ [0,∞).
There are also analogous results for the porous medium equation

(II)

{
ut = �um − uq in Rn × (0,∞),

u(x, 0) = φ(x) in Rn.

In this case, the critical exponents should be defined as µ = 2/(q − m) and q∗ =
m + 2/n. For radially symmetric self-similar solutions and for m > (1 − 2/n)+
and q > max{1,m}, Proposition 1.1 holds with L defined as Lu = ut − ∆um; see
[4, 12, 16, 17, 19, 21]. The results on noncritical decay rates were obtained by Kamin
and Peletier [16] for m > 1 and Peletier and Zhao [21] for (1− 2/n)+ < m < 1, and
the result on the critical decay rate was obtained by Kwak [18].

Proposition 1.4. Let m > (1 − 2/n)+, q > max{1,m}, and u be a solution to
(II).

(1) If (A1) holds, so does (1.2) with γ = 1/[2 + (m− 1)µ].
(2) Suppose 1 < q < q∗. If (A2) holds with A > 0 or A = 0 and in addition

lim|x|→∞ |x|µ+εφ(x) = 0 for some ε > 0, then (1.3) holds with γ = 1/[2 + (m− 1)µ].
(3) The condition (B1) implies (1.4) with γ = 1/[2 + (m− 1)ν].
(4) The condition (B2) implies (1.5) with γ = 1/[2 + (m− 1)n].
(5) If q > q∗ and lim|x|→∞ |x|nφ(x) = A > 0, then

lim
t→∞ sup

|x|<atγ
τγn|u(x, t)/ log τ − Ec(x, τ)| = 0 ∀ a > 0,(1.8)
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where c = c(m,n, a) > 0, t = c1−mτ(log τ)1−m, and γ = 1/[2 + (m− 1)n].
One may notice that the recent results of Escobedo, Kavian, and Matano [10]

listed in Proposition 1.2 (2) and that of Kwak [18] in Proposition 1.4 (2) address
the critical decay of φ with sharp results for semilinear and porous media cases,
respectively. We would like to mention that though some ideas of Escobedo, Kavian,
and Matano [10] and Kwak [18] can be adopted to study (I), their approach cannot
be extended easily to the present case.

In this paper, we shall extend the results of Propositions 1.2, 1.3, and 1.4 to the
case in which p ∈ (2n/(n+ 1), 2). Our main results are the following.

Assume that 2n/(n+ 1) < p < 2 and q > 1. Let µ and q∗ be defined as in (1.1),
and let u be a solution to (I). Let Ec, G

ν
B , and WA be defined as in Proposition 1.1.

Denote L∞ = L∞(Rn).
Theorem 1.5. Assume (A1). Then (1.2) holds with γ = 1/[p+ (p− 2)µ].
Theorem 1.6. Assume (A2). Then (1.3) holds with γ = 1/[p+ (2− p)µ]; more

precisely,

lim
t→∞ t

γµ‖u(·, t)−WA(·, t)‖L∞ = lim
t→∞ ‖tγµu(ytγ , t)−WA(y, 1)‖L∞ = 0.(1.9)

In particular, when A = 0 and q = q∗,

lim
t→∞ t

1/(q∗−1)‖u(·, t)‖L∞ = 0 and lim
t→∞ t

1/(q∗−1−ε)u(0, t) = ∞ ∀ε > 0.(1.10)

Theorem 1.7. Assume (B1). Then (1.4) holds with γ = 1/[p+ (p− 2)ν]; more
precisely,

lim
t→∞ t

γν‖u(·, t)−Gν
B(·, t)‖L∞ = lim

t→∞ ‖tγνu(ytγ , t)−Gν
B(y, 1)‖L∞ = 0.(1.11)

Theorem 1.8. Assume (B2). Then for γ = 1/[p+ (p− 2)n] and some constant
c > 0,

lim
t→∞ t

γn‖u(·, t)− Ec(·, t)‖L∞ = lim
t→∞ ‖tγnu(ytγ , t)− Ec(y, 1)‖L∞ = 0.(1.12)

Remark. We make some interesting observations.
1. Theorem 1.5 says that when φ decays too slowly, absorption dominates diffu-

sion.
2. When 1 < q < q∗, W0 = V SS > 0, so Theorem 1.6 indicates that the

absorption is still strong, but diffusion plays a role to balance it.
When q ≥ q∗, W0 ≡ 0, so the conclusion of Theorem 1.6 for A = 0 is insufficient.

Theorems 1.7 and 1.8 exactly compensate for this insufficiency for the case in which
q > q∗ but not for q = q∗.

3. Here we show explicitly that the constant c in Theorem 1.8 is positive, which
is not mentioned in [12, 16, 21]. With this improvement, we can conclude that when
φ decays quickly enough (say, of compact support), then in large time, the solution
approaches the VSS when q ∈ (1, q∗) or the fundamental solution Ec of the pure
diffusion equation when q > q∗.

4. For the case in which q = q∗ and φ decays quickly (say, of compact support or
L1), except the two limits in (1.10), we do not have a more precise description. Here,
different scaling is needed. For the case in which p = 2, we refer interested readers to
the work of Herraiz [13] and some insightful observation of Galaktionov, Kurdyumov,
and Samarskii [11].
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5. The most striking fact, of course, is that in each and every case being discussed,
the limiting behavior of u(x, t) as t→ ∞ is characterized by a self-similar solution of
the same equation or the corresponding equation without absorption.

6. We intend to answer questions (a) and (b) as follows: The absorption dy-
namics (ut = −u−q) decreases the solution (in time) with a O(t−1/(q−1)) rate. The
diffusion process (ut = div(|∇u|p−2∇u)) makes mass diffuse, thereby decreasing u
at a maximum rate of O(t−n/(p+[p−2]n)) = O(t−1/(q∗−1)), as can be seen from the
fundamental solutions. Hence, when 1 < q < q∗, the diffusion-related decay is slower
than that of the absorption, so absorption is strong and will dominate, or at least
not subordinate to, the diffusion. When q > q∗, as diffusion can diminish u at a rate
ranging from O(1) (for constant initial data) to O(t−1/(q∗−1)) (for L1 initial data),
the relative strengths of absorption and diffusion then heavily depend on the decay
rate of the initial data. For fast decay, diffusion dominates; for slow decay, absorption
prevails; the critical decay rate is O(|x|−µ).

We shall first prove Theorem 1.8 in the next section since, with the results we
established in [3, 5], the proof becomes very easy. Although Theorem 1.7 had already
been proven by Zhao [23] (cf. Proposition 1.3 (3)), we provide a different proof in
section 2 for completeness. In section 3, we first prove Theorem 1.6 for the case in
which A ∈ (0,∞). Then the cases in which A = ∞ and A = 0 can be handled by
taking appropriate limits.

2. Proof of Theorems 1.7 and 1.8. For each ν ∈ [µ, p/(2− p)) and λ ≥ 1, we
define

γ = 1/[p+ (p− 2)ν], σ = γ(q + 1− p)[ν − µ], uλ = λγνu(λγx, λt).(2.1)

Then { Luλ = −λ−σuq in R
n × (0,∞),

uλ(x, 0) = φλ(x) := λγνφ(λγx) on R
n × {0}.(2.2)

Proof of Theorem 1.8. Set ν = n. Let ψλ be the solution to Lψλ = 0 with
initial value φλ. Define c0 =

∫
Rn
φ. Then

∫
Rn
φλ(x) dx = c0 for every λ > 1, and

limλ→∞
∫
|x|>ε

φλ(x) dx = 0 for all ε > 0. Hence { 1
c0
φλ} is a δ-sequence (i.e., a

sequence approaching the δ function). It then follows from Theorem 3.1 of [5] that

lim
λ→∞

ψλ = Ec0 in L∞((ε, ε−1); L1(Rn) ∩ C(Rn)) ∀ ε > 0.

Now we consider {uλ}λ>1. First by applying an L∞ estimate (cf. [6, p. 127] or
[7]) for ψλ and then by comparison, we obtain uλ ≤ ψλ ≤ M(p, n, c0)t

−γn for all
λ > 0 and t > 0. By the regularity results in [1, 2, 7], {uλ}λ>1 is an equicontinuous
family in any compact subset of R

n × (0,∞). Hence there exist a function U and
a sequence {λj} with limj→∞ λj = ∞ such that limj→∞ uλj = U(x, t) uniformly
in any compact subset of Rn × (0,∞). As σ is positive, (2.2) implies LU = 0 in
R
n × (0,∞). In addition, from uλ ≤ ψλ, there holds U ≤ Ec0 in Rn × (0,∞) so that

limt↘0 sup|x|>ε U(x, t) = 0 for all ε > 0. Furthermore, for every fixed τ > 0,

lim sup
j→∞

∫
Rn

|U − uλj |(x, τ)dx = lim
M→∞

lim sup
j→∞

∫
|x|>M

|U − uλj |(x, τ)|dx

≤ lim
M→∞

lim sup
j→∞

∫
|x|≥M

(Ec + ψλj )(x, τ)dx = 0.(2.3)
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Note that
∫

Rn
u(x, t)dx is a nonincreasing function of t, so c := limt→∞

∫
Rn
u(x, t)dx

exists. Consequently, for every τ > 0,∫
Rn

U(x, τ)dx = lim
j→∞

∫
Rn

uλj (x, τ)dx = lim
j→∞

∫
Rn

u(y, λjτ)dy

= lim
t→∞

∫
Rn

u(x, t)dx = c.

Thus U is a fundamental solution with mass c; i.e., U = Ec. As c is independent
of {λj}, the whole sequence {uλ} must converge to Ec in any compact subset of
R
n × (0,∞). A similar argument to that in (2.3) yields uλ(·, τ) → Ec(·, τ) in L1(Rn)

for every τ > 0. Local regularity estimates then imply that uλ(·, 1) → Ec(·, 1) in
L∞(Rn). The assertion (1.12) thus follows from the definition of uλ and the scaling
invariance of Ec.

It remains to show c > 0. As u ≤ ψ1 ≤Mt−γn for all t > 0,

− d

dt

∫
Rn
u(x, t) dx =

∫
Rn
uq(x, t) dx ≤Mt−(q−1)γn

∫
Rn
u(x, t) dx.

An integration over [1, t] then gives

log

∫
Rn
u(x, t) dx ≥ log

∫
Rn
u(·, 1) dx+ M(1− t1−(q−1)γn)

1− (q − 1)γn
∀ t > 1.

Simple calculation shows 1−(q−1)γn = γn[q∗−q] < 0. Thus limt→∞ log
∫
Rn
u(·, t) >

−∞; i.e., c > 0. This completes the proof.
Proof of Theorem 1.7. Let ν ∈ (µ, n) be as in the statement of the theorem, and

let γ, σ, uλ, and φλ be as in (2.1). Let Gν
B be the solution to LG = 0 with initial data

B|x|−ν . Fix an arbitrary δ ∈ (0, (n/ν − 1)/q) (so that ν(1 + qδ) < n). To prove the
theorem, it suffices to show

lim
λ→∞

sup
0<t<2,x0∈Rn

∫
|x−x0|<1

|uλ(x, t)−Gν
B(x, t)|1+δdx = 0.(2.4)

Indeed, by local regularities of solutions, the above limit implies that ‖uλ(·, 1) −
Gν

B(·, 1)‖L∞(Rn) → 0 as λ→ ∞, and therefore (1.11) follows from the definition of uλ
and the scaling invariance of Gν

B . We now prove (2.4).
Let x0 ∈ R

n and R > 2 be arbitrarily given. We can find a smooth cut-off function
ζ(x) satisfying 0 ≤ ζ ≤ 1 in R

n, ζ = 1 when |x−x0| < 1, ζ = 0 when |x−x0| > R, and
|∇ζ| ≤ 3/R in R

n. Let s = (1 + qδ)p/(2− p). In what follows, all positive constants
depending only on p, n, q, δ, and ν will be denoted by the same letter C.

Integrating the identity 0 = (1 + qδ)uqδλ ζ
s(Luλ + λ−σuqλ) over R

n and using
integration by parts, the assumption |∇ζ| ≤ 3/R, and the Cauchy inequality

suqδζs−1|∇uλ|p−2∇uλ · ∇ζ ≤ muqδ−1
λ |∇uλ|pζs + 1

qδ + 1
uqδ+1
λ ζs

+ C|∇ζ|(qδ+1)p/(2−p),

we obtain

d

dt

∫
Rn
u1+qδ
λ ζsdx +

∫
Rn

{(1 + qδ)λ−σuq+qδ
λ ζs − u1+qδ

λ ζs}dx(2.5)

≤ CRn−(qδ+1)p/(2−p).
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Before proceeding further, we first establish an elementary algebraic inequality.
Since p ∈ (1, 2), there are positive constants C(p, n) and c(p, n) such that for every
a,b ∈ R

n,

| |a|p−2a− |b|p−2b | ≤ C(p, n){|a− b|2(|a|+ |b|)p−2}1−1/p,

(|a|p−2a− |b|p−2b) · (a− b) ≥ c(p, n)|a− b|2(|a|+ |b|)p−2.

(They can be proven first for 1 = |a| ≥ |b|, and then for the general case by scaling.)
It then follows that for any a,b, c ∈ R

n,

(|a|p−2a− |b|p−2b) · ((a− b) + c) ≥ −Ĉ(p, n)|c|p.(2.6)

Denote v = uλ −Gν
B . Multiplying the difference of the equations for uλ and Gν

B

by |v|δ−1vζs, integrating the resulting equation over R
n, and using integration by

parts and the inequality (2.6) with a = ∇uλ,b = ∇Gν
B , and c = svδ−1ζ−1∇ζ, we

then obtain

d

dt

∫
Rn

|v|1+δζsdx ≤
∫
Rn

{(1 + δ)λ−σ|v|δuqλζsdx+ C|v|δ−1+pζs−p|∇ζ|p}.

Cauchy’s inequality and the assumptions |∇ζ| < 3/R and s = (1 + qδ)p/(2− p) then
yield

d

dt

∫
Rn

|v|1+δζsdx−
∫
Rn

{|v|1+δζs + Cλ−σ−σδuq+qδ
λ ζs}dx ≤ CRn−(1+δ)p/(2−p).

Now adding to it a Cλ−σδ multiple of (2.6), we obtain

d

dt

∫
Rn

{|v|1+δ + Cλ−σδu1+qδ
λ }ζsdx −

∫
Rn

{|v|1+δ + Cλ−σδu1+qδ
λ }ζsdx

≤ CRn−(1+δ)p/(2−p)

for all λ > 1. Gronwall’s inequality then yields

sup
0<t<2

e−t

∫
Rn

|v|1+δζsdx ≤ CRn−(1+δ)p/(2−p) +

∫
Rn

ζs{|v(·, 0)|1+δ + Cλ−σδφ1+qδ
λ }dx.

Denote by Br(x0) the ball of radius r and center x0. That ζ is a cut-off function then
gives, after replacing v by uλ −Gν

B ,

sup
x0∈Rn

sup
0<t<2

∫
B1(x0)

|uλ −Gν
B |1+δdx ≤ CRn−(1+δ)p/(2−p)

+ C sup
x0∈Rn

∫
BR(x0)

|φλ −B|x|−ν |1+δdx+ C sup
x0∈Rn

λ−σδ

∫
BR(x0)

φ1+qδ
λ dx.(2.7)

Set M = supx∈Rn |x|νφ(x). Then the definition of φλ implies φλ(x) ≤ M |x|−ν .
Consequently, the last term in (2.7) converges to zero as λ→ ∞.

To estimate the first integral in (2.7), one notices that φλ(x) → B|x|−ν uniformly
in R

n \Bε(0) for any ε > 0. As
∫
Bε(0)

|x|−ν(1+δ)dx = O(εn−(1+δ)ν), we see also that,

as λ→ ∞, the first term in (2.7) converges to zero. Hence, sending λ→ ∞, we obtain
from (2.7) that

lim sup
λ→∞

sup
x0∈Rn,0<t<2

∫
B1(x0)

|uλ −Gν
B |1+δdx ≤ CRn−(1+δ)p/(2−p).

Sending R→ ∞, we then obtain (2.4), thereby completing the proof.
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3. Proof of Theorems 1.5 and 1.6. Set γ = 1/[p+(p−2)µ]. Then (q−1)γµ =
1. For some δ > 0 to be chosen later, we make a self-similar transformation:

u(x, t) = [(t+ δ)/γµ]−γµw(y, τ), y = [(t+ δ)/γµ]−γx,(3.1)

τ = γµ log[(t+ δ)/δ].

Then w satisfies{
wτ = div(|∇w|p−2∇w) + µ−1y · ∇w + w − wq, y ∈ Rn, τ > 0,

w(y, 0) = [δ/γµ]γµφ([δ/γµ]γy), y ∈ R
n.

(3.2)

Now we fix δ = γµ‖φ‖−1/γµ
L∞(Rn). Then

(1) 0 ≤ w(y, 0) ≤ 1 in Rn;
(2) lim|y|→∞ |y|µw(y, 0) = lim|x|→∞ |x|µφ(x) = A.
To prove Theorem 1.6 for A ∈ (0,∞), we need only to show that

lim
τ→∞w(y, τ) =WA(y, 1) = wA(|y|) uniformly in y ∈ R

n;(3.3)

here wA(r), r ∈ [0,∞), is the unique solution to the following boundary value problem:{ Lrw := |w′|p−2[(p− 1)w′′ + (n− 1)r−1w′] + w + µ−1rw′ − wq = 0, r > 0,

w′
A(0) = 0, w(r) > 0 on [0,∞), and limr→∞ rµw(r) = A.

(3.4)

We prove (3.3) by using sub- and supersolutions. To ease the computation, it is
convenient to introduce new dependent and independent variables

w(r) = r−µJ(θ), r = Reθ,(3.5)

where R is a parameter of our choice. Then Lrw = r−µqLθJ , where, denoting ˙ =
d/dθ,

LθJ := |J̇ − µJ |p−2{a(J̈ − µJ̇) + b(J̇ − µJ)}+ µ−1RlelθJ̇ − Jq,

a = (p− 1), b = (n− 1)− (µ+ 1)a, l = µ(q − 1).

Lemma 3.1. For every A ∈ (0,∞), there exists R0(A) > 0 such that for every
R > R0, there are two functions w

+
A,R(r) and w

−
A,R(r) with the following properties:

(a) w+
A,R(r) = 1 in [0, R], Ar−µ ≤ w+

A,R(r) ≤ 1 in [R,∞);

(b) w−
A,R(r) = 0 in [0, R], 0 ≤ w−

A,R(r) ≤ Ar−µ in [R,∞);

(c) Lrw
+
A,R ≤ 0 and Lrw

−
A,R ≥ 0 in (0,∞) in the distributional sense;

(d) limr→∞ rµw+
A,R(r) = limr→∞ rµw−

A,R(r) = A.

Proof. (I) Construction of w+
A,R(r). We define w+

A,R = 1 in [0, R] and w+
A,R =

r−µ[A + (Rµ − A)(R/r)l] in [R,∞). Then w+
A,R satisfies (a) and (d). In addition,

(w+
A,R)

′′ ≤ 0 at r = R in the distributional sense. It remains to check Lrw
+
A,R ≤ 0 in

(R,∞) or, equivalently, LθJ ≤ 0 in (0,∞), where

J = A+ (Rµ −A)e−lθ.

Note that µJ − J̇ = µA + (Rµ − A)(l + µ)e−lθ > µA in (0,∞). Also, assuming
R > 2A, then Rµ − A > Rµ/2. Hence, using p − 2 < 0, we can calculate, for all
θ ∈ (0,∞),

LθJ = |rJ ′ − µJ |p−2{(l + µ)(al − b)(Rµ −A)e−lθ − µbA}
−lµ−1(Rµ −A)Rl − Jq ≤ (µA)p−2(l + µ)(al + |b|)Rµ − lRµRl/(2µ) ≤ 0
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if R is sufficiently large (depending on A). The construction of w+
A,R(r) is now com-

plete.
(II) Construction of w−

A,R(r). We need only construct J(θ) := rµw−
A,R(r)|r=Reθ .

Let m ≥ 1 be the smallest integer such that (p− 1)(2m+ 1) ≥ 1. Define

Θ(J) =

{
µ[J − (J − ε)2m+1], 0 < J < 2ε,

(A− J)D, 2ε ≤ J < A,

D = µ[2ε− ε2m+1]/[A− 2ε],

ε = min{1/(2m+ 1), 1/(4A), l/(4µA)}.

Clearly Θ is Lipschitz continuous and positive in [0, A). In addition, 0 < D ≤ l.
Let J(θ), θ ∈ [0,∞), be the solution to

J̇ = Θ(J) in (0,∞), J(0) = 0.

Since Θ > 0 in [0, A) and Θ(A) = 0, J is strictly increasing, and limθ→∞ J(θ) = A.
Now we define w−

A,R = 0 for r ≤ R and w−
A,R = r−µJ(θ)|θ=log(r/R) for r > R.

Then w−
A,R satisfies conditions (b) and (d) in the lemma. In addition, (w−

A,R)
′′ ≥ 0

at r = R in the distributional sense. It remains to check that Lrw
−
A,R ≥ 0 in (R,∞),

which is equivalent to checking that LθJ(θ) ≥ 0 for all θ > 0.

Let θ1 :=
∫ 2ε

0
dJ/Θ(J) be the unique point such that J = 2ε. We consider two

cases: (i) θ ∈ (θ1,∞) and (ii) θ ∈ (0, θ1].
Case (i). θ ∈ (θ1,∞). Then J = A−(A−2ε)eD(θ1−θ) and J̇ = D(A−2ε)eD(θ1−θ).

Also, µJ − J̇ = (µ +D)J −DA ≥ 2ε(µ +D) − AD = µε2m+1. Thus, as p < 2 and
D ≤ l,

LθJ ≥ −(µε2m+1)p−2C(A) + µ−1RlD(A− 2ε)eDθ1+(l−D)θ −Aq ≥ 0

provided that R is large enough.
Case (ii). θ ∈ (0, θ1]. Then J ∈ (0, 2ε] and J̇ − µJ = −µ(J − ε)2m+1 so that

|J̇ − µJ |p−2{a(J̈ − µJ̇) + b(J̇ − µJ)}
= −µp−1|J − ε|(p−2)(2m+1)+2m{(2m+ 1)aJ̇ + b(J − ε)} ≥ −C(A)

since (p − 2)(2m + 1) + 2m ≥ 0. Noting that J̇ = µ[J − (J − ε)2m+1] ≥ µε2m+1, we
have

LθJ ≥ −C(A) +Rlelθε2m+1 − (2ε)q ≥ 0

if R is large enough. This completes the proof of the lemma.
Lemma 3.2. For every A ∈ (0,∞), R > R0(A), let W

±
A,R(y, τ) be the solution to

the PDE in (3.2) with initial value w±
A,R(|y|). Then

lim
τ→∞ ‖W±

A,R(·, τ)− wA(| · |)‖L∞(Rn) = 0.

Proof. Since w+
A,R(|y|), as a function of (y, τ), is a supersolution to the PDE in

(3.2), by comparison, W+
A,R(·, τ) ≤ w+

A,R(| · |) for all τ > 0. In turn, this implies that

W+
A,R(·, τ + τ1) ≤W+

A,R(·, τ1) for all τ > 0 and τ1 ≥ 0. It then follows that W+
A,R(·, τ)
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is monotone decreasing in τ . Similarly, W−
A,R(·, τ) is monotone increasing in τ . Hence

there exist w∞,±
A,R such that

W±
A,R(·, τ) → w∞,±

A,R (·) as τ → ∞ pointwise in Rn.(3.6)

It is clear that w∞,±
A,R solve Lrw

∞,±
A,R = 0 and are radially symmetric and that

w−
A,R(|y|) ≤ w∞,−

A,R (y) ≤ w∞,+
A,R (y) ≤ w+

A,R(|y|).

It follows that lim|y|→∞ |y|µw∞,±
A,R = A. By the uniqueness of solution to (3.4) (cf.

[3]), w∞,±
A,R (y) = wA(|y|). Hence limτ→∞W±

A,R(·, τ) = wA(| · |). Since W±
A,R(y, τ) ≤

w+
A,R(|y|), by local regularity, the convergence is uniform in any compact subset of

R
n. Further, as w+

A,R(|y|) = O(|y|−µ), the convergence is also in L∞. This completes
the proof.

Proof of Theorems 1.5 and 1.6.
Case 1. 0 < A <∞. Let w(y, τ) be the solution to (3.2). We need to prove (3.3).

Since we have the limit lim|y|→∞ |y|µw0(y) = A, for every ε > 0, there exists Rε > 0
such that

A− ε < |y|µw(y, 0) < A+ ε ∀ |y| ≥ Rε.

It follows from Lemma 3.1 (a), (b) and 0 ≤ w(y, 0) ≤ 1 that

w−
A−ε,Rε

(| · |) ≤ w(·, 0) ≤ w+
A+ε,Rε

(| · |).

Consequently, by the comparison principle,

W−
A−ε,Rε

(y, τ) ≤ w(y, τ) ≤W+
A+ε,Rε

(y, τ).

Thus, by Lemma 3.2,

lim sup
τ→∞

‖w(y, τ)− wA(|y|)‖L∞ ≤ ‖wA+ε − wA‖L∞ + ‖wA−ε − wA‖L∞ .

However, since ε > 0 is arbitrary, we obtain (3.3).
Case 2. lim|x|→∞ |x|−νφ(x) = A = ∞. By comparison,

lim inf
τ→∞ w(y, τ) ≥ lim

A→∞
wA(|y|) = 1

uniformly in any compact subset of y ∈ R
n. Since w ≤ 1 for all y and τ ≥ 0, we

conclude that as τ → ∞, w(y, τ) → 1 uniformly in any compact subset of R
n. Using

the definition of w(y, τ) in (3.1) and the fact that γµ = 1/(q − 1), the assertion of
Theorem 1.5 thus follows.

Case 3. A = 0. If 1 < q < q∗, then

lim sup
τ→∞

w(y, τ) ≤ lim
A→0

wA(|y|) = w0(|y|) =W0(y, 1),

where w0 is the unique positive solution of (3.4) with A = 0 and W0 is the unique
VSS. It remains to show that

lim inf
τ→∞ w(y, τ) ≥ w0(|y|).(3.7)



CAUCHY PROBLEM OF P-LAPLACIAN 133

To do this, we go back to the PDE (I). Set ν = µ, and define γ and uλ as in (2.1).
Then (2.2) holds with σ = 0. In addition,

lim
λ→∞

∫
|x|≤ε

φλ(x)dx = lim
λ→∞

∫
|x|≤ελγ

λγ(µ−n)φ(x)dx = ∞ ∀ ε > 0.

Hence, for each c > 0, there exists a sequence {ψc
λ}λ≥1 such that 0 ≤ ψλ ≤ φλ for all

λ ≥ 1 and { 1
cψλ}λ>1 is a δ-sequence. Consequently, the solution ucλ of Luλ = −uqλ

with initial value ucλ(x, 0) = ψc
λ tends to the fundamental solution uc of Luλ = −uqλ

with initial mass c as λ→ ∞; see [5]. Since uλ ≥ ucλ, we have

lim inf
λ→∞

uλ ≥ lim
λ→∞

ucλ = uc.

It follows that

lim inf
λ→∞

uλ(x, t) ≥ lim
c→∞u

c(x, t) =W0(x, t).

A direct translation of the above relation in terms of w(y, τ) is exactly (3.7). Thus

lim
τ→∞w(y, τ) = w0(|y|) =W0(y, 1)

uniformly in any compact subset of R
n. Since for A = 1 and some large R, w(y, τ) ≤

w+
A,R(|y|) for all τ > 0 and w+

1,R decays to zero as |y| → ∞, the above limit is uniform
in R

n. This completes the proof of Theorem 1.6 for the case in which A = 0 and
1 < q < q∗.

If q ≥ q∗, then

lim sup
τ→∞

‖w(y, τ)‖L∞(Rn) ≤ lim
A→0+

‖wA(|y|)‖L∞(Rn) = 0.

Finally, we prove the second limit in (1.10), where q = q∗. By taking smaller φ
if necessary, we can assume that φ ≤ 1 and has compact support. Then u ≤ 1 in
R
n × (0,∞). Consequently, Lu = −uq∗ ≥ −uq∗−ε. Now let uε be the solution to

Luε = −uq∗−ε and initial data uε(x, 0) = φ. Then, from what we just proved, we

have limt→∞ t1/(q−ε−1)uε(0, t) =W q∗−ε
0 (0, 1), where W q∗−ε

0 is the VSS for q = q∗−ε.
Thus lim inft→∞ t1/(q

∗−ε−1)u(0, t) > 0. As ε is arbitrary, the second limit in (1.10)
follows. This completes the proof of Theorem 1.6.

REFERENCES

[1] Y. Z. Chen and E. DiBenedetto, On the local behavior of solutions of singular parabolic
equations, Arch. Ration. Mech. Anal., 103 (1988), pp. 319–346.

[2] Y. Z. Chen and E. DiBenedetto, Holder estimates for solutions of singular parabolic equa-
tions with measurable coefficients, Arch. Ration. Mech. Anal., 118 (1992), pp. 257–271.

[3] X. Chen, Y. Qi, and M. Wang, Self-similar very singular solutions of the parabolic p-
Laplacian, J. Differential Equations, 190 (2003), pp. 1–15.

[4] X. Chen, Y. Qi, and M. Wang, Existence and Uniqueness of Singular Solutions of a Fast
Diffusion Porous Medium Equation, preprint, Department of Mathematics, HKUST, Hong
Kong, 1998.

[5] X. Chen, Y. Qi, and M. Wang, Singular Solutions of Parabolic p-Laplacian with Absorption,
preprint, Department of Mathematics, HKUST, Hong Kong, 1998.

[6] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
[7] E. DiBenedetto and M. Herrero, Non-negative solutions of the evolution p-Laplacian equa-

tion. Initial traces and Cauchy problem when 1 < p < 2, Arch. Ration. Mech. Anal., 111
(1990), pp. 225–290.



134 XINFU CHEN, Y. W. QI, AND MINGXIN WANG

[8] J. I. Diaz and J. E. Saa, Uniqueness of very singular self-similar solution of a quasilinear
degenerate parabolic with absorption, Publ. Mat., 36 (1992), pp. 19–38.

[9] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat
equation, Nonlinear Anal., 11 (1987), pp. 1103–1133.

[10] M. Escobedo, O. Kavian, and H. Matano, Large time behavior of solutions of a dissipative
semilinear heat equation, Comm. Partial Differential Equations, 20 (1995), pp. 1427–1452.

[11] V. A. Galaktionov, S. P. Kurdyumov, and A. A. Samarskii, On asymptotic “eigenfunc-
tions” of the Cauchy problem for a non-linear parabolic equation, Math. USSR-Sb., 54
(1986), pp. 421–455.

[12] A. Gmira and L. Veron, Large time behavior of the solutions of a semilinear parabolic equation
in Rn, J. Differential Equations, 53 (1984), pp. 258–276.

[13] L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems, Ann.
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Abstract. In this paper we study the stability of integrable Hamiltonian systems under small
perturbations, proving a weak form of the KAM/Nekhoroshev theory for viscosity solutions of
Hamilton–Jacobi equations. The main advantage of our approach is that only a finite number of
terms in an asymptotic expansion are needed in order to obtain uniform control. Therefore there are
no convergence issues involved. An application of these results is to show that Diophantine invariant
tori and Aubry–Mather sets are stable under small perturbations.
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1. Introduction. We consider Hamiltonians of the form

Hε(p, x) = H0(p) + εH1(p, x),(1)

with H0, H1 smooth, H0(p) strictly convex and H1(p, x) bounded with bounded
derivatives, and Z

n periodic in x. The objective of this paper is to understand the
dependence on ε of periodic viscosity solutions (for the definition of viscosity solution,
see section 3) of

Hε(P +Dxu
ε, x) = Hε(P ),(2)

and prove stability of Aubry–Mather sets [Mat89a], [Mat89b], [Mat91], [Mn92], [Mn96]
under small perturbations. Equation (2) has two unknowns, the function uε and the
value of the effective HamiltonianHε(P ). Given a viscosity solution of (2), the Mather
set is a set invariant under the Hamiltonian dynamics

ẋ = −DpHε(p, x), ṗ = DxHε(p, x)

that is contained on the graph (x, p) = (x, P +Dxu
ε(x)). For smooth solutions of (2)

it corresponds to KAM tori.
We are given a reference value P = P0, and we assume that for ε = 0 the rotation

vector ω0 = DPH0(P0) satisfies Diophantine nonresonance conditions

|ω0 · k| ≥ C

|k|s(3)

for some positive constant C and some real s > 0. Is well known that the KAM theory
applies to all nonresonant vectors ω0. In particular it implies that for sufficiently
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small perturbations the solution to (2) is smooth. However, our results hold even if
the solution to (2) fails to be smooth.

In general, if one keeps the momentum P0 fixed, for ε > 0 the new rotation vector
DPHε(P0) may fail to be Diophantine. In particular an ergodic flow for ε = 0 may
give rise to periodic orbits when ε > 0. Therefore it is convenient to let the momentum
P change with ε while keeping the rotation vector fixed. To that effect, given N > 0
we construct an approximate solution ũεN (x, P ) of (2); that is, ũεN (x, P ) solves

Hε(P +Dxũ
ε, x) = H̃N

ε (P ) +O(εN + |P − P0|N )

for all P close to P0. Using the implicit function theorem, we can prove that there
exists a new momentum Pε = P0+O(ε) such thatDP H̃

N
ε (Pε) = DPH0(P0). Therefore

we are able to keep the rotation vector fixed (up to orderN) under small perturbations.
The two main results of this paper are stated in Theorems 3 and 4. In Theorem

3, we show that for any M > 0 there exists N(M) such that

|uε(x, Pε) − ũεN (x, Pε)| = O(εM ).

To show this, we first prove estimates along trajectories of the Hamiltonian flow.
Then we extend these estimates to nearby points using a priori Lipschitz continuity
of viscosity solutions. To that effect, we use the fact that the rotation vector is
kept unchanged so that we can take advantage of the Diophantine properties. These
properties imply that the Hamiltonian flow takes at most time O

(
1
εMs

)
to visit an

arbitrary εM neighborhood of any point of the torus [BGW98] (similar estimates were
proved originally in [Dum91], [DDG96]). From this we can extend the estimates along
trajectories to εM neighborhoods, using the Lipschitz continuity of viscosity solutions,
and therefore obtain uniform control. The technique of the proof would break down if
we choose Pε = P0 because we do not have any control over the number of theoretical
properties of DPHε(P0).

Finally, in Theorem 4, we prove estimates for the derivatives of viscosity solutions,
showing that

esssup |Dxuε −Dxũ
ε
N | = O(εM/2).

Note that these estimates do not imply that uε is differentiable; therefore they apply
even when the invariant tori that exist when ε = 0 cease to exist and are replaced
by Mather sets. Therefore this result implies the stability of Mather sets under small
perturbations.

Our results should be compared with previous results. One result is KAM theory,
which states that, for all Diophantine rotation vectors, uε is smooth and can be com-
puted by summing a convergent series for ε small enough. A result that is somewhat
close to ours is the following (see [BGGM98], [MG95]): Suppose P0 is such that the
corresponding frequency is Diophantine. Then there exists a canonical transformation
Tε, defined in the domain |P − P0| ≤ Cε, such that in the new coordinates, the new
Hamiltonian can be written as

H0(P ) + H̃ε(P ) + e−C/ε1/nR(x, P );

that is, the system is very close to integrable in an appropriate coordinate system. At
the other extreme one has that the viscosity solution uε, which is Lipschitz, converges
uniformly to a constant, provided the rotation number is nonresonant (ω0 ·k �= 0 for all
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k ∈ Z
n) [Gom02]. The results in this paper apply to all Diophantine rotation vectors,

provided the Hamiltonian is smooth enough so that one can construct ũεN to all orders,
and yields an asymptotic representation, for small ε, of uε and its derivatives, even
when there is not smoothness or no convergence of the approximations.

This paper is organized as follows: In section 2 we review the classical Lindstedt
series expansion for perturbations of nonresonant integrable Hamiltonians. In section
3 we recall the necessary background from the theory of viscosity solutions and its
relation to Aubry–Mather theory. In section 4 we study the expansions for Hε. Uni-
form estimates for viscosity solutions are discussed in section 5. In the last section
we present some applications to the stability of viscosity solutions and Aubry–Mather
sets, bootstrapping from L∞ estimates for viscosity solutions to W 1,∞ estimates.

Other examples of asymptotic expansions for Hamilton–Jacobi equations in the
case in which the perturbation is a second order elliptic operator can be found in
[FS86a], [FS86b], and [Bes].

2. Classical perturbation theory. In this section we review the classical per-
turbation theory for Hamiltonian systems using a construction equivalent to the
Poincaré normal form near an invariant torus. Somewhat incorrectly, but follow-
ing [AKN97], we call it the Lindstedt series method. Although these results are fairly
standard (see [AKN97], for instance), we present them in a more convenient form for
our purposes.

Consider the Hamiltonian dynamics{
ẋ = −DpHε(p,x),

ṗ = DxHε(p,x).
(4)

We use the convention that boldface (x,p) are trajectories of the Hamiltonian flow
and not the coordinates (x, p). The Hamilton–Jacobi integrability theory suggests
that we should look for functions Hε(P ) and uε(x, P ), periodic in x, solving the
Hamilton–Jacobi equation

Hε(P +Dxu
ε, x) = Hε(P ).(5)

Then, by performing the change of coordinates (x, p) ↔ (X,P ) determined by{
X = x+DPu

ε,

p = P +Dxu
ε,

(6)

the dynamics (4) is simplified to{
Ẋ = −DPH(P),

Ṗ = 0.

We again use the convention that boldface (X,P) are trajectories of the Hamiltonian
flow and not the new coordinates (X,P ).

If ũ is an approximate solution to (5) satisfying

Hε(P +Dxũ, x) = Hε(P ) + f(x, P ),(7)

then the change of coordinates (6) transforms (4) into{
Ẋ = −DPHε(P) −DP f(X,P),

Ṗ = DXf(X,P),
(8)
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with the convention that f(X,P ) = f(x(X,P ), P ).
The KAM theory deals with constructing solutions of (5) by using an iterative

procedure, a modified Newton’s method, that yields an expansion

uε = u0 + εv1 + ε2v2 · · · .

The main technical point in KAM theory is to prove the convergence of these ex-
pansions. An alternate method that yields such an expansion is the Lindstedt series
[AKN97]. However, we should point out that whereas the KAM expansion is a con-
vergent one, the Lindstedt series may fail to converge. Nevertheless, since we will
need only finitely many terms, we will use a variation of the Lindstedt series that we
describe next.

We say that a vector ω ∈ R
n is Diophantine if for all k ∈ Z

n\{0}, |ω · k| ≥ C
|k|s

for some C, s > 0. Let P0 be such that ω0 = DPH0(P0) is Diophantine. We look for
an approximate solution of

Hε(P +Dxu
ε(x, P ), x) = Hε(P ),

valid for P = P0+O(ε). When ε = 0, H0(P ) = H0(P ) and the solution u0 is constant;
for instance, we may take u0 ≡ 0. For ε > 0 we have, formally, uε = O(ε), and so we
suggest the following approximation ũεN to uε:

ũεN = εv1(x, P0) + ε(P − P0)DP v1(x, P0) + ε2v2(x, P0)(9)

+
1

2
ε(P − P0)

2D2
PP v1(x, P0) + ε2(P − P0)DP v2(x, P0)

+ ε3v3(x, P0) + · · · .

This expansion is carried out up to order N−1 in such a way that, formally, uε−ũεN =
O(εN ). For example,

ũε1 = 0, ũε2 = εv1, ũε3 = εv1 + ε2v2 + ε(P − P0)DP v1.

The functions vi and Dk
Pkvi satisfy transport equations

DpH0(P0)Dxw = f(· · · )

for some suitable f and can be solved inductively. For instance,

H1(P0) = DpH0(P0)Dxv1 +H1(P0, x),

DPH1(P0) = DpH0(P0)Dx(DP v1) +D2
ppH0(P0)Dxv1 +DpH1(P0, x),

and

H2(P0) = DpH0(P0)Dxv2 +
1

2
D2
ppH0(P0)Dxv1Dxv1 +DpH1(P0, x)Dxv1.

Note that the derivatives of vi with respect to P and Dk
Pkvi are computed by solving

appropriate transport equations, as illustrated above for DP v1, and not by differenti-
ating vi. In fact vi may not be defined for P �= P0. However, if its derivative exists,
it satisfies a transport equation.
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The constants H1(P0), DPH1(P0), H2(P0), . . . are uniquely determined by inte-
gral compatibility conditions; for example,

H1(P0) =

∫
H1(P0, x)dx,

DPH(P0) =

∫
DpH1(P0, x)dx,

and

H2(P0) =

∫
1

2
D2
ppH0(P0)Dxv1Dxv1 +DpH1(P0, x)Dxv1dx.

If H is sufficiently smooth and ω0 is nonresonant, then these equations have smooth
solutions that are unique up to constants. Finally one can check that

Hε(P +Dxũ
ε
N , x) = H̃N

ε (P ) +O(εN + |P − P0|N ),(10)

with

H̃N
ε (P ) = H0(P0) + εH1(P0) + (P − P0)DPH0(P0) + ε2H2(P0) + · · · ,

and this expansion is carried up to order N − 1 in such a way that, formally,

Hε(P ) = H̃N
ε (P ) +O(εN + |P − P0|N ).

Consider the change of coordinates{
p = P +Dxũ

ε
N (x, P ),

X = x+DP ũ
ε
N (x, P ).

Then, by (7) and (8), (4) is transformed into{
Ẋ = −DPHε(P) +O(εN + |P − P0|N−1),

Ṗ = O(εN + |P − P0|N ).

3. Viscosity solutions, optimal control, and Mather measures. In general
(5) does not admit smooth classical solutions. However, (5) has viscosity solutions
which are known to be the appropriate notion of weak solution for Hamilton–Jacobi
equations. In this section we review the necessary background, and in the rest of the
paper we extend rigorously the classical perturbation procedure from the previous
section to viscosity solutions.

For our purposes, a convenient definition of viscosity solution is the following: We
say that a function u is a viscosity solution of (5), provided that it satisfies the fixed
point identity

u(x) = inf

∫ t

0

L(x, ẋ) + P ẋ +H(P )dt+ u(x(t)),(11)

in which the infimum is taken over Lipschitz trajectories x(·), with initial condition
x(0) = x, and H is the unique number for which (11) holds with u(x) bounded. The
Lagrangian L is the Legendre transform of the Hamiltonian

L(x, v) = sup
p

−vp−H(p, x).
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This definition of viscosity solution is equivalent to the standard one [FS93], [BCD97],
as long as the Hamiltonian and Lagrangian L are strictly convex. Note that viscosity
solutions do not have to be smooth. However, they are semiconcave and therefore
twice differentiable almost everywhere. Furthermore they are differentiable along the
optimal trajectory x(t). In fact, the optimal trajectory x(t) in (11) and the momentum
p(t) = P +Dxu(x(t)) are solutions of (4) for all t > 0.

First, let us quote an existence result [LPV88].
Theorem 1 (Lions, Papanicolao, and Varadhan [LPV88]). For each P there

exists a number H(P ) and a function u(x, P ), periodic in x, that solves (5) in the
viscosity sense. Furthermore H(P ) is convex in P , and u(x, P ) is Lipschitz in x.

This theorem does not assert anything about uniqueness of the viscosity solution
u. Indeed, such viscosity solutions are not unique even up to constants; see, for
instance, [Con95]. However, as it was shown in [Gom02], under certain hypotheses
one can prove uniqueness and even continuity of the viscosity solution u with respect
to parameters. These hypotheses can be formulated in terms of the ergodic properties
of certain measures—Mather measures (see Theorem 2)—that are invariant under the
Hamiltonian dynamics.

The connection between classical mechanics and viscosity solutions is well known
and was explored by several authors, for instance, [Fat97a], [Fat97b], [Fat98a], [Fat98b],
[E99], [EG01], [EG02], and [Gom00b]. One of the most basic results is the following.

Theorem 2 (A. Fathi, W. E). Let u be a viscosity solution of (5).
• For each P there exists a set invariant under the dynamics (4) contained in
the graph (x, P +Dxu).

• There exists a probability measure µ(x, p) (Mather measure) invariant under
(4) supported on this invariant set.

• This measure minimizes ∫
L(x, v) + Pvdµ,(12)

with v = −DpH(p, x), over all probability measures that are invariant under
(4).

Conversely, any probability measure invariant under (4) that minimizes (12) is sup-
ported on the graph (x, P +Dxu) for any viscosity solution u of (5).

One of the main advantages of the previous theorem is that one can translate
properties of viscosity solutions into properties of Mather sets or measures and vice
versa. Some properties of viscosity solutions are described in the following proposition.

Proposition 1. Suppose (x, p) is a point in the graph

G = {(x, P +Dxu(x)) : u is differentiable at x}.

Then for all t > 0 the solution (x(t),p(t)) of (4) with initial conditions (x, p) belongs
to G.

Proof. The invariance of the graph for t > 0 is a consequence of the optimal
control interpretation of viscosity solutions [FS93], and the reader may find a proof,
for instance, in [Gom00b] or [Gom00a].

Finally, the following is an important identity [CIPP98].
Proposition 2 (Contreras et al. [CIPP98]).

H(P ) = inf
φ

sup
x
H(P +Dxφ, x),(13)
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in which the infimum is taken over C1 periodic functions φ.
This formula can be used to compute H(P ) effectively [GO02a] and, in conjunc-

tion with properties of viscosity solutions, to detect nonintegrability of Hamiltonian
systems [GO02b].

4. Estimates for the effective Hamiltonian. We start this section by proving
that H̃N

ε is an asymptotic expansion to Hε. Then we will use convexity techniques
to prove estimates for the derivatives of viscosity solutions that we will use in the
subsequent sections.

Proposition 3. Suppose we can construct an approximate solution as in (9).
Then

Hε(P ) ≤ H̃N
ε (P ) +O(εN + |P − P0|N ).(14)

Remark. Note that the error term is a function of x, but, by periodicity, it can
be estimated uniformly by O(εN + |P − P0|N ).

Proof. The inf sup formula (13) implies

Hε(P ) ≤ sup
x
Hε(P +Dxũ

ε
N , x).

By expanding this expression in Taylor series and taking the supremum, we obtain
the result.

A converse inequality is also true.
Proposition 4. At any point at which Dxu

ε exists we have

Hε(P ) ≥ Hε(P +Dxũ
ε
N , x) +DpHε(P +Dxũ

ε
N , x)(Dxũ

ε
N −Dxu

ε)(15)

+
γ

2
|DxũεN −Dxu

ε|2

for some positive constant γ > 0.
Proof. Since Hε(p, x) is strictly convex, there exists a constant γ > 0 such that

Hε(P ) ≥ Hε(P +Dxu
ε, x)

≥ Hε(P +Dxũ
ε
N , x) +DpHε(P +Dxũ

ε
N , x)(Dxũ

ε
N −Dxu

ε)

+
γ

2
|DxũεN −Dxu

ε|2.

The following corollary is going to be used in the next section.
Corollary 1. If there exists an approximate solution as in Proposition 3, then

there exists a point x0 for which

|Dxũε(x0) −Dxu
ε(x0)| ≤ CεN/2.

Proof. Since uε is semiconcave, ũε−uε is semiconvex. Therefore at the maximum
x0, Dx(ũ

ε − uε) = 0; that is, the derivative exists and is zero. Then the two previous
propositions yield the desired result.

Corollary 2. If there exists an approximate solution as in Proposition 3, then

Hε = H̃N
ε +O(εN ).

Proof. It suffices to combine Propositions 3 and 4 at the point x0 given by the
previous corollary.
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5. Uniform estimates. In this section we prove uniform estimates

sup
x

|uε − ũεN | = O(εM )

under Diophantine conditions on the rotation vector ω0 of the unperturbed problem.
These results should be compared with the ones in [Gom02], which show that unique
ergodicity of the Mather measure implies uniform continuity of the viscosity solution
with respect to the parameters.

First we construct an approximate solution ũεN for a sufficiently large but finite
N using the Lindstedt series expansion described in section 2. Then, by changing
coordinates, we show that for long times there are uniform estimates along trajectories.
Finally, by using Lipschitz estimates for uε and ũεN and the results by [Dum91] on
ergodization times, we extend them to whole space.

Theorem 3. Suppose the rotation vector

ω0 = DPH0(P0)

satisfies the Diophantine property (3). Furthermore suppose that for every N there
exists Pε = P +O(ε),

DP H̃
N
ε (Pε) = ω0;

that is, the approximate rotation vector corresponding to Pε is the original rotation
vector ω0. Let u

ε be a solution of

Hε(Pε +Dxu
ε, x) = Hε(Pε),

and let ũεN be the corresponding approximate solution using a Lindstedt series expan-
sion up to order N .

Then for every M there exists N(M) such that

sup
x

|uε − ũεN | = O(εM ).

Proof. Define Pε by solving the equation

ω0 = DP H̃
N
ε (Pε),

that is,

ω0 = DPH0(P0) + εDPH1(P0) + (Pε − P0)D
2
PPH0(P0) + · · · ,

with expansion taken up to orderN−1. Under the nondegeneracy condition detD2
ppH0

�= 0 (which holds because H0(P ) = H0(P ) is strictly convex), the implicit function
theorem yields a unique solution of the form

Pε = P0 + εP1 + · · ·

with P1 = − [D2
PPH0(P0)

]−1
DPH1(P0).

Define the new coordinates (P,X) by{
p = P +Dxũ

ε
N (x, P ),

X = x+DP ũ
ε
N (x, P ).
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To simplify notation we denote X = φε(x).
Let x0 be the point given by Corollary 1. Set

(x(0),p(0)) = (x0, Pε +Dxu
ε(x0))

as the initial conditions for a trajectory (x(t),p(t)) of (4). Since |Dxũε(x0)−Dxuε(x0)|
≤ CεN/2, in the new coordinates we have

P(0) = Pε +O(εN/2).

Consider the Hamiltonian dynamics in the new coordinates (X,P ), with initial con-
dition (X(0),P(0)) (the value X(0) is not important):{

Ẋ = −DP H̃ε(P) +O(εN + |P − P0|N−1),

Ṗ = O(εN + |P − P0|N ).

From this equation it follows that the momentum P in the new coordinates is con-
served for long times.

Proposition 5.

sup
0≤t≤ 1

εN/2

|P(t) − Pε| ≤ O(εN/4).

Proof. Note that

d

dt
|P − Pε|2 ≤ C|P − Pε|(εN + |P − Pε|N )

≤ CεN |P − Pε|2 + CεN

as long as |P−Pε|N−1 ≤ CεN . Note that for N > 3—and we are always assuming N
large enough—we have |P(0)−Pε|N−1 ≤ CεN . Thus the Gronwall inequality implies

|P(T ) − Pε|2 ≤ eCε
NT
(|P(0) − Pε|2 + CεNT

)
.

Therefore, up to T = 1
εN/2

we have

|P(t) − Pε|2 ≤ CεN/2

for ε sufficiently small.
Observe that φε(x) = X is a diffeomorphism for small ε. Let

U(X) = uε(φ−1
ε (X)) − ũεN (φ−1

ε (X)),

in particular

U(X(t)) = uε(x(t)) − εv1(x(t)) − ε(Pε − P0)DP v1(x(t)) − · · · .
Recall that Dxu

ε(x(t)) = p(t) − Pε. Thus

d

dt
U(X(t)) = (p(t) − Pε)DpHε(p(t),x(t))

− εDxv1(x(t))DpHε(p(t),x(t)) − · · ·
= (p(t) − Pε − εDxv1 − · · · )DpHε
= (P(t) − Pε)DpHε(p(t),x(t)),
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since p(t) = P(t) + εDxv1(x(t)) + · · · . Therefore

d

dt
U(X(t)) = O(εN/4)

for 0 ≤ t ≤ 1
εN/2

.
We may also add a convenient constant to uε in such a way that U(X(0)) = 0,

and so we obtain

sup
0≤t≤ 1

εN/8

U(X(t)) = O(εN/8)

along the trajectory.
Since, for small ε, φε is a diffeomorphism, U is a Lipschitz function. The Dio-

phantine property implies that the flow

Ẋ = DPH0(P0) +O(εN/2)

takes at most time T = O
(

1
εMs

)
to get within distance εM of any point (see [BGW98],

and also [Dum91], [DDG96]). Thus, if M < N
8s , we get for some 0 ≤ t ≤ 1

εN/8
that

|X − X(t)| ≤ CεM ,

and so

|U(X)| ≤ |U(X) − U(X(t))| + |U(X(t))| ≤ CεM .

Because φε is a diffeomorphism, the same estimate carries over for the difference
uε − ũεN .

A final comment is that since ũεN − ũεM = O(εM ), we also have

sup
x

|uε − ũεM | = O(εM ),

although we need the existence of ũεN to prove this estimate.

6. Applications: Stability of Mather sets and regularity. This last section
is dedicated to proving estimates on the derivatives Dxu

ε − Dxũ
ε. Such estimates

rely on the uniform estimates from the previous section. Since the Mather sets are
supported on the graph (x, P +Dxu), estimates on the derivatives show the stability
of Mather sets.

Proposition 6. Suppose ω0 = DPH0(P0) is Diophantine and (2) admits an
approximate solution ũεN . Then

1

T

∫ T

0

γ

2
|Dxuε(x(t)) −Dxũ

ε
N (x(t))|2dt

≤ CεN +
2

T
sup
x

|uε − ũεN | ,

in which the integral is taken along a trajectory x(·) of

ẋ(t) = −DpHε(Pε +Dxu
ε(x(t)),x(t)).
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Proof. The strict convexity of Hε together with Corollary 2 implies

O(εN ) ≥ DpHε(P0 +Dxu
ε(x(t)),x(t))(Dxũ

ε
N (x(t)) −Dxu

ε(x(t)))

+
γ

2
|DxũεN (x(t)) −Dxu

ε(x(t))|2.

Integrating with respect to t and observing that

∫ T

0

DpHε(P0 +Dxu
ε(x(t)),x(t))(Dxũ

ε
N (x(t)) −Dxu

ε(x(t)))dt

= −
∫ T

0

ẋ(t)(Dxũ
ε
N (x(t)) −Dx u

ε(x(t)))dt

= −uε(x(0)) + ũεN (x(0)) + uε(x(T )) − ũεN (x(T )),

we obtain the result.
This proposition is the key to proving the main result of this paper, which is

discussed in the next theorem—pointwise estimates for first derivatives of viscosity
solutions.

Theorem 4. Let M > 0. Suppose ω0 = DPH0(P0) is Diophantine such that the
cell problem (2) admits an approximate solution ũεN for N sufficiently large such that
Theorem 3 holds. Then

esssup
x

|Dxuε −Dxũ
ε
N | ≤ CεM/2.

Proof. Since supx |ũεN − uε| = O(εM ) we have

∫ 1

0

γ

2
|Dxuε(x(t)) −Dxũ

ε
N (x(t))|2dt ≤ CεM ,(16)

with x(t) as in the previous theorem and for any initial condition x(0) = x.
Let G be the set of the points at which Dxu

ε exists and such that

|Dxuε −Dxũ
ε
N | ≤ CεM/2

for some fixed constant C, and set

B = {x ∈ Gc|uε is differentiable at x}.

Since uε is Lipschitz, then (B ∪G)c, which is the set of points of nondifferentiability
of uε, is of zero Lebesgue measure.

Let x be a point for which Dxu
ε exists and |DxũεN − Dxu

ε| > CεM/2. Define
px = Pε + Dxu

ε(x). Let (x(t),p(t)) be the solution of (4) with initial conditions
(x, px).

The estimate (16) implies that we may assume that there exists 0 < T < 1 such
that x(T ) ∈ G. Let y = x(T ) and

p̃y = Pε +Dxũ
ε
N (x(T )), py = Pε +Dxu

ε(x(T )).

Since y ∈ G we have

|p̃y − py| ≤ CεM/2.
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Let (x(t), p̃(t)) be the solution of (4) with initial conditions (y, p̃y). Define x̃ = x(−T ),
px̃ = p̃(−T ).

By standard ODE theory

|px − px̃| ≤ CεM/2, |x− x̃| ≤ CεM/2.

Note that

|Dxuε(x) −Dxũ
ε
N (x)| ≤ |Pε +Dxu

ε(x) − px̃| + |px̃ − Pε −Dxũ
ε
N (x̃)|

+ |DxũεN (x̃) −Dxũ
ε
N (x)|.

The first term is controlled by

|Pε +Dxu
ε(x) − px̃| = |px − px̃| ≤ CεM/2.

The last term is controlled by the Lipschitz constant of ũεN ,

|DxũεN (x̃) −Dxũ
ε
N (x)| ≤ C|x− x̃| ≤ CεM/2.

Therefore it suffices to estimate |px̃−Pε−DxũεN (x̃)|. To that effect observe that from
differentiating (10) with respect to x it follows that

DpH(Pε +Dxũ
ε
N , x)D2

xxũ
ε
N +DxH(Pε +Dxũ

ε
N , x) = O(εN ).(17)

Then by combining

d

dt

|p̃(t) − Pε −Dxũ
ε
N (x̃(t)|2

2

= (p̃(t) − Pε −Dxũ
ε
N (x̃(t))

[
DxH(p̃(t), x̃(t)) +D2

xxũ
ε
N (x̃(t))

]
DpH(p̃(t), x̃(t)))

with (17), we obtain

d

dt

|p̃(t) − Pε −Dxũ
ε
N (x̃(t)|2

2
≤ C|p̃(t) − Pε −Dxũ

ε
N (x̃(t))|2 +O(εN ).

Then the Gronwall inequality yields

|px̃ − Pε −Dxũ
ε
N (x̃)|2 ≤ CεN .
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[Bes] U. Bessi, Smooth Approximation of Mather Sets, preprint.
[BGGM98] F. Bonetto, G. Gallavotti, G. Gentile, and V. Mastropietro, Lindstedt series,

ultraviolet divergences and Moser’s theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4), 26 (1998), pp. 545–593.

[BGW98] J. Bourgain, F. Golse, and B. Wennberg, On the distribution of free path lengths
for the periodic Lorentz gas, Comm. Math. Phys., 190 (1998), pp. 491–508.



PERTURBATION THEORY 147

[Con95] M. Concordel, Periodic Homogenization of Hamilton–Jacobi Equations, Ph.D. thesis,
University of California, Berkeley, CA, 1995.

[CIPP98] G. Contreras, R. Iturriaga, G. P. Paternain, and M. Paternain, Lagrangian
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Abstract. We consider an inverse problem of identifying the support D of a source term in an
elliptic equation

−∆u(x) + q(x)χD(x)u(x) = 0, x ∈ Ω, and u(x) = f(x), x ∈ ∂Ω.

Here q is a given positive function and χD is the characteristic function of a subdomain D such that
D ⊂ Ω. In this paper, we prove the global uniqueness in this inverse problem within convex hulls of
polygons D.

Key words. inverse problem, uniqueness, determination of supports
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1. Introduction. We consider an inverse problem of recovering the shape and
location of an unknown stationary heat source F . Let Ω ⊂ R

2 be a bounded domain
with smooth boundary and D a subdomain of Ω with Lipschitz boundary.

In this paper, we assume that the source F at x = (x1, x2) is limited to D and
proportional to the temperature u at x, that is, F (x, t, u) = q(x)χD(x)u(x, t). Here
and henceforth, χD is the characteristic function of the subdomain D ⊂ Ω, and
q ∈ C2(Ω), q > 0, on Ω.

If we apply a potential f to the boundary ∂Ω of Ω, then the resulting temperature
u satisfies the Dirichlet problem{

−∆u + qχDu = 0 in Ω,

u = f on ∂Ω.
(1.1)

It is well known that for a given domain D and f ∈ H
1
2 (∂Ω), there exists a unique

solution u ∈ H1(Ω) to (1.1). Thus we can define the Dirichlet-to-Neumann map

ΛD : H
1
2 (∂Ω) → H− 1

2 (∂Ω) by

ΛD(f) :=
∂u

∂ν
|∂Ω,(1.2)

where ν is the unit outward normal vector to ∂Ω.
Restricting D to a polygon such that D ⊂ Ω, we discuss an inverse problem of

determining D by a single boundary measurement (f,ΛD(f)).
There has been research related to our inverse problem, which is motivated by

determination of transistor contact resistivity and contact window location in the
equation −∆u+χDu = 0 in Ω. See [3], [8], [12], [15]. In particular, a uniqueness result
within a one-parameter monotone family from a one-point boundary measurement of
the potential was obtained in [3]. Moreover [12] provides a global uniqueness result
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and a reconstruction scheme within the class of two- or three-dimensional balls from
a single boundary measurement. In [15], the first author proved global uniqueness
within some classes which can contain balls or ellipses. As for a general convex D,
the uniqueness is still open (see, e.g., Problem 4.7.2 (p. 104) in [11]).

As for related inverse problems of determining piecewise continuous γ = γ(x) in
∇ · (γ∇u) = 0 in Ω, we can refer to [4], [5], [9], [13], [14], [17]. The case where γ(x) =
1 + kχD(x) and k is constant, in particular, has been studied by many researchers.
The papers [5] and [17] dealt with the global uniqueness problem for polygons by one
(or two) boundary measurement(s) under extra conditions. Our inverse problem is
concerned with the determination of shapes of domains and is of a character similar to
the classical inverse source problem or the inverse gravimetry where we are required
to determine a domain D in −∆u = qχD by a single measurement of an exterior
potential. As for the inverse source problem, we refer to the books [2], [10], [11]
and the references therein. However, the methods for the inverse source problem are
difficult to apply to the case where q depends on the whole components of x. Our
method is applicable also to the inverse source problem.

The main purpose of this paper is to prove global uniqueness results within poly-
gons under extra conditions. We always assume that the boundary of a polygon
under consideration is a simply closed curve, and by a polygon we mean its interior.
Moreover, throughout this paper, we assume

f ≥ 0, 	≡ 0 on ∂Ω and q ∈ C2(Ω), q > 0, on Ω.(1.3)

We state our first main theorem. For D ⊂ R
2, we denote the convex hull (i.e.,

the smallest convex set containing D) by co (D).
Theorem 1.1. If D1 and D2 are polygons such that D1, D2 ⊂ Ω and ΛD1

(f) =
ΛD2

(f), then co (D1) = co (D2).
From Theorem 1.1, we can readily derive the following.
Corollary 1.2. If D1 and D2 are convex polygons such that D1, D2 ⊂ Ω and

ΛD1
(f) = ΛD2

(f), then D1 = D2.
In Theorem 1.1, we cannot conclude that D1 = D2 without convexity. In the case

of Figure 1, our argument does not work, and we do not know the uniqueness.
Next we show some uniqueness results for nonconvex polygons. First we show

the uniqueness in a case where D1 and D2 have a common contact edge. For any
domains D, E compactly contained in Ω, we denote the outer most boundary of D∪E
by ∂out(D ∪ E), i.e.,

∂out(D ∪ E) = {x ∈ ∂(D ∪ E)| there exists a continuous curve

in Ω \ (D ∪ E) joining x with some point of ∂Ω}.

Here and henceforth, by a curve, we exclude the end points.
Theorem 1.3. Assume that D1 and D2 are polygons and that a line segment

A0B0 ⊂ ∂D1 ∩ ∂D2 lies on ∂out(D1 ∪D2). Then ΛD1(f) = ΛD2(f) yields D1 = D2.
Second we show the uniqueness in a case where all edges of D1 and D2 are parallel

to two independent vectors.
Theorem 1.4. Assume that D1 and D2 are polygons such that there exist two

independent vectors �a and �b such that all the edges of D1 and D2 are parallel to �a or
�b. Then ΛD1

(f) = ΛD2
(f) yields D1 = D2.

In particular, if polygons D1 and D2 are composed of rectangles in the forms
of {(x1, x2)| a1 < x1 < b1, a2 < x2 < b2}, then Theorem 1.4 is applicable. Our
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Fig. 1. An example for D1 �= D2 in the nonconvex case.

Fig. 2. An example for D1 �= D2 in the case where all the angles are right and all the edges
are not parallel to the two fixed vectors.

argument does not work even if all the vertex angles are right angles but all the edges
are not parallel to one of the two fixed directions. See Figure 2. We think that the
uniqueness results for nonconvex cases obtained so far are not comprehensive and
should be improved.

Let uj , j = 1, 2, be the solution to (1.1) corresponding to the domain Dj . We
can prove (see, e.g., [7], [16]) that for any subdomain Ω′ compactly contained in Ω,
the solutions uj , j = 1, 2, satisfy

uj ∈ H2(Ω′) ∩ C1(Ω′).(1.4)
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Moreover, the maximum principle applied to uj shows that

uj > 0 in Ω, j = 1, 2.(1.5)

In the next section, we show a proposition on nonexistence of solutions to a
Cauchy problem from which our main theorem is derived.

2. Nonexistence of an H2-solution to a Cauchy problem for the Laplace
equation. For the proof of the next nonexistence proposition, we need the following
lemma about regularity of an H1-solution to an elliptic equation. The proof of our
lemma is essentially based on [6]. For completeness, we will give the proof.

Lemma 2.1. Let �P1P2P3 be the interior of a triangle which has three vertices
Pj ∈ R

2, j = 1, 2, 3. Assume that f ∈ Lµ(�P1P2P3) for some µ > 2. If v ∈
H1(�P1P2P3) is the solution to a Dirichlet problem for the Laplace equation{

∆v = f in �P1P2P3,

v = 0 on P1P2 ∪ P2P3 ∪ P3P1,
(2.1)

then there exists a real number p > 2 such that

v ∈ W 2,p(�P1P2P3).(2.2)

Proof. Let θ1, θ2, and θ3 be the angles �P3P1P2, �P1P2P3, and �P2P3P1, re-
spectively. Since 0 < θj < π for any j = 1, 2, 3, we can take a real number q0 ∈ (1, 2)
so that

2

q0
< min

{
π

θ1
,
π

θ2
,
π

θ3

}
.(2.3)

Let p := min{ q0
q0−1 , µ}. Clearly the number p is greater than 2. We claim that

v ∈ W 2,p(�P1P2P3).(2.4)

Let q := p
p−1 . Then by (2.3) we have

2

q
=

2(p− 1)

p
≤ 2

q0
< min

{
π

θ1
,
π

θ2
,
π

θ3

}
,

which implies that the number
2θj
qπ is not an integer for any j = 1, 2, 3. Since

p ≤ µ and f ∈ Lµ(�P1P2P3), f ∈ Lp(�P1P2P3). Therefore, it follows from Theorem
4.4.4.13 in [6] that there exist real numbers cj,m and a function w such that

w −
∑

1≤j≤3
− 2
q<λj,m<0

λj,m �=−1

cj,mSj,m ∈ W 2,p(�P1P2P3)

and {
∆w = f in �P1P2P3,
w = 0 on P1P2 ∪ P2P3 ∪ P3P1,
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where m is a negative integer, λj,m = mπ
θj

, and the functions Sj,m are defined

in equation (4, 4, 3, 7) in [6]. We note that Sj,m does not necessarily belong to
W 2,p(�P1P2P3). The uniqueness of the Dirichlet problem yields

w = v.

Furthermore, our choice of constants p, q implies that there is no negative integer m
such that

−2

q
< λj,m =

mπ

θj
< 0.

Hence we can conclude that

v ∈ W 2,p(�P1P2P3).

Applying Lemma 2.1, we can show a proposition about the nonexistence of an
H2-solution to a Cauchy problem of the Laplace equation. This proposition plays the
essential role in proving our theorems.

Proposition 2.2. Let �P1P2P3 be the interior of a triangle which has three
vertices Pj ∈ R

2, j = 1, 2, 3. Let G ∈ W 1,∞(�P1P2P3) be strictly positive in
�P1P2P3. Then there exists no solution y ∈ H2(�P1P2P3) to{

∆y = G in �P1P2P3,

y = |∇y| = 0 on P1P2 ∪ P1P3.
(2.5)

Proof. Let �a =
−−→
OP2 − −−→

OP1 := (a1, a2), �b =
−−→
OP3 − −−→

OP1 := (b1, b2), and D =
�P1P2P3. We can take a rotation and a translation, if necessary, so that we may
assume that the point P1 is the origin O, b2 = 0, and a2 > 0. Let ε = 1

8dist(O,P2P3),
and for any real number s > 0 let us take a cut-off function χs satisfying 0 ≤ χs ≤ 1,
χs ∈ C∞(R2), and

χs(x) =

{
1 if |x| < sε,

0 if |x| > (s + 1)ε.

Suppose that y ∈ H2(D) satisfies (2.5). By y ∈ H2(D), the Sobolev imbedding
theorem yields that for any , ≥ 2

yχ6 ∈ W 1,�(D).(2.6)

Since y ∈ H2(D) and y = |∇y| = 0 on OP2∪OP3, the function yχ4 belongs to H1(D)
and is the solution to{

∆(yχ4) = Gχ4 + 2∇y · ∇χ4 + y(∆χ4) in D,

yχ4 = 0 on ∂D.

Relation (2.6) implies that Gχ4 + 2∇y · ∇χ4 + y(∆χ4) ∈ L�(D) for any , > 2. It
follows from Lemma 2.1 that there exists a real number µ > 2 such that

yχ4 ∈ W 2,µ(D),(2.7)
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and hence

y ∈ W 2,µ(D ∩B(O, 4ε)),(2.8)

where B(O, 4ε) = {z ∈ R
2 | |z| < 4ε}. Next from (2.8) we can see that ∂xj (yχ2),

j = 1, 2, belongs to H1(D) and is the solution to{
∆(∂xj (yχ2)) = ∂xj [Gχ2 + 2∇y · ∇χ2 + y(∆χ2)] in D,

∂xj (yχ2) = 0 on ∂D.

Relation (2.8) implies that

∂xj [Gχ2 + 2∇y · ∇χ2 + y(∆χ2)] ∈ Lµ(D).

Since µ > 2, by Lemma 2.1, there exists a real number p > 2 such that

∂xj (yχ2) ∈ W 2,p(D).(2.9)

Therefore, we have

y ∈ W 3,p(D ∩B(O, 2ε)).(2.10)

The imbedding theorem (see, e.g., [1]) implies that

y ∈ C2(D ∩B(O, ε)).(2.11)

Then y(b1t, 0) = ∂x2y(b1t, 0) = 0 and y(a1t, a2t) = 0 for 0 ≤ t ≤ δ, where δ > 0 is
sufficiently small. Therefore,

(∂x1∂x2y)(b1t, 0) = (∂2
x1
y)(b1t, 0) = 0

and

0 =
d2y(a1t, a2t)

dt2
= a2

1(∂
2
x1
y)(a1t, a2t) + 2a1a2(∂x1

∂x2
y)(a1t, a2t) + a2

2(∂
2
x2
y)(a1t, a2t)

for 0 ≤ t ≤ δ. Hence, by y ∈ C2(D ∩B(O, ε)), we have

∂2
x1
y(0, 0) = ∂2

x2
y(0, 0) = ∂x1∂x2y(0, 0) = 0,

so that ∆y(0, 0) = G(0, 0) = 0, which contradicts that G > 0 in D.
Remark 2.3. In Proposition 2.2, it is essential that P1P2 and P1P3 intersect at

P1 transversally. In fact, if a curve joining P1, P2 and a curve joining P1, P3 intersect
smoothly at P1, there may exist a solution y ∈ H2(D) for some positive G ∈ H1(D)
with ∂x2G ∈ L∞(D).

Example for existence for a smooth curve passing P1, P2, P3. Let

D =

{
(x1, x2)| 0 ≤ x1 <

1

2
, 0 < x2 < −1

8

(
x1 − 1

2

)}

∪
{
(x1, x2)| − 1

2
< x1 < 0, x3

1 < x2 < −1

8

(
x1 − 1

2

)}
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and

y(x1, x2) =

{
x2

2, x1 ≥ 0,
(x3

1 − x2)
2, x1 < 0,

G(x1, x2) =

{
2, x1 ≥ 0,
2− 12x1x2 + 30x4

1, x1 < 0.

We regard
{
(x1, 0)|0 ≤ x1 < 1

2

}∪{(x1, x
3
1)| − 1

2 < x1 < 0
}

as the curve P2P1P3. Then
the two parts of the curve P2P1P3 connect smoothly at P1 ≡ O. Moreover, we can
directly verify that y ∈ C2(D), G ∈ H1(D) and ∂x2

G ∈ L∞(D), y = |∇y| = 0 on the
curve P2P1P3 and ∆y = G > 0 in D.

3. Proof of Theorem 1.1. Let us define y := u1 − u2 in Ω. Then by (1.1) and
(1.5), the function y satisfies

∆y = 0 in Ω \ (D1 ∪D2),(3.1)

∆y = qu1 > 0 in D1 \D2,(3.2)

∆y = −qu2 < 0 in D2 \D1,(3.3)

∆y = qy in D1 ∩D2,(3.4)

y = |∇y| = 0 on ∂Ω.(3.5)

Henceforth F is the component of Ω \ (D1 ∪D2) which is connected with ∂Ω. Since
y is harmonic in Ω \ (D1 ∪D2) and y = ∂y

∂ν = 0 on ∂Ω, the unique continuation (see,
e.g., [10]) implies that

y ≡ 0 on F .(3.6)

Then we can see the following two facts:

If D,E ⊂ Ω are convex polygons and D 	= E, then there exists

a vertex O of D such that O ∈ Ω \ E

or a vertex O of E such that O ∈ Ω \D.(3.7)

If D,E ⊂ Ω are convex polygons, then Ω \ (D ∪ E) is connected.(3.8)

Now we will complete the proof of Theorem 1.1. Assume contrarily that co (D1) 	=
co (D2). Then, by (3.7), there exists a vertex O of co (D1) such that O ∈ Ω \ co (D2)
or a vertex O of co (D2) such that O ∈ Ω \ co (D1). Without loss of generality, we
may assume the former case. Then, since O ∈ Ω \ co (D2), we can take a sufficiently
small triangle �OAB such that

OA ∪OB ⊂ ∂(co (D1)) and �OAB ⊂ co (D1) \ co (D2).

By (3.8), we have

OA ∪OB ⊂ Ω \ (co (D1) ∪ co (D2)) ⊂ F .(3.9)
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Any vertex of co (D1) is a convex vertex of D1; that is, in a neighborhood of that
vertex, D1 is convex. Therefore O is a convex vertex of D1. By co (D1) ⊃ D1, we can
take �OA′B′ such that

OA′ ∪OB′ ⊂ ∂D1 and �OA′B′ ⊂ �OAB.

Hence it follows from �OAB ⊂ co (D1) \ co (D2) that �OA′B′ ⊂ co (D1) \ co (D2).
Moreover, by (3.9), we see that OA′ ∪OB′ is included in F . Therefore, by (3.2) and
(3.6), we have ∆y = qu1 > 0 in �OA′B′ and y = |∇y| = 0 on OA′ ∪ OB′. Again
by (1.4), we see that qu1 ∈ H1(�OA′B′) and |∇(qu1)| is bounded in �OA′B′, and
so we apply Proposition 2.2, which yields a contradiction. Hence co (D1) = co (D2)
follows. Thus the proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.3. Let E be the connected component of D1∩D2 such
that A0B0 ⊂ ∂E. Since A0B0 ⊂ ∂out(D1 ∪ D2) and ∆y − qy = 0 in E, the unique
continuation implies that

y = 0 in E.(4.1)

We represent the boundary ∂Dj , j = 1, 2, by a continuous curve αj : [0, 1] → ∂Dj

such that αj is injective in [0, 1), αj(0) = A0, αj(
1
2 ) = B0, and αj(1) = αj(0).

Exchanging A0 with B0 if necessary, we may assume that the curves αj are oriented
in the positive direction; that is, the outward normal vector to ∂Dj and the oriented
tangential vector of ∂Dj form a right-handed system at any point of ∂Dj .

Let

a = inf{t ∈ [0, 1]|α1(t) 	= α2(t)}.

Then we note that α1(t) = α2(t) if 0 ≤ t ≤ a.
We will prove the theorem by reduction to absurdity. That is, assume that D1 	=

D2. Then, by α1(1/2) = α2(1/2) and α1(1) = α2(1), we can take a number 1
2 ≤ a <

b ≤ 1 such that α1(t) 	= α2(t) for t ∈ (a, b) and α1(b) = α2(b).
Since α1(t) = α2(t) for 0 ≤ t ≤ a and α1(t) 	= α2(t) for t ∈ (a, b), the point α1(a)

is a vertex of D1 or a vertex of D2. Therefore we see that α1(a, b) is outside D2 or
α2(a, b) is outside D1. Therefore either α1[a, b] or α2[a, b] is on ∂out(D1 ∪D2).

In fact, let α1(a, b) be outside D2. For any x ∈ α1[a, b], there exists a continuous
curve γ1 connecting x and some y ∈ α1[0,

1
2 ] such that γ1 \ {x, y} ⊂ Ω \ (D1 ∪D2).

Since α1[0,
1
2 ] ⊂ ∂out(D1 ∪D2), we can take a continuous curve γ2 connecting y and

some x0 ∈ ∂Ω such that γ2 \ {y} ⊂ Ω \ (D1 ∪D2). Hence we can choose a continuous
curve γ such that γ is sufficiently close to γ1 ∪ γ2, γ ⊂ Ω \ (D1 ∪D2), and γ connects
x and x0. Thus α1[a, b] ⊂ ∂out(D1 ∪D2).

Without loss of generality, we may assume that

α1[a, b] is contained in ∂out(D1 ∪D2).(4.2)

Let a < tj1 < · · · < tjkj < b, j = 1, 2, be a partition of [a, b] such that αj(t
j
1), . . . , αj(t

j
kj

)

are all the vertices of Dj on αj(a, b).
We will claim that

α1(a) is a vertex of both D1 and D2.(4.3)
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In fact, since α1(t) = α2(t) for t ∈ [0, a] and α1(t) 	= α2(t) for t ∈ (a, b), the point
α1(a) cannot be simultaneously on an edge of D1 and on an edge of D2. Here and
henceforth, by an edge, we mean that it does not contain any vertices.

Moreover, if α1(a) is on an edge of one domain and is a vertex of the other, then,
in terms of (4.2), we can take a triangle �α2(t

2
1)α1(a)α1(t

1
1), so that{

α1(a)α2(t21) ⊂ ∂E, α1(a)α1(t11) ⊂ ∂out(D1 ∪D2),

and the interior of this triangle is contained in D1 \D2.
(4.4)

By (4.1) and (3.6), we apply Proposition 2.2 to be led to a contradiction. Thus we
have proved (4.3).

We choose small ε > 0, so that α1(t) = α2(t) is on an edge of Dj , j = 1, 2, for
t ∈ [a− ε, a]. Furthermore we can take a suitable rotation, if necessary, so that α1(t)
is on the x1-axis for t ∈ [a− ε, a] and the x1-component of α1(a− ε) is smaller than
the one of α1(a). Then, by the orientation of α1 and α2, the domains D1 and D2

are located in the upper half plane R
2
+ := {(x1, x2)|x2 > 0} locally near the edge

α1(a− ε)α1(a).
Furthermore

the edge α1(a)α1(t11) lies in the lower half plane R
2
−

:= {(x1, x2)|x2 < 0} and the edge α1(a)α2(t21) in R
2
+.(4.5)

In fact, assume contrarily. Then, by (4.3), we alternatively have two cases:

(i) α1(a)α1(t11) ⊂ R
2
+, α1(a)α2(t21) ⊂ R

2
−.

(ii) α1(a)α1(t11) ∪ α1(a)α2(t21) ⊂ R
2
+ or R

2
−.

Case (i) is impossible, because the domains D1 and D2 are located in R
2
+ locally near

α1(a− ε)α1(a), and so, if (i) occurs, then α1(a)α1(t11) ⊂ ∂out(D1∪D2) does not hold.
This contradicts (4.2). Case (ii) is impossible also. In fact, assume that case (ii)
occurs. Then, by (4.2), we can take a triangle �α2(t

2
1)α1(a)α1(t

1
1) satisfying (4.4).

This is again a contradiction of Proposition 2.2. Hence we have proved (4.5).
By (4.2), we have α2[a, b] ⊂ ∂E, so that Proposition 2.2 implies that

α1(t
1
i ) 	∈ CV(D1), i = 1, . . . , k1,(4.6)

and

α2(t
2
i ) ∈ CV(E), i = 1, . . . , k2.(4.7)

Here CV(D) denotes the set of all convex vertices of a polygon D.
We will prove (4.6) and (4.7). In fact, otherwise, there is a vertex α1(t

1
i0
) ∈

CV (D1) or α2(t
2
j0
) /∈ CV (E). First let α1(t

1
i0
) ∈ CV (D1) for some i0. Then, by (4.2),

we can take a triangle �P1α1(t
1
i0
)Q1 ⊂ D1 \D2 such that y = |∇y| = 0 on the parts

P1α1(t1i0) and α1(t1i0)Q1 of the edges of D1. This is a contradiction by Proposition
2.2. Therefore (4.6) must hold. Second let α2(t

2
j0
) /∈ CV (E) for some j0. By (4.1),

y = |∇y| = 0 on the parts P2α2(t2j0) and α2(t2j0)Q2 of the edges of D2. Moreover,

by (4.2), we see that �P2α2(t
2
j0
)Q2 ⊂ D1 \ D2. This is a contradiction again by

Proposition 2.2. Thus the proof of (4.7) is complete.
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Fig. 3. The figure for the proof of Theorem 1.3.

Let us trace the curves Γ1 := α1[a − ε, b] and Γ2 := α2[a − ε, b]. Both curves
coincide from t = a− ε to t = a. By (4.6) and (4.7), the former is oriented clockwise,
while the latter is oriented counterclockwise. By α1(b) = α2(b), the curves (−Γ1) ∪
Γ2 \α1[a− ε, a] is a closed curve and surrounds a polygon D̃. Here we regard −Γ1 as

a curve oriented from α1(b) to α1(a − ε). Moreover, the intersection of D̃ and some

neighborhood of Γ2 is in D2, while the intersection of Ω \ D̃ and some neighborhood
of −Γ1 is in D1 (Figure 3).

Therefore Γ1 cannot be connected to ∂Ω by any continuous curve in ∂out(D1∪D2).
In fact, for any x ∈ ∂Ω and x̃ ∈ Γ1, let γ be an arbitrary continuous curve connecting x
and x̃. Then γ must intersect Γ1 or Γ2 transversally. If γ intersects Γ1 transversally,
then γ must pass in D1. If γ intersects Γ2 transversally, then γ must pass in D2.
Therefore γ 	⊂ Ω\(D1 ∪D2). This contradicts (4.2). Thus, by reduction to absurdity,
the proof of Theorem 1.3 is complete.

5. Proof of Theorem 1.4. Without loss of generality, we may assume that
�b = (1, 0). Since a2 	= 0 by the linear independence of �a and �b, we can choose a2 = 1.
Let us set �µ = (1,−a2). We set x = (x1, x2) ∈ R

2, and

t0 = min{x · �µ|x ∈ D1} and s0 = min{x · �µ|x ∈ D2}.(5.1)

Here and henceforth, x · �µ denotes the scalar product of x, �µ ∈ R
2. Then

t0 = s0.(5.2)

In fact, otherwise, we may assume that t0 < s0. Then

{x ∈ D1|t0 < x · �µ < s0} ⊂ Ω \D2,



158 SUNGWHAN KIM AND MASAHIRO YAMAMOTO

and there exists a vertex O of D1 with O · �µ = t0. Therefore, we can take a small
triangle such that

OA ∪OB ⊂ ∂D1 and �OAB ⊂ {x ∈ D1|t0 < x · �µ < s0}.

We recall that F is the connected component of Ω \ (D1 ∪D2) with ∂Ω. Then we
see that OA ∪ OB ⊂ F . Hence, by (3.6), we have y = |∇y| = 0 on OA ∪ OB. In
terms of (3.2), we apply Proposition 2.2, so that nonexistence of y is shown, which is
a contradiction. Thus (5.2) has been proved.

Next for j = 1, 2, let qj = sup{x2|x = (x1, x2) ∈ ∂Dj and x · �µ = t0} and let
Pj = (pj , qj) be the intersection point of x2 = qj and x · �µ = t0. If q1 	= q2, then we
may assume that q1 > q2. Then we can take a small triangle �P1QR such that

P1Q ∪ P1R ⊂ ∂D1 and �P1QR ⊂ D1 \D2.

Then P1Q ∪ P1R ⊂ F , by (3.2) and (3.6), we apply Proposition 2.2, so that nonexis-
tence of y is shown, which is a contradiction. Therefore,

q1 = q2.(5.3)

Relations (5.2) and (5.3) imply that ∂D1 ∩ ∂D2 ∩ {x | x · �µ = t0} must contain
a common line segment in ∂out(D1 ∪ D2). By Theorem 1.3, we can conclude that
D1 = D2.
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Abstract. In this paper, we study traveling waves in a suspension bridge system governed by
the coupled nonlinear wave and beam equations describing oscillations in the supporting cable and
roadbed. By applying the variational method, it is proved that the suspension bridge system has at
least one nontrivial traveling wave.
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1. Introduction. The suspension bridge is a common type of civil engineering
structure. It is well known that suspension bridges may display certain oscillations
under external aerodynamic forces. Under the action of a strong wind, for example,
a narrow and very flexible suspension bridge can undergo dangerous oscillations [2].
Therefore, it is imperative to investigate dynamic oscillations in suspension bridges, es-
pecially the destructive large-amplitude oscillations, and to develop design techniques
to prevent such destructive oscillations. In the last decade, Lazer and McKenna [13],
[14] proposed new mathematical models describing oscillations in suspension bridges,
which are based upon the observation of the fundamental nonlinearity in suspension
bridges that the stays connecting the supporting cables and the roadbed resist expan-
sion but do not resist compression. These new models are described by systems of
coupled nonlinear partial differential equations.

The new study of suspension bridges initiated by Lazer and McKenna has ob-
tained many important and interesting results. Multiple large-amplitude periodic os-
cillations have been found theoretically and numerically in the single Lazer–McKenna
suspension bridge equation (see [3], [4], [10], [11], [12], [13], [14], [16], [17], and the
references therein). Recently, we studied the Lazer–McKenna suspension bridge sys-
tem governed by coupled nonlinear beam and wave equations and obtained multiple
periodic nonlinear oscillations [6], [7], [8], [9] by applying the variational critical point
theory.

In this paper, we are interested in traveling waves in suspension bridge systems.
Consider a simplified suspension bridge configuration: the roadbed of length L is
modeled by a horizontal vibrating beam with both ends being simply supported; the
supporting cable of length L is modeled by a horizontal vibrating string with both
ends being fixed; and the vertical stays connecting the roadbed to the supporting
cable are modeled by one-sided springs which resist expansion but do not resist com-
pression. Let u(x, t) and w(x, t) denote the downward deflections of the cable and the
roadbed, respectively. The following suspension bridge model was proposed by Lazer
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and McKenna [13]:


mcutt −Quxx −K(w − u)+ = mcg + f1(x, t), 0 < x < L,

mbwtt + EIwxxxx +K(w − u)+ = mbg + f2(x, t), 0 < x < L,

u(0, t) = u(L, t) = 0,

w(0, t) = w(L, t) = 0, wxx(0, t) = wxx(L, t) = 0,

(1.1)

where (w − u)+ = max{w − u, 0}; mc and mb are the mass densities of the cable
and the roadbed, respectively; Q is the coefficient of cable tensile strength; EI is the
roadbed flexural rigidity; K is Hooke’s constant of the stays; and f1 and f2 represent
the external aerodynamic forces. If L is sufficiently large and f1 = f2 = 0, then (1.1)
can be replaced approximately by the following model:{

mcutt −Quxx −K(w − u)+ = mcg, x ∈ R, t ∈ R,
mbwtt + EIwxxxx +K(w − u)+ = mbg, x ∈ R, t ∈ R.(1.2)

By letting u = 0, the second equation in (1.2) is the single Lazer–McKenna suspen-
sion bridge equation. The traveling waves in the single Lazer–McKenna suspension
bridge equation were studied by McKenna and Walter [17] and Chen and McKenna
[4] numerically and analytically. However, there has been little discussion of traveling
waves in suspension bridge systems such as system (1.2). By applying the variational
method and the mountain pass lemma, we show in this paper that (1.2) admits at
least one nontrivial traveling wave.

The organization of this paper is as follows. In section 2, we formulate an equiva-
lent system of (1.2). In section 3, we formulate the corresponding variational problem
and follow the same idea presented in [4] by Chen and McKenna to prove that the
system (1.2) admits at least one nontrivial traveling wave.

2. An equivalent system of (1.2). In order to investigate traveling waves
in the suspension bridge system (1.2), we assume u(x, t) = ue(x) + y(x − ct) and
w(x, t) = we(x) + z(x− ct), where c is the wave speed and (ue, we) are given by


ue(x) = − (mc +mb)g

2Q
x2,

we(x) = − (mc +mb)g

2Q
x2 +

mbg

K
,

which satisfy the steady state equations of (1.2),{ −Quxx −K(w − u)+ = mcg, x ∈ R,
EIwxxxx +K(w − u)+ = mbg, x ∈ R.

Thus (y(s), z(s)), where s = x− ct, satisfies


(c2mc −Q)y′′ −K
[(
z − y +

mbg

K

)+

− mbg

K

]
= 0, s ∈ R,

c2mbz
′′ + EIz(4) +K

[(
z − y +

mbg

K

)+

− mbg

K

]
= 0, s ∈ R.

(2.1)

Let Hr(R) denote the usual Sobolev space on R of order r. We are interested in those
solutions (y, z) of (2.1) such that (y, z) ∈ H2(R) ×H4(R).
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Assume

0 < c2 <
Q

mc +mb
.(2.2)

By adding the two equations in (2.1) together and by integrating the resulting equation
twice, we obtain

y =
1

Q− c2mc

[
EIz′′ + c2mbz

] def
= L1z.(2.3)

Thus L1 is a bounded linear operator from Hr+2(R) to Hr(R). By substituting (2.3)
into the second equation of (2.1), we obtain

c2mbz
′′ +EIz(4) +K

[(
1

Q−c2mc

(−EIz′′+ (Q−c2(mc+mb))z
)
+
mbg

K

)+

− mbg

K

]
=0.

(2.4)
Define operators L2 and L3 by

L2z =
1

Q− c2mc

[−EIz′′ + (Q− c2(mc +mb))z
]
,

L3z = EIz(4) + c2mbz
′′.

Thus L2 is a bounded linear operator from Hr+2(R) to Hr(R), and L3 is a bounded
linear operator from Hr+4(R) to Hr(R). Then (2.4) can be written as

L3z +K

[(
L2z +

mbg

K

)+

− mbg

K

]
= 0.(2.5)

Under condition (2.2), one can verify easily that L2 is invertible from Hr(R) to
Hr+2(R). Let z̃ = L2z; then (2.5) can be written as

L3L
−1
2 z̃ +K

[(
z̃ +

mbg

K

)+

− mbg

K

]
= 0.(2.6)

Define

Az̃ = L3L
−1
2 z̃.

Then A is a bounded linear operator from Hr+2(R) to Hr(R). Let v = K
mbg
z̃. Then

(2.6) becomes

Av +K[(v + 1)+ − 1] = 0.(2.7)

Therefore we have the following theorem.
Theorem 2.1. Let condition (2.2) be satisfied. If (2.7) admits a nontrivial

solution v ∈ H2(R), then the suspension bridge system (2.1) admits a nontrivial
solution (y, z) ∈ H2(R) ×H4(R). The relations between (y, z) and v are given by

y =
mbg

K
L1L

−1
2 v, z =

mbg

K
L−1

2 v.

Thus studying the existence of traveling waves in (1.2) becomes a matter of prov-
ing the existence of nontrivial solutions of (2.7).



TRAVELING WAVES IN SUSPENSION BRIDGES 163

3. Nonlinear traveling waves. To study nontrivial solutions of (2.7), we define
a functional I(v) : H1(R) −→ R by

I(v) =
1

2

∫
R

Av · vds+
K

2

∫
R

[((v + 1)+)2 − 1]ds−K
∫
R

vds.(3.1)

I(v) can also be rewritten as

I(v) =
1

2

∫
R

Av · vds+
K

2

∫
v>−1

v2ds−K
∫
v≤−1

(
v +

1

2

)
ds.

It is easy to show the following lemma.
Lemma 3.1. Assume condition (2.2) is satisfied. Then I(v) is continuously

Fréchet differentiable with

I ′(v)ϕ =

∫
R

Av · ϕds+K

∫
v>−1

vϕds−K
∫
v≤−1

ϕds

for any v, ϕ ∈ H1(R). Consequently, the solutions of (2.7) in H1(R) correspond to
critical points of I(v) in H1(R).

For any v ∈ H1(R), let ‖v‖H1 denote the usual H1-norm given by

‖v‖2
H1 =

∫
R

(|v′|2 + |v|2) ds.
For any v ∈ H1(R), define

‖v‖2
∗ =

∫
R

Av · vds+K

∫
R

|v|2ds.(3.2)

Assume throughout this paper that

mb

mc
<

√
KEI

Q−√
KEI

if 0 < K <
Q2

EI
;

no condition on mb and mc if K ≥ Q2

EI
.

(3.3)

Under condition (3.3), one can verify easily

max

{
0,
Q−√

KEI

mc

}
<

Q

mc +mb
.

Assume throughout this paper that

max

{
0,
Q−√

KEI

mc

}
< c2 <

Q

mc +mb
,(3.4)

which is exactly condition (2.2) if K ≥ Q2/EI and is stronger than condition (2.2) if
0 < K < Q2/EI. We have the following useful lemma.

Lemma 3.2. Assume conditions (3.3) and (3.4) are satisfied. Then

C1‖v‖2
H1 ≤ ‖v‖2

∗ ≤ C2‖v‖2
H1 ∀v ∈ H1(R),
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where

C1 =min

{
Q− c2mc, K − (Q− c2mc)

2

EI

}
> 0 and C2 =max

{
K, Q− c2mc

}
> 0.

Proof. For any v ∈ H1(R), denote by v̂ the Fourier transform of v, which is
defined by

v̂(ξ) = F(v)(ξ) =
1√
2π

∫
R

e−iξsv(s)ds.

By Plancherel’s theorem, we have

‖v‖2
H1 =

∫
R

(
1 + ξ2

) |v̂(ξ)|2dξ.
Note that

‖v‖2
∗ =

∫
R

Av · vds+K

∫
R

v2ds

=

∫
R

v̂(ξ)Âv(ξ)dξ +K

∫
R

|v̂(ξ)|2dξ

=

∫
R

(H(ξ) +K)|v̂(ξ)|2dξ,

where

H(ξ) =
(Q− c2mc)(EIξ

4 − c2mbξ
2)

EIξ2 +Q− c2(mc +mb)
.(3.5)

Under condition (3.4), we have

H(ξ) +K ≤ (Q− c2mc)ξ
2 +K ≤ C2(1 + ξ2),

where C2 = max
{
K, Q− c2mc

}
> 0. Note that

H(ξ) +K = (Q− c2mc)ξ
2 − (Q− c2mc)

2 ξ2

EIξ2 +Q− c2(mc +mb)
+K

≥ (Q− c2mc)ξ
2 − (Q− c2mc)

2

EI
+K.

Under conditions (3.3) and (3.4), we have K − (Q− c2mc)
2

EI
> 0. Let

C1 = min

{
Q− c2mc, K − (Q− c2mc)

2

EI

}
> 0;

then

H(ξ) +K ≥ C1(ξ2 + 1).

Thus upon applying Plancherel’s theorem, we have

C1‖v‖2
H1 ≤ ‖v‖2

∗ ≤ C2‖v‖2
H1 ∀v ∈ H1(R).
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Lemma 3.3. For any v ∈ H1(R),

‖v‖∞ ≤
√

2‖v‖H1 ,

where ‖v‖∞ = sups∈R |v(s)|.
The proof of this lemma can be found in [4, Lemma 2.3].
To prove the existence of nontrivial critical points of I(v) in H1(R), we use the

mountain pass lemma and the concentration-compactness principle of P. L. Lions [18].
Theorem 3.4 (mountain pass lemma [15]). Let X be a real Banach space,

Bρ = {v ∈ X |‖v‖X < ρ}, and ∂Bρ = {v ∈ E |‖v‖X = ρ}. Assume that J ∈ C1(X,R)
satisfies the following conditions:

(a) for some v0 ∈ X, there are constants ρ, α > 0 such that J |v0+∂Bρ ≥ J(v0)+α;

(b) there is an e ∈ X\v0 +Bρ such that J(e) ≤ J(v0).
Then there exists a sequence {vn} in X such that J(vn) → β and J ′(vn) → 0 as
n→ ∞, where β can be characterized by

β = inf
γ∈Γ

max
v∈γ([0,1])

J(v),

where Γ = {γ ∈ C([0, 1], X) | γ(0) = v0, γ(1) = e}.
We are going to show that the functional I(v) given by (3.1) satisfies the ingre-

dients in the mountain pass lemma. Note that I(0) = 0 and I ∈ C1(H1(R), R) by
Lemma 3.1.

Lemma 3.5. Assume conditions (3.3) and (3.4) are satisfied. Then there exist
constants ρ, α > 0 such that

I(v) ≥ α ∀v ∈ ∂Bρ,

where Bρ = {v ∈ H1(R) | ‖v‖H1 < ρ}.
Proof. By Lemma 3.3, ‖v‖∞ ≤

√
2‖v‖H1 for any v ∈ H1(R).

Let ρ =
√

2
2 . Thus for any v ∈ Bρ, ‖v‖∞ < 1; hence v(s)+1 > 0 on R. Therefore,

by Lemma 3.2,

I(v) =
1

2

∫
R

Av · vds+
K

2

∫
R

[(v + 1)2 − 1]ds−K
∫
R

vds

=
1

2

[∫
R

Av · vds+K

∫
R

v2ds

]
=

1

2
‖v‖2

∗ ≥ C1

2
‖v‖2

H1 .

Thus 0 is a local minimum of I(v) in H1(R). Let α =
√

2C1

4 . Then

I(v) ≥ α ∀v ∈ ∂Bρ.

Lemma 3.6. Assume conditions (3.3) and (3.4) are satisfied. Then there exists
an e ∈ H1(R) such that I(e) ≤ I(0) = 0.

Proof. Let ϕ ∈ H1(R) be given such that ϕ ≤ 0 on R and

supp(ϕ) = {s ∈ R | ϕ(s) �= 0}
is compact. Note that∫

R

ξ2|ϕ̂(ξ)|2dξ ≤
∫
R

(1 + ξ2)|ϕ̂(ξ)|2dξ = ‖ϕ‖2
H1 .
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Let ε be a given very small positive number; then there exists an M > 0 such that∫
|ξ|≥M

ξ2|ϕ̂(ξ)|2dξ ≤ ε

and ∫
R

ξ2|ϕ̂(ξ)|2dξ − ε ≤
∫
|ξ|<M

ξ2|ϕ̂(ξ)|2dξ ≤
∫
R

ξ2|ϕ̂(ξ)|2dξ + ε.

Let ψλ(s) = ϕ(λs) for some λ > 0.
Then ∫

R

Aψλ · ψλds =

∫
R

ψ̂λ(ξ)Âψλ(ξ)dξ =
1

λ

∫
R

H(λξ)|ϕ̂(ξ)|2dξ,

where H(ξ) is defined by (3.5). Thus∫
R

Aψλ · ψλds

= λ(Q− c2mc)

∫
R

(
1 − Q− c2mc

EIλ2ξ2 +Q− c2(mc +mb)

)
ξ2|ϕ̂(ξ)|2dξ

≤ λ(Q− c2mc)

[
ε+

∫
|ξ|<M

(
1 − Q− c2mc

EIλ2ξ2 +Q− c2(mc +mb)

)
ξ2|ϕ̂(ξ)|2dξ

]

≤ λ(Q− c2mc)

[
ε+

∫
|ξ|<M

(
1 − Q− c2mc

EIλ2M2 +Q− c2(mc +mb)

)
ξ2|ϕ̂(ξ)|2dξ

]

= λ(Q− c2mc)

[
ε− c2mb − EIλ2M2

EIλ2M2 +Q− c2(mc +mb)

∫
|ξ|<M

ξ2|ϕ̂(ξ)|2dξ
]
.

Under conditions (3.3) and (3.4), we can choose λ to be a very small positive number
such that∫
R

Aψλ·ψλds≤λ(Q−c2mc)

[
ε− c2mc − EIλ2M2

EIλ2M2 +Q− c2(mc +mb)

(∫
R

ξ2|ϕ̂(ξ)|2dξ −ε
)]
<0.

Let ψ0(s) = ψλ0
(s) for some λ0 > 0 such that∫

R

Aψλ0
· ψλ0

ds = −δ < 0.(3.6)

Then, for any B > 0,

1

B
I(Bψ0) =

B

2

∫
R

Aψ0 · ψ0ds+
KB

2

∫
0>ψ0>−1/B

ψ2
0ds

−K
∫
ψ0≤−1/B

(
ψ0 +

1

2B

)
ds.

(3.7)

Since ϕ has a compact support, ψ0(s) = ϕ(λ0s) also has a compact support. Let
µ = | supp(ψ0)| <∞. Then we have

0 ≤ lim
B→∞

KB

2

∫
0>ψ0>−1/B

ψ2
0ds ≤ lim

B→∞
Kµ

2B
= 0(3.8)
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and

0 ≤ lim
B→∞

∫
ψ0≤−1/B

1

2B
ds ≤ lim

B→∞
µ

2B
= 0.(3.9)

By Lemma 3.3, we have

0 ≤ lim
B→∞

∫
ψ0≤−1/B

|ψ0|ds ≤ ‖ψ0‖∞µ ≤
√

2‖ψ0‖H1µ <∞.(3.10)

Thus it follows from (3.6)–(3.10) that

lim
B→∞

1

B
I(Bψ0) ≤ − lim

B→∞
Bδ

2
+
√

2‖ψ0‖H1µ = −∞.

Therefore, there exists a B0 > 0 such that I(B0ψ0) < 0. Then we can choose e =
B0ψ0 ∈ H1(R), which satisfies I(e) < 0.

By Lemmas 3.1, 3.5, and 3.6, I(v) satisfies conditions in the mountain pass lemma.
Thus, by applying the mountain pass lemma, we have the following lemma.

Lemma 3.7. Assume conditions (3.3) and (3.4) are satisfied. Then there exists
a sequence {vn} in H1(R) such that I(vn) → β and I ′(vn) → 0 as n → ∞, where β
can be characterized by

β = inf
γ∈Γ

max
v∈γ([0,1])

I(v),

where Γ = {γ ∈ C([0, 1], H1(R)) | γ(0) = 0, γ(1) = e}.
Note that 0 < α < β < ∞ and, if v ∈ H1(R) is a solution of (2.7), then

any translation of v(s) is also a solution of (2.7). Thus the sequence {vn} given
in Lemma 3.7 does not necessarily have a convergent subsequence. By using the
concentration-compactness principle of P. L. Lions [18], we show that I(v) has a non-
trivial critical point in H1(R).

Lemma 3.8. Assume conditions (3.3) and (3.4) are satisfied. Then the sequence
{vn} defined in Lemma 3.7 is bounded in H1(R).

Proof. Suppose {vn} is unbounded in H1(R). Then {vn} has a subsequence,
denoted also by {vn}, such that ‖vn‖∗ → ∞ as n → ∞. Since I(vn) → β < ∞ and

I ′(vn) → 0, we have I(vn)
‖v‖∗

→ 0 and I′(vn)vn
‖vn‖∗

→ 0. By Lemmas 3.2 and 3.3, we have

‖vn‖∞ ≤√2/C1‖vn‖∗. By Lemma 3.1, we have

2I(vn) = ‖vn‖2
∗ +K

∫
vn≤−1

(−v2n − 2vn − 1)ds

and

I ′(vn)vn = ‖vn‖2
∗ +K

∫
vn≤−1

(−v2n − vn)ds.
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Thus

0 = lim
n→∞

I ′(vn)vn
‖vn‖2∗

= 1 +K lim
n→∞

∫
vn≤−1

−v2n − vn
‖vn‖2∗

ds

= 1 −K lim
n→∞

∫
vn≤−1

|vn|(|vn| − 1)

‖vn‖2∗
ds

≥ 1 −K lim
n→∞

‖vn‖∞
‖vn‖∗

∫
vn≤−1

|vn| − 1

‖vn‖∗ ds

≥ 1 −K
√

2√
C1

lim
n→∞

∫
vn≤−1

|vn| − 1

‖vn‖∗ ds

= 1 −
√

2√
C1

lim
n→∞

2I(vn) − I ′(vn)vn
‖vn‖∗

= 1,

which is a contradiction. Therefore {vn} is bounded.
Lemma 3.9. Assume conditions (3.3) and (3.4) are satisfied. Then there is a

ṽ ∈ H1(R), ṽ �= 0, such that I ′(ṽ) = 0.
Proof. By Lemma 3.8, {vn} defined in Lemma 3.7 is bounded. Let M > 0 such

that ‖vn‖∗ ≤M for any n. Note that

2β = lim
n→∞(2I(vn) − I ′(vn)vn) = lim

n→∞

∫
vn≤−1

(−vn − 1)ds

and ∫
vn≤−1

(−vn − 1)ds ≤
∫
vn≤−1

|vn|3ds ≤
∫
R

|vn|3ds ≤ ‖vn‖∞‖vn‖2
H1 .

Thus there exists n0 > 0 such that, for n ≥ n0, we have

0 < β < ‖vn‖∞‖vn‖2
H1 ≤ 1

C1
‖vn‖∞‖vn‖2

∗ ≤ M2

C1
‖vn‖∞.

Thus

‖vn‖∞ = sup
s∈R

|vn(s)| ≥ C1β

M2
= C0 > 0 ∀n ≥ n0.

Let n ≥ n0. For each vn ∈ H1(R), let sn ∈ R such that vn(sn) = ‖vn‖∞. Let
ṽn(s) = vn(sn+s). Then {ṽn} ⊂ H1(R) is bounded and {ṽn} has a weakly convergent
subsequence which converges to ṽ ∈ H1(R) [18]. Since ṽn(0) ≥ C0, we have ṽ(0) ≥ C0.
Thus ṽ �= 0. Note that I(ṽn) → β and I ′(ṽn) → 0 as n→ ∞. We will show I ′(ṽ) = 0.

For any ϕ ∈ H1(R), by Lemma 3.2 and the definition of weak convergence, we
have

lim
n→∞

∫
R

(Aṽn · ϕ+Kṽnϕ) ds =

∫
R

(Aṽ · ϕ+Kṽϕ) ds.(3.11)
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For any given ε > 0, we can choose a compact set K ⊂ R such that

‖ϕ‖L2(R\K) <
ε

2N1
,

where N1 is a constant such that ‖ṽn‖2 + ‖ṽ‖2 ≤ N for any n. Then∣∣∣∣∣
∫
R\K

[
(ṽn + 1)− − (ṽ + 1)−

]
ϕds

∣∣∣∣∣
≤
∫
R\K

∣∣(ṽn + 1)− − (ṽ + 1)−
∣∣ |ϕ|ds

≤
∫
R\K

|ṽn − ṽ| |ϕ|ds

≤ ‖ṽn − ṽ‖L2(R\K)‖ϕ‖L2(R\K)

≤ ε

2
.

By the Sobolev imbedding theorem [1], the weak convergence of {ṽn} inH1(R) implies
the uniform convergence of {ṽn} in C(K). Thus there exists an n1 > 0 such that for
any n ≥ n1,

sup
s∈K

|ṽn(s) − ṽ(s)| < ε

2N2
,

where N2 is a constant such that

∫
K

|ϕ|ds ≤ N2. Thus

∣∣∣∣
∫
K

[
(ṽn + 1)− − (ṽ + 1)−

]
ϕds

∣∣∣∣
≤
∫
K

∣∣(ṽn + 1)− − (ṽ + 1)−
∣∣ |ϕ|ds

≤
∫
K

|ṽn − ṽ| |ϕ|ds

≤ ε

2
.

Therefore for any ϕ ∈ H1(R)

lim
n→∞

∫
R

(ṽn + 1)−ϕds =

∫
R

(ṽ + 1)−ϕds.(3.12)

By Lemma 3.1, (3.11), and (3.12), we have

0 = lim
n→∞ I

′(ṽn)ϕ = I ′(ṽ)ϕ ∀ϕ ∈ H1(R).

Thus ṽ is a nontrivial critical point of I(v) on H1(R).
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By Lemmas 3.1 and 3.9, we have the following theorem.
Theorem 3.10. Let conditions (3.3) and (3.4) be satisfied. Then (2.7) admits at

least one nontrivial solution in H1(R).
By Theorems 2.1 and 3.10, and by using the bootstrapping technique, we obtain

the main theorem in this paper.
Theorem 3.11. Let conditions (3.3) and (3.4) be satisfied. Then (2.1) admits at

least one nontrivial solution (y, z) ∈ H2(R) ×H4(R). Consequently, the suspension
bridge system (1.2) admits at least one nontrivial traveling wave.

It should be pointed out that Lemmas 3.5–3.7 may shed light on computing
solutions of (2.7) by using the numerical mountain pass algorithm [5]. This algorithm
has been applied successfully to the single Lazer–McKenna suspension bridge equation
(the second equation of (1.2) with u = 0) to obtain traveling waves numerically
[4]. Due to the facts that A is a pseudodifferential operator and that the domain
is the real line R, the implementation of the numerical mountain pass algorithm to
I(v) defined by (3.1) is not trivial. Since the finite difference method or the finite
element method cannot be used directly to handle the pseudodifferential operator A,
some different approximation methods would be needed to overcome this difficulty.
By devising a wavelet-type approximation method, we are able to implement the
numerical mountain pass algorithm to I(v) and obtain numerically some traveling
waves in the suspension bridge system (1.2). The detailed description and numerical
examples will be reported in a separate paper.

Acknowledgment. The author thanks the University of Nevada Las Vegas for
its support.
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Introduction.

0.1. General statement. Let (Ω, g) be a smooth1 n-dimensional Riemann man-
ifold with the boundary Γ; let g be the metric tensor; and let ∆g be the Beltrami–
Laplace operator. Consider the Dirichlet problem

∆g u = 0 in intΩ,(0.1)

u = f on Γ;(0.2)

let u = uf (x) be the solution for a smooth f . With the problem (0.1), (0.2) one

associates the Dirichlet-to-Neumann map (DN-map) Λg : f → ∂uf

∂ν |Γ (ν is the outward
normal).

Assume that the boundary Γ is given and the operator Λg : C
∞(Γ) �→ C∞(Γ) is

known; the Calderon problem is to recover (Ω, g). In another formulation, one needs
to construct a manifold with a prescribed DN-map.

0.2. The case of n = 2. The results. The well-known peculiarity of the
2-dimensional case is the following. If g′ and g′′ are two metrics on Ω such that
g′′ = ρg′ with a positive function ρ (i.e., g′′ is a conformal deformation of g′), then
the DN-maps of the manifolds (Ω, g′) and (Ω, g′′) are connected through the relation
Λg′′ =

1√
ρΛg′ , whereas the additional condition ρ|Γ = 1 implies Λg′′ = Λg′ . This

motivates the following definition.
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1Everywhere in the paper “smooth” means C∞-smooth.

172



CALDERON PROBLEM FOR TWO-DIMENSIONAL MANIFOLDS 173

Let (Ω′, g′) and (Ω′′, g′′) be two smooth manifolds with the common boundary
∂Ω′ = ∂Ω′′ = Γ; we call them conformally equivalent if there exist a diffeomorphism
β : Ω′ �→ Ω′′, β(Ω′) = Ω′′, β|Γ = id and a positive function ρ ∈ C∞(Ω′), ρ|Γ = 1
such that β is an isometry of (Ω′, ρg′) onto (Ω′′, g′′).

The conformal equivalence of manifolds implies the coincidence of their DN-maps.
The remarkable fact is that the converse is also true.

Theorem 1. Two 2-dimensional compact orientable manifolds with the common
boundary are conformally equivalent iff their DN-maps coincide.

In other words, in dimension 2 the class of conformally equivalent manifolds is
determined by its DN-map. This fact was first established by Lassas and Uhlmann
in [7] by means of a technique based on the analytic continuation.

This paper is a corrected and extended version of the preprint [3]. Our results
are the following:

• we show a relationship between the Calderon problem and function algebras
and give a new proof of Theorem 1 exploiting this relationship;

• a simple formula (see (1.6)) linking the DN-map to the Euler characteristic
of the manifold is derived.

The paper is addressed to the specialists in inverse problems. Perhaps it is of
some interest as an application of the commutative Banach algebras.

0.3. A bit of philosophy. Setting the goal to construct the manifold with a
prescribed DN-map, one encounters the naive question: What type of “material” can
it be constructed from?

A traditional situation in the boundary value inverse problems is the following:
a domain Ω ⊂ Rn is given whereas a function c(x) on Ω (density, conductivity, etc.)
has to be found through inverse data. Thus, we possess an initial reserve of points Ω,
can mark an x0 ∈ Ω, and then discuss a possibility to determine c(x0).

Another situation occurs in the Calderon problem for manifolds: Ω is unknown
in itself and has to be recovered, so that the question of “material” turns out to be a
fundamental one. In similar dynamic inverse problem this role is played by a subset
of the space-time cylinder Γ× [0, T ] (the so-called pattern; see [1]). In [7] the manifold
is constructed as a Riemann surface (set of germs) of a real analytic function found
by the classical procedure of analytic continuation along paths from the boundary.

We propose to identify Ω to the spectrum (the set of multiplicative functionals
or, the same, the space of maximal ideals) of some function algebra determined by
inverse data. Roughly speaking, the “material” proposed is the set of the Dirac
measures {δx0

|x0 ∈ Ω}. As we show, it is the set which may be recovered through
the DN-map.

0.4. The plan. The following basic facts are in use:
(i) (Ω, g) has the complex structure of a Riemann surface; this structure deter-

mines the class of metrics conformally equivalent to g;
(ii) the algebra A(Ω) of functions continuous in Ω and holomorphic in intΩ is

nontrivial; functions w ∈ A(Ω) (as local homeomorphisms Ω �→ C) determine the
complex structure;

(iii) algebra A(Ω) is generic: its (topologized) spectrum is homeomorphic to the
manifold, spA(Ω) � Ω, whereas the algebra itself is identical to its Gelfand transform,
Â(Ω) ≡ A(Ω);

(iv) the algebra of traces A(Γ) := {w|Γ |w ∈ A(Ω)} is isometrically isomorphic
to A(Ω) (through the map tr : w �→ w|Γ); the isometry yields spA(Γ) � spA(Ω),
Â(Γ) ≡ Â(Ω) that leads to spA(Γ) � Ω and Â(Γ) ≡ A(Ω);
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(v) the algebra A(Γ) is determined by the DN-map Λg.
To solve the Calderon problem we use these facts in reverse order:
(α) from the operator Λg one recovers the trace algebra A(Γ);
(β) finding its spectrum and Gelfand transform we get Ω � spA(Γ) and A(Ω) ≡

Â(Γ);
(γ) using functions of algebra A(Ω) we endow Ω with the complex structure;
(δ) introducing a metric g on Ω conformal to the complex structure we get the

manifold (Ω, g) whose DN-map coincides with Λg by construction.
The procedure (α)−(δ) gives a canonical representative of the class of conformally

equivalent manifolds which has the given DN-map. The assertion of Theorem 1 is a
simple corollary of determinacy of this procedure.

0.5. A little more philosophy. Let us explain why we look at our approach
as a variant of the BC-method. In dynamic problems the BC-method

(i) constructs a model (isometric copy) of the initial system through inverse data;
(ii) proposes a mechanism (the amplitude formulas of geometric optics) recovering

the initial system through the model.
(See [1], [2].) The same is done in this paper: DN-map determines trace alge-

bra A(Γ), which is a model of algebra A(Ω); the Gelfand transform recovers A(Ω)
(together with manifold Ω). Moreover, there are some reasons to believe that the
mechanism based on geometric optics formulas is in fact a kind of the Gelfand trans-
form.

1. Harmonic functions and fields.

1.1. Harmonic functions. So, we have a 2-dimensional smooth orientable com-
pact (Ω, g) with the boundary Γ. Just for simplicity we assume that Γ is homeomor-
phic to the circle (consists of one connected component).

Let Harmg Ω := {u |∆g u = 0 in intΩ} be the set of functions harmonic in Ω;
in local coordinates one has

∂

∂xi
det

1
2 g(x) gij(x)

∂u(x)

∂xj
= 0.(1.1)

Solutions of the problem (0.1), (0.2) are said to be potentials; the family of potentials
U := {uf | f ∈ C∞(Γ)} coincides with Harmg Ω

⋂
C∞(Ω).

1.2. Rotation operator. Introduce near Γ the semigeodesic coordinates γ, τ
such that ds2 = Edγ2 + dτ2 and E|Γ = 1, so that γ is the natural parameter on Γ
and τ(x) = dist (x,Γ). The field ∂

∂γ fixes an orientation of Γ and an orientation of Ω;

note that ∂
∂τ = − ∂

∂ν .
The orientation determines the continuous family of rotations Φ(x) ∈ EndTxΩ

such that 〈Φ(x) a,Φ(x) b〉 = 〈a, b〉, 〈Φ(x) a, a〉 = 0 for a, b ∈ TxΩ and Φ(γ) ∂∂ν = ∂
∂γ on

Γ. Note that Φ2(x) = −id, x ∈ Ω.
Let �L be the (real) space of the square integrable vector fields on (Ω, g) with the in-

ner product (a, b) =
∫
Ω
dΩx 〈a(x), b(x)〉. The rotation operator Φ : �L �→ �L, (Φy)(x) :=

Φ(x)y(x), x ∈ Ω, is a unitary operator in �L.
1.3. Harmonic fields. Let �H := {h ∈ �L |div h = divΦh = 0 in intΩ} be the

(sub)space of harmonic fields. Harmonic fields are smooth in intΩ; the set �H∞ :=
�H⋂ �C∞(Ω) is dense in �H.
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The space �H contains the subspace of potential fields �E := {∇u ∈ �H |u ∈
Harmg Ω

⋂
H1(Ω)} (H1(Ω) is the Sobolev class). The set �E∞ := �E ⋂ �C∞(Ω) = ∇U

is dense in �E .
Recall in addition that every h ∈ �H is locally potential: for any x0 ∈ Ω there

exist a neighborhood Ux0
and a function v ∈ Harmg Ux0

such that h = ∇v in Ux0
.

In what follows we denote by the common symbol “tr” the reduction of fields and
functions given in Ω on the boundary Γ. The important fact is that the harmonic
field is determined by its trace: h ∈ �H and trh = 0 implies h = 0 in Ω. Indeed,
fixing an x0 ∈ Γ, in Ux0 we have h = ∇v that leads to ∆gv = 0 and tr∇v = 0,
yielding v = const and h = 0 in Ux0

due to the uniqueness of the solution to the
Cauchy problem for the second order elliptic equation. Covering the manifold with
neighborhoods and applying the same uniqueness theorem, one easily obtains h = 0
everywhere in Ω.

Introduce the subspace �D := �H � �E and list some of its known properties (see,
e.g., [10]). This subspace has a finite dimension determined by topology of Ω:

dim �D = dim �H/�E = β1(Ω) = 1− χ(Ω),(1.2)

where β1 is the first Betti number (dimension of the first homology group of the
manifold) and χ is its Euler characteristic. Elements of the subspace are smooth:
�D ⊂ �C∞(Ω). The fields b ∈ �D are tangent on Γ; indeed, for any f ∈ C∞(Γ) we have

0 =

∫
Ω

dΩ 〈∇uf , b〉 =
∫

Γ

dγ f

〈
b,

∂

∂ν

〉
,

yielding 〈b, ∂∂ν 〉 = 0 or, equivalently, tr b = κ ∂
∂γ with a smooth κ = 〈b, ∂∂γ 〉.

1.4. Topology from DN-map. Let Ċ∞(Γ) := {f ∈ C∞(Γ) | ∫
Γ
dγ f(γ) = 0}

be the subset of smooth functions with zero mean value. For f ∈ Ċ∞(Γ) we denote
by Jf the primitive function with zero mean value: Jf ∈ Ċ∞(Γ), d

dγJf = f .

Recall the well-known properties of the DN-map: KerΛg = {const}, RanΛg ⊂
Ċ∞(Γ). Note also that by standard elliptic theory the operator ΛgJ : L2(Γ) �→
L2(Γ), DomΛgJ = Ċ∞(Γ) is continuous.

Fix f ∈ C∞(Γ); in accordance with the decomposition �H = �E ⊕ �D the field

Φ∇uf ∈ �H may be represented in the form

Φ∇uf = ∇up + bf(1.3)

with ∇up ∈ �E∞ (p being determined by f) and bf ∈ �D; let tr bf = κf ∂
∂γ .

Lemma 1. (i) The equality

[1+ (ΛgJ)
2]
df

dγ
= ΛgJκ

f(1.4)

holds.
(ii) The inclusion Φ∇uf ∈ �E∞ is equivalent to the relation

[1+ (ΛgJ)
2]
df

dγ
= 0.(1.5)

(iii) The equality

dim [1+ (ΛgJ)
2] Ċ∞(Γ) = 1− χ(Ω)(1.6)
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is valid.
Proof. (i) The traces of the left- and right-hand sides of (1.3) may be written as

follows:

tr Φ∇uf = Φtr∇uf = Φ
[
df

dγ

∂

∂γ
+ Λgf

∂

∂ν

]

=
df

dγ
Φ
∂

∂γ
+ Λgf Φ

∂

∂ν
= Λgf

∂

∂γ
− df

dγ

∂

∂ν
(1.7)

and

tr [∇up + bf ] =

(
dp

dγ
+ κf

)
∂

∂γ
+ Λgp

∂

∂ν
.(1.8)

Using (1.7) and (1.8) we get

Λgf =
dp

dγ
+ κf , − df

dγ
= ΛgJ

dp

dγ

(note that the first equality yields κf ∈ Ċ∞(Γ)). Eliminating dp
dγ one easily gets (1.4).

(ii) In accordance with (1.3) the inclusion Φ∇uf ∈ �E∞ is equivalent to bf = 0,
which is equivalent to κf = 0 leading to (1.5).

(iii) Let P be the (orthogonal) projection in �H onto �D; we will show that

PΦ�E∞ = �D.(1.9)

Indeed, if b ∈ �D, b ⊥ PΦ�E∞, then for any smooth f one has

0 =

∫
Ω

dΩ 〈Φ∇uf , b〉 =
∫

Ω

dΩ 〈∇uf ,Φ∗b〉

=

∫
Γ

dγ uf
〈
∂

∂ν
,Φ∗b

〉
=

∫
Γ

dγ f

〈
Φ
∂

∂ν
, b

〉
=

∫
Γ

dγ f

〈
∂

∂γ
, b

〉
.

This leads to 〈 ∂∂γ , b〉 = 0, then tr b = 〈b, ∂∂γ 〉 ∂∂γ = 0 (recall that b’s are tangent to Γ),
and, finally, to b = 0. Thus, the set PΦ�E∞ is dense in �D, which implies (1.9) in view
of dim �D <∞.

Let f in (1.3) run over C∞(Γ); due to (1.9) the corresponding projections bf cover
�D. Since the map bf �→ κf is injective, one has dim {κf | f ∈ C∞(Γ)} = dim �D. As is
easy to see, the operator ΛgJ is injective on Ċ

∞(Γ); therefore

dim �D = dim {κf | f ∈ C∞(Γ)} = dim {ΛgJκf | f ∈ C∞(Γ)}.

Taking into account (1.2), the last equality, and (1.4) we get

1− χ(Ω) = dim �D = dim [1+ (ΛgJ)
2]

d

dγ
C∞(Γ),

which is equivalent to (1.6). The lemma is proved.
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In the situation of the Calderon problem, Lemma 1 may be exploited as follows.
Assume that Ω is a fortiori known to be homeomorphic to the sphere with handles
and one removed disk. In this case χ(Ω) = 1−2m, where m is the number of handles,
and one can find m by the formula

m =
1

2
dim [1+ (ΛgJ)

2] Ċ∞(Γ).

In particular, Ω is homeomorphic to the disk (so that m = 0) iff (ΛgJ)
2 = −1 on

Ċ∞(Γ).
Given the DN-map and checking (1.5) one can select a subset of f ’s in C∞(Γ) such

that the “conjugate” fields Φ∇uf are also potential. Later we’ll use this opportunity.
2. Algebras.

2.1. CBA dictionary. We begin with minimal information concerning the com-
mutative Banach algebras (CBAs); for details, see [6], [9].

A. The CBA is a (complex or real) Banach space A equipped with the multi-
plication operation ab satisfying ab = ba; ||ab|| ≤ ||a|| ||b||, a, b ∈ A. Example: the
algebra C(X) of functions continuous on a (topological) compact X with the norm
||a|| = maxΩ |a(·)|; the subalgebras of C(X) are called function algebras.

CBA is said to be uniform if it has the unit e : ea = a and the relation ||a2|| = ||a||2
holds. All the function algebras are uniform.

B. A subspace I �= A is called ideal if ja ∈ I for any j ∈ I, a ∈ A. Ideal I is
maximal if for any ideal Ĩ ⊂ A the relation I ⊂ Ĩ implies I = Ĩ.

Let I be the set of maximal ideals of algebra A. Every I ∈ I is closed; codim I =
1; the quotient space A/I is isometrically isomorphic to the field of complex numbers
C.

C. Let A′ be the space of continuous functionals on A. A functional δ ∈ A′ is
called multiplicative if δ(ab) = δ(a)δ(b). Example: the Dirac measure δx0 ∈ C ′(X) :
δx0
(a) = a(x0). The set of multiplicative functionals is denoted byM.
D. There exists a canonical bijection between the setsM and I: if δ ∈ M, then

Iδ := Ker δ ∈ I; if I ∈ I, then the projection δI : A �→ A/I = C is an element ofM.
In what follows we identifyM to I through this bijection.

E. The Gelfand transform maps element a ∈ A into function â onM by the rule
â(δ) := δ(a), δ ∈ M. The Gelfand topology is defined as the weakest topology onM
in which all of â are continuous. The setM equipped with this topology is a compact;
this compact is called the spectrum (or the maximal ideal space) of the algebra A and
denoted by spA.

The Gelfand transform Â := {â | a ∈ A} of algebraA is a subalgebra of the algebra
C(spA). If A is uniform, the map a �→ â turns out to be an isometric isomorphism

(on its image): (αa + βb + cd)∧ = αâ + βb̂ + ĉd̂, ||â|| = ||a|| for all α, β ∈ C and
a, b, c, d,∈ A; in this case Â is a canonical realization of A in the form of function
algebra.

F. An isomorphism t : A(X) �→ B(Y ) of two function algebras is called spatial if
there exists a bijection β : X �→ Y such that tw = w ◦ β−1. For a function algebra
A ⊂ C(X), to each point x0 ∈ X one associates the Dirac measure δx0

∈ spA, and
because of this the natural embedding ε : X �→ spA, ε(x0) = δx0 occurs.

A function algebra A ⊂ C(X) is said to be generic if ε is a homeomorphism
from X onto spA. Generic algebra is spatially isomorphic to its Gelfand transform
Â : ŵ = w ◦ ε−1.
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2.2. Algebra A(Ω). The functions u, u∗ ∈ Harmg Ω are said to be conjugate
if they satisfy the Cauchy–Riemann conditions ∇u∗(x) = Φ(x)∇u(x), x ∈ intΩ.
Note the relation (u∗)∗ = −u (mod const). If Ω is homeomorphic to the disk, each
harmonic u possesses the conjugate u∗; it is not the case if topology of Ω is non-
trivial [5].

We assign a harmonic u to the set P if it has the conjugate u∗ and u, u∗ ∈
Harmg Ω

⋂
C(Ω).

Let us define the family of complex functions A(Ω) := {w = u+ iu∗ |u ∈ P} and
mention some of its properties [5]:

(i) in proper (isothermal) local coordinates x1, x2 each w ∈ A(Ω) is a holomorphic
function of z = x1+ ix2; functions of A(Ω), as local homeomorphisms from Ω into C,
determine on Ω a complex structure of the Riemann surface;

(ii) for each w ∈ A(Ω) |w| attains maximum on Γ;
(iii) A(Ω) is a closed subalgebra of the (complex) algebra C(Ω);
Lemma 2. The algebra A(Ω) is generic.
Proof. (1) The embedding ε(Ω) ⊂ spA(Ω) is a general fact (see section 2.1,

item F) and one needs to prove the converse embedding only.
(2) Choose an I ∈ spA(Ω); we are going to show that there exists a point xI ∈ Ω

such that j(xI) = 0 for all j ∈ I. Assume the opposite: for any x ∈ Ω one can find
jx ∈ I such that jx(x) �= 0. Due to continuity of jx there exists a neighborhood
Ux ! x such that jx doesn’t vanish in Ux. Since

⋃
x Ux covers Ω, we can select a finite

subcovering Ux1 , . . . , Uxp ; in this case the corresponding jx1 , . . . , jxp have no common
zeros in Ω.

(3) Due to smoothness of the boundary Γ the manifold (Ω, g) may be embedded
into a larger manifold (Ω′, g′) : Ω ⊂ Ω′,distg′(∂Ω′,Ω) = r0 > 0, g′|Ω = g. One way
to realize such an embedding is to use the semigeodesic coordinates, extending E on
τ < 0 .

Denote Ωr := {x ∈ Ω′ |distg′(x,Ω) < r}, 0 < r < r0. Assign a function w ∈ A(Ω)
to the family O(Ω) if it has a holomorphic continuation in Ωr (with r depending on
w). The family O(Ω) is dense in A(Ω) (see [4, p. 48, Corollary 2]).

(4) Since codim I = 1, the set I
⋂O(Ω) is dense in I. Due to this one can

approximate jx1 , . . . , jxp by functions j̃x1 , . . . , j̃xp ∈ I
⋂O(Ω) so that j̃xk �= 0 in Uxk

and j̃x1
, . . . , j̃xp have no common zeros in Ω.

Since the set {j̃xk} is finite, there exists Ωr ⊃ Ω such that j̃x1 , . . . , j̃xp are defined
and have no common zeros in Ωr. Considering Ωr as a noncompact Riemann surface
one can find functions g1, . . . , gp holomorphic in Ωr and satisfying the condition g1j̃x1+
· · · + gpj̃xp = 1 everywhere in Ωr (see [5, p. 205]). Reducing functions on Ω we get

g̃1j̃x1 + · · · + g̃pj̃xp = 1 in Ω for g̃k := gk|Ω ∈ A(Ω) and j̃xk ∈ I, which yields the
inclusion 1 ∈ I. The last leads evidently to I = A(Ω), which contradicts I to be a
proper ideal.

Thus, all the functions belonging to I vanish in a point xI ∈ Ω and the embedding
ε(Ω) ⊃ spA(Ω) is established. So, ε(Ω) = spA(Ω), and it remains to show that ε is
a homeomorphism.

(5) Identifying maximal ideals of A(Ω) to multiplicative functionals we set Ix0 ≡
δx0 , where δx0

is the Dirac measure. In terms of the bijection ε : Ω �→ spA(Ω),
existence of which has been proved above, the Gelfand transform takes the form
ŵ(δ) := δ(w) = w(xδ) = (w ◦ ε−1)(δ) (i.e., is a spatial isomorphism).

Topologizing spA(Ω) by Gelfand, we endow it with the weakest topology in which
all ŵ ∈ Â(Ω) are continuous. Since the corresponding topology on Ω determined by
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functions w ∈ A(Ω) coincides with the initial (metric) topology of (Ω, g), the bijection
ε turns out to be a homeomorphism. The lemma is proved.

The density of O(Ω) in A(Ω) used in the proof provides one more important
property of the algebra A(Ω):

(iv) the smooth subalgebra A∞(Ω) := A(Ω)⋂C∞(Ω) is dense in A(Ω).
2.3. Conforming metrics. The algebraA(Ω) as well as the corresponding com-

plex structure on Ω (see (i), section 2.2) are determined by the metric g, the structures
corresponding to metrics g and ρg being identical since these metrics define one and
the same reserve of harmonic functions.2

The converse is true in the following sense. We call a metric g conforming to the
complex structure determined by the algebra A(Ω) if ReA(Ω) ⊂ Harmg Ω. It can be
shown that any two metrics conforming to the given structure are distinguished by a
functional multiplier.

To construct a metric conforming to a given structure one can use the following
standard trick. Let us choose an atlas {Uk, ϕk} :

⋃
k Uk ⊃ Ω; ϕk : Uk �→ R2, ϕk(x) =

{Rewk(x), Imwk(x)}, wk ∈ A(Ω); let ηk be a subordinated partition of unity: ηk ≥
0, supp ηk ⊂ Uk,

∑
k ηk = 1. Define on Ω the tensors g

(k)
ij := ηkδij . The tensor

g :=
∑
k g

(k) defines a required metric.
Another way to find a conforming metric is to solve (1.1) with respect to the

entries det
1
2 g gij for sufficiently many u ∈ ReA(Ω), i.e., to recover the metric g up to

a function multiplier.

2.4. Algebra A(Γ). The set of traces A(Γ) := trA(Ω) = {trw |w ∈ A(Ω)} is
a closed subalgebra of the (complex) algebra C(Γ). We list some of its properties.

(i) Since maxΩ |w| for w ∈ A(Ω) is attained at Γ, the equality ||w||A(Ω) =
||trw||A(Γ) holds. Therefore, the mapping tr is an isometric isomorphism of alge-
bras.

(ii) Since A(Ω) is generic, whereas A(Γ) is isometrically isomorphic to A(Ω), the
Gelfand transform Â(Γ) ⊂ C(spA(Γ)) turns out to be spatially isomorphic to A(Ω).
The corresponding spatial isomorphism from A(Ω) onto Â(Γ) is ∧ tr,3 whereas the
corresponding space bijection is β : Ω �→ spA(Γ), β(x0) = tr Ix0 .

(iii) Define the smooth subalgebra A∞(Γ) := A(Γ)⋂C∞(Γ) = trA∞(Ω). Since
A∞(Ω) is dense in A(Ω) (see (iv), section 2.2) A∞(Γ) turns out to be dense in A(Γ).

The following lemma plays a key role: it shows that the trace algebra A(Γ) is
determined by the DN-map. Introduce the set

F :=

{
f ∈ C∞(Γ) | [1+ (ΛgJ)

2]
df

dγ
= 0

}

of (real) functions satisfying (1.5). To each f ∈ F we associate the conjugate function

f∗ such that df∗

dγ = ΛgJ
df
dγ holds. As is easy to see, f

∗ is determined by f up to
constant, f∗ ∈ F , and f∗∗ = −f (mod const).

Lemma 3. The representation

A(Γ) = closC(Γ) {f + if∗ | f ∈ F}(2.1)

is valid.

2In dimension 2 the equalities ∆g u = 0 and ∆ρg u = 0 are equivalent.
3Here and below (section 3.2) ∧ denotes the Gelfand transform ∧A := Â.
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Proof. If w = u + iu∗ ∈ A∞(Ω), then u = uf with f = tru, u∗ = up with p =
tru∗, and Φ∇uf = ∇up. According to (ii) of Lemma 1 the last equality implies that
f, p ∈ F . Taking the traces in the same equality one easily gets dp

dγ = Λgf = ΛgJ
df
dγ ,

so p = f∗. Hence trw = f + ip = f + if∗ ∈ A∞(Γ), which establishes the inclusion
A∞(Γ) ⊂ {f + if∗ | f ∈ F}.

Take f ∈ F and its conjugate f∗ ∈ F . By virtue of Lemma 1(ii) the fields ∇uf
and ∇uf∗

are potential and satisfy

trΦ∇uf = Λgf ∂

∂γ
− df

dγ

∂

∂ν
=
df∗

dγ

∂

∂γ
+ Λgf

∗ ∂

∂ν
= tr∇uf∗

.

Equality of the traces leads to equality of the fields: Φ∇uf = ∇uf∗
in Ω. Hence,

the function w = uf + iuf
∗
belongs to A∞(Ω), whereas its trace f + if∗ belongs to

A∞(Γ). Thus, we have {f + if∗ | f ∈ F} ⊂ A∞(Γ), which establishes the equality
A∞(Γ) = {f + if∗ | f ∈ F}.

Since A∞(Γ) is dense in A(Γ) one gets (2.1). The lemma is proved.
3. Solving the problem.

3.1. Construction of the manifold. So, let an operator Λg acting in (real)
C∞(Γ) be given and known to be the DN-map of a manifold. By results of Lee and
Uhlmann [8] Λg determines the metric tensor at the boundary g|Γ; therefore one can
also assume the length element dγ to be known. Due to the latter the class Ċ∞(Γ)
as well as the integration operator J acting in this class are at our disposal.

The following procedure gives a canonical representative of the class of manifolds
whose DN-maps coincide with Λg.

Step 1. Select the set F in C∞(Γ). Through F recover the algebra A(Γ) by the
representation (2.1).

Step 2. Find spA(Γ) =: Ω (see (ii), section 2.4). Identify the subset of ideals
{Iγ0 | γ0 ∈ Γ} ⊂ Ω to Γ by the rule Iγ0 ≡ γ0.

Step 3. Find the Gelfand transform Â(Γ) =: A(Ω) . Note that the “boundary”
{Iγ0 | γ0 ∈ Γ} constructed in the previous step may also be identified as the Shilov
boundary of A(Ω) (see, e.g., [9]).

Step 4. Using functions w ∈ A(Ω) as local homeomorphisms Ω �→ C recover on
Ω the complex structure. Its realifying determines on Ω a structure of the smooth
2-dimensional manifold with the boundary Γ.

Step 5. Equip Ω with a metric g̃ conforming to the complex structure (see section
2.3). Choose a positive function ρ ∈ C∞(Ω) such that the metric g := ρg̃ satisfies
(ρg̃)Γ = g|Γ.

The manifold (Ω, g) solves the Calderon problem: its DN-map coincides with Λg
by construction.

3.2. Proof of Theorem 1. We recall that ∧ denotes the Gelfand transform
∧A = Â. The statement of the theorem is just a consequence of the well-determinacy
of the procedure described above.4 Indeed,

(1) if (Ω′, g′) and (Ω′′, g′′) have the common DN-map, the corresponding sets
F determined by Λg coincide: F ′ = F ′′. Whence, by Lemma 3 the trace algebras
coincide: A′(Γ) = A′′(Γ);

4Such a situation is quite usual for the BC-method.
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(2) by the property (ii), section 2.4, the algebras A(Ω′) and A(Ω′′) are spatially
isomorphic to the Gelfand transform of the common trace algebra:

∧′ [tr′A(Ω′)] = Â′(Γ) = Â′′(Γ) = ∧′′ [tr′′A(Ω′′)];

for the corresponding space bijections one has

β′(Ω′) = spA′(Γ) = spA′′(Γ) = β′′(Ω′′).(3.1)

Therefore the algebras A(Ω′) and A(Ω′′) are spatially isomorphic (through the map
(tr′′)−1 (∧′′)−1 ∧′ tr′), whereas the manifolds Ω′ and Ω′′ are connected through the
bijection β : Ω′ �→ Ω′′, β = β′′−1

β′;
(3) since the differentiable structures on Ω′ and Ω′′ are determined by the algebras

A(Ω′) and A(Ω′′), the bijection β is a diffeomorphism. Due to (3.1) one has β′(γ0) =

I ′γ0 = I ′′γ0 = β′′(γ0), γ0 ∈ Γ, which follows to β(γ0) = β′′−1
(β′(γ0)) = γ0, i.e., β|Γ = id;

(4) introduce on Ω′ the (induced) metric g̃′′ providing β to be isometry from
(Ω′, g̃′′) onto (Ω′′, g′′). Since A(Ω′) and A(Ω′′) are isomorphic, the metric g̃′′ (as well
as g′) turns out to be conforming to the structure determined by A(Ω′). Due to the
last, one has g̃′′ = ρg′ with a ρ ∈ C∞(Ω′). By β|Γ = id one has g̃′′|Γ = g′′|Γ; taking
into account g′|Γ = g′′|Γ = g|Γ we obtain g̃′′|Γ = g′|Γ, implying ρ|Γ = 1.

So, β is an isometry from (Ω′, ρg′) onto (Ω′′, g′′); i.e., (Ω′, g′) and (Ω′′, g′′) belong
to one and the same conformal class. The theorem is proved.

Comments and acknowledgments. The first variant of this paper [3], pub-
lished as a preprint in June 2002, doesn’t contain references to the results of Lassas
and Uhlmann: unfortunately, we hadn’t known of their work [7]. We would like to
apologize for this confusion and to thank G. Alessandrini and V. Isakov for informing
us about this paper.

To the best of our knowledge, the relation spA(Ω) � Ω was first established by
J. Wermer [11] in the case of the Riemann surface with analytic Γ homeomorphic to
the circle. If Ω ⊂ C, the algebra A(Ω) is generic in a much more general situation
(without assumptions on smoothness and connectedness of Γ, see, e.g., [6]). Perhaps,
the same is valid for Riemann surfaces, so that, most probably, Lemma 2 is well
known for specialists in function algebras. However, we didn’t succeed in finding
exact references.

Some relations between topology of Ω and the number of generators of the algebra
A(Ω) (and, hence, of A(Γ)) are mentioned in [3]. This is also a way to extract
topological properties from DN-map.

If Ω ⊂ C is the unit disk, the operator ΛgJ in fact coincides with the Hilbert
transform on the unit circle. Perhaps this operator has an abstract analogue in a class
of the uniform algebras with nontrivial Shilov boundary.

This paper was written during my stay at the University of Nantes in May 2002.
I’m grateful to this university for the kind invitation and the support of my visit.

I’m much obliged to R. Novikov for hospitality, friendly help, and fruitful discus-
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preparing the manuscript.
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Abstract. The pole condition is a general concept for the theoretical analysis and the numerical
solution of a variety of wave propagation problems. It says that the Laplace transform of the physical
solution in radial direction has no poles in the lower complex half-plane. In the present paper we show
that for the Helmholtz equation with a radially symmetric potential the pole condition is equivalent
to Sommerfeld’s radiation condition. Moreover, a new representation formula based on the pole
condition is derived and used to prove existence, uniqueness, and asymptotic properties of solutions.
This makes it possible to compute the far field of the solution without a Green function, which may
not be known explicitly.

Key words. transparent boundary conditions, Laplace transform, Sommerfeld radiation condi-
tion
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1. Introduction. Differential equations of Helmholtz type describe a large vari-
ety of time-harmonic wave propagation problems in acoustics, electromagnetics, and
quantum mechanics. To formulate such problems properly on unbounded domains, a
so-called radiation condition has to be imposed at infinity. Physically this condition
implies that asymptotically no energy is transported towards the origin. The stan-
dard condition for bounded obstacles is Sommerfeld’s radiation condition (cf. [19]).
For scattering at rough surfaces or for inhomogeneous exterior domains containing
wave guides, Sommerfeld’s radiation condition is not valid, and it is often not obvious
how to formulate an appropriate radiation condition. In some simple cases a radiation
condition can be formulated by a series representation of the solution. For general
rough surface scattering problems the so-called upward propagating radiation condi-
tion based on an integral representation of the solution is commonly used (cf. [22]).
In this paper we propose a new radiation condition called the pole condition, which
seems to be valid for a wide range of problems. Roughly speaking, a function sat-
isfies the pole condition if its Laplace transform in the propagation direction has a
holomorphic extension to the lower part of the complex plane. Here we show that for
bounded obstacles and radially symmetric potentials the pole condition is equivalent
to Sommerfeld’s radiation condition.

The aim of this paper is not only to give a new proof of existence, uniqueness, and
asymptotic properties of solutions to scattering problems based on the pole condition
but also to lay the foundations of a new class of efficient numerical algorithm. We
derive a set of equations, which can be solved numerically. A detailed discussion of
numerical algorithms based on the pole condition will be published elsewhere [10].
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For a preliminary report on numerical results we refer to [11]. For an analysis of the
PML method based on the pole condition we refer to [9].

In many applications, one is interested in the behavior of the solution far away
from the obstacle. Using a representation formula derived in this paper the solution
can be evaluated at any given point in a cheap and stable manner. For problems
for which neither a fundamental solution nor a series representation of the solution is
known explicitly, this distinguishes our method from the standard methods (cf. [1, 2,
3, 7, 8, 12]).

The potential range of applications of our method is not restricted to the class of
problems considered in this paper. A basic requirement is that the Laplace transform
of the differential equation along a family of rays connecting the artificial boundary
to infinity can be carried out analytically. The original motivation of this work was
problems in integrated optics involving waveguides. For a numerical solution of such
problems by methods based on the pole condition we refer to [11, 16].

The pole condition was first considered by the second author for problems with
one space-like and one time-like variable. In [15, 17] the time-discretized Schrödinger
equation is interpreted as a sequence of inhomogeneous Helmholtz problems. One-way
wide-angle Helmholtz equations, ranging between the Schrödinger and the Helmholtz
equations, were studied in [18]. With the results below, we hope to be able to carry
over the analysis of these papers to time-dependent problems in arbitrary space di-
mensions.

2. Main results and outline of the paper. We consider partial differential
equations of the form

∆u+ (1 + p(|x|))κ2u = 0(2.1)

with a real-valued functions p in some exterior domain Ω ⊃ {x ∈ R
d : |x| > a∗},

a∗ > 0. p is assumed to be analytic of the form p(r) =
∑∞

j=2 pjr
−j and describes

either a radially symmetric potential or a variation of the refractive index.
Let us motivate the pole condition by the simplest case d = 1, p = 0, and a∗ = 1.

Here (2.1) reduces to the ordinary differential equation u′′+κ2u = 0 with the general
solution

u(1 + r) = C1e
iκr + C2e

−iκr, r > 0.

The term C1e
iκr corresponds to an outgoing wave, and C2e

−iκr to an incoming wave.
The Laplace transform û1(s) :=

∫∞
0
e−sru(1 + r) dr of u(1 + ·), Re s > 0, is given by

û1(s) =
C1

s− iκ +
C2

s+ iκ
.

This function, which has a holomorphic extension to C \ {iκ,−iκ}, satisfies resiκû1 =
C1 and res−iκû1 = C2. u is outgoing if and only if û1 has no pole at −iκ, i.e., if and
only if res−iκû1 = 0.

To avoid notational difficulties we assume that d ≥ 2 from now on. Let us
introduce the function

U(ρ, x̂) := ρ
d−1
2 u(ρx̂)(2.2)

for ρ > a∗, x̂ ∈ Sd−1 := {x ∈ R
d : |x| = 1}, and its (shifted) Laplace transform

Ûa(s, x̂) :=

∫ ∞

0

e−srU(r + a, x̂) dr(2.3)
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for Re s > 0, x̂ ∈ Sd−1, and a ≥ a∗. Note that the scaling factor in the definition of
U is chosen such that ‖U(ρ, ·)‖L2(Sd−1) = ‖u‖L2(ρSd−1) for all ρ > a∗.

Definition 2.1 (pole condition). A bounded function u : {x ∈ R
d : |x| > a∗} →

C satisfies the pole condition if for some a ≥ a∗ the function Ûa(·, x̂) defined by (2.2)
and (2.3) has a holomorphic extension to the lower complex half-plane C

− := {s ∈
C : Im s < 0} for all x̂ ∈ Sd−1 such that the function s �→ ∫

Sd−1 |∂Ûa∂s (s, x̂)|2 ds(x̂) is
bounded on compact subsets of C

−.
Remark 2.2. If the pole condition is satisfied for one a ≥ a∗, it is satisfied for all

a ≥ a∗. This follows from the identity

∫ ∞

0

e−srU(a+ r, x̂) dr =

∫ b−a

0

e−srU(a+ r, x̂) dr(2.4)

+ e−s(b−a)

∫ ∞

0

e−srU(b+ r, x̂) dr

and the fact that both s �→ ∫ b−a

0
e−srU(a + r, x̂) dr and s �→ e−s(b−a) are entire

functions. Hence, the pole condition is a condition concerning the behavior of u at
infinity but not the behavior of u on any compact set.

A similar condition without the scaling (2.2) was considered in [14]. We will show
that a solution u to the differential equation (2.1) satisfies the pole condition if and
only if it satisfies the Sommerfeld radiation condition

lim
ρ→∞ ρ

d−1
2

(
∂u

∂ρ
− iκu

)
= 0, ρ = |x|,(2.5)

uniformly for all directions x
|x| .

The structure of the singularity is more complicated in general than in the simple
example above. If a solution to (2.1) satisfies the pole condition, then Û(·, x̂) has an
analytic extension not only to C− but even to C\{iκ − t : t ≥ 0}; i.e., we do not
have an isolated singularity, but a singularity with a branch cut. For a holomorphic
function f : V → C defined on a domain V ⊂ C and σ ∈ V we define Resσ f :=
lims→σ,s∈V (s − σ)f(s) if this limit exists. If f has an isolated pole of order 1 at σ,
then Resσ f = resσf . The functions

u∞(x̂) = e−iκaResiκ Ûa(·, x̂),(2.6a)

Ψa(t, x̂) =
e−iκa

2πi
lim
ε→0

(
Ûa(iκ− t− iε, x̂)− Ûa(iκ− t+ iε)

)
(2.6b)

are well defined for x̂ ∈ Sd−1, t > 0, and a sufficiently large; i.e., u∞ is independent
of a and the limit in (2.6b) exists. It is a crucial result of our analysis that these
functions determine the solution U completely via the representation formula

U(a+ r, x̂) = eiκ(a+r)

(
u∞(x̂) +

∫ ∞

0

e−trΨa(t, x̂) dt

)
, r ≥ 0.(2.7)

Let ∆Sd−1 denote the Laplace–Beltrami operator on Sd−1 and define

∆̃x̂ϕ := ∆Sd−1ϕ+

(
(d− 1)(3− d)

4

)
ϕ(2.8)
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for ϕ ∈ C2(Sd−1). Then u∞ and Ψa satisfy the Volterra integrodifferential equation{
p̌a(t) + te

−at∆̃x̂

}
u∞(x̂) + t(t− 2iκ)Ψa(t, x̂)(2.9)

+

∫ t

0

{
p̌a(t− t1) + (t− t1)e−a(t−t1)∆̃x̂

}
Ψa(t1, x̂) dt1 = 0.

Here p̌a is the inverse Laplace transform of pa := p(a + ·) (cf. Lemma 4.1). If p =
0, then (2.9) can be converted to a differential equation by multiplying by eat and
differentiating twice with respect to t.

Given boundary data f(x̂) = U(a, x̂), (2.7) implies

u∞(x̂) +
∫ ∞

0

Ψa(t, x̂) dt = e
−iκaf(x̂).(2.10)

We show that the system (2.9), (2.10) has a unique solution (u∞,Ψa) if the radius
a of the artificial boundary Γa := {x : |x| = a} is chosen sufficiently large. Other
boundary conditions can easily be taken care of by differentiating (2.7). It suffices to
compute Ψa(t, x̂) on a small interval t ∈ [0, T ] since Ψa(t, x̂) decays exponentially as
t→ ∞. Once u∞ and Ψa are known, U(ρ, x̂) can be evaluated for ρ ≥ a using (2.7).

The plan of this paper is as follows: In section 3 we introduce the Dirichlet-
to-Neumann map on Γa and prove an existence and uniqueness theorem based on
properties of this operator. In section 4 we derive an ordinary differential equation
for the Fourier coefficients of U(r, ·) and a corresponding Volterra integral equation
for the Laplace transform of these functions. Existence and uniqueness of solutions to
these integral equations is established in section 5. In the following section the main
results of this paper are proved for single Fourier modes. As a simple consequence
of a representation formula corresponding to (2.7) we derive asymptotic formulas
for (generalized) Hankel functions for large arguments. In section 8 we construct
the Dirichlet-to-Neumann map using Fourier series and show that it satisfies the
assumptions of the existence and uniqueness theorem in section 3. Then, in section
9, we establish the formulas (2.7) and (2.9) and show the equivalence of the pole
condition and Sommerfeld’s radiation condition.

3. The Dirichlet-to-Neumann map on the artificial boundary. For sim-
plicity, we assume that Ω is the complement of some sufficiently smooth compact set
K contained in {x : |x| < a∗} such that p(|x|) is well defined and finite for x ∈ Ω.
Moreover, we assume that u satisfies the Neumann boundary conditions ∂u

∂ν = f on
the boundary ∂K. We could easily accommodate for more complicated situations,
e.g., different boundary conditions or inhomogeneities in the interior of Γa.

From now on we assume without loss of generality (w.l.o.g.) that κ = 1. Since a
and p are arbitrary, this can be achieved by the following rescaling: x̃ = κx, ρ̃ = κρ,
ã = κa, t̃ = κ−1t, s̃ = κ−1s, p̃(ρ̃) = p(ρ), ˜̌p(t̃) = κp̌(t), ũ(x̃) = u(x), Ũ(ρ̃, x̂) =

κ
d−1
2 U(ρ, x̂),

˜̂
U(s̃, x̂) = κ

d+1
2 Û(s, x̂), ũ∞(x̂) = κ

d−1
2 u∞(x̂), Ψ̃(t̃, x̂) = κ

d+1
2 Ψ(t, x̂). For

notational convenience we will drop the tildes in the following.
To arrive at a weak formulation, we multiply (2.1) by a function −v and integrate

over Ωa := {x ∈ Ω : |x| < a}. Formally applying Green’s theorem yields∫
Ωa

(∇u∇v − (1 + p(|x|))uv) dx−
∫

Γa∪∂K

∂u

∂ν
v ds = 0,

where the unit normal vector ν points to the exterior of Ωa. Now we introduce a
so-called Dirichlet-to-Neumann map DtN : H1/2(Γa) → H−1/2(Γa) which maps the
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Dirichlet data u|Γa of a solution u satisfying (2.1) and (2.5) to its Neumann data
∂u
∂ν |Γa . Existence and uniqueness of such solutions in {x : |x| > a} will be proved
later. With the sesquilinear form a : H1(Ωa)×H1(Ωa)→ C,

a(u, v) :=

∫
Ωa

(∇u∇v − (1 + p(|x|))uv) dx−
∫

Γa

DtNuv ds,

and the continuous antilinear functional F : H1(Ωa)→ C,

F (v) :=

∫
∂K

fv ds,

the variational problem reads

a(u, v) = F (v) for all v ∈ H1(Ωa).(3.1)

Proposition 3.1. Let DtN be an operator with the following properties:
1. DtN : H1/2(Γa)→ H−1/2(Γa) is linear and bounded.
2. There exists a compact operator L : H1/2(Γa) → H−1/2(Γa) such that the

inequality Re
∫
Γa
(−DtN + L)ϕϕ ds ≥ 0 holds for all ϕ ∈ H1/2(Γa).

3. Im
∫
Γa
DtNϕϕ ds > 0 for all ϕ ∈ H1/2(Γa), ϕ �= 0.

Then the variational problem (3.1) has a unique solution u for all right-hand sides F ,
and u depends continuously on F .

Proof. As the proof is rather standard (cf., e.g., [2, Thm. 5.7] for a similar proof),
we give only a brief sketch. Condition 1 ensures that the sesquilinear form a is well
defined. Condition 2 is used to establish the G̊arding inequality

Re a(u, u) + c2‖u‖2
L2(Ωa)

+Re 〈LTru,Tru〉L2(Γa)
≥ c1‖u‖2

H1(Ωa)

for all u ∈ H1(Ωa) with constants c1, c2 > 0 and the trace operator Tr : H1(Ωa) →
H1/2(Γa). Since the embedding operator H1(Ωa) ↪→ (H1(Ωa))

′ and the operator
Tr′ LTr : H1(Ωa)→ H1(Ω1) are compact, it can be shown by the Lax–Milgram lemma
and Riesz theory that the operator induced by the sesquilinear form a is Fredholm
with index 0; i.e., uniqueness implies existence and stability. Let u ∈ H1(Ωa) satisfy
a(u, v) = 0 for all v ∈ H1(Ωa). Taking the imaginary part of this equation and using
condition 3, it follows that u has vanishing Cauchy data on Γa. Hence, by virtue
of the Cauchy–Kovalevskaya theorem and elliptic regularity results, u must vanish
everywhere.

Usually the properties of DtN required in the previous proposition are proved
using special properties of the Hankel functions (cf. [2, 12]). In the following we
present a more systematic approach which also works for p �= 0.

4. The Laplace transform of the separated differential equation. Let
{(ϕj , λj) : j ∈ N} be a complete orthonormal system of eigenfunctions and eigenvalues

of the operator ∆̃x̂ defined in (2.8). ϕj may be chosen as trigonometric monomials
for d = 2 and spherical harmonics for d = 3. Let Uj(r) :=

∫
S1 U(r, ·)ϕj ds denote the

Fourier coefficients of U . Using the formula

∆ =
∂2

∂ρ2
+
d− 1

ρ

∂

∂ρ
+
1

ρ2
∆Sd−1

it follows after some simple computations that the Fourier coefficients Uj(r) satisfy
the differential equations

U ′′
j (ρ) +

(
1 + p(ρ) + λjρ

−2
)
Uj(ρ) = 0.(4.1)
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Note that there is no term involving U ′
j due to the scaling factor ρ

(d−1)/2.

Let (Lf)(s) := ∫∞
0
e−sρf(ρ) dρ, Re s > 0, denote the Laplace transform of a

function f . In order to derive an equation for Ûj,a := LUj(·+a) we need the following
lemma.

Lemma 4.1. Assume that the convergence radius of p(t−1) =
∑∞

m=1 pmt
m is

greater than 1
ap
, ap ∈ (0,∞), and let a > ap. Let

p̌a(s) := e
−as

∞∑
m=1

pm
(m− 1)!

sm−1(4.2)

be the inverse Laplace transform of p(· + a) (i.e., (Lp̌a)(r) = p(r + a)), and let u ∈
C([0,∞)) be a bounded function. Then

L (p(·+ a)u) (s) =
∫ ∞

s

p̌a(s1 − s)(Lu)(s1) ds1(4.3)

for Re s > 0. Here
∫∞
s
f(s1) ds1 :=

∫∞
0
f(s+ t) dt. For all k = 0, 1, . . . there exists a

constant C > 0 such that

|p̌(k)
a (s)| ≤ Ce−aRe s+ap|s|(4.4a)

for all s ∈ C. If p1 = 0, then also

|p̌a(s)| ≤ C|s|e−aRe s+ap|s|.(4.4b)

Proof. We first prove by induction in m ∈ N that (4.3) is true for p(t−1) = tm.
To show this for m = 1 we consider the function f(t) := (t + a)−1u(t). A simple
computation shows that lims→∞ Lf(s) = 0 and

(Lu)(s) = (L ((·+ a)f))(s) = a(Lf)(s)− (Lf)′(s).
On the other hand, the right-hand side of (4.3) with p̌a(s) = e−as is the unique
solution of this differential equation vanishing at ∞. Now assume that (4.3) holds
true for p(t−1) = tm with m ≤ j, j ∈ N. Then

L
(

u

(·+ a)j+1

)
(s) =

∫ ∞

s

ea(s−s1)(s1 − s)j−1

(j − 1)!

(
L
(
u

·+ a
))

(s1) ds1

=

∫ ∞

s

ea(s−s1)(s1 − s)j−1

(j − 1)!

∫ ∞

s1

ea(s1−s2)(Lu)(s2) ds2 ds1

=

∫ ∞

s

ea(s−s2)(Lu)(s2)
∫ s2

s

(s1 − s)j−1

(j − 1)!
ds1 ds2

=

∫ ∞

s

ea(s−s2)(s2 − s)j
j!

(Lu)(s2) ds2.

So far we have proved (4.3) if t �→ p(t−1) is a polynomial. It remains to consider
the case that p is given by an infinite series. It follows from the definition of ap that
C := supm≥0 |pm+1|a−m

p <∞. Hence,

|p̌a(s)| ≤ e−aRe s
∞∑

m=0

|pm+1||s|m
m!

≤ Ce−aRe s
∞∑

m=0

amp |s|m
m!

≤ Ce−aRe s+ap|s|.



POLE CONDITION I: THEORY 189

The other estimates in (4.4) are derived in a similar manner. Since all partial sums in
the definition of p̌a are bounded by the right-hand side of the previous inequality and
since the series p(t) converges uniformly for |t| ≥ a, it can be shown by Lebesgue’s
dominated convergence theorem that

∫ ∞

0

e−srp(r + a)u(r) dr = lim
M→∞

∫ ∞

0

e−sr
M∑

m=1

pm
(r + a)m

u(r) dr

= lim
M→∞

∫ ∞

s

ea(s−s1)
M∑

m=1

pm(s− s1)m−1

(m− 1)!
(Lu)(s1) ds1

=

∫ ∞

s

p̌a(s1 − s)(Lu)(s1) ds1.

It follows from (4.1) and Lemma 4.1 that∫ ∞

s

(
p̌a(s1 − s) + e−a(s1−s)(s1 − s)λj

)
Ûj,a(s1) ds1

+ (s2 + 1)Ûj,a(s) = sUj(a) + U
′
j(a), Re s > 0.(4.5)

5. The integral equation in the Laplace domain. In this and the following
two sections we consider differential equations of the form

U ′′(a+ r) + (1 + (LPa)(r))U(a+ r) = 0, r > 0,(5.1)

with an analytic function Pa of the form (4.2) with p1 = 0 which satisfies the estimates
(4.4) with a > ap. Equations (4.1) are of this form. The dependence of the solution on
λj will be discussed later. For studying the integral equation in the Laplace domain,

it is useful to factor out the singularities of Ûa at ±i, i.e., to look at the function
wa(s) = Ûa(s)(s

2 + 1).(5.2)

In the following we often omit the index a in Ûa, wa, and Pa. Due to Lemma 4.1 the
function w satisfies the Volterra integral equation

w(s) + Jw(s) = sU(a) + U ′(a)(5.3)

with

(Jw)(s) :=

∫ ∞

s

P (s1 − s) w(s1)
s21 + 1

ds1.(5.4)

Let us introduce the cuts S±i := {±i + t : t < 0} and V := C\(Si ∪ S−i)
(cf. Figure 5.1(a)). We define the metric on V by d(s1, s2) := |s1−s2|+ |ϕ(s1)−ϕ(s2)|
with the function ϕ : V → R given by ϕ(s) := −Re s if Re s ≤ 0 and | Im s| < 1,
ϕ(s) := 0 else. This metric is defined such that points on opposite sides of the cuts
are far away from each other. Let (V , d) denote the completion of the metric space
(V, d). Then V is the union of V and the set of points s± := limε→0,ε>0 s ± iε with
s ∈ Si ∪ S−i. For a continuous function v : V → C we can define a “jump function”
[v] : Si ∪ S−i → C by

[v](s) := v(s−)− v(s+), s ∈ Si ∪ S−i.(5.5)
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Note that [v] is continuous on Si ∪ S−i with respect to the topology induced by the
usual norm of C.

We introduce the norm

‖w‖X := sup
s∈V

|w(s)|
|s|2 + 1

and denote by X the space of all w ∈ C(V ) which are holomorphic in V and satisfy
w(s) = o

(|s|2) uniformly for |s| → ∞. X is equipped with the norm ‖ · ‖X .
In the following we use the notation |s|1 := |Re s| + | Im s| for s ∈ C. Moreover,

we define the diamond-shaped domains D± := {s ∈ V : |s∓ i|1 < 1
2}.

Lemma 5.1. Let 0 < α < 1. Then there exists a constant c such that for all
w ∈ X

|(Jw)(s)| ≤ c
(

sup
Re s1≥Re s

|w(s1)|
|s1|2 + 1

)
, s ∈ V \(D+ ∪D−),(5.6a)

|(Jw)′(s)| ≤ c
(

sup
Re s1≥Re s

|w(s1)|
|s1|2 + 1

)
, s ∈ V \(D+ ∪D−),(5.6b)

|(Jw)(s)− (Jw)(σ)| ≤ c‖w‖X d(s, σ)α, s, σ ∈ D±,(5.6c)

|(Jw)(s)| ≤ c‖w‖X , s ∈ V .(5.6d)

Proof. Part (a). Since the operator J is defined by an integral over a holomorphic
function (cf. (5.4)), we may deform the integration path in order to facilitate the
proof. We choose the path γs(t) := s+ t, t ≥ 0, if it does not intersect with D+ ∪D−.
Otherwise we set

γs(t) := s+ t+ iψs(t), t ≥ 0,(5.7)

with a real-valued function ψs as shown in Figure 5.1(a). ψs is chosen such that γs does
not intersect D+ ∪D− ∪ Si ∪ S−i, ψs(0) = 0, |ψs| ≤ 1

2 , |ψ′
s| ≤ 1, meas(suppψs) ≤ 1,

and limt→∞ ψ(t) = 0. We have

(Jw)(s) =

∫ ∞

0

P (t+ iψs(t))
|γs(t)|2 + 1
γs(t)2 + 1

w(γs(t))

|γs(t)|2 + 1γ
′
s(t) dt.(5.8)

Due to (4.4a) there exists a constant c > 0 such that for all t ≥ 0

sup
|τ |≤min(t,1/2)

|P (t+ iτ)|dt ≤ ce−(a−ap)t/2.(5.9)

To see this, choose T such that −at+ap|t+ i/2| ≤ −(a−ap)t/2 for t ≥ T . Then (5.9)
holds true for t ≥ T . By a compactness argument it is also true that 0 ≤ t ≤ T . Here
and in the following, c is a generic constant. Moreover, sups∈C\(D+∪D−)

|s|2+1
|s2+1| < ∞.

Hence,

|(Jw)(s)| ≤ c
(∫ ∞

0

e−(a−ap)t/2 dt

)(
sup

Re s1≥Re s

|w(s1)|
|s1|2 + 1

)

=
2c

a− ap

(
sup

Re s1≥Re s

|w(s1)|
|s1|2 + 1

)
.

This implies (5.6a).
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Fig. 5.1. Integration paths in the proof of Lemma 5.1.

Part (b). Differentiating (5.4) yields

(Jw)′(s) = −
∫ ∞

s

P ′(s1 − s) w(s1)
s21 + 1

ds1(5.10)

since P (0) = 0. Now (5.6b) follows as above.
Part (c). W.l.o.g. we may assume that s, σ ∈ D+ and that |s − i|1 ≥ |σ − i|1.

In this proof we say that s and σ are on opposite sides of Si if Re s,Reσ < 0 and
Im(s−i) Im(σ−i) < 0 or if s and σ are the limit of a sequence of such points. We first
assume that s and σ are not on opposite sides of Si. Let γσs be the shortest path from
σ to s inD+ such that |s1−i|1 ≥ |σ−i|1 for all s1 ∈ γσs (cf. Figure 5.1(b)). The length
of this path can be estimated by l(γσs) ≤ 3δ, where δ := |s−σ|. Moreover, we choose
the path γs from s to ∞ such that |s1 − i|1 ≥ |s− i|1 for all s ∈ γs (cf. Figure 5.1(b)).
We have

(Jw)(σ)− (Jw)(s) =

∫
γσs

P (s1 − σ)
s21 + 1

w(s1) ds1

+

∫
γs

(P (s1 − σ)− P (s1 − s)) w(s1)
s21 + 1

ds1.

To estimate the integral over γσs, we use the inequalities |s| ≤ |s|1 ≤ √
2|s| and (4.4b):∣∣∣∣ P (s1 − s)

(s1 + i)(s1 − i)
∣∣∣∣ ≤ √

2

∣∣∣∣ 1

s1 + i

∣∣∣∣ ·
∣∣∣∣P (s− s1)s− s1

∣∣∣∣ ≤ c.
Together with the bound on l(γσs) this yields

∣∣∣∫γσs . . .
∣∣∣ ≤ cδ‖w‖X .

The integral over γs is estimated by the mean value theorem:∣∣∣∣
∫
γs

(P (s1 − σ)− P (s1 − s)) w(s1) ds1
s21 + 1

∣∣∣∣
≤ δ

∫
γs

sup
λ∈[0,1]

|P ′(s1 − λs− (1− λ)σ)| |w(s1)| |ds1||s21 + 1|
.

To bound the integrand for s1 ∈ D+ ∩ γs we note that
|s1 − i|1 ≥ |s1 − s|1 − |s− i|1 ≥ |s1 − s|1 − |s1 − i|1,
2|s1 − i|1 ≥ 2|s− i|1 ≥ |s− i|1 + |σ − i|1 ≥ |s− σ|1 ≥ δ
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due to the choice of γs. Adding these inequalities yields 4|s1 − i|1 ≥ |s1 − s|1 + δ.
Together with the estimates |s1−s|1 ≥ Re(s1−s) and |s1+i|1 ≥ 1 we obtain |s21+1| ≥
1
2 |s1 + i|1|s1 − i|1 ≥ 1

8 (Re(s1 − s) + δ). Outside of D+ the bound
∣∣∣w(s1)
s21+1

∣∣∣ ≤ c‖w‖X
holds true. With (4.4a) and t∗ := sup{t ≥ 0 : s+ t ∈ D+} we obtain

∣∣∣∣
∫
γs

. . .

∣∣∣∣ ≤ cδ‖w‖X
(∫ t∗

0

dt

t+ δ
+

∫ ∞

t∗
e−(a−ap)t/2 dt

)

≤ cδ‖w‖X
(
ln δ +

a− ap
2

)
≤ cδα‖w‖X .

Since δ ≤ d(s, σ), we have proved (5.6c) if s and σ are not on opposite sides of Si.
Otherwise, we obtain from our previous estimates that

|(Jw)(σ)− (Jw)(s)| ≤ |(Jw)(σ)− (Jw)(i)|+ |(Jw)(i)− Jw(s)|
≤ c(|σ − i|α + |i− s|α).

We may assume w.l.o.g. that Im(σ − i) ≤ 0 and Im(s − i) ≥ 0. Then d(σ, s) =
|Reσ|+ |σ − s| and

| Im(σ − i)|+ | Im(i− s)| = | Im(σ − s)| ≤ d(σ, s),
|Re(s− i)| = |Re s| ≤ |Reσ|+ |Re(s− σ)| ≤ d(s, σ),
|Re(σ − i)| = |Reσ| ≤ d(s, σ).

Inserting these inequalities in the previous inequality yields (5.6c).
Part (d). Inequality (5.6d) follows easily from (5.6a) and (5.6c).
Lemma 5.2. The operator J is compact from X to X.
Proof. It follows from (5.4) that Jw is holomorphic in V for w ∈ X and from

Lemma 5.1 that Jw is continuous in V . Together with the estimate (5.6d) this shows
that J maps X into X. To prove compactness, let (wn)n∈N be a sequence in X with
‖wn‖X ≤ 1 for all n ∈ N. We have to show that the sequence vn := Jwn, n ∈ N,
has a convergent subsequence in X. Let us first consider the restrictions of vn on
some compact subset K ⊂ V . Due to (5.6b) and (5.6c), the sequence (vn|K)n∈N

is equicontinuous on K with respect to the metric d. Hence, by the Arzelà–Ascoli
theorem, there exists a subsequence of (vn)n∈N which converges with respect to the
norm ‖ϕ‖∞,K := sups∈K |ϕ(s)|. In order to construct a subsequence which converges
globally, we introduce the sets Kj := {s ∈ V : |s| ≤ j} for j ∈ N. It is easy to show
that these sets are compact with respect to the metric d. By the argument above,
there exists a subsequence (vn1(l))l which converges with respect to ‖·‖∞,K1

. Applying
the same argument again, we get a subsequence (vn2(l))l which converges with respect
to ‖ · ‖∞,K2 . Repeating this process of selecting subsequences, we arrive at an array
vnj(l) with the property that each row is a subsequence of the previous row. The
diagonal subsequence vn(l) := vnl(l) converges to some function v with respect to the

supremum norm on each Kj . In particular, liml→∞ vn(l)(s) = v(s) for all s ∈ V . It
remains to show that ‖vn(l) − v‖X → 0. Let ε > 0. By virtue of (5.6d) there exists a

constant C > 0 such that |vn(l)(s)| ≤ C for all s ∈ V and l ∈ N. Therefore,

|v(s)− vn(l)(s)|
1 + |s|2 ≤ ε for all l ∈ N and |s| ≥

√
2C

ε
.(5.11)
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Let J ≥ √
2C/ε, J ∈ N. Since vn(l) converges to v with respect to ‖ · ‖∞,KJ , there

exists L ∈ N such that

sup
s∈KJ

∣∣v(s)− vn(l)(s)
∣∣

|s2|+ 1 ≤ ‖v(s)− vn(l)‖∞,KJ ≤ ε(5.12)

for l ≥ L. Putting (5.11) and (5.12) together yields ‖v − vn(l)‖X ≤ ε for l ≥ L.
Proposition 5.3. The integral equation (5.3) has a unique solution in X for all

U(a), U ′(a) ∈ C.
Proof. Let w ∈ X satisfy the homogeneous equation w+ Jw = 0. If we can show

that w = 0, then the assertion follows from Riesz theory and Lemma 5.2. Inequality
(5.6d) implies that ‖w‖∞ < ∞. Hence, there exists s∗ ∈ C with |Re s∗| ≥ σ :=
2
√
c/a2 such that |w(s)| ≤ 2|w(s∗)| for all s ∈ C with |Re s| ≥ σ. It follows from

(5.6a) that

|w(s∗)| = |(Jw)(s∗)| ≤ sup
Re s1≥σ

c

|s21|+ 1
|w(s1)|

<
1

4
sup

Re s1≥σ
|w(s1)| ≤ 1

2
|w(s∗)|,

i.e., w(s∗) = 0. This, however, implies that w(s) = 0 for all s ∈ C with Re s ≥ σ, and
since w is holomorphic in V and continuous in V , w(s) = 0 for all s ∈ V .

6. The cut functions. In this section we study the cut functions

ψa,±(t) :=
[Ûa](±i− t)
2πiRes±i Ûa

, t > 0(6.1)

(cf. (5.5)). Note that ±2iRes±i Ûa = w(±i). In the next lemma we derive Volterra
integral equations for ψa,±, which are uniquely solvable. This shows that ψa,± can be

defined without the assumption Resi Ûa �= 0 and that, in fact, ψa,± depends only on
Pa but not on U .

Lemma 6.1. If Res±i Ûa �= 0, the cut functions ψa,±(t) defined by (6.1) for t > 0
satisfy the integral equations

ψa,+(t) +

∫ t

0

Pa(t− t1)
t(t− 2i)

ψa,+(t1) dt1 = − Pa(t)

t(t− 2i)
,(6.2a)

ψa,−(t) +
∫ t

0

Pa(t− t1)
t(t+ 2i)

ψa,−(t1) dt1 = − Pa(t)

t(t+ 2i)
.(6.2b)

Proof. We will only prove (6.2a) since the proof of (6.2b) is analogous. Due to
(5.3) and (5.2) we have

(s2± + 1)Û(s±) +
∫
γε±

P (s1 − s±)Û(s1) ds1 = s±U(a) + U ′(a)

for s = i−t ∈ Si and ε > 0. The paths γε+ and γε− are shown in Figure 6.1. Subtracting
the equation with the + sign from the equation with the − sign yields

t(t− 2i)[Û ](i− t) +
∫ −ε

−t

P (t+ t1)[Û ](i+ t1) dt1

+

∫ 2π

0

P (t− εe−iϕ)
w(i− εeiϕ)

(−εeiϕ)(2i− εeiϕ) (−iε)e
iϕ dϕ = 0.
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Fig. 6.1. Integration path in the proof of Lemma 6.1.

Since w is continuous at i, the last integral converges to πP (t)w(i) = 2πiP (t)Resi Û
as ε→ 0. Dividing by 2πi(Resi Û)t(t− 2i) establishes (6.2a).

Since both the kernel of the integral operators and the right-hand sides are
bounded due to our assumptions on P , the Volterra integral equations (6.2) are
uniquely solvable (cf., e.g., [13, Thm. 10.15]). From these integral equations we can
deduce the following two lemmas concerning the behavior of ψ± near 0 and near ∞.
Since

ψ−(t) = ψ+(t)(6.3)

the first lemma is only formulated for ψ+.
Lemma 6.2. The function ψ+ defined in (6.1) belongs to C∞([0,∞)), and the

derivatives of ψ+ at 0 can be computed recursively as follows:

ψ+(0) = − lim
t→0

P (t)

t(t− 2i)
,(6.4a)

ψ
(k+1)
+ (0) = − lim

t→0

dk+1

dtk+1

{
P (t)

t(t− 2i)

}
(6.4b)

+
(k + 1)!

2i

k+1∑
j=1

1

(2i)k+1−j(j + 1)!

j∑
n=1

P (n)(0)ψ
(j−n)
+ (0).

Proof. Introducing (Kv)(t) :=
∫ t

0
P (t−t1)
t(t−2i) v(t1) dt1, (6.2a) can be written as

ψ+(t) + (Kψ+)(t) = − P (t)

t(t− 2i)
, t > 0.(6.5)

By repeated partial integration we obtain

∫ t

0

P (t− t1) t
j
1

j!
dt1 =

∞∑
l=1

P (l)(0)

∫ t

0

(t− t1)l
l!

tj1
j!
dt1 =

∞∑
l=1

P (l)(0)tl+j+1

(l + j + 1)!
.

Changing the order of integration and summation in the first equality is justified
because the Taylor series of P converges uniformly. The right-hand side of the last

equation is an analytic function in t. If v(t) =
∑∞

j=0
v(j)(0)

j! tj is a polynomial, then

(Kv)(t) =
1

t(t− 2i)

∫ t

0

P (t− t1)
∞∑
j=0

v(j)(0)

j!
tj1 dt1

=
1

t− 2i

∞∑
l=1

∞∑
j=0

P (l)(0)v(j)(0)
tl+j

(l + j + 1)!
.
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Expanding (t− 2i)−1 in a power series and using the Cauchy product twice yields

(Kv)(t) =
1

−2i
∞∑
r=0

(
t

2i

)r ∞∑
m=1

tm

(m+ 1)!

m∑
n=1

P (n)(0)v(m−n)(0)(6.6)

=
1

−2i
∞∑
l=1

tl
l∑

j=1

(
1

2i

)l−j
1

(j + 1)!

j∑
n=1

P (n)(0)v(j−n)(0).

In particular, it can be seen that Kv is analytic at t = 0.
We prove by induction that ψ+ ∈ Cn([0,∞)) for n ∈ N. Note that the right-

hand side of (6.5) is analytic at t = 0 due to our assumptions on P . The case
n = 0 follows from the continuity and boundedness of the kernel of the integral
operator K for 0 ≤ t1 < t. Equation (6.4a) is a consequence of (Kψ+)(0) = 0.
Assume now that ψ+ ∈ Ck([0,∞)), k ≥ 0. Then there exists a function Rk such that

ψ+(t) =
∑k

j=0

ψ
(j)
+ (0)

j! tj +Rk(t) and Rk(t) = o
(
tk
)
as t→ 0. We have

|(KRk)(t)| ≤ 1

t|t− 2i|
∫ t

0

|P (t− t1)|dt1 sup
0≤t1≤t

|Rk(t1)| = o
(
tk+1

)
since P (t) = O(t) as t→ 0. Therefore, KRk ∈ Ck+1([0,∞)) and (KRk)

(k+1)(0) = 0.

Now it follows from (6.5) and (6.6) that ψ+ ∈ Ck+1([0,∞)) and that ψ
(k+1)
+ (0) satisfies

(6.4b).
Since the first term on the right-hand side of (the analogue of) (2.4) does not

contribute to Res±i Ûa and ψa,±, the quantities

U±
∞ := e±iaRes±i Ûa(6.7)

are independent of a, and

eatψa,±(t) = ebtψb,±(t)(6.8)

for b ≥ a. Alternatively, (6.8) follows from (6.2) using eatPa(t) = e
btPb(t) (cf. (4.2)).

Note that ψb,± can be defined for all b ∈ R as a solution to (6.2) even if Ûb does not
exist.

Lemma 6.3. For all a ∈ R and ε > 0 the cut functions satisfy

|ψa,±(t)| = O
(
e−(a−ap−ε)t

)
, t→ ∞.(6.9)

Proof. Due to (6.8) it suffices to prove the lemma for a = ap. It follows from
(4.4a) with k = 0 and (6.2) that

|ψap,±(t)| ≤
C

|t(t− 2i)|
(
1 +

∫ t

0

|ψap,±(t1)|dt1
)

for all t > 0. Choosing t∗ such that C
|t∗(t∗−2i)| ≤ ε, it follows that

|ψap,±(t)| ≤ Γ +

∫ t

t∗
ε|ψap,±(t1)|dt1, t > t∗,

where Γ := ε(1+
∫ t∗
0

|ψap,±(t1)|dt1). Now Gronwall’s lemma (cf. [4]) implies |ψap,±(t)| ≤
Γeε(t−t∗) for t > t∗.
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Theorem 6.4. The function U has a holomorphic extension to {ζ ∈ C : Re ζ >
a}, and U and U (k) (k ≥ 1) satisfy the representation formulas

U(z + a) = U+
∞ e

i(z+a)

(
1 +

∫ ∞

0

e−tzψa,+(t) dt

)
(6.10a)

+ U−
∞ e

−i(z+a)

(
1 +

∫ ∞

0

e−tzψa,−(t) dt
)
,

U (k)(z + a) = U+
∞ e

i(z+a)

(
ik +

∫ ∞

0

(i− t)ke−tzψa,+(t) dt

)
(6.10b)

+ U−
∞ e

−i(z+a)

(
(−i)k +

∫ ∞

0

(−i− t)ke−tzψa,−(t) dt
)

for Re(z) > 0 and a ≥ ap.
Proof. Let γR1 (t) := 1 + it, −R ≤ t ≤ R (cf. Figure 6.2(a)). Then

U(a+ r) = lim
R→∞

1

2πi

∫
γR1

ersÛa(s) ds

for a > ap and r ≥ 0 by the inversion theorem for the Fourier transform. Now

1

2πi

∫
γR1

ersÛa(s) ds = − 1

2πi

∫
γR2

ersÛa(s) ds

by virtue of Cauchy’s integral theorem. Due to (5.2), (5.3), and (5.6d) the func-
tion Û decays of order |Ûa(s)| = O(|s|−1

)
as |s| → ∞ uniformly for all direc-

tions. Therefore, the integrals from B to C, from D to E, and from F to A
vanish asymptotically as R → ∞. Moreover, given ε > 0, there exists δ > 0

such that | ∫ π/2+δ

π/2
ersR(τ)Ûa(sR(τ))s

′
R(τ) dτ | ≤ πε for all R ≥ 1, where sR(τ) :=

i+R exp(iτ). Due to the exponential decay of the integrand, there exists R0 ≥ 1 such
that | ∫ π

π/2+δ
ersR(τ)Ûa(sR(τ))s

′
R(τ) dτ | ≤ πε for R ≥ R0. Both estimates together

imply that |(2πi)−1
∫D

C
ersÛa(s) ds| ≤ ε for R ≥ R0. Analogously, it can be shown

that the integral from E to F tends to 0 as R→ ∞. A computation similar to that in
the proof of Lemma 6.1 shows that the integrals around ±i converge to Res±i Ûae

±ir

as R → ∞. The integrals along S±i converge to Res±i Ûa

∫∞
0
er(±i−t)ψa,±(t) dt as

R → ∞. This yields (6.10a) for real z ≥ 0. Differentiating (6.10a) and changing the
order of differentiation and integration, which is possible by Lebesgue’s dominated
convergence theorem and (6.9), we obtain (6.10b). It is obvious that (6.10a) defines
a holomorphic extension of U .

By (6.10a) we can decompose any Fourier mode U satisfying (5.1) into an outgoing
part and an incoming part. For a solution u to the full partial differential equation
(2.1) a corresponding decomposition is not always possible. For example, the solution
u(x) = eiκx1 for p = q = 0 does not decay like O(ρ−(d−1)/2

)
. Since the Sommerfeld

radiation condition implies such a behavior (cf. [2, sect. 2.2]) and since incoming
solutions are complex conjugates of outgoing solutions, u cannot be decomposed into
an outgoing and an incoming part. The reason that Theorem 6.4 does not carry over
in full extent to the partial differential equation (2.1) is linked to the fact that the
condition numbers of the matrices La in the next corollary increase exponentially with
|λj |.
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Fig. 6.2. Integration paths in the proofs of Theorem 6.4 and Proposition 6.6.

Corollary 6.5. The matrix La defined by(
U(a)
U ′(a)

)
= La

(
U+
∞
U−
∞

)

via (6.10a) and (6.10b) is regular. Hence, there exists (U(a), U ′(a)) �= 0 such that
Res−i Ûa = 0. If Res−i Ûa = 0, then Ûa is holomorphic in C\(Si∪{i}); i.e., it satisfies
the pole condition.

Proof. Let La(U
+
∞, U

−
∞)

T = 0. Since U solves a linear second order differential
equation, U(r) = U ′(r) = 0 implies that U ≡ 0, and hence U+

∞ = U−
∞ = 0. Hence, La

is regular. If Res−i Ûa = 0, then [Ua](−i − t) = 0, and therefore [w](−i − t) = 0 for
all t > 0; i.e., w is continuous in the lower half-plane. Using Morera’s theorem and
a contour deformation around the cut S−i it can be shown that w is holomorphic in
C\(Si ∪ {i}). As w(−i) = 0, Ûa is holomorphic in C\(Si ∪ {i}) as well.

Finally, we need a representation formula for Ûa in terms of the cut function.

Proposition 6.6. Let Res−i Ûa = 0. Then Ûa(s) satisfies the representation
formula

Ûa(s) = −Resi Ûa

i− s −
∫ ∞

0

Resi Ûaψa,+(t)

i− t− s dt, s ∈ C\Si.(6.11)

Proof. Due to Corollary 6.5 the assumption Res−i Ûa = 0 implies that Ûa is
holomorphic in C\(Si ∪ {i}). Therefore, Cauchy’s formula

Ûa(s) =
1

2πi

∫
γR1 +γR2 +γR3 +γR4

Ûa(s1) ds1
s1 − s

with the contour shown in Figure 6.2(b) holds true. The integral over γR2 converges
to the first term on the right-hand side of (6.11). Recall from the proof of Theorem
6.4 that Ûa(s) = O(|s|−1

)
as |s| → ∞ uniformly for all directions. Hence, the integral

over γR4 tends to 0 as R → ∞ since the integrand is of order O(|s|−2
)
. Finally, the

integrals over γR1 and γR3 yield the integral term in (6.11).

7. Asymptotic expansion of the far field. The following result is a simple
consequence of Theorem 6.4.
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Theorem 7.1. Let m ∈ {0, 1, 2, . . . }, and assume that U+
∞ = 0 or U−

∞ = 0,
respectively. Then U and U ′ satisfy the asymptotic formulas

U(z) = U±
∞e

±iz

(
1 +

m−1∑
l=0

ψ
(l)
0,±(0)
zl+1

+O
(

1

|z|m+1

))
,(7.1)

U ′(z) = U±
∞e

±iz

(
±i+

m−1∑
l=0

±iψ(l)
0,±(0)− lψ(l−1)

0,± (0)

zl+1
+O

(
1

|z|m+1

))
,

respectively, for z → ∞ such that | arg z| ≤ ϕ < π
2 . Here 0 · ψ(−1)

0,± (0) := 0.

Proof. Note that the integral term in (6.10a) is the Laplace transform of ψa,±.
Due to (6.8) we may choose a = 0. Using the asymptotic formula

(Lf)(z) =
m−1∑
l=0

f (l)(0)

zl+1
+O(|z|−m−1

)
,(7.2)

z → ∞, | arg z| ≤ ϕ < π/2, which holds for bounded functions f ∈ Cm([0,∞)) (cf. [5,
p. 47]), (6.10a), and Lemma 6.2, we immediately obtain (7.1). The asymptotic formula

for U ′ follows analogously from (6.10b) and the identity dl

dtl
((±i− t)ψ0,±(t))

∣∣
t=0

=

±iψ(l)
0,±(0)− lψ(l−1)

0,± (0).

As a special case of the previous theorem we reproduce the asymptotic formula
for the Hankel functions for large arguments (cf. [21]).

Corollary 7.2. The Hankel functions H
(1)
j of the first kind of order j satisfy

H
(1)
j (z) =

√
2

πz
ei(z−

jπ
2 −π

4 )

(
m∑

k=0

{
k∏

l=1

j2 − (l − 1
2 )

2

−2ilz

}
+O(|z|−m−1

))

for z → ∞ such that | arg z| ≤ ϕ < π
2 (m ≥ 0).

Proof. With P (t) = e−att( 1
4 − j2), U+

∞ =
√

2
π exp

(−i jπ2 − iπ4
)
we get H

(1)
j (ρ) =

ρ−1/2U(ρ). Using the identity 1
t(t−2i) =

1
−2it

∑∞
l=0 t

l(2i)−l and (6.4) we obtain

ψ0,+(0) =
j2 − 1

4

−2i ,

ψ
(k+1)
0,+ (0) =

(
k + 1

2i
+

1

2i(k + 2)

(
1

4
− j2

))
ψ

(k)
0,+(0)

=
1

−2i(k + 2)

(
j2 −

(
k +

3

2

)2
)
ψ

(k)
0,+(0).

Now the assertion follows from (7.1).

8. Spectral properties of the Dirichlet-to-Neumann map. Let Hj denote
the solution to (4.1) with U+

∞ = 1 and U−
∞ = 0. For the Helmholtz equation in R

2

we have H
(1)
j (ρ) =

√
2
πρ exp(−i jπ2 − iπ4 )H2j(ρ). A complete orthonormal system in

L2(Γa) is given by ϕ
a
j (ax̂) := a

− d−1
2 ϕj(x̂) with the eigenfunctions ϕj of ∆̃x̂ introduced

in section 4. We expect that the solution to (2.1) satisfying the pole condition and
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the boundary condition TrΓa u = f (f ∈ H1/2(Γa)) is

u(ρx̂) =

∞∑
j=1

〈
f, ϕaj

〉
ρ−

d−1
2

Hj(ρ)

Hj(a)
ϕj(x̂)(8.1)

for ρ ≥ a and x̂ ∈ Sd−1. Since the Dirichlet-to-Neumann map DtN : H1/2(Γa) →
H−1/2(Γa) satisfies (DtNf)(ρx̂) =

∂
∂ρu(ρx̂)|ρ=a, this leads to the definition

(DtNf)(ρx̂) :=

∞∑
j=1

dtn(λj) 〈f, ϕj〉ϕj(x̂)(8.2)

with the eigenvalues

dtn(λj) =

(
ρ−

d−1
2 Hj(ρ)

)′ ∣∣
ρ=a

a−
d−1
2 Hj(a)

=
H′

j(a)

Hj(a)
− d− 1

2a
.(8.3)

The Sobolev norm on Γa of index s ∈ R is given by

‖f‖2
Hs(Γa)

= ‖(I −∆Γa)
s/2f‖2

L2(Γa)
∼

∞∑
j=1

(1− λj)s |〈f, ϕaj 〉|2

(cf. [20, Chap. 4]). Hence, properties 1–3 in Proposition 3.1 are equivalent to

|dtn(λj)| = O
(√

|λj |
)
, j → ∞,(8.4a)

Re(−dtn(λj) + lj) ≥ 0 for some sequence |lj | = o

(√
|λj |

)
,(8.4b)

Imdtn(λj) > 0 for all j.(8.4c)

Lemma 8.1. Let U satisfy the assumptions of sections 5–7, and let U−
∞ = 0.

Then

ImU ′(ρ)U(ρ) =
∣∣U+

∞
∣∣2 for all ρ ≥ a.(8.5)

Proof. Set p̃(a+ r) := (LP )(r). Taking the imaginary part of

0 =

∫ ρ

a

(U ′′ + (1 + p̃)U)U dρ1

= U ′(ρ)U(ρ)− U ′(a)U(a) +
∫ ρ

a

(−|U ′|2 + (1 + p̃) |U |2) dρ1
yields ImU ′(ρ)U(ρ) = ImU ′(a)U(a) = const. The constant can be evaluated using
Theorem 7.1 by taking the limit ρ→ ∞.

Equation (8.5) with ρ = a implies (8.4c) after dividing by |U(a)|2. Next, we will
prove (8.4a) and (8.4b). Let νj =

√−λj , and let ψν,a,+ denote the solution to (6.2a)
with P (t) = p̌a(t)− ν2

j te
−at. Since λj → −∞ as j → ∞, it follows that νj → ∞. For

looking at this limit process, we may assume w.l.o.g. that p2 = p̌
′
a(0) = 0 by setting

νj =
√−p2 − λj . Multiplying (6.2a) by t(t−2i), applying the Laplace transform, and
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using the identity L(∫ t

0
f(t− t1)g(t1) dt1) = (Lf) · (Lg) yields the ordinary differential

equation (
∂2
z + 2i∂z + p(z)− ν2

j z
−2
)
v(z; νj) = 0(8.6)

for v(z; νj) := 1 + (Lψν,0,+)(z). Here and in the following we use the variables
z = ρ+ iσ with ρ, σ ∈ R. Since

Hj(z) = e
izv(z; νj)(8.7)

due to (6.10a), (8.6) can alternatively be derived immediately from (4.1).
In this section f ′ denotes the usual derivative of a holomorphic function f , whereas

ḟ denotes the partial derivative of f with respect to σ. By the chain rule, ḟ = if ′, so
−v̈+2v̇+ (p− ν2z−2)v = 0, where the argument (z) of p and the arguments (z, ν) of

v have been omitted. Hence, the logarithmic derivative χ(z; ν) := v̇(z;ν)
v(z;ν) satisfies the

Riccati differential equation

χ̇(z; ν) + χ2(z; ν)− 2χ(z; ν) = p(z)− ν2z−2.(8.8)

It follows from Plancherel’s theorem and (6.9) that∫ ∞

−∞
|v(ρ+ iσ; ν)− 1|2 dσ = 1

2π
‖ψν,ρ,+‖2

L2 <∞,∫ ∞

−∞
|v̇(ρ+ iσ; ν)|2 dσ = 1

2π
‖itψν,ρ,+‖2

L2 <∞.

Therefore, the Lebesgue measure of the sets Aε(ρ, ν) := {σ : |v(ρ+iσ)−1| > ε or |v̇(ρ+
iσ)| > ε} <∞ is finite for all ε > 0. Hence, for all ρ ≥ a and all ν ≥ 0 there exists a
sequence σl such that σl /∈ A1/l(ρ, ν) and σl > l. This implies

lim
l→∞

χ(ρ+ iσl; ν) = 0.(8.9)

We now construct an approximation to χ(ρ+ iσ; ν) for σ ≥ 0 by formal compu-
tations and then prove its validity. We rewrite (8.8) as χ̇ = −(χ− 1+ γ1)(χ− 1− γ1)
with γ1(z; ν) :=

√
1 + p(z)− ν2z−2. Here and in the following we choose the negative

real axis as the branch cut of the square root function. Neglecting the term χ̇ yields
the two possible approximations 1 + γ1 and 1− γ1. Only the latter of these approx-
imations has the right behavior as σ → ∞. The “error function” ∆1 := χ − 1 + γ1
satisfies the differential equation

∆̇1 = γ̇1 − (∆1 − 2γ1)∆1.(8.10)

Since this equation has the same structure as (8.8), we can apply the same procedure
as above to (8.10) and hopefully get a better approximation to χ. This process may
be repeated recursively as follows: Set γ0 := 1 and assume we have constructed a
function γj (j = 1, 2, . . . ) such that

χ = 1− γj +∆j ,(8.11)

where ∆j satisfies the differential equation

∆̇j = −(∆j − 2γj)∆j + γ̇j − γ̇j−1.(8.12)
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This equation can be rewritten as ∆̇j = −(∆j − γj − γj+1)(∆j − γj + γj+1) with

γj+1 :=
√
γ2
j + γ̇j − γ̇j−1.(8.13)

The function ∆j+1 := ∆j − γj + γj+1 satisfies (8.11) and (8.12) with j replaced by
j + 1.

It turns out that the approximation of order j = 2 is the lowest that is sufficient for
our purposes. In the appendix we establish the following bounds on ∆2 = χ− 1+ γ2.

Lemma 8.2. Given 0 < a < A <∞ there exist constants Γ, N > 0 such that for
all ρ ∈ [a,A] and all ν ≥ N

|∆2(ρ+ iσ; ν)| ≤



2, 0 ≤ σ < Γ/ν,
Γ/(σν), Γ/ν ≤ σ < ν,
Γ/σ2, ν ≤ σ.

(8.14)

Moreover,

γ2(ρ+ iσ; ν)
2 = 1− ν2

(ρ+ iσ)2

(
1 +O

(
1

ν

))
(8.15)

as ν → ∞ uniformly for ρ ∈ [a,A] and σ ≥ 0.

It follows from (8.7) that
H′
j(z)

Hj(z)
= i+

v′(z;νj)
v(z;νj)

= i(1−χ(z; νj)). Using (8.11), (8.14),
and (8.15) we obtain

H′
j(z)

Hj(z)
= i(γ2(z; νj)−∆2(z; νj)) = −νj

z
+O(1)(8.16)

as j → ∞, which holds uniformly for z satisfying Re z ∈ [a,A] and Im z ∈ [0, S] for
any S ≥ 0. For z = a this implies (8.4a) and (8.4b).

Corollary 8.3. Given a < R2 <∞ and S ≥ 0, there exist constants C,N > 0
such that ∣∣∣∣∣H

(l)
j (ρ+ iσ)

Hj(a+ ib)

∣∣∣∣∣ ≤ C
(

νj
|ρ+ iσ|

)l ∣∣∣∣ a+ ibρ+ iσ

∣∣∣∣
νj

(8.17)

for all νj ≥ N , a ≤ ρ ≤ R2, 0 ≤ b, σ ≤ S, and l = 0, 1, 2.
Proof. It follows from (8.16) that

Hj(ρ+ iσ)

Hj(a+ ib)
= exp

(∫ ρ+iσ

a+ib

H′
j(ζ1)

Hj(ζ1)
dζ1

)
=

(
a+ ib

ρ+ iσ

)νj

exp(O(1)).

This implies (8.17) for l = 0. Together with (8.16) we obtain (8.17) for l = 1. The
case l = 2 follows from differential equation (4.1).

Let us summarize our results.
Theorem 8.4. For f ∈ H1/2(Γa) there exists a unique solution u to (2.1) in

{x : |x| > a} satisfying the pole condition and the boundary condition Tru = f on
Γa. u is given by the series (8.1), which converges uniformly on compact subsets
of {x : |x| > a} together with all its term-by-term derivatives of order ≤ 2. The
corresponding Dirichlet-to-Neumann DtNf := ∂u

∂ν

∣∣
Γa

is given by (8.2). It satisfies

the assumptions of Proposition 3.1. Consequently, the variational problem (3.1) has a
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unique solution, which can be to extended to a solution of (2.1) in the exterior domain
such that the pole condition is satisfied.

Proof. Assume that u is a solution for f = 0. We apply Lemma 8.1 to the Fourier
modes Uj . Due to the pole condition we have U

−
j,∞ = 0. Since Uj(a) = 0, it follows

from (8.5) that U+
j,∞ = 0. Corollary 6.5 implies that Uj has vanishing Cauchy data

Uj(a) = U
′
j(a) = 0. Hence Uj = 0. This proves uniqueness.

Convergence of the series (8.1) and its term-by-term derivatives as well as the
series (8.2) follow from Corollary 8.3 and the estimates

‖ϕj‖Cl ≤ C‖ϕj‖Hl+d/2 ≤ C√1− λj l+d/2
(8.18)

(l = 0, 1, . . . ) on the eigenfunctions ϕj derived from Sobolev’s embedding theorem
on Sd−1 (cf. [20, sect. 4.3]). Note that no division by zero can occur in the series
(8.1) and (8.2) due to (8.5) since Hj(a) = 0 would imply H+

j,∞ = 0, which contradicts

H+
j,∞ = 1.
The assumptions of Proposition 3.1 have been established above using the equiva-

lent formulation (8.4). The fact that we can extend the solution uint to (3.1) by setting
f = TrΓa u

int follows from the Cauchy–Kovalevskaya theorem and elliptic regularity
results.

Finally, we establish an estimate for |Hj(a)| for large j. For the special case of
Hankel functions it agrees with a well-known formula, which can be derived from the
series representation of the Hankel functions (cf. [2, 21]).

Proposition 8.5. For any a > ap we have

|Hj(a)| = exp

(
νj ln

2νj
ea

+O(ln νj)
)
, j → ∞.(8.19)

Proof. It follows from the definition of χ and σl before (8.9) that

1 = lim
l→∞

|v(a+ iσl; νj)| = exp

(
Re

∫ ∞

0

χ(a+ iσ; νj) dσ

)
|v(a; νj)|,

i.e., |Hj(a)| = exp(−Re ∫∞
0
χ(a+ iσ; νj) dσ). By virtue of Lemma 8.2, Re

∫∞
0
∆2(a+

iσ; ν) dσ = O(ν−1 ln ν
)
as ν → ∞. It can be seen from (8.15) that there ex-

ists a constant C > 0 such that 1 − Re γ2(a + iσ; ν) ≤ 0 and 1 − Re γ2 = (1 −
Re

√
1− (ν/z)2)(1 +O(ν−1

)
) uniformly for σ ≥ C/ν as ν → ∞. Moreover, we have∫ C/ν

0
Re |γ2(a+ iσ; ν)|dσ = O(1). Hence,∫ ∞

0

Reχ(a+ iσ; ν) dσ

=

∫ ∞

C/ν

(
1− Re

√
1− ν2

(a+ iσ)2

)
dσ

(
1 +O

(
1

ν

))
+O(1) .

Finally, ∫ ∞

C/ν

(
1− Re

√
1− ν2

(a+ iσ)2

)
dσ = Re

∫ a+i∞

a+iC/ν

(
1−

√
1− ν

2

z2

)
dz

i

= Re

(
iz

(
−1 +

√
1− ν

2

z2

)
+ ν ln

(
ν

z
− i

√
1− ν

2

z2

))∣∣∣∣
z=a+i∞

z=a+iC/ν

= ν − ν ln 2ν
a
+O(1) , ν → ∞.
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This completes the proof.

9. Equivalence to Sommerfeld’s radiation condition. Crucial tools in the
proofs of this section are the following uniform estimates of the cut functions.

Lemma 9.1. There exist constants C,N ≥ 0 such that the estimates

|ψν,a,+(t)| ≤ Cν2e−t(a−ap)

( |√t+√
t− 2i|√
2

)2ν

,(9.1a)

|ψ′
ν,a,+(t)| ≤ C

ν3e−t(a−ap)√
t|t− 2i|

( |√t+√
t− 2i|√
2

)2ν

(9.1b)

hold true for all t > 0 and all ν ≥ N . If p = 0, then (9.1) is valid with ap = 0, C = 1
2 ,

and N =
√
2.

Proof. Due to (6.8) it suffices to prove (9.1) for a = 0. Set p̌0(t) := e
atp̌a(t) and

recall that we have assumed w.l.o.g. that p̌′0(0) = 0. Multiplying (6.2a) by t(t − 2i),
differentiating twice, and dividing by t(t− 2i) yields the integrodifferential equation

ψ′′
ν,0,+(t) =

ν2 − 2

t(t− 2i)
ψν,0,+(t)− 4

t− i
t(t− 2i)

ψ′
ν,0,+(t)

−
∫ t

0

p̌′′0(t− t1)
t(t− 2i)

ψν,0,+(t1) dt1 − p̌′′0(t)
t(t− 2i)

.(9.2)

Here P (t) = −ν2t+ p̌0(t) in (6.2a). We will derive bounds on the function

y(t) :=

(
y1(t)
y2(t)

)
=

(
ψν,0,+(t)

ζν(t)
−1ψ′

ν,0,+(t)

)
,

where ζν(t) :=
√
ν2−2√
t(t−2i)

. The function ζν is chosen such that both components of

y have approximately the same size, i.e., such that ζν approximates the logarithmic
derivative ψ′

ν,0,+/ψν,0,+. Using (9.2) and Re(ψν,0,+ψ
′
ν,0,+) = Re(ψν,0,+ψ

′
ν,0,+) we get

1

2

d

dt
|y(t)|2 = Re

((
1 +

ζ2ν
|ζν |2

)
ψν,0,+ψ′

ν,0,+ − 3
t− i
t(t− 2i)

|ψ′
ν,0,+|2
|ζν |2

)
(9.3)

− Re

(
p̌′′0(t)
t(t− 2i)

ψ′
ν,0,+

|ζν |2 +

∫ t

0

p̌′′0(t− t1)
t(t− 2i)

ψν,0,+(t1) dt1
ψ′
ν,0,+

|ζν |2
)
.

Using the identity |1 + z2| = 2Re z with z = ζν/|ζν | and the inequalities 2|ab| ≤
|a|2 + |b|2 and Re ζν > 0 we obtain∣∣∣∣1 + ζ2ν

|ζν |2
∣∣∣∣ · ∣∣∣ψν,0,+ψ′

ν,0,+

∣∣∣ ≤ Re(ζν)
(|y1|2 + |y2|2

)
.

Moreover, note that Re t−i
t(t−2i) =

2+t2

t(t2+4) > 0. If p = 0, this implies 1
2

d
dt |y(t)|2 ≤

Re(ζν(t))|y(t)|2 and hence, by Gronwall’s lemma,

|y(t)|2 ≤ exp

(
2

∫ t

0

Re ζν(t1) dt1

)
|y(0)|2.



204 THORSTEN HOHAGE, FRANK SCHMIDT, AND LIN ZSCHIEDRICH

Here |y(0)| = |ψν,0,+(0)| = 1
2ν

2 due to (6.4a). Using the indefinite integral
∫ (
t(t −

2i)
)−1/2

dt = 2 ln(
√
t+

√
t− 2i) and the estimate

√
ν2 − 2 < ν for ν ≥ √

2, we obtain
the assertion for the case p = 0.

Next we are going to derive a bound on |y(t)| for t ≤ 1 and general p. The
inequality −x2 + 2xy − y2 ≤ 0 for x, y ∈ R yields

−3 2 + t2

ν2|t− 2i| |ψ
′
ν,0,+|2 +

|p̌′′0(t)|
ν2

|ψ′
ν,0,+| ≤

|t− 2i|
12(2 + t2)

|p̌′′0(t)|2
ν2

.

Moreover,
∫ t

0
| p̌′′

0 (t−t1)
t(t−2i) ψν,0,+(t1)|dt1 ≤ Cmax0≤t1≤t| |y1(t1)| for 0 ≤ t ≤ 1. Hence,

(9.3) implies

1

2

d

dt
|y(t)|2 < Re(ζν(t))|y(t)|2 + C

ν2
+
C

ν
max

0≤t1≤t
|y(t1)|2(9.4)

with a constant C independent of ν. Let ϕ(t) be the solution to the initial value
problem

1

2
ϕ′(t) =

(
C

ν
+Re(ζν(t))

)
ϕ(t) +

C

ν2
, ϕ(0) = |y(0)|2.(9.5)

We claim that |y(t)|2 < ϕ(t) for 0 < t ≤ 1. Assume on the contrary that the
set M := {0 < t ≤ 1 : |y(t)|2 ≥ ϕ(t)} is not empty, and let t∗ := infM . Then
t∗ > 0 since d

dt |y(0)|2 < ϕ′(0). Moreover, it follows from the definition of t∗ that
ϕ′(t∗) ≤ d

dt |y(t∗)|2. On the other hand, max0≤t≤t∗ |y(t)|2 ≤ max0≤t≤t∗ ϕ(t) = ϕ(t∗).
Hence, d

dt |y(t∗)|2 < ϕ′(t∗) due to (9.4) and (9.5). This is a contradiction. Hence,
|y(t)|2 < ϕ(t) for 0 < t ≤ 1. From the explicit solution

ϕ(t) = exp

(∫ t

0

2

(
C

ν
+Re ζν(t2)

)
dt2

)
|y(0)|2

+
2C

ν2

∫ t

0

exp

(∫ t

t1

2

(
C

ν
+Re ζν(t2)

)
dt2

)
dt1

it follows that ϕ(t) ≤ Cν4 exp(2tap +
∫ t

0
2Re ζν(t2) dt2). This implies (9.1) for 0 <

t ≤ 1.
Now we will prove (9.1) for t ≥ 1. We may assume |y(t)| �= 0. Otherwise (9.1)

is trivially satisfied at t, and we have to apply the following argument separately on
all intervals where |y| does not vanish. Dividing (9.3) by |y(t)| and using (4.4a) with
k = 2 we obtain

|y(t)|′ = 1

2|y(t)|
d

dt
|y(t)|2 ≤ Re(ζν(t))|y(t)|+ C

t|(t− 2i)ζν(t)|η(t)

with η(t) := eapt(1 +
∫ t

0
e−apt1 |y(t1)|dt1). Inserting the identities

|y(t)| = eapt {e−aptη(t)
}′
= η′(t)− apη(t),(9.6a)

|y(t)|′ = η′′(t)− apη′(t)(9.6b)

and using the estimate C
t|(t−2i)ζν(t)| ≤ apRe ζν(t), which holds for all t ≥ 1 and ν

sufficiently large, we obtain η′′ ≤ (ap +Re ζν) η
′. This implies η′(t) ≤ η′(1) exp(ap(t−
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1) +
∫ t

1
Re ζν(t1) dt1) due to Gronwall’s lemma. Now it follows from (9.6a) and (9.1)

for t = 1 that |y(t)| ≤ Ceapt( |1+
√

1−2i|√
2

)2ν for t > 1.

Corollary 9.2. For k ∈ {0, 1, . . . } and m ∈ {0, 1} there exist constants C, σ > 0
such that for all a > ap and all νj ≥ N

‖tkψ(m)
νj ,a,+‖L1

|Hj(a)| ≤ C

(a− ap)k+1−m
exp

(
νj

(
σ + ln

a

a− ap

))
.(9.7)

Proof. We use the estimate

|√t+√
t− 2i|√
2

≤
{
γ
√
t, t ≥ 1,

γ, 0 ≤ t < 1

with γ := 1+
√

5√
2
. Using Stirling’s formula Γ(x+1) = exp(x ln x

e +O(lnx)) as x→ ∞,

we obtain

∫ ∞

0

e−t(a−ap)

( |√t+√
t− 2i|√
2

)2ν

tk dt

≤ γ2ν

∫ ∞

0

e−(a−ap)ttν+k dt+ γ2ν

∫ 1

0

e−(a−ap)t dt

≤ γ2ν
(
(a− ap)−ν−k−1Γ(ν + k + 1) + 1

)
≤ C

(a− ap)k+1
exp

(
ν ln γ2 − ν ln(a− ap) + ν ln ν + k

e
+O(ln ν)

)
.

Together with (9.1a) and (8.19) this implies (9.7) for m = 0. The case m = 1 follows
analogously from (9.1b) using

√
t|t− 2i| ≥ t.

Theorem 9.3. Assume that u satisfies (2.1) in {x ∈ R
d : |x| > a∗} such that

U(a∗, ·) ∈ L2(Sd−1) and that Res−i Ûj,a∗ = 0 for all j. Let a be sufficiently large such
that σ + ln a∗

a−ap
< 0. Then the following are true:

1. The functions

u∞(x̂) :=
∑
j

Uj(a)

Hj(a)
ϕj(x̂),(9.8a)

Ψa(t, x̂) :=
∑
j

Uj(a)

Hj(a)
ψνj ,a,+(t)ϕj(x̂)(9.8b)

are well defined for all t ≥ 0 and x̂ ∈ Sd−1. Moreover, given m ∈ {0, 1} and
k, l ∈ {0, 1, . . . }, there exists a constant C > 0 such that

‖u∞‖Cl(Sd−1) ≤ C‖U(a∗, ·)‖L2 ,(9.9a) ∫ ∞

0

tk
∥∥∥∥ ∂m∂tmΨa(t, ·)

∥∥∥∥
Cl(Sd−1)

dt ≤ C‖U(a∗, ·)‖L2 ,(9.9b)

and the series (9.8a) and (9.8b) converge with respect to all of these norms.
2. The formulas (2.7) and (2.9) hold true. Equation (2.7) may be differenti-

ated any number of times both with respect to ρ and x̂, and integration and
differentiation may be interchanged.
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Proof. Due to (6.10a) the assumption Res−i Ûj,a∗ = 0 implies that

Uj(ρ) =
Uj(a∗)
Hj(a∗)

Hj(ρ)(9.10)

for all ρ ≥ a∗. It follows from Corollary 8.3 that

|Uj(a)| = |Uj(a∗)|
∣∣∣∣ Hj(a)

Hj(a∗)

∣∣∣∣ ≤ C |Uj(a∗)|
(a∗
a

)νj
.(9.11)

Choose J such that νj ≥ N for j ≥ J , N given in Lemma 9.1. Using Corollary 9.2
and the bound (8.18) we obtain

∑
j≥J

|Uj(a)| ‖ϕj‖Cl(Sd−1)

‖tkψ(m)
νj ,a,+‖L1

|Hj(a)|(9.12)

≤ C
∑
j≥J

(1 + ν2
j )

l/2+d/4

(a− ap)k+1−m
exp

(
νj

(
σ + ln

a

a− ap + ln
a∗
a

))
|Uj(a∗)| .

Using Lemma 6.3 for j < J and applying Cauchy’s inequality yields (9.9b). (Note
that the L2-norm and the right-hand side of (9.9b) could be replaced by any positive
or negative Sobolev norm.) Inequality (9.9a) follows analogously from (8.18), (8.19),
and (9.11).

To prove (2.7) for fixed x̂ ∈ Sd−1, we set ψa,+ = ψνj ,a,+ and U+
∞ =

Uj(a)
Hj(a)ϕj(x̂) in

(6.10a). Then U(ρ) in (6.10a) is given by Uj(ρ)ϕj(x̂) due to (9.10). Now the assertion
follows by summing up over j and using (9.9). The differentiability properties of
(2.7) are shown analogously using (6.10b) instead of (6.10a) and replacing ϕj(x̂) by a
derivative of ϕj at x̂. Equation (2.9) follows in the same manner from (6.2a) multiplied
by U+

∞.
Note that u∞ may be interpreted as a delta peak of the cut function Ψa at t = 0.

In other words, the formulas (2.7) and (2.9) remain valid if we formally replace Ψa(t, x̂)
by Ψa(t, x̂) + δ0(t)u∞(x̂) and then set u∞ = 0.

Theorem 9.4. A bounded solution u to the differential equation (2.1) satisfies
the Sommerfeld radiation condition (2.5) if and only if it satisfies the pole condition.

Proof. Let us first assume that u satisfies the Sommerfeld radiation condition
(2.5), and let U be defined by (2.2). Then

∂

∂ρ
U(ρ, x̂)−

(
i+

d− 1

2ρ

)
U(ρ, x̂) = o(1) , ρ→ ∞,(9.13)

uniformly for x̂ ∈ Sd−1. Therefore, the Fourier coefficients Uj(ρ) := 〈U(ρ, ·), ϕj〉
satisfy

U ′
j(ρ)−

(
i+

d− 1

2ρ

)
Uj(ρ) = o(1) , ρ→ ∞.

By virtue of Theorem 7.1 this is equivalent to Res−i Ûj,a = 0. It follows that Uj(ρ) =
Uj(a)Hj(ρ)/Hj(a). Here a is chosen such that the assumption of Theorem 9.3 is satis-

fied. A comparison of Fourier coefficients shows that Ûa(s, x̂) =
∑

j
Uj(a)
Hj(a)ϕj(x̂)Ĥj,a(s)
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for Re s > 0 and x̂ ∈ Sd−1. We claim that for x̂ ∈ Sd−1 a holomorphic extension of
Ûa(·, x̂) to C\Si is given by the function

s �→ −e−ia

(
u∞(x̂)
i− s +

∫ ∞

0

Ψa(t, x̂)

i− t− s dt
)
.(9.14)

Due to the estimates (9.9) this function is well defined and holomorphic in C\Si.
To show that it coincides with Ûa(s, x̂) for Re s > 0, we use Proposition 6.6 and
the identity Resi Ĥj,a = e−ia, which follows from (6.7) and the definition of Hj .

The boundedness of s �→ ∫
Sd−1 | ∂

∂s Ûa(s, x̂)|2 dx̂ follows from (9.9b) using Cauchy’s
inequality.

Now assume that u satisfies the pole condition, and let Ûa(·, x̂) be defined by (2.3).
Using a standard corollary to Lebesgue’s dominated convergence theorem and the
boundedness assumption in the pole condition, it follows that the Fourier coefficients
Ûj,a(s) := 〈Ûa(s, ·), ϕj〉 satisfy Res−i Ûj,a = 0. Differentiating (2.7) once and using a
partial integration we get

∂

∂ρ
U(ρ, x̂)− iU(ρ, x̂) = −

∫ ∞

0

e−t(ρ−a)tΨa(t, x̂) dt

= − 1

ρ− a
∫ ∞

0

e−t(ρ−a) ∂

∂t
{tΨa(t, x̂)} dt.

By virtue of (9.9b), the integral term on the right-hand side of this equation is uni-
formly bounded for x̂ ∈ Sd−1. Since U is also uniformly bounded, this implies (9.13),
which is equivalent to (2.5).

We mention that (2.6) holds true with u∞ and Ψa defined by (9.8). This follows
from the Sokhotski–Plemelj formula (cf. [6]) and the fact that the function (9.14)
coincides with Ûa(·, x̂).

We have constructed a solution (u∞,Ψa) to the system (2.9), (2.10) if f(x̂) =
U(a, x̂) and if the assumptions of Theorem 9.3 are satisfied. Uniqueness of this solution
follows from the uniqueness of the corresponding system for each Fourier mode.

Appendix. Proof of Lemma 8.2. We may assume w.l.o.g. that ∆2(ρ+iσ) �= 0
for all ρ ∈ [a,A] and σ ∈ R. Otherwise, if ∆2(ρ0+iσ0) = 0, then ∆2(ρ0+iσ; ν) = 0 for
all σ ∈ R due to the uniqueness of initial value problems for (8.12), and then (8.14) is
trivially satisfied for ρ = ρ0. Our proof is based on the observation that the function
σ �→ |∆2(ρ+ iσ; ν)| is decreasing at the point σ if and only if ∂σ(|∆2(ρ+ iσ; ν)|2) ≤ 0,
if and only if Re(∆̇2/∆2)(ρ + iσ; ν) ≤ 0 (divide by |∆2(ρ + iσ; ν)|2). Due to (8.12),
σ �→ |∆2(ρ+ iσ; ν)| is decreasing at σ if and only if ∆2(ρ+ iσ; ν) ∈ G(ρ+ iσ; ν), where

G(z; ν) :=

{
δ ∈ C : Re

[
−δ + 2γ2(z; ν) + γ̇2(z; ν)− γ̇1(z; ν)

δ

]
≤ 0

}
.

Introducing the variable x for the expression in brackets and solving a quadratic
equation for δ shows that G = G+ ∪G− with

G± :=

{(
γ2 − x

2

)(
1±

√
1 +

γ̇2 − γ̇1
(γ2 − x/2)2

)
: Rex ≤ 0

}
.

For the following arguments we introduce the strips Sλ := {ρ+ iσ : a ≤ ρ ≤ A, σ ≥ λ}
(λ ≥ 0) in the complex plane. Note that there exist constants C,N > 0 such that

1

|zγ1| =
1

ν|√ν−2z2(1 + p)− 1| =
{

C
ν , σ ≤ ν,
C
σ , σ > ν

(A.1)
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for all z ∈ S0 and all ν ≥ N and that

γ̇1 = i
ν2

z3γ1

(
1 +

z3ṗ

2ν2

)
.(A.2)

As γ2
2 − 1 = γ2

1 − 1 − γ̇1, (8.15) follows from (A.1) and (A.2). Using this and γ2 =
iν
z

√
1− ν−2z2 +O(ν−1), it can be shown that there exist constants C,N > 0 such

that

|z|Re γ2(z) ≥


Cνσ, 0 ≤ σ < 1,
Cν, 1 ≤ σ < ν,
Cσ, ν ≤ σ

(A.3)

for all ν ≥ N and all z ∈ S0. As γ2 = γ1
√
1 + γ̇1

γ2
1
, we have

γ̇2 − γ̇1 = γ̇1
(√

1 +
γ̇1
γ2
1

− 1

)
+

(
1 +

γ̇1
γ2
1

)−1/2 (
γ̈1
γ1

− 2
γ̇2
1

γ2
1

)
.

Since γ̇1

γ2
1
= O( 1

ν

)
uniformly for z ∈ S0 due to (A.1) and (A.2), we have

γ̇1

(√
1 +

γ̇1
γ2
1

− 1

)
=
1

2

(
γ̇1
γ1

)2

+O
(
γ̇3
1

γ4
1

)
= O(|z|−2

)
.

Moreover,

γ̈1
γ1

=
3ν2

z2(zγ1)2

(
1 +

z4p̈

ν2

)
− 2i

z2

(
νγ̇1
γ2
1

)(
ν

zγ1

)(
1 +

z3ṗ

2iν2

)
=

O(1)
z2

uniformly for z ∈ S0, so

|γ̇2 − γ̇1| = O(|z|−2
)

(A.4)

uniformly for z ∈ S0. Hence,

∣∣∣∣ γ̇2 − γ̇1
(γ2 − x/2)2

∣∣∣∣ = O
(

1

|z|2(Re γ2)2
)
=




O((νσ)−2
)
, 0 ≤ σ < 1,

O(ν−2
)
, 1 ≤ σ < ν,

O(σ−2
)
, ν ≤ σ

uniformly for z ∈ S0 and Rex ≤ 0 (cf. (A.3)). Now the Taylor formula
√
1 + ε =

1 + ε/2 +O(ε2) (ε→ 0) implies that there exist constants Γ, N > 0 such that

∣∣∣∣∣
(
γ2 − x

2

)(
1−

√
1 +

γ̇2 − γ̇1
(γ2 − x/2)2

)∣∣∣∣∣
=

∣∣∣∣∣
(
γ2 − x

2

)(
1− 1− 1

2

γ̇2 − γ̇1
(γ2 − x/2)2 +O

(∣∣∣∣ γ̇2 − γ̇1
(γ2 − x/2)2

∣∣∣∣
2
))∣∣∣∣∣

≤ 1

2

∣∣∣∣ γ̇2 − γ̇1Re γ2

∣∣∣∣+O
(
|γ̇2 − γ̇1|
|Re γ2|3

)
≤
{
Γ(σν)−1, Γ/ν ≤ σ < ν,
Γ/σ2, ν ≤ σ
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for all ν ≥ N , z ∈ SΓ/ν , and Rex ≥ 0. Performing an analogous computation for
G+(z; ν), we obtain that for ν ≥ N

G−(z; ν) ⊂ {ζ : |ζ| ≤ Γ/(σν)}, Γ/ν ≤ σ < ν,
{ζ : |ζ| ≤ Γ/σ2}, ν ≤ σ,(A.5a)

G+(z; ν) ⊂ {ζ : Re ζ ≥ 1}, Γ/ν ≤ σ.(A.5b)

Now we are going to show that (A.5) and (8.9) imply (8.14) for z ∈ SΓ/ν . Let
ρ0 ∈ [a,A]. By virtue of (8.9) and the fact that limσ→∞(1 − γ2(ρ0 + iσ; ν)) = 0 for
all ν, there exists a sequence Γ/ν = σ0 < σ1 < · · · such that liml→∞ σl = ∞ and
|∆2(ρ0+iσl; ν)| < 1/(l+1) for l ≥ 1. We may also arrange that ∂σ|∆2(ρ0+iσl; ν)| < 0.
Then the maximum of the function σ �→ |∆2(ρ0 + iσ; ν)| on the interval [σl, σl+1] is
attained at the point σ∗l ∈ [σl, σl+1), and ∂σ|∆2(ρ0+iσ

∗
l ; ν)| ≤ 0, i.e., ∆(ρ0+iσ

∗
l ; ν) ∈

G(ρ0+ iσ
∗
l ; ν). If ∆(ρ0+ iσ0; ν) ∈ G+(ρ0+ iσ0; ν), then, due to (A.5b) and the choice

of the σl’s, there exists a largest σ̃ ∈ (σ∗l , σl+1) such that |∆2(ρ0 + iσ̃; ν)| = 1
2 , and

∆2(ρ0 + iσ̃; ν) ∈ G(ρ0 + iσ∗; ν) since ∂σ|∆(ρ0 + iσ̃; ν)| ≤ 0. This contradicts (A.5).
Hence, ∆(ρ0 + iσ

∗
l ; ν) ∈ G−(ρ0 + iσ∗l ; ν), and (8.14) follows from (A.5a).

It remains to show (8.14) for 0 ≤ σ ≤ Γ/ν. In this case, there exist constants
C,N > 0 such that

Re
∆̇2

∆2
= −Re∆2 + 2Re γ2 +Re

γ̇2 − γ̇1
∆2

≥ −C

if ∆2(z; ν) is in the annulus 1 ≤ |∆2(z; ν)| ≤ 2 and ν ≥ N (cf. (A.3) and (A.4)). Since

|∆2(ρ+ iσ; ν)| =
∣∣∣∣∆2

(
ρ+ i

Γ

ν
; ν

)∣∣∣∣ exp
(∫ σ

Γ/ν

Re
∆̇2(ρ+ iσ1; ν)

∆2(ρ+ iσ1; ν)
dσ1

)

and since |∆2(ρ+ iΓ/ν; ν)| ≤ 1, it follows that |∆2(ρ+ iσ; ν)| ≤ exp(C(Γ/ν−σ)) ≤ 2
for 0 ≤ σ ≤ Γ/ν and ν ≥ max(N,CΓ/ ln 2).
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Abstract. We study the initial value problem for two-dimensional, periodic vortex sheets with
surface tension. We allow the upper and lower fluids to have different densities. Without surface
tension, the vortex sheet is ill-posed: it exhibits the well-known Kelvin–Helmholtz instability. In the
linearized equations of motion, surface tension removes the instability. It has been conjectured that
surface tension also makes the full problem well-posed. We prove that this conjecture is correct using
energy methods. In particular, for the initial value problem for vortex sheets with surface tension
with sufficiently smooth data, it is proved that solutions exist locally in time, are unique, and depend
continuously on the initial data. The analysis uses two important ideas from the numerical work
of Hou, Lowengrub, and Shelley. First, the tangent angle and arclength of the vortex sheet are
used rather than Cartesian variables. Second, instead of a purely Lagrangian formulation, a special
tangential velocity is used in order to simplify the evolution equations. A special case of the result
is well-posedness of water waves with surface tension; this is the first proof (with surface tension)
which allows the wave to overturn.

Key words. vortex sheet, surface tension, Kelvin–Helmholtz instability
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1. Introduction. The classical vortex sheet is the interface between two incom-
pressible, inviscid, irrotational, density-matched two-dimensional fluids moving past
each other, neglecting surface tension. In this situation, all of the vorticity is con-
centrated on the interface. At each time, the sheet can be viewed as a curve in the
complex plane. The curve, z, is parameterized by a Lagrangian spatial variable, α.
The curve evolves according to the Birkhoff–Rott integral (see page 141 of [Saf95]),

z∗t (α, t) =
1

2πi
PV

∫ ∞

−∞

γ(α′)
z(α, t)− z(α′, t)

dα′.(1.1)

The ∗ denotes complex conjugation; γ is the vortex sheet strength. Notice that γ
is not a function of time. This problem has been well studied and has been found
to be ill-posed in the usual sense (although it can be thought of as well-posed in
analytic function spaces). In particular, it exhibits the well-known Kelvin–Helmholtz
instability: in the linearization of the evolution equations about equilibrium, Fourier
modes with high wave numbers grow without bound. Equation (1.1) neglects the
effect of surface tension at the interface. Surface tension is a restoring force, and when
surface tension is accounted for in the equations of motion, Fourier modes of high wave
number remain bounded in the linearization. For this reason, it had been conjectured
that surface tension makes the full problem well-posed [Bir62]. Taking this further,
Beale, Hou, and Lowengrub demonstrated that even far from equilibrium, surface
tension makes the linearized equations well-posed [BHL93]. Iguchi, Tanaka, and Tani
have shown that the full problem is well-posed if the initial state is sufficiently close
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to the flat equilibrium and if the interface height is a function of horizontal position
[ITT97]. The present work removes these restrictions, proving that the full problem
is well-posed even for large initial data, confirming Birkhoff’s conjecture.

Hou, Lowengrub, and Shelley have efficiently computed vortex sheets with surface
tension by treating the part of the evolution equations related to surface tension
carefully [HLS97]. They recast the evolution equations in two important ways. First,
they choose to compute dependent variables which are naturally related to the surface
tension. In particular, surface tension enters the evolution equations in the form
γt =

1
Weκα, where κ is the curvature of the vortex sheet and We is the Weber number.

The Weber number is a dimensionless parameter that is inversely proportional to the
surface tension; the case without surface tension corresponds to We = ∞. (Recall
that without surface tension, γt = 0.) To simplify this curvature term in the evolution
equations, Hou, Lowengrub, and Shelley describe the curve by its tangent angle and
arclength rather than by the Cartesian variable, z.We use the notation s for arclength
and θ for the tangent angle the curve forms with the horizontal. The strength of this
choice of variables lies in the relationship κ = θα/sα.

Second, Hou, Lowengrub, and Shelley observe that while the normal velocity of
the vortex sheet must be obtained from (1.1), the same is not true of the tangential
velocity. By adding an arbitrary tangential velocity, T, to the evolution of z, the shape
of the curve is not changed (i.e., the tangential velocity only serves to reparameterize
the curve). A careful choice of T essentially reduces the problem by one dependent
variable by making sα independent of α.With this choice of T, if the curve is initially
parameterized by arclength (normalized so that α is between 0 and 2π), then it will
always remain that way.

The choice of tangential velocity also changes the evolution equation for γ. In
addition to simplifying the curvature term, it also introduces new terms proportional
to T −W · t̂. Here, W is the real form of (1.1) and t̂ is the tangent vector to the
curve. In the purely Lagrangian formulation of the problem, T was equal toW · t̂, so
these terms did not appear.

The main conclusion of this paper is that the vortex sheet with surface tension
is well-posed in Sobolev spaces. In particular, this means that given periodic initial
conditions z(·, 0) ∈ Hr and γ(·, 0) ∈ Hr−3/2 for r large enough, there is some interval
of time in which a solution to the vortex sheet evolution equations exists. This solution
is unique, has the same regularity as the initial conditions, and depends continuously
on the initial data. We first prove this for the case in which the upper and lower fluids
have the same density, and then for the case of arbitrary densities.

In the proof, we use ideas from the numerical work of Hou, Lowengrub, and
Shelley. That is, we use their tangential velocity and analyze the evolution of θ and
L, the length of one period of the vortex sheet, rather than z. This simplifies the
analysis considerably since many of the leading terms in the evolution equations are
linear as functions of θ and γ.

The analysis uses energy methods. We first form approximations to the three
evolution equations by convolving parts of the equations with approximations to the
Dirac δ function. We then show that solutions to these approximated equations
exist by using the Picard theorem for differential equations on Banach spaces; this
requires proving that the time derivatives in the approximated equations are Lipschitz
continuous.

We then define an energy function, E, for the approximate solutions. The energy
function is related to the Sobolev norms of θ and γ and has no clear physical inter-
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pretation. Much of the difficulty in the problem is to find the proper definition of the
energy function. Finding the correct energy balance between θ and γ is very much
complicated by the nonlinearities in the evolution equations. After finding the correct
form of the energy, we estimate its growth and find

dE

dt
≤ C1 exp{C2E}(1.2)

for some positive constants C1 and C2.
Proving this estimate requires understanding various integral operators (including

some singular integral operators), as well as estimating nonlinear terms. Also, the
terms with the highest number of spatial derivatives need to be handled specially.
This is similar to the numerical work. For computational reasons, Hou, Lowengrub,
and Shelley introduced a small-scale decomposition (SSD) of the problem [HLS94].
That is, they identified terms which were unstable at small spatial scales and computed
them by an implicit method while the remaining terms were treated explicitly. Their
decomposition was

θt =
2π2

L2
H(γα) + P,

γt =
2π

LWe
θαα +Q.

H is the Hilbert transform; P and Q represent all the terms which were computed
explicitly. An important difference between this work and that of Hou, Lowengrub,
and Shelley lies in the SSD. The two terms they identified as the most important
for computational reasons also need to be treated carefully in the energy estimates.
We identify an additional term which is significant to the analysis. Unlike the two
principal terms in the SSD, this term is nonlinear as a function of θ and γ. The
new term appears in the γt equation and is a consequence of the choice of tangential
velocity. We write the new decomposition for γt as

γt =
2π

LWe
θαα +

2π2

L2
γH(γθα) + Q̃.

This raises an interesting question about the computing: Is there a benefit to changing
the SSD in the numerical method to include this nonlinear term?

The estimate (1.2) implies that solutions of the approximate equations exist on
a time interval independent of the mollification parameter, and they are uniformly
bounded during that time interval. Another estimate then implies that solutions
of the approximate equations form a Cauchy sequence (for different values of the
mollification parameter) and thus converge to a strong solution of the original system.

A consequence of the existence proof is that development of a singularity in finite
time implies that either the vortex sheet must intersect itself or the energy must blow
up. These are the very kinds of singularities observed in [HLS97]. In their compu-
tations, vortex sheets developed two kinds of singularities when the surface tension
was small: roll-up of the sheet and curvature singularities. Curvature singularities
were also found by Siegel in an approximation to the vortex sheet with surface ten-
sion [Sie95]. (Curvature singularities correspond to the energy blowing up.) We do
not address here whether or not singularities actually occur; this is a topic for future
research.
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After proving well-posedness in the case of fluids of the same density, we then
prove the same results in the case of arbitrary densities. The proof is not significantly
different from the earlier case. A special case of this result is when the upper fluid
has density zero; this is the case of water waves with surface tension. Neglecting
surface tension, Wu has proved well-posedness of water waves in both two and three
dimensions [Wu97], [Wu99]. Iguchi has proved well-posedness of water waves with
surface tension, but only when the height of the wave is a function of horizontal
position [Igu01]. There is no such restriction in this paper.

In section 2, we rewrite and mollify the evolution equations for the vortex sheet
with surface tension in the density-matched case. In section 3, we then state several
technical lemmas we will need which demonstrate the boundedness of some useful
operators. In section 4, we prove a priori estimates on the growth of solutions to
the mollified initial value problem. We use these a priori estimates in section 5 to
demonstrate existence and uniqueness of solutions to first the mollified problem and
then the nonmollified problem. In section 6, we extend this result to the case in which
the two fluids have different densities.

2. Evolution equations. In this section, we first discuss various operators that
we will use throughout the paper. We then discuss in some detail the evolution equa-
tions for the exact vortex sheet with surface tension. Finally, we will apply mollifiers
to the evolution equations to obtain an approximated set of evolution equations.

2.1. The Hilbert transform and associated operators. We begin with
background information on some operators that we will use. The Hilbert transform,
H, of a function f : R → R is defined by

Hf(α) =
1

π
PV

∫ ∞

−∞

f(α′)
α− α′ dα′.(2.1)

In Fourier space, H is a multiplier; that is, F(Hf)(ξ) = −isgn(ξ)Ff(ξ), where F is
the Fourier transform. This implies that H is bounded from L2 to L2, and in fact
‖Hg‖L2 = ‖g‖L2 and H2g = −g whenever Fg(0) = 0. We will be concerned with
functions which are periodic, and we will not want to consider the Hilbert transform
as an integral over the entire real line. For 2π-periodic f we can sum over periodic
images in (2.1) (see page 167 of [AF97]) to get

Hf(α) =
1

2π
PV

∫ 2π

0

f(α′) cot
1

2
(α− α′) dα′.(2.2)

The Hilbert transform commutes with differentiation. We will sometimes denote
differentiation by a subscript, and sometimes by application of an operator D. For
example, fα and Dαf both denote the derivative of f with respect to α. We define
the operator Λ to be a derivative followed by the Hilbert transform: Λ = HDα. In
Fourier space, we have FΛf(ξ) = 2π|ξ|Ff(ξ). This implies that

(∫
f2 + fΛfdα

)1/2

is an equivalent norm to ‖f‖1/2. Also, Λ is self-adjoint.
We will also frequently use commutators of certain operators. We define [H, f ]g

to be H(fg)− fH(g). This is typically a smoothing operator; details are discussed in
Lemma 3.7 and Corollary 3.8.
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2.2. The exact evolution equations. Consider any curve z(α, t) = x(α, t) +
iy(α, t) in the complex plane satisfying z(α + 2π, t) = z(α, t) + 2π. Give the curve
periodic normal velocity U and periodic tangential velocity T. Call the unit tangent
and normal vectors to the curve t̂ and n̂, respectively. The tangent angle that the
curve forms with the horizontal, θ, satisfies θ = arctan (yα/xα) . The derivative of
arclength satisfies s2

α = x2
α + y2

α. Differentiating these two equations in time, we find
that the evolution equations for θ and sα are

θt =
1

sα
Uα +

T

sα
θα,(2.3)

sαt = Tα − θαU.(2.4)

Also, the length of one period of the curve is L(t) =
∫ 2π

0
sαdα. This implies the

evolution equation

Lt =

∫ 2π

0

sαt dα = −
∫ 2π

0

θαU dα.(2.5)

For the vortex sheet, the normal velocity must be given by U =W · n̂, where W is
the complex conjugate of the Birkhoff–Rott integral (1.1) expressed as a real vector:

W(α) =
1

2π
PV

∫
γ(α′)

(−(y(α)− y(α′)), x(α)− x(α′))
(x(α)− x(α′))2 + (y(α)− y(α′))2

dα′.

In the Lagrangian formulation, W = (xt, yt).
We have some freedom in choosing T, so we use this freedom to make sαt inde-

pendent of α. Following [HLS94], we set sαt(α, t) = Lt(t)/2π in (2.4). Integrating to
solve for T, we have

T (α, t) =

∫ α

0

θα′Udα′ +
α

2π
Lt.(2.6)

We have set T (0, t) = 0 for simplicity. Now, if the curve is initially parameterized so
that sα = L/2π, it will remain that way.

The time derivative of the vortex sheet strength can be found by combining
Bernoulli’s equation for potential flow with the Laplace–Young condition for the pres-
sure jump across the interface (the pressure jump is proportional to curvature). The
derivation is a more general form of the derivation in [BMO82]; details can be found
in [Amb02]. The resulting evolution equation is

γt =
1

We
Dα

(
θα
sα

)
+Dα

(
(T −W · t̂)γ

sα

)
.(2.7)

Before attempting any analysis, we rewrite the evolution equations. We will need
the geometric identity

t̂α · n̂ = θα.(2.8)

Also, the following calculation is useful many times:

Dα(T −W · t̂) = Tα −Wα · t̂−W · t̂α(2.9)

= θαU +
Lt
2π

−Wα · t̂− (W · n̂)(̂tα · n̂) = Lt
2π

−Wα · t̂.
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We have used (2.8) to see an important cancellation between the two θα terms. We
will see soon that the Wα · t̂ term which remains is similar to the Hilbert transform
of θα, so the smoothness of the terms that canceled is not exactly the issue. The
presence of the Hilbert transform in the term that remains is critical.

We are ready to begin rewriting the system of evolution equations (2.3), (2.5),
(2.7). We expand Uα in (2.3):

θt =
2π

L
(W · n̂)α + 2π

L
Tθα =

2π

L
(Wα · n̂) + 2π

L
(T −W · t̂)θα.(2.10)

We now rewrite γt, using sα = L/2π and (2.9):

γt =
2π

L

θαα
We

+
2π

L

(
Lt
2π

−Wα · t̂
)
γ +

2π

L
(T −W · t̂)γα.(2.11)

We finish rewriting θt and γt by simplifyingWα · n̂ andWα · t̂. To do this, we switch
from real to complex notation. Define Φ : R

2 → C to be the mapping (a, b)→a+ ib.
We denote by z = x + iy the image under this mapping of our dependent variables
(x, y). The following are then true:

Φ(̂t) =
2πzα
L

, Φ(n̂) =
2πizα
L

.(2.12)

Furthermore, the formula for a dot product is

a · b = Re (Φ(a)Φ(b)∗) .(2.13)

Under this mapping, we have for W

Φ(W)∗ =
1

2πi
PV

∫
γ(α′)

z(α)− z(α′)
dα′.(2.14)

We rewrite this slightly:

Φ(W)∗ =
1

2πi
PV

∫ (
γ(α′)
zα(α′)

)
zα(α

′)
z(α)− z(α′)

dα′.

We are interested in non-self-intersecting curves such that z(α) − α is 2π-periodic,
which implies

γ(α)

zα(α)
PV

∫
zα(α

′)
z(α)− z(α′)

dα′ = 0.

(This can be seen by taking a branch of the logarithm.) Subtracting this from Φ(W)∗

and taking a derivative, we get

Φ(W)∗α =
1

2πi
DαPV

∫ (
γ(α′)
zα(α′)

− γ(α)

zα(α)

)
zα(α

′)
z(α)− z(α′)

dα′

=
1

2πi
PV

∫ (
γ(α′)
zα(α′)

− γ(α)

zα(α)

) −zα(α
′)zα(α)

(z(α)− z(α′))2
dα′

=
−zα(α)

2πi
PV

∫ (
γ(α′)
zα(α′)

− γ(α)

zα(α)

)
Dα′

(
1

z(α)− z(α′)

)
dα′.
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We integrate this by parts to get

Φ(W)∗α(α) =
zα(α)

2πi
PV

∫ (
γα(α

′)
zα(α′)

− γ(α′)zαα(α′)
z2
α(α

′)

)
1

z(α)− z(α′)
dα′.(2.15)

We approximate z(α)−z(α′) by the leading term from its Taylor series, zα(α
′)(α−α′),

to rewrite (2.15) as Φ(A1)
∗ +Φ(R1)

∗ +Φ(A2)
∗ +Φ(R2)

∗, where

Φ(A1)
∗ =

zα(α)

2πi
PV

∫
γα(α

′)
zα(α′)

[
1

zα(α′)(α− α′)

]
dα′,(2.16)

Φ(A2)
∗ = −zα(α)

2πi
PV

∫
γ(α′)zαα(α′)

z2
α(α

′)

[
1

zα(α′)(α− α′)

]
dα′.(2.17)

The remainders from approximating z(α)− z(α′) are

Φ(R1)
∗ =

zα(α)

2πi
PV

∫
γα(α

′)
zα(α′)

[
1

z(α)− z(α′)
− 1

zα(α′)(α− α′)

]
dα′,(2.18)

Φ(R2)
∗ = −zα(α)

2πi
PV

∫
γ(α′)zαα(α′)

z2
α(α

′)

[
1

z(α)− z(α′)
− 1

zα(α′)(α− α′)

]
dα′.(2.19)

We rewrite A1 to show that it equals a smooth term plus a scalar multiple of n̂.

Φ(A1)
∗ =

zα
2i

H

(
γα
z2
α

)
=

1

2izα
H(γα) +

zα
2i

[
H,

1

z2
α

]
(γα).

We can write this as

Φ(A1)
∗ =

π

L

(
2πizα
L

)∗
H(γα) +

zα
2i

[
H,

1

z2
α

]
(γα).

We define B1 to be Φ
−1 of the conjugate of the second term, and we use (2.12) to see

that A1 =
π
LH(γα)n̂+B1. Similarly, we compute

Φ(A2)
∗ = −zα

2i
H

(
γzαα
z3
α

)
= − 1

2izα
H

(
γzαα
zα

)
− zα
2i

[
H,

1

z2
α

](
γzαα
zα

)
.

We look at A2 separately when taking the inner product with t̂ and n̂. We define B2

in the analogous way to B1. Using (2.12) and (2.13), we see that

A2 · t̂−B2 · t̂ = Re
(
− π

iL
H

(
γzαα
zα

))
= −π

L
H

(
γRe

{
2πzαα

L

(
2πizα
L

)∗})
.

Using (2.12), (2.13), and (2.8), we see that this simplifies. In particular,

Re

{
2πzαα

L

(
2πizα
L

)∗}
= t̂α · n̂ = θα.

This implies A2 · t̂ = − π
LH(γθα) +B2 · t̂. Similarly,

A2 · n̂ = −π

L
H
(
γt̂α · t̂)+B2 · n̂.
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Since t̂ is a unit vector, t̂α · t̂ = 0, so A2 · n̂ = B2 · n̂. We can now write

Wα · n̂ = π

L
H(γα) +m · n̂, Wα · t̂ = −π

L
H(γθα) +m · t̂,(2.20)

where

m = R1 +R2 +B1 +B2.(2.21)

Finally, we can restate our initial value problem as

θt =
2π2

L2
H(γα) +

2π

L
(T −W · t̂)θα + 2πm · n̂

L
,(2.22)

γt =
2π

L

θαα
We

+
2π2γ

L2
H(γθα) +

2π

L
(T −W · t̂)γα + γ(Lt − 2πm · t̂)

L
,(2.23)

Lt = −
∫ 2π

0

θαU dα(2.24)

subject to the initial conditions

θ(α, 0) = θ0(α), γ(α, 0) = γ0(α), L(0) = L0.(2.25)

The boxed terms are those which will need to be treated most carefully in the energy
estimates.

2.3. The mollified equations. Our strategy for proving existence of solutions
for the vortex sheet is as follows: First, we introduce mollifiers to the right-hand
sides of the evolution equations. The purpose of this is to turn the right-hand sides
into bounded functions of θ, γ, and L in certain Sobolev spaces. Thus, we need to
include mollifiers only on terms which feature derivatives of θ and γ. The presence of
the mollifiers will allow us to prove existence of solutions to the mollified equations
for an amount of time which depends on the mollification parameter. We will need
to know bounds on the mollified solutions which are independent of the mollification
parameter, ε, in order to establish existence of solutions on a time interval independent
of ε.We will then be able to pass to the limit as ε goes to zero and establish existence
of solutions to the nonmollified equations.

We now state the mollified equations; we will define the new terms involved in
these equations next.

θεt =
2π2

Lε2
Hχε(γεα) +

2π

Lε
χε
(
(T ε −Wε · t̂ε)χεθεα

)
+
2πmε · n̂ε

Lε
+ µε,(2.26)

γεt =
2πχεθεαα
LεWe

+
2π2

Lε2
H((γε)2χεθεα) +

2π

Lε
χε
(
(T ε −Wε · t̂ε)χεγεα

)
+mε

γ ,(2.27)

Lεt = −
∫ 2π

0

θεαU
ε dα.(2.28)

These equations are taken together with the initial conditions

θε(α, 0) = θ0(α), γε(α, 0) = γ0(α), Lε(0) = L0.(2.29)
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We remark that in some of the terms with the mollification operator, χε, it appears
once, while in other terms χε appears twice. When χε appears twice in a term, it is
so that we can perform integration by parts in later estimates. In particular, this will
be important at the end of the proof of Theorem 4.3.

We assume χε to be a self-adjoint smoothing operator which commutes with
derivatives and the Hilbert transform. For example, χε could be convolution with an
approximation to the Dirac mass. We need the following lemmas for χε; proofs can
be found on page 131 of [MB02]. In what follows, unless otherwise noted, all Sobolev
spaces are of functions which are periodic with period 2π. The norm can thus be found
by integrating over any interval of length 2π.

Lemma 2.1. For f ∈ Hm−k and k ∈ {0, 1, 2, . . . }, we have χεf ∈ Hm and

‖χεf‖m ≤ c

εk
‖f‖m−k.

Lemma 2.2. For f ∈ H1 and ε, ε′ > 0,∥∥∥χεf − χε
′
f
∥∥∥

0
≤max(ε, ε′)‖f‖1.

In the θεt equation, the µε term has no counterpart in the nonmollified equation.
It appears here to enforce the condition that zε(α) − α be 2π-periodic. We do this
because knowing that the tangent angle is periodic does not imply that the underlying
curve is periodic. If we make the definition

P (t) =

∫ α+2π

α

zεα(α
′, t) dα′,

then we would like to know that P (t) = 2π. (It is clear that P is independent of α
since it is the integral of a periodic function over one period.) We assume that the

initial data satisfies P (0) = 2π.We will choose µ such that P ′(t) = 0. Let θ̃εt = θεt−µε.
Since zα =

L
2π e

iθ, we see

P ′(t) =
∫ α+2π

α

[
Lεtz

ε
α

Lε
+ iθεt z

ε
α

]
dα′ =

∫ α+2π

α

[
Lεtz

ε
α

Lε
+ iθ̃εt z

ε
α

]
dα′+iµε

∫ α+2π

α

zεα dα′.

This tells us that by defining µε by

µε(t) = −

∫ α+2π

α

[
Lεtz

ε
α

Lε
+ iθ̃εt z

ε
α

]
dα′

i

∫ α+2π

α

zεα dα′
,(2.30)

we guarantee that P ′(t) = 0. This implies that zε(α) − α is always 2π-periodic. We
remark that for the nonmollified equations, it can be shown that z(α) − α remains
2π-periodic. We refer the reader to [Amb02] for this calculation.

Before defining the mollified quantities mε, T ε, etc., we must first define zε and
Wε. We start with zε:

zε(α, t) = zε(0, t) +

∫ α

0

Lε(t)

2π
cos(θε(α′, t)) + i

Lε(t)

2π
sin(θε(α′, t)) dα′.
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Although it is frequently unimportant, we define zε(0, t) for completeness. Since we
have chosen T (0, t) = 0, we see that zεt (0, t) = (W · n̂)Φ(n̂)(0, t); that is, zε(0, t)
evolves only by the normal velocity. Using (2.12) and (2.13), this means

zεt (0, t) = Re

(
Φ(Wε)∗(0, t)

2πizεα(0, t)

Lε(t)

)
2πizεα(0, t)

Lε(t)
.

Integrating this in time yields zε(0, t). Without loss of generality, we can choose
zε(0, 0) = 0. We introduce zεd(α, t) = zε(α, t)− zε(0, t) since we will usually not need
z(0, t). Notice that Dαz

ε = Dαz
ε
d. We will also use the similar notation zd(α, t) =

z(α, t)− z(0, t), as necessary.
We now turn our attention to definingWε. In order to do this, we first rewrite the

nonmollified W. Since we are looking for curves, z, with the property that z(α) − α
is 2π-periodic, we rewrite (2.14) so that the integral is over one period:

Φ(W)∗(α) =
1

4πi
PV

∫ b+π

b−π
γ(α′)

[
cot

1

2
(z(α)− z(α′))

]
dα′.(2.31)

Here, b is any real number. We rewrite this in order to isolate its most important
part. In particular, we rewrite the quantity in brackets as(

1

zα(α′)
cot

1

2
(α− α′)

)
+

(
cot

1

2
(z(α)− z(α′))− 1

zα(α′)
cot

1

2
(α− α′)

)
.

Then (2.31) becomes

Φ(W)∗(α) =
1

2i
H

(
γ

zα

)
+K[z]γ,(2.32)

where we define the integral operator K[z] as

K[z]f(α) = 1

4πi

∫ b+π

b−π
f(α′)

[
cot

1

2
(zd(α)− zd(α

′))− 1

zα(α′)
cot

1

2
(α− α′)

]
dα′.

(2.33)

Since we are interested in curves, z, which are non-self-intersecting, K[z] is not a
singular integral operator. To take advantage of this, we write the cotangent as a
function which is analytic at the origin plus a singular part:

cot(w) =
1

w
+G(w).(2.34)

This lets us rewrite K as K1 +K2, where

K1[z]f(α) =
1

2πi

∫ b+π

b−π
f(α′)

[
1

zd(α)− zd(α′)
− 1

zα(α′)(α− α′)

]
dα′,(2.35)

K2[z]f(α) =
1

4πi

∫ b+π

b−π
f(α′)

[
G

(
1

2
(zd(α)− zd(α

′))
)
− 1

zα(α′)
G

(
1

2
(α− α′)

)]
dα′.

(2.36)

We make definite choices of b in these integrals. For K1, we choose b = π so that we
integrate over [0, 2π]. For K2, we choose b so that the interval of integration avoids the
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poles of G. From (2.34), we see that the poles of G are the nonzero integral multiples
of π. Thus, we choose b = α in K2 so that the maximum difference between α and α′

is π. This will be discussed further in the next section. We are now able to defineWε

similarly to (2.32):

Φ(Wε)∗(α) =
1

2i
H

(
γε

zεα

)
(α) +K1[z

ε]γε(α) +K2[z
ε]γε(α).(2.37)

The definitions of the remaining mollified quantities are routine. The tangent and
normal vectors to the mollified curve are given by

Φ(̂tε) =
2πzεα
Lε

, Φ(n̂ε) =
2πizεα
Lε

.

The mollified version of U is given by Uε =Wε · n̂ε. Notice that by defining Uε, we
have completed the definition of Lεt in (2.28). T

ε is defined by replacing θ and U by
their mollified versions in (2.6). mε is also defined much as before, with

mε = Rε
1 +Rε

2 +Bε
1 +Bε

2.(2.38)

The terms Rε
1, R

ε
2, B

ε
1, and B

ε
2 are defined the same way as the nonmollified versions

but in terms of zε and γε instead of z and γ.
In the mollified equations, we introduced mε

γ . This is because we would like both
of the γ factors to be inside the Hilbert transform in the second of the important
terms in (2.23). Thus, we define mε

γ to be the collection of terms

mε
γ =

γε(Lεt − 2πmε · t̂ε)
Lε

− [H, γε]

(
2π2γεχεθεα

Lε2

)
.(2.39)

3. Preliminaries. We will need to use a variety of routine estimates for integral
operators and other functions in terms of θ and γ. We begin with an estimate for the
composition of two functions; see page 11 of [Tay96] for the proof.

Lemma 3.1. If F is smooth and u is in Hk ∩L∞, then ‖F (u)‖k ≤ c(1 + ‖u‖k).
The constant, c, depends on |F (j)u|∞ for j between 0 and k.

The next lemma gives a bound for z in terms of θ and L. This is important since
z occurs frequently in our integral operators but not in our energy function.

Lemma 3.2. Let s be a positive integer. If θ ∈ Hs−1, then zd ∈ Hs and ‖zd‖s ≤
cL(1 + ‖θ‖s−1).

Proof. We use the fact that Dαzd = Dαz, and we use the following equivalent
norm for zd ∈ Hs:

‖zd‖s =
s∑
j=0

‖Dj
αzd‖0 = ‖zd‖0 +

s−1∑
j=0

‖Dj
αzα‖0 = ‖zd‖0 + ‖zα‖s−1.

Recall the definition

zd(α, t) =

∫ α

0

L(t)

2π
eiθ(α

′,t) dα′.

Clearly, the H0 norm of this is bounded by a constant times L. To bound ‖zα‖s−1,
we use Lemma 3.1 with the formula zα =

L
2π e

iθ to see that ‖zα‖s−1 ≤ cL(1+‖θ‖s−1).

Notice that c is independent of θ since |eiθ|∞ = 1. This concludes the proof of the
lemma.
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We will also need a standard interpolation lemma for Sobolev spaces. The Sobolev
spaces we use are for periodic functions.

Lemma 3.3. If f ∈ Hs, and m is a real number such that s > m > 0, then

‖f‖m ≤ c‖f‖m/ss ‖f‖1−m/s
0 .

Proof. We use Hölder’s inequality for series in the form

∞∑
ξ=−∞

aξbξwξ ≤

 ∞∑
ξ=−∞

apξwξ




1/p
 ∞∑
ξ=−∞

bqξwξ




1/q

,

where 1
p +

1
q = 1. We use as weights wξ = (Ff(ξ))2. We calculate

(3.1)

∞∑
ξ=−∞

(1 + |ξ|2)m(Ff(ξ))2

≤

 ∞∑
ξ=−∞

(1 + |ξ|2)s(Ff(ξ))2



m/s

 ∞∑
ξ=−∞

(Ff(ξ))2




1−m/s

.

This completes the proof.
In simplifying the integral operator K1, we find divided differences to be very

useful. We have the integral representation formulae for the divided differences q1
and q2:

q1(α, α
′) =

zd(α)− zd(α
′)

α− α′ =

∫ 1

0

zα (tα+ (1− t)α′) dt,

q2(α, α
′) =

zd(α)− zd(α
′)− zα(α)(α− α′)

(α− α′)2
=

∫ 1

0

(t− 1)zαα ((1− t)α+ tα′) dt.

The next lemma gives bounds for the divided differences in terms of z. Rather than
include a proof, we refer the reader to [BHL93]. (The proof makes use of the integral
representations above.) The version of the lemma in [BHL93] was not for periodic
functions, but that is not an important difference.

Lemma 3.4. Let zd ∈ Hm[a, b] and k ≤ m − 1. Then in either α or α′, q1 ∈
Hm−1[a, b] and q2 ∈ Hm−2[a, b]. Furthermore, there are the bounds

‖q1‖m−1 ≤ c‖zd‖m, ‖q2‖m−2 ≤ c‖zd‖m.

Remark. This lemma is true for any function in Hm, not only for zd.
It now becomes important that we consider only curves z which are non-self-

intersecting. In particular, when we specify that z is non-self-intersecting, we require
that it satisfy the following estimate for some c̄ > 0 and for all α and α′:

c̄ <

∣∣∣∣zd(α)− zd(α
′)

α− α′

∣∣∣∣ .(3.2)

In addition to ruling out self-intersections, this condition also guarantees that the
curve z has no cusps.
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We also begin to consider only triples (θ, γ, L) which lie in a bounded set. To do
this, we define the energy for a triple (θ, γ, L). Our energy function is

E(t) = E0(t) + L2(t) +

r∑
j=2

Ej(t),(3.3)

where E0(t) = ‖θ‖2
0 + ‖γ‖2

0 and

Ej(t) =
1

2

∫
(Dj−1

α θ)2 +
πWe

L
(Dj−2

α γ)Λ(Dj−2
α γ) +

γ2π2We2

L2
(Dj−2

α γ)2 dα(3.4)

for j ≥ 2. We write Ej = Ej
1 + Ej

2 + Ej
3. We make the assumptions that

2π < L, E(t) < d̄,(3.5)

where d̄ is some positive constant. This implies that the Hr−1 norm of θ, the Hr−3/2

norm of γ, and the size of L are all bounded above by a constant. We have also
assumed that L is bounded below by 2π. We make this assumption for technical
reasons (related to the proof of Theorem 5.1). That L is bounded below by 2π is
automatically true for any nontrivial curve z such that z(α) − α is 2π-periodic. By
Lemma 3.2, (3.5) also implies that the Hr norm of zd is bounded by a constant. When
choosing c̄ and d̄, we make sure that c̄ is small enough and d̄ is large enough so that
conditions (3.2) and (3.5) are satisfied by the initial data.

Remark on minimal regularity. In the definition of the energy function (3.3), we
have introduced an integer r. In what follows, we will be assuming the initial data θ0

to be in Hr−1 and γ0 to be in Hr−3/2. We will sometimes make an assumption that
“r is large enough.” This means that we are assuming r > k, where k is an absolute
constant. We do not determine here the minimal value of k which is necessary to
make our proofs hold. This is because this would surely not be sharp.

We prove now that the operator K = K1 + K2 defined in (2.35) and (2.36) is
smooth.

Lemma 3.5. Let s be an integer such that s ≥ 2. If zd ∈ Hs, then K[z] :
H1→Hs−1 and, in particular, there are positive constants C1 and C2 such that

‖K[z]f‖s−1 ≤ C1‖f‖1 exp{C2‖zd‖s}.
Similarly, K[z] : H0→Hs−2, and ‖K[z]f‖s−2 ≤ C1‖f‖0 exp{C2‖zd‖s}.

Proof. We will deal with K1 and K2 separately. We begin by taking s − 1
derivatives of K1[z]f.

Ds−1
α K1[z]f(α) =

1

2πi

∫ 2π

0

f(α′)Ds−1
α

[
1

zd(α)− zd(α′)
− 1

zα(α′)(α− α′)

]
dα′.

We apply one of the s− 1 derivatives to the quantity in brackets.

Ds−1
α K1[z]f(α) =

1

2πi

∫ 2π

0

f(α′)Ds−2
α

[
− zα(α)

(zd(α)− zd(α′))2
+

1

zα(α′)(α− α′)2

]
dα′.

We rearrange the factors of zα and write the quantity in brackets as an α′-derivative.

Ds−1
α K1[z]f(α) =

1

2πi

∫ 2π

0

f(α′)
zα(α′)

Ds−2
α Dα′

[
− zα(α)

zd(α)− zd(α′)
+

1

α− α′

]
dα′.
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We integrate this by parts and estimate it, recognizing that the quantity in brackets
is a ratio of divided differences.

|Ds−1
α K1[z]f(α)| =

∣∣∣∣ 12πi
∫ 2π

0

Dα′

(
f(α′)
zα(α′)

)
Ds−2
α

[
zα(α)

zd(α)− zd(α′)
− 1

α− α′

]
dα′
∣∣∣∣

≤ c

∥∥∥∥ f

zα

∥∥∥∥
1

∥∥∥∥q2q1
∥∥∥∥
s−2

≤ c‖f‖1

∥∥∥∥ 1zα
∥∥∥∥

1

‖q2‖s−2

∥∥∥∥ 1q1
∥∥∥∥
s−2

.(3.6)

Using (3.2) and Lemma 3.1, we estimate ‖1/q1‖s−2 ≤ c(1+‖q1‖s−2). Similarly, since
|zα| = L/2π, we use Lemma 3.1 to estimate∥∥∥∥ 1zα

∥∥∥∥
1

≤ c(1 + ‖zα‖1).(3.7)

To finish the estimate for K1, we use Lemma 3.4 and (3.6) to conclude

‖K1[z]f‖s−1 ≤ C1‖f‖1 exp{C2‖zd‖s}.(3.8)

We calculate Ds−1
α K2[z]f. It is

1

2πi

∫ α+π

α−π
f(α′)Ds−1

α

[
G

(
1

2
(zd(α)− zd(α

′))
)
− 1

zα(α′)
G

(
1

2
(α− α′)

)]
dα′.(3.9)

The largest number of derivatives which fall on zd is s− 1, and we assumed zd ∈ Hs.
We can estimate the factor of 1/zα in Hs−1 similarly to (3.7). It is important to
notice that the poles of G have been avoided. That is, zd(α)−zd(α

′) cannot approach
any multiple of 2π because of the periodicity of z(α)− α and the condition (3.2). By
(3.5), we know that zd is in a bounded set, and we also know that G is analytic. So,
we can use Lemma 3.1 to conclude that

‖K2[z]f‖s−1 ≤ C1‖f‖0 exp{C2‖zd‖s}.(3.10)

Combining (3.8) and (3.10), we have proved the lemma.
We also need a Lipschitz-type estimate for K. We state the lemma here, but we

refer the reader to [Amb02] for the proof.
Lemma 3.6. Given z and z′ in Hr which satisfy (3.2) and (3.5), we have the

Lipschitz estimate

‖K[z]f −K[z′]f‖1 ≤ c‖θ − θ′‖1‖f‖1.

The proof is routine. It involves considering K1 and K2 individually. For K1,
Lipschitz estimates on the divided differences q1 and q2 are used. For K2, Lipschitz
estimates for the function G defined in (2.34) are used.

We will frequently need estimates regarding the smoothness of the commutator
of the Hilbert transform and multiplication by a smooth function.

Lemma 3.7. For ψ ∈ Hs, the operator [H,ψ] is bounded from H0 to Hs−1. Also,
[H,ψ] is bounded from H−1 to Hs−2. For i = 0 or i = −1, we have

‖[H,ψ]f‖s−1+i ≤ c‖f‖i‖ψ‖s.
Proof. We begin by writing [H,ψ] as an integral operator:

[H,ψ]f(α) =
1

2πi

∫ b+2π

b

f(α′)
(
ψ(α′)− ψ(α)

)
cot

(
1

2
(α− α)

)
dα′.
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Since the functions are periodic, we may choose b = α, so that the maximum difference
between α and α′ is π. We can write the kernel as(

ψ(α)− ψ(α′)
α− α′

)(
(α− α′) cot

1

2
(α− α′)

)
.

The first part of this product is a divided difference, and the second part is an analytic
function on the domain in which we are interested. The lemma now follows from
Lemma 3.4 and from the generalized Young’s inequality [Fol95]. For g ∈ H−1, we
integrate by parts once; otherwise, the proof is similar.

Corollary 3.8. For s ≥ 3 and ψ ∈ Hs, the operator [H,ψ] is bounded from
Hs−2 to Hs. For s ≥ 4 and ψ ∈ Hs−1/2, [H,ψ] is bounded from Hs−2 to Hs−1/2. For
i = 0 or i = −1/2, we have the estimates ‖[H,ψ]f‖s+i ≤ c‖f‖s−2‖ψ‖s+i.

Proof. Let g ∈ Hs−2. We compute Ds
α[H,ψ]g by using the product rule for s− 2

of the derivatives.

Ds
α[H,ψ]g = D2

α(D
s−2
α (H(ψg)− ψH(g)))

= D2
α

s−2∑
k=0

(
s− 2
k

)[
H((Dk

αψ)(D
s−k−2
α g))− (Dk

αψ)(HDs−k−2
α g)

]
.

We consider the summands separately in the cases k = 0, k = 1, and k > 1. The
simplest case is k > 1, for then the highest number of derivatives on g is s − 4 and
the highest number of derivatives on ψ is s− 2. The products of these terms are thus
in H2, which is fortunate since we are taking two derivatives of the sum. Thus, the
H0 norms of these terms are bounded by c‖ψ‖s‖g‖s−2. When k = 0, we have

D2
αH(ψD

s−2
α g)−D2

α(ψHDs−2
α (g)) = D2

α[H,ψ](Ds−2
α (g)).

Lemma 3.7 applies to this term, so its H0 norm is bounded by c‖ψ‖3‖g‖s−2. The
k = 1 term is similarly bounded by c‖ψ‖3‖g‖s−2. This proves the first part of the
corollary. The proof for ψ∈Hs−1/2 is similar.

The final lemma we will need is about commutator operators associated with
taking a large number of derivatives. This lemma, though, relies on another lemma
about norms of products of functions in Sobolev spaces.

Lemma 3.9. Suppose s > 1/2 and s ≥ s′ ≥ 0. If f ∈ Hs and g ∈ Hs′ , then
fg ∈ Hs′ with the estimate

‖fg‖s′ ≤ c‖f‖s‖g‖s′ .
We do not prove this lemma here. Instead, we refer the reader to page 366 of

[Bea81]. The version of the lemma in [Bea81] is for functions on R
3, but the proof of

Lemma 3.9 is essentially the same. We are now prepared to give our final lemma.
Lemma 3.10. If k is a positive integer such that k ≥ 2, s is a positive real

number, f ∈ Hs+k, and g ∈ Hs+k−1, then the following estimate for commutators of
derivatives holds:

‖Dk
α(fg)− fDk

αg‖s ≤ c‖f‖s+k‖g‖s+k−1.

Proof. We first notice that the product rule implies that Dk
α(fg) − fDk

αg =∑k
j=1

(
k
j

)
(Dk−j

α g)(Dj
αf). We now use the triangle inequality:

∥∥Dk
α(fg)− fDk

αg
∥∥
s
≤

k∑
j=1

(
k

j

)∥∥(Dk−j
α g)(Dj

αf)
∥∥
s
.(3.11)
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Lemma 3.9 implies that each of these individual summands can be bounded by
c‖f‖s+k‖g‖s+k−1. This completes the proof, but we illustrate this with an example.
If k = 3 and s = 1/2, then (3.11) reads

(3.12)
∥∥(D3

αf)g + 3(D
2
αf)(Dαgα) + 3(Dαf)(D

2
αg)
∥∥

1/2

≤ ∥∥(D3
αf)g

∥∥
1/2

+ 3
∥∥(D2

αf)(Dαg)
∥∥

1/2
+ 3

∥∥(Dαf)(D
2
αg)
∥∥

1/2
.

Lemma 3.9 implies that the first term on the right-hand side of (3.12) can be bounded
by c‖f‖7/2‖g‖3/2, the second can be bounded by c‖f‖7/2‖g‖3/2 (or by c‖f‖5/2‖g‖5/2),
and the third can be bounded by c‖f‖5/2‖g‖5/2. The sum of these can then be bounded
by c‖f‖7/2‖g‖5/2.

4. A priori estimates. We wish to consider solutions of the initial value prob-
lem which lie in a particular Banach space, Hr−1 ×Hr−3/2 ×R. We call this space B.
Our solutions, (θ, γ, L), will be contained in an open subset, O, of B; in particular, O
is the subset of B in which the conditions (3.2) and (3.5) hold. Notice that this open
set depends on the particular choice of c̄ and d̄. The norm of (θ, γ, L) ∈ B is defined
to be ‖θ‖r−1 + ‖γ‖r−3/2 + |L|.

The goal of this section is to provide a bound on the growth of the energy of
a solution to the mollified initial value problem. We begin by providing routine
estimates of quantities related to θ, γ, and L. These estimates hold for both the
mollified and for the nonmollified quantities. Throughout this section, all constants
are independent of α, t, and ε, but they may depend on r, c̄, d̄, or the Weber number.

Lemma 4.1. If |zα(α, t)| = L(t)/2π, L(t) > 2π, and zα ∈ Hr−1([a, b]), then 1/zα
is in Hr−1 with the estimate∥∥∥∥ 1zα

∥∥∥∥
r−1

≤ c(1 + ‖zα‖r−1),

where c depends on r and on the interval [a, b].
Proof. We use Lemma 3.1 with F (u) = 1/u. The assumption that∣∣∣∣ 1zα

∣∣∣∣ = 2π

L
< 1

implies that |F (j)u|∞ < 1 for all j. Thus, we have proved the lemma and the constant
c is independent of both α and t.

We will use Lemma 4.1 at some points in the proof of Lemma 4.2.
Lemma 4.2. For (θ, γ, L) ∈ O, the following bounds hold:

‖W‖0 ≤ C1‖γ‖1 exp{C2‖zd‖1},(4.1)

|Lt| ≤ C‖θ‖1‖W‖0,(4.2)

‖m‖r−1 ≤ C1‖γ‖r−2 exp{C2‖zd‖r},(4.3)

‖mγ‖r−3/2 ≤ C‖γ‖r−3/2(|Lt|+ ‖m · t̂‖r−1 + ‖γ‖r−2‖θ‖r−1),(4.4)

‖Dα(T −W · t̂)‖r−2 ≤ C(|Lt|+ ‖θ‖r−1‖γ‖r−2 + ‖m · t̂‖r−1),(4.5)

|µε(t)| ≤ c(|Lεt |+ ‖γε‖1 + ‖T ε −Wε · t̂ε‖0‖θε‖1 + ‖mε‖0).(4.6)

Proof. The bounds (4.1), (4.2), (4.3), (4.4), and (4.5) hold for both the mollified
and for the nonmollified quantities. In (4.6), however, we make the ε-dependence
explicit because there is no nonmollified counterpart to µε.
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Proof. We use the representation Φ(W)∗ = 1
2iH(

γ
zα
) +K[z]γ to estimate ‖W‖0.

In making this estimate, we make use of Lemma 3.5. Thus,

‖W‖0 ≤ c1

(
‖γ‖0

∣∣∣∣ 1zα
∣∣∣∣
∞
+ ‖γ‖1 exp{c2‖zd‖1}

)
.

To estimate |1/zα|∞ , we use that |zα| = L/2π and 2π < L. This implies the estimate
‖W‖0 ≤ c3‖γ‖1 exp{c2‖zd‖1}.

We turn to Lt. From (2.28) we easily compute

|Lt| ≤
∫ 2π

0

|θα||U | dα ≤ c‖θ‖1‖W · n̂‖0 ≤ c‖θ‖1‖W‖0|n̂|∞.

Since n̂ is a unit vector, |n̂|∞ = 1. This implies the bound (4.2).
We see from (2.38) that m is made up of two kinds of terms: commutators

and integral remainder operators. We write m = (m · t̂)̂t+ (m · n̂)n̂, and bound the
normal and tangential parts separately. We use Corollary 3.8 on the commutators and
Lemma 3.5 on the integral remainder operators. More specifically, in the tangential
part, the commutator is

B1 · t̂+B2 · t̂ = Re
(

z2
α

2iL

[
H,

1

z2
α

](
γα − γzαα

zα

))
.

By Corollary 3.8, we can bound its Hr−1 norm by

c‖zα‖2
r−1

∥∥∥∥ 1zα
∥∥∥∥
r−1

∥∥∥∥γzααzα
− γα

∥∥∥∥
r−3

.

By Lemma 4.1, ‖1/zα‖r−1 ≤ c(1 + ‖zα‖r−1). Similarly,∥∥∥∥γzααzα
− γα

∥∥∥∥
r−3

≤c‖γ‖r−3(1 + ‖zα‖r−2)
2 + ‖γ‖r−2

By applying Lemma 3.5 to the other part of m · t̂, which is R1 · t̂+R2 · t̂, we see
that it is bounded in Hr−1 by(∥∥∥∥γαzα

∥∥∥∥
1

+

∥∥∥∥γzααz2
α

∥∥∥∥
1

)
C1 exp{C2‖zd‖r}‖zd‖r.

This is in turn bounded by(‖γ‖2(1 + ‖zd‖2) + ‖γ‖1(1 + ‖zd‖3)
3
)
C1 exp{C2‖zd‖r}‖zd‖r.

As long as r ≥ 4, we can put all of this into one bound, namely,

‖m · t̂‖r−1 ≤ C1‖γ‖r−2 exp{C2‖zd‖r}.
The estimate for m · n̂ is similar, and this leads to the bound (4.3). Note that the
bound on mγ also requires the use of Corollary 3.8.

The bound on Dα(T −W · t̂) is immediate from (2.9) and (2.20). To bound |µε|,
we begin with the denominator in (2.30). Using (3.2), we have∣∣∣∣iLε

∫ α+2π

α

zεα(α
′) dα′

∣∣∣∣ ≥ 2π|c̄Lε| ≥ 4π2c̄.(4.7)
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Next, we look at the numerator of |µε|; it can be expressed as∣∣∣∣
∫ α+2π

α

[
Lεtz

ε
α

Lε
+
2πizεα
Lε

( π

Lε
(Hχεγεα) + χε[(T ε −Wε · t̂ε)χεθεα] +mε · n̂ε

)]
dα′
∣∣∣∣ .

Using Lemma 2.1 and the fact that |zεα/Lε| < c, we bound this by

c(|Lεt |+ ‖γεα‖0 + ‖T ε −Wε · t̂ε‖0‖θεα‖0 + ‖m‖0).

Combined with (4.7), this clearly implies the estimate (4.6).
We are now ready to prove the main estimate.
Theorem 4.3. Let (θ, γ, L)∈C([0, T );O) be a solution to the mollified initial

value problem for the vortex sheet with surface tension ((2.26), (2.27), (2.28), and
(2.29)). If the initial data θ0 is in Hr−1 and γ0 is in Hr−3/2, where the integer r is
large enough, then there exists a time T ∗ > 0 and positive constants C1 and C2 such
that for all t satisfying t ≤ T < T ∗,

E(t) ≤ − ln(e
−C2E(0) − C1C2t)

C2
.(4.8)

The time T ∗ depends only upon the initial data, r, the Weber number, and the set O.
Proof. Recall the definition of the energy in (3.3) and (3.4). We compute the

time derivative of the energy. Our conclusion will be that for some positive constants
C1 and C2,

dE

dt
≤ C1 exp{C2E}.

Demonstrating this bound will prove the theorem since this differential inequality has

a solution until time T ∗ = e−C2E(0)

C1C2
, and until that time, the bound (4.8) holds.

We first compute
dEj1
dt . From the definition of Ej

1, we have

dEj
1

dt
=

∫
(Dj−1

α θ)(Dj−1
α θt) dα.

Plugging in from (2.26) for θt, this is

dEj
1

dt
=

∫
(Dj−1

α θ)

(
2π2

L2
Hχε(Dj

αγ)

)
dα(4.9)

+

∫
(Dj−1

α θ)Dj−1
α

(
χε
(
2π

L
(T −W · t̂)χεDαθ

))
dα

+

∫
2π(Dj−1

α θ)

(
Dj−1
α (m · n̂)

L
+ µ

)
dα.

We rewrite the second integral in (4.9) simply by adding and subtracting. This
is because the most important term from that integral comes when all of the j − 1
derivatives fall on θ:

(4.10)

∫
(Dj−1

α θ)Dj−1
α

(
χε
(
2π

L
(T −W · t̂)χεDαθ

))
dα

=

∫
(Dj−1

α θ)χε
(
2π

L
(T −W · t̂)χεDj

αθ

)
dα

+

∫
(Dj−1

α θ)χε
(
2π

L

[
Dj−1((T −W · t̂)χεDαθ)− (T −W · t̂)χεDj

αθ
])

dα.
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We introduce the notation

dEj
1

dt
= P j

1 + V j
1 +Bj

1 +Bj
2,

where P j
1 is the first integral on the right-hand side of (4.9), V

j
1 is the first term on the

right-hand side of (4.10), Bj
1 is the second term on the right-hand side of (4.10), and

Bj
2 is the third integral on the right-hand side of (4.9). Notice that P

j
1 corresponds to

the boxed term in (2.26). P j
1 will cancel with another term we will see soon; this will

be the primary cancellation and will demonstrate the usefulness of the surface tension
in this problem. V j

1 is a transport term which we will discuss in more detail later.
Notice that if we were using the purely Lagrangian tangential velocity (T = W · t̂),
there would be no transport term. Both of the B terms are bounded in terms of our
energy, as we will now show.

To demonstrate that theB terms are bounded, we make frequent use of Lemma 4.2.
We start with Bj

1. The factor D
j−1
α θ that multiplies the difference in Bj

1 can clearly
be bounded by cE1/2. Using Lemma 3.10, we bound the quantity in brackets by
c‖T −W · t̂‖j−1‖θ‖j−1. By Lemma 4.2 and the definition of the energy function, we

can conclude that Bj
1 ≤ C1 exp{C2E}.

We estimate Bj
2 by cE1/2‖m · n̂+ µ‖j−1. Recall that j is at most r. The Sobolev

algebra property implies ‖m · n̂ + µ‖r−1 ≤ c‖m‖r−1‖n̂‖r−1 + c|µ|. Lemma 4.2 tells
us that ‖m‖r−1 ≤ C1‖γ‖r−2 exp{C2‖zd‖r}, and by the definition of n̂ we can bound
‖n̂‖r−1 by ‖zd‖r. Also, Lemma 3.2 gives the bound ‖zd‖r ≤ cL(1+‖θ‖r−1). Similarly,
we could use Lemma 4.2 to bound |µ| in terms of the norms of θ and γ. These estimates
combine to yield the estimate Bj

2 ≤ C1 exp{C2E}.
We next take the time derivative of Ej

2. This is

dEj
2

dt
=

πWe

L

∫
(Dj−2

α γt)Λ(D
j−2
α γ) dα− πWeLt

L2

∫
(Dj−2

α γ)Λ(Dj−2
α γ) dα.

We plug in for γt from (2.27). We use the following notation:

dEj
2

dt
= P j

2 + Sj1 + V j
2 +Bj

3 +Bj
4 +Bj

5,

where

P j
2 =

∫
2π2

L2
(χεDj

αθ)(ΛD
j−2
α γ) dα,

Sj1 =

∫
2π3We

L3
H(γ2χεDj−1

α θ)(ΛDj−2
α γ) dα,(4.11)

and

V j
2 =

∫ (
χε
(
2π2We

L2
(T −W · t̂)χεDj−1

α γ

))
Λ(Dj−2

α γ) dα.

Notice that P j
2 and Sj1 correspond to the boxed terms in (2.27). The primary can-

cellation that we mentioned earlier is between P j
1 and P j

2 . If there were no surface

tension in the problem (We = ∞), P j
2 would not be here. Sj1 will be involved in the
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secondary cancellation, along with a term from Ej
3 which we will soon see. S

j
1 is the

reason we need to include the unusual term Ej
3 in the energy function at all. V j

2 is
a transport term which we will deal with later. Again, if we were using the purely
Lagrangian tangential velocity (T =W · t̂), the transport term would not be present.

We look now at the more easily bounded terms.

Bj
3 =

∫
2π3We

L3
Λ(Dj−2

α γ)H
[
Dj−2
α (γ2χεθα)− (γ2χεDj−1

α θ)
]
dα.(4.12)

Like Sj1, this corresponds to the second of the boxed terms in (2.27). This term is

very similar to Bj
1. The next term,

Bj
4 =

∫
2π2We

L2
χε
[
Dj−2
α ((T −W · t̂)γα)− (T −W · t̂)Dj−1

α γ
]
Λ(Dj−2

α γ) dα,

(4.13)

is related to V j
2 and is also very similar to Bj

1. Both Bj
3 and Bj

4 can be bounded in
terms of the energy by a straightforward application of Lemmas 3.10 and 4.2. Finally,
the term

Bj
5 =

∫
πWe

L
(Dj−2

α mγ)Λ(D
j−2
α γ)− πWe

L2
Lt(D

j−2
α γ)Λ(Dj−2

α γ) dα

can be bounded by a straightforward application of Lemma 4.2, as was Bj
2.

We can now see the primary cancellation:

P j
1 + P j

2 =

∫
2π2

L2

[
(Dj−1

α θ)(Hχε(Dj
αγ)) + (χ

εDj
αθ)(ΛD

j−2
α γ)

]
dα.(4.14)

Using the facts that χε is self-adjoint and commutes with Dα, that Λ = HDα, and
integrating by parts on the second of the two terms, we see that

P j
1 + P j

2 =

∫
2π2

L2

[
(Dj−1

α θ)(Hχε(Dj
αγ))− (Dj−1

α θ)(HχεDj
αγ)
]
dα = 0.

We remark here that this cancellation occurs because of the surface tension term in
the evolution equation for γ.Without this cancellation, we would not be able to bound
the growth of the norm of the solution.

Continuing, we take the time derivative of Ej
3. As we said earlier, the only reason

to include Ej
3 in the energy is to cancel S

j
1. Using (2.27) to substitute for γt, we write

dEj
3

dt
= Sj2 +Bj

6,

where

Sj2 =

∫
γ2π2We2

L2
(Dj−2

α γ)

(
Dj−2
α

(
2πχεθαα
LWe

))
dα(4.15)

will be the term which is involved in this secondary cancellation. This corresponds to
the first of the boxed terms in (2.27). The rest of the terms are more easily bounded.
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They are

Bj
6 =

∫ [
γ2π2We2

L2
(Dj−2

α γ)

(
Dj−2
α

(
2π2

L2
H(γ2χεθα)

))

+
γ2π2We2

L2
(Dj−2

α γ)

(
Dj−2
α χε

(
2π

L
(T −W · t̂)χεγα

))

+
γ2π2We2

L2
(Dj−2

α γ)(Dj−2
α mγ)

+
γγtπ

2We2

L2
(Dj−2

α γ)2 − 2γ2π2We2

L3
Lt(D

j−2
α γ)2

]
dα.

The bounds for the B terms are very similar to those done earlier and are based on
Lemma 4.2. We will not perform these estimates here. We do remark that the term
γt on the last line can be bounded in terms of the energy because it includes only low
derivatives of θ and γ.

We can now see the secondary cancellation. From (4.11) and (4.15) we have

Sj1 + Sj2 =

∫
2π3We

L3
H(γ2χεDj−1

α θ)(ΛDj−2
α γ)(4.16)

+
γ2π2We2

L2
(Dj−2

α γ)

(
Dj−2
α

(
2πχεθαα
LWe

))
dα.

We rewrite the first term using the fact that Λ is self-adjoint and that HΛ = −Dα.
We slightly rearrange the second term.

Sj1 + Sj2 =

∫
2π3We

L3

[
−Dα

(
γ2(χεDj−1

α θ)
)
(Dj−2

α γ) + γ2(χεDj
αθ)(D

j−2
α γ)

]
dα.

We expand the first Dα using the product rule. The cancellation occurs, and we are
left with

Sj1 + Sj2 = −
∫
4π3γγαWe

L3
[(χεDj−1

α θ)(Dj−2
α γ)] dα.

This can clearly be bounded by cE2 (since r is large enough).
Next we turn our attention to the transport terms, V j

1 and V j
2 . Recall that V

j
1 is

defined as the first integral on the right-hand side of (4.10). We rewrite V j
1 using the

fact that χε is self-adjoint.

V j
1 =

∫
(χεDj−1

α θ)(χεDj
αθ)

(
2π

L
(T −W · t̂)

)
dα.

Since the terms with θ form a perfect derivative, we integrate by parts. (This is why
we placed χε twice in the corresponding term in (2.26).)

V j
1 = −1

2

∫
(χεDj−1

α θ)2
(
2π

L
Dα(T −W · t̂)

)
dα.

This is clearly bounded in terms of the energy.
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The transport term V j
2 is a little different because of the presence of the Λ oper-

ator.

V j
2 =

2π2We

L2

∫
(T −W·̂t)χεDj−1

α γΛ(χεDj−2
α γ) dα.(4.17)

In general, if we have an integral of the form
∫
gfαΛ(f) dα, we rewrite it using the

fact that the adjoint of H is −H.∫
gfαΛ(f) dα = −

∫
H(gfα)fα dα.

We then pull the factor of g through the Hilbert transform to get∫
gfαΛ(f) dα = −

∫
gΛ(f)fα dα−

∫
([H, g]fα)fα dα.

We add
∫
gfαΛ(f) dα to both sides and we find that∫

gfαΛ(f) dα = −1
2

∫
([H, g]fα)fα dα.

We integrate this by parts and apply Lemma 3.7 to bound this by c‖g‖3‖f‖2
0. Making

the appropriate choice of f and g, (4.17) can then be bounded in terms of the energy
(since r is large enough).

We have now proven that

dE

dt
≤ C1 exp{C2E}.

As we remarked at the beginning of the proof, this proves the theorem.

5. Existence of solutions. In this section, we demonstrate existence of solu-
tions to the mollified initial value problem. We then show that these solutions converge
(as the mollification parameter tends to zero) to a solution of the nonmollified prob-
lem. We demonstrate that this solution to the nonmollified problem is unique and
has the same regularity as the initial data.

Theorem 5.1. Given (θ0, γ0, L0) ∈ O, there exists a unique solution to the mol-
lified initial value problem for the vortex sheet with surface tension ((2.26), (2.27),
(2.28), (2.29)) which satisfies the non-self-intersection condition (3.2) and the bound-
edness condition (3.5). There exists a time T ε > 0 such that the solution, (θε, γε, Lε),
is in C1([0, T ε);O). T ε depends on ε, r, O, and ‖(θ0, γ0, L0)‖B .

Proof. Define Fε : B → B by letting its three components F 1
ε , F

2
ε , and F 3

ε be the
right-hand sides of (2.26), (2.27), and (2.28), respectively. (It is clear that the range
of Fε is contained in B from the presence of the mollifiers in the evolution equations
and from Lemma 4.2.) Let two triples, X = (θ, γ, L) and X ′ = (θ′, γ′, L′), be in O.
Since the mollified equations can be viewed as a system of ODEs on a Banach space,
we use the Picard theorem to prove existence of solutions (see page 78 of [Zei86]). To
do this, we need to show the bound ‖Fε(X) − Fε(X

′)‖B ≤ c‖X − X ′‖B. Here, the
constant c is allowed to depend on ε.

Using the triangle inequality in the obvious way, we break ‖Fε(X) − Fε(X
′)‖B

into manageable pieces. We begin by looking at the part of ‖F 1
ε (X)−F 1

ε (X
′)‖B which
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comes from the first term in (2.26):∥∥∥∥2π2

L2
Hχε(γα)− 2π2

L′2 Hχε(γ′
α)

∥∥∥∥
r−1

≤
∥∥∥∥2π2

L2
Hχε(γα − γ′

α)

∥∥∥∥
r−1

+

∥∥∥∥
(
2π2

L2
− 2π2

L′2

)
Hχε(γ′

α)

∥∥∥∥
r−1

.

Using Lemma 2.1 and the bounds (3.5), we can bound this by c
ε2 ‖X − X ′‖B. The

second term in (2.26) contributes

(5.1)

∥∥∥∥χε
(
2π

L
(T −W · t̂)χεθα − 2π

L′ (T
′ −W′ · t̂′)χεθ′α

)∥∥∥∥
r−1

≤ c

εr−1

∥∥∥∥2πL (T −W · t̂)χεθα − 2π

L′ (T
′ −W′ · t̂′)χεθ′α

∥∥∥∥
0

.

We add and subtract twice to bound this by a constant (which depends on ε) times

(5.2)

∥∥∥∥
(
2π

L
− 2π

L′

)
(T −W · t̂)χεθα

∥∥∥∥
0

+

∥∥∥∥2πL′ ((T −W · t̂)− (T ′ −W′ · t̂′))χεθα
∥∥∥∥

0

+

∥∥∥∥2πL′ (T
′ −W′ · t̂′)χε(θα − θ′α)

∥∥∥∥
0

.

Notice that the first of these three terms involves the difference L − L′, and the
third involves the difference θ − θ′. Because of the bounds (3.5), Lemma 4.2, and
Lemma 2.1 we can bound these two terms by c‖X −X ′‖B. So, we only need to pay
special attention to ∥∥(T −W · t̂)− (T ′ −W′ · t̂′)∥∥

0
.

We can easily bound this by c‖X −X ′‖B using (2.6), (2.28), (2.37), and Lemma 3.6.
We have now concluded that (5.1) is bounded by c‖X − X ′‖B. Continuing in this
manner, we get that

‖Fε(X)− Fε(X
′)‖B ≤ c‖X −X ′‖B,

where the constant depends on ε. Since Fε is Lipschitz, we know that solutions to the
mollified equations exist for at least a short time.

Using Theorem 4.3, we can improve this to demonstrate existence of solutions for
some amount of time independent of ε.

Corollary 5.2. There exists a time T > 0 such that solutions of the mollified
initial value problem, (θε, γε, Lε), are in C1([0, T ) ;O). T does not depend on ε.

Proof. A consequence of the Picard theorem for (autonomous) ODEs on a Banach
space (see page 78 of [Zei86]) is that solutions may be continued as long as the solution
does not leave an open ball. This is analogous to the standard continuation theorem
for ODEs on R

n. Recall that we chose the constants c̄ and d̄ such that the initial
data are in the set O. We need to check that solutions (θε, γε, Lε) cannot leave the
open set O until some time which does not depend on ε. Note that since zε(α)−α is
2π-periodic, the condition Lε > 2π is automatically satisfied. By (4.8), we see that if
the initial data satisfy (3.5), then the solution satisfies (3.5) as long as

− ln(e
−C2E(0) − C1C2t)

C2
< d̄.(5.3)
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Since we have imposed the condition (5.3) at time t = 0 on the data, and since the
left-hand side is a continuous function of time, there is a time T1 such that (5.3) is
satisfied for all t < T1.

For the condition (3.2), we know again that it is satisfied by the initial data.
Recall that we have given the name q1 to the quantity inside the absolute value on
the right-hand side. If we can show that |Dtq1| is bounded independently of ε, then
that will guarantee that (3.2) is satisfied at least for some amount of time which does
not depend on ε. By the Sobolev lemma and Lemma 3.4, we have

|Dtq1|∞ ≤ c‖Dtq1‖1 ≤ c‖Dtz
ε
d‖2.

This reduces the question to showing that ‖Dtz
ε
d‖2 is bounded independently of ε.

We recall the definition zεd(α, t) =
∫ α
0
Lε(t)
2π eiθ

ε(α′,t) dα′. Taking the time derivative of
this equation, and using the definitions of θεt and Lεt and the bounds (3.5), we see that
‖Dtz

ε
d‖2 is bounded by a constant independent of ε. (It is important that at present

we are only attempting to bound a small number of derivatives of zεd.) This proves
the corollary.

We can now prove that the mollified solutions converge in a low norm as the
mollification parameter tends to zero. For convenience, we denote by B′ the space
H1×H1/2×R.

Theorem 5.3. Solutions (θε, γε, Lε) of the mollified initial value problem form
a Cauchy sequence in C([0, T ];B′).

Proof. Define Ed, the energy function for the difference of two solutions with
different values of the mollification parameter, as E1

d + E0
d + (L

ε − Lε
′
)2. Here,

E1
d =

1

2

∫
(Dα(θ

ε − θε
′
))2 +

πWe

Lε
(γε − γε

′
)Λ(γε − γε

′
) +

(γε)2π2We2

Lε2
(γε − γε

′
)2 dα,

E0
d =

1

2

∫
(θε − θε

′
)Λ(θε − θε

′
) +

πWe

Lε
(γε − γε

′
)2 + (θε − θε

′
)2 dα.

Since both solutions satisfy the same initial conditions, Ed(0) = 0. We now wish to
estimate how this energy changes over time.

dE1
d

dt
=

∫
Dα(θ

ε
t − θε

′
t )Dα(θ

ε − θε
′
) +

πWe

Lε
(γεt − γε

′
t )Λ(γ

ε − γε
′
)

+

(
γεπWe

Lε

)2

(γεt − γε
′
t )(γ

ε − γε
′
)

+

[
−πWeLεt
(Lε)2

(γε − γε
′
)Λ(γε − γε

′
) + π2We2

((
γε

Lε

)2
)
t

(γε − γε
′
)2

]

= F1 + F2 + F3 + F4.

The estimate of the growth of Ed is very similar to the estimate in Theorem 4.3.

We start with F1, plugging in for θ
ε
t and θε

′
t from (2.26).

F1 =

∫ (
2π2

Lε2
H(χεγεαα)−

2π2

Lε′
2H(χ

ε′γε
′
αα)

)
(θεα − θε

′
α ) dα+G1,(5.4)
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where G1 is the remainder. Notice that the integral in (5.4) corresponds to the boxed
term in (2.26). We now look at F2, plugging in for γ

ε
t and γε

′
t from (2.27).

(5.5) F2 =

∫
πWe

Lε

(
2π

Lε
χεθεαα
We

− 2π

Lε′
χε

′
θε

′
αα

We

)
Λ(γε − γε

′
) dα

+

∫
πWe

Lε

(
2π2

Lε2
H(γε2χεθεα)−

2π2

Lε′
2H(γ

ε′2χε
′
θε

′
α )

)
Λ(γε − γε

′
) dα+G2,

where G2 is the remainder. Again, the integrals in (5.5) correspond to the boxed
terms in (2.27).

In adding F1 and F2, we see a cancellation very much like (4.14), the primary
cancellation in the proof of Theorem 4.3. To see this, use the name I1 for the sum of
the integral in (5.4) and the first integral in (5.5). We integrate the piece from (5.4)
by parts to see

I1 =

∫
−
(
2π2

Lε2
Λ(χεγε)− 2π2

Lε′
2Λ(χ

ε′γε
′
)

)
(θεαα − θε

′
αα)(5.6)

+

(
2π2

Lε2
χεθεαα − 2π2

LεLε′
χε

′
θε

′
αα

)
Λ(γε − γε

′
) dα.

We add and subtract in order to adjust the factors of L and the operators χ.

I1 = −
∫ (

2π2

Lε2
Λ(χεγε)− 2π2

Lε2
Λ(χεγε

′
)

)
(θεαα − θε

′
αα) dα(5.7)

−
∫ (

2π2

Lε2
Λ(χεγε

′
)− 2π2

Lε′
2Λ(χ

εγε
′
)

)
(θεαα − θε

′
αα) dα

−
∫ (

2π2

Lε′
2Λ(χ

εγε
′
)− 2π2

Lε′
2Λ(χ

ε′γε
′
)

)
(θεαα − θε

′
αα) dα

+

∫ (
2π2

Lε2
χεθεαα − 2π2

Lε2
χεθε

′
αα

)
Λ(γε − γε

′
) dα

+

∫ (
2π2

Lε2
χεθε

′
αα − 2π2

LεLε′
χεθε

′
αα

)
Λ(γε − γε

′
) dα

+

∫ (
2π2

LεLε′
χεθε

′
αα − 2π2

LεLε′
χε

′
θε

′
αα

)
Λ(γε − γε

′
) dα.

The first and fourth of these integrals cancel exactly because χε is self-adjoint. We
look at the second integral; we integrate it by parts, and since r is large enough,
we use the uniform bound of Theorem 4.3 to bound ‖χεγε′αα‖ by a constant. Thus,
the second integral can be bounded by c|Lε − Lε

′ |‖θε − θε
′‖1, which can in turn be

bounded by cEd. Similarly, the fifth integral can be bounded by cEd.
The third and sixth integrals involve differences of χε and χε

′
. We integrate the

third integral by parts, and using the uniform bound of Theorem 4.3, we see that it is
bounded by c‖θε−θε

′‖1‖χεγε′−χε
′
γε

′‖2.Using Lemma 2.2 together with Theorem 4.3,

we can bound this by cmax{ε, ε′}E1/2
d . Similarly, the sixth integral can be bounded

by cmax{ε, ε′}E1/2
d .

We leave out the remaining details of the estimate of Ed because they are very
similar to what we have just done and to the estimate in the proof of Theorem 4.3.
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More details can be found in [Amb02]. The result is

dEd
dt

≤ cEd + cmax{ε, ε′}E1/2
d .

This can be restated as
dE

1/2
d

dt ≤ cE
1/2
d + cmax{ε, ε′}. Since Ed is initially zero, we

solve the differential inequality to see that

E
1/2
d ≤ max{ε, ε′}(ect − 1).(5.8)

We wish to relate this to the norms of θ, γ, and L. From the definition of Ed, it is

apparent that ‖(θε − θε
′
, γε − γε

′
, Lε − Lε

′
)‖B′ ≤ CE

1/2
d . Using (5.8) with this, and

taking the supremum in time, we have

sup
0≤t≤T

‖(θε − θε
′
, γε − γε

′
, Lε − Lε

′
)‖B′ ≤ Cmax{ε, ε′}(ecT − 1).

Thus, solutions do form a Cauchy sequence in C([0, T ];H1×H1/2×R).
We now know that the solutions of the mollified problem, (θε, γε, Lε), approach

a limit as ε → 0. Call this limit (θ, γ, L). We prove that (θ, γ, L) is a solution to the
nonmollified initial value problem, that this solution is unique, and that the solution
is in the space C([0, T ];O).

In order to do this, we first prove that the limit of the mollified solutions is
weakly continuous in time. That is, we will show that θ ∈ CW ([0, T ];H

r−1) and
γ ∈ CW ([0, T ];H

r−3/2). For s ∈ R, the statement u ∈ CW ([0, T ];H
s) means that

u(t) ∈ Hs for all t ∈ [0, T ], and for all ψ ∈ H−s, the duality pairing 〈u(t), ψ〉 is a
continuous function of time.

Theorem 5.4. The limit of the solutions to the mollified initial value problem
found in the previous theorem, (θ, γ, L), is in C([0, T ];Hm×Hm′×R) for all 1 ≤ m <
r − 1 and 1/2 ≤ m′ < r − 3/2, and it is also in CW ([0, T ];O). Furthermore, (θ, γ, L)
is a solution to the exact evolution equations for the vortex sheet with surface tension
((2.22), (2.23), (2.24)).

Proof. We have found a triple (θ, γ, L) ∈ C([0, T ];H1×H1/2×R), which is the
limit of the solutions of the mollified equations, (θε, γε, Lε). Recall that the conclusion
of Theorem 4.3 is that

sup
0≤t≤T

‖(θε, γε, Lε)‖B ≤ C.

Since B is a Hilbert space, its unit ball is weakly compact. Thus, (θε, γε, Lε) must
have a weak limit in B. Since B ⊂ H1×H1/2×R, this weak limit must be (θ, γ, L).
Thus, (θ, γ, L) ∈ B.

We can now apply Lemma 3.3 to the differences θε−θ and γε−γ. The conclusion
is that

‖θε − θ‖m ≤ C‖θε − θ‖1− m
r−1

0 ‖θε − θ‖
m
r−1

r−1 ,

‖γε − γ‖m′ ≤ C‖γε − γ‖1− m′
r−3/2

0 ‖γε − γ‖
m′

r−3/2

r−3/2.

Notice that the right-hand sides of these inequalities go to zero uniformly on [0, T ].
This implies (θ, γ, L) ∈ Hm×Hm′×R for all 1 ≤ m < r − 1 and all 1

2 ≤ m′ < r − 3
2 .
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This regularity is enough to conclude that (θ, γ, L) is a solution to the nonmollified
system (2.22), (2.23), (2.24).

We now show that (θ, γ, L) ∈ CW ([0, T ];B). Let η > 0 be given. Let φ ∈ H−(r−1)

be given. For any m satisfying 1 ≤ m < r − 1, let φ̃ ∈ H−m be given such that∥∥∥φ− φ̃
∥∥∥
−(r−1)

≤ η

3
.(5.9)

We know that such a φ̃ can be found since Hs is dense in Hs′ whenever s′ < s. We
show that the difference of the duality pairings of θ and θε with φ can be made small
uniformly in time:

〈φ, θε〉 − 〈φ, θ〉 = 〈φ− φ̃, θε〉+ 〈φ̃, θε − θ〉+ 〈φ̃− φ, θ〉.(5.10)

The two of these involving φ− φ̃ can be bounded by η/3 using (5.9) and the uniform
bound on θ and θε in Hr−1. For the term involving θ− θε, we choose ε small enough
so that ‖θ− θε‖m ≤ η

3 . Thus, (5.10) is bounded by η. Since η was arbitrary and since
these bounds are all uniform in time, and since θε is in C([0, T ];Hr−1), we conclude
that θ ∈ CW ([0, T ];H

r−1). A similar argument applies to γ. Thus, we conclude that
(θ, γ, L) ∈ CW ([0, T ];B).

Before proving the highest regularity theorem for solutions of the nonmollified
problem, we first need uniqueness of these solutions.

Theorem 5.5. Solutions (θ, γ, L) ∈ B of the exact initial value problem for the
vortex sheet with surface tension ((2.22), (2.23), (2.24), (2.25)) are unique.

We do not prove this theorem here. The proof is very similar to the proof of
Theorem 5.3 because both proofs require that the difference of two solutions be es-
timated. This theorem is simpler than Theorem 5.3 because of the absence of the χ
operators in the nonmollified problem. The proof is contained in [Amb02].

We can now demonstrate our highest regularity theorem: (θ, γ, L) ∈ C([0, T ];B).
Because we already know that (θε, γε, Lε) converges to (θ, γ, L) in the weak topology,
we need to show only that ‖(θ, γ, L)‖B is continuous in time. To do this, we make use
of the time-reversibility of our equations.

Theorem 5.6. Solutions (θ, γ, L) of the exact initial value problem for the vortex
sheet with surface tension ((2.22), (2.23), (2.24), (2.25)) are in C([0, T ];B).

Since (θ, γ, L) ∈ CW ([0, T ];B), we see that L is continuous and, by Fatou’s lemma,
‖θ0‖2

r−1 ≤ lim inf
t→0+

‖θ(t)‖2
r−1,(5.11)

‖γ0‖2
r−3/2 ≤ lim inf

t→0+
‖γ(t)‖2

r−3/2.(5.12)

Also, by (4.8), we have the estimate lim supt→0+ E(t) ≤ E(0). Since lim inf(a) +
lim inf(b) ≤ lim inf(a+b), we can combine (5.11) and (5.12) to get lim inft→0+ E(t) ≥
E(0). Thus, the energy is right-continuous at the initial time. To see that ‖(θ, γ, L)‖B
is also right-continuous at the initial time, we look at the various parts of the energy.
First, we consider Ej

3, where j is at most r. Its definition is

Ej
3(t) =

1

2

∫ 2π

0

γ2(α, t)π2We2

L2(t)
(Dj−2

α γ(α, t))2 dα.

Since we already know that γ ∈ C([0, T ];Hr−2), we can conclude that Ej
3 is contin-

uous. Similarly, we know that Ej
1 and Ej

2 are continuous for j at most r − 1. Also,
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we already know that L and E0 = ‖θ‖2
0 + ‖γ‖2

0 are continuous. This tells us that the
difference between E and the parts of the energy which we know to be individually
continuous is continuous. In particular, we now know that

Er
1(t) + Er

2(t) =
1

2

∫ 2π

0

(Dr−1
α θ(α, t))2 +

πWe

L(t)
(Dr−2

α γ(α, t))Λ(Dr−2
α γ(α, t)) dα

is continuous. Combining this with the lower-order terms, it means

‖θ‖2
r−1 +

πWe

L
‖γ‖2

r−3/2(5.13)

is right-continuous at the initial time. Notice that (5.11) and (5.12) imply that ‖θ‖r−1

and ‖γ‖r−3/2 are right lower semicontinuous at the initial time, and we already know
that L is right-continuous at the initial time. Since the sum (5.13) is right-continuous
at the initial time, this implies that ‖θ‖r−1 and ‖γ‖r−3/2 are each right-continuous
at the initial time.

Given a time T ′∈(0, T ), we can interpret T ′ as a new initial time. We know that
(θ(T ′), γ(T ′), L(T ′)) satisfies conditions (3.2) and (3.5). Thus, we could repeat our
arguments for existence of mollified solutions starting at time T ′, and we would find
that a solution to the nonmollified equations exists on some time interval around T ′.
By Theorem 5.5, the solution we found starting from t = 0 and the solution we found
starting from t = T ′ must be the same. Using the argument by which we showed that
solutions are right-continuous at t = 0, we see that solutions are right-continuous at
t = T ′. Since all of our analysis works with time reversed, we can also conclude that
solutions are left-continuous at t = T ′. Similarly, we can show that solutions are also
left-continuous at the final time, t = T.We conclude that (θ, γ, L) ∈ C([0, T ],B).

We also have the following theorem that demonstrates that the solutions of the
initial value problem are continuous in a low norm of the initial data.

Theorem 5.7. If (θ, γ, L) ∈ B and (θ′, γ′, L′) ∈ B are both solutions of the exact
initial value problem for the vortex sheet with surface tension for the interval of time
[0, T ], with the corresponding initial data (θ0, γ0, L0) ∈ O and (θ′0, γ

′
0, L

′
0) ∈ O, then

sup
0≤t≤T

‖(θ − θ′, γ − γ′, L− L′)‖B′ ≤ ‖(θ0 − θ′0, γ0 − γ′
0, L0 − L′

0)‖B′ exp{cT}.

We do not include the proof of this theorem since it is very similar to those of
Theorems 5.3 and 5.5.

6. The case of fluids with different densities. Thus far, we have considered
only the case in which the upper and lower fluids both have the same density. Our
method also proves well-posedness in the general case of arbitrary densities. We define
the Atwood ratio, At, to be

At =
ρ1 − ρ2

ρ1 + ρ2
,

where ρ1 is the density of the lower fluid and ρ2 is the density of the upper fluid.
This section of the paper consists of three subsections. In the first, we give the

evolution equation for γ in the two-density case and we rewrite it; this is similar
to what we have already done for the density-matched case in section 2. This new
evolution equation is actually an integral equation for γt. In the second subsection, we
discuss the solvability of the integral equation and give estimates for quantities related
to the integral operator. In the final subsection, we state the existence theorem for
the vortex sheet in the two-density case.
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6.1. The new γt equation. In considering At �= 0, the evolution equations for
θ and L do not change. The new evolution equation for γ is

γt =
2πθαα
LWe

+
2π

L
Dα

(
(T −W · t̂)γ)− 2At( L

2π
Wt · t̂+ π2

L2
γγα − (T −W · t̂)Wα · t̂

)
.

(6.1)

If At = 0, then this is just the same equation as (2.7). This equation for γt can
be derived by a variation on the argument presented in [BMO82]; this derivation is
included in [Amb02]. There is a small error in this form of the equation in [HLS94]
and [HLS97], but it appears correctly in [CH96].

We need to rewrite this equation, similarly to the way we rewrote all of the evo-
lution equations in section 2. We focus first on expanding the factor which multiplies
the Atwood ratio. We begin by writing out L

2πWt · t̂, with the goal of separating it
into important and routine pieces:

(6.2)
L

2π
Wt · t̂ = Re (zαΦ(Wt)

∗)

= Re

{
zα(α)

4πi
PV

∫
γt(α

′) cot
1

2
(z(α)− z(α′)) dα′

}

− Re
{
zα(α)

4πi
PV

∫
γ(α′)
2

(zt(α)− zt(α
′)) csc2

1

2
(z(α)− z(α′)) dα′

}
.

We make the definition of an integral operator, J [z], to be

J [z]f(α) = −PV
∫

f(α′)Re
(
izα(α) cot

1

2
(z(α)− z(α′))

)
dα′.

Notice that we can write J [z] as

J [z]f(α) = −2πRe
(
izαH

(
f

zα

))
+ 4πRe(zαK[z]f(α)),(6.3)

with K = K1 +K2 defined in (2.35) and (2.36). We can now write

L

2π
Wt · t̂ = 1

4π
J [z]γt +R3,

where R3 is the second term on the right-hand side of (6.2). Estimates for J [z] are
the subject of the next subsection.

We will now expand R3. As we have done many times in section 2, we multiply
and divide the integrand in R3 by zα(α

′) and then recognize that part of the integrand
is an α′-derivative. We integrate by parts to get

(6.4) R3 = −Re
{
zα(α)

4πi
PV

∫
γ(α′)
zα(α′)

zαt(α
′) cot

1

2
(z(α)− z(α′)) dα′

}

+Re

{
zα(α)

4πi
PV

∫
Dα′

(
γ(α′)
zα(α′)

)
(zt(α)− zt(α

′)) cot
(
1

2
(z(α)− z(α′))

)
dα′
}
.
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We write R3 = R4 + R5, with R4 equal to the first term on the right-hand side of
(6.4) and R5 equal to the second. We can rewrite R5 as

(6.5) R5 = Re

{
zα
2i
[H, zt]

(
1

zα
Dα

(
γ

zα

))}

+Re

{
zαztK[z]

(
Dα

(
γ

zα

))
− zαK[z]

(
ztDα

(
γ

zα

))}
.

R4 is more important, and we continue to expand it. To begin to do this, we write

R4 = −Re
{
zα
2i

H

(
γ

z2
α

zαt

)}
− Re

{
zαK[z]

(
γ

zα
zαt

)}
.

In order to understand this, we look at zαt:

zαt =

(
L

2π
eiθ
)
t

=
Lt
2π

eiθ +
L

2π
iθte

iθ =
Lt
L

zα + iθtzα.(6.6)

Using (6.6), and substituting from (2.22) for θt, we have

R4 = − Re

{
zαK[z]

(
γ

zα
zαt

)}
− Re

{
zα
2i

H

(
Ltγ

Lzα

)}
(6.7)

− Re

{
zα
2
H

(
2π2γH(γα)

L2zα

)}
− Re

{
zα
2
H

(
2πγ(T −W · t̂)θα

Lzα

)}

− Re

{
zα
2
H

(
2πγm · n̂

Lzα

)}
.

We still need to rewrite the third and fourth of these terms so that we can see more
clearly the most important part of R4. We begin by bringing γ/zα outside of the first
Hilbert transform in the third term:

− Re

{
zα
2
H

(
2π2γH(γα)

L2zα

)}
=

π2

L2
γγα − Re

{
π2zα
L2

[
H,

γ

zα

]
(H(γα))

}
.(6.8)

Similarly, in the fourth term, we bring (T−W · t̂)/zα outside of the Hilbert transform:

(6.9) − Re
{
zα
2
H

(
2πγ(T −W · t̂)θα

Lzα

)}
=

π(T −W · t̂)
L

H(γθα)

− Re
{
πzα
L

[
H,

(T −W · t̂)
zα

]
(γθα)

}
.

Finally, this allows us to write

L

2π
Wt · t̂ = 1

4π
J [z]γt − π(T −W · t̂)

L
H(γθα) +

π2

L2
γγα +R5 +R6,(6.10)

where R6 is a collection of terms from the right-hand sides of (6.7), (6.8), and (6.9).
To be specific, R6 is defined by

(6.11)

R6 = −Re
{
zαK[z]

(
γ

zα
zαt

)}
− Re

{
zα
2i

H

(
Ltγ

Lzα

)}
− Re

{
zα
2
H

(
2πγm · n̂

Lzα

)}

− Re
{
π2zα
L2

[
H,

γ

zα

]
(H(γα))

}
− Re

{
πzα
L

[
H,

(T −W · t̂)
zα

]
(γθα)

}
.
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Since our present goal is to rewrite equation (6.1), we also would like to expand
(T −W · t̂)Wα · t̂. We can do this using (2.20):

(T −W · t̂)Wα · t̂ = −π(T −W · t̂)
L

H(γθα) + (T −W · t̂)m · t̂.(6.12)

We can now use (6.10) and (6.12) to expand the factor which multiplies 2At in
(6.1); notice the cancellation which occurs between H(γθα) terms:

L

2π
Wt · t̂+ π2

L2
γγα − (T −W · t̂)Wα · t̂(6.13)

=

(
1

4π
J [z]γt +−π(T −W · t̂)

L
H(γθα) +

π2

L2
γγα +R5 +R6

)
+

π2

L2
γγα

− (T −W · t̂)
(
−π

L
H(γθα) +m · t̂

)
=

1

4π
J [z]γt + 2π

2

L2
γγα +R5 +R6 − (T −W · t̂)m · t̂.

Before we give our final rewritten form of (6.1), we recall how we previously
rewrote the term 2π

L Dα((T −W · t̂)γ):

(6.14)
2π

L
Dα((T −W · t̂)γ) = 2π2

L2
H
(
γ2θα

)
+
2π

L
(T −W · t̂)γα

+
γ(Lt − 2πm · t̂)

L
− 2π2

L2
[H, γ](γθα).

Combining (6.1) with (6.13) and (6.14), we have

γt = −At
2π

J [z]γt + 2π

L

θαα
We

+
2π2

L2
H
(
γ2θα

)
+

(
2π

L
(T −W · t̂)− 4Atπ2

L2

)
γα +mAt,

(6.15)

where mAt is given by

mAt =
γ(Lt − 2πm · t̂)

L
− 2π2

L2
[H, γ] (γθα)− 2At

[
R5 +R6 − (T −W · t̂)m · t̂] .

(6.16)

We now introduce mollifiers to the new γt equation:

(6.17) γεt = −At
2π

J [zε]γεt +
2π

Lε
χεθεαα
We

+
2π2

Lε2
H
(
(γε)2χεθεα

)
+ χε

((
2π

Lε
(T ε −Wε · t̂ε)− 4Atπ2

Lε2

)
χεγεα

)
+mε

At.

The reader may want to compare this equation with (2.27). Notice that the operator
J is not mollified, but it does make use of the mollified curve zε. The term mε

At is
defined by replacing all of the quantities on the right-hand side of (6.16) with their
mollified counterparts.
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6.2. Estimates for J [zε]. Now that we have given the new mollified evolution
equation, we are ready to begin estimating the new system. In this subsection, we
give two lemmas relating to the integral operator J [zε].

Lemma 6.1. The operator
(
I + At

2πJ [zε]
)−1

is bounded from H0 to H0, where I
is the identity operator.

We do not include a proof here; see [BMO82] or the discussion in the appendix
of [BHL96]. In the next lemma, the energy function E appears. The definition of the
energy is the same as we used in the density-matched case; see (3.3) and (3.4).

Lemma 6.2. If r ≥ 4, θε ∈ Hr−1, and γε ∈ Hr−3/2, then J [zε](γεt ) ∈ Hr−1.
Furthermore, ‖J [zε](γεt )‖r−1 ≤ C1 exp{C2E}.

Proof. We begin by making the definition

(6.18) τε =
2π

Lε
χεθεαα
We

+
2π2

Lε2
H
(
(γε)2χεθεα

)
+ χε

((
2π

Lε
(T ε −Wε · t̂ε)− 4Atπ2

Lε2

)
χεγεα

)
+mε

At.

This allows us to write (6.17) as

γεt =

(
I +

At

2π
J [zε]

)−1

τε.

Since we can see from (6.18) that the most singular term in τε is proportional to θεαα
and we have assumed θε ∈ Hr−1, we conclude τε ∈ Hr−3 ⊂ H0. Lemma 6.1 now
implies that γεt ∈ H0.

Next, we use (6.3) to show that J [zε](γεt ) is in Hr−2. By pulling 1/zα out of the
Hilbert transform, we rewrite the first part of (6.3):

−2πRe
(
izεαH

(
f

zεα

))
= −2πRe (iH(f))− 2πRe

(
izεα

[
H,

1

zεα

]
f

)
.

Since the first part of the right-hand side is zero, we have

J [zε](γεt ) = −2πRe
(
izεα

[
H,

1

zεα

]
γεt

)
+ 4π (Re(zεαK[zε]γεt (α))) .(6.19)

We use Lemma 3.7 on the first of these terms and Lemma 3.5 on the second; since
zεα ∈ Hr−1, this demonstrates that J [zε](γt) ∈ Hr−2. Since γεt = −At

2πJ [zε](γεt ) + τε,
we see that γεt ∈ Hr−3.

In estimating (6.19) just now, we used that γεt ∈ H0. Now that we know γεt ∈
Hr−3, we can estimate (6.19) again. By again using Lemma 3.5, but this time using
Corollary 3.8 in place of Lemma 3.7, we conclude that J [zε](γt) ∈ Hr−1.

6.3. The new existence theorem. Our goal is to prove that solutions to the
evolution equations exist for the new system (i.e., replacing the old γt equation with
(6.1)). To prove this we need to modify the proofs to the previous theorems, but the
definition of the energy function is exactly the same as it was before. In the earlier
case, we needed two kinds of estimates: the first kind was a bound on the growth of
the energy. In Lemma 6.3 below, we demonstrate that the new term mAt is bounded
in terms of the energy. The second kind of estimate we needed involved differences
between two solutions—for example, in the proof of Theorem 5.5. We will not prove
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the second kind for the new γt equation, but the proofs are straightforward and very
much like what we have already done.

Lemma 6.3. The term mAt is bounded in terms of the energy:

‖mAt‖r−3/2 ≤ C1 exp{C2E}.

Proof. We can see from (6.16) that many of these terms are familiar. It is clear
from Lemma 4.2 and from the definition of the energy that the Hr−3/2 norm of the
first two terms on the right-hand side of (6.16) is bounded in terms of the energy.
Similarly, it is clear that the final term in the brackets in (6.16), (T −W · t̂)m · t̂,
is bounded in terms of the energy. We see from (6.11) that the Hr−3/2 norm of R6

can be bounded in terms of the energy by straightforward applications of Lemma 3.5,
Corollary 3.8, and Lemma 4.2.

To estimate R5, it is clear from (6.5) that we need to be able to estimate zt. To
do this, we first remark that (2.26) and Lemma 4.2 imply that θt ∈ Hr−5/2 when
γ ∈ Hr−3/2 and θ ∈ Hr−1. Next, we notice that (6.6) implies that zt ∈ Hr−3/2. Using
Corollary 3.8 and Lemma 3.5, we can now bound the Hr−3/2 norm of R5 in terms of
the energy. This completes the proof of the lemma.

We now know from Lemmas 6.2 and 6.3 that all of the terms in the evolution
equation for γ which appear only when the Atwood ratio is nonzero can be bounded in
terms of the energy. Since the energy function is the same as in the density-matched
case, this means that the proofs of the new existence, uniqueness, and continuous
dependence theorems are only trivially different from the proofs in the previous case.
In summary, we have the following.

Theorem 6.4. Given the initial condition (θ0, γ0, L0) ∈ O, there exists a unique
solution to the exact initial value problem for the vortex sheet with surface tension in
the two-density case given by (2.22), (6.1), (2.24), and (2.25) which satisfies the non-
self-intersection condition (3.2) and the boundedness condition (3.5). There exists a
time T > 0 such that the solution, (θ, γ, L), is in C1([0, T ];O). T depends on r, O,
the Weber number, and ‖(θ0, γ0, L0)‖B .
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Abstract. We analyze a one-dimensional nonlinear convection-diffusion equation describing the
flow of water and oil through a porous medium composed of two types of rock with different per-
meability. We prove existence, uniqueness, and regularity properties, as well as matching conditions
between the two rock types.
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1. Introduction and problem formulation. It is well known that capillary
forces, combined with spatial variations of rock properties, considerably reduce the
recovery factor of an oil reservoir. For instance, it is difficult to remove oil from parts
of the reservoir with small scale heterogeneities. Sometimes the oil may even remain
trapped; see, for instance, [K, W]. This is clearly a difficult problem, mainly due to
the complex nature of rock (soil) heterogeneities.

To understand oil trapping in heterogeneous media more quantitatively, [DMN]
considered the case of a 2-phase water-oil flow which is perpendicular to an interface,
separating two types of rock, across which the permeability changes abruptly. Under
simplifying assumptions this leads to a one-dimensional flow problem which allowed
them to investigate the role of convection and capillary diffusion in relation to the
discontinuous permeability. They used formal asymptotics and numerical techniques.
In this paper we will take their formulation as a starting point. The aim is to analyze
the structure of the model equations resulting in existence, uniqueness, and regularity
properties, as well as matching conditions between the two rock types.

Following [DMN] (further references are given there), the one-dimensional flow
of water and oil through a porous medium is described by a nonlinear convection-
diffusion equation for the reduced water saturation S = S(x, t), with 0 ≤ S ≤ 1. This
equation has the form

Φ
∂S

∂t
+

∂

∂x

{
qfw(S) + k(x)H(s)

∂p

∂x

}
= 0,(1.1)

where Φ (porosity) and q (discharge) are positive constants, and where the functions
fw, H : [0, 1] → [0,∞) satisfy fw(0) = 0, fw(S) > 0 for 0 < S ≤ 1 (typically
convex-concave behavior) and H(0) = H(1) = 0, H(S) > 0 for 0 < S < 1. Further
k(x) denotes permeability and p capillary pressure. Situating the discontinuity in
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0 SS * 1

p

+

−

Fig. 1. Capillary pressure curves for fine (+) and coarse (−) material. Here J(1) > 0, so an
entry pressure exists.

permeability at x = 0, we have

k(x) =

{
k− for x < 0,
k+ for x > 0.

(1.2)

Without loss of generality we take 0 < k+ < k− < ∞. This means that coarse material
occupies {x < 0} and fine material {x > 0}. The flow is in positive x-direction.
For the capillary pressure the Leverett model [L] was used. With σ > 0 denoting

interfacial tension, this means

p = p(x, S) = σ
J(S)√
k(x)/Φ

for 0 < S ≤ 1,(1.3)

where the Leverett function J is strictly decreasing in (0, 1] with J(1) ≥ 0. The
quantity

√
k/Φ may be associated with the mean pore diameter, and the J-Leverett

function is typical for the lithology of the porous medium. When J(1) > 0, the
medium has an entry pressure given by J(1)/

√
k/φ. This is the minimum pressure

needed for the oil to enter a medium that is saturated by water. In this paper we
assume J(1) > 0 and show that the occurrence of an entry pressure causes trapping
of oil at the interface when the medium changes from coarse to fine. Figure 1 shows
two typical capillary pressure functions, the top curve for fine material (x > 0), the
bottom curve for coarse material (x < 0).
Because k is discontinuous, the capillary pressure may be discontinuous as well.

This makes the interpretation of (1.1) across x = 0 difficult. To circumvent this
problem, [DMN] considered (1.1) for x < 0 and x > 0, with matching conditions at
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x = 0. One condition is obvious. Conservation of mass across x = 0 requires that the
fluxes to the left and right of x = 0 be equal:

(M̃1)

(
qfw + k−H

∂p

∂x

)
x=0−

=

(
qfw + k+H

∂p

∂x

)
x=0+

for all t > 0. A condition related to the pressure was obtained by a formal regular-
ization procedure. Replacing in (1.1) k(x) by C∞ approximations kn(x), according
to

kn(x) =




k− for x ≤ − 1
n
,

ϕ(nx) for − 1
n
< x <

1

n
,

k+ for x ≥ 1
n
,

(1.4)

with ϕ smooth (ϕ(−1) = k−, ϕ(1) = k+, and ϕ′ ≤ 0), blowing up the transition
region by x → nx and letting n → ∞, we found the following. Let S∗ be defined by
the relation

J(S∗)√
k−
=

J(1)√
k+

> 0,(1.5)

and let S− and S+ denote, respectively, the left and right limits of S at x = 0. Then
for all t > 0 (see also Figure 1),

(M̃2)




J(S−)√
k−
=

J(S+)√
k+

if S− ≤ S∗ (pressure continuous),

S+ = 1 if S− > S∗ (positive pressure jump).

Instead of analyzing (1.1) and conditions (M̃1−2) in the form presented above, we
shall consider a further simplified model problem, without losing essential character-
istic features. We take in (1.1)

f(S) = S, H(S) = 1− S, and J(S) = 2− S.

After a trivial scaling, the following equations result for the oil saturation u = 1− S:

ut + fx = 0 (u ≥ 0),(1.6)

f = u−Nc k u px,(1.7)

p =
1 + u√
k(x)

,(1.8)

where f denotes the flux and Nc the dimensionless capillary number

Nc =
σ
√
Kφ

qµwL
.

Here K is a characteristic k-value, L a characteristic length scale, and µw the water
viscosity. By an additional scaling we may set Nc = 1. Further, k is given by (1.2)
and the subscripts t and x denote partial differentiation.
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p

u*
u

+

(x>0)

(x<0)

0

Fig. 2. Transformed capillary pressures.

We solve (1.6)–(1.8) in the subdomains

Q± = {(x, t) : x ∈ R
±, t ∈ (0,∞)},

with transformed matching conditions at x = 0. These are

(M1) [f ] = 0 in (0,∞),
and (see Figure 2)


1 + u−
√
k−

=
1 + u+

√
k+

if u− ≥ u∗

u+ = 0 if u− < u∗
in (0,∞),

or, equivalently,

(M2) u+[p] = 0 , [p] ≥ 0 in (0,∞).

Here u∗ =
√

k−
k+ − 1. As before, u± = u±(t) = u(0±, t), [u] = u+ − u−, and f and p

have similar notation.
At t = 0 we prescribe

u(·, 0) = u0(·) in R,(1.9)

with u0 satisfying

(H)




u0 : R → [0,∞), supp(u0) ⊂ R is bounded;

u0 uniformly Lipschitz continuous in R\{0};

u+
0 [p0] = 0, f0 := u0 −

√
k

2
(u2

0)
′ ∈ BV (R\{0}).
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x

u

u*

u

-u k 0

Fig. 3. Admissible steady state solutions (u− ≤ u∗).

The pressure condition at t = 0 is needed to construct an approximate sequence {u0n}
for which the corresponding fluxes f0n := u0n − knu0n(p0n)

′ are uniformly bounded
in BV (R). This in turn will imply f ∈ L∞((0,∞); BV (R)), which is a crucial point
in the existence proof. If the kn are taken as in (1.4), then [p0] ≥ 0 is needed as well.
We will return to this in section 2 and in the appendix.
For steady state solutions, the role of (M2) can be seen explicitly. Assume u =

u(x) only, with u(−∞) = u(+∞) = 0. Then

f = u− k up ′ = 0 in R\{0}.(1.10)

Using u ≥ 0, we obtain

u(x) = 0 for x > 0.

Hence the first condition in (M2) is always satisfied. Given any u
− ≥ 0, we see that

u(x) =

(
u− +

1√
k−

x

)
+

(1.11)

satisfies (1.10) for x < 0. Here ( · )+ := max{·, 0}. However, only for u− ∈ [0, u∗] we
have [p] ≥ 0. Thus we have a family of admissible steady state solutions, as shown in
Figure 3.
Integrating the maximal steady state gives the maximal amount of oil that can

be trapped to the left of the permeability discontinuity. It is given by

M̄ =
1

2
(u∗)2

√
k−.(1.12)

Next we give the weak formulation of the trapping problem. Because the flux is
expected to be continuous across x = 0, it will be defined globally in the formulation.
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The saturation (and pressure) will be considered in the subdomains Q− and Q+

separately. Let

Q0 := Q− ∪Q+ and Q := R × (0,∞).

Combining the saturation equations and the matching conditions gives the following.

Problem P. Find u : Q0 → [0,∞), f : Q → R such that

(i) u, (u2)x ∈ L∞(Q0); u is uniformly continuous in Q0;
(ii) f ∈ L∞((0,∞);BV (R));

(iii) f = u −
√
k

2 (u
2)x a.e. in Q0 and

∫
Q
(uζt + fζx)dxdt +

∫
R
u0(x)ζ(x, 0)dx = 0

for all ζ ∈ H1(Q) ∩ C(Q̄), with compact support in Q̄;
(iv) u+[p] = 0 and [p] ≥ 0 in (0,∞), where p := 1+u√

k
in Q0.

To prove existence we apply a k-regularization as in (1.4). This yields a sequence
of approximating problems on Q for which we derive the necessary estimates. This
is done in section 2. In section 3 we consider the limit n → ∞ giving existence for
Problem P, with u satisfying a porous media equation (m = 2) with linear convection
in Q0. Clearly (M2) is satisfied. The weak equation in (iii) implies [f ] = 0 a.e.
in (0,∞). The comparison principle, with uniqueness as a consequence, is shown in
section 4. In section 5 we give sufficient conditions for oil trapping; i.e., conditions
that imply u(x, t) = 0 for x > 0 and for all t > 0. Finally, in section 6, we present
some closing remarks about nonuniqueness, waiting times, and optimal regularity.

In a recent paper [DMP] considered oil transport in a multilayered porous medium.
This work involves a discontinuous permeability which varies periodically in space.
Using homogenization techniques they derived effective (upscaled) transport equa-
tions for the case where the periodicity length is small compared to the characteristic
length L. In their analysis matching conditions (M̃1) and (M̃2) play a crucial role.
They lead to a macroscopic irreducible oil saturation.

2. The approximate problem. In this section we study the approximate equa-
tion in which k is replaced by the smooth function kn, defined by (1.4). Together with
k we also need to approximate the initial value u0. We construct approximations u0n,
so that the corresponding fluxes

f0n := u0n − knu0np
′
0n, p0n :=

1 + u0n√
kn

(2.1)

have a uniformly bounded total variation. In addition we require that each u0n

is strictly positive to eliminate the degeneracy of the equation at points where u
vanishes. The existence of such u0n is given in the following lemma. Since the proof
is quite technical, it is given in the appendix.

Lemma 2.1. Let n ∈ N and let kn be defined by (1.4). Suppose u0 satisfies
hypothesis (H) and in addition

[p0] =
1 + u+

0√
k+

− 1 + u−
0√

k−
≥ 0.(2.2)

Then there exist u0n ∈ W 1,∞(R) and εn ∈ R
+ such that

(i) u0n ≥ εn > 0 in R, and u0n(x) = εn for |x| sufficiently large;
(ii) u0n is uniformly bounded in R, and f0n, defined by (2.1), is uniformly bounded

in BV (R);
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(iii) As n → ∞,

u0n → u0 uniformly in R\{0}
and

u0n − εn → u0 in L1(R).

For each n ∈ N we consider the approximate problem

(Pn)




ut + ux = (knu px)x, p =
1 + u√
kn

in Q,

u(x, 0) = u0n(x) for x ∈ R.

In the remainder of this section we prove the following results.
Theorem 2.2. Let u0n be given by Lemma 2.1. Then problem (Pn) has a solution

un ∈ C∞(Q) ∩ C(Q̄) such that
(i) 0 < un ≤ C in Q, where C does not depend on n;
(ii) fn := un − knun(

1+un√
kn
)x is uniformly bounded in L∞([0,∞);BV (R));

(iii) un is uniformly continuous in {R\(−ε, ε)} × [0,∞) for all ε > 0.
Proof. Since u0n ≥ εn > 0 in R, problem (Pn) is nondegenerate at t = 0. Hence

it has a unique local (with respect to t) classical solution un; see, for instance, [LSU]
and [F]. This solution can be continued as long as it remains bounded and bounded
away from zero. Let QTn := R× (0, Tn) denote the maximal existence domain for un.
A positive lower bound follows from the maximum principle. Indeed, if we set

Ln := maxR |(√kn)
′′| we observe that the solution of the initial value problem

(LB)

{
s′ = −Lns(1 + s) for t > 0,

s(0) = εn

is a subsolution for problem (Pn). Hence if sn denotes the solution of (LB), we have

un(x, t) ≥ sn(t) > 0 for (x, t) ∈ QTn .(2.3)

Before proving a uniform upper bound for un, we observe that the flux fn is
uniformly bounded in QTn . A straightforward calculation yields for fn the linear
equation

ft = anfxx + bnfx,(2.4)

where

an(x, t) := un
√
kn, bn(x, t) := − fn

un
− unk

′
n

2
√
kn

.(2.5)

Hence, by the maximum principle

||fn||L∞(QTn ) ≤ ||f0n||L∞(R) ≤ C(2.6)

for all n ∈ N.
We use this estimate to demonstrate a uniform upper bound for un in QTn . As a

first observation we note that (2.6) implies the differential inequality

|un −
√
k− ununx| ≤ C in

(
−∞,− 1

n

]
× [0, Tn).(2.7)
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Then the upper bound for un in this set is immediate if we can control the decay of
un as x → −∞. This decay results from the following argument.
Let ūn be a steady state solution satisfying

 u− knu p
′ = εn, p =

1 + u√
kn

in R,

u(±∞) = εn.

Clearly, ūn(x) = εn for all x ≥ 1
n . The corresponding pressure p̄n satisfies


kn(p

√
kn − 1)p′ = p

√
kn − 1− εn for x <

1

n
,

p

(
1

n

)
=
1 + εn√

k+
.

At points where p̄′n = 0, we must have p̄n > 0 and p̄′′n < 0. We use this to obtain
p̄′n > 0 and p̄n > 1+εn√

k−
on (−∞, 1

n ), and p̄n(x) → 1+εn√
k−
as x → −∞. In particular,

ūn(x)→ εn exponentially as x → −∞ and ūn − εn ∈ L1(R), uniformly in n ∈ N.
Now using Lemma 2.1(iii) and an argument as in the proof of Theorem 4.1, one

finds for t > 0 the L1-contraction∫
R

|un(x, t)− ūn(x)|dx ≤
∫

R

|u0n(x)− ūn(x)|dx.

This inequality controls the behavior of un as |x| → ∞. Combined with (2.7) it gives
the upper bound in (−∞,− 1

n ] × (0, Tn). Arguing similarly for x > 1
n , we conclude

that for all n ∈ Z
+

un(x, t) ≤ C for |x| ≥ 1
n
, 0 ≤ t < Tn.(2.8)

To obtain the upper bound in the remaining strip [− 1
n ,

1
n ] × [0, Tn) we express (2.6)

in terms of the pressure pn:

|pn
√
kn − 1− kn(pn

√
kn − 1)pnx| ≤ C.(2.9)

By (2.8), pn(± 1
n , t) is uniformly bounded. Then (2.9) implies that pn, and thus un,

is uniformly bounded as well.
The uniform upper bound, together with lower bound (2.3), guarantees existence

for all t > 0. Hence, Tn =∞ for each n ∈ N. This completes the proof of (i).
The proof of (ii) is a direct consequence of Lemma 2.1(ii) and the total variation

estimate for the flux in Lemma 2.4 below.
We conclude by proving (iii). The boundedness of un and the flux estimate (2.7)

imply that un is uniformly Hölder continuous (exponent
1
2 ) with respect to x in

{(x, t) : x < − 1
n , t > 0}. The same result holds in {(x, t) : x > 1

n , t > 0}.
The smoothness and boundedness of the coefficients in the un-equation allow us to
apply [G1], yielding that un is uniformly Hölder continuous (exponent

1
4 ) with respect

to t in {(x, t) : |x| > 1
n , t > 0}. Since, for fixed ε > 0, 1

n < ε for n large enough, this
proves (iii) and completes the proof of Theorem 2.2.

Remark 2.3. It is not difficult to show that the steady states ūn, corresponding
to k = kn and ūn(±∞) = εn, approximate the maximal steady state in Figure 3. In
essence this follows from ūn(x) = εn for all x ≥ 1

n and, using the pressure equation,

0 < p̄n

(
1

n

)
− p̄n

(
− 1

n

)
=

∫ + 1
n

− 1
n

1

kn

p̄n(x)
√
kn − 1− εn

p̄n(x)
√
kn − 1 dx → 0
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as n → ∞.
It remains to prove the following lemma used in the proof of Theorem 2.2.

Lemma 2.4. Let u0n be given by Lemma 2.1 and let un be the corresponding
solution of problem (Pn). Then

TVR(fn(t)) ≤ TVR(f0n) for all t > 0.

Proof. Each flux fn satisfies the linear problem{
ft = anfxx + bnfx in Q,

f(x, 0) = f0n(x) for x ∈ R,

where an and bn, defined in (2.5), are bounded functions and where f0n has uniformly
bounded variation. First we proceed formally. Let us fix ε > 0 and calculate (dropping
the subscript n)

d

dt

∫
R

{√
f2
x + ε−√

ε

}
=

∫
R

fx√
f2
x + ε

(afxx + bfx)x

= −ε

∫
R

fxx(afxx + bfx)

(f2
x + ε)3/2

.

Integrating in time gives, for any t > 0,

∫
R

{√
f2
x(t) + ε−√

ε

}
−
∫

R

{√
f ′
0n

2 + ε−√
ε

}
= −ε

∫
R×(0,t)

af2
xx + bfxfxx
(f2
x + ε)3/2

≤ −
∫

R×(0,t)

εfx
(f2
x + ε)3/2

bfxx.

Since ∣∣∣∣ εfx
(f2
x + ε)3/2

∣∣∣∣ ≤ 1
and

εfx
(f2
x + ε)3/2

→ 0, pointwise in Q as ε → 0,

the boundedness of b and Lebesgue’s dominated convergence theorem imply∫
R

|fx(t)| ≤
∫

R

|f ′
0n|,

provided fxx ∈ L1(R × (0, t)). To complete the proof of the lemma we need to make
this argument rigorous.

It is enough to apply a mollifier to the initial function f0n of the linear flux
problem. This ensures the smoothness up to t = 0 necessary to carry out the above
calculations.
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3. Existence for Problem P. Let un be the solution of problem (Pn) as stated
in Theorem 2.2. By a standard argument there exist a subsequence of {un}, denoted
again by {un}, and u ∈ L∞(Q) ∩ C((R− ∪ R

+)× [0,∞)) such that
un → u in Cloc((R

− ∪ R
+)× [0,∞))

as n → ∞. We show the following theorem.
Theorem 3.1. u is a solution of Problem P.
Proof. Clearly u is a (weak) solution of the equation

ut + ux =
1

2

√
k±(u2)xx in Q±

and

f = u− 1
2

√
k± (u2)x ∈ L∞([0,∞); BV (R±)).

The boundedness of u and f implies that u2 is uniformly Lipschitz continuous with
respect to x in Q0. Hence the following quantities are well defined for each t > 0:

u±(t), f±(t), and p±(t) =
1 + u±(t)√

k±
.

Using the equation

ut + fx = 0 a.e. in Q±

and again the boundedness of f , we obtain as in [DP] that the functions

t → u±(t)

are continuous in [0,∞).
Next we claim

f+(t) = f−(t) for almost all t > 0.(3.1)

Indeed, using the asymptotic behavior of un(x, t) as |x| → ∞, we find, for n → ∞,∫
R

(un(x, t)− εn)dx =

∫
R

(u0n(x)− εn)dx →
∫

R

u0(x)dx

and hence ∫
R

u(x, t)dx =

∫
R

u0(x)dx for all t > 0,

which expresses conservation of mass. This identity implies

0 = lim
δ→0+

(∫ −δ

−∞
u(x, t)dx+

∫ ∞

δ

u(x, t)dx−
∫ −δ

−∞
u0(x)dx−

∫ ∞

δ

u0(x)dx

)

=

∫ t

0

(f+(s)− f−(s))ds for all t > 0.

Together with the equations in Q±, equality (3.1) implies the weak form (iii) of
Problem P.
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It remains to prove

u+[p] = 0 and [p] ≥ 0 for all t > 0.(3.2)

For this purpose we study un and pn in the interval (− 1
n ,

1
n ). Since kn changes rapidly

there, we make the blow-up

y = nx for − 1
n
< x <

1

n
.

Knowing that the fluxes fn are uniformly bounded, we obtain

|un − nknun(pn)y| ≤ C.

Thus for appropriate C > 0 we have

|un(pn)y| ≤ C
n
,

or ∣∣∣∣(u2
n)y −

ϕ′

ϕ
un(1 + un)

∣∣∣∣ ≤ C
n

(3.3)

for all −1 < y < 1 and t > 0.

Hence u2
n are Lipschitz continuous in [−1, 1] uniformly with respect to n and t. Up

to a subsequence, un → u uniformly in [−1, 1], as n → ∞, for all t > 0; in particular
u(−1, t) = u−(t) and u(1, t) = u+(t). In addition, it follows easily from (3.3) that u
satisfies

(u2)y =
ϕ′

ϕ
u(1 + u)(3.4)

in {(y, t) : −1 < y < 1, t > 0}. Since ϕ′ is nonpositive, u is decreasing. Thus, if
u+(t) > 0, we have u(y, t) > 0 in [−1, 1] and (3.4) reduces to

uy =
ϕ′

2ϕ
(1 + u).(3.5)

A straightforward calculation gives [p] = 0.

Next suppose u+(t) = 0. We have to show [p] ≥ 0. If u−(t) = 0, we get

[p] =
1√
k+

− 1√
k−

> 0.

If u−(t) > 0, define ỹ := sup{y ∈ [−1, 1] : u(y, t) > 0} and solve (3.5) in [−1, ỹ]. This
gives

1 + u−
√
k−

=
1√
ϕ(ỹ)

≤ 1√
k+

,

which implies [p] ≥ 0 and u−(t) ≤ u∗.
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4. The comparison principle. We start with some preliminary observations
for solutions (u, f) of Problem P. Choosing test functions with support in Q±, we
obtain ∫

Q±
uζt +

∫
Q±

(
u−

√
k±

2
(u2)x

)
ζx = 0.

Thus away from x = 0 we have two weak equations of “porous media” type
(m = 2) with linear convection, implying

ut +

(
u−

√
k±

2
(u2)x

)
x

= 0 a.e. in Q±(4.1)

and

supp(u(t)) is bounded in R(4.2)

for all t ∈ [0,∞). Further, using hypothesis (H), we can apply the Bernstein argument
of [A] in the truncated domain

Qδ := R\(−δ, δ)× (0,∞) (for δ > 0, fixed)

to obtain

||ux||L∞(Qδ) ≤ C(δ).(4.3)

We use this to derive an estimate on ut in Q
δ. Let u be a smooth solution of (4.1)

in the sense of the usual “porous media” approximations, and let ξ : R → [0, 1] be an
even C1 cut-off function satisfying

ξ(x) =



0 for 0 ≤ x ≤ δ/2,

1 for δ ≤ x ≤ L,

0 for x ≥ L+ 1

for any L > δ. Multiplying (4.1) by ξ2ut gives∫
Qτ

ξ2u2
t= −

∫
Qτ

ξ2utux −
∫
Qτ

ξξ′
√
kut(u

2)x −
∫
Qτ

ξ2

√
k

2
uxt (u

2)x,

where Qτ = R × (0, τ) with τ > 0 arbitrarily chosen. Using uxt(u
2)x = u(u2

x)t, the
last integral becomes ∫

R

ξ2

√
k

2
uu2

x

∣∣∣τ
0
−
∫
Qτ

ξ2

√
k

2
utu

2
x.

Then (i) of Problem P and (4.3) in Qδ/2 give∫
Qτ

ξ2u2
t ≤ C(δ, τ),

implying

ut ∈ L2
loc(Q̄

δ).(4.4)
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We are now in a position to prove the following theorem.
Theorem 4.1. Let (u1, f1) and (u2, f2) be weak solutions of Problem P corre-

sponding to initial values u01 and u02, respectively. Then u01 ≤ u02 in R implies
u1 ≤ u2 in Q0.

Proof. Let τ > 0 be arbitrary. In the weak equation for the difference∫
Q

{(u1 − u2)ζt + (f1 − f2)ζx}+
∫

R

ζ(u01 − u02) = 0,

we take the test function

ζ = ξψSε(u
2
1 − u2

2),

where the following hold:
(i) ξ is an even C1 cut-off function near x = 0,

ξ(x) =

{
0 for 0 ≤ x ≤ δ/2,

1 for x ≥ δ,
ξ′(x) ≥ 0 for δ/2 < x < δ.

(ii) ψ is a C1 cut-off function near t = τ ,

ψ(t) =

{
1 for 0 ≤ t ≤ τ − µ,

0 for τ ≤ t,
ψ′(t) ≤ 0 for τ − µ < t < τ.

(iii) Sε : R → [0, 1] is given by

Sε(r) =



0, r ≤ 0,

r√
r2 + ε2

, r > 0.

Here δ, µ, and ε are small positive parameters. Note that for ε ↘ 0

Sε(r)→ χ{r>0} :=

{
1, r > 0,

0, r ≤ 0,
rS′

ε(r)→ 0


 pointwise in R.(4.5)

Integrating the first term by parts gives∫
Qτ

(u1 − u2)t ξψSε(u
2
1 − u2

2)

=

∫
Qτ

(f1 − f2)ψ
{
ξ′Sε(u2

1 − u2
2) + ξS′

ε(u
2
1 − u2

2)(u
2
1 − u2

2)x

}

≤
∫
Qτ

(f1 − f2)ψξ
′Sε(u2

1 − u2
2) +

∫
Qτ

(u1 − u2)ψξS
′
ε(u

2
1 − u2

2)(u
2
1 − u2

2)x.

For fixed µ, δ > 0, we first let ε ↘ 0. Using (4.5), we have
(u1 − u2)ψξS

′
ε(u

2
1 − u2

2)→ 0 pointwise in Qτ .
Hence by (4.4) we obtain∫

Qτ

ξψ((u1 − u2)+)t ≤
∫
Qτ

(f1 − f2)ψξ
′χ{u1>u2}.
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Next we let µ ↘ 0. This gives
∫

R

ξ(u1 − u2)+(τ)

≤
∫ τ

0

{∫ −δ/2

−δ
(f1 − f2)ξ

′χ{u1>u2} +
∫ δ

δ/2

(f1 − f2)ξ
′χ{u1>u2}

}

=:

∫ τ

0

{I−δ + I+
δ }.

(4.6)

Let t ∈ (0, τ) be chosen such that f−, f+ exist. Consider the possibilities:

(i) u+
1 �= u+

2 , say u
+
1 > u+

2 . Then u1 > u2 in a right neighborhood of x = 0 and
χ{u1>u2} = 1 in (δ/2, δ) for δ sufficiently small. The pressure conditions (M2) give

u−
1 > u−

2 : if u
+
2 > 0, then [p1] = [p2] = 0 implies u

−
1 > u−

2 ; if u
+
2 = 0, then u

−
2 ≤ u∗,

while u−
1 > u∗. Therefore also χ{u1>u2} = 1 in (−δ,−δ/2). As a consequence

lim
δ↘0
(I−δ + I+

δ ) = [f1]− [f2] = 0.

(ii) u+
1 = u+

2 . Now we need to compare the corresponding fluxes. Suppose that
f+
1 = f+

2 . Then

sup
(δ/2,δ)

(f1 − f2)χ{u1>u2} → 0 as δ ↘ 0,

and the same applies in (−δ,−δ/2). Thus again

lim
δ↘0
(I−δ + I+

δ ) = 0.

If f+
1 > f+

2 , then (u
2
1)x < (u

2
2)x and therefore u1 < u2 in (δ/2, δ). Thus

I−δ + I+
δ = I−δ ≤ 0 for δ > 0 sufficiently small.

Finally, if f+
1 < f+

2 , then (u
2
1)x > (u2

2)x and u1 > u2 in (δ/2, δ). Thus limδ↘0 I
+
δ =

f+
1 − f+

2 . Furthermore, since

(f1 − f2)ξ
′χ{u1>u2} ≤ (f1 − f2)ξ

′ in (−δ,−δ/2),

lim sup
δ↘0

(I−δ + I+
δ ) ≤ 0.

Combining these results, we obtain from (4.6)

u1(·, τ)− u2(·, τ) ≤ 0 in R\{0},

which proves the theorem.

As an immediate consequence we have the following.

Corollary 4.2. Problem P has at most one solution (u, f).
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5. Oil trapping. The steady state solutions shown in Figure 3 suggest that oil
may be trapped at the interface between coarse and fine material. Indeed, if u0(x) = 0
for x > 0 and if for some u− ∈ (0, u∗]

u0(x) ≤
(
u− +

1√
k−

x

)
+

for x < 0,

then the comparison principle guarantees

u(x, t) ≤
(
u− +

1√
k−

x

)
+

for all (x, t) ∈ Q−

and

u = 0 in Q+.

The following theorem explains trapping in terms of the oil mass. For convenience,
let

ū(x) :=

{ (
u∗ + 1√

k−
x
)

+
for x < 0,

0 for x > 0

denote the maximal admissible steady state having M̄ , given by (1.12), as correspond-
ing mass.
Theorem 5.1. Let u0 satisfy hypothesis (H) and let∫ x

−∞
u0(s)ds ≥

∫ x

−∞
ū(s)ds for x < 0.

Then the solution of Problem P satisfies∫ 0

−∞
u(s, t)ds ≥ M̄ for all t > 0.

Proof. Fix any δ > 0 and set

Vδ(x, t) =

∫ x

−∞
u(s, t)ds+ δ for (x, t) ∈ Q̄.

Then Vδ ∈ C(Q̄), V (·, t) ∈ C1((−∞, 0]) ∪ C1([0,∞)) for all t > 0, and
Vδ = δ to the left of the support of u in Q−,

Vδ =

∫
R

u0(s)ds+ δ to the right of the support of u in Q+.

As a consequence Vδ ≥ M̄ in Q+, and it satisfies

Vt + Vx −
√
k−VxVxx = 0 a.e. in Q−.(5.1)

Setting

v̄(x) :=

∫ x

−∞
ū(s)ds for x ∈ (−∞, 0],
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we have

Vδ > v̄ in Q−
t := (−∞, 0]× (0, t)

for t sufficiently small. Let

t0 = sup{t > 0 : Vδ > v̄ in Q−
t }.

Below we show t0 =∞. Suppose t0 < ∞. Then there exists (x0, t0) ∈ Q̄− such that

Vδ > v̄ in Q−
t0(5.2)

and

Vδ(x, t0) ≥ v̄(x) for all x ∈ (−∞, 0] with Vδ(x0, t0) = v̄(x0).(5.3)

We first rule out x0 = 0.
If x0 = 0, we distinguish the three following cases:
(i) u(0−, t0) > u∗. Then we have

∂Vδ
∂x
(0−, t0) = u(0−, t0) > u∗ =

dv̄

∂x
(0−).

This contradicts (5.3).
(ii) u(0−, t0) < u∗. By continuity there exists ε > 0 such that u(0−, t) < u∗ and

u(0+, t) = 0 for t0 − ε < t < t0. Since f
−(t) = f+(t) ≤ 0 for almost all

t ∈ (t0 − ε, t0) (see also section 6), we find from integrating the u-equation in
(−∞, 0)× (t0 − ε, t0)∫ 0

−∞
u(s, t0)ds−

∫ 0

−∞
u(s, t0 − ε)ds = −

∫ t0

t0−ε
f−(t)dt ≥ 0.

Hence

Vδ(0, t0 − ε) ≤ Vδ(0, t0) = v̄(0),

which contradicts (5.2).
(iii) u(0−, t0) = u∗. Then Vδ(0−, t0) = v̄(0) as well as

∂Vδ
∂x
(0−, t0) =

dv̄

dx
(0−) = u∗.

Using (5.1) locally in Q− and the strong maximum principle, we again obtain
a contradiction.

Hence x0 �= 0 and Vδ(0, ·) > v̄(0) in [0, t0]. We then apply the comparison princi-
ple to (5.1) in Q−

t0 to find Vδ > v̄ in (−∞, 0] × [0, t0]. This shows that t0 = ∞.
As a consequence Vδ > v̄ in Q̄− for any δ > 0, which implies the assertion of the
theorem.
Similarly we show the following.
Theorem 5.2. Let u0 satisfy hypothesis (H) and let∫ ∞

x

u0(s)ds ≤
∫ ∞

x

ū(s)ds for x ∈ R.

Then

u = 0 in Q̄+.
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6. Closing remarks. In this section we briefly discuss some qualitative proper-
ties of solutions of Problem P.

6.1. Nonuniqueness. In the proof of the comparison principle, implying unique-
ness, we have used the pressure condition

[p] ≥ 0.(6.1)

By means of a counterexample we show here that uniqueness fails if we drop condi-
tion (6.1). Let u0 satisfy the structural properties

(H̃)




u0(x) = 0 if x > 0, u0 �≡ ū in R,

ū(x) ≤ u0(x) ≤ (u∗ + δx)+ if x < 0 for some 0 < δ <
1√
k−

.

Based on the results of section 5, we expect that the corresponding solution u of
Problem P will have a nontrivial component in Q+; i.e., u �≡ 0 in Q+. We will
construct a second solution ũ which solves Problem P, except condition (6.1), and
which satisfies ũ ≡ 0 in Q+. This construction is based on a modification of k.
Instead of (1.2) we consider

k̃n(x) =




k− for x < 0,

κ for 0 < x <
1

n
,

k+ for x >
1

n
,

(6.2)

where 0 < κ < k+ < k−, and we let n → ∞.
Theorem 6.1. Let u0 satisfy hypotheses (H) and (H̃) and let u denote the unique

solution of Problem P. Then
(i) u �≡ 0 in Q+;
(ii) there exists a second solution ũ of Problem P, except (6.1), which satisfies

ũ ≡ 0 in Q+.
Proof. We first show that u �≡ 0 in Q+. Arguing by contradiction, we assume

u(0+, t) = 0 for all t > 0.

Using [p] ≥ 0 and u ≥ ū in Q, we conclude

u(0−, t) = u∗ for all t > 0.

Hence u solves in Q− the problem

(P−)




ut + (u−√
k−uux)x = 0 in Q−,

u(0, t) = u∗ for t > 0,

u(x, 0) = u0(x) for x < 0.

Now observe that z̄ := (u∗ + δx)+ is a supersolution for problem (P
−). Hence the

solution z(x, t) of problem (P−) with initial data z(·, 0) = z̄(x) is decreasing with
respect to time and converges to a steady state solution s(x). By comparison s ≥ ū
in R

−, but since ū is maximal we have

s = ū in R
−.
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Using

ū(x) ≤ u(x, t) ≤ z(x, t) for all (x, t) ∈ Q−,

we obtain

lim
t→∞u(x, t) = ū(x) uniformly in x < 0.

Combining this result with u ≡ 0 in Q+, we find

lim
t→∞

∫ +∞

−∞
u(x, t)ds →

∫ +∞

−∞
ū(x)dx <

∫ +∞

−∞
u0(x)dx,

which contradicts mass conservation for u.
Next we use (6.2) to explain the construction of ũ. As a first observation we note

that the class of steady state solutions of the equation(
u− k̃n

(
1 + u√

k̃n

)′)′
= 0 in R,

having compact support and satisfying (M1) and (M2), has the same structure as

the one shown in Figure 3, but with u∗ =
√

k−
k+ − 1 replaced by ũ∗ =

√
k−
κ − 1. In

particular this class does not depend on n. For κ sufficiently small we find, for ¯̃u, the
maximal steady state

u0 ≤ ¯̃u in R.

As a consequence, the solution ũn of the problem


ut +

(
u− k̃n

(
1 + u√

k̃n

)
x

)
x

in Q,

u(x, 0) = u0(x) for x ∈ R

satisfies

ũn(x, t) ≤ ¯̃u(x) for all (x, t) ∈ Q.

In particular

ũn ≡ 0 in Q+

for all n ∈ Z
+. Finally, letting n → ∞, ũn converges along subsequences to a function

ũ = ũ(x, t) which satisfies all properties required for Problem P except (6.1).

6.2. Waiting times and optimal regularity. Numerical simulations reported
in [DMN] show that the right free boundary of u has a “waiting time” when it reaches
the permeability discontinuity. The free boundary becomes stagnant there, while the
oil saturation increases. It continues whenever the pressure exceeds the entry pressure
of the low permeable region.
The following makes this precise.
Theorem 6.2. Let u0 satisfy hypothesis (H) and let supp(u0) ⊂ R

−. Further,
let the solution u of Problem P satisfy u �≡ 0 in Q+. Set

t1 := lim
ε→0
sup{τ > 0 : u ≡ 0 in (−ε,∞)× (0, τ)}
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and

t2 := sup{τ > 0 : u ≡ 0 in R
+ × (0, τ)}.

Then

0 < t1 < t2 < ∞ (t2 − t1 is the waiting time)

and

u(0−, t1) = 0, u(0−, t2) = u∗.

Proof. Clearly t1 and t2 are well defined. Continuity of u
±(t) and (M2) imply

directly t2 > t1 and u(0
−, t1) = 0.

Suppose u(0−, t2) < u∗. By continuity, there exists δ > 0 such that u(0−, t) < u∗,
and thus u(0+, t) = 0, for t2 ≤ t < t2+δ. Thus u ≡ 0 in R

+×(0, t2+δ), contradicting
the definition of t2.
Next we consider the case where the oil initially is positioned in the fine material

(x > 0). If the initial position is sufficiently close to the interface at x = 0, diffusion
may drive the oil towards x = 0, i.e., against the flow, where it will penetrate the coarse
material. This follows from the transformation y = x − t, t = t and by considering
an appropriate subsolution for the resulting porous media equation; see [G2].
Supposing the oil reaches x = 0, we have the following result.
Theorem 6.3. Let u0 satisfy hypothesis (H) and let supp(u0) ⊂ R

+. Further,
let the solution u of Problem P satisfy u �≡ 0 in Q−. Set

t1:= sup{τ > 0 : u ≡ 0 in R
− × (0, τ)}.

t2:= sup{τ > 0 : u(0+, t) = 0 for 0 < t < τ}.

Then

0 < t1 < t2 ≤ ∞.

In addition, there exists t ∈ (t1, t2) such that for some A > 0

u(x, t) = A
√
x(1 + o(1)) as x → 0+.

Proof. By the finite speed of propagation we have t1 > 0. Continuity of u(0−, ·)
implies u(0−, t1) = 0 and u(0−, t) ≤ u∗ and hence u(0+, t) = 0 for all t in an upper
neighborhood of t1. Hence t2 > t1. If u(0

−, t) ≤ u∗ for all t > 0, we have t2 = ∞.
Since u �≡ 0 in R

− × (t1, t2) and u(0+, ·) = 0 in (t1, t2), there exists t ∈ (t1, t2) such
that

f(t) = f−(t) = f+(t) < 0.

Hence, for this t fixed, setting f(t) = −C(C > 0),

u−
√
k+uux = −C(1 + o(1)) as x → 0+,

giving

1

2
u2(x, t) =

C√
k+

x(1 + o(1)) as x → 0+.
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Appendix. Proof of Lemma 2.1. Let εn > 0 be such that

εn = o

(
1

n

)
as n → ∞,

and set

u0n(x) =




√
u2

0(x− 1
n ) + ε2n if x >

1

n
,

√
(u+

0 )
2 + ε2n if x =

1

n
,

where u+
0 = limx↘0 u0(x). Since |u′

0n(x)| ≤ |u′
0(x − 1

n )| for x > 1
n , the uniform

Lipschitz continuity of u0 in R
+ implies

u0n is uniform Lipschitz continuous in [
1
n ,∞].

Since

f0 = u0 − 1
2

√
k+(u2

0)
′ in R

+,

f0n= u0n − 1
2

√
k+(u2

0n)
′ in

[
1

n
,∞
)
,

the total variation of (u2
0)

′ in R
+, TVR+((u2

0)
′), is bounded, and since (u2

0n)
′(x) =

(u2
0)

′(x− 1
n ),

TV( 1
n ,∞)(f0n)→ TVR+(f0) as n → ∞.(A.1)

In order to extend u0n to the interval [− 1
n ,∞] we distinguish two different cases:

u+
0 > 0 and u+

0 = 0. At this point we remind the reader that the constant u
∗ is

defined by

1 + u∗
√
k−
=
1√
k+

, i.e., u∗ =

√
k−

k+
− 1.

(i) Case u+
0 > 0. We define u0n in [− 1

n ,
1
n ) by the relation p0n = p0n(

1
n ) in

[− 1
n ,

1
n ), i.e.,

u0n(x) = −1 +
√

kn(x)

k+

(
1 +

√
(u+

0 )
2 + ε2n

)
.

In particular, as n → ∞,

u0n(− 1
n ) = −1 +

√
k−

k+

(
1 +

√
(u+

0 )
2 + ε2n

)

→ −1 +
√

k−

k+
(1 + u+

0 ) = u−
0 ,

(A.2)

where we have used, by hypothesis (H), [p0] = 0 if u
+
0 > 0. Since u0n(− 1

n ) > u−
0 ,

there exist δn > 0 such that

u0n

(
− 1

n

)
=

√
(u−

0 )
2 + δ2

n.(A.3)
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It follows directly from the construction of u0n that

TV(− 1
n ,

1
n )(f0n) = −u0n

(
1

n

)
+ u0n

(
− 1

n

)
→ −[u0] as n → ∞(A.4)

and

f0n

(
1

n
+

)
− f0n

(
1

n
−
)
= −1
2

√
k+(u2

0n)
′
(
1

n
+

)
= −1
2

√
k+(u2

0)
′(0+).(A.5)

(ii) Case u+
0 = 0. Since [p0] ≥ 0, u+

0 = 0 implies that

0 ≤ u−
0 ≤ −1 +

√
k−

k+
= u∗.

Hence

(1 + εn)
√
k− >

√
k− ≥

√
k+(1 + u−

0 ),

and there exist δn > 0 such that


δn → 0 as n → ∞,

(1 + εn)
√
k− >

√
k+

(
1 +

√
(u−

0 )
2 + δ2

n

)
,√

(u−
0 )

2 + δ2
n > εn.

These two inequalities imply that for some κn ∈ (k+, k−)

(1 + εn)
√
k− =

√
κn

(
1 +

√
(u−

0 )
2 + δ2

n

)
.

Then there exists xn ∈ (− 1
n ,

1
n ) such that

kn(xn) = κn,

and we define u0n in [− 1
n ,

1
n ) by the relations

u0n(x) ≡ u0n

(
1

n

)
(= εn) if xn ≤ x <

1

n

and

p0n(x) ≡ p0n(xn)

(
=
1 + εn√

κn

)
if − 1

n
< x < xn.

By the definition of κn and p0n, the latter relation can be written as

u0n(x) = −1 +
√

kn(x)

k−

(
1 +

√
(u−

0 )
2 + δ2

n

)
if − 1

n
≤ x < xn.

In particular we have

u′
0n ≤ 0 in

(
− 1

n
, xn

)
and u0n

(
− 1

n

)
=

√
(u−

0 )
2 + δ2

n → u−
0 as n → ∞,(A.6)
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and

TV(− 1
n ,xn)(f0n) = TV(− 1

n ,xn)(u0n)→ −[u0] as n → ∞.(A.7)

Since |k−n | ≤ C
n and εn = o( 1n ) as n → ∞, and since

f0n(x) = εn +
1

2
εn(1 + εn)

k′n(x)√
kn(x)

if xn < x <
1

n
,

it follows that

TV(xn,
1
n )(f0n)→ 0 as n → ∞.(A.8)

In addition, as n → ∞,

f0n

(
1

n
+

)
− f0n

(
1

n
−
)

→ −1
2

√
k+(u2

0)
′(0+)(A.9)

and

f0n(x
+
n )− f0n(x

−
n ) =

1

2
εn(1 + εn)

k′n(xn)√
κn

→ 0.(A.10)

Combining (A.6)–(A.10) gives

TV(− 1
n ,

1
n )(f0n)→ −[u0] as n → ∞.(A.11)

Finally we have to define u0n(x) for x < − 1
n . In view of (A.3) and (A.6) it seems

natural to set

u0n(x) =

√
u2

0

(
x+
1

n

)
+ δ2

n if x < − 1
n
.(A.12)

Arguing as in the interval ( 1n ,∞), we obtain as n → ∞
TV(−∞,− 1

n )(f0n)→ TVR−(f0)(A.13)

and

f0n

((
− 1

n

)
+

)
− f0n

((
− 1

n

)
−
)

→ 1
2

√
k−(u2

0)
′(0−).(A.14)

Combining (A.1), (A.13), and (A.14) with, respectively, (A.4), (A.5) if u+
0 > 0 and

(A.9), (A.11) if u+
0 = 0, we find

TVR(f0n)→ TVR(f0) as n → ∞.

Now, if δn = εn, u0n satisfies all properties of Lemma 2.1. In general, however,
δn �= εn and we have to correct the construction of u0n in (−∞,− 1

n ). Since u0n(− 1
n ) >

u0n(
1
n ) ≥ εn, we can still use definition (A.12) in a neighborhood of x = − 1

n . Since
kn is constant in (−∞,− 1

n ), the expression for the flux is simply

f0n = u0n − 1
2

√
k−(u2

0n)
′ in

(
−∞,− 1

n

)
.

Therefore it is not difficult to change slightly the definition of u0n such that
u0n ≥ εn in R and u0n(x) = εn for −x sufficiently large. We leave the details to the
reader.
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AN EXAMPLE OF CATASTROPHIC SELF-FOCUSING IN
NONLINEAR OPTICS?∗

ÉRIC DUMAS†

SIAM J. MATH. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 35, No. 1, pp. 268–278

Abstract. As the wavelength ε goes to zero, the slowly varying envelope approximation al-
lows one to replace the fields (solutions to Maxwell equations) with profile solutions to a nonlinear
Schrödinger equation (NLS). Depending on the model, this equation may be critical and focusing,
and then admits explosive solutions. In this case, the approximation breaks down, and, for ε fixed,
the fields may be globally defined in time, and smooth. This happens in the case of Maxwell–Bloch
equations [P. Donnat and J. Rauch, Arch. Ration. Mech. Anal., 136 (1996), pp. 291–303], [E. Dumas,

Existence globale pour les systèmes de Maxwell-Bloch, in Séminaire École Polytechnique, 2002–2003,
Ecole Polytechnique, Palaiseau, France], of the anharmonic oscillator with saturated nonlinearity
[J. L. Joly, G. Métivier, and J. Rauch, SIAM J. Math. Anal., 227 (1996), pp. 903–913], and of prop-
agation in a ferromagnetic medium [J. L. Joly, G. Métivier, and J. Rauch, Ann. Henri Poincaré, 1
(2000), pp. 307–340], [H. Haddar, Modèles asymptotiques en ferromagnétisme: Couches minces et

homogénéisation, Ph.D. thesis, thèse INRIA-École Nationale des Ponts et Chaussées, 2000].
We analyze the question of self-focusing for a wave equation in space dimension 2; the same

techniques apply to usual models in greater dimensions. We give a new representation of the fields in
terms of oscillating profiles, ruled by focusing rays. Furthermore, we prove that the approximation
by an explosive solution of NLS is valid up to a time of the order of a negative power of ln(1/ε)
before explosion; this exhibits an amplification of the fields by a positive power of ln(1/ε) between
t = 0 and that time.

Key words. nonlinear diffractive optics, nonlinear critical Schrödinger equation, self-focusing

AMS subject classifications. 35L, 35Q60, 78A60

DOI. 10.1137/S0036141002414482

1. Introduction. A standard model for describing the propagation of an elec-
tromagnetic wave through a field responsive (or Kerr) medium is the coupling of
Maxwell equations with an anharmonic oscillator (cf. [3], [2]):


∂tE = −curl B − ∂tP,

∂tB = curl E,

ε2∂2
t P +∇PV (P ) = γE.

(1)

Here, (E,B) is the electromagnetic field, and P is the polarization of the medium.
The physically relevant fields also satisfy div (E + P ) = div B = 0, which is true for
all times as soon as it is at one given time. The response of matter is given by a
nonlinear spring force, with the same frequency 1/ε as the wave. Many other models
are available, including magnetic effects (Landau–Lifshitz model; see [14]) or quantum
descriptions (Bloch equations; see [18]); but all these systems can be approximated
by a single equation, in the regime we describe now.

For a small amplitude wave, slowly modulated in space and time, the so-called
“slowly varying envelope approximation” (see [16, pp. 32–38] and [17]) leads to a non-
linear Schrödinger equation (NLS). This approximation is also used in other physical
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ujf-grenoble.fr/∼edumas/).
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contexts, such as water waves and plasma waves, showing that NLS is a canonical
equation, capturing the essential features of nonlinear wave dynamics (see [23] for a
survey). In the case of Maxwell equations with an anharmonic oscillator, the potential
V is replaced by its Taylor expansion at the origin,

V (P ) � α|P |2 − β|P |4,

and the vector u = (E,B, P, ε∂tP ) is approximated by uapp = εU(εt, y1, y2)e
i
y3+t

ε ,
U = (E ,B,P,Q). The fields must be polarized,

E =


K

L
0


 , B = c1


 L
−K
0


 , P = c2


K

L
0


 , Q = ic3


K

L
0


 ,(2)

and the amplitudes K(T, y1, y2), L(T, y1, y2) are solutions to

i∂t

(
K
L

)
− κ1∆y1,y2

(
K
L

)
− κ2(|K|2 + |L|2)

(
K
L

)
= 0.(3)

This is a critical NLS equation in space dimension 2, possibly with focusing nonlin-
earity (κ1κ2 > 0), depending on the details of the model (i.e., on the coefficients α
and β).

This approximation can be rigorously justified in the case of a general hyperbolic
system of nonlinear partial differential equations (see [5]), for ε small enough, on any
time interval [0, t1/ε] such that the solution of (3) remains smooth on [0, t1]. (Similar
results hold for water waves in the limit of long waves, leading to the Korteveg–de Vries
equation or Boussinesq equation; see [19], [20], [21].) However, a time t� of explosion
for a solution to (3) is usually thought of as an indication of self-focusing : a variation
of the refractive index of the medium induces curved light rays, which concentrate in
the region of maximal refractive index. But, to our knowledge, there is no rigorous
result linking the explosion of the profile (solution to NLS) and the behavior of the
exact solution u.

First, the slowly varying envelope assumption (from which (3) is derived) is vio-
lated in this region, where fields become too large. Second, the electromagnetic field
may be globally defined in time (and smooth), even if the profile U explodes in fi-
nite time: in [6], Donnat and Rauch consider two-level Maxwell–Bloch systems. This
result is extended in [8] to general Maxwell–Bloch systems, following ideas of Joly,
Métivier, and Rauch [13] and Haddar [11] concerning the Landau–Lifshitz model. In
[12], Joly, Métivier, and Rauch deal with (1), when the potential V is saturated : if the
second and third derivatives of V are bounded, H2(R3) initial data generate global
solutions to (1).

In this paper, we investigate further the mechanism of self-focusing, evaluating
more precisely how long the Schrödinger approximation is valid. We present our
method for the simplest (i.e., with the lowest space dimension) hyperbolic equation
allowing transverse diffraction, a scalar wave equation in space dimension 2:

✷u+ iF (∂tu) = 0, with F (z) = |z|4z.(4)

Theorem 1.1. Fix t� > 0, and define

a0(t, Y ) := (t� − t)−1/2ei
Y 2−1

2(t�−t)R

(
Y

t� − t

)
, with R(Y ) =

31/4√
ch (2Y )

.(5)
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There are ε0, C > 0 such that for all ε ∈ ]0, ε0], the initial value problem associated
with (4), for initial data



uε|t=0

= εa0

(
0, y2/

√
ε
)
eiy1/ε,

∂tu
ε
|t=0

=
i

ε
uε|t=0

+O(ε) in S(Tε × R), with Tε the torus R/(2πε),

admits a unique smooth solution uε ∈ C1(S(Tε × R)) for t ∈ [0, t� − C(ln 1/ε)−1/3].
Furthermore, as ε → 0, we have the approximation∥∥∥∂tuε − ia0

(
t, y2/

√
ε
)
ei
y1+t

ε

∥∥∥
L∞
y

= o (‖a0(t)‖L∞) .

The link with the physical context above will be clearer after a few remarks.

Remark 1.1. From the profile a0(t, Y )eiθ, in which we substitute Y = y2/
√
ε,

θ = (y1 + t)/ε, we recover the long-time setting leading to (3) after rescaling: replace
(t, y) by

√
ε(t, y), and

√
ε by ε. We have chosen these scales so as to give an alternative

description of uε in terms of curved phases and focusing rays. See section 4 and [7].
Once rescaled, Theorem 1.1 shows that the slowly varying envelope approximation
for (4) can be justified up to times 1

ε (t�−C(ln 1/ε)−1/3)—compare with the previous
t1/ε, when t1 < t� is fixed.

Remark 1.2. The same method can be applied to a general hyperbolic system of
PDEs, also in higher dimension (see Remark 2.1), provided that the NLS equation for
the envelope, analogous to (3), is critical and focusing. For example, in the case of
system (1), with space dimension 3 and cubic nonlinearity (∇PV (P ) = 2αP−4β|P |2P
for suitable α and β), the exact solution u = (E,B, P, ε∂tP ) is approximated in

L∞([t�−C(ln 1/ε)−1/3]×R
3) via Kapp = (t�− εt)−1ei

|y1,y2|2−1

2(t�−εt) R2(
y1

t�−εt ,
y2

t�−εt )e
i
y3+t

ε

from (2), with R2 ∈ S(R2) a positive solution to −∆R+R−R3 = 0.

Remark 1.3. Equation (4) preserves only ‖∂t,yu‖L2 (taking the real part of (4)
times ∂tu). This is not sufficient to guarantee global existence of u: when the maximal
existence time t� of a smooth solution u is finite, the quantity ‖∂tu(t)‖L∞ explodes
as t → t�. Thus, the standard proofs of global existence, such as for small data (see
[22]), consist in controlling ‖∂tu(t)‖L∞ by t and the initial data. Here, ‖∂t,yu‖L2 does
not allow this control. The theorem doesn’t prove that uε (with ε fixed) explodes at
t = t� but shows an amplification of ‖∂tu‖L∞ by a factor (ln 1/ε)−1/6 between t = 0
and t = t� − C(ln 1/ε)−1/3.

Remark 1.4. Global existence is achieved in the other limit: ε fixed, t� → 0,
which corresponds to small initial data. Saturation, replacing the nonlinearity F (z)

by Gε(z) = |z|4z
1+εz3 , also ensures global existence of uε, as in [12]. Thus, the mechanism

of catastrophic self-focusing seems to be as follows: first, a concentration due to
linear focusing of rays (“self-focusing”); second, activation of nonlinear effects by this
amplification. Blow-up (“catastrophic” self-focusing) then depends on the strength
of the nonlinearity: saturation stops the development of the singularity, but without
saturation, or special geometric properties (see [13], [11] about the Landau–Lifshitz
model, and [6], [8] about Maxwell–Bloch systems), one is inclined to think that blow-
up occurs.

Remark 1.5. In fact, the slowly varying envelope approximation used here neces-
sarily produces a Schrödinger equation with a restrictive kind of nonlinearity: namely,
the first nonvanishing term in the Taylor expansion of the original nonlinearity. Since



CATASTROPHIC SELF-FOCUSING IN NONLINEAR OPTICS 271

the structure of the nonlinear terms is crucial for blow-up, there are also attempts for
understanding the role played by various perturbations of NLS: see [9] and [4].

The paper is organized as follows:
Section 2: (formal) definition of the explosive profile a0 via the conformal invari-

ance of NLS.
Section 3: Wentzel–Kramers–Brillouin (WKB) asymptotics. A corrector ac is

defined to get a better approximation.
Section 4: thanks to nonuniqueness of the profile representation, we give an al-

ternative description of uε based on focusing nonplanar phases.
Section 5: proof of Theorem 1.1. We first change scales (section 5.1) and look at

U(x) = u(t, y1/ε, y2/
√
ε), 2π-periodic in y1. In section 5.2, we write down energy es-

timates for the residual ∂tV = ∂tU−∂tUapp (‖∂tV ‖L∞ is then controlled by Sobolev’s
inequality). This is the notable difference between this work and [15], where the
authors need global existence of the (small) approximate solution, whereas we “fol-
low” the explosive approximate solution up to some boundary layer before t�. This
boundary layer appears when requiring the corrector ac to remain small compared
to a0 (section 5.3) and in the bootstrap argument showing ‖∂tV ‖L∞ � ‖∂tUapp‖L∞

(section 5.4).

2. From the wave equation to explosive solutions of NLS. A classi-
cal technique for constructing explosive solutions to NLS comes from the pseudo-
conformal invariance of this equation (see [10]): if b(t, Y ) is a solution to

2i∂tu− ∂2
Y u− |u|4u = 0,(6)

then, for all t� ∈ R, we define another solution by

a(t, Y ) :=
(
t1/2eiY

2/2tb
)( 1

t� − t
,

Y

t� − t

)
= (t�−t)−1/2eiY

2/2(t�−t)b
(

1

t� − t
,

Y

t� − t

)
.

When seeking a solution u to (4) in the “slowly varying envelope” form uε(x) =
εUε(t, y2/

√
ε, (y1+t)/ε) with a profile Uε(t, Y, θ)∈ C2([0, t�[×R×T) (periodic w.r.t. the

last variable, θ), the chain rule leads to the following equation:

[2∂t∂θ − ∂2
Y ]Uε + ε∂2

t Uε + i|∂θUε + ε∂tUε|4(∂θUε + ε∂tUε) = 0.(7)

When Uε satisfies (7), uε above is a solution to (6).
In order to let these quantities vanish at first order (see the WKB expansions in

section 3), it is then natural to look for a profile u0(t, Y, θ) such that

[2∂t∂θ − ∂2
Y ]u0 + i|∂θu0|4∂θu0 = 0.(8)

There are explicit solutions to this equation. When u0 = b(t, Y )eiθ, it is equivalent
to require that b satisfies (6), and b(t, Y ) = e−it/2R(Y ) is a solution, with R(Y ) =
31/4(ch (2Y ))−1/2 (the unique positive solution of R′′−R+R5 = 0, up to translation).

Now, use the pseudoconformal invariance of (6) to get a solution u0(t, Y, θ) =
a0(t, Y )eiθ to (8):

a0(t, Y ) = (t� − t)−1/2ei(Y
2−1)/2(t�−t)R

(
Y

t� − t

)
.(9)

For all t ∈ [0, t�[, a0(t) ∈ S(R), and a0 explodes at t = t� (‖a0(t)‖L∞ = 31/4(t� −
t)−1/2).
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Remark 2.1. The same construction is possible in higher dimension N : the
pseudoconformal transform is u(t, x) �→ t−N/2e−i|x|

2/2tu(1/t, x/t). Then −∆R+R−
R1+4/N = 0 also has a solution in S, and the same is valid for the equation −∆R +
mR + g(R) = 0, m = cst, under suitable behavior of g at the origin and at infinity
(see [1]).

3. WKB expansions and initial data for uε. If we want to deduce from an
approximate solution εUε(t, y2/

√
ε, (y1 + t)/ε) the existence of an exact solution to

(4), we must construct a solution to (7) to higher order than εu0(t, y2/
√
ε, (y1+ t)/ε).

That’s why we need a corrector for the first profile u0. The general form for Uεapp (from
[5]) has two such correctors: Uεapp = ε(u0 +

√
εu1 + εu2). Here, when u1 vanishes at

t = 0, we can let it vanish for all times. Thus, we set

uεapp(x) = εUεapp(t, y2/
√
ε, (y1 + t)/ε), Uεapp = u0 + εuc = (a0 + εac)(t, Y )eiθ.

Proposition 3.1. We have the (formal) WKB expansion

✷uεapp + i|∂tuεapp|∂tuεapp = (E0 + εE1 +Rε)(t, y2)e
i
y1+t

ε ,(10)

with

E0(t, Y ) = 2i∂ta0 − ∂2
Y a0 − |a0|4a0,

E1(t, Y ) = 2i∂tac − ∂2
Y ac + ∂2

t a0 +G(a0, ac),

G(a0, ac) = −|a0|4(∂ta0 + iac) + 4ia0|a0|2Re(a0(∂ta0 + iac)),

Rε(t, Y ) = ε2∂2
t ac + iF ((i+ ε∂t)(a0 + εac)) + F (a0)− εG(a0, ac).

We can construct a0 and ac such that E0 = E1 = 0: such an a0 ∈ C∞([0, t�[×R) is
given by (9), and E1 = 0 is a linear Schrödinger equation, which has a unique solution
for any ac|t=0

∈ L2(R).

Our goal is to show the existence of an exact solution uε to (4) close to εu0(t, y2/
√
ε,

(y1 + t)/ε). Towards this end, we choose

ac|t=0
= 0,(11)

which provides us with a (unique) corrector ac ∈ C∞([0, t�[×R). Next, we take the
simplest initial data for uε, in view of evaluating uε − uεapp:

{
uε|t=0

= uεapp|t=0
,

∂tu
ε
|t=0

= ∂tu
ε
app|t=0

.
(12)

Remark 3.1. (i) We can compute ∂tu
ε
app|t=0

in terms of the function R, since a0

is known explicitly, and ∂tac is given by the equation E1 = 0, so that

∂tac|t=0
=

i

2

[
∂2
t a0 − |a0|4∂ta0 + 2ia0|a0|2(a0∂ta0 + a0∂ta0)

]
|t=0

.(13)

(ii) Since the data are 2πε-periodic in y1, the standard uniqueness argument shows
that so is uε(t) for each time.
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4. Linear focusing. We can give an alternative profile description of the data
in (12): uε|t=0

also has a representation via ũ0
0 ∈ S(R × T),

uε|t=0
= εũ0

0

(
y2√
ε
,
y1 + y2

2/2t�
ε

)
, where ũ0

0(Y, θ) = t
−1/2
� e−i/2t�R

(
Y

t�

)
eiθ.

Similarly,

∂tu
ε
|t=0

=

(
it

−1/2
� R

(
Y

t�

)
+ ε

[
i

2
t
−5/2
� Y 2R

(
Y

t�

)
+ t

−5/2
� Y R′

(
Y

t�

)

+
1

2
t
−3/2
� (1−it−1

� )R

(
Y

t�

)]
e−i/2t�eiθ

)
|
Y=y2/

√
ε,θ=(y1+y

2
2
/2t�)/ε

+ ε2∂tac|t=0,Y=y2/
√
ε
eiy1/ε,

and ei
y1+y2

2
/2t�

ε also factors in the last term (see (13) in Remark 3.1).
Thus, we have a new profile representation of the initial data, with oscillations

involving the curved phase y1 + y2
2/2t�. Now, defining vε such that


✷vε + iF (∂tv

ε) = 0,

vε|t=0
= uε|t=0

,

∂tv
ε
|t=0

= i
√
1 + (y2/t�)2v

ε|t=0
,

we have two different ways of analyzing vε:
1. Plane phases:

∂tv
ε
|t=0

= i
(√

1 + ε(Y/t�)2u0|t=0

)
(y2/

√
ε, y1/ε)

= i
(
u0|t=0

+OS(R×T)(ε)
)
(y2/

√
ε, y1/ε),

and from [5], for each t < t�, when ε is small enough,

uε = εUε
(
t,

y2√
ε
,
y1 + t

ε

)
, vε = εVε

(
t,

y2√
ε
,
y1 + t

ε

)
, and ‖Uε − Vε‖∩Hs −→

ε→0
0,

so that ‖∂tuε − ∂tv
ε‖L∞ −→

ε→0
0 uniformly on [0, t].

2. Curved phases: since{
vε|t=0

= εũ0
0

(
y2/

√
ε, φ0/ε

)
,

∂tv
ε
|t=0

= i|∂yφ0|ũ0
0

(
y2/

√
ε, φ0/ε

)
with φ0 = y1 + y2

2/2t�, on each time interval [0, t], [7] ensures the representation
vε = εṼε(t, y2√

ε
, φε ), where φ is characteristic for the d’Alembertian operator:

∂tφ = |∂yφ| and φ|t=0
= y1 + y2

2/2t�.

This phase is implicitly determined by the “ray method”: φ(t, y) = φ0(z), where z is
the origin (at t = 0) of the ray through (t, y) (which here is a straight line):

y − z + t
∇φ0(z)

|∇φ0(z)| = 0.
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rays

t

y 2

t=0t=t

t*

*

Fig. 4.1. The graph of φ(t, y1, .) at t = 0 and t = t�.

Direct computations show that the rays focus exactly at time t = t� (generating a
caustic, where φ is no longer smooth). This is illustrated by Figure 4.1.

Remark 4.1. Here, φ can be determined explicitly (before t = t�) by solving
analytically a fourth degree algebraic equation. However, the region of interest is the
set of the “first” rays to focus, corresponding to y2 = 0. On these rays, one easily
computes that the gradient (w.r.t. t, y) of φ is the same as that of the linear phase
y1 + t. This indicates that planar and nonplanar phase representations correspond
to similar oscillations and give two different ways of understanding the amplitude’s
behavior.

5. Existence and approximation of uε. We prove a slightly stronger approx-
imation than in Theorem 1.1.

Theorem 5.1. When C > 0 is sufficiently large, and for all α > 0, as ε → 0,∥∥∂tuε − ∂tu
ε
app

∥∥ = o(ε2−α) in L∞((0, t� − C(ln 1/ε)−1/3)× R
2).

5.1. Rescaling. So as to evaluate the lifespan of uε, we look for the times during
which ‖∂tuε‖L∞ is finite. With the idea of giving an approximation of uε, we define
vε := uε − uεapp and try to verify ‖∂tvε‖L∞ � ∥∥∂tuεapp∥∥L∞ .

We make use of the wave equation satisfied by vε. It provides us with energy esti-
mates for ∂t,yv

ε, which bound ‖∂tvε‖L∞ , thanks to the Sobolev inequality. However,
these direct computations are too crude, because of Remark 3.1(ii): uε and uεapp are
2πε-periodic in y1, and so is vε. Thus, estimating ‖∂tvε‖L∞ by ‖∂tvε‖Hs , we lose a
factor εs. That’s why we finally try to control ‖∂tV ε‖L∞ , where

V ε(t, y) := vε(t, εy1,
√
εy2).(14)

In the same way, set (Uε, Uε
app, R

ε)(x) := (uε, ueappp, r
ε)(t, εy1,

√
εy2) (where rε(x) =

Rε(t, y2/
√
ε)ei

y1+t

ε from section 3).
Notation 5.1. We write a � b when there is a constant C such that a ≤ Cb.

5.2. Energy estimates for the error ∂tV
ε. From the relation (14), subtract-

ing (4) and (10) and using Taylor’s formula for F (z) = |z|4z (as a differentiable
function on R

2), we get

(∂2
t − ε−2∂2

y1 − ε−1∂2
y2)V

ε = −i

(∫ 1

0

dF
(
∂tU

ε
app + r∂tV

ε
)
dr

)
.∂tV

ε −Rε.(15)
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Consider
∫
(−π×π)×R

2Re((15)× ∂tV ε)dy. This gives

d

dt

(
‖∂tV ε‖2

L2 + ε−2 ‖∂y1V ε‖2
L2 + ε−1 ‖∂y2V ε‖2

L2

)
�
(∥∥∂tUε

app

∥∥4

L∞ + ‖∂tV ε‖4
L∞

)
‖∂tV ε‖2

L2 + ‖Rε‖L2 ‖∂tV ε‖L2 ,

so that, writing N(V ε) := (‖∂tV ε‖2
L2 + ε−2 ‖∂y1V ε‖2

L2 + ε−1 ‖∂y2V ε‖2
L2)

1/2 and Ik :=∥∥∂tUε
app

∥∥k
L∞ + ‖∂tV ε‖kL∞ ,

d

dt
N(V ε) � I4N(V ε) + ‖Rε‖L2 .(16)

Differentiating (15), in the same manner we get

d

dt
N(∂yV

ε) � I4N(∂yV
ε) + I3

∥∥∂t∂yUε
app

∥∥
L2 ‖∂tV ε‖L∞ + ‖∂yRε‖L2 ,(17)

and for any second order derivative ∂2
y ,

d

dt
N(∂2

yV
ε) � I3

(∥∥∂t∂2
yU

ε
app

∥∥
L2 ‖∂tV ε‖L∞ +

∥∥∂t∂yUε
app

∥∥
L2 ‖∂t∂yV ε‖L∞

)
+
∥∥∂2

yR
ε
∥∥
L2 + I4N(∂2

yV
ε).

(18)

Adding (16)–(18), using Sobolev’s inequality and Gronwall’s lemma, since V ε
|t=0

=
∂tV

ε
|t=0

= 0, we have

‖∂tV ε‖L∞ � N(V ε, ∂yV
ε, ∂2

yV
ε) � eCJ(t)

∫ t

0

‖Rε‖H2dt′,(19)

where J(t) =
∫ t
0
[I4 + I3(‖∂t∂yUε

app‖+ ‖∂t∂2
yU

ε
app‖+ ‖∂t∂yUε

app‖)]dt′.
5.3. Defining the boundary layer for the corrector. We first define an

interval [0, t(ε)] where Uε
app � Uε

0 := εu0(t, y2, y1+
t
ε ), i.e., where U

ε
c := ε2uc(t, y2, y1+

t
ε ) is a corrector to this quantity.

Proposition 5.2. When t� − t > C(ln 1/ε)−1/3 for some C (� 1),

‖∂tUε
c ‖W 1,∞ � ‖∂tUε

app‖W 1,∞ and ‖∂tUε
c ‖H2 � ‖∂tUε

app‖H2 .

Proof. We use the equation E1 = 0 from section 3 to obtain energy estimates.
Since ∂t[ac(t, y2)e

i(y1+t/ε)] = (∂tac +
i
εac)e

i(y1+t/ε), we have to estimate ‖ac‖Hs
Y
and

‖∂tac‖Hs
Y
, s = 1, 2:

d

dt
‖ac‖H1 � ‖∂2

t a0‖H1 + ‖|a0|4∂ta0‖H1

+
(
‖a0‖4

L∞ + ‖a0‖3
L∞ ‖∂Y a0‖L∞

)
‖ac‖H1 ,

(20)

d

dt
‖∂tac‖H1 � ‖∂3

t a0‖H1 + ‖|a0|3|∂ta0|2‖H1 + ‖|a0|4∂2
t a0‖H1

+
(
‖a0‖3

L∞ ‖∂ta0‖W 1,∞ + ‖a0‖2
L∞ ‖∂ta0‖L∞ ‖∂Y a0‖L∞

)
‖ac‖H1

+
(
‖a0‖4

L∞ + ‖a0‖3
L∞ ‖∂Y a0‖L∞

)
‖∂tac‖H1 ,

(21)



276 ÉRIC DUMAS

d

dt
‖ac‖H2 � ‖∂2

t a0‖H2 + ‖|a0|4∂ta0‖H2 +
(
‖a0‖4

L∞ + ‖a0‖3
L∞ ‖∂Y a0‖L∞

+ ‖a0‖2
L∞ ‖∂Y a0‖2

L∞ + ‖a0‖3
L∞
∥∥∂2

Y a0

∥∥
L∞

)
‖ac‖H2 ,

(22)

d

dt
‖∂tac‖H2 � ‖∂3

t a0‖H2 + ‖|a0|3|∂ta0|2‖H2 + ‖|a0|4∂2
t a0‖H2

+
(
‖a0‖3

L∞ ‖∂ta0‖W 1,∞ + ‖a0‖2
L∞ ‖∂ta0‖L∞ ‖∂Y a0‖L∞

+ ‖a0‖L∞ ‖∂ta0‖W 1,∞ ‖∂Y a0‖2
L∞ + ‖a0‖2

L∞ ‖∂ta0‖L∞
∥∥∂2

Y a0

∥∥
L∞

+ ‖a0‖3
L∞
∥∥∂t∂2

Y a0

∥∥
L∞

)
‖ac‖H2

+
(
‖a0‖4

L∞ + ‖a0‖3
L∞ ‖∂Y a0‖L∞ + ‖a0‖2

L∞ ‖∂Y a0‖2
L∞

+ ‖a0‖3
L∞
∥∥∂2

Y a0

∥∥
L∞

)
‖∂tac‖H2 .

(23)

Note that we can compute the exact value of the norm of a0 from the formula (5):

∀α, ‖(∂t,Y )αa0‖L∞ = C(t� − t)−1/2−|α|, ‖(∂t,Y )αa0‖L2 = C(t� − t)−|α|.(24)

Thus, from (20)–(24), Gronwall’s lemma implies that there are C > 0, µ ∈ R such
that

‖ac, ∂tac‖H2
Y
� (t� − t)µeC(t�−t)−3

.(25)

Now, simply check that out of the boundary layer t�− t ≤ C(ln 1/ε)−1/3 (with C
big enough), we have

‖∂tUε
c ‖L∞ � ε2‖∂tac‖H1 + ε‖ac‖H1 � ‖∂tUε

0‖L∞ ∼ (t� − t)−1/2,

‖∂t∂yUε
c ‖L∞ � ε2‖∂tac‖H2 + ε‖ac‖H2 � ‖∂t∂yUε

0‖L∞ ∼ (t� − t)−3/2,

‖∂t∂yUε
c ‖L2 � ε2‖∂tac‖H1 + ε‖ac‖H1 � ‖∂t∂yUε

0‖L2 ∼ (t� − t)−1.

5.4. Endgame: Proof of Theorem 5.1. We now take advantage of (19): in
view of Proposition 5.2, when t� − t ≤ C(ln 1/ε)−1/3,

‖∂tV ε‖L∞ � eCJ̃(t)

∫ t

0

‖Rε‖H2dt′,(26)

where Rε(x) = Rε(t, y2)e
i(y1+t/ε) is given by section 3, and

J̃(t) =

∫ t

0

[
Ĩ4 + Ĩ3

(‖∂t∂yUε
0‖L2 + ‖∂t∂yUε

0‖L∞
)]

dt′,

Ĩk =
∥∥∂tUε

app

∥∥k
L∞ + ‖∂tV ε‖kL∞ .

Hence, (26) is a relation of the form ϕ ≤ ψeϕ
4

for ϕ(t) := C‖∂tV ε‖L∞((0,t)×R2).
Even if ψ is “small,” this does not imply that ϕ is: on the contrary, it could be very
large. But since here ϕ|t=0

= 0, continuity w.r.t. t forces that as long as (26) is
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valid, ϕ has to be “small.” Thus, for each ε ∈ ]0, 1], we look for the maximal time
t(ε) ∈ ]0, t� − C(ln 1/ε)−1/3], until which

‖∂tV ε‖L∞ ≤ ‖∂tUε
0‖L∞ ∼ (t� − t)−1/2,(27)

and we replace Ĩk by Îk := 2 ‖∂tUε
0‖kL∞ .

Since (from (24)) Îk(t) ∼ (t� − t)−2,

‖∂tV ε‖L∞ ≤ ε2(t� − t)µeC(t�−t)−2

,(28)

and the right-hand side is much smaller than (t� − t)−1/2 as soon as t� − t >
C ′(ln 1/ε)−1/2, with C ′ sufficiently large. As ε goes to zero, (ln 1/ε)−1/2�(ln 1/ε)−1/3,
so that the condition t� − t > C(ln 1/ε)−1/3 is the relevant one.

Furthermore, for each α > 0, possibly increasing C, (28) shows that (27) is
improved to ‖∂tV ε‖L∞((0,t�−C(ln 1/ε)−1/3)×R2) = o(ε2−α).
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in Séminaire sur les Équations aux Dérivées Partielles, 1995–1996, Exp. 17, Sémin. Équ.
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SPARSE EVALUATION OF COMPOSITIONS OF FUNCTIONS
USING MULTISCALE EXPANSIONS∗

ALBERT COHEN† , WOLFGANG DAHMEN‡ , AND RONALD DEVORE§

SIAM J. MATH. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 35, No. 2, pp. 279–303

Abstract. This paper is concerned with the estimation and evaluation of wavelet coefficients of
the composition F ◦u of two functions F and u from the wavelet coefficients of u. Our main objective
is to show that certain sequence spaces that can be used to measure the sparsity of the arrays of
wavelet coefficients are stable under a class of nonlinear mappings F that occur naturally, e.g., in
nonlinear PDEs. We indicate how these results can be used to facilitate the sparse evaluation of arrays
of wavelet coefficients of compositions at asymptotically optimal computational cost. Furthermore,
the basic requirements are verified for several concrete choices of nonlinear mappings. These results
are generalized to compositions by a multivariate map F of several functions u1, . . . , un and their
derivatives, i.e., F(Dα1u1, . . . , Dαnun).

Key words. nonlinear mappings, thresholding, tree structures, adaptive evaluation of nonlinear
operators
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1. Introduction. This paper is concerned with the estimation and evaluation
of the wavelet coefficients of a composition of two functions F and u, where u is
given in terms of a wavelet expansion. Our interest in this subject stems from recent
developments of adaptive wavelet schemes for the numerical solution of several types
of initial or boundary value problems for PDEs. Such schemes typically rely on the
sparsity of the wavelet representation of the solution allowing for data compression,
as well as the ability to perform accurate numerical computations in the compressed
representation. For initial value problems, dynamically adaptive schemes introduced
in [20] require a reliable prediction of significant wavelet coefficients from the current
state when progressing to the next time level. In the case of hyperbolic conservation
laws, this question was first addressed in [19] and further discussed in [12]. Here one
has to estimate the action of the nonlinear terms defining the convective fluxes on the
current approximation in its multiscale representation. Another related example is
the wavelet analysis of turbulent incompressible flows where such estimates are related
to the energy transfer between different scales; see, e.g., [18] and [17]. For boundary
value problems, adaptive wavelet schemes also require the tracking of the significant
coefficients as the iterative solution process progresses; see, e.g., [1], [5], [9], and [10].

In all these examples, we are interested in the following general question: does
composition with F preserve the sparsity of the wavelet coefficients of the function
u? By the sparsity, we mean that only a quantifiable relatively small set of these
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coefficients is needed to recover the underlying function (with accuracy measured in a
given norm) to within some target accuracy. It is well known that sparsity of wavelet
coefficients in this sense is closely related (in fact equivalent) to the regularity of the
function with respect to certain scales of Besov spaces; see, e.g., [16]. Hence the above
issue is closely connected with the question, how is the regularity of a given function
u affected by the composition with some nonlinear function F , or, more generally,
given some regularity spaces Ri, i = 1, . . . ,m, what is the image of

∏m
i=1Ri under

the mapping

(u1(·), . . . , um(·))→ F(·, u1(·), . . . , um(·))?

This mapping is often referred to as a Nemytskij operator. The mapping properties
of Nemytskij operators between Besov spaces were treated by several authors, and
the reader is referred, e.g., to [3], [4], [22], and, for a detailed treatment, to the
book by Runst and Sickel [21]. Sharp results are indeed available on the amount
of smoothness which can be expected for F(u) given the smoothness of u, under
fairly general assumptions on F . Thus, in principle, in all cases covered by these
results the sparsity of the wavelet coefficients of compositions can be predicted fairly
well. However, these results tell us neither which coefficients of compositions F(u)
are significant, based on knowledge about u, nor how to calculate them efficiently
once they have been identified, which is a crucial issue in the perspective of numerical
computations. The objective of the present paper is therefore also to develop concepts
and tools for treating this latter problem.

Our paper is organized as follows. We present the problem formulation in section
2, which involves the wavelet discretization F of the mapping F as well as a notion of
tree structure in the organization of wavelet coefficients. We prove in section 3 that this
mapping preserves sparsity, under some general assumptions describing the stability
and local action of F in the space-scale domain. We also present specific algorithms
that construct sparse approximants with a prescribed accuracy ε at asymptotically
optimal cost. This type of scheme is needed for the adaptive solution process of
nonlinear operator equations; see [11]. We shall prove in section 4 the validity of the
required assumptions for general local nonlinear mappings of subcritical type. Finally,
the generalization of these results to compositions of the form F(Dα1u1, . . . , D

αnun)
between a multivariate map F and the derivatives of several functions u1, . . . , un is
discussed in section 5.

2. Problem formulation.

2.1. Background and wavelet prerequisites. To explain the relevant fea-
tures of the problem it suffices to describe the following (simple) example in a little
more detail. Consider the nonlinear boundary value problem of the form

−∆u+ F(u) = f in Ω, u = 0 on ∂Ω,(2.1)

where Ω ⊂ R
d is some open bounded domain. The variational formulation of (2.1) in

the space H = H1
0 (Ω) reads as follows: find u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇v +

∫
Ω

F(u)v =
∫

Ω

fv(2.2)

for all v ∈ H1
0 (Ω). Here H1

0 (Ω) is the usual Sobolev space of distributions with
first order weak derivatives in L2(Ω) vanishing on the boundary ∂Ω in the sense of
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traces. (Of course, other boundary conditions may also be considered.) For (2.2) to be
meaningful F should map H1

0 (Ω) into its dual H
−1(Ω). This is perhaps the simplest

instance of a variational problem inducing a bijective mapping from a Hilbert space
H onto its dual H ′.

For more general problems, H is a product of closed subspaces Ht of Sobolev
spaces determined, e.g., by homogeneous boundary conditions on part of the domain
boundary; see, e.g., [10] for examples. For simplicity we will confine the subsequent
discussion to the case of a single model space H = Ht for some t > 0.

2.2. Wavelet discretization. As already explained, we are motivated by adap-
tive numerical methods based on discretizing the variational formulation (2.2) in a
wavelet basis Ψ = {ψλ : λ ∈ J }. The indices λ encode scale, spatial location, and the
type of the wavelet ψλ. We will denote by |λ| the scale associated with ψλ. We shall
consider only compactly supported wavelets, i.e., the supports of the wavelets scale,
as follows:

Sλ := suppψλ, c02
−|λ| ≤ diamSλ ≤ C02

−|λ|,(2.3)

with c0, C0 > 0 absolute constants. The index set J has the following structure
J = Jφ ∪Jψ, where Jφ is finite and indexes the scaling functions on a fixed coarsest
level j0. Jψ indexes the “true wavelets” ψλ with |λ| > j0. From compactness of the
supports we know that at each level, the set Jj := {λ ∈ J : |λ| = j} is finite. In fact,
one has #Jj ∼ 2jd with constants depending on the underlying bounded domain.

As already explained in the introduction, our evaluation algorithms will rely on
a tree structure associated to the set of wavelet indices. In the simplest case of a
one-dimensional basis ψλ = ψj,k = 2j/2ψ(2j · −k), this structure is obvious: each
index (j, k) has two children (j + 1, 2k) and (j + 1, 2k + 1). A similar tree structure
can be associated to all available constructions of wavelet bases on a multidimensional
domain: each index λ then has m(λ) ≥ 2 children µ such that |µ| = |λ| + 1, where
m(λ) might vary from one index to another but is uniformly bounded by some fixed
K. We shall use the notation µ ≺ λ in order to express that µ is a descendent of λ in
the tree. Moreover, µ � λ means that µ either is a descendent of λ or equals λ. We
also have the property

µ ≺ λ⇒ Sµ ⊂ Sλ.(2.4)

One key feature is that Ψ is a Riesz basis of the relevant space H = Ht. This
means that every v ∈ H has a unique expansion v =

∑
vλψλ and that there exist

some constants c, C independent of v such that

c‖(vλ)λ∈J ‖ ≤
∥∥∥∥∥
∑
λ∈J

vλψλ

∥∥∥∥∥
H

≤ C‖(vλ)λ∈J ‖,(2.5)

where ‖(vλ)λ∈J ‖2 =
∑

λ∈J |vλ|2 denotes the �2(J )-norm. In particular, the wavelets
will always be assumed to be normalized in H, i.e., ‖ψλ‖H = 1. We abbreviate by

v = (vλ)λ∈J

the corresponding sequence of wavelet coefficients. Details on the construction of
wavelet bases for Sobolev spaces of general domains can be found in [6], [7], [14].

Note that, by duality, (2.5) is equivalent to

C−1‖(〈w,ψλ〉)λ∈J ‖ ≤ ‖w‖H′ ≤ c−1‖(〈w,ψλ〉)λ∈J ‖, w ∈ H ′,(2.6)
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where 〈·, ·〉 denotes the duality pairing between H and H ′. Clearly the quantities
〈w,ψλ〉 are the coordinates of w ∈ H ′ with respect to the dual Riesz basis Ψ̃ to Ψ.

Since, as pointed out above, the nonlinearity F is supposed to map H into H ′ we
shall therefore describe w = F(u) by its inner product sequence w = (wλ)λ∈J with

wλ = 〈w,ψλ〉, λ ∈ J .(2.7)

We shall denote by F the corresponding discrete nonlinear map

u �→ w = F(u) = (〈F(u), ψλ〉)λ∈J .(2.8)

A key issue in the applications mentioned above can roughly be described as
follows. Suppose that u ∈ H can be approximated in the energy norm ‖ · ‖H within
a tolerance ε by a linear combination of N(ε, u) wavelets ψλ. What is the number
N(ε,F(u)) of dual wavelets needed to recover F(u) within tolerance ε? Note that, due
to the norm equivalences (2.5) and (2.6), this can be restated as follows: Supposing
that the wavelet coefficients u of u ∈ H can be approximated in �2(J ) with accuracy ε
by a finitely supported vector involving only N(ε, u) nonzero terms, how many entries
of the sequence F(u) are needed to approximate F(u) in �2(J )? Thus in the wavelet
coordinate domain all approximations take place in �2(J ). In brief, when does sparse
approximability of u imply sparse approximability of F(u)?

Questions of the above type are by now well understood for linear operators and
their wavelet representations, as we shall now describe. In this context, the level of
sparsity of u is measured by the smallest τ ≤ 2 such that u ∈ �wτ (J ). Here �wτ (J ) is
the collection of all u ∈ �2(J ) which satisfy

#{λ ∈ J : |uλ| > η} ≤ Cη−τ , η > 0.(2.9)

In fact, �wτ (J ) is a (quasi-)normed linear space endowed with the norm

‖u‖�wτ (J ) := sup
η>0

η[#{λ ∈ J : |uλ| > η}]1/τ .(2.10)

An equivalent norm is given by the quantity

sup
n>0

n1/τu∗
n,(2.11)

where (u∗
n)n>0 is a nonincreasing rearrangement of (|uλ|)λ∈J . Note that if τ < 2, we

have1

‖u‖ <∼ ‖u‖�wτ (J ).(2.12)

Moreover, defining the error of best N -term approximation in �2(J )

σN (u) := inf
#suppv≤N

‖u− v‖ =
(∑
n>N

|u∗
n|2
)1/2

,(2.13)

one has the following characterization [9].

1Here and later we use the notation a <∼ b if a ≤ Cb with an absolute constant C independent
of all parameters on which a, b depend.
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Proposition 2.1. For u ∈ �2(J ) and s > 0, one has σN (u) <∼ N−s if and only
if u ∈ �wτ (J ) with

1

τ
= s+

1

2
.(2.14)

Moreover,

σN (u) <∼ N−s‖u‖�wτ (J ).(2.15)

Thus the smaller τ is, the fewer terms are needed to achieve a desired target
accuracy for u ∈ �wτ (J ). In the case where F(u) = Au is a linear operator bounded
in �2(J ), it is shown in [9] that this operator maps �wτ (J ) into itself provided that
it can be approximated by sparse matrices AN with N entries per rows and columns
at the rate ‖A −AN‖�2(J ) <∼ N−r for some r > 1

τ − 1
2 . Moreover, it is also shown

how to practically build N -term approximations wN of w = Au, which fulfill the
optimal rate ‖wN − w‖�2(J ) <∼ N−s, from similar approximations of u at O(N)
computational cost.

2.3. Tree structures and weak spaces. When dealing with nonlinear map-
pings, the following slight modification of these notions turns out to be appropriate.
The approximants will be constrained by imposing a tree structure to the set of indices
identifying the active coefficients. We shall say that a set T ⊂ J is a tree if λ ∈ T
implies µ ∈ T whenever λ ≺ µ.

If the tree T ⊂ J is finite, we define the set L = L(T ) of outer leaves as the set
of those indices outside the tree such that their parent belongs to the tree

L := {λ ∈ J : λ �∈ T , λ ≺ µ =⇒ µ ∈ T }.(2.16)

We shall make use of the following easily verifiable equivalence:

#T ∼ #L,(2.17)

where the constants depend only on K. Defining

Γλ := {µ ∈ J : µ � λ},(2.18)

the tree with root node λ, one easily verifies that

J \ T =
⋃

λ∈L(T )

Γλ.(2.19)

We are now interested in the approximation of u by an N -term approximation
v, where the support of v is assumed in addition to have a tree structure. A natural
counterpart to classical best N -term approximation error, discussed in the previous
section, is therefore given by redefining σN according to

σN (u) := inf{‖u− v‖ : #(supp(v)) ≤ N and supp(v) is a tree}.(2.20)

We define As as the class of vectors u such that

σN (u) <∼ N−s(2.21)

and the corresponding quasi norm

‖u‖As := sup
N>0

NsσN (u).(2.22)
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In contrast to best N -term approximation, the practical determination of a best
N -term tree approximant is not a simple task. In particular, when u is a finite vector,
the main difficulty is to build such an approximation without searching through all
possible subtrees, which would result in exponential complexity in N . In [2], two
algorithms have been proposed which construct near best trees in linear time, based
on the evaluation of the local residuals

ũλ :=


∑
µ∈Γλ

|uµ|2



1/2

.(2.23)

Note that

‖u− u|T ‖2 =
∑

λ∈L(T )

ũ2
λ.(2.24)

More precisely, given a tolerance ε, the algorithms proposed in [2] allow us to build a
tree T = T (ε,u) such that

‖u− u|T ‖ ≤ ε(2.25)

with the following property: whenever a tree T̃ satisfies ‖u−u|T̃ ‖ ≤ cε, then #(T ) ≤
C#(T̃ ), where c, C are fixed constants independent of u and ε.

A simpler alternative to building tree approximants is to perform thresholding on
the residual sequence ũλ. Indeed, one readily verifies that µ � λ implies ũλ ≥ ũµ, i.e.,
for any η > 0 the set

Tη = Tη(u) := {λ : |ũλ| > η}(2.26)

has tree structure. Thus, thresholding with respect to the modified sequences ũ
creates trees. This motivates us to define

t�
w
τ (J ) := {u ∈ �2(J ) : ũ ∈ �wτ (J )}, ‖u‖

t�wτ (J ) := ‖ũ‖�wτ (J ).(2.27)

Clearly, we have ‖u‖�wτ (J ) ≤ ‖u‖t�wτ (J ) and

#Tη(u) ≤ η−τ‖u‖τ
t�wτ (J ).(2.28)

Therefore, the spaces t�
w
τ (J ) can also be used to quantify the sparseness of sequences

subject to the tree structure constraint. In fact, one has the following counterpart to
Proposition 2.1.

Proposition 2.2. Let uη := u|Tη . Then u ∈ t�
w
τ (J ) implies the error estimate

‖u− uη‖ <∼ η1−τ/2‖u‖τ/2
t�wτ (J )

<∼ [#(Tη)]−s‖u‖t�wτ (J ),(2.29)

with s = 1/τ − 1/2. Therefore t�
w
τ (J ) is contained in As.

Proof. Let Lη := L(Tη) denote the set of outer leaves of the tree Tη. By (2.19),
(2.24) and using (2.28), one has

‖u− uη‖2 =
∑
λ�∈Tη

|uλ|2 =
∑
λ∈Lη

ũ2
λ ≤ #Lηη2

<∼ #Tηη2 ≤ ‖u‖τ
t�wτ (J )η

2−τ ,(2.30)
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where we have used (2.17). This confirms the first estimate in (2.29). Since again by
definitions (2.27) and (2.28), η ≤ ‖u‖

t�wτ (J )(#Tη)−1/τ , the second estimate follows
from (2.30).

Note, however, that in the above proposition, we do not have a converse result
which would state that the decay property ‖u − uη‖ <∼ [#(Tη)]−s implies that u is
in t�

w
τ (J ). In particular t�

w
τ (J ) is strictly contained in As.

Of course, the question arises which property of u implies that the array of wavelet
coefficients u belongs to t�

w
τ (J ) and in turn to As.

Remark 2.3. Let H = Ht. Then u ∈ Bt+sd
q (Lτ ′) implies u ∈ t�

w
τ (J ) whenever

1
τ ′ < 1

τ = s+ 1
2 and 0 < q ≤ ∞.

Sketch of proof. It is enough to prove this for Bt+sd
∞ (Lτ ′) and τ < τ ′ ≤ 2, because

the remaining cases follow by embeddings. The condition u ∈ Bt+sd
∞ (Lτ ′) says that

the Ht-normalized wavelet coefficients uλ of u satisfy


∑

|λ|=j
|uλ|τ ′




1/τ ′

<∼ 2−jdδ,

where δ := s+ 1
2 − 1

τ ′ > 0 is the discrepancy measuring the “distance” of Bt+sd
∞ (Lτ ′)

from the critical embedding line. From this one derives also that (
∑

|λ|=j |ũλ|τ
′
)1/τ

′
<∼

2−jdδ, j ∈ N. This, in turn, implies that the function ũ with wavelet coefficients ũ
belongs to Bt+sd

∞ (Lτ ′). By Corollary 4.2 in [8], the best N -term approximation of ũ
in Ht has order N−s. Therefore, by Proposition 2.1, ũ ∈ �wτ (J ), which, by (2.27)
means that u ∈ t�

w
τ (J ) as claimed.

We therefore have at our disposal two distinct notions of tree approximation rates
expressed by the spaces As and t�

w
τ (J ). We can now restate the above questions in

the following way:
• Does F map a sequence u ∈ X into a sequence w = F(u) ∈ X for X = As or

t�
w
τ (J )?

• Can we compute asymptotically optimal sparse approximations of w = F(u)
from asymptotically optimal sparse approximations of u in one of the two
senses above?

Note that a positive answer to the second question gives a positive answer to the first
question in a constructive way. Our next section will give precise answers to these
questions for both As and t�

w
τ (J ).

3. Sparsity preserving discrete operators.

3.1. General assumptions. We shall use two general assumptions on the func-
tion F. The first assumption expresses the fact that F is a stable transformation from
H to H ′.

Assumption 1. F is a Lipschitz map from �2 into itself. More precisely, we assume
that we have

‖F(u)− F(v)‖ ≤ C‖u− v‖, with C = C(sup{‖u‖, ‖v‖}),(3.1)

where x �→ C(x) is a positive nondecreasing function.
The fact that the constant C might grow with the norm of u and v accounts for

the nonlinearity of the transformation. In the context of solving operator equations
of the type (2.1), the norms of the arguments of F will remain bounded (by the ‖ ·‖H -
norm of the solution up to the achieved precision) so we can think of C as a constant.
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We shall actually use a local version of this stability assumption which will be a direct
consequence of (3.1) whenever the nonlinear function F is local in the physical space:
if D is a subdomain of Ω, we have

‖(F(u)− F(v))|{λ:Sλ⊂D}‖ ≤ C‖(u− v)|{λ:Sλ∩D �=∅}‖,(3.2)

with C depending on ‖u‖ and ‖v‖ as for the global estimate.
The second assumption describes the local action of F in the space-scale domain

of wavelet coefficients.
Assumption 2. If w = F(u) for a finitely supported u, we have the estimate

|wλ| ≤ C sup
µ : Sµ∩Sλ �=∅

|uµ|2−γ(|λ|−|µ|) with C = C(‖u‖)(3.3)

for all λ ∈ Jψ, where γ > d/2 and x �→ C(x) is a positive nondecreasing function.
A typical value of γ is

γ := r + t+ d/2,(3.4)

where r reflects the smoothness and order of vanishing moments of the wavelets, i.e.,
ψλ ∈ Cr and

∫
Ω
xmψλ(x)dx = 0 for |m| = m1 + · · · + md < r. We shall see in the

next section that all these assumptions are fulfilled for a fairly general class of local
composition operators.

3.2. Tree expansions. Given a tree T , we shall make use of the following
expansion process. Given any λ ∈ J , we define Φ0(λ) = {λ}. If Φk−1(λ) has already
been defined, then we define Φk(λ) as the set of all µ, |µ| = |λ|−k such that Sµ∩Sµ′ �=
∅ for some µ′ ∈ Φk−1(λ). We define Φ(λ) := ∪|λ|

k=0Φk(λ). We then define the expansion

T̃ as

T̃ := ∪λ∈T Φ(λ).(3.5)

Let us note that by construction T̃ has the following property.
Expansion Property. If µ ∈ T̃ and µ′ ∈ J , then

|µ′| < |µ|
Sµ′ ∩ Sµ �= ∅


 =⇒ µ′ ∈ T̃ .(3.6)

The following lemma (see, e.g., [13], [15]) shows that T̃ has size comparable to
T and that the supports Sλ associated to the outer leaves L(T̃ ) do not overlap too
much, a property that we shall use when dealing with the space t�

w
τ (J ).

Lemma 3.1. There exist constants C1 and C2 such that for any finite tree T , we
have the following.

(i) #(T̃ ) ≤ C1#(T ).
(ii) For all λ ∈ L(T̃ ) there exist at most C2 indices µ ∈ L(T̃ ) such that Sµ∩Sλ �=

∅.
Proof. We show first the existence of the constant C1. To this end, it suffices to

show that for each µ ∈ T̃ there exists a reference element λ ∈ T such that |λ| = |µ|
and dist (Sλ, Sµ) ≤ C02

−|µ|, with C0 the constant of (2.3). Now any µ ∈ T̃ is in
Φk(λ

′) for some λ′ ∈ T . We prove by induction on k that there is such a reference
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element. For k = 0, µ = λ′ so we can take λ = λ′. Suppose that we have proven
the existence of such a reference element for all µ′ ∈ Φk−1(λ

′) and let µ be an index
that has been added in the construction of Φk(λ

′). By the definition of Φk(λ
′) there

is a µ′ ∈ Φk−1(λ
′) such that Sµ ∩ Sµ′ �= ∅. By our induction assumption, there is a

reference element λ̄ ∈ T , with |λ̄| = |µ′|, such that dist(Sµ′ , Sλ̄) ≤ C02
−|µ′|. It follows

that

dist(Sµ, Sλ̄) ≤ C02
−|µ′| + diam(Sµ′) ≤ C02

−|µ′| + C02
−|µ′| = C02

−|µ|.

Hence, we can take the parent λ ∈ T of λ̄ as our reference element for µ.
To confirm the existence of C2, note that when ν, µ ∈ L(T̃ ) and Sν ∩ Sµ �= ∅,

then ||ν| − |µ|| ≤ 1. In fact, suppose that |ν| < |µ| − 1. Then, for the parent µ′ of µ
we have Sν ∩ Sµ′ �= ∅, since Sµ ⊂ Sµ′ according to (2.4). Since µ′ ∈ T̃ and |µ′| > |ν|
we conclude ν ∈ T̃ , which is a contradiction. This completes the proof.

3.3. The main result in the As case. We first consider the questions raised
at the end of the previous section in the As case. Given a tolerance ε we wish to
construct a near best tree for approximating F(u) with accuracy ε, based on the
knowledge of u. To this end, suppose that T (ε,u) is the near best tree obtained by
one of the algorithms in [2] and which satisfies (2.25). For j = 0, 1, . . . , we define

Tj := T
(

2jε

1 + j
,u

)
,(3.7)

and the corresponding expanded trees T̃j according to the above procedure. By con-

struction these trees are nested in the sense that T̃j ⊂ T̃j−1. We define the difference
sets

∆j := T̃j \ T̃j+1.(3.8)

In order to build a tree which will be adapted to w = F(u), we introduce

α :=
2

2γ − d
> 0,(3.9)

where γ is the constant in (3.3), and for each µ ∈ ∆j , we define the influence set

Λε,µ := {λ : Sλ ∩ Sµ �= ∅ and |λ| ≤ |µ|+ αj}.(3.10)

We then define T by

T := Jφ ∪
(
∪µ∈T̃0

Λε,µ

)
.(3.11)

We notice that by construction T has the structure of an expanded tree. Note that
an equivalent way of defining T would be

T := Jφ ∪ T̃0 ∪
(
∪µ∈T̃0

Λ̃ε,µ

)
,(3.12)

with

Λ̃ε,µ := {λ : Sλ ∩ Sµ �= ∅ and |µ| ≤ |λ| ≤ |µ|+ αj}.(3.13)
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Theorem 3.2. Given any u and T defined by (3.11), we have the error estimate

‖F(u)− F(u)|T ‖ <∼ ε.(3.14)

Moreover, if u ∈ As for 0 < s < 2γ−d
2d , we have the estimate

#(T ) <∼ ‖u‖1/sAs ε
−1/s +#(Jφ).(3.15)

We therefore have F(u) ∈ As and

‖F(u)‖As <∼ 1 + ‖u‖As .(3.16)

The constants in these above inequalities depend only on ‖u‖, the space dimension d,
and the parameter s.

Proof. In order to prove (3.14), we first notice that according to Assumption 1,
we have

‖F(u)− F(u|T̃0
)‖ <∼ ε,(3.17)

with a constant depending on ‖u‖. Since one therefore has the trivial estimate
‖(F(u) − F(u|T̃0

)|T ‖ <∼ ε, it suffices to show that ‖wε −wε|T ‖ <∼ ε, where wε :=
F(u|T̃0

) = (wε,λ). We then remark that Assumption 2 implies the cruder estimate

|wε,λ|2 <∼
∑

µ∈T̃0,Sµ∩Sλ �=∅
|uµ|22−2γ(|λ|−|µ|),(3.18)

and for λ /∈ T and µ ∈ ∆j such that Sµ ∩ Sλ �= ∅, we always have |λ| − |µ| ≥ αj.
Finally we notice that by definition

∑
µ∈∆j

|uµ|2 = ‖u|T̃j − u|T̃j+1
‖2 <∼

22jε2

(1 + j)2
.(3.19)

Combining these facts, we obtain

‖wε −wε|T ‖2 =
∑
λ/∈T

|wε,λ|2 <∼
∑
λ/∈T

∑
µ∈T̃0,Sµ∩Sλ �=∅

|uµ|22−2γ(|λ|−|µ|)

=
∑
µ∈T̃0

|uµ|2
∑

λ/∈T ,Sµ∩Sλ �=∅
2−2γ(|λ|−|µ|)

=
∑
j≥0

∑
µ∈∆j

|uµ|2
∑

λ/∈T ,Sµ∩Sλ �=∅
2−2γ(|λ|−|µ|)

<∼
∑
j≥0

∑
µ∈∆j

|uµ|2
∑
k≥0

2(d−2γ)(αj+k) <∼
∑
j≥0

2(d−2γ)αj
∑
µ∈∆j

|uµ|2

<∼
∑
j≥0

2(d−2γ)αj 22jε2

(1 + j)2
=
∑
j≥0

ε2

(1 + j)2
<∼ ε2.

In order to prove (3.15), we notice that according to (3.12), for each µ ∈ ∆j , we add

at most C2αjd indices to Jφ ∪ T̃0 in the construction of T . Therefore, we have

#(T ) ≤ #(Jφ) + #(T̃0) + C
∑
j≥0

2αjd#(∆j)
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<∼ #(Jφ) + ‖u‖1/sAs ε
−1/s


1 +∑

j≥0

2(αd−1/s)j(1 + j)1/s




<∼ #(Jφ) + ‖u‖1/sAs ε
−1/s,

where we have used the fact that αd− 1/s < 0, which is equivalent to the restriction
s < 2γ−d

2d . The estimate (3.16) is then a direct consequence of (3.15).
Note that since we have used Assumptions 1 and 2 in the above proof, the con-

stants in both estimates (3.15) and (3.16) are of the form C(‖u‖), where x �→ C(x)
is a positive nondecreasing function.

3.4. The main result in the t�
w
τ (J ) case. In order to deal with the t�

w
τ (J )

case, we shall build the tree for F(u) in a slightly different way. To this end, we fix
η > 0 and we define the tree Tη obtained by thresholding the local residuals ũλ at

level η according to (2.26) and its expanded version T̃η.
Then for all µ ∈ T̃η, we define the number n(µ) satisfying

η2γn(µ) ≤ |uµ| < η2γ(n(µ)+1).(3.20)

We then define the influence set

Λη,µ := {λ : Sλ ∩ Sµ �= ∅ and |λ| ≤ |µ|+ [n(µ)]+}(3.21)

and a tree for the approximation of F(u) by

T := Jφ ∪
(
∪µ∈T̃ηΛη,µ

)
.(3.22)

We notice that by construction T has the structure of an expanded tree. Note that
an equivalent way of defining T would be

T := Jφ ∪ T̃η ∪
(
∪µ∈T̃η Λ̃η,µ

)
,(3.23)

with

Λ̃η,µ := {λ : Sλ ∩ Sµ �= ∅ and |µ| ≤ |λ| ≤ |µ|+ [n(µ)]+}.(3.24)

Theorem 3.3. Given any u ∈ �2(J ) and T defined by (3.23), one has the
coefficient size estimate

|w̃λ| <∼ η if λ /∈ T ,(3.25)

where the w̃λ are defined for w = F(u) according to (2.23). If in addition u ∈ t�
w
τ (J )

for some d/γ < τ < 2, then we have the cardinality estimate

#(T ) <∼ ‖u‖τ
t�wτ (J )η

−τ +#(Jφ).(3.26)

Moreover, we have F(u) ∈ t�
w
τ (J ) and

‖F(u)‖
t�wτ (J ) <∼ 1 + ‖u‖

t�wτ (J ).(3.27)

The constants in these above inequalities depend only on ‖u‖, the space dimension d,
and the parameter τ in the case of (3.26).
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Proof. In order to prove (3.25), we first consider the restricted vector uη = u|T̃η
and its image wη := F(uη) = (wλ,η). For λ /∈ T and for all µ ∈ T̃η such that
Sµ∩Sλ �= ∅, we have by (3.21) the inequality |λ|−|µ| ≥ [n(µ)]+. Therefore, remarking
that λ ∈ Jψ, the local action assumption (3.3) implies

|wλ,η| <∼ η.(3.28)

Moreover, if ν is such that Sν ∩ Sλ �= ∅ and |ν| = |λ| + l, we also have |ν| − |µ| ≥
[n(µ)]+ + l and therefore, for each µ ∈ T̃η, the better estimate

|wν,η| <∼ 2−γlη.(3.29)

It follows that

|w̃λ,η|2 <∼ η2


∑

l≥0

2(d−2γ)l


 <∼ η2,(3.30)

since by assumption γ > d/2.
Next, we remark that for λ ∈ L(T ), we have∣∣|w̃λ,η|2 − |w̃λ|2

∣∣ ≤ (|w̃λ,η|+ |w̃λ|)|w̃λ,η − w̃λ|
≤ (2|w̃λ,η|+ |w̃λ,η − w̃λ|)|w̃λ,η − w̃λ|
<∼ (η + ‖(w −wη)|Γλ‖)‖(w −wη)|Γλ‖.(3.31)

Now observe that, according to (3.2),

‖(w −wη)|Γλ‖ = ‖(w −wη)|{µ:Sµ⊆Sλ}‖
<∼ ‖(u− uη)|{µ:Sµ∩Sλ �=∅}‖

=


 ∑
µ�∈T̃η,Sµ∩Sλ �=∅

|uµ|2



1/2

≤

 ∑
µ∈L(T̃η),Sµ∩Sλ �=∅

|ũµ|2



1/2

<∼ η,

where the last inequality involves the constant C2 from Lemma 3.1. Combining this
with (3.30) and (3.31), we obtain the size estimate (3.25).

To prove (3.26) we define the trees

T̃j := T̃η2γj .(3.32)

From (2.28) and Lemma 3.1, we infer that u ∈ t�
w
τ (J ) implies

#(T̃j) <∼ η−τ2−γτj‖u‖τ
t�wτ (J ).(3.33)

Writing

Λ̃η =
⋃
j≥0

⋃
µ∈T̃j\T̃j+1

Λη,µ,(3.34)
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so that ⋃
µ∈T̃j\T̃j+1

Λη,µ ⊆ T̃j ∪
⋃

µ∈T̃j\T̃j+1

{λ : Sλ ∩ Sµ �= ∅, |µ| < |λ| ≤ |µ|+ [n(µ)]+},

and remarking that, by (3.20) and (3.21), n(µ) = j for µ ∈ T̃j \ T̃j+1, we obtain in
view of (3.33)

#


 ⋃
µ∈T̃j\T̃j+1

Λη,µ


 <∼ 2dj#(T̃j \ T̃j+1) + #(T̃j)

<∼ ‖u‖τ
t�wτ (J )η

−τ2(d−γτ)j .(3.35)

Since d− γτ < 0, by summing over j ≥ 0, we obtain

#(Λ̃η) <∼ ‖u‖τ
t�wτ (J )η

−τ ,(3.36)

and adding the cardinality of Jφ, we thus obtain (3.26).
In order to obtain the estimate (3.27), we first notice that (3.36) already indicates

that we have the estimate

‖(w̃λ)λ∈Jψ‖�wτ (J ) <∼ ‖u‖
t�wτ (J ).(3.37)

For the remaining indices λ ∈ Jφ, we can write

‖(w̃λ)λ∈Jφ‖�wτ (J ) ≤ ‖(w̃λ)λ∈Jφ‖�τ ≤ [#(Jφ)]1/τ−1/2‖(w̃λ)λ∈Jφ‖ <∼ ‖w‖,

so that we have ‖w‖
t�wτ (J ) <∼ ‖u‖

t�wτ (J ) + ‖w‖. Since by Assumption 1,

‖w‖ <∼ ‖F(0)‖+ ‖u‖ <∼ 1 + ‖u‖ <∼ 1 + ‖u‖
t�wτ (J ),(3.38)

the estimate (3.27) follows.
Note that since we have used Assumptions 1 and 2 in the above proof, the con-

stants in both estimates (3.25) and (3.27) are of the form C(‖u‖), where x �→ C(x)
is a positive nondecreasing function.

Remark 3.1. The limitation d/γ < τ < 2 in Theorem 3.3 is exactly equivalent to
the limitation 0 < s < 2γ−d

2d in Theorem 3.2 with s = 1/2− 1/τ .
Remark 3.2. In both Theorems 3.2 and 3.3, the presence of the constant term in

the right side of (3.16) and (3.27), and of the #(Jφ) term on the right side of (3.15)
and (3.26), can be avoided if the local action estimate (3.3) remains valid also for
λ ∈ Jφ. The tree T is then constructed without systematic inclusion of Jφ, and the
proofs of the new estimates are analogous. This is the case for certain classes of linear
mappings; see Proposition 7.4 in [11].

3.5. Adaptive evaluation schemes. Adaptive wavelet schemes for variational
problems of the type (2.2) rest on two conceptual steps. First (2.2) is formulated in
wavelet coordinates as an equivalent problem over �2(J ) as follows:

Au+ F(u) = f ,(3.39)

whereA = (〈∇ψλ,∇ψν〉)λ,ν∈J is the wavelet representation of ∆ and f = (〈f, ψλ〉)λ∈J .
The second step is to devise an iterative scheme for numerically solving (3.39). This
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iteration requires the approximate evaluation of Aun and F(un) with some dynam-
ically updated tolerance, where un is the current finitely supported iterate. How to
deal with the linear part Aun has been explained in [9]. The remaining task may
therefore be formulated as follows: given a target accuracy ε > 0, and some finitely
supported v ∈ �2(J ), compute F(v) with accuracy ε at a possibly moderate compu-
tational expense.

The way of tackling this task involves two steps : (i) identify an optimal tree such
that the restriction of F(v) to such a tree can be predicted to approximate F(v) at the
desired accuracy, and (ii) numerically compute the coordinates of F(v) restricted to
this tree. We shall not engage (ii) except to mention the paper [15], which treats this
topic once (i) has been solved. On the other hand, the results in sections 3.3 and 3.4
allow us to solve (i). We shall again distinguish between near best tree approximation
and thresholding the local residual.

When working with near best tree approximation as in section 3.3, Theorem
3.2 provides us with a construction of the required tree, according to the following
algorithm.

Algorithm EV1. Given the inputs ε > 0 and v with finite support do the
following:

Step 1. Invoke the algorithm in [2] to compute the trees

Tj := T
(

2jε

C0(j + 1)
,v

)
,(3.40)

where C0 = C0(‖v‖) is the constant involved in (3.14), for j = 0, . . . , J , and stop for
the smallest J such that TJ is empty (we always have J <∼ log2(‖v‖/ε)).

Step 2. Derive the expanded trees T̃j, the layers ∆j, and the outcome tree T
according to (3.11).

The following theorem summarizes the properties of Algorithm EV1.
Theorem 3.4. Given the inputs ε > 0, a nonlinear function F such that F

satisfies Assumptions 1 and 2, and a finitely supported vector v, the output tree T has
the following properties:

P1: ‖F(v)− F(v)|T ‖ ≤ ε.
P2: For any 0 < s < 2γ−d

2d (see Theorem 3.2),

#(T ) ≤ C‖v‖1/sAs ε
−1/s +#(Jφ) =: Nε,(3.41)

with C a constant depending only on the constants appearing in Theorem 3.2.
P3: Moreover, the number of computations needed to find T is bounded by C(Nε+

#T (v)), where Nε is the right-hand side of (3.41) and T (v) is the smallest tree
containing suppv.

Proof. Properties P1 and P2 directly follow from Theorem 3.2. Property P3 is a
consequence of the optimality property of the algorithm in [2]. First, the application
of this algorithm requires the array ṽ whose entries serve as local error terms. ṽ can be
computed by summing the squares of the vλ starting from the leaves of T (v) towards
the roots. The number of operations remains proportional to #(T (v)). Moreover,
the additional cost of computing each tree Tj , making use of the previously computed
tree, is bounded by C#(Tj) and therefore by C‖v‖1/sAs ε

−1/s2−j/s(j +1)1/s. Summing
over j we obtain that the total cost remains bounded by the right side of (3.41) and
#(T (v)).

When working with trees obtained by thresholding the local residuals as in section
3.4, Theorem 3.2 does not provide us with a direct construction of the required tree.
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In order to build this tree, we first note that if T is the tree obtained by (3.23) for
some given threshold η, and if L is the set of its outer leaves, we have the estimate

‖v − F(v)‖2 ≤ C2
0#(L)η2,(3.42)

where C0 is the constant of the inequality (3.25). Therefore we can invoke the following
algorithm based on geometrically updated thresholds ηj = 2−j .

Algorithm EV2. Given the inputs ε > 0 and v with finite support, initialize
with j = 0 and do the following:

Step 1. Given j compute the predicted tree T and its outer leaves L for η = ηj =
2−j. Compute the corresponding error estimator ε0 = C2

0#(L)η2
j and proceed to Step

2.
Step 2. If εj ≤ ε, terminate the algorithm and take T as output. If εj > ε, replace

j by j + 1 and return to Step 1.
The following theorem summarizes the properties of Algorithm EV2.
Theorem 3.5. Given the inputs ε > 0, a nonlinear function F such that F

satisfies Assumptions 1 and 2, and a finitely supported vector v, the output tree T has
the following properties:

P1: ‖F(v)− F(v)|T ‖ ≤ ε.
P2: For any d/γ < τ < 2 (see Theorem 3.3),

#(T ) ≤ C‖v‖1/s
t�wτ (J )ε

−1/s +#(Jφ),(3.43)

with C a constant depending only on the constants appearing in Theorem 3.3.
P3: Moreover, the number of computations needed to find T is also bounded by

the right side of (3.43) plus #(T (v)), where T (v) denotes again the smallest tree
containing the support of v.

Proof. Since the vector v is finite, it belongs to all t�
w
τ (J ). From (3.26) of

Theorem 3.3, we have at step j

#(T ) <∼ 2jτ‖v‖τ
t�wτ (J ) +#(Jφ),(3.44)

from which it follows that εj tends to 0 as j → ∞. Therefore, the algorithm must
terminate at some finite value j∗. It follows from (3.42) that for the tree T obtained
at step j∗, we have

‖F(v)− F(v)|T ‖2 ≤ ε2,(3.45)

which proves P1.
In order to prove P2, we start with (3.26), which gives for T obtained at step j∗

#(T ) <∼ ‖v‖τ
t�wτ (J )η

−τ
j∗ +#(Jφ) = Cτ

0 ‖v‖τt�wτ (J )ε
−τ
j∗ (#(L))τ/2 +#(Jφ).(3.46)

We continue under the assumption that the first term on the far right side of (3.46) is
bigger than the second, since otherwise we are done. We recall now that #(T ) ∼ #(L)
and that ε ≤ εj∗−1 ≤ 4εj∗ because the sets L increase when j increases. Using this
information back in (3.46) gives

#(T )1−τ/2 <∼ ‖v‖τ
t�wτ (J )ε

−τ .(3.47)

Therefore P2 follows by raising both sides of (3.47) to the power 1/(1− τ/2) because
s = 1/τ − 1/2, and hence 1− τ/2 = sτ .
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Finally, to prove P3 we note that the thresholding requires the knowledge of ṽ.
The same arguments as in the proof of P3 in Theorem 3.4 yield the contribution of
#(T (v)) to the operations count. Moreover, once ṽ is known, the number of addi-
tional computations used in the algorithm is bounded by C(‖v‖τ

t�wτ (J )η
−τ
0 +#(Jφ)) at

iteration 0. Given the tree at stage j, which allows one to avoid corresponding com-
parisons, the additional work needed to determine the tree at stage j + 1 is bounded
by C‖v‖τ

t�wτ (J )η
−τ
j . Summing up over j, we derive P3.

4. Verification of the basic assumptions. We shall show in this section that
Assumptions 1 and 2 hold for nonlinear mappings of the form F(u)(x) = F(u(x)),
where F is a univariate function which satisfies growth conditions at infinity of the
type

|F (n)(x)| ≤ C(1 + |x|)[p−n]+ , x ∈ R, n = 0, 1, . . . , n∗,(4.1)

for some p ≥ 0 and n∗ a positive integer. Clearly F(u) = up is of this type for all n∗

if p is an integer, and with n∗ the integer part of p otherwise.

4.1. Verification of Assumption 1. The verification of Assumption 1 is a
classical result in the case where H = Ht(Ω), t ≥ 0, or when H is a closed subspace
of Ht(Ω) determined, e.g., by homogeneous boundary conditions, such as Ht

0(Ω) (the
closure in the ‖ · ‖Ht-norm of smooth functions with compact support in the open
bounded domain Ω).

Proposition 4.1. Assume that F satisfies (4.1) for some p ≥ 0 and n∗ ≥ 0.
Then F maps H to H ′ under the restriction

0 ≤ p ≤ p∗ :=
d+ 2t

d− 2t
(4.2)

when t < d/2, and with no restriction otherwise. If in addition n∗ ≥ 1, then we also
have under the same restriction

‖F(u)−F(v)‖H′ ≤ C‖u− v‖H ,(4.3)

where C = C(max {‖u‖H , ‖v‖H}) and x → C(x) is nondecreasing, and therefore
Assumption 1 holds.

Proof. For u ∈ H and ϕ ∈ H, we write

|〈F(u), ϕ〉| ≤ C

[∫
Ω

|ϕ|+
∫

Ω

|ϕ||u|p
]
.(4.4)

The first term is bounded according to∫
Ω

|ϕ| ≤ |Ω|1/2‖ϕ‖L2
≤ |Ω|1/2‖ϕ‖H .(4.5)

For the second term, we use Hölder’s inequality to obtain∫
Ω

|ϕ||u|p ≤ ‖ϕ‖Lq‖u‖pLpq′ ,(4.6)

where 1
q +

1
q′ = 1. Taking q such that q = pq′ = pq/(q − 1), i.e., q = p+ 1, this gives∫

Ω

|ϕ||u|p ≤ ‖ϕ‖Lp+1‖u‖pLp+1
.(4.7)
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We then note that when t < d/2, H = Ht is continuously embedded in Lp+1 if and
only if p ≤ p∗, and this embedding holds for all p ≥ 0 when t ≥ d/2. We therefore
conclude that

‖F(u)‖H′ ≤ C(1 + ‖u‖pH).(4.8)

Therefore, F maps H to H ′ provided that p ≤ p∗ when t < d/2, and for all p ≥ 0
otherwise.

For the stability property, we use the inequality

|F(u)−F(v)| ≤ C|u− v|(1 + |u|+ |v|)[p−1]+ ,(4.9)

which is a consequence of (4.1) with n = 1. Therefore, one has for all ϕ ∈ H

|〈F(u)−F(v), ϕ〉| ≤ C

[∫
Ω

|ϕ||u− v|+
∫
|ϕ||u− v|(|u|+ |v|)[p−1]+

]
.(4.10)

The first term is simply bounded by∫
Ω

|ϕ||u− v| ≤ ‖ϕ‖L2‖u− v‖L2 ≤ ‖ϕ‖H‖u− v‖H .(4.11)

If p ≤ 1, the second term is bounded analogously. If p > 1, we apply Hölder’s
inequality twice, again with q = p+ 1, to obtain∫

Ω

|ϕ||u− v|(|u|+ |v|)p−1 ≤ ‖ϕ‖Lp+1
‖u− v‖Lp+1

(‖u‖Lp+1
+ ‖v‖Lp+1

)p−1
.(4.12)

Using again the Sobolev embedding, these factors are controlled by ‖ϕ‖H , ‖u− v‖H ,
and (‖u‖H + ‖v‖H)p−1

, so that we obtain

‖F(u)−F(v)‖H′ ≤ C‖u− v‖H ,(4.13)

which is exactly (3.1).
Next we want to prove the local version (3.2) of Assumption 1. For a given

subdomain D, we define a vector v̄ = (v̄λ) such that v̄λ = vλ if Sλ ∩ D �= ∅, and
v̄λ = uλ otherwise. It follows that

‖(u− v)|{λ:Sλ∩D �=∅}‖ = ‖u− v̄‖.(4.14)

Denoting by v, v̄ the corresponding functions v =
∑

λ∈J vλψλ, v̄ =
∑

λ∈J v̄λψλ, we
clearly have v = v̄ on D so that

F(v̄)λ = 〈F(v̄), ψλ〉 = 〈F(v), ψλ〉 = F(v)λ(4.15)

whenever Sλ ⊂ D. It follows that

‖(F(u)− F(v))|{λ:Sλ⊂D}‖ ≤ ‖F(u)− F(v̄)‖.(4.16)

Therefore, the local stability estimate (3.2) follows by combining (4.14) and (4.16)
together with the global stability estimate (3.1).
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4.2. Verification of Assumption 2. For the verification of Assumption 2, we
shall assume that either (4.1) is valid or that

|F (n)(x)| ≤ C(1 + |x|)p−n, n ≤ p, and F (n)(x) = 0, n > p,(4.17)

with p an integer. We shall show in the next theorem that whenever F satisfies either
(4.1) or (4.17), then it satisfies Assumption 2 with γ = r + t + d/2. Our reason for
separating the two cases (4.1) and (4.17) is that in the latter case we can take a larger
value for r. We recall the critical index p∗ defined by (4.2).

Theorem 4.1. Assume that the wavelets ψλ belong to Cm and have (for those
λ ∈ Jψ) vanishing moments of order m (i.e., are orthogonal to Pm−1 the space of poly-
nomials of total degree at most m−1) for some positive integer m. Then Assumption
2 holds for γ = r + t+ d/2 with the following value of r:

(i) If t ≥ d/2 and F satisfies (4.1) for some p ≥ 0, then r = min{m,n∗}.
(ii) If t < d/2 and F satisfies (4.1) with 0 ≤ p < p∗, then r = $min{m, p, n∗}%.
(iii) If t ≥ d/2 and F satisfies (4.17) for some p > 0, then r = m.
(iv) If t < d/2 and F satisfies (4.17) for some 0 ≤ p < p∗, then r = m.
Proof. Suppose that u has a finite wavelet expansion. We assume that r ≥ 1 and

leave the simpler case r = 0 to the reader (this case only occurs in (ii) when p < 1).
Since the wavelets ψλ ∈ Jψ have at least r vanishing moments, we have

|wλ| = |〈w,ψλ〉| = inf
P∈Πr−1

|〈w − P, ψλ〉|
<∼ |w|W r(L∞(Sλ))2

−r|λ|2−(t+d/2)|λ| = |w|W r(L∞(Sλ))2
−γ|λ|,(4.18)

where w(x) = F(u(x)). Using the chain rule, any rth order derivative of w can be
written as a finite sum of functions of the form

F (k)(u)Dβ1u · · ·Dβku, k = 1, . . . , r,(4.19)

where |β1|+ · · ·+ |βk| = r with the usual notation |βi| := βi,1 + · · ·+ βi,d. Therefore,
one has

|w|W r(L∞(Sλ)) <∼ max
k=1,...,r

max
|β1|+···+|βk|=r

‖F (k)(u)‖L∞(Sλ)

k∏
i=1

‖Dβiu‖L∞(Sλ).(4.20)

To bound the right side of (4.20), we recall that

‖Dβiu‖L∞(Sλ) <∼ ‖u‖1−|βi|/r
L∞(Sλ) |u||βi|/rW r(L∞(Sλ)).(4.21)

This gives for k = 1, . . . , r

‖F (k)(u)‖L∞(Sλ)

k∏
i=1

‖Dβiu‖L∞(Sλ) <∼ ‖F (k)(u)‖L∞(Sλ)‖u‖k−1
L∞(Sλ)

× |u|W r(L∞(SΛ)).(4.22)

We shall finish the proof by separating it into two cases depending on the size of
‖u‖L∞(Sλ).

Case ‖u‖L∞(Sλ) ≥ 1. In this case, (4.20), (4.22), and the bounds (4.1) and (4.17)
give

|w|W r(L∞(Sλ)) <∼ ‖u‖ML∞(Sλ)|u|W r(L∞(Sλ)),(4.23)
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where M := max{p, r} − 1 in cases (i) and (ii), and M := p − 1 in cases (iii) and
(iv). We can bound the norms on the right side of (4.23) by using the Besov spaces
Bs

∞(L∞), s ≥ 0. They satisfy the norm equivalences

‖v‖Bs∞(L∞(Sλ)) ∼ sup
Sµ∩Sλ �=∅

(
2s|µ|‖vµψµ‖L∞

)
= sup

Sµ∩Sλ �=∅

(
2(s+δ)|µ||vµ|

)
(4.24)

with δ := d
2 − t. Here we used the fact that the H-normalization of the wavelets

implies ‖ψµ‖L∞ ∼ 2δ|µ|. We also recall the embedding estimates

‖u‖W s(L∞(Sλ)) <∼ ‖u‖Bs+ε∞ (L∞(Sλ))(4.25)

for any fixed ε ∈ ]0, 1[ and all s ≥ 0. Using all of this in (4.23), we obtain

|w|W r(L∞(Sλ)) <∼
(

sup
Sµ∩Sλ �=∅

2(δ+ε)|µ||uµ|
)M (

sup
Sµ∩Sλ �=∅

2(r+δ+ε)|µ||uµ|
)

=
(
2(δ+ε)|µ0||uµ0

|
)M (

2(r+δ+ε)|µ1||uµ1
|
)
,(4.26)

where µ0 and µ1 are the maximizing indices. If δ < 0 (i.e., t > d/2), we can take
ε < |δ| and obtain the bound

|w|W r(L∞(Sλ)) <∼ ‖u‖M (2(r+δ+ε)|µ1||uµ1
|) ≤ ‖u‖M sup

Sµ∩Sλ �=∅
2r|µ||uµ|,(4.27)

which verifies Assumption 2 in this case. If δ > 0, then |µ1| ≥ |µ0| and p < p∗ and
M = p− 1, and so we obtain

|w|W r(L∞(Sλ)) <∼ ‖u‖M (2(r+pδ+pε)|µ1||uµ1
|) ≤ ‖u‖M sup

Sµ∩Sλ �=∅
2(r+t+d/2)µ||uµ|,(4.28)

provided pε < (p∗ − p)δ. So we have completed the proof in this case.
Case ‖u‖L∞(Sλ) < 1. In this case, starting from (4.22) and using either (4.1) or

(4.17), we obtain

|w|W r(L∞(Sλ)) <∼ |u|W r(L∞(Sλ)) <∼ ‖u‖Br+ε∞ (L∞(Sλ))

<∼ sup
Sµ∩Sλ �=∅

2(r+δ+ε)|µ||uµ| <∼ sup
Sµ∩Sλ �=∅

2(r+d/2+t)µ||uµ|,(4.29)

provided ε < 2t. Therefore, we have verified Assumption 2 in this case as well.

5. Multiple arguments and derivatives. In this final section, we shall extend
the previous results to more general nonlinear operators of the form

(u1, . . . , un) �→ w = F(Dα1u1, . . . , D
αnun),(5.1)

acting fromH×· · ·×H to its dualH ′ (note that αi = (αi,1, . . . , αi,d) are multi-indices).
These include multilinear operators as particular cases. Here we shall indicate the ap-
propriate generalizations of the results in the two previous sections with brief sketches
of proofs since they are quite similar but notationally heavier.
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5.1. Sparsity preserving discrete operators. Denoting by ui = (ui,λ) the
arrays of the wavelet coefficients of the function ui, u = (u1, . . . ,un), and F the
corresponding discrete mapping

F(u) := (〈F(Dα1u1, . . . , D
αnun), ψλ)λ∈J ,(5.2)

we introduce the following generalization of the basic assumptions.
Assumption 1. F is a Lipschitz map from (�2)

n into �2:

‖F(u)− F(v)‖ ≤ C

n∑
i=1

‖ui − vi‖,(5.3)

with C = C(maxi{‖ui‖, ‖vi‖}), where x �→ C(x) is a positive nondecreasing function.
The local version of this stability assumption now reads

‖(F(u)− F(v))|{λ:Sλ⊂D}‖ ≤ C

n∑
i=1

‖(ui − vi)|{λ:Sλ∩D �=∅}‖(5.4)

for any domain D.
Assumption 2. For any finitely supported u (i.e., with all ui finitely supported)

and w = F(u), we have the estimate

|wλ| ≤ C sup
µ : Sλ∩Sµ �=∅

(
n∑
i=1

|ui,µ|
)
2−γ(|λ|−|µ|)(5.5)

for all λ ∈ Jψ, where γ > d/2, C = C(maxi ‖ui‖), and x �→ C(x) is a positive
nondecreasing function.

In order to generalize the construction of the near best approximation tree from
section 3.3, we construct for a prescribed accuracy ε the trees T̃j,i for each component

ui in the same way as we constructed T̃j in section 3.3. We then define

T̃j := ∪ni=0T̃j,i and ∆j := T̃j \ T̃j+1.(5.6)

The tree T is then constructed as before, according to (3.11).
Theorem 5.1. With this definition of T and under the above generalized Assump-

tions 1 and 2, if u ∈ (As)n, we obtain that the same conclusions as in Theorem 3.2
also hold.

Sketch of proof. As in the proof of Theorem 3.2, we start by invoking the stability
property, which leads us to estimate ‖wε −wε|T ‖, where wε := F(u|T̃0

). We use the
estimate

|wε,λ|2 <∼
∑

µ∈T̃0,Sµ∩Sλ �=∅

[
n∑
i=1

|ui,µ|2
]
2−2γ(|λ|−|µ|),(5.7)

together with

∑
µ∈∆j

n∑
i=1

|ui,µ|2 = ‖u|T̃j − u|T̃j+1
‖2 <∼

22jε2

(1 + j)2
,(5.8)

in order to derive ‖wε − wε|T ‖ <∼ ε in a similar way as in the proof of Theo-
rem 3.2. The estimate on #(T ) also remains the same using that #(∆j) ≤ #(Tj) ≤∑n

i=1 #(Tj,i).
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In order to generalize the construction of the residual thresholding tree from
section 3.4, we fix a threshold η > 0 and define for all µ ∈ J the number n(µ)
satisfying

η2γn(µ) ≤ max
i
|ui,µ| < η2γ(n(µ)+1),(5.9)

where ui,µ are the coefficients of ui. We then define the influence sets Λη,µ and the

tree T in a similar way as in (3.21) and (3.23), with T̃η = ∪ni=1T̃η(ui) and T̃η(ui) the
expansion of the tree Tη(ui).

Theorem 5.2. With this definition of T and under the above generalized Assump-
tions 1 and 2, if u ∈ (�wτ (J ))n, we obtain that the same conclusions as in Theorem 3.3
hold.

Sketch of proof. As in the proof of Theorem 3.3, in order to prove (3.25) we first
consider the restricted vector uη = u|T̃η and its image wη := F(uη) = (wλ,η). Using

(5.5), we obtain that for any λ /∈ T , we have |w̃λ,η| <∼ η. We then use (5.4) in a
similar way in order to derive (3.25).

In order to prove (3.26), we use the trees T̃j := T̃η2γj to decompose T into layers
indexed by j as in the proof of Theorem 3.3. We then proceed in a similar way to
derive (3.26), remarking that

#(T̃j) <∼ η−τ2−γτj sup
i
‖ui‖τt�wτ (J ),(5.10)

and that, according to (5.9) and (3.21), n(µ) = j for µ ∈ T̃j \ T̃j+1.
Finally, we prove

‖w‖
t�wτ (J ) <∼ 1 + sup

i
‖ui‖t�wτ (J )(5.11)

by the same arguments as in the proof for Theorem 3.3.
The generalization of Algorithms EV1 and EV2 is straightforward, as is the fol-

lowing proposition.
Proposition 5.1. If u ∈ X with X = (As)n (resp., (t�

w
τ (J ))n), the tree T

produced by Algorithm EV1 (resp., EV2) for target accuracy ε satisfies

#(T ) <∼ sup
i
‖ui‖1/sX ε−1/s +#(Jφ),(5.12)

with s = 1/τ − 1/2, under the restriction d/γ < τ < 2.

5.2. Verification of the basic assumptions. Recalling that the nonlinear
map has the form F(Dα1u1, . . . , D

αnun), we shall therefore replace (4.1) by growth
assumptions of the type

|DβF(x1, . . . , xn)| ≤ C

n∏
i=1

(1 + |xi|)[pi−βi]+ , |β| = 0, 1, . . . , n∗,(5.13)

for some pi ≥ 0 and n∗ a positive integer. For notational simplicity, we shall write

F(u) = F(Dα1u1, . . . , D
αnun), with u = (u1 . . . , un).(5.14)

We then obtain the following generalization of Proposition 4.1.
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Proposition 5.2. Assume that the growth assumptions (5.13) hold at least with
n∗ = 0. Then F maps H × · · · ×H to H ′ whenever H = Ht and t ≥ 0 satisfies[

1

2
− t

d

]
+

+

n∑
i=1

pi

[
1

2
− t

d
+
|αi|
d

]
+

< 1.(5.15)

If in addition n∗ = 1, then we also have under the same restriction

‖F(u)−F(v)‖H′ ≤ C

n∑
i=1

‖ui − vi‖H ,(5.16)

where C = C(maxi{‖ui‖H , ‖vi‖H}) and x → C(x) is nondecreasing, and therefore
Assumption 1 holds.

Sketch of proof. For ui ∈ H and ϕ ∈ H, we write

|〈F(u), ϕ〉| ≤ C

∫
Ω

|ϕ|
n∏
i=1

(1 + |Dαiui|)pi .(5.17)

In view of (5.15), we can choose positive numbers r and ri, i = 1, . . . , n, such that
1
r +

∑n
i=1

pi
ri
= 1 and

1

r
>

1

2
− t

d
and

1

ri
>

1

2
− t

d
+
|αi|
d

.(5.18)

It follows that Ht is continuously embedded in Lr and W |αi|(Lri). We can apply
Hölder’s inequality to obtain

|〈F(u), ϕ〉| ≤ C‖ϕ‖Lr
n∏
i=1

(1 + ‖Dαiui‖piLri ),(5.19)

where we have used the fact that Ω is a bounded domain in order to control
∫
Ω
1 by

a constant. In this way, we obtain

‖F(u)‖H′ ≤ C

n∏
i=1

(1 + ‖Dαiui‖piH ).(5.20)

For the stability property, we use the inequality

|F(u)−F(v)| ≤ C

n∑
i=1

|Dαiui−Dαivi|
n∏

k=1

(1+ |Dαkuk|+ |Dαkvk|)[pk−δi,k]+ ,(5.21)

with δ the Kronecker delta. Therefore, when estimating |〈F(u)−F(v), ϕ〉| for ϕ ∈ H,
we are led to expressions of the form

Ei =

∫
Ω

|ϕ||Dαiui −Dαivi|
n∏

k=1

(1 + |Dαkuk|+ |Dαkvk|)[pk−δi,k]+(5.22)

for each i. Using Hölder’s inequality, we obtain

Ei ≤ C‖ϕ‖Lr‖Dαiui −Dαivi‖Lq
n∏

k=1

(
1 + ‖Dαkuk‖[pk−δi,k]+Lrk

+ ‖Dαkvk‖[pk−δi,k]+Lrk

)
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whenever

1

r
+

1

q
+

n∑
k=1

[pk − δi,k]+
rk

= 1.(5.23)

In view of (5.15), we can choose positive numbers r, q, and ri satisfying condition
(5.23) such that

1

r
>

1

2
− t

d
,

1

q
>

1

2
− t

d
+
|αi|
d

, and
1

rk
>

1

2
− t

d
+
|αk|
d

.(5.24)

Therefore, the Sobolev embedding gives

Ei ≤ C‖ϕ‖H‖ui − vi‖H ,(5.25)

and therefore Assumption 1 holds.
The local version (3.2) of Assumption 1 is derived in the same way as in section

4.2. Note that the condition (5.15) does not yield the optimal condition (4.2) in the
simple case n = 1 and α1 = 0 due to the strict inequality but that we anyway need
this strict inequality in order to obtain the validity of Assumption 2 according to
Theorem 4.1.

For the proof of Assumption 2, we again treat separately the polynomial case for
which we have the growth condition

|DβF(x1, . . . , xn)| ≤ C

n∏
i=1

(1 + |xi|)pi−βi , βi ≤ pi,(5.26)

and DβF = 0 if βi > pi for some i, where pi are positive integers.
Theorem 5.3. Assume that the wavelets belong to Cm and have vanishing mo-

ments of order m (i.e., are orthogonal to Pm−1 the space of polynomials of total
degree at most m − 1) for some positive integer m. Then Assumption 2 holds for
γ = r + t+ d/2 with the following values of r:

(i) If F satisfies (5.13) with p such that
∑n

i=1 pi[d/2− t+ |αi|]+ < d/2 + t, then
r = $min{m,n∗, p∗}%, where p∗ = min{pi : i s.t. d/2− t+ |αi| > 0}.

(ii) If F satisfies (5.26) with p such that
∑n

i=1 pi[d/2− t+ |αi|]+ < d/2 + t, then
r = m.

Sketch of proof. We shall prove (i); the other case is similar. We shall also
assume that r ≥ 1 and leave the simpler case r = 0 to the reader. As in the proof of
Theorem 4.1 we start from the estimate

|wλ| <∼ |w|W r(L∞(Sλ))2
−γ|λ|,(5.27)

where w(x) = F(u(x)). Using the chain rule, any rth order derivative of w can be
written as a finite sum of functions of the form

DνF(Dα1u1, . . . , D
αnun)Gν , |ν| = 1, . . . , r,(5.28)

where

Gν =

n∏
i=1

νi∏
j=1

Dβi,j+αiui,(5.29)
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and
∑n

i=1

∑νi
j=1 |βi,j | = r. Therefore, one has

|w|W r(L∞(Sλ)) <∼ max
|ν|≤r

Aν ,(5.30)

where

Aν := ‖DνF(Dα1u, . . . ,Dαnun)‖L∞(Sλ)‖Gν‖L∞(Sλ).(5.31)

To bound ‖Gν‖L∞(Sλ), we use the estimate for intermediate derivatives (4.21)
and find with ri :=

∑νi
j=1 |βi,j | that

‖Gν‖L∞(Sλ) <∼
n∏
i=1

|ui|νi−1
W |αi|(L∞(Sλ))

|ui|W ri+|αi|(L∞(Sλ)).(5.32)

We now invoke (5.13) and obtain that

Aν ≤
n∏
i=1

(1 + |ui|W |αi|(L∞(Sλ)))
(pi−νi)+ |ui|νi−1

W |αi|(L∞(Sλ))
|u|W ri+|αi|(L∞(Sλ))

≤
n∏
i=1

|ui|Mi

W |αi|(L∞(Sλ))
|u|W ri+|αi|(L∞(Sλ)),(5.33)

where Mi = max(pi, ri)− 1 if |ui|W |αi|(L∞(Sλ)) ≥ 1, and Mi = 0 otherwise.
Each term appearing in the last product in (5.33) can be bounded by Besov

norms. The arguments used in deriving (4.28) and (4.29) give

|ui|Mi

W |αi|(L∞(Sλ))
|u|W ri+|αi|(L∞(Sλ))

<∼ ‖u‖Mi2(ri+(Mi+1)(|αi|+δ+ε))|µi||ui,µi |,(5.34)

where µi is a maximizing index. Let µ
∗ := maxi µi. We place (5.34) into (5.33). Each

term |ui,µi |, µi �= µ∗, we pull out of the product by the majorant ‖u‖. This then gives

Aν <∼
n∏
i=1

‖u‖Mi2(ri+(Mi+1)(|αi|+δ+ε))|µi||ui,µi | <∼ ‖u‖M
[

n∑
i=1

|ui,µ∗ |
]
2γ̃|µ

∗|,(5.35)

with M =
∑n

i=1 Mi and

γ̃ = r +

n∑
i=1

(1 +Mi)(ε+ [d/2− t+ |αi|]+).(5.36)

Now, consider any term in the sum which is not zero. If Mi �= 0, then Mi + 1 =
max(pi, ri) ≤ max(pi, r) = pi because r ≤ pi. If Mi = 0, then Mi+1 = 1 ≤ pi because
by definition r ≤ p∗ ≤ pi, and we have assumed r ≥ 1. Using this information in
(5.36) shows that

γ̃ ≤ r +

n∑
i=1

pi(ε+ [d/2− t+ |αi|]+) ≤ γ,(5.37)

provided ε is sufficiently small.
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Poincaré Anal. Non Linéaire, 10 (1993), pp. 413–422.

[4] G. Bourdaud and D. Kateb, Fonctions qui opèrent sur les espacs de Besov, Math. Ann., 303
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UNIQUE CONTINUATION FOR AN ELASTICITY SYSTEM WITH
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Abstract. In this paper we prove the unique continuation property for an elasticity system
with small residual stress. The constitutive equation of this elasticity system differs from that of
the isotropic elasticity system by T + (∇u)T , where T is the residual stress tensor. It turns out this
elasticity system becomes anisotropic due to the existence of residual stress T . The main technique
in the proof is Carleman estimates. Having proved the unique continuation property, we study the
inverse problem of identifying the inclusion or cavity.
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1. Introduction. Let B be an isotropic elastic body with residual stress, and
let the reference configuration of B be Ω, a bounded open set in R

n with smooth
boundary. The residual stress is modeled by a symmetric, smooth, second-rank tensor
T (x) = (tij(x))1≤i,j≤n satisfying

∂xj tij = 0 in Ω, 1 ≤ i ≤ n,(1.1)

and

tijνj = 0 on ∂Ω, 1 ≤ i ≤ n,(1.2)

where ν = (ν1, . . . , νn) is the unit outer normal to ∂Ω. Hereafter, we adopt the
summation convention. Let u : Ω → R

n be the displacement vector; then the first
Piola–Kirchhoff stress is written as

σ = T + (∇u)T + λ(trε)I + 2µε+ β1(trε)(trT )I + β2(trT )ε

+β3((trε)T + tr(εT )I) + β4(εT + Tε),

where λ, µ are the Lamé moduli, β1, . . . , β4 are material parameters, and

ε = Sym(∇u) = 1

2
(∇u+ (∇u)t)

is the strain tensor [18]. Moreover, we assume that the Lamé moduli satisfy the strong
ellipticity condition

µ(x) > δ > 0, λ(x) + 2µ(x) > δ > 0 ∀x ∈ Ω(1.3)
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and

β3 = β4 = 0,

i.e.,

σ = T + (∇u)T + λ̃(trε)I + 2µ̃ε,(1.4)

where

λ̃ = λ+ β1(trT ), µ̃ = µ+
1

2
β2(trT ).

With the constitutive equation (1.4), the elasticity system considered here is quite
close to the one studied by Robertson [22]. Hoger [8] also considered an elasticity
system with residual stress where she used the constitutive equation

σ = T + (∇u)T − 1

2
(εT + Tε) + λ̃(trε)I + 2µ̃ε

in her study.
Now the stationary elasticity system is expressed as

(Lu)i = (∇ · σ)i + ω2ρ(x)ui = ∂jσij + ω
2ρ(x)ui = 0 in Ω, 1 ≤ i ≤ n, ω ∈ R,

(1.5)

where ρ(x) > 0 is the density of the medium. In another setting, if we define the
elasticity tensor C with components

Cijkl = λ̃δijδkl + (µ̃δjl + tjl)δik + µ̃δilδjk(1.6)

and denote

(CE)ij = CijklEkl for any matrix E,

then (1.5) is equivalent to

(Lu)i = (∇ · C∇u)i + ω2ρui = ∂j(Cijkl∂luk) + ω
2ρui = 0 in Ω, 1 ≤ i ≤ n.

It is clear to see that (1.5) is an anisotropic elasticity system. In this paper, we will
investigate the (weak) unique continuation property (UCP) for the system (1.5); i.e.,
if u ∈ H2

loc(Ω) is a solution to (1.5) in Ω and vanishes in a nonempty open subset of
Ω, then u vanishes identically in Ω.

The UCP for differential equations has a long history. Many deep results about
scalar elliptic equations or elliptic systems have been established. We refer the reader
to [3] and references therein for details. Recently, few attempts have been made at
studying the UCP for systems of equations in mathematical physics such as the Dirac
equations and the Maxwell equations [4], [15], [20], [23], [24]. Here we mention two
interesting articles [24] and [20] in which Vogelsang and Ōkaji, respectively, proved the
strong UCP for the Maxwell system with anisotropic coefficients. In this paper we pay
attention to the elasticity system. Several results of weak continuation property for
the inhomogeneous isotropic elasticity have been obtained in [1], [5] (stationary) and
[6], [14] (nonstationary). Moreover, a strong UCP was recently proven by Alessandrini
and Morassi [2]. Unlike the isotropic case, the UCP for the inhomogeneous anisotropic
elasticity has not been fully explored.

Our study of the UCP for the inhomogeneous anisotropic elasticity is motivated
by its application to inverse problems. It was first recognized by Lax [17] that the
Runge approximation property is a consequence of the weak UCP. The Runge ap-
proximation property is shown to be a useful technique in dealing with some inverse
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problems, especially the inverse problem of recovering inclusions or cavities (see [13],
[9], [10], [11], [12], [16], and references therein). It should be noted that the Runge ap-
proximation property with constraint for the anisotropic elasticity were proved in [11]
and [12]. However, the elasticity tensor there is assumed to be either homogeneous
or real-analytic. The weak UCP is an obvious fact in these two situations.

To prove the UCP for the general inhomogeneous anisotropic elasticity is very
challenging and difficult. Here we want to consider the system (1.5) which has the
simplest form of anisotropy. It turns out we are able to establish the UCP for (1.5),
provided the residual stress is sufficiently small. Our main idea comes from Weck’s
recent article [25], where he proved the UCP for the isotropic elasticity system with
zeroth or first order perturbations which contains the results previous obtained by
[1], [5]. Weck actually proved something more, namely, he established the UCP for
a rather general system of second order differential inequalities with the Laplacian
principal part. Like much of the literature on the UCP, the key step in [25] is to
prove appropriate Carleman estimates. Here we will adopt Weck’s approach to (1.5)
with small residual stress, but we have to work a little harder to derive the desired
Carleman estimates because we need to deal with variable coefficients second order
principal parts due to the presence of residual stress. As indicated previously, having
established the UCP, we can prove the Runge approximation property for (1.5) with
constraints on Dirichlet data. With this tool at hand, we can solve the inverse problem
of identifying inclusions or cavities inside an elastic body with small residual stress
by the localized Dirichlet-to-Neumann map using the methods in [11] and [12].

This paper is organized as follows. In section 2, we state and prove the UCP for
(1.5) with small residual stress based on suitable Carleman estimates. The derivation
of these Carleman estimates is given in section 3. In section 4, we will discuss the
application of UCP for (1.5) to the aforementioned inverse problem. In the paper, C
stands for a generic constant, and its value may vary from line to line.

2. Unique continuation. To begin, let us denote vi = ui for 1 ≤ i ≤ n and
vn+1 = ∂iui. Then, it follows from (1.5) that

0 = (Lu)i

= (µ̃∆+ tkj∂j∂k)vi + (λ̃+ µ̃)∂ivn+1 + (∂jtkj)∂kvi + (∂iλ̃)vn+1

+(∂jµ̃)(∂ivj + ∂jvi) + ω
2ρvi

= (µ̃∆+ tkj∂j∂k)vi +R
(1)
i (v1, . . . , vn, vn+1) in Ω, 1 ≤ i ≤ n,

(2.1)

where R
(1)
i ’s are some first order differential operators. Next, by taking the divergence

of (1.5), we obtain that

0 = ∂i(Lu)i

= ((λ̃+ 2µ̃)∆ + tkj∂j∂k)vn+1 + 2(∂iµ̃)∆vi + (∂itkj)∂j∂kvi + 2∂i(λ̃+ µ̃)∂ivn+1

+(∂jtkj)∂kvn+1 + (∂i∂jtkj)∂kvi + (∆λ̃)vn+1 + (∂i∂jµ̃)(∂ivj + ∂jvi)

+ω2(∂iρ)vi + ω
2ρvn+1

= ((λ̃+ 2µ̃)∆ + tkj∂j∂k)vn+1 +R
(2)(v1, . . . , vn) +R

(1)
n+1(v1, . . . , vn+1),

(2.2)
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where R(2) is a pure second order differential operator and R
(1)
n+1 is a first order

differential operator, respectively. It should be mentioned that R(2) acts only on
v1, . . . , vn. In view of (1.3), we can see that if

max
kj

‖tkj‖L∞(Ω) < ε(2.3)

with ε
 1, then

µ̃ > δ′ > 0 and λ̃+ 2µ̃ > δ′ > 0 ∀x ∈ Ω.

With (2.1) and (2.2) in mind, motivated by Weck’s paper [25], we will prove the
UCP for the following system of differential inequalities:

|A1(x, ∂)u
1| ≤ CQ(u1, u2)1/2,

|A2(x, ∂)u
2| ≤ C

{∑
ijk

|∂i∂ju1
k|+Q(u1, u2)1/2

}
,

(2.4)

where ul : Ω → R
ml ,ml ∈ Z+(positive integers) and Al(x, ∂) = alij∂i∂j with real

symmetric matrix (alij), l = 1, 2, and Q(u1, u2) =
∑
ikl(|∂iulk|2 + |ulk|2).

Theorem 2.1. Let alij ∈W 1,∞(Ω) and (u1, u2) ∈ H2
loc(Ω)×H2

loc(Ω) satisfy (2.4).
Then there exists an ε > 0 such that if

max
ij

‖alij(x)− δij‖L∞(Ω) < ε,(2.5)

then (u1, u2) vanishes identically in Ω if it vanishes in a nonempty open subset of Ω.
Theorem 2.1 immediately implies the UCP for (1.5) with small residual stress.
Corollary 2.2. Let coefficients λ, µ, β1, β2, tkj belong to W

2,∞(Ω), and let ρ be
in W 1,∞(Ω). Then there exists an ε > 0 such that if (2.3) is satisfied with this ε,
then the system (1.5) possesses the UCP.

The proof of Theorem 2.1 relies on the following Carleman estimates.
Proposition 2.3. Assume that the differential operators A1 and A2 satisfy the

assumptions in Theorem 2.1. Let r0 < 1 and Ur0 = {u ∈ C∞
0 (Rn \ {0}) : supp(u) ⊂

Br0}, where Br0 is the ball centered at the origin with radius r0. Then there exist
positive constants β0 and ε0 such that if (2.5) is satisfied with ε ≤ ε0, then for all
β ≥ β0 and u ∈ Ur0 we have that∫

r−σψ2
∑
ij

|∂i∂ju|2dx ≤ C
∫
r−σψ2(β2r−2β−2|∇u|2 + |Alu|2)dx(2.6)

and

β2

∫
r−σ−β−1ψ2(|∇u|2 + |u|2)dx ≤ C

∫
r−σψ2|Alu|2dx(2.7)

for l = 1, 2, where r = |x|, ψ = exp(r−β), and σ = σ0 + cβ with σ0, c ∈ R.
The proof of Proposition 2.3 is postponed until the next section. Here we want

to prove Theorem 2.1 based on this proposition.
Proof of Theorem 2.1. It suffices to prove the theorem for the case m1 = m2 = 1.

Let (u1, u2) vanish in a neighborhood of x0 ∈ Ω. Without loss of generality, we assume
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x0 = 0. We set r̃ = min{1/2,dist(0, ∂Ω)}. Now let χ ∈ C∞
0 (Rn) be a cut-off function

satisfying 0 ≤ χ ≤ 1, χ|Br̃/2 = 1, and supp(χ) ⊂ Br̃. Denote vl = χu
l, l = 1, 2. From

(2.4) we have that

|A1v1| ≤ C(e(v1) + e(v2))1/2 + f1,

|A2v2| ≤ C
[∑
ij

|∂i∂jv1|+ (e(v1) + e(v2))
1/2

]
+ f2,

(2.8)

where e(v) = |∇v|2 + |v|2 and fl is supported in Br̃ \Br̃/2 for l = 1, 2. It follows from
(2.8) that

I := γ

∫
r−βψ2|A1v1|2dx+

∫
rψ2|A2v2|2dx ≤ C

(
F +G+

∫
rψ2

∑
ij

|∂i∂jv1|2dx
)
,

(2.9)

where

F = γ

∫
r−βψ2f2

1 dx+

∫
rψ2f2

2 dx,

G =

∫
(r + γr−β)ψ2(e(v1) + e(v2))dx.

Here γ is a large positive parameter which will be chosen later on. By the standard
approximation argument, we can see that v1 and v2 satisfy estimates (2.6) and (2.7).
Taking σ = −1 in the estimate (2.6) for l = 1 and substituting it into (2.9) yield

I ≤ C
(
F +G+

∫
rψ2|A1v1|2dx+ β2

∫
r−2β−1ψ2|∇v1|2dx

)
.(2.10)

Replacing the last term of (2.10) with the help of (2.7) for σ = β and l = 1, we obtain
that

I ≤ C
(
F +G+

∫
r−βψ2|A1v1|2dx

)
.(2.11)

Now taking γ sufficiently large, we can absorb the last term of (2.11) and get

I ≤ C(F +G).(2.12)

From now on we fix the parameter γ.
Next using σ = β in (2.7) for l = 1 and σ = −1 in (2.7) for l = 2, we find that

H := β2

∫
r−2β−1ψ2e(v1)dx+ β

2

∫
r−βψ2e(v2)dx

≤ C
(∫

r−βψ2|A1v1|2dx+
∫
rψ2|A2v2|2dx

)
.

(2.13)

Combining (2.12) and (2.13) gives

H ≤ C(F +G) ≤ C
(
F +

∫
(r + γr−β)ψ2(e(v1) + e(v2))dx

)
.(2.14)
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Now observing that r < r−β < βr−β < βr−2β−1 when r ≤ r̃ and β > 1, we obtain
from (2.14) that

H ≤ C
(
F + β

∫
r−2β−1ψ2e(v1)dx+ β

∫
r−βψ2e(v2)dx

)
.(2.15)

Taking β sufficiently large in (2.15), we get that

H ≤ CF,
i.e.,

β2

∫
r−2β−1ψ2e(v1)dx+ β

2

∫
r−βψ2e(v2)dx ≤ C

(∫
r−βψ2f2

1 dx+

∫
rψ2f2

2 dx

)
,

from which we immediately have

β2

∫
Br̃/2

r−βψ2(v21 + v22)dx ≤ C
∫
Br̃\Br̃/2

r−βψ2(f2
1 + f2

2 )dx.(2.16)

Since r−βψ2 is a strictly decreasing function, (2.16) implies that

β2

∫
Br̃/2

(v21 + v22)dx ≤ C
∫
Br̃\Br̃/2

(f2
1 + f2

2 )dx,

and therefore (v1, v2) = 0 on Br̃/2 if we choose β sufficiently large. Clearly, (u1, u2)
must be zero throughout Ω.

3. Proof of Carleman estimates. This section is devoted to the proof of
Proposition 2.3. It suffices to prove (2.6) and (2.7) for A1. Therefore, we denote
a1
ij = aij and A1 = A. To prove (2.6), we first recall the following estimate in [25]:∫

r−σψ2
∑
ij

|∂i∂ju|2dx ≤ C
∫
r−σψ2(β2r−2β−2|∇u|2 + |∆u|2)dx

(see [25, Lemma 2]), from which we have that∫
r−σψ2

∑
ij

|∂i∂ju|2dx ≤ C
∫
r−σψ2(β2r−2β−2|∇u|2 + |Au|2 + |∆u−Au|2)dx

≤ C
∫
r−σψ2

(
β2r−2β−2|∇u|2 + |Au|2 + ε2

∑
ij

|∂i∂ju|2
)
dx.

Thus, choosing ε small enough immediately implies the estimate (2.6).
The proof of (2.7) is lengthy. Here we will adopt some techniques from [21], [25],

and [26]. Let φ = ψ−1 and u = rτ/2φz. Then

r−σ/2ψAu = r−σ/2ψA(rτ/2φz)

= r−σ/2ψ[rτ/2φAz + 2aij∂iz∂j(r
τ/2φ) + zA(rτ/2φ)].

By virtue of the inequality (a+ b+ c)2 ≥ 2ab+ 2bc, we have that∫
r−σψ2|Au|2dx ≥ 4

∫
r−σψ2aij∂iz∂j(r

τ/2φ)rτ/2φAzdx

+4

∫
r−σψ2aij∂iz∂j(r

τ/2φ)zA(rτ/2φ)dx.

(3.1)
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With the choice of τ = σ + β + 2, we can compute

I :=

∫
r−σψ2aij∂iz∂j(r

τ/2φ)rτ/2φAzdx

= β

∫
aij∂izxjAzdx+ τ/2

∫
rβaij∂izxjAzdx.

It is readily seen that the leading term (for large β) of I is β
∫
aij∂izxjAzdx. Repeated

integration by parts shows that

2

∫
aij∂izxjAzdx = 2

∫
aij∂izxjakl∂k∂lzdx

= −
∫
∂iz∂l(aklaijxj)∂kzdx+

∫
∂kz∂i(aklaijxj)∂lzdx

−
∫
∂lz∂k(aklaijxj)∂izdx.

(3.2)

Using (3.2), we obtain that

|I| ≤ Cβ
∣∣∣∣
∫
∂iz∂l(aklaijxj)∂kzdx

∣∣∣∣
≤ Cβ‖∇z‖2

≤ Cβ(‖∇(r−τ/2ψ)u‖2 + ‖r−τ/2ψ∇u‖2)

≤ C
(
β3

∫
r−σ−3β−4ψ2|u|2dx+ β

∫
r−σ−β−2ψ2|∇u|2dx

)
.

(3.3)

Next we observe that

J :=

∫
r−σψ2aij∂iz∂j(r

τ/2φ)zA(rτ/2φ)dx

= β

∫
r−σ+τ/2−β−2ψaij∂izxjzA(r

τ/2φ)dx

+ τ/2

∫
r−σ+τ/2−2ψaij∂izxjzA(r

τ/2φ)dx.

Straightforward calculations show that

∂i∂jφ = (β2xixjr
−2β−4 + βδijr

−β−2 − β(β + 2)xixjr
−β−4)φ

and

∂i∂jr
τ/2 = (τ/2)(τ/2− 2)rτ/2−4xixj + (τ/2)rτ/2−2δij .

So the leading term of J is

β3

∫
r−2β−4aij∂izxjaklxkxlzdx.

Note that we have chosen τ = σ+ β+2. Performing the integration by parts, we can
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see that

β3

∫
r−2β−4aij∂izxjaklxkxlzdx

= −1

2
β3

∫
z∂i(r

−2β−4aijxjaklxkxl)zdx

≥ (1− o(β))β4

∫
r−2β−6aijxixjaklxkxl|z|2dx

≥ (1− o(β))β4(1−O(ε))
∫
r−2β−2|z|2dx

≥ (1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx,

where 0 ≤ o(β) → 0 as β → ∞ and O(ε) is a positive constant bounded by Cε. In
other words, we have that

J ≥ (1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx.(3.4)

Notice that we need to keep track of the leading constant here in order to obtain the
desired estimate. Combining (3.1), (3.3), and (3.4) gives

∫
r−σψ2|Au|2dx+ C

(
β3

∫
r−σ−3β−4ψ2|u|2dx+ β

∫
r−σ−β−2ψ2|∇u|2dx

)

≥ 4(1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx,

from which we can derive that

∫
r−σψ2|Au|2dx+ Cβ

∫
r−σ−β−2ψ2|∇u|2dx

≥ 4(1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx.

(3.5)

By the ellipticity condition and performing the integration by parts, we can get
that

(1−O(ε))
∫
r−σ−β−2ψ2|∇u|2dx

≤
∫
r−σ−β−2ψ2aij∂iu∂judx

≤
∣∣∣∣
∫
u∂i(r

−σ−β−2ψ2)aij∂judx

∣∣∣∣+
∣∣∣∣
∫
r−σ−β−2ψ2u∂i(aij)∂judx

∣∣∣∣
+

∣∣∣∣
∫
r−σ−β−2ψ2uaij∂i∂judx

∣∣∣∣
:= K1 +K2 +K3.

(3.6)
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Using the relation |ab| ≤ (a2 + b2)/2, we can estimate

K1 =

∣∣∣∣
∫
u∂i(r

−σ−β−2ψ2)aij∂judx

∣∣∣∣
≤
∫
(2 + o(β))βr−σ−2β−4ψ2|uaijxi∂ju|dx

≤ (2 + o(β))β2(1 +O(ε))

∫
r−σ−3β−4ψ2|u|2dx

+(1 +O(ε))/2

∫
r−σ−β−2ψ2|∇u|2dx.

(3.7)

Likewise, for K2 and K3, we have that

K2 ≤ C
(
rβ0

∫
r−σ−3β−4ψ2|u|2dx+ rβ+2

0

∫
r−σ−β−2ψ2|∇u|2dx

)
(3.8)

and

K3 ≤ C
(
rβ0β

2

∫
r−σ−3β−4ψ2|u|2dx+ β−2

∫
r−σψ2|Au|2dx

)
.(3.9)

Plugging (3.7), (3.8), and (3.9) into (3.6) and multiplying the new inequality by β2,
we obtain that

β2(1−O(ε))
∫
r−σ−β−2ψ2|∇u|2dx

≤ (2 + o(β))β4(1 +O(ε))

∫
r−σ−3β−4ψ2|u|2dx+ β2(1 +O(ε))/2

∫
r−σ−β−2ψ2|∇u|2dx

+C

(
rβ0β

2

∫
r−σ−3β−4ψ2|u|2dx+ rβ+2

0 β2

∫
r−σ−β−2ψ2|∇u|2dx

)

+C

(
rβ0β

4

∫
r−σ−3β−4ψ2|u|2dx+

∫
r−σψ2|Au|2dx

)
.

(3.10)

Adding (3.10) to (3.5) and taking β sufficiently large and ε small enough, we conclude
that

β4

∫
r−σ−3β−4ψ2|u|2dx+ β2

∫
r−σ−β−2ψ2|∇u|2dx ≤ C

∫
r−σψ2|Au|2dx,

which immediately implies (2.7).

4. Applications to inverse problems. In this section we will discuss the ap-
plication of the UCP for (1.5) to the inverse problem of identifying inclusions or
cavities by boundary measurements. To begin, assume that D is an open subset of Ω
with Lipschitz boundary such that Ω \ D̄ is connected. The domain D stands forthe
region of the inclusion or cavity embedded in Ω. Let the reference elasticity tensor
C(x) with components Cijkl(x) be defined by (1.6), i.e.,

Cijkl = λ̃δijδkl + (µ̃δjl + tjl)δik + µ̃δilδjk,

where λ̃ = λ + β1(trT ) and µ̃ = µ + (1/2)β2(trT ). Here we require that the Lamé
moduli satisfy the strong convexity condition

µ(x) > δ > 0 and nλ(x) + 2µ(x) > δ > 0 ∀ x ∈ Ω(4.1)
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and T satisfies

ET · E ≥ (ε/2)|E|2,
which is equivalent to

C(x)E · E ≥ κEijEij = κ|E|2, κ(ε) > 0, ∀ x ∈ Ω(4.2)

for all matrices E, provided that ε in (2.3) is sufficiently small. It is obvious that (4.1)
implies (1.3). Next we assume that C̃ is some fourth-rank tensor such that C + χDC̃

satisfies the strong convexity condition (4.2), where χD denotes the characteristic
function of D. Moreover, suppose that C̃ satisfies the jump condition

∀ x ∈ ∂D, ∃ Cx > 0, ∃ δx > 0 such that C̃(y)E · E ≥ Cx|E|2 or C̃(y)E · E ≤ −Cx|E|2
(4.3)

for almost all y ∈ Bδx(x) ∩ D and all real matrices E. Let all components of C(x)
and C̃(x) be in L∞(Ω). Then it is easy to show that there exists a unique solution
u ∈ H1(Ω) to {

∇ · ((C + χDC̃)∇u) = 0 in Ω,

u = f on ∂Ω

for any f ∈ H1/2(∂Ω). In this case, the domain D is an inclusion. So we can define the
Dirichlet-to-Neumann (displacement-to-traction) map ΛI : H1/2(∂Ω) → H−1/2(∂Ω)
by

ΛI(f) = (C∇u)ν|∂Ω.

Equivalently, ΛI can be defined by the formula

〈ΛI(f), g〉 =
∫

Ω

(C + χDC̃)∇u · ∇vdx,

where v ∈ H1(Ω) with v|∂Ω = g. We are interested in the following inverse problem:
IP.A. Reconstruct the inclusion D from the knowledge of ΛI(f)Γ0

for infinitely many
f ∈ H1/2(∂Ω) with supp(f) ⊂ Γ0, where Γ0 is a nonempty subset of ∂Ω.

Likewise, in the extreme case, if the tensor C̃ becomes −C, then the domain D
corresponds to a cavity. In the same way, we can prove that there exists a unique
solution u ∈ H1(Ω \ D̄) to the boundary value problem{

∇ · (C∇u) = 0 in Ω \ D̄,
(C∇u)ν = 0 on ∂D, (C∇u)ν = g on ∂Ω

for any g ∈ H1/2(∂Ω). Therefore, we can define the Dirichlet-to-Neumann map
ΛC : H1/2(∂Ω) → H−1/2(∂Ω) by

ΛC(g) = (C∇u)ν|∂Ω.

Similarly, we will consider the following inverse problem:
IP.B. Reconstruct the cavity D from the knowledge of ΛC(g)|Γ0 for infinitely many

g with supp(g) ⊂ Γ0.
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Note that uniqueness theorems of determining the inclusion or cavity embedded
in an elastic body have been established in [11] and [12], where the reference medium
is assumed to be either inhomogeneous isotropic or anisotropic with homogeneous
or analytic elasticity tensors. Besides, a reconstruction algorithm for recovering the
cavity is given in [12]. A similar algorithm can be developed for the inclusion case.
Here we want to extend their results to the elasticity system with residual stress (1.5).
To this end, we will need the Runge approximation property with constraint for (1.5),
which is a consequence of the UCP (see Corollary 2.2). Its proof can be found in [12].

Proposition 4.1. Assume that all coefficients of C are in W 2,∞(Ω) and the
residual stress satisfies (2.3) with ε given in Corollary 2.2. Let U and Ω be two open
bounded domains with Lipschitz and C2 boundaries, respectively, such that Ū ⊂ Ω.
Denote Γ0 a subset of the boundary ∂Ω. Let u ∈ H1(U) satisfy

∇ · (C∇u) = 0 in U.

Then for any compact subset K ⊂ U such that Ω\K is connected and any ε̃ > 0 there
exists w ∈ H1(Ω) satisfying

∇ · (C∇w) = 0 in Ω

with supp(w|∂Ω) ⊂ Γ0 such that

‖w − u‖H1(K) < ε̃.

Remark. The reason for using C2 boundary on Ω is that we want to extend all
coefficients of C into a larger domain Ω̃ and the newly extended coefficients have the
same regularity W 2,∞ in Ω̃.

Having the Runge approximation property Proposition 4.1 at hand, we now can
apply the methods in [11] and [12] to solve IP.A and IP.B. It should be pointed out that
the reference elasticity tensor in [11] and [12] satisfies the full symmetry properties,
i.e.,

Cijkl = Cklij = Cjikl.

Nevertheless, it is not hard to check that the proofs in [11] and [12] are still valid if
we only assume Cijkl = Cklij , which is the case for the elasticity system with residual
stress (1.5). For IP.A, we prove the following theorem (see [11]).

Theorem 4.2 (identification of inclusion). Let the domain Ω have C2 boundary.
Assume that the elasticity tensor C given by (1.6) possesses W 2,∞(Ω) coefficients
satisfying (4.1). Furthermore, the residual stress tensor T in C satisfies the smallness
condition described in Corollary 2.2. Let (D1, C̃1) and (D2, C̃2) be two inclusions such
that C + χDiC̃i and C̃i satisfy (4.2) and (4.3), respectively, and Ω \ D̄i is connected,
i = 1, 2. If

ΛI1(f) = ΛI2(f) on Γ0

for all f ∈ H1/2(∂Ω) with supp(f) ⊂ Γ0, then

D1 = D2.

The proof of Theorem 4.2 is based on integral inequalities∫
D

{C
−1 − (C + C̃)−1}C∇w · C∇wdx ≤ 〈(ΛI − Λ0)f, f〉 ≤

∫
D

C̃∇w · ∇wdx,(4.4)
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where w ∈ H1(Ω) solves {
∇ · (C∇w) = 0 in Ω,

w|∂Ω = f.
(4.5)

Here C
−1 (or (C + C̃)−1) is called the compliance tensor (see, e.g., [7]). Notice that

we do not assume C̃1 = C̃2 in Theorem 4.2. Also, the regularity of the medium
inside of the inclusions is only assumed to be essentially bounded. Theorem 4.2
provides the uniqueness of determining the inclusion embedded in an elastic body
with small residual stress by the localized Dirichlet-to-Neumann map. For the sake of
completeness, we want to briefly describe a reconstruction algorithm for identifying
the inclusion. Let y ∈ Ω and G0(·; y) be the fundamental solution for the operator
∇ · C(y)∇ (see, e.g., [19]). One can find e(·; y) such that

∇ · (C(x)∇e(·; y)) = 0 in Ω \ {y}

and

(e(·; y)−G0(· − y; y)b)y∈Ω is bounded in H1(Ω),

where b is a nonzero constant vector. Note that if y ∈ ∂D, then∫
D∩Br(y)

|∇{G0(x− y; y)b}|2dx = ∞(4.6)

for any ball Br(y) centered at y with radius r and nonzero vector b. The symmetric
version of (4.6) has been proved in [11], i.e.,∫

D∩Br(y)
|Sym∇{G0(x− y; y)b}|2dx = ∞,

which clearly implies (4.6).
A continuous map c : [0, 1] → Ω̄ is called a needle if it satisfies (i) c(0), c(1) ∈ ∂Ω;

(ii) c(t) ∈ Ω for 0 < t < 1. In view of Proposition 4.1, we can see that for each
needle and t ∈ (0, 1), there exists a sequence {fj} = {fj(·; c(t))} in H1/2(∂Ω) with
supp(fj) ⊂ Γ0 such that the solution wj of (4.5) with f = fj satisfies wj → e(·; c(t))
in H1

loc(Ω \ {c(t′) : 0 < t′ ≤ t}) as j → ∞. We call {fj} a fundamental sequence with
respect to Γ0. For each needle c, define

t(c) = sup{0 < s < 1 : C(t) ∈ Ω \ D̄ (0 < t < s)}.

It should be noted that 0 < t(c) ≤ 1, and if t(c) = 1, then c never touches ∂D. On
the other hand, if t(c) < 1, then c touches ∂D at t = t(c) at the first time. Since
Ω \ D̄ is connected, we have that

∂D = {c(t(c)) : c is a needle and t(c) < 1}.(4.7)

Let Λ0 be the Dirichlet-to-Neumann map associated with the boundary value problem
(4.5). Denote

II(t, c) = lim
j→∞

〈(ΛI − Λ0)fj(·; c(t)), fj(·; c(t))〉
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and

TI(c) =
{
0 < s < 1 : II exists ∀ 0 < t < s and sup

0<t<s
|II(t, c)| <∞

}
.

Using (4.3), (4.4), and (4.6) and pursuing the arguments in [11], we can show that
TI(c) = (0, t(c)), and therefore t(c) = sup TI(c) (see similar arguments in [12]). In
summary, we have a reconstruction algorithm for determining the inclusion as follows.

Reconstruction algorithm for IP.A.
(i) For each needle c and each t ∈ (0, 1), find the fundamental sequence {fj(·; c(t))}

with respect to Γ0.
(ii) Compute TI(c) and set t(c) = sup TI(c).
(iii) Use the formula (4.7) to reconstruct ∂D.
Now for IP.B, we show the following (see [12]).
Theorem 4.3 (identification of cavity). Let the assumptions in Theorem 4.2 on

Ω and C hold. Assume that D1 and D2 are two cavities and Ω \ D̄1 and Ω \ D̄2 are
connected. Let

ΛC1(f) = ΛC2(f) on Γ0

for all f ∈ H1/2(∂Ω) with supp(f) ⊂ Γ0. Then D1 = D2.
As for reconstructing the cavity, we follow the lines of the above algorithm and

define

IC(t, c) = lim
j→∞

〈(Λ0 − ΛC)fj(·; c(t)), fj(·; c(t))〉

and

TC(c) =
{
0 < s < 1 : IC exists ∀ 0 < t < s and sup

0<t<s
IC(t, c) <∞

}
.

Note that 〈(Λ0 − ΛC)f, f〉 ≥ 0 for all f ∈ H1/2(∂Ω). Now using (4.6) and the
inequalities

1

M

∫
D

|∇e(x; c(t))|2dx ≤ IC(t, c) ≤M
∫
D

|∇e(x; c(t))|2dx

for some constant M > 0, one can prove that TC(c) = (0, t(c)) and thus t(c) =
sup TC(c) (see the arguments in [12]). So a reconstruction algorithm for identifying
the cavity is described as follows.

Reconstruction algorithm for IP.B.
(i) For each needle c and each t ∈ (0, 1), find the fundamental sequence {fj(·; c(t))}

with respect to Γ0.
(ii) Compute TC(c) and set t(c) = sup TC(c).
(iii) Use the formula (4.7) to reconstruct ∂D.
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Abstract. We prove the instability of large classes of steady states of the two-dimensional
Euler equation. For an odd shear flow, beginning with the Rayleigh equation, we define a family of
operators depending on some positive parameter. Then we use infinite determinants to keep track
of the signs of the eigenvalues of these operators. The existence of purely growing modes follows
from a continuation argument. Employing a new analysis of neutral modes together with a rigorous
justification of Tollmien’s classical method, we obtain a sharp condition for linear and hence nonlinear
instability of a general class of bounded shear flows. We obtain similar results for bounded rotating
flows and unbounded shear flows.
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1. Introduction. In this paper, we study the hydrodynamic stability problem
for plane shear flows and rotating flows. The purpose is to get some sufficient con-
ditions for linear instability and hence nonlinear instability. For plane shear flows,
this problem has a long history, going back to scientists such as Rayleigh and Kelvin
in the nineteenth century. The vorticity form of the incompressible two-dimensional
Euler equation in a bounded domain D with smooth boundary ∂D is

∂tω + u · �ω = 0 in Rt ×D

or

∂t∆ψ +
∂ψ

∂y

∂

∂x
∆ψ − ∂ψ

∂x

∂

∂y
∆ψ = 0,(1)

where ψ is the stream function, ω = −∆ψ is the vorticity, and u = (∂ψ∂y ,−∂ψ
∂x ) is the

velocity. We consider the basic steady state flow U0 = U (y) i, a parallel shear flow
in the x-direction, in the flow domain D = {(x, y) | y1 ≤ y ≤ y2} with rigid walls at
y = y1, y2. This means u is tangential, or ψ is constant on each wall. The linearized
equation of (1) around U0 is

∂t∆ψ̃ + U
∂

∂x
∆ψ̃ − U ′′ ∂ψ̃

∂x
= 0,(2)

where ψ̃ is constant on y = yj (j = 1, 2) . Taking ψ̃ = φ (y) eiα(x−ct) with α the wave
number (positive real) in the x-direction and c = cr+ ici the complex wave speed, we
obtain from (2) the Rayleigh equation

(U − c)

(
d2

dy2
− α2

)
φ− U ′′φ = 0(3)
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with φ (y1) = φ (y2) = 0. We will also consider unbounded shear flows where one of
y1, y2 is infinity, with the boundary condition φ (y) → 0 as y → ∞.

So for shear flows, the instability problem is reduced to studying the Rayleigh
equation (3). The flow is linearly unstable if some nontrivial solution to (3) with
ci > 0 exists. A classical result of Lord Rayleigh [16] is the necessary condition for
instability that the basic velocity profile should have an inflection point at some point
y = ys, that is, U ′′ (ys) = 0. This condition was later improved by Fjørtoft [10].
Howard’s semicircle theorem [14] says that any unstable eigenvalue c = cr + ici must
lie in the semicircle(

cr − 1

2
(Umin + Umax)

)2

+ c2i ≤
(
1

2
(Umin − Umax)

)2

.(4)

However, very few sufficient conditions for instability are known. In 1935, Tollmien
[23] obtained an unstable solution to (3) by formally perturbing around a neutral mode
(c real) for symmetric flows in class K+ (defined below). The original presentation was
improved by C. C. Lin [17] and the asymptotic growth rate was found. Even in recent
treatises such as [20], the main instability result mentioned is Tollmien’s. However,
as indicated by Friedlander and Howard [12], in all these references the existence of
an unstable mode had to be assumed in a neighborhood of the neutral mode. The
assumption of analytic dependence between the parameters α and c (complex) also
lacked justification. These assumptions are rigorously justified in this paper. Here we
get a sharp condition for the instability of a class of flows.

Let us describe the setting of the problem. First we define a class of flows having
some inflection point. By an inflection value we mean the value of U at an inflection
point.

Definition 1.1. The flow U (y) is in class K if U is a C2 function on a interval
[y1, y2], and there exists some inflection value Us such that

K (y) := −U ′′ (y) / (U (y)− Us)(5)

is nonnegative and bounded in [y1,y2] . If K is positive on [y1, y2] , we say that U is in
class K+.

A typical example of such a flow is U = cosmy or sinmy. Now we consider any
flow in class K. If (φs, αs) is a solution to the Sturm–Liouville problem

φ
′′
s − α2

sφs +Kφs = 0, φ = 0 at y = y1, y2,(6)

then (φ, α, c) = (φs, αs, Us) is a special solution (a so-called neutral mode) to the
Rayleigh equation (3). Let αmax be the largest wave number so that a neutral mode
exists. That is,

−α2
max = inf

φ∈H1
0(y1,y2)

∫ y2
y1

(
|φ′|2 −K (y) |φ|2

)
dy∫ y2

y1
|φ|2 dy .(7)

Throughout this paper, we assume that the right-hand side of (7) is negative. Oth-
erwise, the shear flow was proved to be linearly stable by Drazin and Howard [8].
It was also proved in [8] that instability is possible only for wave numbers α such
that 0 < α < αmax. Howard [15] estimated the maximal number of possible unstable
modes for a fixed wave number. However, it still was not clear whether there exists



320 ZHIWU LIN

some unstable mode for each α in that range. Recently, Friedlander and Howard [12]
studied the special flow U(y) = cosmy, using a continued fractions technique and a
numerical method. For this flow they proved that for all 0 < α < αmax, there exists
some growing mode for the Rayleigh equation.

In this paper, we rigorously prove that for any flow of class K+ and for all 0 <
α < αmax, there does indeed exist an unstable solution to the Rayleigh equation (3).
This is our main theorem.

Theorem 1.2. Suppose the steady state is in class K+. Let −α2
max be the lowest

eigenvalue of − d2

dy2 −K (y), which is assumed to be negative. For all α ∈ (0, αmax),

there is an unstable solution (with Im c > 0) to (3).
The unstable interval (0, αmax) is sharp in the sense that there is linear stability

if α ≥ αmax or − d2

dy2 −K (y) is nonnegative. We can also treat plane rotating flows
in an annulus. In this case, the analogue of the Rayleigh equation becomes

(Ω− c)
(
D∗D − n2/r2

)
φ− r−1(rD2Ω+ 3DΩ)φ = 0,(8)

with φ (R1) = φ (R2) = 0, 0 < R1 ≤ r ≤ R2. Here Ω (r) is the angular velocity of
the steady state, D∗ = d

dr +
1
r , D = d

dr , and n is some integer. We have the following
result analogous to Theorem 1.2.

Theorem 1.3. For the rotating case, if

K (r) := − (rD2Ω+ 3DΩ
)
/ (Ω− Ωs)(9)

is positive and Ω (R1) �= Ω(R2), then a necessary and sufficient condition for insta-
bility is that there exists α > 1 such that the equation(

D∗D − α2/r2
)
φ+ r−1K (r)φ = 0(10)

has some nontrivial solution with φ (R1) = φ (R2) = 0. This is equivalent to the
condition

−α2
max := inf

φ∈H1
0(R1,R2)

∫ R2

R1
r
(
d
drφ
)2

dr − ∫ R2

R1
K (r)φ2dr∫ R2

R1

1
rφ

2dr
< −1.(11)

In the case that K (r) is positive and Ω (R1) = Ω (R2) , a sufficient condition for
instability is that

−α2
max := inf

φ∈H1
0(R1,R2)

∫ R2

R1
r
(
d
drφ
)2

dr − ∫ R2

R1
K (r)φ2dr∫ R2

R1

1
rφ

2dr
< −4.(12)

Let us return to shear flows that are not in class K+. If a shear flow is odd but
there is no assumption on the sign of K (y), we can still get a sufficient condition for
instability.

Theorem 1.4. Assume U (y) is odd in [−a, a] and define

K (y) := −U ′′ (y) /U (y) .(13)

If K is bounded and the operator − d2

dy2 − K (y) with zero boundary values at ±a

has a negative eigenvalue, then there is a solution to the Rayleigh equation (3) with
c = iλ0 (here λ0 > 0) for some range of wave numbers. Specifically, if −α2

0 < −α2
1 <

· · · < −α2
k0

< 0 denote all the negative eigenvalues of − d2

dy2 −K (y), then we have a
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purely growing instability for α belonging to the intervals (α1, α0)∪· · ·∪(α2k−1, α2k−2)
· · · ∪ (αk0 , αk0−1) (if k0 odd ) or to the intervals (α1, α0) ∪ · · · ∪ (α2k−1, α2k−2) · · ·
∪ (αk0−1, αk0−2) (if k0 even) .

We can extend Theorems 1.2 and 1.4 to the case of unbounded shear flows.
Theorem 1.5. (i) (class K+) Assume U (y) is in C2 (−∞,+∞) , U (y) →

U (±∞) as y → ±∞, and U (y) takes the values U (±∞) at only a finite number of
points. We consider the flows such that K (y) defined by (5) is bounded, positive, and

limy→±∞ K (y) = 0. Let −α2
0 be the lowest eigenvalue of − d2

dy2 −K (y) on H2 (R) ,

which is assumed to be negative. Then for each α in (0, α0) , there is instability. This

condition is sharp in the sense that if α ≥ α0 or − d2

dy2 −K (y) is nonnegative, then
there is linear stability. The same result holds for the shear flows defined in the half
line.

(ii) (odd flows) Assume U (y) is in C2 (−∞,+∞), odd, and K (y) defined by (13)
is bounded and limy→±∞ K (y) = 0. If −α2

0 < −α2
1 < · · · < −α2

k < · · · < 0 denote

all the negative eigenvalues of the operator − d2

dy2 −K (y) on H2 (R) , then we have

a purely growing instability for α belonging to the intervals (α1, α0) ∪ (α3, α2) ∪ · · · ∪
(α2k−1, α2k−2) · · · .

Now let us sketch the main ideas of the proofs. For the proof of Theorem 1.4, we
define a family of elliptic operators Aλ depending on the positive parameter λ where
c = iλ. The problem is reduced to finding some λ0 such that Aλ0 has a kernel. The
operator Aλ is nonnegative when λ is large and Aλ has an odd number of eigenvalues
when λ tends to 0. The idea then is to use an infinite determinant to keep track of
the sign of the eigenvalues of Aλ as λ varies from 0 to ∞.

For the proofs of Theorems 1.2 and 1.3, we carefully use the neutral modes. In
the literature, neutral modes have usually been used as the base modes, from which
unstable modes have been obtained by the perturbation argument of Tollmien. The
novelty of this paper is to utilize a different property of neutral modes: the neutral
wave numbers are the possible boundary points of the set of all unstable wave numbers.
Thus if we knew all these possible neutral wave numbers and the instability properties
around them, we could deduce the stability properties at all the wave numbers. Indeed
for our purpose we only need to understand the neutral modes from which the unstable
modes can issue. We call them the neutral limiting modes to distinguish them from
the usual neutral modes, which are just the solutions to the Rayleigh equation with
real c.

Definition 1.6. The triple (cs, αs, φs) with cs real and αs positive is said to be
a neutral limiting mode if it is the limit of the growing solution sequence (ck, αk, φk)
(with Im ck > 0) of the Rayleigh equation (3). The precise notions of convergence of
φk to φs will be made clear in Lemma 3.6. Formally (cs, αs, φs) ought to satisfy the
Rayleigh equation

(U − cs)

(
d2

dy2
− α2

s

)
φs − U ′′φs = 0.(14)

We call cs the neutral limiting phase speed and αs the neutral limiting wave number.
Here in the above definition, the convergence of {ck} is guaranteed by Howard’s

semicircle theorem (4). From (4) we also know that cs must lie in the range of U (y).
The importance of neutral limiting modes lies in the fact that the neutral limiting
wave numbers are the possible boundary points of the set of all unstable wave numbers
(see Theorem 3.9). The knowledge of the instability near every neutral limiting wave
number will allow us to determine the instability in the whole range of wave numbers.
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For that purpose, first we need to know what all the neutral limiting modes are.
In general, it is difficult to get a simple answer. But we have the following simple
characterization in case the flow is in class K.

Theorem 1.7. If the flow is in class K, then for any neutral limiting mode
(cs, αs, φs) with positive αs, the phase speed must be cs = Us and the function φs
must solve

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

sφs(15)

with φs (y1) = φs (y2) = 0.
In the physics literature [17], [6], for a monotone flow it was shown heuristically

by using Reynolds stress that the neutral limiting phase speed must be Us. Using
some lemmas of Sattinger [22], we rigorously prove the same result for large classes
of flows. For flows in class K, we have some uniform a priori bound on the H2 norm
of unstable eigenfunctions. This enables us to deduce the other conclusions in the
theorem.

Furthermore, for a flow in the class K+, we also obtain the instability property
near the neutral wave numbers. This is done by rigorously verifying Tollmien’s ar-
gument. By combining it with the boundary point property of neutral limiting wave
numbers (Theorem 3.9), we obtain an unstable mode for each α in (0, αmax).

To prove Theorem 1.5, we truncate the unbounded flow to get a sequence of
bounded flows. Then by applying Theorems 1.2 and 1.4 to truncated flows, we get
a sequence of approximating unstable solutions. We can show that the sequence
obtained converges to a nontrivial function, which is an unstable solution to the
Rayleigh equation in the unbounded case.

In [1] Bardos, Guo, and Strauss rigorously proved nonlinear instability from the
existence of growing modes under a certain assumption for flows defined on bounded
domains. For rotating flows as in Theorem 1.3, that assumption is satisfied. For
shear flows as in Theorem 1.2, we assume the x-direction is P -periodic, with the wave
number α being multiples of 2π

P . Then the result in [1] can still apply. The nonlinear
instability proved in [1] is in the L2 norm of the vorticity. In [13], Grenier proved
nonlinear instability from the existence of growing modes for very general shear flows.
In particular, nonlinear instability of shear flows in [13] can be proved in unbounded
spaces. Thus the flows in Theorem 1.5 are also nonlinearly unstable. Note that the
nonlinear instability in [13] is in the L∞ and L2 norms of velocity.

We can generalize most of Theorem 1.2 of this paper to general shear flows in the
class F (see Definition 3.1). Thus we can treat any flow with a monotone velocity
profile U (y) or any flow that satisfies a differential equation U ′′ (y) = g (U (y)) k (y)
for some function k (y) > 0. The details will appear in a forthcoming paper. In [19],
we use the method of section 2 to treat linear instability of general ideal plane flows.

The paper is organized as follows. In section 2, we prove Theorem 1.4 for odd
flows. We study the neutral limiting modes in section 3. Section 4 is devoted to the
proof of Theorem 1.2. In section 5, we give the proof of Theorem 1.3 for the rotating
case. We treat unbounded shear flows in section 6.

2. Odd flows. We divide the proof of Theorem 1.4 into several steps. First we
reduce the problem to the eigenvalue problem of an ODE system. Let c = iλ (λ > 0)
and φ = f + ih; then (3) becomes(

− d2

dy2
+ α2

)
(f + ih) +

(
U ′′U

U2 + λ2
+ i

λU ′′

U2 + λ2

)
(f + ih) = 0.
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Comparing the real and imaginary parts of (3) and using the definition of K (y), we
get

− d2

dy2
f + α2f −K (y) f +K (y)

λ2

λ2 + U (y)
2 f +K (y)

λU (y)

λ2 + U (y)
2h = 0,(16a)

− d2

dy2
h+ α2h−K (y)h−K (y)

λU (y)

λ2 + U (y)
2 f +K (y)

λ2

λ2 + U (y)
2h = 0(16b)

with f = h = 0 at y = −a, a. If we denote

A0 =

(
− d2

dy2 + α2 −K (y) 0

0 − d2

dy2 + α2 −K (y)

)

and

Bλ = K (y)

(
λ2

λ2+U(y)2
λU(y)

λ2+U(y)2

− λU(y)

λ2+U(y)2
λ2

λ2+U(y)2

)
,

Aλ = A0 +Bλ. Then (16) becomes

Aλ

(
f
h

)
= 0.

The common domain for the operators Aλ is

H =
{
(f, h) | f, h ∈ (H2 (−a, a) ∩H1

0 (−a, a)
)
and f odd, h even

}
.

Let

X =
{
(f, h) | f, h ∈ L2 (−a, a) with f odd, h even

}
.

Here H, X are complex spaces. Due to the oddness of U (y) , Aλ : H → X . In the
following ‖.‖ denotes the L2 norm. We have the following simple characterization of
Aλ.

Lemma 2.1. Aλ is a densely defined closed operator, and for any ξ in its resolvent
set ρ (Aλ) , (ξ −Aλ)

−1
is a trace class operator. The eigenvalues of Aλ appear in

complex conjugate pairs and are all discrete with finite multiplicity.
Proof. Denote

A =

(
− d2

dy2 0

0 − d2

dy2

)

with D (A) = H. Then clearly (ξ −A)
−1

is a trace class operator for any ξ ∈ ρ (A)
and we have ∥∥∥(A+ k)

−1
∥∥∥ ≤ 1

k

for any k > 0. On the other hand, Aλ − A are uniformly bounded operators, and
suppose ‖Aλ −A‖ ≤ M . We have

Aλ + k = A+ k +Aλ −A =
(
1 + (Aλ −A) (A+ k)

−1
)
(A+ k) .
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If M < k, then −k ∈ ρ (Aλ) and

(Aλ + k)
−1

= (A+ k)
−1
(
1 + (Aλ −A) (A+ k)

−1
)−1

.

This is the multiplication of a bounded operator with a trace class operator, so it is
also in trace class. For any ξ ∈ ρ (Aλ) , from formula

(ξ −Aλ)
−1

= (−k −Aλ)
−1

+ (ξ + k) (ξ −Aλ)
−1

(−k −Aλ)
−1

,

we can see that (ξ −Aλ)
−1

is in trace class.
Now the conclusions about the eigenvalues of Aλ follow from the trace class prop-

erty just proved and the fact that the coefficients of Aλ are real.
Now we study the semigroup generated by −Aλ. Notice that −Aλ is a bounded

perturbation of

A =

(
d2

dy2 0

0 d2

dy2

)
,

which generates the diffusion semigroup. Then by the bounded perturbation theorem
of semigroups, we know that −Aλ generates a strongly continuous semigroup. Denote
Tλ (t) = exp (−tAλ) . Then there exists some C,ω positive (independent of λ) such
that

‖Tλ (t)‖ ≤ Ceωt.

We have the following characterization of Tλ (t) .
Lemma 2.2. For all t > 0, Tλ (t) is in trace class.
Proof. First we claim that AλTλ (t) is a bounded operator. Assuming the claim,

the theorem follows easily since we have for any ξ ∈ ρ (A)

Tλ (t) = (ξ −Aλ)
−1

((ξ −Aλ)Tλ (t)) ,

which is the multiplication of a trace class operator with a bounded operator, so it is
in trace class.

We shall now prove the claim, which is due to the smoothing effect of Tλ (t). We
need to show only that ATλ (t) is bounded. For this purpose we study the evolution
equation associated with Tλ (t).

d

dt
f =

d2

dy2
f − α2f +K (y) f −K (y)

λ2

λ2 + U (y)
2 f −K (y)

λU (y)

λ2 + U (y)
2h,(17a)

d

dt
h =

d2

dy2
h− α2h+K (y)h+K (y)

λU (y)

λ2 + U (y)
2 f −K (y)

λ2

λ2 + U (y)
2h(17b)

with f (0) = f0, h (0) = h0. Now to show the claim, it suffices to prove∥∥∥∥ d2

dy2
f (t)

∥∥∥∥
2

,

∥∥∥∥ d2

dy2
h (t)

∥∥∥∥
2

≤ C (t) (‖f0‖2 + ‖h0‖2) .

We denote (17) by

d

dt
f =

d2

dy2
f +R1 (f, h) ,(18a)

d

dt
h =

d2

dy2
h+R2 (f, h) .(18b)
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Then it is easy to see that

‖R1‖2 , ‖R2‖2 ≤ C0 (‖f (t)‖2 + ‖h (t)‖2)

≤ C0Ceωt (‖f0‖2 + ‖h0‖2) .

So from the regularity theory of the linear parabolic equation, we have∥∥∥∥ d2

dy2
f (t)

∥∥∥∥
2

,

∥∥∥∥ d2

dy2
h (t)

∥∥∥∥
2

≤ C ′ (t) (‖f (t)‖2 + ‖h (t)‖2 + ‖R1‖2 + ‖R2‖2)

≤ C ′′ (t) (‖f0‖2 + ‖h0‖2) .

Thus the claim is proved.
From Lemmas 2.1 and 2.2, we know that the eigenvalues of Aλ and Tλ (t) are

discrete with finite multiplicity and that

σ (Tλ (t)) \ {0} = exp (−tσ (Aλ)) .

Now denote all the distinct eigenvalues of Aλ (arranged with nondecreasing real part)
by µ1 (λ) , µ2 (λ) , . . . , µk (λ) , . . . , with multiplicities n1, n2, . . . , nk, . . . . We define the
infinite determinant of Id− Tλ (1) as

d (λ) =
∞∏
k=1

(1− exp (−µk (λ)))
nk .

Since Tλ (1) is a trace class operator and µk (λ) appears in complex conjugate pairs,
d (λ) is a finite real number. From the definition of d (λ), we know that the sign
of d (λ) is determined only by the number of negative real eigenvalues of Aλ. If this
number is odd, then d (λ) is negative. And d (λ) is positive if the number is even.
Here we always assume Aλ has no kernel, since otherwise we have already obtained a
solution to the Rayleigh equation.

We define three sets

S− = {λ > 0| d (λ) < 0} , S+ = {λ > 0| d (λ) > 0} , S0 = {λ > 0| d (λ) = 0} .
We will show that S−, S+ are nonempty open sets. Then the theorem follows easily,
as we shall now show.

Proof of Theorem 1.4. We claim that S0 is nonempty. Otherwise we would have
(0,+∞) = S− ∪ S+, which is impossible, since S−, S+ are two disjoint open sets.
So there must exist some λ0 > 0 such that d (λ0) = 0. Then there exists k so that
1 − exp (−µk (λ0)) = 0. So µk (λ0) = 0 and Aλ0 has a nontrivial kernel (f, h). This
means that c = iλ0, φ = f + ih is a solution to Rayleigh’s equation (3) .

The next several lemmas prove the properties of S−, S+ that we need.
Lemma 2.3. S+ is nonempty.
Proof. Because for any real vector (f, h) ,

(
(f, h) , Aλ

(
f
h

))
=

((
− d2

dy2
+ α2 −K (y) +K (y)

λ2

λ2 + U (y)
2

)
f, f

)

+

((
− d2

dy2
+ α2 −K (y) +K (y)

λ2

λ2 + U (y)
2

)
h, h

)

> 0
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when λ is large, Aλ is a positive operator. Thus all its real eigenvalues are positive,
so that d (λ) > 0 for λ large.

Lemma 2.4. S− is nonempty.

Proof. From the assumptions of Theorem 1.4 and the definition of operator A0,
we know that d (0) < 0. We will show that for λ small, d (λ) < 0.

First we claim that

(i) for any eigenvalue µ (λ) of Aλ, we have |Imµ (λ)| < ‖K‖∞;

(ii) there exists positive ε1, δ1 such that if 0 ≤ λ < δ1, then for any eigenvalue
µ (λ) of Aλ, we have |Reµ (λ)| > ε1.

Proof of claim (i). Let (f, h) be the eigenfunction with ‖f‖2 + ‖h‖2 = 1. Taking
inner products with the conjugate

(
f̄ , h̄

)
on both sides of

Aλ

(
f
h

)
= µ (λ)

(
f
h

)
(19)

and comparing the imaginary parts, we get

|Imµ (λ)| ≤
∣∣∣∣∣2 ‖K‖∞ Im

∫ a

−a

λU (y)

λ2 + U (y)
2 fh̄dy

∣∣∣∣∣
≤ ‖K‖∞

1

2
(‖f‖2 + ‖h‖2)

2
=

1

2
‖K‖∞ .

Proof of claim (ii). Supposing it is not true, we could find a sequence λn → 0,
µn being an eigenvalue of Aλn , and Reµn → 0. Let (fn, hn) be the corresponding
eigenfunction and ‖fn‖2 + ‖hn‖2 = 1. By (i), {µn} is a bounded sequence. We can
find a subsequence such that µnk → µ0, so that µ0 is purely imaginary. We still
denote the subsequence by {µn} .

From the equation satisfied by the eigenfunction (fn, hn), we get

‖fn‖H2 , ‖gn‖H2 ≤ C (‖f‖2 + ‖h‖2) = C

from elliptic regularity theory by noticing that the coefficients in (19) are uniformly
bounded. Thus there exists a subsequence such that (fnk , gnk) → (f0, g0) weakly in
H2 and strongly in H1. Moreover,

∥∥∥∥(A0 − µ0)

(
fnk
hnk

)∥∥∥∥≤‖K‖∞
(∥∥∥∥∥ λ2

nk

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λnkU (y)

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

)

× (‖fnk‖∞ + ‖hnk‖∞
)
+ |µnk − µ0|

(‖fnk‖2 + ‖hnk‖2

)
≤C

(∥∥∥∥∥ λ2
nk

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λnkU (y)

λ2
nk

+ U (y)
2

∥∥∥∥∥
2

+ |µnk − µ0|
)

tends to zero as λnk → 0. Thus we have µ0 ∈ σ (A0) , which is a contradiction to the
fact that A0 has no eigenvalue lying on the imaginary axis. So claim (ii) is proved.

Let Λ be the infimum of real part of eigenvalues of Aλ. Λ is finite since Aλ is
uniformly bounded from below. Define

D =
{
(x, y) |Λ− 1 < x < −ε1

2
, − ‖K‖∞ < y < ‖K‖∞

}
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and Γ = ∂D. From claim (ii), if λ < δ1, all eigenvalues of Aλ with negative real part
lie in D. Define the Riesz projection as

Pλ =
1

2πi

∮
Γ

(k −Aλ)
−1

dk(20)

and R (Pλ) its range, where λ ≥ 0 and the Γ-integral is in the counterclockwise sense.
Then by the definition of d (λ)

sign d (λ) = (−1)dimR(Pλ)
.(21)

To prove the lemma, it suffices to show that ‖Pλ − P0‖ → 0 as λ → 0. If so, then
dim (R(Pλ)) = dim (R(P0)) if λ is small enough. By the definition of P0, dim (R(P0))
is the number of negative eigenvalues of A0 on the space H, which is equal to that

of the operator − d2

dy2 + α2 −K (y) on the space H2 (−a, a) ∩H1
0 (−a, a). This is due

to the fact that any eigenfunction of − d2

dy2 + α2 − K (y) is either odd or even when

K (y) is even. With α lying in the intervals of Theorem 1.4, − d2

dy2 + α2 −K (y) has

an odd number of negative eigenvalues, so dim (R(P0)) is odd. Thus when λ is small
enough, dim (R(Pλ)) is odd, which implies that d (λ) is negative by (21) so that S−
is not empty.

To show ‖Pλ − P0‖ → 0, we note that

∥∥∥∥Bλ
(

f
h

)∥∥∥∥ ≤ ‖K‖∞
(∥∥∥∥∥ λ2

λ2 + U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λU (y)

λ2 + U (y)
2

∥∥∥∥∥
2

)
(‖f‖∞ + ‖h‖∞)

≤ C ‖K‖∞
(∥∥∥∥∥ λ2

λ2 + U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λU (y)

λ2 + U (y)
2

∥∥∥∥∥
2

)(∥∥∥∥A0

(
f
h

)∥∥∥∥+
∥∥∥∥
(

f
h

)∥∥∥∥
)

= C (λ)

(∥∥∥∥A0

(
f
h

)∥∥∥∥+
∥∥∥∥
(

f
h

)∥∥∥∥
)
,

where

C (λ) = C ‖K‖∞
(∥∥∥∥∥ λ2

λ2 + U (y)
2

∥∥∥∥∥
2

+

∥∥∥∥∥ λU (y)

λ2 + U (y)
2

∥∥∥∥∥
2

)
→ 0

as λ → 0 by dominant convergence. Since Γ ⊂ σ (Aλ) if λ < δ1 and Γ is compact, it

follows that ‖ (ξ −Aλ)
−1 ‖ is uniformly bounded by some constant M independent of

ξ ∈ Γ. Then we have∥∥∥(ξ −Aλ)
−1 − (ξ −A0)

−1
∥∥∥ = ∥∥∥(ξ −Aλ)

−1
Bλ (ξ −A0)

−1
∥∥∥

≤
∥∥∥(ξ −Aλ)

−1
∥∥∥∥∥∥Bλ (ξ −A0)

−1
∥∥∥

≤ MC (λ)
(∥∥∥A0 (ξ −A0)

−1
∥∥∥+ ∥∥∥(ξ −A0)

−1
∥∥∥)

≤ MC (λ)
(
1 +

∥∥∥ξ (ξ −A0)
−1
∥∥∥+ ∥∥∥(ξ −A0)

−1
∥∥∥) .

So as λ → 0, ‖ (ξ −Aλ)
−1−(ξ −A0)

−1 ‖ → 0 uniformly for ξ ∈ Γ. Thus ‖Pλ − P0‖ →
0 if λ → 0.
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Lemma 2.5. S− and S+ are open sets.
Proof. We will show that S− is open. The proof for S+ is the same. Suppose

λ0 ∈ S−. Let b > 0 be such that there is no eigenvalue of Aλ0
with real part b.

Then by the same argument as in the last lemma, there exists ε1, δ1 > 0 such that if
|λ− λ0| < δ1, then for any eigenvalue µ (λ) of Aλ, we have |Reµ (λ)− b| > ε1. Let Λ
be the infimum of real part of eigenvalues of Aλ. Define

D =
{
(x, y) |Λ− 1 < x < −ε1

2
+ b, − ‖K‖∞ < y < ‖K‖∞

}
and Γ = ∂D. Then all eigenvalues of Aλ with real part smaller than b lie in D
and Γ ⊂ σ (Aλ) provided |λ− λ0| < δ1. Define Pλ by (20). Then ‖Pλ − Pλ0‖ → 0 as
|λ− λ0| → 0, since Aλ is analytic for λ > 0. So dim (R (Pλ)) = dim (R(Pλ0

)) if |λ− λ0|
is small enough. Let µ1, µ2, . . . , µN be all the distinct eigenvalues of Aλ0 in D. Let mk

be the multiplicity of µk. Now for each µk, we can take a small ball Bk = B (µk; rk)
such that there are no other eigenvalues of Aλ0

in it besides µk. And by taking rk
small enough we can suppose that Bk does not intersect with the imaginary axis if
Reµk �= 0, and Bk does not intersect with the real axis if Reµk = 0. Also Bk does
not intersect with Γ. They are disjoint with others, and for the conjugate eigenvalue
we take the same radius. Then if |λ− λ0| is small enough, by analytic perturbation
theory, there are exactly mk eigenvalues (counting multiplicity) of Aλ in each Bk.
Since dim (R (Pλ)) = dim (R(Pλ0)), these are all the eigenvalues of Aλ in D. Now
notice that for each Bk and its conjugate one, if we multiply all the eigenvalues of
Aλ in them, the sign is the same as for Aλ0

. So in the definition of d (λ) , the part
corresponding to the multiplication of all eigenvalues of Aλ with real part smaller than
b is of the same sign with the λ0 case. Thus it is negative if |λ− λ0| is small. While
the other part of multiplication is always positive, we proved that d (λ) is negative
when |λ− λ0| is small. This finishes the proof of the lemma.

It is easy to see that we can get the following abstract version by the same proof.
Theorem 2.6. Consider a family of real operators Aλ = −A+Bλ (λ ∈ (0,+∞))

with the same domain H. We assume the following:
(I) Bλ is bounded and norm continuous for positive λ.
(II) A generates a generalized parabolic semigroup; that is, exp (tA) is in trace

class and A exp (tA) is bounded.
(III) When λ is sufficiently large, Aλ has no eigenvalue with negative real part.
(IV) When λ tends to 0, Aλ tend to A0 in the sense that

‖(Aλ −A0)φ‖ ≤ c (λ) (‖A0φ‖+ ‖φ‖) ,
c (λ) → 0 as λ → 0+ for any function φ ∈ H. Then if A0 has an odd number of
negative eigenvalues and no kernel, there must exist some λ0 > 0 such that Aλ0

has
a nontrivial kernel.

We can also treat the periodic and Neumann boundary conditions for the Rayleigh
equation by the same method. The conclusion and the proofs are direct analogues of
Theorem 1.4.

Example 2.7 (doubly symmetric flows). Theorem 1.4 could be used to treat some
nonodd flows.

Suppose that U (y) is even on (0, 2d) with respect to its midpoint d and is odd
on (0, d) with respect to its midpoint d

2 . In that case, we could treat the sinuous
(even mode) and varicose (odd mode) separately by studying the Rayleigh equation
on [0, d], taking the boundary condition at d to be either φ′ (d) = 0 or φ (d) = 0. We
could treat the varicose case by Theorem 1.4.



IDEAL PLANE FLOW INSTABILITY 329

The flow U (y) = cos (my) on [−π, π] was treated in [12]. If m is odd, then U (y)
is in the class we described above. For varicose modes, we can restrict the problem to
[0, π] and furthermore restrict the function space to be the space Pj spanned by sinny
(n = j +mp) . Here j is a fixed integer in [1, [m/2]] . Then the space Pj is invariant
under the operator Aλ corresponding to U (y) = cos (my) . Notice that if

m2 − (m− j)
2
< α2 < m2 − j2,

then − d2

dy2 +α2−m2 has only one negative eigenvalue on Pj . Thus from Theorem 1.4,

we know that there is a purely growing unstable mode. This was proved in [12] by
a continued fractions technique. It was also shown in [12] by numerical computation
that if α is small, there is no purely growing mode.

3. Neutral limiting modes. In this section, we study properties of the possible
neutral limiting modes. For a certain class of flows, we get a simple characterization
of the neutral limiting phase speed cs. For flows of class K, we get a complete char-
acterization as in Theorem 1.7.

Definition 3.1. A velocity profile U (y) is said to be in class F if for each
number c in the range of U but not an inflection value, U ′′ takes the same sign at all
points where U (y) = c.

Some examples in class F are a monotone flow, a symmetric flow with monotone
half part, and a flow satisfying U ′′ (y) = g (U (y)) k (y) for some function g and k (y) >
0. It is readily seen that K ⊂ F .

Remark 3.2. We mention two simple facts we will use later.

(i) For a C2 flow U (y), if c is not an inflection value, then U (y) = c can only
hold at a finite number of points.

(ii) For a C2 flow U (y), if there exists some inflection value Us such that the
function

K (y) := −U ′′ (y) / (U (y)− Us)(22)

is bounded on [y1, y2] , then U (y)−Us = 0 can only hold at a finite number of points.

For the proof of (i), we notice that U ′′ (y0) �= 0 at any point y0 ∈ {U (y) = c},
since c is not an inflection value. So y0 is an isolated point of {U (y) = c}. Therefore
{U (y) = c} is a finite set. For (ii) we observe that φ = U (y) − Us solves a second
order regular ODE

φ′′ +K (y)φ = 0

on [y1, y2] . So the zeros of φ cannot cluster in the interval.

Theorem 3.3. If U (y) is in class F , then the neutral limiting phase speed must
be an inflection value.

Note that in Definition 1.6, αs is positive. If αs = 0, then the neutral limiting
phase speed might not be the inflection value. A counterexample is U (y) = cos (6y) ,
y ∈ (−π, π) . The numerical computation in [12] indicated that when αs = 0, the
neutral limiting phase speed is cs = −1 while the inflection value is 0.

For the proof of this theorem, we need several lemmas from the literature, which
we state without proof. The first one is an important equality which was first used
to prove Rayleigh’s criterion.
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Lemma 3.4. Let φ be a solution of (3) with complex eigenvalue c = cr + ici
(ci �= 0) , and let

Jq (φ) =

∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′ (U − q)

|U − c|2 |φ|2
)
dy.(23)

Then Jq (φ) = 0 for every real number q.
Proof. We multiply the Rayleigh equation(

d2

dy2
− α2

)
φ− U ′′

U − c
φ = 0

by φ∗ (∗ denotes the complex conjugate) and integrate it to get∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′

U − c
|φ|2

)
dy = 0.

Comparing real and imaginary parts, we get∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′ (U − cr)

|U − c|2 |φ|2
)
dy = 0,(24)

∫ y2

y1

U ′′

|U − c|2 |φ|2 dy = 0.(25)

Combining (24) and (25), we get the conclusion.
We also need some results from [22]. In the following we use the notation in [22].

Let c be any real number in the range of U (y) and let z1 < z2 < · · · < zkc be the
zeros of U (y)− c. Here we assume kc is finite. In the following we always consider the
cases in Remark 3.2, so this assumption is valid. We denote by S0 the complement
of the set of points {zi} in the interval [y1, y2] . Let z0 = y1 and zkc+1 = y2. Then we
have the following lemma.

Lemma 3.5. Let φ satisfy (3) with positive α and c as above on S0, where φ is
sectionally continuous on the open intervals (zj , zj+1) , j = 0, 1, . . . , kc. Then φ cannot
vanish at both endpoints of any of the intervals (zj , zj+1) unless it vanishes identically
on that interval.

Proof. This lemma was proved in [22], where it was used for a different purpose,
namely, to show that for a fixed wave number there are only a finite number of unstable
eigenvalues of the Rayleigh equation under some conditions. Here we give the proof
for completeness.

The Rayleigh equation (3) can be rewritten as

((U − c)φ′ − U ′φ)′ = α2 (U − c)φ.(26)

Suppose φ (zi+) = φ (zi+1−) = 0 and study (26) in [zi, zi+1] . From the definition of
zi, U − c has constant sign in (zi, zi+1) .

If zi �= y1 (i �= 0) , then U (zi) − c = 0. Let z̃ ≤ zi+1 be the nearest zero of φ in
(zi, zi+1]. Since (26) is a real equation, we may assume φ is real and nonnegative on
the interval (zi, z̃) and that φ′ (zi) ≥ 0 and φ′ (z̃) ≤ 0. Integrating (26) over (zi, z̃),
we get

(U (z̃)− c)φ′ (z̃) = α2

∫ z̃

zi

φ(U − c)dz′,

since φ vanishes at the endpoints zi, z̃.
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If z̃ = zi+1, then the left-hand side above must be zero. Hence φ is identically
zero on (zi, zi+1) . On the other hand, if z̃ < zi+1, then U (z̃) �= c and

φ′ (z̃) = α2

∫ z̃

zi

(U (z′)− c)

(U (z̃)− c)
φ (z′) dz′,

which could not hold true unless φ ≡ 0 on [zi, z̃] . But the second order ODE (26) is
regular on (zi, zi+1) . Thus z could not be a cluster point of a nontrivial solution φ.
Thus φ must be identically zero on (zi, zi+1) .

If i = 0, then we repeat the same argument with the right endpoint of the interval
(y1, z1) .

Lemma 3.6. Let {(ck, αk, φk) (with Im ck>0)}∞k=1 be the solutions to the Rayleigh
equation (3) and ‖φk‖ = 1, and (ck, αk) converges to (cs, αs) with positive αs. Then
φk converges uniformly to a function φs on any compact subset of S0, φ

′′
s exists on

S0, and φs satisfies (14) .
The case when αk is independent of k was proved in [22], but the proof can be

applied to the current case without much change. The basic idea is that on compact
subsets of S0, the function 1/ (U (y)− ck) is uniformly bounded, so we get a uniform
bound on the derivatives of φk up to second order.

Proof of Theorem 3.3. Let (cs, αs, φs) be a neutral limiting mode and assume
cs is not an inflection value. First we show that the φs obtained by Lemma 3.6 is
not identically zero. Otherwise suppose φs ≡ 0. Let z1, z2, . . . , zm be all the zeros of
U (y) − cs, which by Remark 3.2 is finite. Then by the assumption of the theorem
and the definition of class F , all U ′′ (zi) have the same sign, say positive. Let Eδ =
{y ∈ [y1, y2] | |y − zi| < δ for some i} . Then Ecδ ⊂ S0 and U ′′ (y) > 0 for y ∈ Eδ if δ
small enough. Take q = minU (y)− 1 and assume ‖φk‖2 = 1. Then

Jq (φk) =

∫ y2

y1

(
|φ′
k|2 + α2

k |φk|2 +
U ′′ (U − q)

|U − ck|2
|φk|2

)
dy

≥ α2
k +

∫
Ecδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy +

∫
Eδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy

≥ α2
k − sup

Ecδ

|U ′′ (U − q)|
(U − ck)

2

∫
Ecδ

|φk|2 dy.

Since φk converges to φs ≡ 0 uniformly on Ecδ , we have

lim
k→∞

inf Jq (φk) ≥ α2
s.

So for large k, Jq (φk) �= 0, which is a contradiction to Lemma 3.4.
So by Lemma 3.5, there is some zi such that φs (zi) �= 0. Then∫

Eδ

U ′′ (U − q)

|U − cs|2
|φs|2 dy ≥

∫
|y−zi|<δ

U ′′

|U − cs|2
|φs|2 dy = +∞

since cs is not an inflection value. By Fatou’s lemma,

lim
k→∞

inf

∫
Eδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy = +∞.

So from

Jq (φk) ≥
∫
Eδ

U ′′ (U − q)

|U − ck|2
|φk|2 dy − sup

Ecδ

U ′′ (U − q)

|U − ck|2
,
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we get limk inf Jq (φk) = +∞, which is a contradiction to the fact that Jq (φk) = 0
(Lemma 3.4). Thus cs must be an inflection value. This ends the proof of Theorem
3.3.

To show Theorem 1.7, we need to get some a priori estimate for the sequence of
unstable solutions {φk} in Definition 1.6. We have the following.

Lemma 3.7. For the flow U (y) in class K, if φ is the solution to (3) with Im c > 0,
then we have ∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy <

∫ y2

y1

K (y) |φ|2 dy(27)

and ∫ y2

y1

(
|φ′′|2 + 2α2 |φ′|2 + α4 |φ|2

)
dy < ‖K‖∞

∫ y2

y1

K (y) |φ|2 dy.(28)

Proof. Inequality (27) was obtained in [8], but we prove it here for completeness.
Denote c = cr + ici (ci > 0). By Lemma 3.4, for any real q

∫ y2

y1

(
|φ′|2 + α2 |φ|2 + U ′′ (U − q)

|U − cr|2 + c2i
|φ|2

)
dy = 0.(29)

Let q = Us − 2 (Us − cr) . Then∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy =

∫ y2

y1

K (y)
(U − Us) (U − q)

|U − cr|2 + c2i
|φ|2 dy

=

∫ y2

y1

K (y)
(U − Us)

2
+ 2 (U − Us) (Us − cr)

|U − cr|2 + c2i
|φ|2 dy

=

∫ y2

y1

K (y)
(U − cr)

2 − (Us − cr)
2

|U − cr|2 + c2i
|φ|2 dy

<

∫ y2

y1

K (y) |φ|2 dy.

This proves (27) .
In (29), let q = Us, we get by (27)

∫ y2

y1

K (y)
(U − Us)

2

|U − cr|2 + c2i
|φ|2 dy =

∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy <

∫ y2

y1

K (y) |φ|2 dy.
(30)

We shall show that∫ y2

y1

(
|φ′′|2 + 2α2 |φ′|2 + α4 |φ|2

)
dy −

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy = 0,(31)

which was first proved in [2]. For completeness we now give the proof of (31). We
multiply the Rayleigh equation(

d2

dy2
− α2

)
φ− U ′′

U − c
φ = 0
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by (φ∗)′′ and integrate it to get∫ y2

y1

(
(φ∗)′′

(
φ′′ − α2φ

))
=

∫ y2

y1

(
(φ∗)′′

U ′′

U − c
φ

)
.(32)

By integration by parts,

LHS of (32) =

∫ y2

y1

(
|φ′′|2 + α2 |φ′|2

)
dy.

Using the Rayleigh equation for φ∗, we have

RHS of (32) =

∫ y2

y1

((
α2φ∗ +

(
U ′′

U − c
φ

)∗)(
U ′′

U − c
φ

))
dy

= α2

∫ y2

y1

U ′′ |φ|2
U − c

dy +

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy.

So∫ y2

y1

(
|φ′′|2 + α2 |φ′|2

)
dy = ReRHS

= α2

∫ y2

y1

U ′′ (U − cr) |φ|2
|U − cr|2 + c2i

dy +

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy

= −α2

(∫ y2

y1

(
|φ′|2 + α2 |φ|2

)
dy

)
+

∫ y2

y1

(U ′′)2 |φ|2
|U − cr|2 + c2i

dy,

by (29) with q = cr. Now (31) follows.
Then inequality (28) follows easily from (5) , (30), and (31) .
Remark 3.8 (stability). The inequality (27) was used in [8] to prove that there

is no unstable solution to (3) when α ≥ αmax. Indeed, from (27) , if there exists some
solution φ with Im c > 0, then

−α2 >

∫ y2
y1

(
|φ′|2 −K (y) |φ|2

)
dy∫ y2

y1
|φ|2 dy

≥ inf
φ∈H1

0(y1,y2)

∫ y2
y1

(
|φ′|2 −K (y) |φ|2

)
dy∫ y2

y1
|φ|2 dy = α2

max.

This proves that the condition in Theorem 1.2 is sharp for instability.
Proof of Theorem 1.7. Given (cs, αs, φs) , let {(ck, αk, φk)} (with Im ck > 0)

be a sequence of solutions to the Rayleigh equation (3), as in Definition 1.6 of the
introduction. Here we take ‖φk‖2 = 1. By Theorem 3.3, ck → Us. From Lemma 3.7,
we get ∫ y2

y1

(
|φ′
k|2 + |φ′′

k |2
)
dy < max

{
‖K‖2

∞ , 1
}
.

So there is a subsequence {φnk} of {φk} and φ0 ∈ H2 ∩H1
0 (y1, y2) such that

‖φnk − φ0‖C1 → 0 and ‖φ0‖2 = 1.
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Taking limits in

(
d2

dy2
− α2

nk

)
φnk −

U ′′

U − cnk
φnk = 0,

we get

− d2

dy2
φ0 +

U ′′

U − Us
φ0 = −α2

sφ0.

From the definition of φs, we have φs = φ0 and thus the conclusion of Theorem 1.7
follows.

Theorem 3.9. Let U (y) be in class K. Then the set Ξ of all unstable wave
numbers is open. Any boundary point α of Ξ must satisfy the condition that −α2 is

a negative eigenvalue of − d2

dy2 −K (y) in H2 ∩H1
0 (y1, y2) .

Proof. If α ∈ Ξ, then there exists c with Im c > 0 such that the Rayleigh equation
(3) has some solution φ. Let

ψ =

(
d2

dy2
− α2

)
φ, Bαψ := Uψ − U ′′

(
d2

dy2
− α2

)−1

ψ.

Then from (3) we have Bαψ = cψ. It is easy to see that σess (Bα) = [Umin, Umax] .
So c is some discrete eigenvalue of Bα. Since Bα is norm continuous in α, for any α′

near α, there is also a complex c′ in the spectrum of Bα′ . So Ξ is open. From the
definition of neutral limiting modes, we know immediately that the boundary points
of Ξ are neutral limiting wave numbers. Then the other conclusion in the theorem
follows from Theorem 1.7.

From Theorem 3.9, we know that in order to determine Ξ, we only need to know
the instability property near any neutral limiting wave number. This is the basis of
our method in the next section for obtaining a sufficient condition for instability.

4. Proof of Theorem 1.2. Let the steady flow U (y) be in the class K+. To
prove Theorem 1.2, we need to study the instability near each neutral limiting wave
number. Tollmien [23] heuristically showed that unstable modes exist near a neutral
mode for a symmetric flow in class K+. This was later reconsidered and the asymp-
totic growth rate was found by C. C. Lin [17]. However, the existence of unstable
modes near a neutral mode had still not been rigorously proved. Another approach
was recently given in [20] for a monotone flow in class K+, where the implicit function
theorem was invoked to get existence. However, because the differentiability condi-
tion was only established on half of a neighborhood, the standard implicit function
theorem does not apply. Moreover, the convergence to the neutral eigenfunction in
their computation was not specified. Thus, as far as we are aware, a complete proof
of Tollmien’s argument does not yet exist.

Therefore in this section, we rigorously prove a perturbation result of Tollmien
type for flows in class K+. The existence of an unstable mode is established when the
wave number is slightly to the left of a neutral wave number.

Theorem 4.1. Suppose U (y) is in class K+ and (φs, αs, Us) with αs > 0 satisfies

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

sφs(33)
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with φs (y1) = φs (y2) = 0. Then there exists ε0 < 0 such that if ε0 < ε < 0, there is
a nontrivial solution φε to the Rayleigh equation

(U − Us − c (ε))

(
d2

dy2
− α (ε)

2

)
φε − U ′′φε = 0

with φε (y1) = φε (y2) = 0. Here α (ε) =
√

ε+ α2
s is the perturbed wave number and

Us + c (ε) is an unstable eigenvalue with Im c (ε) > 0. Moreover, the function c (ε) is
differentiable in (ε0, 0) and

lim
ε→0−

c (ε) = 0,(34)

lim
ε→0−

c′ (ε) =

∫ y2
y1

φ2
s (y) dy

iπ
∑l
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P ∫ y2

y1
(K (y)φ2

s (y)) / (U (y)− Us) dy
,

(35)

where a1, . . . , al are the inflection points such that U (ak) = Us, k = 1, . . . , l, and
P ∫ y2

y1
denotes the Cauchy principal part.

Remark 4.2. As mentioned in Remark 3.2, the number of points where U takes
the value Us is finite. In formula (35) , we have

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak > 0.

This is due to the following two facts:
(a) The function φs must be nonzero at at least one of the points ak. This is a

corollary of Lemma 3.5, where c = Us and zj = aj .
(b) We have U ′ (ak) �= 0 for each k. Otherwise there exists some k such that

U ′ (ak) = 0. Then it is easy to see that K (ak) = ∞, which is contradictory to our
assumption that K is bounded.

Proof of Theorem 4.1. Define φ1 (y; c, ε) and φ2 (y; c, ε) to be the solutions of

− d2

dy2
φ+

U ′′

U − Us − c
φ+

(
α2
s + ε

)
φ = 0,(36)

with φ1 (y1) = 0, φ′
1 (y1) = φ′

s (y1) and φ2 (y1) = − 1
φ′
s(y1)

, φ′
2 (y1) = 0. Here ε < 0 and

Im c > 0. Then φ1, φ2 are analytic in the upper half-plane as a function of c and φ1, φ2

are independent with Wronskian 1. Now define I (c, ε) = φ1 (y2; c, ε). The existence
of a solution to the Rayleigh equation is equivalent to the existence of a root of I
with Im c > 0. It will be proved by a modified Newton method, i.e., by finding a fixed
point of

c → c− I (c, ε)

∂I/∂c |(c,ε)=(0,0)
.

Letting

N (t, y; ε, c) = φ1 (t; ε, c)φ2 (y; ε, c)− φ2 (t; ε, c)φ1 (y; ε, c) ,
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we will show that

∂I

∂ε
=

∫ y2

y1

N (y, y2; ε, c)φ1 (y; c, ε) dy(37)

and

∂I

∂c
=

∫ y2

y1

N (y, y2; ε, c)
U ′′ (y)

(U (y)− Us − c)
2φ1 (y; c, ε) dy.(38)

In order to prove (37) and (38), notice that for (c′, ε′) close to (c, ε) with Im c′ > 0,
the function φ1 (y; c

′, ε′) satisfies

− d2

dy2
φ+

U ′′

U − Us − c
φ +

(
α2
s + ε

)
φ

=

[ −U ′′ (y) (c′ − c)

(U (y)− Us − c) (U (y)− Us − c′)
− (ε′ − ε)

]
φ.

So

φ1 (y; c
′, ε′) = φ1 (y; c, ε)

−
∫ y

y1

N (t, y; ε, c)

[ −U ′′ (t) (c′ − c)

(U (t)− Us − c) (U (t)− Us − c′)
− (ε′ − ε)

]
φ1 (t; c

′, ε′) dt.

Thus, letting y = y2,

I (c′, ε′) = I (c, ε)

+

∫ y2

y1

N (t, y2; ε, c)

[
U ′′ (t) (c′ − c)

(U (t)− Us − c) (U (t)− Us − c′)
+ (ε′ − ε)

]
φ1 (t; c

′, ε′) dt.

Identities (37) and (38) follow from this identity by letting (c′, ε′) tend to (c, ε).
Now define the triangle

∆(R,b) = {cr + ici| |cr| < Rci, 0 < ci < b}

and the Cartesian product

E(R,b1,b2) = ∆(R,b1) × (−b2, 0) ,

where b1, b2 > 0.
We make the following claims:
(a) For fixed R, (c, ε) ∈ E(R,b1,b2), φ1 (y; c, ε) uniformly converges to φs (y) in

C1[y1, y2] as c → 0, ε → 0 − . That is, for any δ > 0, there exists some b0 > 0 such
that

‖φ1 (y; c, ε)− φs (y)‖C1 ≤ δ

for b1, b2 < b0, (c, ε) ∈ E(R,b1,b2).
(b) The same conclusion holds true for φ2 (y; c, ε). We denote φ2 (y; 0, 0) = φz (y) ,

so that φz (y2) = − 1
φ′
s(y2)

. Then φ2 (y; c, ε) uniformly converges to φz (y) in C1[y1, y2]

for (c, ε) ∈ E(R,b1,b2), c → 0, ε → 0− .
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Proof of claim (a). Indeed, if it is not true, then there exists δ0 > 0 and a sequence
{(ck, εk)}∞k=1 , (ck, εk) → (0, 0) , |Re ck| < R Im ck such that

‖φ1 (y; ck, εk)− φs (y)‖C1 ≥ δ0.

Since |Re ck| < R Im ck and Im ck < b0, we have∣∣∣∣ U ′′ (y)
U (y)− Us − ck

∣∣∣∣ ≤ |K (y)|+ |K (y)|
∣∣∣∣ ck
U (y)− Us − ck

∣∣∣∣ ≤ |K (y)|
(
1 +

√
R2 + 1

)
.

Thus ∥∥∥∥ U ′′ (y)
U (y)− Us − ck

∥∥∥∥
∞

≤ ‖K‖∞
(
1 +

√
R2 + 1

)
.(39)

Let φk = φ1 (y; ck, εk); then we have uniform bound for ‖φk‖C2 because φk satisfies
an ODE (36) with uniformly bounded coefficients and the same initial value. So by
the Ascoli–Arzelà lemma, there is a subsequence {φki} and a function φ0 ∈ C1[y1, y2]
such that

‖φki − φ0‖C1 → 0

as ki → ∞. Since φki satisfies Rayleigh’s equation, φ0 satisfies

− d2

dy2
φ0 +

U ′′

U − Us
φ0 = −α2

sφ0,

with φ0 (y1) = 0, φ′
0 (y1) = φ′

s (y1); thus φ0 = φs. So ‖φki − φs‖C1 → 0, which is a
contradiction to our assumption. Claim (b) follows similarly.

In the appendix we prove that

∂I

∂ε
→ − 1

φ′
s (y2)

∫ y2

y1

φ2
s (y) dy(40)

and

∂I

∂c
→ 1

φ′
s (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)(41)

uniformly in E(R,b1,b2) as c → 0, ε → 0− . Denote these limits by

B = − 1

φ′
s (y2)

∫ y2

y1

φ2
s (y) dy,

C =
1

φ′
s (y2)

P
∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy,

D =
π

φ′
s (y2)

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak ,

where ak (k = 1, . . . , l) are the inflection points. Denote

f (c, ε) = I (c, ε)−Bε− (C +Di) c
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and

h (c, ε) = − B

C + iD
ε− f (c, ε)

C + iD
.

Then by the uniform convergence of (40) and (41) , for any δ0 > 0, there exists b0 so
that when b1, b2 < b0 wehave∣∣∣∣∂f∂c

∣∣∣∣ ,
∣∣∣∣∂f∂ε

∣∣∣∣ < δ0 ∀ (c, ε) ∈ E(R,b1,b2).(42)

So for any (c, ε) , (c′, ε′) in the convex set E(R,b1,b2),

|f (c, ε)− f (c′, ε′)| ≤ δ0 (|ε− ε′|+ |c− c′|) .(43)

Now in (43) we let (c′, ε′) → (0, 0) and notice that

lim
(c′,ε′)→(0,0)

f (c′, ε′) = lim
(c′,ε′)→(0,0)

I (c′, ε′) = lim
(c′,ε′)→(0,0)

φ1 (y2; c
′, ε′) = φs (y2) = 0,

so we obtain

|f (c, ε)| ≤ δ0 (|ε|+ |c|) ∀ (c, ε) ∈ E(R,b1,b2).(44)

Note that for fixed ε, a zero of I (c, ε) is a fixed point of c → h (c, ε). Let R = 4
∣∣C
D

∣∣
if C �= 0 and R = 1 if C = 0. Notice that by Remark 4.2, BD < 0. Denote

Q =
√

R2 + 1
−2DB

C2 +D2
+ 1.

Let

δ0 =
1

2
min

{ |BC|
Q (C2 +D2)

,
−BD

Q (C2 +D2)
, 1

}√
C2 +D2

if C �= 0 and

δ0 =
1

2
min

{ −BD

Q (C2 +D2)
, 1

}√
C2 +D2

if C = 0. There exists b0 such that if b1, b2 < b0, then (44) and (42) hold. We choose

b2 = min

{
C2 +D2

−2DB
√
R2 + 1

, 1

}
b0, b1 = Qb2.

Fix ε ∈ (−b2, 0) and let

b (ε) =
−2DB

C2 +D2
ε.

We will prove that

h (·, ε) : ∆(R,b(ε)) → ∆(R,b(ε)) is a contraction map,(45)

with contraction ratio no greater than 1
2 for all −b2 < ε < 0.
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Assuming (45), the theorem follows easily. Indeed, for each ε ∈ (−b2, 0) there
exists a unique c (ε) ∈ ∆(R,b(ε)) so that h (c (ε) , ε) = c (ε) . Since for fixed ε, h (c, ε) is
analytic in ∆(R,b1) and uniformly contracting, we know that c (ε) is the unique fixed
point in ∆(R,b1) and is differentiable with respect to ε in the interval (−b2, 0) (see [5,
p. 25]). We now let ε0 = −b2. Since c (ε) ∈ ∆(R,b(ε)), we have

lim
ε→0−

c (ε) = 0.

From I (c (ε) , ε) = 0, we obtain

c′ (ε) = −∂I/∂ε

∂I/∂c
.

So by (40) and (41), we have

lim
ε→0−

c′ (ε) =

∫ y2
y1

φ2
s (y) dy

iπ
∑l
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak + P ∫ y2

y1
(K (y)φ2

s (y)) / (U (y)− Us) dy
.

This proves (35), and the proof of Theorem 4.1 is complete assuming (45).
Now we prove (45) . By our choices of δ0, b0, b1, b2, and (42), we know∣∣∣∣∂h∂c

∣∣∣∣ = 1√
C2 +D2

∣∣∣∣∂f∂c
∣∣∣∣ ≤ 1√

C2 +D2
δ0 ≤ 1

2
∀ (c, ε) ∈ E(R,b1,b2).

Thus h is uniformly contracting with ratio no greater than 1
2 for each fixed ε ∈ (−b2, 0).

We still need to show that h (c, ε) maps ∆(R,b(ε)) to itself. If C �= 0, by (44) and the
definitions of b (ε) , Q, and δ0, we have∣∣∣∣ f (c, ε)C + iD

∣∣∣∣ ≤ δ0
|c|+ |ε|√
C2 +D2

≤ δ0√
C2 +D2

(
1 +

√
R2 + 1

−2DB

C2 +D2

)
|ε| = δ0 |ε|Q√

C2 +D2

≤ 1

2
min

{ |BC|
C2 +D2

,
−BD

C2 +D2

}
|ε| .(46)

Substituting (46) into

Reh =
−BC

C2 +D2
ε− Re

f (c, ε)

C + iD
,

we readily get

1

2

|BC|
C2 +D2

|ε| ≤ |Reh| ≤ 2
|BC|

C2 +D2
|ε| .(47)

In the same way we get

1

2

−BD

C2 +D2
|ε| ≤ Imh ≤ 2

−BD

C2 +D2
|ε| = b (ε) .(48)

Combining (47) and (48), we have

|Reh| ≤ 4

∣∣∣∣CD
∣∣∣∣ Imh = R Imh.
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So h ∈ ∆(R,b(ε)). The proof for the case C = 0 is the same. This proves (45), and thus
the proof of Theorem 4.1 is complete.

Proof of Theorem 1.2. Let −α2
m < −α2

m−1 < · · · < −α2
1 < 0 be all the negative

eigenvalues of − d2

dy2 +K (y) . Here αm = αmax as defined by (7) . Combining Theorems

3.9 and 4.1, we deduce that if α ∈ (0, αm) and α �= αi (i = 1, . . . ,m) , then there exists
an unstable mode.

Now we investigate the possibility of an instability at α = αi (i = 1, . . . ,m) . For
each α ∈ (αi, αi+1), we know that there exists some unstable eigenvalue c (α) =
cr (α) + ici (α) with ci > 0. We claim that

as α → αi+, ci (a) has some lower bound δ > 0.(49)

Assuming (49), we now show the existence of an unstable eigenvalue at αi. We take a
sequence {(ck, αk, φk)}∞k=1 with αk → αi+ and Im ck ≥ δ > 0. The function φk with
‖φk‖2 = 1 satisfies the Rayleigh equation

− d2

dy2
φk +

U ′′

U − ck
φk = −α2

kφk.(50)

By Lemma 3.7, there is an a priori bound for ‖φk‖H2 , so there exists some nonzero
function φ0 ∈ H2 such that φk → φ0 strongly in H1. Note that ck is bounded by (4).
Suppose ck → c0 with Im c0 ≥ δ. Now∥∥∥∥ U ′′

U − ck

∥∥∥∥
∞

≤ ‖U ′′‖∞
δ

,

so we can pass to the limit in (50) to deduce that φ0 is a weak solution to

− d2

dy2
φ0 +

U ′′

U − c0
φ0 = −α2

iφ0.

Since Im c0 > 0, U ′′
U−c0 is a smooth function. So by elliptic regularity theory, φ0 is a

classical solution. Thus at α = αi, we get an unstable eigenvalue c0.
Proof of (49). If it is not true, then there exists a sequence {(ck, αk, φk)}∞k=1

of solutions to Rayleigh’s equation, with αk → αi+ and Re ck → cs, Im ck → 0 + .
By Theorem 1.7, cs must equal Us. From the proof of Theorem 1.7, we know that
φk → φs in C1[y1, y2], where φs is a solution to

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

iφs.(51)

Multiplying (51) by φk and subtracting φs times (50), then integrating from y1 to y2,
we get

(
α2
k − α2

i

) ∫ y2

y1

φsφkdy = − (ck − Us)

∫ y2

y1

U ′′φsφk
(U − ck) (U − Us)

dy.

Let

Ak =

∫ y2

y1

φsφkdy, Bk = −
∫ y2

y1

U ′′φsφk
(U − ck) (U − Us)

dy.
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Then

lim
k→∞

Ak =

∫ y2

y1

|φs|2 dy.(52)

In the appendix we will prove

lim
k→∞

Bk = P
∫ y2

y1

K (y)φ2
s

(U − Us)
dy + iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak .(53)

Now we have

lim
k→∞

Ak
Bk

=

∫ y2
y1

|φs|2 dy
P ∫ y2

y1

K(y)φ2
s

(U−Us)dy + iπ
∑l
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak

= a+ ib

with b < 0. Thus if k is large enough,

Im ck =
(
α2
k − α2

i

)
Im

Ak
Bk

< 0,

which is a contradiction. So (49) is proved and the proof of Theorem 1.2 is com-
plete.

We also have the following result about the instability at α = 0.
Lemma 4.3. If U (y1) �= U (y2), then at α = 0 there is also some unstable solution

to the Rayleigh equation.
Proof. Let {(ck, αk, φk)}∞k=1 be a sequence of unstable solutions with αk → 0+.

It suffices to prove that there is some positive lower bound for {Im ck} . Indeed the
existence of an unstable solution at α = 0 would follow by the same argument as in
the proof of Theorem 1.2.

Assume there is no lower bound. Then Im ck → 0, Re ck → c. Then φk converges
to a neutral solution φ0 ∈ H2 ∩H1

0 satisfying equation

(U − c)φ′′
0 − U ′′φ0 = 0(54)

sectionally in each (zi, zi+1) . Here we use the same notation as immediately before
Lemma 3.5. We now show that φ0 cannot vanish at any zero z1, . . . , zkc of U − c.
Indeed, if it is not true, we suppose φ0 (zi) = 0 and consider (54) in (zi, zi+1) . Then

((U − c)φ′
0 − U ′φ0) (y) ≡ ((U − c)φ′

0 − U ′φ0) (zi) = 0

for all y in the interval (zi, zi+1) . So φ0 and U − c are linearly dependent in (zi, zi+1) .
Thus φ0 (zi+1) = 0. Repeating the process, we know that φ0 (zi) = 0 for all i =
1, . . . , kc and there is some constant b such that U (y) − c = bφ0 (y) for all y in
(y1, y2) . This implies that U (y1) = U (y2) = 0, which is a contradiction.

Thus φ0 takes a nonzero value at each zero of U−c and φ0 is the limit of unstable
eigenfunctions. By the proof of Theorem 3.3 we know that c must equal Us. Now
by the argument in the last part of the proof of Theorem 1.2, we know that there
is no perturbation of the neutral mode at α = 0 to its right neighborhood. This
contradiction shows that the Im ck has some positive lower bound. The proof of the
lemma is finished.

Remark 4.4. If U (y1) = U (y2), it is possible that at α = 0 there is no unstable
solution to (3). One such example is U (y) = cos 6y, whose complete spectrum was
found in [12] and for which there is no growing mode at α = 0.
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5. Rotating flows. In this section, we consider the radially symmetric steady
flows in an annulus 0 < R1 ≤ r ≤ R2. Using polar coordinates (r, θ), we rewrite the
vorticity equation (1) as

∂t∆ψ +
1

r

∂ψ

∂θ

∂

∂r
∆ψ − ∂ψ

∂r

1

r

∂

∂θ
∆ψ = 0.

Here ψ is the stream function and

(ur, uθ) =

(
1

r

∂ψ

∂θ
,−∂ψ

∂r

)
, ω = −∆ψ =

1

r

∂

∂r
(ruθ)− 1

r

∂ur
∂θ

are the velocity and vorticity, respectively. And ψ is constant on r = Rj (j = 1, 2).
The steady flow is (ur, uθ) = (0, rΩ), with Ω = Ω (r) the steady angular velocity. The
linearized equation about this steady flow is

∂t∆ψ̃ +Ω
∂

∂θ
∆ψ̃ +

(
∂

∂r
Z

)
1

r

∂ψ̃

∂θ
= 0,(55)

with ψ̃ constant on r = Rj (j = 1, 2) and the steady vorticity Z = 2Ω+ r dΩdr . Taking

ψ̃ (r, θ, t) = φ (r) exp (st+ inθ) and letting D∗ = d
dr + 1

r , D = d
dr (following the

notation in [6]), we rewrite (55) as

(s+ inΩ)
(
D∗D − n2/r2

)
φ− inr−1(rD2Ω+ 3DΩ)φ = 0,(56)

with φ (R1) = φ (R2) = 0 and n a positive integer. Letting c = s
in , we get the rotating

Rayleigh equation (8). Instability would mean that there exists a solution to (8) with
Im c > 0. In this section we study the flows such that the function K (r) defined by
(9) is positive and bounded, which we still denote by class K+.

We are interested only in the case when α is a positive integer of the following
extended Rayleigh equation:

(Ω− c)
(
D∗D − α2/r2

)
φ− r−1(rD2Ω+ 3DΩ)φ = 0,(57)

with φ (R1) = φ (R2) = 0. However, by embedding the original problem into a family
of problems (57) depending on a continuous positive parameter α, we can use the same
idea as in the shear flow case. For that purpose, first we need to prove the rotating
versions of some results used in the shear flow case. We give detailed proofs only when
they are really different. First is the extension of Lemma 3.5 to the rotating case.
Let r1 < r2 < · · · < rkc be the zeros of Ω (y)− c and let S0 be the complement of the
set of points {ri} in the interval [R1, R2] . Here c is any real number in the range of
Ω (y) . Let r0 = R1 and rkc+1 = R2. Note that for the rotating flows in class K+, kc
is finite for any c by the same argument as in Remark 3.2.

Lemma 5.1. Let φ satisfy (57) on S0 with real α > 1 and real c in the range
of Ω. We assume φ is sectionally continuous on the open intervals (rj , rj+1) , j =
0, 1, . . . , kc. Then φ cannot vanish at both endpoints of any of the intervals (rj , rj+1)
unless it vanishes identically in that interval.

Proof. The function φ satisfies

(Ω− c)
(
D∗D − α2/r2

)
φ− r−1(rD2Ω+ 3DΩ)φ = 0,

which is the same as

(Ω− c)D2φ− φD2Ω+ (Ω− c)r−1Dφ− 3r−1φDΩ = (Ω− c)
α2

r2
φ.
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We multiply both sides of the above by r2 to get

(Ω− c)r2D2φ− r2φD2Ω+ (Ω− c)rDφ− 3rφDΩ = (Ω− c)α2φ.(58)

We have

LHS = (Ω− c)
[
D2
(
r2φ
)− 4rDφ− 2φ

]− r2φD2Ω+ (Ω− c) rDφ− 3rφDΩ

= (Ω− c)D2
(
r2φ
)− r2φD2Ω− 3 (D (rφ) (Ω− c) + rφDΩ) + φ(Ω− c)

= D
(
(Ω− c)D

(
r2φ
)− r2φDΩ

)− 3D ((rφ) (Ω− c)) + φ(Ω− c).

So (58) becomes (using ′ to replace D)

(
(Ω− c)

(
r2φ
)′ − r2φΩ′

)′
− 3 ((rφ) (Ω− c))

′
=
(
α2 − 1

)
φ(Ω− c).(59)

Suppose φ vanishes at ri and ri+1. Here we mean φ (ri+) for φ (ri) and φ (ri+1−)
for φ (ri+1) when studying (59) in [ri, ri+1]. From the definition of ri we know that
Ω − c has constant sign in (ri, ri+1). If ri �= R1 (i �= 0), then Ω (ri) − c = 0. Let
r̃ ≤ ri+1 be the nearest zero of φ in (ri, ri+1]. Since (59) is a real equation, we may

assume φ is real and nonnegative on the interval (ri, r̃) and that
(
r2φ
)′
(ri) ≥ 0 and(

r2φ
)′
(r̃) ≤ 0. Integrating (59) over (ri, r̃) , we get

(Ω (r̃)− c)
(
r2φ
)′
(r̃) =

(
α2 − 1

) ∫ r̃

ri

φ(Ω− c)dr′,

since φ vanishes at the endpoints ri, r̃.
If r̃ = ri+1, then the left-hand side above must be zero. Hence φ is identically

zero on (ri, ri+1). On the other hand, if r̃ < ri+1, then Ω (r̃) �= c and

(
r2φ
)′
(r̃) =

(
α2 − 1

) ∫ r̃

ri

(Ω (r′)− c)

(Ω (r̃)− c)
φ (r′) dr′,

which could not hold true unless φ = 0 on [ri, r̃] . But the second order ODE (58) is
regular on (ri, ri+1); thus r̃ could not be a cluster point of nontrivial φ. Thus φ must
be identically zero on (ri, ri+1) .

If i = 0, then we repeat the same argument with the right endpoint of the interval
(R1, r1) .

We need Howard’s semicircle theorem for the rotating case, which seems not to
have been proven in the literature. So we give a proof here.

Lemma 5.2. If α > 1, then for the extended Rayleigh equation (57) to have a
solution, c (with Im c > 0) must lie in the semicircle

(
cr − 1

2
(Ωmin +Ωmax)

)2

+ c2i ≤
(
1

2
(Ωmin − Ωmax)

)2

,(60)

where Ωmin and Ωmax are the minimum and maximum of Ω (r) in [R1, R2] .
Proof. Let φ be a solution to (57). As in the proof of the last lemma, φ satisfies

(59), which we can rewritten as

(
r
(
φ′(Ω− c)r − ((Ω− c)r)

′
φ
))′

=
(
α2 − 1

)
φ(Ω− c).(61)
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The above identity is equivalent to(
r3(Ω− c)2

(
φ

(Ω− c)r

)′)′
=
(
α2 − 1

)
φ(Ω− c).(62)

Now ψ = φ
(Ω−c)r is a regular function since Im c �= 0. Then (62) becomes

(
r3(Ω− c)2ψ

)′
=
(
α2 − 1

)
r(Ω− c)2ψ.(63)

Multiplying (63) by ψ∗ (conjugate of ψ) and integrating it, we obtain

∫ R2

R1

(Ω− c)2
(
r3 |ψ′|2 + (α2 − 1

)
r |ψ|2

)
dr = 0.(64)

The rest of the proof is the same as in the case of shear flows [14], [6]. We repeat it
here for completeness. Let

P ≡ r3 |ψ′|2 + (α2 − 1
)
r |ψ|2 .

Then (64) becomes

∫ R2

R1

(Ω− c)2P dr = 0.(65)

The function P is nonnegative and not identically zero. Comparing the real and
imaginary parts of (65), we get

∫ R2

R1

(
(Ω− cr)

2 − c2i
)
P dr = 0 and 2ci

∫ R2

R1

(Ω− cr)P dr = 0.(66)

Observe that

0 ≥
∫ R2

R1

(Ω− Ωmin) (Ω− Ωmax)P dr

=

∫ R2

R1

{(
c2r + c2i

)− (Ωmin +Ωmax) cr +ΩminΩmax

}
P dr,

where (66) is used. So(
c2r + c2i

)− (Ωmin +Ωmax) cr +ΩminΩmax ≤ 0

and the conclusion follows.
We also have an a priori bound for unstable solutions. The proof of the following

lemma is essentially the same as that of Lemma 3.7 in the shear flow case. So we
state only the result.

Lemma 5.3. Denote ω (r) = rD2Ω+3DΩ. For any solution (α, c, φ) to (57) with
α real positive, c = cr + ici (ci > 0), and ‖φ‖2 = 1, we have the identities

∫ R2

R1

r |Dφ|2 dr + α2

∫ R2

R1

1

r
|φ|2 dr +

∫ R2

R1

ω (r) |φ|2 (Ω− q)

|Ω− c|2 dr = 0 ∀q ∈ R,(67)
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∫ R2

R1

(
|D∗Dφ|2 r3 + 2α2r |Dφ|2 dr + α4 1

r
|φ|2

)
dr =

∫ R2

R1

r
ω (r)

2

|Ω− c|2 |φ|2 dr.(68)

For a flow of class K+, we have the inequalities

∫ R2

R1

(
r (Dφ)

2
+ α2 1

r
|φ|2

)
dr <

∫ R2

R1

K (r)φ2dr(69)

and ∫ R2

R1

(
|D∗Dφ|2 r3 + 2α2r |Dφ|2 dr + α4 1

r
|φ|2

)
dr < R2 ‖ω‖∞

∫ R2

R1

K (r)φ2dr.(70)

In particular, we have the a priori estimate ‖φ‖H2 ≤ C (Ω), where C (Ω) is some
constant depending only on Ω.

Indeed, (67), (68), (69), (70) are the analogues of (29), (31), (27), and (28),
respectively. Their proofs are similar to that of the shear flow case.

Remark 5.4. From (69) we see that a necessary condition for instability in the
rotating case is

inf
φ∈H1

0(R1,R2)

∫ R2

R1
r (Dφ)

2
dr − ∫ R2

R1
K (r)φ2dr∫ R2

R1

1
rφ

2dr
< −1,

since α must be a positive integer.
We now define the neutral limiting modes for the rotating case.
Definition 5.5. The triple (cs, αs, φs) with cs real and αs > 1 is said to be a

neutral limiting mode if it is the limit of growing solutions (ck, αk, φk) (with Im ck > 0)
of the extended Rayleigh equation (57). The precise notion of convergence of φk to φs
is made clear in Lemma 5.6. Formally (cs, αs, φs) ought to satisfy

(Ω− cs)
(
D∗D − α2

s/r
2
)
φs − r−1ω (r)φs = 0.(71)

We call cs the neutral limiting phase speed and αs the neutral limiting wave number.
The following is the analogue of Lemma 3.6.
Lemma 5.6. Let {(ck, αk, φk) (with Im ck > 0)}∞k=1 be the solutions to the extended

Rayleigh equation (57) with ‖φk‖ = 1, and let (ck, αk) converge to (cs, αs) with αs > 1.
Then φk converges uniformly to a function φs on any compact subset of S0, φ

′′
s exists

on S0, and φs satisfies (71) .
We state the following results about neutral limiting modes without proof. They

are the analogues of Theorems 1.7 and 3.9, respectively.
Lemma 5.7. If the rotating flow is in class K+, then for any neutral limiting

mode (cs, αs, φs) with αs > 1, we must have cs = Ωs, and φs ∈ H2 ∩ H1
0 (R1, R2)

must satisfy (
D∗D − α2

s/r
2
)
φs + r−1K (r)φs = 0.(72)

Lemma 5.8. Let Ω (y) be as in Theorem 1.3. Let Ξ be the set of all unstable wave
numbers greater than 1. Then Ξ is open and any real boundary point αs of Ξ is either
1 or some wave number satisfying (72) for some nontrivial φs in H2 ∩H1

0 (R1, R2) .
We also have a perturbation result near neutral modes, the analogue of Theo-

rem 4.1.
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Theorem 5.9. Suppose Ω (y) is in class K+ and (φs, αs,Ωs) (αs > 1) satisfies

(Ω− Ωs)
(
D∗D − α2

s/r
2
)
φs − r−1ω (r)φs = 0,(73)

with φs (R1) = φs (R2) = 0. Then there exists ε0 < 0 such that if ε0 < ε < 0, there
is a nontrivial solution φε to the extended Rayleigh equation

(Ω− Ωs − c (ε))
(
D∗D − α (ε)

2
/r2
)
φε − r−1ω (r)φε = 0,

with φε (R1) = φε (R2) = 0. Here α (ε) =
√

ε+ α2
s is the perturbed wave number and

Ωs+c (ε) is an unstable eigenvalue with Im c (ε) > 0. The function c (ε) is differentiable
in (−ε0, 0) and

lim
ε→0−

c (ε) = 0,

lim
ε→0−

c′ (ε) =

∫ R2

R1

1
rφ

2
s (r) dr

iπ
∑l
k=1

(
|Ω′|−1

Kφ2
s

)
|y=rk + P

∫ R2

R1
(K (r)φ2

s (r)) / (Ω (r)− Ωs) dr
,

(74)

where r1, . . . , rl are the points such that Ω (r) = Ωs and P ∫ y2
y1

denotes the Cauchy
principal part.

Proof of Theorem 1.3. If (11) is satisfied, we know that for any α ∈ (1, αmax) ,
there is an unstable solution to the extended Rayleigh equation (57). The proof is
essentially the same as that of Theorem 1.2, by using Theorem 5.9 and Lemma 5.8,
so we skip it here. If condition (12) is satisfied, then αmax > 2, and we get instability
at n = 2 for the rotating Rayleigh equation (8).

Now we turn to the case when 1 < αmax ≤ 2 and Ω (R1) �= Ω(R2). We want
to show that there exists an unstable mode for n = 1. This is the bottom case for
rotating flows. Now for each α ∈ (1, αmax) , we already have an unstable mode. We
shall show that the growth rate Im c (α) has some positive lower bound when α tends
to 1. Assuming this, we can find some unstable mode for α = 1 by using the same
argument as in the proof of Theorem 1.2.

We now prove that Im c (α) has some positive lower bound. The argument we use
here is similar to that in the proof of Lemma 4.3. Supposing otherwise, we can find
a sequence {(ck, αk, φk)}∞k=1 with αk → 1+, Im ck → 0, Re ck → c. The convergence
of {ck} is guaranteed by (60), from which we also know that c is in the range of Ω.
Because of Lemma 5.3, ‖φk‖H2 is uniformly bounded. So there exists some nonzero
φ0 in H2 ∩H1

0 such that a subsequence {φnk} converges to it in the C1 sense. By
passing to the limit in the equation

(Ω− cnk)
(
D∗D − α2

nk
/r2
)
φnk − r−1(rD2Ω+ 3DΩ)φnk = 0,

we deduce that the function φ0 satisfies

(Ω− c)
(
D∗D − 1/r2

)
φ0 − r−1(rD2Ω+ 3DΩ)φ0 = 0(75)

sectionally in each (ri, ri+1). Here r1 < r2 < · · · < rkc are the zeros of Ω (y)− c and
r0 = R1, rkc+1 = R2. By (59), φ0 satisfies(

(Ω− c)
(
r2φ0

)′ − r2φ0Ω
′
)′

− 3 ((rφ0) (Ω− c))
′
= 0,
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which is equivalent to (
r
(
((Ω− c)r)

′
φ0 − φ′

0(Ω− c)r
))′

= 0.(76)

From (76) , we deduce that φ0 must be nonzero at each point ri (i = 1, . . . , kc) . Indeed,
supposing otherwise, by the same argument as in the proof of Lemma 4.3, we can show
that there is some constant b such that (Ω (r)− c)r = bφ0 (r) in [R1, R2]. This implies
that Ω (R1) = Ω (R2) , a contradiction. Now by the same argument as in the last part
of the proof of Theorem 1.2, we can show that there is no perturbation of the neutral
mode at α = 1 to its right neighborhood. This contradiction shows that Im c (α) is
bounded below and Im c > 0. Thus φ0 satisfying (75) is an unstable solution to the
rotating Rayleigh equation (8) .

Combining this result with Remark 5.4, we deduce that the condition (11) is sharp
for instability when Ω (R1) �= Ω(R2) . This finishes the proof of Theorem 1.3.

6. Unbounded flows. We now consider the unbounded shear flows. We prove
Theorem 1.5(i) only for the flow U(y) defined on (−∞,+∞) . The proof of Theorem
1.5(i) for the shear flows defined on the half line is similar. The flow with U (−∞) =
U (+∞) is called a jet and the one with U (−∞) �= U (+∞) is called a shear layer, as
in [7].

Proof of Theorem 1.5(i). We divide the proof into several steps.
Step 1. First we observe that for any real c, U (y) = c holds for only a finite

number of points. Otherwise, there exists some real c0 and an infinite sequence {yn}
such that U (yn) = c0 for each n. Then {yn} must be bounded by our condition
that U (±∞) are obtained at only a finite number of points. So there exists some
y0 such that a subsequence {ynk} converges to it. Since U (y) is a C2 function, we
deduce that U (y0) = c0 and U ′ (y0) = U ′′ (y0) = 0. So y0 is an inflection point and
c0 equals the inflection value Us. But then K (y) defined by (5) is unbounded at y0

since U ′ (y0) = 0. This is a contradiction.

Since K (y) → 0 as y → ∞, it is easy to see that − d2

dy2 − K (y) is a relatively

compact perturbation of − d2

dy2 defined on H2 (R). So by Weyl’s theorem [21]

σess

(
− d2

dy2
−K (y)

)
= σess

(
− d2

dy2

)
= (0,+∞) .

Thus− d2

dy2 −K (y) has only a discrete set of negative eigenvalues which can accumulate

only at 0. Let −α2
0 < −α2

1 < · · · < −α2
k < · · · < 0 denote all the negative eigenvalues

of the operator − d2

dy2 −K (y) on H2 (R). We fix some α in (0, α0) and assume α �= αi

for each i ≥ 1. Let In = (−n, n) and let Ln denote the operator − d2

dy2 − K (y) on

H2 (In) ∩H1
0 (In) . Take n large enough so that all the inflection points of K (y) are

included in In. Denote by −α2
0,n the lowest eigenvalue of Ln. Then by the result of [3],

−α2
0,n converges to −α2

0 as n tends to infinity. So by taking n large enough, α is in
(0, α0,n) . Now since U (y) |In is clearly in class K+, by applying Theorem 1.2 to this
truncated flow, we obtain a solution φn in H2 (In) ∩H1

0 (In) satisfying the Rayleigh
equation with cn (Im cn > 0), that is,

(U − cn)

(
d2

dy2
− α2

)
φn − U ′′φn = 0(77)

in In.
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Step 2. Now we have a sequence {(φn, cn)} satisfying (77) with ‖φn‖L2(In) = 1.

By Lemma 3.7, we have ‖φn‖H2(In) ≤ C (where C is some constant depending only

on ‖K‖∞). We extend φn to a function in H2 (R) by setting it to be zero on Icn. For
convenience, we still use φn to denote the extended function. Then ‖φn‖H2(R) ≤ C.

So φn converges weakly in H2 (R) to a function φ0 ∈ H2 (R). We shall show that φ0

is not identically zero.
Let n0 be sufficiently large such that

K (y) <
1

2
α2 if y ∈ Icn0

.

From (27) we have ∫
In

(
|φ′
n|2 + α2 |φn|2

)
dy <

∫
In

K (y) |φn|2 dy.(78)

For any n > n0, from (78) and K > 0 we have∫
In0

K (y) |φn|2 dy > α2 −
∫
Icn0

∩In
K (y) |φn|2 dy

> α2 − 1

2
α2

∫
Icn0

∩In
|φn|2 dy

>
1

2
α2.(79)

Since φn converges strongly in H1 (In0) to φ0, from (79) we get∫
In0

K (y) |φ0|2 dy ≥ 1

2
α2.

This shows that φ0 is nontrivial.
Step 3. By Howard’s semicircle theorem (see (4)), {cn} is bounded. Supposing cn

to converge to c0, we shall show that Im c0 > 0. Otherwise, c0 is some real number in
the range of U (y) . From the a priori H2 bound provided by Lemma 3.7, we deduce
that φn converges to φ0 locally in C1. Suppose z1 < · · · < zk0 are all the points such
that U (zi) = c0. Then by taking limit k → ∞ in (77) , we deduce that φ0 satisfies

(U − c0)

(
d2

dy2
− α2

)
φ0 − U ′′φ0 = 0(80)

within each interval (−∞, z1) , (z1, z2) , . . . , (zk0 ,∞) . Since φ0 �= 0, by the proof of
Lemma 3.5, we deduce that φ0 (zi) �= 0 for some zi. Then by the same argument as
in the proof of Theorem 3.3, we know that c0 must be an inflection value of U (y),
which can only be Us. Now

U ′′

U − c0
= −K (y)

is a bounded continuous function and φ0 is in C1. So from (80) , φ0 satisfies(
d2

dy2
− α2

)
φ0 +K (y)φ0 = 0
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on R and φ0 ∈ H2 (R). Thus −α2 is a negative eigenvalue of

− d2

dy2
−K (y)

on H2(R), which is a contradiction to our assumption that α �= αi for all i. So we
must have Im c0 > 0.

Now U ′′
U−c0 is a bounded continuous function. By passing to limits in (77) , we

deduce that φ0 �= 0 satisfies the Rayleigh equation (3) on the whole line, with Im c0 >
0. We thus get instability for each wave number α in (0, α0) such that α �= αi (i ≥ 1) .

Step 4. Now we investigate the possibility of an instability at α = αi (i ≥ 1) .
The argument is the same as in the proof of Theorem 1.2 for the case when a wave
number equals some neutral limiting wave number. We only sketch it here. For each
α > αi, we get instability by the previous steps. The main point is still to show that
the growth rate Im c (α) has some positive lower bound when α → αi + . Supposing
otherwise, we get a sequence {(ck, αk, φk)}∞k=1 of solutions to Rayleigh’s equation (3),
with αk → αi+ and Re ck → cs, Im ck → 0 + . It is not difficult to see that we can
extend Theorem 1.7 to the current case, so cs must equal Us. By the same argument
as in Step 2, we deduce that φk converges to some φs �= 0 weakly in H2 (R) and
locally in C1. Now φs satisfies

− d2

dy2
φs +

U ′′

U − Us
φs = −α2

iφs.(81)

By Remark 7.2 in the appendix, the analogues of the two limits (52) and (53) still
hold true. That is, we have ∫

R

φkφs →
∫
R

|φs|2 dy(82)

and

∫
R

K (y)φsφk
U − ck

dy → P
∫
R

K (y)φ2
s

(U − Us)
dy + iπ

l∑
i=1

(
|U ′|−1

Kφ2
s

)
|y=ai .(83)

Here a1, . . . , al are all the inflection points and ck → Us with Im ck > 0. Then the
rest of the proof just follows what we did in the last part of the proof of Theorem 1.2.
So we skip it here.

Proof of Theorem 1.5(ii). Assume φ is odd on the whole line. Fix α in the interval
(α2k0−1, α2k0−2) for some k0. Using the same notation as in Step 1 of the proof of
(i), we get the truncated operator Ln defined on In = (−n, n). Let −α2

0,n < −α2
1,n <

· · · < −α2
k,n < · · · < 0 be all the negative eigenvalues of Ln. By the result in [3], Ln has

at least 2k0 negative eigenvalues when n is large enough and (−α2
0,n, . . . ,−α2

2k0−1,n)

converges to
(−α2

0, . . . ,−α2
2k0−1

)
as n tends to infinity. So for n large enough, α is in

the interval (α2k0−1,n, α2k0−2,n) . Since U (y) |In is odd, by Theorem 1.4 we obtain an
unstable solution φn satisfying (77) in In, with cn = iλn (λn > 0). We get the same a
priori bound as in Lemma 3.7 directly as follows. By Lemma 3.5 with q = 0, we have

∫
In

(
|φ′
n|2 + α2 |φn|2 + U ′′U

|U − iλn|2
|φn|2

)
dy = 0.
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Thus ∫
In

(
|φ′
n|2 + α2 |φn|2

)
dy =

∫
In

K (y)
U2

U2 + λ2
n

|φn|2 dy

≤
∫
In

|K (y)| |φn|2 dy.(84)

Similarly, we get from (31) that∫
In

(
|φ′′
n|2 + 2α2 |φ′

n|2 + α4 |φ|2
)
dy <

∫
In

K (y)
2 |φn|2 dy.(85)

From (84) and (85) , we have ‖φn‖H2(R) ≤ C (‖K‖∞). So φn converges to some φ0

weakly in H2 (R). Let λn converge to some nonnegative λ0. By the same argument
as in Steps 2 and 3 of the proof of (i), we show that φ0 �= 0 and λ0 > 0. Then we get
an unstable solution φ0 to the Rayleigh equation on the whole line, with the unstable
eigenvalue c = iλ0. The proof of Theorem 1.5(ii) is thus finished.

Using the same argument as in the proof of Lemma 4.3, we can show that if
U (−∞) �= U (+∞) (the shear layer case), then at α = 0 there is also an unstable
solution to the Rayleigh equation. This coincides with the conclusion in [7], which
was deduced from the asymptotic expansion in the long wave limit.

7. Appendix. In this appendix, we prove some asymptotic formulas used in the
proof of Theorems 4.1 and 1.2.

Lemma 7.1. Assume a sequence of differentiable functions {ψk}∞k=1 converges
in C1[y1, y2] to ψ0 (y) . Let ck = pk + ibk (bk > 0) converge to 0. Denote Wk (y) =
U (y)− Us − pk. Then we have following limits:

lim
k→∞

∫ y2

y1

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy = P
∫ y2

y1

ψ0 (y)

U (y)− Us
dy,(86)

lim
k→∞

∫ y2

y1

ψk (y)Wk (y)
3(

Wk (y)
2
+ b2k

)2 dy = P
∫ y2

y1

ψ0 (y)

U (y)− Us
dy,(87)

lim
k→∞

∫ y2

y1

ψk (y) bk

Wk (y)
2
+ b2k

dy = π

l∑
i=1

(
|U ′|−1

ψ0

)
|y=ai ,(88)

lim
k→∞

∫ y2

y1

ψk (y) b
3
k(

Wk (y)
2
+ b2k

)2 dy =
1

2
π

l∑
i=1

(
|U ′|−1

ψ0

)
|y=ai ,(89)

lim
k→∞

∫ y2

y1

ψk (y) b
2
kWk(

Wk (y)
2
+ b2k

)2 dy = lim
k→∞

∫ y2

y1

ψk (y) b
3
k(

Wk (y)
2
+ b2k

)2 dy = 0.(90)

Here a1, . . . , al are all the points such that U (y) = Us, and we assume U ′ (y) �= 0 at
each ak.
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Proof. Let ‖ψk‖C1 ≤ M (independent of k). For δ0 > 0, we can find r0 > 0
such that |U ′ (y)| ≥ δ0 for all y in the set Er0 = ∪li=1I (ai; r0). Here I (ai; r0) =
(ai − r0, ai + r0) . Taking k large enough, then we know there are exactly l points

such that Wk (y) = 0, one in each I (ai; r0), which we denote by a
(k)
i .

Proof of (86). By the definition of Cauchy principal part, for any ε > 0, there
exists some r1 > 0 such that if 0 < r < r1, then∣∣∣∣∣

∫
Ecr

ψ0 (y)

U (y)− Us
dy − P

∫ y2

y1

ψ0 (y)

U (y)− Us
dy

∣∣∣∣∣ < ε

3
.(91)

Now

ψk (y)Wk (y)

Wk (y)
2
+ b2k

→ ψ0 (y)

U (y)− Us

in Ecr uniformly as k → ∞ . So if k is large enough, then∣∣∣∣∣
∫
Ecr

ψk (y) bk

Wk (y)
2
+ b2k

dy −
∫
Ecr

ψ0 (y)

U (y)− Us
dy

∣∣∣∣∣ < ε

3
.(92)

Let r < min {r0, r1} . We estimate the integral on each I (ai; r). Suppose U is increas-
ing on I (a1; r). Let

t = Wk (y) , tk1 = Wk (a1 + r) , tk0 = Wk (a1 − r) ,

ψ̃k (t) = ψk (Wk (t))
1

U ′ (Wk (t))
.

Then∫
I(a1;r)

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy

=

∫ tk1

tk0

ψ̃k (t) t

t2 + b2k
dt = ψ̃k (0)

∫ tk1

tk0

t

t2 + b2k
dt+


∫ tk1

tk0

(
ψ̃k (t)− ψ̃k (0)

)
t

t2 + b2k
dt


 = I + II.

We have ∣∣tk1 − tk0
∣∣ ≤ ‖U ′‖∞ 2r,

and |ψ̃′
k (t) | ≤ M ′ (independent of k) in I (a1; r) . So

‖II‖ ≤ M ′ ∣∣tk1 − tk0
∣∣ ≤ M ′ ‖U ′‖∞ 2r.

And

I = ψ̃k (0)
1

2
ln

tk1 + b2k
tk0 + b2k

tends to zero as k tends to infinity for any fixed r > 0. Thus by choosing r small
enough and then letting k large, we have∣∣∣∣∣

∫
Er

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy

∣∣∣∣∣ < ε

3
.
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Combining with (91) and (92), we have for k large enough∣∣∣∣∣
∫ y2

y1

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy − P
∫ y2

y1

ψ0 (y)

U (y)− Us
dy

∣∣∣∣∣ < ε.

This ends the proof of (86).
We prove (87) and (90) in the same way.
Proof of (88). For any fixed r,

lim
k→∞

∫
Ecr

ψk (y) bk

Wk (y)
2
+ b2k

dy = 0.

So we only need to consider the integral on each small interval I (ai; r). Using the
same notation as above, we have∫
I(a1;r)

ψk (y) bk

Wk (y)
2
+ b2k

dy

=

∫ tk1

tk0

ψ̃k (t) bk
t2 + b2k

dt = ψ̃k (0)

∫ tk1

tk0

bk
t2 + b2k

dt+


∫ tk1

tk0

(
ψ̃k (t)− ψ̃k (0)

)
bk

t2 + b2k
dt


 = I + II.

Then it is easy to see

|II| ≤ 1

2
M ′ ∣∣tk1 − tk0

∣∣ ≤ M ′ ‖U ′‖∞ r.

Since

lim
k→∞

ψ̃k (0) = lim
k→∞

ψk

(
a
(k)
1

) 1

U ′
(
a
(k)
1

) = ψ0 (a1)
1

U ′ (a1)
,

lim
k→∞

tk1 = U (a1 + r)− U (a1) > 0, lim
k→∞

tk0 = U (a1 − r)− U (a1) < 0

so we have

lim
k→∞

I = lim
k→∞

ψ̃k (0)

∫ tk0
bk

tk0
bk

1

t2 + 1
dt = ψ0 (a1)

1

U ′ (a1)

∫ +∞

−∞

1

t2 + 1
dt = πψ0 (a1)

1

U ′ (a1)
.

Summing the contributions from each I (ai; r), we deduce (88). The proof of (89) is
the same by noticing that ∫

R

1

(1 + t2)
2 dt =

1

2
π.

Now (53) follows directly from the above lemma. Indeed letting ψk = K (y)φsφk,
ck = pk + ibk, we can write Bk in (53) as

Bk =

∫ y2

y1

ψk (y)Wk (y)

Wk (y)
2
+ b2k

dy + i

∫ y2

y1

ψk (y) bk

Wk (y)
2
+ b2k

dy.

Since

ψk → ψ0 = K (y)φ2
s in C1[y1, y2] as k → ∞,
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by (86) and (88) we have

lim
k→∞

Bk = P
∫ y2

y1

K (y)φ2
s

(U − Us)
dy + iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|y=ak .

Remark 7.2. The limit (53) still holds for the case [y1, y2] = (−∞,+∞) or
(0,+∞) under the assumption that {φk}∞k=1 converges weakly in L2 (y1, y2) and locally
in C1 to φ0 (y). To see it, we notice that for fixed r0 > 0,

lim
k→∞

∫
R/Er0

K (y)φsφkWk (y)

Wk (y)
2
+ b2k

dy =

∫
R/Er0

K (y)φ2
s

U (y)− Us
dy

by weak convergence of φk. We can deal with the integral on each small interval
I (ai; r0) in the same way as in the proof of Lemma 7.1, noticing that the C1 norm of
φk is locally uniformly bounded.

To prove (41) we need the following lemma.

Lemma 7.3. Assume a sequence of differentiable functions {Γk}∞k=1 converges in
C1[y1, y2] to Γ0 (y). Let ck = pk + ibk converge to 0, where bk > 0 and |pk| ≤ Rbk.
Then we have

lim
k→∞

−
∫ y2

y1

U ′′ (y) Γk (y)

(U − Us − ck)
2 dy = P

∫ y2

y1

K (y) Γ0 (y)

U (y)− Us
dy + iπ

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai .

(93)

Proof. Denote Wk (y) = U (y)− Us − pk. We have

∫ y2

y1

−U ′′ (y) Γk (y)

(U − Us − ck)
2 dy

=

∫ y2

y1

K (y) Γk (y) (U (y)− Us)

(Wk (y)− ibk)
2 dy

=

∫ y2

y1

K (y) Γk (y) (Wk + pk)
(
W 2
k + 2ibkWk − b2k

)
(W 2

k + b2k)
2 dy

=

∫ y2

y1

K (y) Γk (y)W
3
k

(W 2
k + b2k)

2 dy + 2i

∫ y2

y1

K (y) Γk (y) bkW
2
k

(W 2
k + b2k)

2 dy −
∫ y2

y1

K (y) Γk (y)Wkb
2
k

(W 2
k + b2k)

2 dy

+

∫ y2

y1

K (y) Γk (y) pk
(
W 2
k − b2k

)
(W 2

k + b2k)
2 dy + 2i

∫ y2

y1

K (y) Γk (y) pkbkWk

(W 2
k + b2k)

2 dy

= I + II + III + IV + V .

Now we estimate each term separately. By (87) in Lemma 7.1, we have

lim
k→∞

I = P
∫ y2

y1

K (y) Γ0 (y)

U (y)− Us
dy.
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By (88) and (89), we have

lim
k→∞

II = 2i

(
lim
k→∞

∫ y2

y1

K (y) Γk (y) bk
W 2
k + b2k

dy − lim
k→∞

∫ y2

y1

K (y) Γk (y) b
3
k

(W 2
k + b2k)

2 dy

)

= 2i

(
π

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai −

1

2
π

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai

)

= iπ

l∑
i=1

(
|U ′|−1

Kφ0

)
|y=ai .

By (90), limk→∞ III = 0. Notice that

IV =
pk
bk

∫ y2

y1

K (y) Γk (y) bk
(
W 2
k + b2k − 2b2k

)
(W 2

k + b2k)
2 dy

=
pk
bk

(∫ y2

y1

K (y) Γk (y) bk
W 2
k + b2k

dy − 2

∫ y2

y1

K (y) Γk (y) b
3
k

(W 2
k + b2k)

2 dy

)

=
pk
bk

V I.

By (88) and (89), we have

lim
k→∞

V I = lim
k→∞

∫ y2

y1

K (y) Γk (y) bk
W 2
k + b2k

dy − 2 lim
k→∞

∫ y2

y1

K (y) Γk (y) b
3
k

(W 2
k + b2k)

2 dy

= π
l∑
i=1

(
|U ′|−1

K Γ0

)
|y=ai − 2

1

2
π

l∑
i=1

(
|U ′|−1

K Γ0

)
|y=ai

= 0.

Combining it with the fact that |pk| ≤ Rbk, we have limk→∞ IV = 0. Now for the
last term, we have

V = 2i
pk
bk

∫
K (y) Γk (y) b

2
kWk

(W 2
k + b2k)

2 dy = 2i
pk
bk

V II.

By (90), limk→∞ V II = 0. Thus we also have limk→∞ V = 0 since |pk| ≤ Rbk.

Combining the five terms above, we get (93).

Proof of (41). We must show that (41) holds uniformly in E(R,b1,b2). Suppos-
ing otherwise, we can find some δ0 > 0 and a sequence (ck, εk) in ER,b1,b2 with
max

{
bk1 , b

k
2

}
tending to 0 such that

∣∣∣∣∂I∂c (ck, εk)− (C + iD)

∣∣∣∣ > δ0,

where

C + iD =
1

φ′
s (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)
.
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But

∂I

∂c
(ck, εk) =

∫ y2

y1

−U ′′ (y) Γk (y)

(U − Us − ck)
2 dy,

where

Γk (y) = −N (y, y2; εk, ck)φ1 (y; ck, εk) .

Since Γk converges in C1 to

−N (y, y2; 0, 0)φ1 (y; 0, 0) =
1

φ′
s (y2)

φ2
s (y) ,

Lemma 7.3 implies

lim
k→∞

∂I

∂c
(ck, εk)

=
1

φ′
s (y2)

(
iπ

l∑
k=1

(
|U ′|−1

Kφ2
s

)
|ak + P

∫ y2

y1

(
K (y)φ2

s (y)
)
/ (U (y)− Us) dy

)

= C + iD,

which is a contradiction. Thus the uniform convergence of (41) is proved.
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Abstract. We consider the long time behavior of solutions of dissipative quasi-geostrophic
(DQG) flows with subcritical powers. The flow under consideration is described by the nonlinear
scalar equation

∂θ

∂t
+ u · ∇θ + κ(−�)αθ = f, θ|t=0 = θ0.

Rates of decay are obtained for both the solutions and higher derivatives in different Sobolev spaces.
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1. Introduction. In this paper we are concerned with the long time behavior of
the solutions to a special case of surface two-dimensional dissipative quasi-geostrophic
(DQG) flows with subcritical powers α:

∂θ

∂t
+ u · ∇θ + κ(−�)αθ = f,(1.1)

θ|t=0 = θ0.

Here α ∈ (0, 1], κ > 0, θ(t) is a real function of two space variables x ∈ R
2 and a time

variable t. The function θ(t) = θ(x, t) represents the potential temperature. The fluid
velocity u is determined from θ by a stream function ψ,

(u1, u2) =

(
− ∂ψ

∂x2
,
∂ψ

∂x1

)
,(1.2)

where the function ψ satisfies

(−�) 1
2ψ = −θ.

Equation (1.1) is obtained when dissipative mechanisms are incorporated into the
inviscid two-dimensional quasi-geostrophic (2DQG) equation. The 2DQG equation
is derived from the general quasi-geostrophic (GQG) equations by reduction to the
special case of solutions with constant potential vorticity in the interior and constant
buoyancy frequency [3]. For information on the GQG equations we refer the reader
to [8]. The fractional power α = 1/2 is perhaps the most interesting one since it
corresponds to a fundamental model of quasi-geostrophic equations; see [4] and [8].
As pointed out in [4], “Dimensionally the 2DQG equation with α = 1/2 is the analogue
of the 3D Navier–Stokes equations.”
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Two main problems will be considered. In the first, the power α will range in the
interval (12 , 1]. In this case when α ∈ (1/2, 1] it is known that the solutions are smooth
on the torus; see [4]. In [16] Wu establishes regularity of solutions for certain type
of data and forcing functions. Here we obtain smooth solutions in R

2 by establishing
uniform bounds in the Hm norms for solutions with appropriate data and forcing
term. Interest will then be focused on the analysis of the asymptotic behavior of the
energy of derivatives of all orders.

To establish decay in Hm(Rn) spaces the main tool will be the Fourier splitting
method [11], [12]. This technique and others were used to treat solutions to parabolic
conservation laws and Navier–Stokes equations. What makes the approach different
here is that unlike the case of parabolic conservation laws and Navier–Stokes equa-
tions the dissipative mechanism is not given by a straightforward Laplacian but by a
fractional power of the Laplacian, and new estimates are necessary. Before even ad-
dressing questions of decay new estimates are necessary to establish uniform bounds
for the derivatives.

Some of the proofs presented in this paper consider only the case when α ∈
(1/2, 1]; these proofs could be extended to the case α ∈ (0, 1], provided there was an a
priori bound (possibly time dependent) of the derivatives of the solutions in the space
L2. In particular the estimate obtained by Wu in [16] could be used once a uniform
bound on the W 1,∞ norm of the velocity u is established.

The second question we address is the decay of the solutions in Lp. Given the
decay in L2 obtained in [4], the new Hm decay obtained in the first part of the
paper will immediately yield, via a Gagliardo–Nirenberg inequality, decay in all Lp

spaces with p ≥ 2. Decay rate in Lp had already been obtained in [16], for p > 1.
The problem now is to improve this decay by imposing conditions on the initial data
which insure the decay of the L1 norm of the solutions. Two cases are considered.
First, the weak solution will be analyzed when α = 1/2 and decay will be shown in
L1. Second, decay is established for solutions in W q,p, p ≥ 2 and q ≥ 1, in the case
where α ∈ (1/2, 1].

1.1. Notation and preliminaries. The Fourier transform of v ∈ S(R2) is
defined by v̂(ξ) = (2π)−1

∫
R2 e

−ix·ξv(x) dx. It is then extended as usual to S ′. Given
a multi-index γ = (γ1, γ2) and m = |γ| = γ1 + γ2, we denote

∂γ =
∂|γ|

∂γ1x1∂
γ2
x2

and

Dm =
∑

|α|=m
∂γ .

If k is a nonnegative integer, W k,p(R2) will be, as is standard, the Sobolev space
consisting of functions in Lp(R2) whose generalized derivatives up to order k belong
to Lp(R2). As usual, when p = 2, thenW k,2(R2) = Hk(R2), where (also as usual) the

space Hs is defined for all s ∈ R as the space of all f ∈ S ′ such that (1+ |ξ|2)s/2f̂(ξ) ∈
L2.

Following Constantin and Wu [4], we denote by

Λ = (−�) 1
2(1.3)
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the operator defined by Λ̂f(ξ) = |ξ|f̂(ξ). More generally, if s ≥ 0, we define Λs by

Λ̂sf(ξ) = |ξ|sf̂(ξ).
Clearly Λsf is well defined (and in L2) if f ∈ Hs. More generally, one can define the

domain of Λs as consisting of all elements f ∈ S ′ such that f̂ is a function (i.e., locally
integrable); it is then clear that the definition given above defines Λsf as a tempered
distribution.

We denote by R1,R2 the Riesz transforms in R
2; i.e., R̂jf(ξ) = −i(ξj/|ξ|)f̂(ξ).

The operator R⊥, taking scalar-valued functions to vector-valued functions, is defined
by

R⊥f = (−∂x2
Λ−1f, ∂x1

Λ−1f) = (−R2f,R1f).(1.4)

The relation between u and θ in (1.1) can then briefly be stated as u = R⊥θ.
If F is a function defined on R

2 × [0,∞), we define for t ≥ 0 the function F (t)
on R

2 by F (t)(x) = F (x, t). For such F , the Fourier transform (and inverse Fourier
transform) is always with respect to the space variables; thus

F̂ (ξ, t) = F̂ (t)(ξ)

for all t ≥ 0. The letters C, C0, C1, etc., will denote generic positive constants, which
may vary from line to line during computations.

2. Uniform estimates. In this section we suppose α ∈ (1/2, 1]. We show
that Λβθ decays in the L2 norm for β ≥ 0; in particular we establish the uniform
boundedness of the solution θ in Hm if the initial datum θ0 ∈ Hm. Our results in
Theorem 2.4 can easily be adapted to the torus and as such extend those of Constantin
and Wu [4, Theorem 2.1]. The decay we obtain in this section is not optimal but is
needed to obtain the optimal rate of decay in the next section. In the last part of
this section we establish uniform estimates on the L∞ norms of the solutions. These
estimates are obtained by bounding the L1 norm of θ̂. We will need to use Theorem
3.1 from [4] and state it here for ease of reference.

Theorem 2.1. Let α ∈ (0, 1] and θ0 ∈ L1 ∩L2. Assume that f ∈ L1([0,∞);L2),
satisfying

‖f(t)‖2 ≤ C0(1 + t)−
1
α−1, |f̂(ξ, t)| ≤ C0|ξ|α(2.1)

for some constant C0. Then there exists a weak solution θ of the 2DQG equation

∂θ

∂t
+ u · ∇θ + κ(−�)αθ = f, θ|t=0 = θ0(2.2)

such that

‖θ(·, t)‖L2(R2) ≤ C(t+ 1)−
1
2α ,(2.3)

where C is a constant depending on the L1 and L2 norms of θ0, on the L
1(L2) norm

of f , and on C0.
We also need the following Sobolev type estimate.
Lemma 2.2. Let 2 < p < ∞ and let σ = 1 − 2

p . There exists a constant C ≥ 0

such that if f ∈ S ′ is such that f̂ is a function, then

‖f‖p ≤ C‖Λσf‖2.
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Proof. Since f̂ is a function, we have f̂(ξ) = |ξ|−σ|ξ|σ f̂(ξ). Taking the inverse
Fourier transform, we get f = Iσ(Λ

σf), where Iσ is the Riesz potential of order σ. It
is well known (cf. [13, Chapter V, Theorem 1]) that Iσ is bounded from L2(R2) to
Lp(R2) if 1

p =
1
2 − σ

2 . The lemma follows.

Next, a simple observation connecting the L2 norms of the temperature and the
velocity (or transport term) that will be used repeatedly.

Remark 2.3. Let 1 < p < ∞. There exists a constant Cp depending only on p
such that

‖Λβu(t)‖p ≤ Cp‖Λβθ(t)‖p(2.4)

for all β ≥ 0, t ≥ 0. If p = 2, this inequality can be strengthened to
‖Λβu(t)‖2 = ‖Λβθ(t)‖2.(2.5)

In fact, (2.4) is immediate from the fact that u = R⊥θ, the fact that the Riesz
transforms commute with Λβ , and the boundedness of the Riesz transforms in Lp.
Concerning (2.5), it suffices to observe that

Λ̂βu(ξ, t) =
i

|ξ| (ξ2, ξ1)|ξ|
β θ̂(ξ, t)

and the norm equality follows.
We are ready to state and prove the main result of this section. This first theorem

gives a uniform bound for the derivatives of the solution θ(t) of the 2DQG and, for
a sufficiently fast decaying f , an auxiliary rate of decay that will be improved in the
next section.

Theorem 2.4. Let α ∈ (1/2, 1], β ≥ α, and assume q satisfies 2/(2α− 1) < q <
∞. Suppose θ0 ∈ L1 ∩ L2, Λβθ0 ∈ L2, f ∈ L1([0,∞] : Lq ∩ L2) satisfies (2.1) and
Λβ−αf ∈ L2((0,∞), L2). If θ is a solution to (1.1) with initial datum θ0, then

‖Λβθ(t)‖L2 ≤ C0(1 + t)−
1
2α + C1

(∫ t

0

‖Λβ−αf(s)‖2
2 ds

)1/2

(2.6)

for t ≥ 0, where C0, C1 are constants depending only on norms of the initial datum
and f. In particular, if f = 0, then

‖Λβθ(t)‖L2 ≤ C0(1 + t)−
1
2α(2.7)

for all t ≥ 0.
Remark 2.5. In [4, Theorem 2.1] the authors assume, in case β < 1, that q =

2/(1−β). This choice is consistent with our more general one, since it is also assumed
in [4] that β + 2α > 2, which implies 2/(1 − β) > 2/(2α − 1). The assumption
θ0 ∈ L1 ∩ L2 (as well as f satisfying (2.1)) is needed to apply Theorem 2.1.

Proof. The first part of the proof we present is formal. At the end of the proof
we give a sketch on how to make the arguments rigorous. To obtain (2.6) multiply
both sides of (1.1) by Λ2βθ(t) and integrate in space:

1

2

d

dt

∫
R2

|Λβθ(t)|2 dx+ κ

∫
R2

|Λα+βθ(t)|2 dx(2.8)

= −
∫

R2

(u · ∇θ)Λ2βθ dx+

∫
R2

fΛ2βθ. dx.
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We estimate the second term on the right-hand side of the last equation by∫
R2

fΛ2βθ dx ≤ κ

8

∫
R2

|Λα+βθ(t)|2 dx+ 2
κ

∫
R2

|Λβ−αf |2 dx.(2.9)

Estimating the first term will take a little longer. We claim that there exists a constant
C(κ, θ0, f), depending only on the initial datum θ0, the L1(0,∞, Lq) norm of the
external force f , and κ such that∣∣∣∣

∫
R2

(u · ∇θ)Λ2βθ dx

∣∣∣∣ ≤ κ

8
‖Λα+βθ‖2

2 + C(θ0, f, κ)‖Λs+1−(2/p)θ‖2
2,(2.10)

where s = β − α + 1, p is determined by 1
p +

1
q =

1
2 , and q is as in the statement of

the theorem. The meaning of s, p, q will not change for the remainder of this proof.
To establish the claim, we begin observing that because div u = 0 we can write

u · ∇θ = div(uθ)− θdivu = div(uθ);

thus, by Plancherel, Hölder, and again Plancherel,∣∣∣∣
∫

R2

(u · ∇θ)Λ2βθ dx

∣∣∣∣ =
∣∣∣∣
∫

R2

(ξ1θ̂u1(ξ) + ξ1θ̂u2(ξ))|ξ|2β θ̂(ξ) dξ
∣∣∣∣

≤
2∑
i=1

∫
R2

|ξ|β−α+1|θ̂ui(ξ)||ξ|α+β |θ̂(ξ)| dξ

≤
2∑
i=1

‖Λβ−α+1(θui)‖2‖Λα+βθ‖2;

hence ∣∣∣∣
∫

R2

(u · ∇θ)Λ2βθ dx

∣∣∣∣ ≤ κ

8
‖Λα+βθ‖2

2 +
2

κ

2∑
i=1

‖Λs(θui)‖2
2.(2.11)

We estimate ‖Λs(θui)‖2 by the calculus inequality, getting

‖Λs(θui)‖2 ≤ C (‖ui‖q‖Λsθ‖p + ‖θ‖q‖Λsui‖p)
for i = 1, 2. This inequality follows easily by combining Hölder’s inequality with the
Gagliardo–Nirenberg and Young inequalities; see also inequality (3.1.59) on page 74
of [14]. Since ui = ±Rjθ (i, j ∈ {1, 2}, i �= j) and the Riesz transforms commute with
Λ and are bounded in Lp, Lq (notice that 2 < p, q < ∞), we have ‖Λsui‖p ≤ C‖Λsθ‖p
and ‖ui‖q ≤ C‖θ‖q for i = 1, 2. Applying this to the previous estimate, we get

‖Λs(θui)‖2 ≤ C‖θ‖q‖Λsθ‖p(2.12)

for i = 1, 2. To continue, we estimate ‖θ‖q by the following maximum principle:

‖θ‖Lq ≤ ‖θ0‖Lq +
∫ t

0

‖f(τ)‖Lq dτ.(2.13)

For details on this inequality and its proof we refer the reader to [10], [1], but we
briefly describe the main idea, as given by Wu [15]. Specifically, (2.13) follows by
multiplying both sides of (1.1) by q|θ|q−2θ and integrating with respect to x to get

d

dt
‖θ‖qLq ≤ q

(∫
|θ|q−2θf dx −

∫
|θ|q−2θ(u · ∇θ) dx−

∫
|θ|q−2θκ(−�)αθ) dx

)
.
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One sees that the second integral on the right is zero. The last integral on the right
can be shown to be positive [10], [15]. Thus

d

dt
‖θ‖qLq ≤ q

∫
|θ|q−2θf dx ≤ q‖f‖Lq‖θ‖q−1

Lq ,

and (2.13) follows. Because f ∈ L1(0,∞;Lq), we proved that

‖Λs(θui)‖2 ≤ C(θ0, f)‖Λsθ‖p
for i = 1, 2, where C0(θ0, f) is independent of t, depends only on θ0, f . By Lemma
2.2,

‖Λs(θui)‖2 ≤ C(θ0, f)‖Λs+1−(2/p)θ‖2

for i = 1, 2. Using this in (2.11), (2.10) follows, establishing our claim, with C(κ, θ0, f) =
4
κC(θ0, f)

2. Combining (2.8), (2.9), and (2.10) yields

1

2

d

dt
‖Λβθ(t)‖2

2 +
3κ

4
‖Λα+βθ(t)‖2

2 ≤ C0‖Λγθ‖2
2 +

2

κ
‖Λβ−αf‖2

2,(2.14)

where C0 = C(κ, θ0, f) and we introduced γ = s+1− 2
p = β−α+2(1− 1

p ). To continue

estimating, let BM = {ξ : |ξ|2 ≤ M}, with M > 0 to be determined appropriately
below. The choice 2/(2α − 1) < q < ∞ implies 1

2 > 1
p =

1
2 − 1

q > 1 − α, and hence
1
p + α− 1 > 0. Thus γ = α+ β − 2( 1p + α− 1) < α+ β and

‖Λγθ(t)‖2
2dx =

∫
BM

|ξ|2γ |θ̂(t)|2 dξ +
∫
Bc
M

|ξ|2γ |θ̂(t)|2 dξ

≤ M2γ‖θ(t)‖2
2 +M−4( 1

p+α−1)‖Λα+βθ(t)‖2
2.

Selecting M large enough to satisfy M−4( 1
p+α−1) < κ/(4C0), it follows that

C0‖Λγθ(t)‖2
2dx ≤ κ

4
‖Λα+βθ(t)‖2

2 + C0M
2γ‖θ(t)‖2

2.(2.15)

Next,

‖Λα+βθ‖2
2 ≥

∫
Bc
M

|ξ|2(α+β)|θ̂|2 dξ ≥ M2α

∫
Bc
M

|ξ|2β |θ̂|2 dξ

=M2α‖Λβθ‖2
2 −M2α

∫
BM

|ξ|2β |θ̂|2 dξ,

implying

‖Λα+βθ‖2
2 ≥ M2α‖Λβθ‖2

2 −M2(α+β)‖θ(t)‖2
2.(2.16)

By Theorem 3.1 in [4] (stated as Theorem 2.1 in this article), ‖θ(t)‖2 decays at the
rate of (1 + t)−1/α. Using this estimate in (2.15) and (2.16), and then returning to
(2.14), we get

d

dt
‖Λβθ(t)‖2

2 + κM2α‖Λβθ(t)‖2
2 ≤ C̃0M

c(1 + t)−1/a +
2

κ
‖Λβ−αf(t)‖2

2,(2.17)
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where C̃0 is a new constant depending only on f, θ0, κ and c = max(2γ, 2α+2β). For
convenience, let ν = κM2α. Multiplying both sides of (2.17) by eνt and integrating
in time we see that

‖Λβθ(t)‖2
2 ≤ e−νt‖Λβθ0‖2

2 + C̃0M
c

∫ t

0

e−ν(t−s)(s+ 1)−
1
α ds

+
2

κ

∫ t

0

e−ν(t−s)‖Λβ−αf(s)‖2
2 ds.

The desired estimate (2.6) now follows, since

∫ t

0

e−ν(t−s)(1 + s)−
1
α ds ≤ C(1 + t)−

1
α ,(2.18) ∫ t

0

e−ν(t−s)H(s) ds ≤
∫ t

0

H(s) ds(2.19)

for all t ≥ 0, some C.
This completes the formal part of the proof. To make the above arguments

rigorous, apply the same proof to the “retarded mollifications θn,” which are solutions
of the sequence of approximate equations

∂θn
∂t

+ un · ∇θn + κ(−�)αθn = f,(2.20)

where un = Ψδn(θn) is obtained from θn by

Ψδn(θn) =

∫ t

0

φ(τ)R⊥θn(t− δnτ) dτ,(2.21)

and R⊥ is defined by (1.4).
The function φ is smooth and has support in [1, 2], and

∫∞
0

φ(t) dt = 1. This
construction is similar to the one used by Caffarelli, Kohn, and Nirenberg in [2] for
solutions to the Navier–Stokes equations. It is easy to see that for each n the values of
un depend only on the values of θn in [t−2δn, t−δn]. As stated in [4] the θn converge
to a weak solution θ and strongly in L2 almost everywhere in t. Since the bounds for
the Λβθn are independent of n it follows that they hold for the limiting solution θ.

This concludes the proof of the theorem.
Remark 2.6. In proving Theorem 2.4 we estimated (see (2.19))

∫ t

0

e−ν(t−s)‖Λβ−αf(s)‖2
2 ds ≤

∫ t

0

‖Λβ−αf(s)‖2
2 ds

to get the second term on the right-hand side of (2.6). The assumption f = 0 then
causes the L2 norm of Λβθ(t) to decay in time. However, by (2.18), it follows that we
have decay of this norm as long as ‖Λβ−αf‖2 decays fast enough. For example, if

‖Λβ−αf(t)‖2 ≤ C(1 + t)−δ

for some δ > 0, then (2.7) can be replaced by

‖Λβθ(t)‖L2 ≤ C0(1 + t)−min( 1
2α ,δ),(2.22)
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where C0 only depends on f and the initial datum θ0.
The remainder of this section deals with obtaining L∞ bounds of the solution—

more precisely, L1 bounds of the Fourier transform of the solution. If the hypotheses
of Theorem 2.4 are satisfied with β > 1, it is clear that θ̂(t) ∈ L1 and ‖θ̂(t)‖1 is
uniformly bounded in t. In fact, θ ∈ L2 ∩ H̃β = Hβ , and hence

∫
R2

|θ̂(ξ)| dξ ≤ C

(∫
R2

(1 + |ξ|2)β |θ̂(ξ)|2 dξ
)1/2

with

C =

(∫
R2

(1 + |ξ|2)−β | dξ
)1/2

< ∞.

In the next lemma, we show that we also have θ̂(t) ∈ L1, with a uniformly bounded
L1 norm, if β = 1.

The next lemma gives an a priori bound of the L1 norm of θ̂(t). It then suffices
to establish a local existence theorem to obtain a global uniform bound.

Lemma 2.7 (a priori bound). Assume the hypothesis of Theorem 2.4 with β ≥ 1.
If β = 1, assume also that θ̂0 ∈ L1 and that f̂ ∈ L1(0,∞, L1). It follows that there
exists C ≥ 0 such that

‖θ̂(t)‖1 ≤ C

for all t ≥ 0
Remark 2.8. The hypothesis on f in case β = 1 can be considerably weakened,

but the proof becomes somewhat more involved.
Proof. Since we only want an a priori bound the proof is formal. The case β > 1

was dealt with in the remarks preceding this lemma; we assume from now on that
β = 1. By Theorem 2.4, there exists C ≥ 0 such that

‖∇θ(t)‖2 = ‖Λθ(t)‖2 ≤ C

for all t ≥ 0. An easy calculation yields

θ̂ = e−κ|ξ|
2αtθ̂0 −

∫ t

0

e−κ|ξ|
2α(t−s)û · ∇θ ds+H(t),

where

H(t) =

∫ t

0

e−κ|ξ|
2α(t−s)f̂(s) ds.

By the additional hypothesis on f , it is obvious that H(t) is uniformly bounded in
the L1 norm. Hence

‖θ̂(t)‖1 ≤ ‖θ̂0‖1 +

∫ t

0

‖e−κ|ξ|2α(t−s)û · ∇θ‖1 ds+ C,(2.23)

where C is chosen so that ‖H(t)‖1 ≤ C for all t ≥ 0. Since the first term of the
right-hand side of (2.23) is bounded by hypothesis, we need to bound only the second
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term. For this purpose, we split it into two parts for an appropriate value of ε > 0 as
follows. ∫ t

0

‖e−κ|ξ|2α(t−s)û · ∇θ‖1 ds = I + II,

where, if t ≥ ε,

I =

∫ t−ε

0

‖û · ∇θ‖1 ds,

II =

∫ t

t−ε
‖e−κ|ξ|2α(t−s)û · ∇θ‖1 ds;

if 0 ≤ t < ε, then I = 0 and II =
∫ t
0
‖û · ∇θ‖1 ds. We begin bounding II, assuming

t > ε.

II ≤
∫ t

t−ε
‖e−κ|ξ|2α(t−s)‖2‖û · ∇θ‖2 ds ≤ C

∫ t

t−ε

1

(t− s)
1
2α

‖∇θ‖2‖u‖∞ ds

≤ C sup
t≥0

‖∇θ(t)‖2 sup
0≤s≤t

‖θ̂(s)‖1ε
1− 1

2α ,

where we used the fact that ‖u(t)‖∞ ≤ C‖û(t)‖1 ≤ C‖θ̂(t)‖1, since the components

of û are obtained multiplying θ̂ by functions of absolute value 1. Since ‖∇θ(t)‖2 is
bounded in t, we can select ε > 0 so that

II ≤ 1

2
sup

0≤s≤t
‖θ̂(s)‖1(2.24)

for all t ≥ ε. Assuming now t < ε, we estimate essentially the same way to get

II ≤ C sup
t≥0

‖∇θ(t)‖2 sup
0≤s≤t

‖θ̂(s)‖1

∫ t

0

(t− s)−
1
2α ds ≤ C sup

0≤s≤t
‖θ̂(s)‖1ε

1− 1
2α .

Decreasing the size of ε > 0 if necessary, we can assume that (2.24) also holds for
0 < t < ε.

To bound I, we use the fact that ‖u(s)‖2 = ‖θ(s)‖2 ≤ C(1 + s)−1/2α ≤ C,
‖∇θ(s)‖2 ≤ C for all s ≥ 0 (some constant C). We assume t ≥ ε (otherwise I = 0).

I ≤
∫ t−ε

0

‖e−κ|ξ|2α(t−s)‖1‖û · ∇θ‖∞ ds ≤ C

∫ t−ε

0

1

(t− s)
1
α

‖û · ∇θ‖∞ ds

≤ C

∫ t−ε

0

1

(t− s)
1
α

‖u‖2‖∇θ‖2 ds ≤ C

∫ t−ε

0

1

(t− s)
1
α

ds.

The last integral is bounded by Cε1−
1
α if α < 1, by C log(1/ε) if α = 1, and in either

case by a constant since ε has been fixed. In other words I is bounded independently
of t; using this and (2.24) in (2.23), we get

‖θ̂(t)‖1 ≤ C +
1

2
sup

0≤s≤t
‖θ̂(s)‖1

for all t ≥ 0, C independent of t. The lemma follows.
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Corollary 2.9. Under the hypotheses of Lemma 2.7 one has that ‖θ(t)‖∞,
‖û(t)‖1, and ‖u(t)‖∞ are uniformly bounded in t.

Proof. Since the components of u are Riesz transforms of θ (hence, the components

of û differ from θ̂ by factors of absolute value 1), it is immediate from Lemma 2.7
that ‖û(t)‖1 is uniformly bounded in time. The uniform bound on the L

∞ norms now
follows.

The next lemma gives the local existence for solutions with data θ0, where θ0 ∈ H1

and θ̂0 ∈ L1

Lemma 2.10. Let θ0 ∈ H1 and θ̂0 ∈ L1, and let f satisfy the hypothesis of
Theorem 2.4. Let α ∈ (1/2, 1], β = 1. Then there exists T > 0 and a solution θ of

(1.1) such that θ ∈ L∞([0, T ] : H1) and θ̂ ∈ L∞([0, T ] : L1).
Proof. The proof follows by a straightforward application of the contraction map-

ping theorem to the sequence of solutions of the equations

∂θn
∂t

+ (−R2θn−1,R1θn−1) · ∇θn + κ(−�)αθn = f,

θ|t=0 = θ0.

Theorem 2.11. Under the conditions of Theorem 2.4 there exists a global solu-
tion θ ∈ L∞([0,∞) : H1) such that θ̂ ∈ L∞([0,∞) : L1).

Proof. Combine the two last lemmas.

3. Hm and fractional derivative decay. In this section we improve the decay
of the derivatives of order β of the solution θ of (1.1), assuming the external force
f = 0. The decay established in the last section is not optimal but does provide
the stepping stone to obtain the optimal decay, that is, a decay rate which coincides
with that of the underlying linear part. The main tool used is the Fourier splitting
method (see [11], [12]). The solutions considered here are supposed to be smooth.
The assumption that the external force is zero is not essential. The same results can
be obtained when f �= 0, provided ‖Λβ−αf‖2 decays sufficiently fast (see Remark
2.6 above and Corollary 3.4 at the end of this section). The proof is the same as
the one presented below, with the addition of a term that decays sufficiently fast by
hypothesis.

We assume throughout this section that α ∈ ( 12 , 1], m ≥ α, and θ is the solution
of (1.1) (with f = 0 until further notice) such that θ0 = θ(0) satisfies θ0 ∈ L1(R2) ∩
Hm(R2). The hypotheses of Theorem 2.4 are thus satisfied for any β ∈ [α,m]. The
numbers p, q are as in the previous section: 1

p +
1
q =

1
2 , 0 <

1
q < α− 1

2 .
Before improving the rate of decay of the derivatives of θ, we state some of the

immediate consequences of Theorem 2.4.
Corollary 3.1. Under the assumptions mentioned above, the following esti-

mates hold for t ≥ 0:

‖θ(t)‖Hm ≤ C(1 + t)−
1
2α ,(3.1)

‖u(t)‖Hm ≤ C(1 + t)−
1
2α ,(3.2)

with C a constant depending only on norms of the initial datum; moreover, if m ≥ 1,
with r any exponent in [2,∞), then

‖θ(t)‖r ≤ Cr(1 + t)−
1
2α , 0 ≤ γ ≤ β − 1,(3.3)

‖Λγu(t)‖r ≤ Cr(1 + t)−
1
2α , 0 ≤ γ ≤ β − 1,(3.4)
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with Cr a constant depending only on norms of the initial datum and r.

Proof. Since Hm = {g ∈ L2 : Λmg ∈ L2}, inequality (3.1) is immediate from
Theorem 2.4; inequality (3.2) follows then from Remark 2.3. Inequalities (3.3), (3.4)
follow from these and Sobolev’s theorem.

The next theorem will give the optimal rate of decay for the derivatives in the
sense that it coincides with the decay rate of the underlying linear part.

Theorem 3.2. Assume θ is a solution of (2.2) with data θ0 ∈ L1 ∩Hm. Then

‖Λβθ(t)‖L2 ≤ C(t+ 1)−
β+1
2α ,(3.5)

where C is a constant which depends only on the norms of the initial datum.

Proof. The proof is based on an appropriately modified Fourier splitting method,
combined with the preliminary estimates of the last section. We will assume α < 1;
refer to [5] for the case α = 1.

Assume α ≤ β ≤ m. We return to the derivation of inequality (2.14) in the proof
of Theorem 2.4, recalling that C(κ, θ0, f) =

4
κC(θ0, f)

2 and C(θ0, f) was a bound for
‖θ(t)‖q given by the maximum principle. If we forego this bound, we obtain directly,
for some constant C1, all t ≥ 0,

1

2

d

dt
‖Λβθ(t)‖2

2 +
3κ

4
‖Λα+βθ(t)‖2

2 ≤ C1‖θ(t)‖2
q‖Λβ−α+1− 2

p θ(t)‖2
2.(3.6)

Because β < β−a+1− 2
p < α+β, with δ > 0 such that β−a+1− 2

p = (1−δ)β+δ(α =

β), we have

‖Λβ−α+1− 2
p θ(t)‖2

2 ≤ ‖Λβθ(t)‖2(1−δ)
2 ‖Λα+βθ(t)‖2δ

2 ≤ κ

4C0
‖Λβθ(t)‖2

2 + C2‖Λα+βθ(t)‖2
2,

where we take C0 so that C1‖θ(t)‖2
q ≤ C0 for all t ≥ 0, C2 being determined by this

choice. Inequality (3.6) can be modified to

1

2

d

dt
‖Λβθ(t)‖2

2 +
κ

2
‖Λα+βθ(t)‖2

2 ≤ C2‖θ(t)‖2
q‖Λβθ(t)‖2

2.(3.7)

For t ≥ 0 set

S(t) =

{
ξ : |ξ|2α ≤ µ

κ(t+ 1)

}
,

where µ is chosen so that µ > β+1
α + 1. Then

‖Λα+βθ(t)‖2
2 =

∫
R2

|ξ|2(α+β)|θ(t)|2 dξ

≥ 2µ

3κ(t+ 1)

∫
S(t)c

|ξ|2β |θ(t)|2 dξ

=
2µ

3κ(t+ 1)

(
‖Λβθ(t)‖2

2 −
∫
S(t)

|ξ|2β |θ(t)|2 dξ
)

≥ 2µ

3κ(t+ 1)

(
‖Λβθ(t)‖2

2 −
(

2µ

3κ(t+ 1)

) β
α

‖θ(t)‖2
2

)
;
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estimating ‖θ(t)‖2 by const·(1 + t)−1/(2α) and putting it into (3.7) we get, after we

estimate the factor ‖θ(t)|2q in (3.7) by C(t+ 1)−
1
α (Corollary 3.1),

1

2

d

dt
‖Λβθ(t)‖2

2 +
µ

2(t+ 1)
‖Λβθ(t)‖2

2 ≤ C(t+ 1)−
1
α ‖Λβθ‖2

2 + C(t+ 1)−
β+1
α −1.(3.8)

Assume proved, for some λ, 0 < λ < (β + 1)/α, some C ≥ 0, and all t ≥ 0, that
‖Λβθ‖2

2 ≤ C(t+ 1)−λ.(3.9)

Then using this in (3.8) we obtain, after multiplying by the integrating factor 2(t+1)µ,

d

dt

(
(t+ 1)µ‖Λβθ(t)‖2

2

) ≤ C(t+ 1)µ−
1
α−λ + C(t+ 1)µ−

β+1
α −1.

Integrating from 0 to t, and then dividing by (t+ 1)−µ,

‖Λβθ(t)‖2
2 ≤ ‖Λβθ(0)‖2

2 + C)(t+ 1)−µ + C(t+ 1)1−
1
α−λ + C(t+ 1)−

β+1
α .

It follows that in (3.9) we can replace λ by min(λ+ 1
α − 1, β+1

α ). Since 1
α − 1 > 0, we

are done.
Corollary 3.3. Under the conditions of the last theorem it follows that the

solutions to 2DQG equations have the decay in Lp

‖Dju‖p ≤ Cp(t+ 1)
− 1
α [ j+2

2 − 1
p ].

Proof. Use the estimates in Theorem 3.2 and [4] combined with a Gagliardo–
Nirenberg inequality.

‖Dju‖p ≤ Cp‖u‖1−a
2 ‖Dj+1‖a2 ,(3.10)

where a = 1− 2
j+1

1
p . Thus

‖Dju‖p ≤ Cp(t+ 1)
−[(1−a) 1

2α+a j+2
2α ].(3.11)

Replacing a with its definition gives the expected decay.
In the case that f �= 0 we can obtain the same results of Theorem 3.2, provided f

decays at the appropriate rate. We state this more precisely in the following corollary.
Corollary 3.4. Under the conditions of Theorem 3.2, suppose f satisfies (2.1)

and

‖Λβ−αf(·, t)‖2
2 ≤ C(1 + t)−

β+1
2 −1.(3.12)

If θ is a solution to (2.2) with data θ0, then

‖Λβθ(t)‖L2 ≤ Ct−
β+1
2α ,(3.13)

where C is constant which depends only on the L2 norm of the data and f.
Proof. The proof follows the same steps of the last theorem.

4. L1 and improved Lp decay. In this section we consider the decay in Lp

spaces for p ∈ [1,∞]. New conditions on the data will be necessary to insure decay
of the solutions in the Lp norms when p ∈ [1, 2), mainly that a Riesz potential of the
data lies in the corresponding Lp space.

We first consider the L1 decay of the solutions for the special case when α = 1/2.
In the more general case when α ∈ ( 12 , 1) the L1 decay for derivatives of higher order
will be obtained. The case of α = 1 is the easiest since the linear part is the heat
equation.
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4.1. Linear asymptotics. Let α ∈ (0, 1], κ > 0. We consider the linear equa-
tion

∂θ

∂t
+ κ(−�)αθ = 0(4.1)

in R
2 ×R; the solution θ = θ(x, t) is a function of a space variable x ∈ R

2 and a time
variable t ≥ 0. Without loss of generality, we assume κ = 1.

The function Gα will be defined for α ∈ (0, 1] by

Ĝα(ξ, t) = e−|ξ|2αt.

The solution θ of (4.1) with initial datum θ0 is then given by

θ(t) = etΛ
2α

θ0 = Ga(t) ∗ θ0.
We recall once again that if 0 < β < 2, the Riesz potential Iβ is defined in the Fourier
variables by

(̂Iβw)(ξ) =
ŵ(ξ)

|ξ|β .

Then we can write

∂γθ(t) = (∂γΛβGa)(t) ∗ (Iβθ0).(4.2)

By a standard change of variables, since n = 2, it follows that

(∂γΛβGα)(x, t) = t−( β2α+
|γ|
2α+ 1

α )(∂γΛβGα)(t
− 1

2αx, 1).(4.3)

Hence, by the Hausdorff–Young inequality,

‖∂γθ(t)‖p ≤ t−( β2α+
|γ|
2α+ 1

α [1− 1
p ])‖∂γΛβGα(1)‖p‖Iβθ0‖1(4.4)

for all t ≥ 0, 1 ≤ p ≤ ∞. Thus, in order to establish the Lp decay of ∂γθ(t) it will
suffice to prove that ∂γΛβGα(1) is in L

p. We do this in the next lemma.
Lemma 4.1. Assume α ≥ 1

2 and let p ∈ [1,∞]. Then ∂γΛβGα(1) ∈ Lp for all
β ≥ 0 and all multi-indices γ = (γ1, γ2).

Proof. Since

̂∂γΛβGα(1)(ξ) = ξγ |ξ|βe−|ξ|2α

is integrable, it follows that ∂γΛβGα(1) ∈ L∞ (for all α > 0). All that remains to be
proved is that ∂γΛβGα(1) ∈ L1.

We consider two cases: α > 1
2 and α = 1

2 . Assume first that α > 1
2 . It is not

hard to see that∣∣∣∆( ̂∂γΛβGα

)
(ξ, 1)

∣∣∣ = ∣∣∣∆(ξγ |ξ|βe−|ξ|2α
)∣∣∣

≤ C(1 + |ξ|N )|ξ||γ|+β+2α−2e−|ξ|2α

for some constants C,N ≥ 0, all ξ ∈ R
2. It follows that |∆( ̂∂γΛβGα)(ξ, 1)|2 near 0

behaves like |ξ|2|γ|+2β+2α−4, which is integrable since, because α > 1
2 , 2|γ|+2β+4α−
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4 ≥ 4α− 4 > −2. It follows that ∆( ̂∂γΛβGα)(1) is in L
2; hence so is |x|2∂γΛβGα(1).

It being clear that Gα(1) ∈ L2, it follows that (1 + |x|2)∂γΛβGα(1) is in L2; since
(1 + |x|2)−1 is in L2, the proof that ∂γΛβGα(1) is in L

1 is complete.
Assume now that α = 1

2 . Then

ΛβG 1
2
(x, 1) =

1

2π

∫
R2

|ξ|βeix·ξe−|ξ| dξ

=
1

2π

∫ 2π

0

∫ ∞

0

rβ+1e−r(1−ix sin θ) dr dθ

=
Γ(β + 2)

2π

∫ 2π

0

dθ

(1− ix sin θ)β+2
.

From the last expression it is immediate that ∂γΛβGα(1) ∈ L1(R2) if β + |γ| > 0. It
remains to be seen whether the same is true if β = 0, γ = 0. However, in this case
the integral is easily computed by residues; one has

G 1
2
(x, 1) =

1

2π

∫ 2π

0

dθ

(1− ix sin θ)2
=

1

4(1 + |x|2)3/2 .

The last expression is clearly integrable over R
2.

Remark 4.2. The last lemma is valid for α ∈ (0, 1/2), provided β + |γ| ≥ 1. In
fact, essentially the same proof as for the case α > 1

2 applies. The only relation α, β, γ
had to satisfy for the argument to be valid was 2|γ|+2β+4α−4 > −2, which clearly
holds if α > 0 and β + |γ| ≥ 1.

The results in the remainder of this section are based on the ideas described in
[5] to study the L1 decay for solutions to viscous conservation laws.

Theorem 4.3. Let α ∈ (0, 1], let 0 < β, and assume that Iβθ0 ∈ L1(R2). Let
γ = (γ1, γ2) be a multi-index; assume |γ|+ β ≥ 1 if α < 1

2 . Set

A = lim
|ξ|→0

θ̂0(ξ)

|ξ|β =

∫
R2

(Iβθ0)(x) dx.(4.5)

Let θ(t) = e−tΛ
2α

θ0 = Ga(t) ∗ θ0 be the solution of (4.1) with initial datum θ0. Then,
for 1 ≤ p ≤ ∞,

‖∂γθ(t)|p ≤ Ct−
β
2α− |γ|

2α−(1− 1
p ) 1
α ‖Iβθ0‖1(4.6)

for all t > 0 and C = C(β, γ) independent of t and θ0. Moreover,

t
β
2α+

|γ|
2α+(1− 1

p ) 1
α ‖∂γθ(t)−A∂γΛβGα(t)‖p → 0(4.7)

as t → ∞.
Proof. By Lemma 4.1 (see also Remark 4.2) we have ∂γΛβGα ∈ Lp. Writing

∂γθ(t) = (∂γΛβGα(t)) ∗ Iβθ0,
in view of Lemma 4.1, (4.6) is immediate from (4.4) C = ‖∂γΛβGα(1)‖p.

For the proof of (4.7), we can write∣∣∂γθ(x, t)−A∂γΛβGα(x, t)
∣∣

≤
∫

R2

∣∣(∂γΛβGα)(x− y, t)− (∂γΛβGα)(x, t)
∣∣ |Iβθ0(y)| dy

≤
(∫

R2

|Iβθ0(y)| dy
) p−1

p
(∫

R2

∣∣(∂γΛβGα)(x− y, t)− (∂γΛβGα)(x, t)
∣∣p |Iβθ0(y)| dy

)1/p

.
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Raising to the power p, integrating with respect to x, and changing the variables
by z = xt−

1
2α , combined with the self-similar form of Gα (see (4.3)), leads to the

following expression:

‖∂γθ(t)−A∂γΛβGα(t)‖pp
≤ ‖Iβθ0‖p−1

1

∫
R2×R2

∣∣(∂γΛβGα)(x− y, t)− (∂γΛβGα)(x, t)
∣∣p |Iβθ0(y)| dxdy

= t−
p
2α (β+|γ|+2(1− 1

p ))‖Iβθ0‖p−1
1

×
∫

R2×R2

∣∣∣(∂γΛβGα)(z − t−
1
2 y, 1)− (∂γΛβGα)(z, 1)

∣∣∣p |Iβθ0(y)| dxdy.
To complete the proof of (4.7) we need to show only that

lim
t→∞

∫
R2×R2

∣∣∣(∂γΛβGα)(z − t−
1
2 y, 1)− (∂γΛβGα)(z, 1)

∣∣∣p |Iβθ0(y)| dxdy = 0.(4.8)

The Fourier transforms of all the derivatives of the function ∂γΛβG(1) are in L1; it
follows that this function is infinitely many times differentiable, with all derivatives
bounded. Thus the integrand in (4.8) converges uniformly to 0 over compact subsets
of R

2 × R
2. Moreover, by Lemma 4.1, the function (and its derivatives) are in Lp.

By this LP -integrability, and the integrability of Iβθ0, one can find for each ε > 0 a
compact subset Kε of R

2 × R
2 such that∫

(R2×R2)\Kε

∣∣∣(∂γΛβGα)(z − t−
1
2 y, 1)− (∂γΛβGα)(z, 1)

∣∣∣p |Iβθ0(y)| dxdy < ε.

This and the aforementioned uniform convergence prove (4.8). This completes the
proof of the theorem.

Remark 4.4. In the case α = 1 we recall that in [7], [6] Miyakawa obtained the L1

decay of et∆u0 provided the |x|β-momentum of the data is bounded. The assumption
on the Riesz potential is weaker than the one assumed by Miyakawa; see [5].

We also obtain the following as an immediate corollary to Lemma 4.1.
Corollary 4.5. Let α ∈ (0, 1], let 0 < β, and assume that Iβθ0 ∈ Lp(R2),

1 ≤ p ≤ ∞. Let γ = (γ1, γ2) be a multi-index; assume |γ| + β ≥ 1 if α < 1
2 . Then

there exists a constant C ≥ 0 such that

‖∂γe−tΛ2α

θ0‖p ≤ Ct−
β
2α− |γ|

2α ‖Iβθ0‖p(4.9)

for all t > 0.
Proof. By (4.2), (4.3), and the Hausdorff–Young inequality,

‖∂γe−tΛ2α

θ0‖p ≤ t−
β
2α− |γ|

2α− 1
α ‖∂γΛβGα(t− 1

2α ·, 1)‖1‖Iβθ0(t)‖p
= t−

β
2α− |γ|

2α ‖∂γΛβGα(1)‖1‖Iβθ0(t)‖p,

and the result follows from Lemma 4.1.

4.2. Nonlinear asymptotics. The next step is to use the results from the
last section to get the decay of the solutions to the geostrophic equations in L1 and
with that improve the decay of the solutions in Lp. The decay will be obtained by
estimating the solutions via their integral representation. We note that the decay
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below might not be optimal. So as to be able to include the critical case α = 1
2 , we

recall the following result due to Constantin, Cordoba, and Wu [1].
Theorem 4.6. There exists a constant c∞ such that for any θ0 ∈ H2(R2) with

‖θ0‖H2 ≤ c∞, the equation

θt + u · ∇θ + Λθ = 0

has a unique global solution θ with initial datum θ0 satisfying

‖θ(t)‖H2 ≤ ‖θ0‖H2

for all t ≥ 0.
Combining this theorem with Theorem 2.1 and using the Gagliardo–Nirenberg

inequalities, one obtains for this solution θ, u = R⊥θ

‖θ(t)‖∞ ≤ C‖θ‖ 1
2
2 ‖Λ2θ‖ 1

2
2 ≤ C‖θ0‖

1
2

H2
(1 + t)−

1
2 ,(4.10)

‖u(t)‖∞ ≤ C‖u‖ 1
2
2 ‖Λ2u‖ 1

2
2 ≤ C‖θ0‖

1
2

H2
(1 + t)−

1
2 ,(4.11)

and by Hölder,

‖∇θ(t)‖2 ≤ ‖θ(t)‖ 1
2
2 ‖Λ2θ(t)‖ 1

2
2 ≤ ‖θ0‖

1
2

H2
(1 + t)−

1
2 .(4.12)

We assume θ is this solution in case α = 1
2 .

Theorem 4.7. Let β > 0, assume that Iβθ0 ∈ L1(R2), and let θ be the solution
of the homogeneous DQG equation with initial datum θ0.

(i) Assume 1
2 ≤ α < 1. Then

‖θ(t)‖1 ≤ Ct−ν

for all t > 0, some constant C, where

ν =

{
min(β, 1

2 ) if α = 1
2 ,

min( β2α ,
1
2α ) if 1

2 < α < 1.

(ii) Assume α = 1. Then

‖θ(t)‖1 ≤
{

Ct−
β
2 if β < 1,

Ct−
1
2 log(t+ 1) if β ≥ 1

for some constant C.
Proof. Write the solution by its integral representation,

θ(t) = Gα(t) ∗ θ0 +
∫ t

0

Gα(s) ∗ (u · ∇θ)(t− s) ds = Gα(t) ∗ θ0 + I(t).(4.13)

From the last section it follows that

‖Gα(t) ∗ θ0‖1 ≤ Ct−
β
2α ‖Iβθ0‖1,(4.14)

and the theorem reduces to proving that

I(t) =

∫ t

0

‖Gα(s) ∗ (u · ∇θ)(t− s)‖1 ds ≤ C(1 + t)−ν
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is appropriately bounded. By Hausdorff–Young, Hölder, and the fact that u∇θ =
div(uθ),

I(t) =

∫ t/2

0

‖Gα(s) ∗ (u · ∇θ)(t− s)‖1 ds+

∫ t

t/2

‖∇Gα(s) ∗ (uθ)(t− s)‖1 ds

≤
∫ t/2

0

‖Gα(s)‖1‖u(t− s)‖2‖∇θ(t− s)‖2 ds+

∫ t

t/2

‖∇Gα(s)‖1‖u(t− s)‖2‖θ(t− s)‖2 ds

= J(t) +K(t).

By the results of the last section we have

‖Gα(s)‖1 = ‖Gα(1)‖1 = C,(4.15)

‖∇Gα(s)‖1 = s−
1
2α ‖∇Gα(1)‖1 = Cs−

1
2α ,(4.16)

with C a constant depending only on α. We also have

‖u(t− s)‖2‖∇θ(t− s)‖2 ≤
{
(1 + t)−3/2 if α = 1

2 ,

(1 + t)−
3
2α if 1

2 < α ≤ 1.

The estimate for α = 1
2 comes from Theorem 2.1 and (4.12), the one for α > 1

2 from
Theorem 3.2. Using this and (4.15) we get, with µ = 3

2 if α =
1
2 , µ =

3
2α , otherwise

J(t) ≤ C

∫ t/2

0

(1 + t− s)−µ ds ≤ C(1 + t)1−µ,

since in all cases µ > 1. Note that µ − 1 = 1
2 when µ = 3

2 , and for all other µ’s it
follows that µ− 1 ≥ 1

2α , so µ− 1 ≥ ν in all cases. Thus

J(t) ≤ C(1 + t)−ν ,(4.17)

and we are done with the estimate for J . To estimate K(t) we use (4.16) and the fact

that ‖u(t− s)‖2‖θ(t− s)‖2 ≤ C(1 + t− s)−
1
α to get

K(t) ≤ C

∫ t

t/2

s−
1
2α (1 + t− s)−

1
α ds ≤

{
Ct−

1
2α if 1

2 ≤ α < 1,

Ct−
1
2 log t if α = 1.

(4.18)

The conclusion of the theorem follows now from (4.13) and (4.14), using (4.17) and
(4.18) to bound I(t) = J(t) +K(t).

Derivatives of the solution θ can be similarly bounded, at least if α > 1
2 . We have

the following theorem.
Theorem 4.8. Let β > 0. Assume Iβθ0 ∈ L1(R2), θ0 ∈ Hm for some m ≥ 1,

and let γ be a multi-index, |γ| ≤ m− 1. Then

‖∂γθ(t)‖1 ≤
{

Ct−min(
β+|γ|

2α ,
|γ|+1
2α ), 1

2 < α < 1,

Ct−min(
β+|γ|

2α ,
|γ|+1
2α ) log(t+ 1), α = 1.

Proof. Proceeding as in the proof of Theorem 4.7, we get

‖∂γθ(t)‖1 ≤ ‖∂γGα(t) ∗ θ0‖1 + Jγ(t) +Kγ(t),
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where the terms on the right-hand side now have the following interpretations and
bounds:

‖∂γGα(t) ∗ θ0‖1 ≤ Ct−
β+|γ|

2α

by (4.6). For the second term, using the estimates in Theorem 3.2 we obtain first

‖∂γ(u · ∇θ)(t− s)‖1 ≤
∑

|γ1|+|γ2|=|γ|+1

cγ1,γ2‖∂γ1u(t− s)‖2‖∂γ2θ(t− s)‖2

≤ C(1 + t− s)−
|γ|+3
2α

(4.19)

(the coefficients cγ1,γ2 coming from Leibniz’s formula); hence (since 3− 2α ≥ 1)

Jγ(t) =

∫ t/2

0

‖Gα(s)‖1‖∂γ(u · ∇θ)(t− s)‖1 ds ≤ C(t+ 1)−
|γ|+3−2α

2α ≤ C(t+ 1)−
|γ|+1
2α .

For the third term we use the fact that ‖∇∂γGα(t)‖ = Ct−
|γ|+1
2α and, as in Theorem

4.7, that

‖u(t− s)θ(t− s)‖1 ≤ (1 + t− s)−
1
α

to get

Kγ(t) =

∫ t

t/2

‖∇∂γGα(s)‖1‖(uθ)(t− s)‖1 ds ≤
{

Ct−
|γ|+1
2α if 1

2 < α < 1,

Ct−
|γ|+1

2 log(t+ 1) if α = 1.

The theorem follows.
Finally, we see that the solution θ is asymptotically equivalent to the self-similar

solution of the linear equation, at least if β < 1. For a given β > 0, (4.3) shows that
the self-similar solution ∂γΛβGα of the linear equation decays in the L

1 norm at the

rate of t−
β+|γ|

2α as t → ∞. Theorem 4.8 shows that the derivative ∂γ of the solution of
the nonlinear equation (with datum θ0 satisfying Iβθ0 ∈ L1) decays (at least) at the
same rate if β < 1. By asymptotic equivalence, we mean that the difference of θ and
the self-similar solution of the linear equation decays at a better rate.

Theorem 4.9. Assume 0 < β < 1 and that the hypotheses of Theorem 4.8 hold.
Then, with

A = Aβ =

∫
R2

(Iβθ0)(x) dx,

one has

lim
t→∞ t

β+|γ|
2α

∥∥∂γθ(t)−A∂γΛβGα(t)
∥∥

1
= 0.

Proof. We have

∂γθ(t)−A∂γΛβGα(t)=∂
γ(Ga(t) ∗ θ0)−A∂γΛβGα(t)+

∫ t

0

∂γGα(s) ∗ (u · ∇θ)(t− s) ds,

and by Theorem 4.3 it suffices to prove that

lim
t→∞ t

β+|γ|
2α H(t) = 0,(4.20)
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where

H(t) =

∫ t

0

‖∂γGα(s) ∗ (u · ∇θ)(t− s)‖1 ds.

This is, however, immediate from the proof of Theorem 4.8. In fact, we have H ≤
Jγ+Kγ , where Jγ ,Kγ are as in the proof of Theorem 4.8. It follows that H(t) decays

at the rate of either t−
|γ|+1
2α (α < 1) or t−

|γ|+1
2α log t (α = 1); in either case (4.20) holds

because β < 1.
Corollary 4.10. Under the conditions of Theorem 4.9 if |γ| = 0, the conclusion

of the theorem is also valid for the case α = 1
2 .

Proof. The proof follows the same lines as that of Theorem 4.9.
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WITH A NONLINEAR FLUX CONDITION∗
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Abstract. The main result of this paper is a global existence theorem for a two-dimensional free-
boundary problem with a nonlinear boundary condition in suitable Sobolev spaces. The existence
result is proved by using some a priori estimates and the Schauder fixed point theorem.

Key words. Stefan problem, free-boundary problem, nonlinear flux
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1. Introduction. In the present paper we consider a free-boundary problem
concerning the evolution of a heated viscous incompressible fluid with a nonlinear
boundary condition on the temperature. Problems of this kind have been stud-
ied by several authors; see, for instance, Fasano and Primicerio [11], Cannon and
DiBenedetto [4, 5], Damlamian and Kenmochi [9], and Visintin [16].

We consider a coupling between the Navier–Stokes equations and the Stefan equa-
tion. Some papers have been devoted to the coupling of these equations; see Cannon
and DiBenedetto [5], Cannon, DiBenedetto, and Knightly [6], and Wang [18]. One of
the main novelties of this paper is the analysis of a simplified approximate method
to couple the two equations. We propose an approximate method (see section 2)
that does not impose a vanishing velocity in the solid part. This particular model,
analyzed in Casella and Giangi [7], is a simplification of the exact one introduced by
Cannon, DiBenedetto, and Knightly [6] and by Wang [18]. Its interest relies on the
fact that the existence of weak solutions can be proved in a more straightforward way.
Furthermore, this model (coupled with finite differences or finite elements) provides
some numerical methods which are very simple to implement and which give results in
good agreement with experimental data. In particular, Rady and Mohanty [15] have
applied it to the melting of gallium and soldification of tin in a square cavity; Brent,
Voller, and Reid [2] and Giangi and Stella [12] to a melting problem; and Giangi,
Stella, and Kowalewski [13] to a freezing water problem.

In the present paper we apply this model to a classical problem with nonlinear
flux. We consider a fluid that can take a phase transition in a bounded open set
Ω ⊂ R

2. We suppose that the boundary Γ = ∂Ω is a smooth one-dimensional manifold
and that Ω is locally situated on one side of Γ. We consider a homogeneous Dirichlet
condition for the velocity field. Concerning the temperature, we impose a Dirichlet
condition on part of the boundary and a suitable nonlinear flux condition on the rest.
In particular, the flux may depend in a nonlinear way on the temperature. In this
case, it is possible to study the physical problem of irradiation with the so-called
Stefan–Boltzmann law. This may be used to describe, for example, the electron flux
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in a rarefied gas. The model equation, which we have in mind, is

∂θ

∂n
= η(θ4 − θ4

0),

where θ and θ0 are, respectively, the temperature of the boundary and that of the
source, while η is a physical parameter. The main result of this paper is a global
existence theorem in suitable Sobolev spaces for the Stefan problem with convection
and nonlinear flux. In particular, existence is proved by considering a sequence of
approximating problems, for which a priori estimates are obtained. The limit then
provides a weak solution for the original problem.

The paper is organized as follows. In section 2 we describe the mathematical
model. In section 3 we define some notation. In section 4 we give the notion of weak
solution, and we state and prove the main result.

2. Formulation of the problem. Suppose that in a region Ω of R
2 a Newtonian

and incompressible fluid undergoes a change of phase at a fixed temperature. In
general, there are in the fluid convective motions, originated by a body force f which
depends on the temperature θ of the fluid.

In what follows, Q denotes the space-time cylinder Ω × (0, T ), where 0 < T ∈ R

and Ω is a bounded open set in R
2 of Lipschitz class, filled by the fluid.

We define Ω(0) := Ω× {0} and assume that Γ2 is an open subset of Γ of positive
one-dimensional Hausdorff measure, and we set Σ := Γ2 × (0, T ) and Γ1 := Γ \ Γ2.

The phase-transition temperature is denoted by 0, and the following temperature-
phase rule is assumed:

θ ≥ 0 in the liquid region and θ ≤ 0 in the solid region.

Let M1 be a real positive constant and let α be the maximal monotone graph defined
by

α(θ) =




{θ +M1} if θ > 0,
[−M1,M1] if θ = 0,
{θ −M1} if θ < 0.

(2.1)

The following constitutive relation between the enthalpy w and the temperature θ of
the fluid holds:

w ∈ α(θ).

The term β is a function which depends on the temperature:

β(θ) =

{
C θ if θ < 0,
0 if θ ≥ 0,

(2.2)

where C is a large real positive constant.
By assuming the Boussinesq approximation, the system of partial differential

equations we are going to study is

∂w

∂t
− k∆θ + v · ∇θ = 0 in Q,(2.3)

∂v

∂t
− ν∆v + (v · ∇)v +∇p+ β(θ)v = f(θ) in Q,(2.4)

∇ · v = 0 in Q,(2.5)

w ∈ α(θ) a.e. in Q,
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where k and ν are given real positive constants and p is the pressure of the fluid. The
previous system is supplemented by the following initial and boundary conditions:

w(x, 0) = w0(x) in Ω(0),(2.6)

v(x, 0) = v0(x) in Ω(0),(2.7)

θ = 0 on Γ1 × (0, T ),(2.8)

∂θ

∂n
= −g(θ) on Γ2 × (0, T ),

v = 0 on Γ× (0, T ).(2.9)

We observe that in the solid region the term β(θ) has the effect of a constraint:
when the temperature θ decreases, β(θ) increases and the solution v of the velocity
equation becomes small. On the other hand, the definition of β implies that, where θ
is larger than 0, the velocity equation is equivalent to the Navier–Stokes system.

3. Notation and function spaces. In this section we provide a brief descrip-
tion of the function spaces that shall be used in what follows. We shall need the
following Banach spaces:

W := {u ∈ H1(Ω) : u = 0 on Γ1},

H := {v ∈ L2(Ω) : v · n = 0 on Γ and divv = 0},

V := {v ∈ H1(Ω) : v = 0 on Γ and divv = 0}.
By recalling the generalized Poincaré inequality, the spaces W and V are equipped
with the norms

‖u‖W := ‖∇u‖L2(Ω) and ‖v‖V := ‖∇v‖L2(Ω).

Let us consider the trilinear and continuous form b : V × V × V → R defined as

b(u,v,w) :=

2∑
i,j=1

∫
Ω

ui (Divj)wj dx,

and let B : V × V → V
′
be the continuous operator given by

〈B(u,v),w〉V ′ ,V = b(u,v,w) ∀w ∈ V.

Finally, we denote by γ0 the trace operator

γ0 : L2(0, T ;W) → L2(0, T ;H
1
2 (Γ2))

and by G the operator defined by

G : {z ∈ L2(0, T ;W) : g(x, t, γ0z(x, t)) ∈ L2(Σ)} −→ L2(0, T ;W ′
)

〈G(z), s〉L2(0,T ;W′ ),L2(0,T ;W) =

∫ T

0

∫
Γ2

g(γ0z) γ0s dσ dt.

The interpolation theory provides the following compactness result (the Lions–Aubin
theorem), which will be fundamental in proving the main proposition of this paper.

Theorem 3.1. For i = 0, 1 let 1 < pi < +∞. Let B,B0, B1 be Banach spaces,
and let B0, B1 be reflexive and such that B0 ⊂ B ⊂ B1. Let the inclusion B0 ↪→ B be
compact and the inclusion B ↪→ B1 be continuous.

Then the embedding Lp0(0, T ;B0) ∩W 1,p1(0, T ;B1) ↪→ Lp0(0, T ;B) is compact.
In what follows, as usual, we shall denote by ci, i ∈ N, some real positive constants.
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4. An existence result. The aim of this section is to prove the existence of a
weak solution to the problem described by (2.3)–(2.9).

Definition 4.1. Let

w0 ∈ L2(Ω), v0 ∈ H,

f : R → R
2 a Lipschitz function : f(0) = 0.

Let g be a function defined on Σ×R, which satisfies some further properties that shall
be introduced later. A weak solution of (2.3)–(2.9) is a pair (w,v) such that

w ∈ L2(Q) : θ = α−1(w) ∈ L2(0, T ;W), g(x, t, γ0[θ(x, t)]) ∈ L2(Σ),

v ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

which satisfies∫
Q

(
−w

∂ϕ

∂t
+ k∇θ · ∇ϕ+ (v · ∇θ)ϕ

)
dx dt

= −
∫ T

0

∫
Γ2

g(γ0θ)ϕdσ dt+

∫
Ω

w0ϕ(· , 0) dx

∀ϕ ∈ C∞(Q) such that ϕ = 0 on Γ1 and ϕ(x, T ) = 0 ∀x ∈ Ω;

∫
Q

(
−v · ∂ψ

∂t
+ ν∇v : ∇ψ + {(v · ∇)v} ·ψ + β(θ)v ·ψ

)
dx dt

=

∫
Q

f(θ) ·ψ dx dt+

∫
Ω

v0 ·ψ(· , 0) dx

∀ψ ∈ C∞(Q) such that ψ = 0 on Γ, divψ = 0 and ψ(x, T ) = 0 ∀x ∈ Ω.

Theorem 4.2. Assume that −M1 ≤ w0 ≤ M1 and that for each (x, t) ∈ Σ the
real function

ξ −→ g(x, t, ξ)

is nondecreasing monotone and such that g(x, t, 0) = 0. Furthermore, let g(x, t, ξ)
belong to L2(Σ) for each ξ ∈ R. Then there exists a weak solution for system (2.3)–
(2.9) such that θ and w ∈ L∞(Q). In particular,

−M1 ≤ w ≤ M1 a.e. in Q.

Proof. We prove the previous result via approximation, a priori estimates, and a
limit procedure.

4.1. A collection of approximate problems. As a first step we approximate
the maximal monotone graph α defined in (2.1).

Let {αm}m∈N be a sequence of odd smooth functions such that
1. for suitable ζ0, ζ1, and c, real positive constants independent of m,

ζ0 ≤ α
′
m(u) ≤ ζ1 for |u| > 2

m
and ζ0 ≤ α

′
m(u) ≤ cm for |u| ≤ 2

m
;(4.1)
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2. {δm}m∈N := {α−1
m }m∈N is a sequence of odd functions, strongly converges to

δ(u) := α−1(u) uniformly on compact sets, and is such that

δm(M1) > 0, 0 <
1

cm
≤ δ

′
m ≤ ζ−1

0 ∀m ∈ N.(4.2)

We refer to [4] for more details on the construction and regularity of the sequences
{αm}m∈N and {δm}m∈N. Now let gm be a sequence in C1(Σ× R) such that

1. for each (x, t) ∈ Σ and m ∈ N the real map ξ �→ gm(x, t, ξ) is nondecreasing
monotone;

2. the sequence gm(x, t, ξ) converges to g(x, t, ξ) pointwise on Σ ∀ ξ ∈ R;
3. there exists a function F ∈ L2(Σ) such that

∀ξ ∈ R |gm(x, t, ξ)− g(x, t, ξ)| ≤ F (x, t) on Σ;

4. the sequence gm satisfies the inequalities

gm(x, t, δm(−M1)) ≤ 0 and gm(x, t, δm(M1)) ≥ 0 on Σ.

Also let −M1 ≤ w0,m ≤ M1 be a sequence in L2(Ω) and let v0,m be a sequence in V
such that

w0,m → w0 strongly in L2(Ω) and v0,m → v0 strongly in H.

We now consider the following auxiliary problem. Find (wm,vm) in L2(Q)×L2(0, T ;V )
∩ L∞(0, T ;H) : θm := δm(wm) ∈ L2(0, T ;W) and

∫
Q

(
−wm

∂ϕ

∂t
+ (vm · ∇θm)ϕ+ k∇θm · ∇ϕ

)
dx dt

= −
∫ T

0

∫
Γ2

gm(θm)ϕdσ dt+

∫
Ω

w0,m ϕ(x, 0) dx

∀ϕ ∈ C∞(Q), ϕ = 0 on Γ1, ϕ(x, T ) = 0 ∀x ∈ Ω;∫
Q

−vm · ∂ψ
∂t

+ {(vm · ∇)vm} ·ψ + ν∇vm : ∇ψ + β(θm)vm ·ψ dx dt

=

∫
Q

f(θm) ·ψ dx dt+

∫
Ω

v0,m ·ψ(x, 0) dx

∀ψ ∈ C∞(Q), ψ = 0 on Γ, divψ = 0, ψ(x, T ) = 0 ∀x ∈ Ω.

We employ a Galerkin procedure to solve the previous problem. We consider in
L2(Ω) the basis {zi} of complete orthonormal polynomials. We also introduce the
orthonormal basis {wi} of H generated by the Stokes problems



−∆wi +∇p = λiwi in Ω,

div wi = 0 in Ω,

wi = 0 on Γ,

where p is a scalar function representing a pressure.
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The initial data w0,m and v0,m are represented as

w0,m(x) =

∞∑
i=1

c0m,i zi(x), v0,m(x) =

∞∑
i=1

d0
m,i wi(x), where c0m,i, d

0
m,i ∈ R.

For any fixed l ∈ N, we denote by Pl the L2(Ω)-projection over the span generated
by z1, . . . , zl, and we set

v∗
l (x, t) =

l∑
i=1

dl,∗i (t)wi(x), dl,∗i (t) ∈ C1[0, T ] for i = 1, . . . , l.

We wish to find wm,l(x, t) =
∑l
i=1 c

l
m,i(t)zi(x), with the real functions clm,i ∈ C1[0, T ]

for i = 1, . . . , l, such that θm,l := δm(wm,l) and the Stefan problem


∂wm,l
∂t

− ν∆θm,l + v∗
l · ∇θm,l = 0 in Q,

θm,l = 0 on Γ1 × (0, T ),

∂θm,l
∂n

= −gm(θm,l) on Γ2 × (0, T ),

wm,l(x, 0) = Pl(w0,m) in Ω

(4.3)

with prescribed convection v∗
l is satisfied in the sense of the projection over the span

generated by z1, . . . , zl. The previous equations form a linear differential system for
the real functions clm,i(t). With a standard argument, one can easily prove that this
system has a maximal solution on the time interval (0, T ).

We now denote by πl the H-projection onto the linear space of w1, . . . ,wl, and we
employ the function wm,l thus obtained to construct vm,l =

∑l
i=1 d

l
m,i(t)wi, solution,

in the sense of the projection over the span generated by w1, . . . ,wl, of the system




∂vm,l
∂t

− ν∆vm,l + (vm,l · ∇)vm,l + β(δm(wm,l))vm,l = f(δm(wm,l)) in Q,

div vm,l = 0 in Q,

vm,l = 0 on Γ,

vm,l(x, 0) = πl(v0,m) in Ω.

(4.4)

It can be shown easily that there exists a unique solution of the previous nonlinear
differential system for the real functions dlm,i(t) on the interval (0, T ). For l ∈ N, let

B be a ball in L∞(0, T )l with a large enough radius and let Fl : B → Fl(B) be the
function defined as

Fl(d
∗
1(t), . . . , d

∗
l (t)) = (dlm,1(t), . . . , d

l
m,l(t)).

By using the Schauder fixed point theorem, we prove that, for each l belonging to
N, the map Fl has a fixed point. To check that Fl satisfies all the hypotheses of the
Schauder fixed point theorem, some a priori estimates are required.
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4.2. Some a priori estimates. We now set zm,l := (wm,l−M1)
+−(wm,l+M1)

−

and multiply the first equation in (4.3) by zm,l. We get that

∫
Ω

∂wm,l
∂t

zm,l dx+

∫
Ω

∇θm,l · ∇zm,l dx+

∫
Ω

(v∗
l · ∇θm,l) zm,l dx

+

∫
Γ2

gm(θm,l) zm,l dσ = 0.

(4.5)

We claim that ∫
Ω

∇θm,l · ∇zm,l dx ≥ 0,(4.6)

∫
Ω

(v∗
l · ∇θm,l) zm,l dx = 0,(4.7)

∫
Γ2

gm(θm,l) zm,l dx ≥ 0.(4.8)

The first statement is trivial. Concerning (4.7), by the definition of zm,l and by
integrating by parts we get

∫
{wm,l<−M1}∪{wm,l>M1}

(v∗
l · ∇θm,l)zm,l dx

= −
∫
{wm,l<−M1}∪{wm,l>M1}

(v∗
l · ∇zm,l)θm,l dx

= −
∫
{wm,l<−M1}∪{wm,l>M1}

(v∗
l · ∇wm,l)δm(wm,l) dx

= −
∫
{wm,l<−M1}∪{wm,l>M1}

v∗
l · ∇

(∫ wm,l

−M1

δm(s)ds

)
dx.

Observing that
∫M1

−M1
δm(s)ds = 0 and integrating by parts again, we obtain (4.7).

We now prove (4.8). Clearly,

∫
Γ2

gm(θm,l) zm,l dx dt =

∫
{wm,l>M1}

gm(θm,l) zm,l dx

+

∫
{wm,l<−M1}

gm(θm,l) zm,l dx.

Since for wm,l > M1 we have gm(θm,l) ≥ gm(δm(M1)) ≥ 0 and for wm,l < −M1 we
have gm(θm,l) ≤ gm(δm(−M1)) ≤ 0, it follows that

∫
{wm,l>M1}

gm(θm,l) zm,l dx ≥ 0 and

∫
{wm,l<−M1}

gm(θm,l) zm,l dx ≥ 0.



EXISTENCE RESULT FOR 2D FREE-BOUNDARY PROBLEM 383

By using (4.6), (4.7), and (4.8), from (4.5) we obtain

1

2

d

dt
‖zm,l‖2

L2(Ω) ≤ 0.

By integrating the previous inequality in time from 0 to t, and by observing that
zm,l(0) = 0, it follows that zm,l(t) = 0 ∀t ∈ [0, T ]. Consequently,

−M1 ≤ wm,l ≤ M1 in Q.(4.9)

We now take wm,l as a test function in the first equation of system (4.3). After
integrating by parts, we get∫

Ω

∂wm,l
∂t

wm,l dx+

∫
Ω

∇θm,l · ∇wm,l dx = −
∫

Γ2

gm(θm,l) wm,l dx.

Since δm is a sequence of smooth nondecreasing monotone functions, (4.9) implies

δm(−M1) ≤ θm,l ≤ δm(M1) in Q.

Hence,

1

2

d

dt
‖wm,l‖2

L2(Ω) +

∫
Ω

α
′
m|∇θm,l|2 dx ≤

∫
Γ2

|gm(γ0θm,l)| |γ0wm,l| dx

≤ M1 max(‖gm(δm(−M1))‖L1(Γ2), ‖gm(δm(M1))‖L1(Γ2)).

(4.10)

By using (4.1), (4.2), and the monotonicity of the functions gm, it follows that, for m
sufficiently large,

max(‖gm(δm(−M1))‖L1(Γ2), ‖gm(δm(M1))‖L1(Γ2)) ≤ c1.(4.11)

By (4.1), (4.10), and (4.11), we also get

1

2

d

dt
‖wm,l‖2

L2(Ω) + ζ0

∫
Ω

|∇θm,l|2 dx ≤ c2.

Hence, since the sequence wm,l is bounded in L∞(Q), by integrating in time the
previous inequality it follows that there exists a real positive constant c3 such that

‖θm,l‖L2(0,T ;W) ≤ c3.(4.12)

We now multiply the first equation in (4.4) by vm,l. By standard calculations and
using (4.12), we obtain that

‖vm,l‖L∞(0,T ;L2(Ω)) ≤ c4 and ‖vm,l‖L2(0,T ;V ) ≤ c4.(4.13)

4.3. Application of the Schauder fixed point theorem. To prove that the
map Fl satisfies all the hypotheses of the Schauder fixed point theorem, we have to
check that Fl is well-defined and compact. Let us consider the ball B of radius c4,
where c4 is the constant appearing in (4.13), and let {d∗1(t), . . . , d∗l (t)} in B. Since the
first inequality in (4.13) implies that

(
l∑
i=1

{dlm,i(t)}2

) 1
2

≤ c4 ∀t ∈ [0, T ],
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it follows that Fl(d
∗
1(t), . . . , d

∗
l (t)) ∈ B. Hence, Fl maps the ball B into itself. More-

over, as we shall prove, the sequence {∂vm,l∂t }l∈N is uniformly bounded in L2(Q). Con-
sequently, Fl(d

∗
1(t), . . . , d

∗
l (t)) ∈ H1(0, T )l ⊂ L∞(0, t)l. Since H1(0, T )l is compactly

embedded in L∞(0, t)l, the map Fl is compact.
We now show that there exists a constant C(m, ‖v0,m‖V ) depending on m and

on the norm of v0,m in V but which is independent of l such that∥∥∥∥∂vm,l
∂t

∥∥∥∥
L2(Q)

≤ C(m, ‖v0,m‖V ).

Let As be the Stokes operator. By multiplying the first equation in (4.4) by λiwi, we
obtain ∫

Ω

(
λi

∂vm,l
∂t

wi + β(θm,l)vm,lAswi

)
dx+ ν〈Aswi, vm,l〉

+ b(vm,l,vm,l, Aswi) =

∫
Ω

f(θm,l)Aswi dx.

It follows that

1

2

d

dt
‖vm,l‖2

V +
ν

2
‖Asvm,l‖2

L2(Ω) ≤ σm,l‖vm,l‖2
V + c5‖θm,l‖2

L2(Ω),(4.14)

where σm,l = c6(‖vm,l‖2
L2(Ω)‖vm,l‖2

V + ‖θm,l‖2
W). Since the sequence {θm,l}l∈N is

bounded in L∞(0, T ;L2(Ω)) and
∫ T
0
σm,l dt < +∞, by the Gronwall lemma the se-

quence {vm,l}l∈N is also bounded in L∞(0, T ;V ). Back to (4.14), we obtain that

ν‖Asvm,l‖2
L2(Q) ≤ ‖vm,l(0)‖2

V + 2

∫ T

0

(
σm,l ‖vm,l(t)‖2

V + c5‖θm,l‖2
L2(Ω)

)
dt,

which yields that {vm,l}l∈N is bounded in L2(0, T ;H2(Ω)). Since

∂vm,l
∂t

= −νAsvm,l −B(vm,l,vm,l)− [β(θm,l) + f(θm,l)]vm,l

and in two dimensions the inequality

‖B(u, u)‖2
L2(Ω) ≤ c7‖u‖2

V ‖u‖L2(Ω)‖Asu‖L2(Ω) ∀u ∈ V ∩H2(Ω)

holds, the sequence {∂vm,l∂t }l∈N is bounded in L2(Q) by a constant depending on m
but not on l.

Hence, we conclude that Fl has a fixed point vm,l ∈ span〈w1, . . . ,wl〉. This point
can be written as

vm,l =

l∑
i=1

d̃m,i(t)wi.

Let

ϕs =

s∑
i=1

di(t)zi(x), ψs =

s∑
i=1

νi(t)wi(x) di, νi ∈ C1[0, T ], di(T ) = νi(T ) = 0.
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Then θm,l and vm,l satisfy for l > s∫
Q

α
′
m

∂θm,l
∂t

ϕs+∇θm,l · ∇ϕs + {vm,l · ∇θm,l}ϕsdx dt

= −
∫ T

0

∫
Γ2

gm(θm,l)ϕs dσ dt;

(4.15)

∫
Q

∂vm,l
∂t

ψs + ν∇vm,l : ∇ψs+{(vm,l · ∇)vm,l}ψs + β(θm,l)vm,lψs dx dt

=

∫
Q

f(θm,l)ψs dx dt.

(4.16)

4.4. Passage to the limit for l → ∞. The preceding a priori estimates show
that the two sequences {θm,l}l∈N and {vm,l}l∈N are weakly compact, respectively, in
L∞(Q)∩L2(0, T ;W) and L∞(0, T ;H)∩L2(0, T ;V ). Therefore, two subsequences can
be selected and relabeled with l in such a way that for m ∈ N fixed, as l → +∞

wm,l −→ wm weakly star in L∞(Q),

θm,l −→ θm weakly in L2(0, T ;W) and weakly star in L∞(Q),

vm,l −→ vm weakly in L2(0, T ;V ) and weakly star in L∞(0, T ;H).

By the continuity of the trace operator γ0, we have

‖Gm(θm,l)‖L2(W′ ) ≤ c8.(4.17)

By (4.17), since
∂wm,l
∂t = k∆θm,l−vm,l·∇θm,l, we get that the sequences {wm,l}l∈N

and {θm,l}l∈N are bounded in H1(0, T ;W ′
). By Theorem 3.1, there exists a subse-

quence, relabeled by l, such that for l → +∞ and m ∈ N fixed

θm,l → θm strongly in L2(Q) and vm,l → vm strongly in L2(0, T ;H).(4.18)

By passing to the limit for l → +∞ in (4.15) and (4.16), we prove that θm and
vm satisfy ∫

Q

α′
m

∂θm
∂t

ϕs +∇θm · ∇ϕs + {vm · ∇θm}ϕsdx dt

= −
∫ T

0

∫
Γ2

gm(θm)ϕs dσ dt;

(4.19)

∫
Q

∂vm
∂t

ψs + ν∇vm : ∇ψs + {(vm · ∇)vm}ψs + β(θm)vmψs dx dt

=

∫
Q

f(θm)ψs dx dt.

(4.20)
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We now pass to the limit in the constitutive relation wm,l = αm(θm,l). It follows from
(4.1) that

‖wm,l − αm(θm)‖L2(Q) ≤ m2‖θm,l − θm‖L2(Q).

Consequently, by (4.18), for l → +∞,

wm,l = αm(θm,l) → αm(θm) strongly in L2(Q).

By the uniqueness of the weak limit of wm,l in L2(Q), it can be seen that wm =
αm(θm). We now claim that

∫ T

0

∫
Γ2

gm(θm,l)ϕs →
∫ T

0

∫
Γ2

gm(θm)ϕs.

It is a well-known result that for every ε > 0 there exists a constant C(ε) such that

∫ T

0

∫
Γ2

|θm,l − θm|2 dσ dt ≤ ε‖∇θm,l −∇θm‖2
L2(Q) + C(ε)‖θm,l − θm‖2

L2(Q).

Since the norm ‖∇θm,l −∇θm‖L2(Q) is equibounded by a constant (depending on m
but not on l) and the sequence θm,l strongly converges to θm in L2(Q), the above
inequality implies that for l → ∞

θm,l → θm strongly in L2(Σ).(4.21)

Moreover, there exists a constant c(m), depending on m, such that

‖gm(x, t, θm,l)− gm(x, t, θm)‖L1(Σ) ≤ c(m)‖θm,l(x, t)− θm(x, t)‖L1(Σ).

Hence, by (4.21), for l → ∞
∫ T

0

∫
Γ2

gm(θm,l)ϕsdσ dx −→
∫ T

0

∫
Γ2

gm(θm)ϕsdσ dx.

4.5. Passage to the limit for m → ∞. To conclude the proof we have to
pass to the limit for m → ∞.

We take as test functions in (4.19) and (4.20), respectively, wm and vm. By stan-
dard calculations, we find that the sequences {wm}m∈N and {vm}m∈N are uniformly
bounded in L∞(Q) ∩ L2(0, T ;W) ∩H1(0, T ;W ′

) and in L2(0, T ;V ) ∩ L∞(0, T ;H) ∩
H1(0, T ;V

′
) by a real positive constant not depending on m. By virtue of Theo-

rem 3.1, the sequences {θm}m∈N and {vm}m∈N strongly converge in L2(Q) and in
L2(0, T ;H), respectively, to θ and v.

We now show that θ = α−1(w). By the monotonicity of the sequence δm, for every
s ∈ L∞(Q)

∫ T

0

∫
Ω

[δm(wm(x, t))− δm(s(x, t))](wm(x, t)− s(x, t)) dx dt

=

∫ T

0

∫
Ω

[θm(x, t)− δm(s)](wm − s) dx dt ≥ 0.

(4.22)
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We remark that∫ T

0

∫
Ω

δm(wm)wm =

∫ T

0

∫
Ω

θmwm dx dt −→
∫ T

0

∫
Ω

θw dx dt.

Since δm → α−1 in C0(R), by passing to the limit for m → ∞ in (4.22), we get

∫ T

0

∫
Ω

[θ(x, t)− α−1(s(x, t))](w(x, t)− s(x, t)) dx dt ≥ 0 ∀s ∈ L∞(Q).(4.23)

Since the real function α−1 is monotone, (4.23) implies that

∫ T

0

∫
Ω

[θ − α−1(w)](w − s) dx dt ≥ 0 ∀s ∈ L∞(Q),

from which we get

θ = α−1(w) a.e. in Q.

We now claim that∫ T

0

∫
Γ2

gm(θm)γ0ϕdx −→
∫ T

0

∫
Γ2

g(γ0θ)γ0ϕdx ∀ϕ ∈ C∞(Q).

Since the sequence gm(θm) is bounded in L2(Σ), it follows that gm(θm) weakly con-
verges to ξ in L2(Σ). We prove that ξ = g(γ0θ). By virtue of the monotonicity of the
functions gm,∫

Σ

[gm(θm)− gm(γ0s)]γ0(θm − s) dx dt ≥ 0 ∀s ∈ L2(0, T ;H1(Ω)) : γ0s ∈ L∞(Σ).

For m → ∞,

∫ T

0

∫
Γ2

gm(θm)θm dx dt →
∫ T

0

∫
Γ2

ξ(γ0θ)dx dt.

On the other hand, by Lebesgue’s dominate convergence theorem

gm(x, t, γ0s(x, t)) → g(x, t, γ0s(x, t)) strongly in L2(Σ).

It follows that∫ T

0

∫
Γ2

[ξ − g(γ0s)]γ0(θ − s) dx ≥ 0 ∀s ∈ L2(0, T ;H1(Ω)) : γ0s ∈ L∞(Σ).

Since g is a monotone function, we conclude that

ξ = g(γ0θ) a.e. on Σ.
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Abstract. The global existence of smooth solutions of the Cauchy problem for theN -dimensional
Euler–Poisson model for semiconductors is established, under the assumption that the initial data
is a perturbation of a stationary solution of the drift-diffusion equations with zero electron velocity,
which is proved to be unique. The resulting evolutionary solutions converge asymptotically in time
to the unperturbed state. The singular relaxation limit is also discussed.
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1. Introduction. Hydrodynamic models for semiconductors were introduced
about thirty years ago [8, 9] to describe the electron flow in semiconductor devices
when the transport of energy plays a crucial role, as in submicron devices or in the
occurrence of high field phenomena [39]. These models all consist of a set of balance
laws for the moments of the electron distribution density, derived from the infinite
hierarchy of moment equations of the semiclassical Boltzmann equation for semicon-
ductors, coupled with the electric potential through a Poisson equation. Closure
relations for the moment fluxes and the collision terms can be determined by using
the maximum entropy principle [33, 18], physically set in the framework of extended
thermodynamics [40, 30] (see [6], and also [5, 7] for a review).

In this paper, we consider the Euler–Poisson model, obtained from the first three
moments: electron density, momentum, and energy. In rescaled variables, let n,
u = (u1, . . . , uN ), p, e, T , and φ denote the electron number density, the electron
velocity, the electron pressure, the electron internal energy, the electron temperature,
and the electric potential, respectively. All the dependent variables are functions of
(x, t) ≡ (x1, . . . , xN , t) ∈ R

N×R. The (nondimensional) Euler–Poisson model consists
of a hydrodynamic part,

∂n

∂t
+

N∑
r=1

∂r(nu
r) = 0,(1.1)

∂

∂t
(nui) +

N∑
r=1

∂r
(
nuiur + pδir

)
= n∂iφ− nui

τ
,(1.2)

∂

∂t

(
n |u|2
2

+ e

)
+

N∑
r=1

∂r

[(
n |u|2
2

+ e+ p

)
ur

]
(1.3)

=
N∑
r=1

nur∂rφ− 1

σ

[
n |u|2
2

+

(
∂e

∂T

)
n

(T − T ∗)

]
,
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supplemented by the Poisson equation

∆φ = n− b.(1.4)

Here, ∂r = ∂/∂xr, ∆ =
∑N

r=1 ∂
2
r , |u|2 =

∑N
r=1(u

r)2, and δir is the Kronecker symbol,
equal to 1 if i = r, and equal to 0 otherwise. The positive constants τ and σ are
the (rescaled) momentum relaxation time and the (rescaled) energy relaxation time,
respectively, T ∗ is the (constant) equilibrium temperature, and the function b(x) is
the doping profile, satisfying the conditions

b ∈ L∞(RN ), sup
x∈RN

b(x) = b+ ≥ inf
x∈RN

b(x) = b− > 0,(1.5)

Db ≡ (∂1b, ∂2b, . . . , ∂Nb) ∈ Hs(RN ), s >
N

2
+ 1.(1.6)

Consistent with extended thermodynamics, the system (1.1)–(1.4) is closed once we
specify a convex state function e(n, S), which satisfies the differential relation

d
( e
n

)
= Td

(
S

n

)
− pd

(
1

n

)
.(1.7)

Then the temperature T and the pressure p are given as functions of the number
density n and of the entropy S by the relations

T =
∂e

∂S
, p =

∂e

∂n
n+

∂e

∂S
S − e.(1.8)

In particular, the partial derivative of e with respect to T keeping n constant, which
appears in (1.3), can be expressed as(

∂e

∂T

)
n

= T

(
∂S

∂T

)
n

=
∂e/∂S

∂T/∂S
.

We expect (1.1)–(1.4) to determine a unique solution once we specify initial data
for the hydrodynamical quantities (that is, for the electron velocity and for two ther-
modynamic variables) and appropriate boundary conditions. Heuristically speaking,
when we extend the Euler–Poisson equations to the whole space, we do not have the
problem of modeling contacts or insulated parts of the boundary. All we need to do
is look for an equilibrium state and require that the state described by the solution
be equal to that equilibrium state at infinity. In fact, we will prove the existence of a
unique state (n∗,u∗, S∗, Dφ∗) in total thermodynamic equilibrium [1], which allows
us to assign conditions at infinity for the hydrodynamic variables and the electric
field. This result is consistent with the one-dimensional analysis [36, 37], which shows
that it is natural to assign initially the electric field Ei = ∂iφ compatibly with the
Poisson equation instead of specifying the electric potential at infinity.

With this motivation, the system (1.1)–(1.4) is supplemented with the initial data

n(x, 0) = n0(x), ui(x, 0) = ui0(x),(1.9)

S(x, 0) = S0(x), ∂iφ(x, 0) = Ei
0(x),

with

N∑
i=1

∂iE
i
0 = n0 − b,(1.10)
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and with the boundary conditions

n(x, t)− n∗(x), ui(x, t)− u∗i(x),(1.11)

S(x, t)− S∗(x), Ei(x, t)− E∗i(x) ∈ Hs(RN ), s >
N

2
+ 1.

Here, we have introduced the electric field E∗i = ∂iφ
∗. Of course, the condition (1.11)

tells us much more than the behavior of the solution at infinity, but it also sets the
natural functional space needed to study the global existence of smooth solutions of
a hyperbolic system. In addition, we require that the electric flux be zero at infinity,
that is,

∂E

∂t
∈ Hs(RN ), s >

N

2
+ 1.(1.12)

The only requirement for the unperturbed state is that

τσ ‖Dn∗‖2
L2 < C∗(1.13)

for a certain constant C∗ which depends only on the equation of state and on b±.
Now, we assume that the initial data is sufficiently close to the state in total

thermodynamic equilibrium; that is, the differences

n0(x)− n∗(x), ui0(x)− 0, S0(x)− S∗(x), Ei
0(x)− E∗i(x)

belong to Hs(RN ), s > N
2 + 1, and their H

s-norms are small enough. Under these
assumptions, we will show that the solution of the initial value problem (1.1)–(1.4)
exists uniquely and globally in time and that it is a classical solution for t > 0.
Moreover, it decays exponentially in theHs-norm to the stationary solution, according
to the estimate

‖(n− n∗,u, S − S∗,E −E∗)(·, t)‖2
Hs(1.14)

≤ Ke−cτt ‖(n− n∗,u, S − S∗,E −E∗)(·, 0)‖2
Hs ,

with K and c positive constants which depend only on the equation of state, e =
e(n, S), on the equilibrium density, n∗, and on the product of the relaxation times,
τσ. These results extend similar results obtained in [3] for the one-dimensional Euler–
Poisson model.

Some remarks are in order. First, the condition (1.6) for the doping profile is just a
technical one. In fact, theHs-norm of b can be arbitrarily large, and we can assume the
doping to be approximated by an appropriate function satisfying (1.6). Nevertheless,
the condition (1.13) for ‖Dn∗‖L2 can be read as a severe restriction for ‖Db‖L2 , which
rules out the possibility of dopings with a sharp short well discontinuity, at least when
τσ is not small. This is a consequence of Theorem 3.1, where we prove some a priori
estimates which ensure the existence of an equilibrium state. The restriction on the
doping profile can be removed in the one-dimensional case, at least for a polytropic
equation of state, as shown in [3]. We expect a similar result to hold also for higher
space dimensions, although the proof may require different techniques from the ones
used in this work.

Second, the smallness of the initial velocity and of ‖Db‖L2 restricts implicitly
our results to the subsonic case. Under transonic and supersonic flow conditions, the
issue of global existence for the full hydrodynamic model remains essentially an open
problem, since smooth solutions cease to exist in finite time [12].
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A third remark concerns the singular relaxation limit, that is, the behavior of the
solutions of the Euler–Poisson equations as the momentum relaxation time τ tends
to zero and the product τσ tends to a positive constant. We will show in section 4
that the estimate (1.14) is sufficient to establish the relaxation limit under the scaling
τt → t, u/τ → u. This limit provides a connection between the class of (hyperbolic)
hydrodynamic models and the class of (parabolic) energy-transport models [2, 4]. For
a review of the energy-transport models we refer to [13].

The Cauchy problem and the initial-boundary value problem of the one-dimen-
sional hydrodynamic model for semiconductors and its relaxation limit have been
studied extensively by many authors for isentropic flows, both in the stationary case
[16, 20] and in the evolutionary case [11, 28, 29, 34, 36, 37, 41, 45, 46]. For the full
Euler–Poisson model with additional heat conductivity, a preliminary numerical and
theoretical study can be found in [21]. More recently, for the same model, the global
existence of smooth solutions in a bounded domain for small initial data has been
proved in [10, 47], under the assumption that the doping profile is close enough to a
constant function. In [10], the singular relaxation hyperbolic–parabolic limit is also
studied, assuming a uniform bound for an appropriate combination of the relaxation
times. For the Euler–Poisson, in [3] the asymptotic behavior of solutions to the
Cauchy problem and the convergence to the steady state solution are proven. Gasser
and Natalini [22] have studied the zero relaxation convergence of the weak solutions
to the corresponding drift-diffusion equations.

Very little is known so far in the multidimensional case. Besides the local classical
solutions obtained in [31, 35], only steady state solutions in the subsonic case [17] and
dynamic solutions with geometrical structure (symmetry) [11, 19, 25, 26] or without
vorticity [23] have been studied. The existence of global smooth solutions for the
general multidimensional model have been established in [24] for the isentropic case
and in [27] for the full hydrodynamic system with heat conduction.

The approach followed in this paper relies essentially on the extended thermody-
namic formulation of the system (1.1)–(1.4), that is, on the Legendre duality of the
pressure and the internal energy expressed by (1.8). In particular, using new high
order estimates, we are able to obtain arbitrarily smooth solutions if the initial data
is smooth enough (in the sense of Hs(RN ) for any s > N/2 + 1). The proof of the
estimate (1.14) extends energy methods already used for the one-dimensional model
in [3] and for the parabolic energy-transport model in [14, 15] (see also [1]). To our
knowledge, similar energy estimates appeared for the first time in the classical paper
[38]. We mention also the recent paper [44], which studies the existence of smooth
solutions for a general class of hyperbolic systems with relaxation.

The plan of the paper is the following. In section 2, we introduce the notation
for the derivatives and for the norms that will be used throughout the paper. Also,
we state some technical lemmas, whose proofs are given in the appendix. In section
3, we study the equilibrium states and their existence and their dependence on the
doping profile. The subsequent section is the main section of the paper, where we
state and prove the theorems concerning the global existence of a classical solution to
the Euler–Poisson system and its singular relaxation limit. All these results depend
on a key a priori estimate, which is established in the last two sections. Namely, in
section 5 we study the positive definiteness of some Liapunov functionals which are
used in the proof of the a priori estimate. The proof itself is given in section 6.

2. Notation and basic lemmas. We start this section by introducing two dif-
ferent notations for the components of the kth derivative operator [43]. The derivative
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operator is defined by

D = (∂1, ∂2, . . . , ∂N ).

Then, for any k ≥ 0, the kth derivative operator is defined by

D0 def
= I, Dk def

= DDk−1, k ≥ 1.

Let J be a k-tuple of integers between 1 and N , J = (j1, . . . , jk). We set

∂J = ∂j1∂j2 · · · ∂jk ,
and |J | = k, the total order of differentiation. Since partial derivatives with different
indices commute, it is convenient to introduce an alternative notation. Let α be an
N -tuple of nonnegative integers, α = (α1, . . . , αN ). We set

∂α = ∂α1
1 ∂α2

2 · · · ∂αNN .

The total order of derivation is |α| =∑N
i=1 αi. If |J | = |α| = k and f ∈ Ck(RN ), then

∂Jf = ∂αf,

with αi = #{l : jl = i}. In this case, we write α = α(J).

For any f, g ∈ Ck(RN ), we consider Dkf , Dkg as vectors in (C0)N
k

and define
the Euclidean norm and scalar product

∣∣Dkf
∣∣ =


 ∑

|J|=k
(∂Jf)

2




1/2

, Dkf ·Dkg =
∑
|J|=k

(∂Jf)(∂Jg).

Using the α-multi-index notation, we have

∣∣Dkf
∣∣ =


 ∑

|α|=k
ν(α)(∂αf)2




1/2

, Dkf ·Dkg =
∑
|α|=k

ν(α)(∂αf)(∂αg),

with

ν(α) = #{J : α = α(J)} = k!

α!
, α! = α1! · · ·αN !.

We can extend these definitions to a vector-valued function v = (v1, . . . , vN ) ∈
(Ck(RN ))N by

∣∣Dkv
∣∣ = N∑

r=1

∑
|J|=k

(∂Jv
r)2, Dkv ·Dkw =

N∑
r=1

∑
|J|=k

(∂Jv
r)(∂Jw

r).

The symbol ⊗ will denote the tensorial product, which combines two symmetric
tensors with k and l indices to give a symmetric tensor with k+l indices. In particular,
we have the following formula for the kth derivative of the product of two functions:

Dk(fg) =

k∑
r=0

(
k
r

)
(Drf)⊗ (Dk−rg).(2.1)
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All the functional spaces will be considered on R
N , so we will omit the argument.

We will use the following norms:

‖f‖ = ‖f‖L2 =

(∫
|f(x)|2 dx

) 1
2

,

‖f‖Hk =

k∑
i=0

∥∥Dif
∥∥ ,

‖f‖L∞ = sup
x∈RN

|f(x)| ,

‖f‖Ck =
k∑
i=0

∥∥Dif
∥∥
L∞ .

In the following, the symbol C will denote a generic positive constant. Sometimes
we will write C(a1, . . . , am) to signify that the generic constant C depends on the
arguments a1, . . . , am. We will use the following classical lemma [35, 32].

Lemma 2.1 (Moser-type calculus). If f , g ∈ Hk ∩ L∞, then we have∥∥Dk(fg)
∥∥ ≤ C(k)

(‖f‖L∞
∥∥Dkg

∥∥+ ‖g‖L∞
∥∥Dkf

∥∥) .(2.2)

If f ∈ Hk, Df ∈ L∞, g ∈ Hk−1 ∩ L∞, then we have∥∥Dk(fg)− fDk(g)
∥∥ ≤ C(k)

(‖Df‖L∞
∥∥Dk−1g

∥∥+ ‖g‖L∞
∥∥Dkf

∥∥) .(2.3)

If F (w) is a smooth vector-valued function and f(x) is a continuous function which
takes values into a compact subset of the domain Ω of F , with f ∈ Hk ∩L∞, then we
have ∥∥DkF (f)

∥∥ ≤ C(k, F, ‖f‖L∞)
∥∥Dkf

∥∥ ,(2.4)

where

C(k, F, ‖f‖L∞) = C(k)

∣∣∣∣∂F∂w
∣∣∣∣
Ck−1

(
k∑

µ=1

‖f‖µ−1
L∞

)
,

with ∣∣∣∣∂F∂w
∣∣∣∣
Ck
= sup

w∈Ω

k∑
i=0

∣∣∣∣∣
(

∂

∂w

)i

F (w)

∣∣∣∣∣ .
We also use the following results, which will be proved in the appendix.
Lemma 2.2. If 1 ≤ j ≤ k and Djf , g ∈ Hk−j, then we have∥∥∥∥∥Dk(fg)−

j−1∑
r=0

(
k
r

)
(Drf)⊗ (Dk−rg)

∥∥∥∥∥ ≤ C(k, j)
∥∥Djf

∥∥
Hk−j ‖g‖Hk−j .(2.5)

Lemma 2.3. If F (w) is a smooth vector-valued function and f(x), g(x) are
continuous functions which take values into a compact subset of the domain Ω of F ,
with g ∈ L∞, Dg ∈ Hk−1, and f − g ∈ Hk ∩ L∞, then we have∥∥Dk(F (f)− F (g))

∥∥ ≤ C(F, f, g)(
∥∥Dk(f − g)

∥∥+ ‖Dg‖Hk−1 ‖f − g‖Hk−1),(2.6) ∥∥∥∥Dk(F (f)− F (g))− ∂F

∂w
(g)Dk(f − g)

∥∥∥∥(2.7)

≤ C(F, f, g)(‖f − g‖L∞
∥∥Dk(f − g)

∥∥+ ‖Dg‖Hk−1 ‖f − g‖Hk−1),
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where the constant C depends on the Ck-norm of the derivative of F , on ‖g‖L∞ , and
on ‖f − g‖L∞ .

Corollary 2.4. Under the same hypothesis as that of Lemma 2.3, we have∥∥Dk−1(F (f)Df − F (g)Dg)
∥∥(2.8)

≤ C(F, f, g)(
∥∥Dk(f − g)

∥∥+ ‖Dg‖Hk−1 ‖f − g‖Hk−1),∥∥Dk−1(F (f)Df − F (g)Dg)− F (g)Dk(f − g)
∥∥(2.9)

≤ C(F, f, g)(‖f − g‖L∞
∥∥Dk(f − g)

∥∥+ ‖Dg‖Hk−1 ‖f − g‖Hk−1).

Moreover, assuming Dg ∈ Hk ∩ L∞ and D(f − g) ∈ L∞, we have∣∣∣∣
∣∣∣∣Dk [F (f)∂f − F (g)∂g]− F (f)Dk∂(f − g)(2.10)

− kD [F (g)]⊗Dk−1 [∂(f − g)]− ∂F

∂w
(g)Dk(f − g)∂g

∣∣∣∣
∣∣∣∣

≤ C(F, f, g)(‖f − g‖C1

∥∥Dk(f − g)
∥∥+ ‖Dg‖Hk ‖f − g‖Hk−1),

where the constant C depends on the Ck-norm of the derivative of F , on ‖g‖C1 , and
on ‖f − g‖C1 .

We close this section with a technical lemma.
Lemma 2.5. If f ∈ Hk, k > 1, then for any positive constants K and η we can

choose positive η1, . . . , ηk such that

k∑
j=1

ηj ‖f‖Hj−1

∥∥Djf
∥∥ ≤ K


η ‖f‖2

+

k∑
j=1

ηj
∥∥Djf

∥∥2


 .(2.11)

In particular, the thesis of the lemma is satisfied by

ηj = 2η

(
K2

1 +K2

)j

.

All the results of this section hold also when f and g are vector-valued functions.

3. Total thermodynamic equilibrium. In this section we characterize a state
in total thermodynamic equilibrium [1] and show that it satisfies the drift-diffusion
equation with zero electron flux. The main result of the section is the proof of the
a priori estimates (3.11)–(3.12), which guarantee the existence of such a state. More-
over, we prove that there exists a unique state in total thermodynamic equilibrium.

A state (n∗,u∗, S∗, φ∗) in total thermodynamic equilibrium is characterized by
the conditions

u∗ = 0,(3.1) (
∂e

∂n

)∗
= φ∗ + constant,

(
∂e

∂S

)∗
= T ∗ = constant.(3.2)

Moreover, the electron density is related to the electric potential by the Poisson equa-
tion

∆φ∗ = n∗ − b.(3.3)
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Deriving the second relation in (1.8) and using (3.2), it is possible to see that (n∗, S∗,φ∗)
satisfies the stationary drift-diffusion model

Dp∗ = n∗Dφ∗,
∆φ∗ = n∗ − b,

(3.4)

with the constraint (
∂e

∂S

)∗
= T ∗.(3.5)

In other words, (n,u, S, φ) = (n∗, 0, S∗, φ∗) is a stationary solution of the Euler–
Poisson system.

Two other relevant identities can be recovered by deriving (3.2) and solving for
Dn∗ and DS∗. We obtain

DS∗ = −
(
∂T/∂n

∂T/∂S

)∗
Dn∗,(3.6) (

H(e)

∂T/∂S

)∗
Dn∗ = Dφ∗,(3.7)

where the superscript ∗ denotes evaluation at equilibrium, and the Hessian determi-
nant of e, H(e), is defined by

H(e) =
∂2e

∂n2

∂2e

∂S2
−
(

∂2e

∂n∂S

)2

.(3.8)

We remark that both H(e) and ∂T/∂S = ∂2e/∂S2 are positive, due to the convexity
of e(n, S).

For a polytropic equation of state,

e = Γexp

(
S

Γn

)
nγ , Γ =

1

γ − 1 ,

the identities (3.6) and (3.7) reduce to

DS∗ =
(
S∗

n∗ − 1
)
Dn∗,

T ∗

n∗ Dn∗ = Dφ∗.

In this case, the entropy at equilibrium is given by

S∗ = −n∗ log
(

n∗

T ∗Γ

)
.

In the remainder of this section, we consider the system

Θ(n∗, S∗)Dn∗ = Dφ∗,
∆φ∗ = n∗ − b,

(3.9)

where

Θ(n, S) =
H(e)

∂2e/∂S2
≥ 0,(3.10)
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and S∗ is given as a function of n∗ through (3.5). In the following, we will regard Θ
as a function of density only and write Θ(n, S(n)) = Θ(n).

Theorem 3.1 (a priori estimates). Let b satisfy (1.5) and (1.6). If (n∗, φ∗) ∈ C2

is a solution of (3.9), with n∗ − b ∈ Hs, s > N
2 +1, then the following estimates hold:

inf
x∈RN

b(x) ≤ n∗(x) ≤ sup
x∈RN

b(x),(3.11)

‖n∗ − b‖2
Hs+1 ≤ Cs(Θ, b) ‖Db‖2

Hs ,(3.12)

‖Dn∗‖2
Hs ≤ cs(Θ, b) ‖Db‖2

Hs ,(3.13)

where the constants Cs and cs depend only on the function Θ(n), n ∈ [b−, b+], and
on the function b.

Proof. Since n∗ − b ∈ Hs, we have

lim
|x|→∞

[n∗(x)− b(x)] = 0.

Then, for any arbitrary small constant δ ≥ 0 there exists A ≥ 0 such that

b(x)− δ ≤ n∗(x) ≤ b(x) + δ for all |x| ≥ A.(3.14)

Suppose that inside the open ball of radius A there exists a point x0 at which the
density reaches its minimum, that is,

n∗(x0) = min
|x|<A

n∗(x).

Then we have Dn∗(x0) = 0, and D
2n∗(x0) is a positive definite quadratic form. This,

in particular, implies ∆n∗(x0) ≥ 0. Using (3.9), we can write a second order partial
differential equation for n∗,

D · (Θ(n∗)Dn∗) = n∗ − b.(3.15)

It follows that n∗(x0)− b(x0) = Θ(n
∗(x0))∆n∗(x0) ≥ 0, and thus

n∗(x) ≥ n∗(x0) ≥ b− for all |x| < A.(3.16)

Combining (3.14) and (3.16), we can conclude

n∗(x) ≥ b− − δ for all x ∈ R
N .

The arbitrariness of δ yields the first inequality in (3.11). The proof of the second
inequality is perfectly analogous.

Next, we prove the inequalities (3.12) and (3.13). Since n∗ satisfies (3.11), we can
find two positive constants Θ−, Θ+ such that

Θ− ≤ Θ(n∗(x)) ≤ Θ+ for all x ∈ R
N .(3.17)

Moreover, using Moser’s calculus and (3.11), for any k > 0 there exists a constant
θk−1, depending on |dΘ/dn|Ck−1 and b+, such that∥∥Dk(Θ∗Dn∗)−Θ∗Dk+1n∗∥∥ ≤ θk−1 ‖Dn∗‖2

Hk−1 ,(3.18)

with Θ∗ = Θ(n∗).
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We multiply (3.15) by n∗−b and integrate over the whole space. After integration
by parts, we obtain

‖n∗ − b‖2
= −

∫
Θ∗D(n∗ − b) ·Dn∗

≤ −1
2

∫
Θ∗ |D(n∗ − b)|2 + 1

2

∫
Θ∗ |Db|2 ,

which implies

‖n∗ − b‖2
+
1

2
Θ− ‖D(n∗ − b)‖2 ≤ 1

2
Θ+ ‖Db‖2

.(3.19)

Using (3.19), we find

‖Dn∗‖2 ≤ 2(‖D(n∗ − b)‖2
+ ‖Db‖2

) ≤ c0 ‖Db‖2
,(3.20)

with

c0 = 2

(
1 +

c′0
Θ−

)
, c′0 = Θ

+.

The proof of (3.12), (3.13) follows from the estimates∥∥Dk(n∗ − b)
∥∥2
+
1

2
Θ− ∥∥Dk+1(n∗ − b)

∥∥2 ≤ 1

2
c′k ‖Db‖2

Hk ,(3.21)

‖Dn∗‖2
Hk ≤ ck ‖Db‖2

Hk ,(3.22)

with

c′k =
1

Θ−
(
Θ+2 + θ2

k−1c
2
k−1 ‖Db‖2

Hk−1

)
,(3.23)

ck = 2


1 + 1

Θ−

k∑
j=0

c′j


 .(3.24)

To prove these estimates, we proceed by induction. Assuming that (3.21), (3.22) hold
for k−1, we apply the operator of derivation Dk to (3.15) and multiply scalarly times
Dk(n∗ − b). Integrating by parts, we obtain∥∥Dk(n∗ − b)

∥∥2
= −

∫
Θ∗ ∣∣Dk+1(n∗ − b)

∣∣2
−
∫

Dk+1(n∗ − b) · [Dk(Θ∗Dn∗)−Θ∗Dk+1(n∗ − b)
]
.

Using the Cauchy–Schwarz inequality, recalling (3.18), and applying the induction
hypothesis, we have∥∥Dk(n∗ − b)

∥∥2 ≤ −Θ− ∥∥Dk+1(n∗ − b)
∥∥2

+
∥∥Dk+1(n∗ − b)

∥∥(θk−1ck−1 ‖Db‖2
Hk−1 +Θ

+
∥∥Dk+1b

∥∥)
≤ −Θ− ∥∥Dk+1(n∗ − b)

∥∥2

+
∥∥Dk+1(n∗ − b)

∥∥(Θ+2 + θ2
k−1c

2
k−1 ‖Db‖2

Hk−1

) 1
2 ‖Db‖Hk

≤ −1
2
Θ− ∥∥Dk+1(n∗ − b)

∥∥2
+

1

2Θ−
(
Θ+2 + θ2

k−1c
2
k−1 ‖Db‖2

Hk−1

)
‖Db‖2

Hk ,

which is equivalent to (3.21).
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Finally, using (3.21), we have

‖Dn∗‖2
Hk ≤ ‖Dn∗‖2

Hk−1 + 2
(∥∥Dk+1(n∗ − b)

∥∥2
+
∥∥Dk+1b

∥∥2
)

≤ ck−1 ‖Db‖2
Hk−1 + 2

(
c′k
Θ− ‖Db‖2

Hk +
∥∥Dk+1b

∥∥2
)

≤ 2


1 + 1

Θ−

k−1∑
j=0

c′j


 ‖Db‖2

Hk−1 + 2

(
c′k
Θ− ‖Db‖2

Hk +
∥∥Dk+1b

∥∥2
)

≤ 2


1 + 1

Θ−

k∑
j=0

c′j


 ‖Db‖2

Hk ,

which concludes the proof of the lemma.
Theorem 3.2 (existence and uniqueness of the total equilibrium state). Let b

satisfy (1.5) and (1.6). Then there exists a unique solution (n∗, φ∗) ∈ C2 of (3.9),
with n∗ − b ∈ Hs, s > N

2 + 1.
Proof. Using a fixed point argument, it is possible to prove the existence of a

solution which satisfies the hypothesis of Theorem 3.1. Since the proof is standard,
we omit the details. For the uniqueness, let us assume that both (n∗, φ∗) and (n�, φ�)
satisfy (3.9) and n∗−b, n�−b ∈ Hs. Then, using Moser’s calculus, π(n∗)−π(n�) ∈ Hs

for any smooth function π(n). In particular, we consider a function π such that
dπ/dn = Θ. It follows that for any δ ≥ 0 there exists A ≥ 0 such that

−δ ≤ π(n∗(x))− π(n�(x)) ≤ δ for all |x| ≥ A.(3.25)

We prove by contradiction that the inequalities in (3.25) hold also for all |x| ≤ A. In
fact, let us assume that

π(n∗(x̄))− π(n�(x̄)) ≡ max
|x|≤A

[π(n∗(x))− π(n�(x))] > δ.(3.26)

Then we have

D [π(n∗(x̄))− π(n�(x̄))] = 0, ∆ [π(n∗(x̄))− π(n�(x̄))] ≤ 0.

Subtracting (3.9) for the two solutions, we find

D(π(n∗)− π(n�)) = D(φ∗ − φ�), ∆(φ∗ − φ�) = n∗ − n�,

which implies

n∗(x̄)− n�(x̄) = ∆ [π(n∗(x̄))− π(n�(x̄))] ≤ 0.

Since dπ/dn = Θ ≥ 0, we end up with

π(n∗(x̄))− π(n�(x̄)) ≤ 0,(3.27)

which contradicts (3.26). Thus, the second inequality in (3.25) holds for all x. In
a similar way, we can prove that the first inequality in (3.25) is globally valid. In
conclusion, we have proved that

|π(n∗)− π(n�)| ≤ δ for all δ ≥ 0.(3.28)

It follows that π(n∗) = π(n�), and therefore n∗ = n�.
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4. Global existence in time and asymptotic decay of the perturbation.
In this section we state and prove the main theorem of the paper, Theorem 4.3,
asserting the global existence in time of classical solutions of (1.1)–(1.4), which are
perturbations of an equilibrium state, and the decay of these solutions to the unper-
turbed state. Also, we study the relaxation of the hydrodynamic solutions, that is,
their asymptotic behavior as the relaxation time τ tends to zero, assuming that στ
tends to β > 0.

First, we show that the hyperbolic–elliptic system (1.1)–(1.4), with the initial
data (1.9), (1.10), is equivalent to a symmetric, hyperbolic system, with a nonlocal
source term, for the hydrodynamic variables and the electric field Dφ.

From (1.1)–(1.4) and (1.7), we find the entropy balance equation,

∂S

∂t
+

N∑
r=1

∂r(Su
r) = Q,(4.1)

with

Q =
1

T

{
n |u|2
τ

− 1

σ

[
n |u|2
2

+

(
∂e

∂T

)
n

(T − T ∗)

]}
.

Recalling (1.1), the condition (1.10) on the initial data and (1.12), it is possible to
show that the constraint (1.4) can be replaced by the nonlocal evolutionary equation

∂E

∂t
+D∆−1D · (nu) = 0.(4.2)

As noted in [24], the symbol ∇∆−1∇· can be written as a sum of products of Riesz’s
transforms. Then, by the L2 boundedness of the Riesz transform [42], for any function
w in (Hs)N , s ≥ 0, we have∥∥∇∆−1∇ ·w∥∥

Hs ≤ CR ‖w‖Hs(4.3)

for some positive constant CR. Equations (1.1), (1.2), (4.1), (4.2) constitute a quasi-
linear system of partial differential equations with a nonlocal source term. It can be
written in the form

∂U

∂t
+

N∑
j=1

Aj(U)∂jU = B(U,x),(4.4)

with U = (n,u, S,E) and

Aj(U) =




uj nej 0 0
1
n
∂p
∂ne

j ujI 1
n
∂p
∂Se

j 0
0 Sej uj 0
0 0 0 0


 ,

B(U,x) =




0
E − u

τ
Q

−D∆−1D · (nu)


 .

Here,

I = (δij)1≤i,j≤N , ej = (δij)1≤i≤N , ej = (e
j)T .
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The differential part of system (4.4) is hyperbolic and symmetric in Friedrichs’s
sense: for any U ∈ G ≡ {U : n > 0} there is a positive definite symmetric matrix
Ã0(U) smoothly varying with U , and a positive constant c, so that, for all U ∈ G,

1. cV ·V ≤ (Ã0(U)V )·V ≤ c−1V ·V for all V ∈ G;
2. Ãj(U) = Ã0(U)Aj(U) is symmetric.

Specifically, recalling (1.8), the symmetry condition is satisfied with

Ã0(U) =




∂2e
∂n2 0 ∂2e

∂n∂S 0
0 nI 0 0
∂2e
∂n∂S 0 ∂2e

∂S2 0
0 0 0 I


 .

It is well known that a system which is hyperbolic and symmetric in Friedrichs’s
sense admits locally a unique classical solution in Hs, s > N/2 + 1, if the initial data
belong to Hs (cf. [35]). Using (4.3), we can easily extend this result to prove the
local existence of a solution to (4.4) which is a perturbation of an equilibrium state.
We introduce the notation δF (U) = F (U) − F (U∗) for any function F (U), where
U∗ = (n∗, 0, S∗,E∗), with E∗ = Dφ∗, is the equilibrium state given by (3.9). We can
consider the perturbations

δn = n− n∗, δu = u, δS = S − S∗, δE = E −E∗.

We also use the obvious notation

U0(x) = U(x, 0), δU0(x) = U0(x)− U∗(x).

The perturbation δU satisfies the system

∂δU

∂t
+

N∑
j=1

Aj(U)∂jδU = δB(U,x)−
N∑
j=1

δAj(U)∂jU
∗.(4.5)

In particular, from (1.4) and (3.9)2, we derive immediately

D · δE = δn.(4.6)

Since the differential structure of (4.5) and (4.4) is the same, we can state immediately
the following theorem.

Theorem 4.1 (local existence and uniqueness). Let τσ �= 0 and δU0 ∈ Hs, with
s > N

2 + 1. Then there is a time T > 0 such that the equations (4.5) have a unique
classical solution δU(x, t) ∈ C1(RN × [0, T )), with

δU ∈ C0([0, T ], Hs) ∩ C1([0, T ], Hs−1).

This local classical solution can be prolonged locally if the initial data is close
enough to the equilibrium solution. The prolongation of a local solution given by
Theorem 4.1 resides entirely on the following lemma, whose proof will be given later
in subsequent sections.

Lemma 4.2. Assuming 0 < τ < σ and Dn∗ ∈ Hs(RN ), let δU = (δn, δu, δS, δE)
be the solution of (4.5) given by Theorem 4.1, and let δÛ = (δn, δS, δE). There exist
positive constants C∗, ε, c, and K such that if

τσ ‖Dn∗‖2 ≤ C∗
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and

1

τ2
‖u(·, t)‖2

Hs +
∥∥∥δÛ(·, t)∥∥∥2

Hs
≤ ε2 for all t ∈ [0, T ],

then the following a priori estimates hold:

‖u(·, t)‖2
Hs ≤ Ke−

ct
τ ‖δU(·, 0)‖2

Hs for all t ∈ [0, T ],(4.7) ∥∥∥δÛ(·, t)∥∥∥2

Hs
≤ Ke−cτt ‖δU(·, 0)‖2

Hs for all t ∈ [0, T ].(4.8)

The constants C∗, ε, c, and K depend only on the equation of state e = e(n, S), on
the equilibrium density n∗, and on the product of the relaxation times, στ .

In Lemma 4.2, we keep explicit track of the relaxation time τ , since we are going
to study the limit τ → 0 at the end of this section. If τ is a given constant, the
statement of the lemma simplifies. In particular, if we assume 0 < τ ≤ 1, we have

e−
ct
τ ≤ e−cτt,(4.9)

and the two estimates (4.7), (4.8) can be comprised into a single estimate.
Now, we are ready to state the global existence theorem announced at the begin-

ning of this section.
Theorem 4.3 (global existence and asymptotic decay). Under the same hypoth-

esis as that of Lemma 4.2, if τ ≤ 1 and δU0 ∈ Hs, there exists positive constants C∗

and ε such that if

τσ ‖Dn∗‖2 ≤ C∗

and

1

τ2
‖u0‖2

Hs +
∥∥∥δÛ0

∥∥∥2

Hs
< ε′2,(4.10)

then the equations (4.5) have the unique classical solution δU(x, t) ∈ C1(R × [0,∞)).
Furthermore,

δU ∈ C0([0,∞), Hs) ∩ C1([0,∞), Hs−1)

and

‖δU(·, t)‖2
Hs ≤ Ke−cτt ‖δU(·, 0)‖2

Hs ,(4.11)

where c and K are positive constants given by Lemma 4.2.
Proof. Theorem 4.1 yields immediately the local Hs existence of the unique

classical solution to the initial value problem for (4.4). We introduce the constant
ε1 = ε/

√
2K < ε, where ε is given by Lemma 4.2, and assume that the inequality

(4.10) is satisfied with ε′ = ε1. By continuity, we can determine a time T1 > 0 such
that

1

τ2
‖u(·, t)‖2

Hs +
∥∥∥δÛ(·, t)∥∥∥2

Hs
≤ ε21 for all t ∈ [0, T1].(4.12)

The inequality (4.12) is still satisfied if we choose ε′ = min{ε1, ε1cT1/2} in (4.10). We
will prove that this choice of ε′ is sufficient to ensure

1

τ2
‖u(·, t)‖2

Hs +
∥∥∥δÛ(·, t)∥∥∥2

Hs
< ε2 for all t ≥ 0.(4.13)
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We proceed by contradiction and assume that there exists T̄ > T1 such that (4.13) is
satisfied for all 0 ≤ t < T̄ , and

1

τ2

∥∥u(·, T̄ )∥∥2

Hs +
∥∥∥δÛ(·, T̄ )∥∥∥2

Hs
= ε2.(4.14)

Using Lemma 4.2, we get

1

τ2

∥∥u(·, T̄ )∥∥2

Hs ≤ Kε′2 sup
0<τ≤1

{
τ−2e−

cT1
τ

}
=




Kε′2e−cT1 if
cT1

2
≥ 1,

Kε′2
(

2

ecT1

)2

if
cT1

2
< 1.

If cT1/2 ≥ 1, we have ε′ = ε1 and conclude that

1

τ2

∥∥u(·, T̄ )∥∥2

Hs ≤ Kε21e
−cT1 ≤ ε2

2e2
<

ε2

2
.

If cT1/2 < 1, we have ε′ = ε1cT1/2, and we find

1

τ2

∥∥u(·, T̄ )∥∥2

Hs ≤ K

(
ε1cT1

2

)2 (
2

ecT1

)2

=
ε2

2e2
<

ε2

2
.

Using Lemma 4.2, it is simple to see that

∥∥∥δÛ(·, T̄ )∥∥∥2

Hs
≤ Kε′2 sup

0<τ≤1

{
e−τcT1

}
= Kε′2 <

ε2

2
.

It follows that

1

τ2

∥∥u(·, T̄ )∥∥2

Hs +
∥∥∥δÛ(·, T̄ )∥∥∥2

Hs
< ε2,(4.15)

which contradicts (4.14). Therefore, (4.13) holds true. Using Lemma 4.2, the local
solution can be prolonged for all times and the estimates (4.7) and (4.8) hold glob-
ally. The final estimate (4.11) is obtained by adding (4.7) and (4.8) and recalling
(4.9).

We remark that the constants in the estimate (4.11) are independent on τ . We
can use this fact to study the behavior of the solution as τ tends to zero, assuming
that τσ tends to a certain positive constant β. We define the rescaled variables

U ′(x, t′) ≡ (n′,u′, S′, E′)(x, t′) =
(
n,
1

τ
u, S, E

)(
x,
1

τ
t′
)

and the initial data

U ′(x, 0) = U ′
0(x) ≡ (n0,u

′
0, S0, E0)(x).

In other words, we are assuming that u(x, 0) = τu′
0(x). The rescaled variables satisfy

the system

Aτ ∂U
′

∂t′
+

N∑
j=1

A′
j(U

′)∂jU ′ = B′(U ′,x),(4.16)
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with Aτ = diag(1, τ2I, 1, I) and

A′
j(U

′) =




u′j n′ej 0 0
1
n′

∂p′

∂n′ e
j τ2u′jI 1

n′
∂p′

∂S′ e
j 0

0 S′ej u′j 0
0 0 0 0


 ,

B′(U ′,x) =




0
E′ − u′

n′
T ′

{(
1− τ

2σ

) |u′|2 − 1
2τσ

(
∂e′
∂T ′

)
n′
(T ′ − T ∗)

}
−D∆−1D · (n′u′)


 .

In terms of the rescaled variables, the estimate (4.11) becomes

τ2 ‖u′(·, t′)‖2
Hs +

∥∥∥δÛ ′(·, t′)
∥∥∥2

Hs
(4.17)

≤ Ke−ct
′
(
τ2 ‖u′(·, 0)‖2

Hs +
∥∥∥δÛ ′(·, 0)

∥∥∥2

Hs

)
.

Since στ is strictly positive and bounded, this estimate is uniformly valid as τ tends
to zero, and the limit function is a solution of (4.16) with τ = 0 and στ = β. Then it
is immediate to derive the following singular limit result.

Theorem 4.4 (relaxation). Let as assume that τσ tends to β > 0 as τ tends to
0. For any fixed τ > 0, let U = (nτ ,uτ , Sτ ,Eτ )(x, t) be a global solution of (4.4),
satisfying (4.7), and let Ûτ = (nτ , Sτ ,Eτ )(x, t). Then there exists some function
Û0 = (n0, S0,E0) which is a smooth solution of (4.16), with τ = 0, and such that, as
τ tends to zero,

(Ûτ − Û∗)
(
x,
1

τ
t′
)

→ (Û0 − Û∗)(x, t′) in C([0,∞);Hs).

Furthermore,

∥∥∥(Û0 − Û∗)(·, t′)
∥∥∥2

Hs
≤ K ′e−c

′t′
∥∥∥(Û0 − Û∗)(·, 0)

∥∥∥2

Hs
,(4.18)

where c′ and K ′ are positive constants.

5. Positive definiteness of some functionals of Liapunov type. This sec-
tion deals with the positive definiteness of some functionals of Liapunov type which
will be used in the subsequent section. The main results are summarized in Lemma 5.3.

We fix an integer s > N/2 + 1 and introduce the energy densities

H0 =
n

2
|u|2 − λ0n

σn∗u · δE + 1

2
|δE|2 + e− e∗ −

(
∂e

∂n

)∗
δn−

(
∂e

∂S

)∗
δS,(5.1)

Hi =
n

2

∣∣Diu
∣∣2 − λin

σn∗D
iu ·DiδE +

1

2

∣∣DiδE
∣∣2(5.2)

+
1

2

∂2e

∂n2

∣∣Diδn
∣∣2 + ∂2e

∂n∂S
Diδn ·DiδS +

1

2

∂2e

∂S2

∣∣DiδS
∣∣2 , 1 ≤ i ≤ s.

Here, λ0 and λi are positive constants. With an appropriate choice of these constants,
H0 and Hi are positive semidefinite, as asserted by the following lemma.
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Lemma 5.1. If 0 < τ < σ, στ ≥ β > 0, λi < min{1/2, β inf n∗}, and |δn| <
inf |n∗|, then there exist positive constants kH, KH (depending only on β, λi, e(n, S)
and n∗) such that Hi satisfies

kH
∣∣DiδU

∣∣2 ≤ Hi ≤ KH
∣∣DiδU

∣∣2 .
Proof. We can decompose the energy densities as

Hi = gi(D
iδn,DiδS) + hi(D

iu, DiδE), i ≥ 0,(5.3)

where, for any Xi, Y i ∈ R
Ni × R

Ni

and Xi,Y i ∈ (RNi

)N × (RNi

)N , the quadratic
forms gi and hi are defined by

gi(X
i, Y i) =




e(n∗ +Xi, S∗ + Y i)− e∗ −
(
∂e

∂n

)∗
Xi −

(
∂e

∂S

)∗
Y i, i = 0,

1

2

∂2e

∂n2

∣∣Xi
∣∣2 + ∂2e

∂n∂S
Xi · Y i +

1

2

∂2e

∂S2

∣∣Y i
∣∣2 , i > 0,

hi(X
i,Y i) =

n

2

∣∣Xi
∣∣2 − λin

σn∗X
i · Y i +

1

2

∣∣Y i
∣∣2 , i ≥ 0.

The positive definiteness of gi follows from the convexity of the internal energy with
respect to n and S. We consider the following inequality:

τ
∣∣Xi · Y i

∣∣ ≤ n∗τ2
∣∣Xi

∣∣2 + 1

4n∗
∣∣Y i

∣∣2 .
Then it is possible to derive

hi(X
i,Y i) ≥ n

2

(
1− 2λiτ

σ

) ∣∣Xi
∣∣2 + 1

2

(
1− λi

στn∗ +
(
1− δn

n∗

)
λi

2στn∗

) ∣∣Y i
∣∣2

≥ n

2
(1− 2λi)

∣∣Xi
∣∣2 + 1

2

(
1− λi

στn∗

) ∣∣Y i
∣∣2 .

Here, we have used τ < σ, |δn| < inf n∗. Recalling that στ ≥ β and λi < min{1/2,
β inf n∗}, the thesis of the lemma follows immediately.

Now, we introduce the functionals

D0 =
n∗

2τ
(1− 2C̄Rλ0) |u|2 + 1

σ

{
λ0

2
|δE|2 + λ0

(n∗)2

(
∂p

∂S

)∗
[δnDS∗(5.4)

− δSDn∗] · δE +
[(

∂S

∂T

)
n

(
∂T

∂n

)2

+
λ0

n

∂p

∂n

]∗
δn2

+

(
2
∂T

∂n
+

λ0

n

∂p

∂S

)∗
δnδS +

(
∂T

∂S

)∗
δS2

}
,

Di =
n∗

2τ
(1− 2C̄λi)

∣∣Diu
∣∣2 + 1

σ

{
λi
2

∣∣DiδE
∣∣2(5.5)

+

[(
∂S

∂T

)
n

(
∂T

∂n

)2

+
λ0

n

∂p

∂n

]∗ ∣∣Diδn
∣∣2

+

(
2
∂T

∂n
+

λi
n

∂p

∂S

)∗
Diδn ·DiδS +

(
∂T

∂S

)∗ ∣∣DiδS
∣∣2 } , i ≥ 1,
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with C̄ = supn∗/ inf n∗, C̄R = C̄CR. The constant CR is defined by (4.3), and we
have C̄R ≥ C̄ ≥ 1. We prove that the quadratic forms D0 and Di are positive definite
with an appropriate choice of λ0 and λi.

Lemma 5.2. Let 0 < τ < σ, λi < 1/2C̄R, and

0 < λ0 < inf




H(e)(
1
2n

∂p
∂S

)2 (
1 + 2Θ |Dn|2

n2

)



∗

, 0 < λi < inf




H(e)(
1
2n

∂p
∂S

)2




∗

,

where H(e) and Θ are defined by (3.8) and (3.10), respectively. Then there exist
positive constants kD, KD (depending only on λi, e(n, S), and n

∗) such that Di (i ≥ 0)
satisfies

kD

(
1

τ

∣∣Diu
∣∣2 + 1

σ

∣∣∣DiδÛ
∣∣∣2) ≤ Di ≤ KD

(
1

τ

∣∣Diu
∣∣2 + 1

σ

∣∣∣DiδÛ
∣∣∣2) .(5.6)

Proof. We can decompose the quadratic form D0 as

D0(u, δE, δn, δS) =
n∗

2τ
(1− 2C̄Rλ0) +

1

σ
D̃(δÛ).

The coefficient of |u|2 is positive, since λ0 < 1/2C̄R. The matrix associated to the
quadratic form D̃ with respect to δÛ is

A =




λ0

2 I λ0

2n2
∂p
∂SDS − λ0

2n2
∂p
∂SDn

λ0

2n2
∂p
∂S (DS)T

(
∂S
∂T

)
n

(
∂T
∂n

)2
+ λ0

n
∂p
∂n

∂T
∂n +

λ0

2n
∂p
∂S

− λ0

2n2
∂p
∂S (Dn)T ∂T

∂n +
λ0

2n
∂p
∂S

∂T
∂S




∗

.

The matrix A is positive definite if its determinant is positive together with the deter-
minants of the following minors:

(
∂T
∂S

)∗
,




(
∂S
∂T

)
n

(
∂T
∂n

)2
+ λ0

n
∂p
∂n

∂T
∂n +

λ0

2n
∂p
∂S

∂T
∂n +

λ0

2n
∂p
∂S

∂T
∂S




∗

.

Explicitly, these conditions amount to(
∂T

∂S

)∗
> 0,

λ0

(
H(e)− λ0

(
1

2n

∂p

∂S

)2
)∗

> 0,

λ2
0

2

(
H(e)− λ0

(
1

2n

∂p

∂S

)2 (
1 +

2Dn ·Dp

n3

))∗
> 0.

Recalling (3.4) and (3.9), we see that(
1 +

2Dn ·Dp

n3

)∗
=

(
1 +

2Dn ·Dφ

n2

)∗

=

(
1 + 2Θ

|Dn|2
n2

)∗
≥ 1.
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Then the previous inequalities are satisfied altogether if

0 < λ0 < inf




H(e)(
1
2n

∂p
∂S

)2 (
1 + 2Θ |Dn|2

n2

)



∗

,

which holds by hypothesis. We can conclude that D0 is positive definite. Then we can
determine appropriate constants kD, KD, independent on τ and σ, such that (5.6)
holds for i = 0. In the same way, after replacing λ0 with λi and putting Dn∗ = 0 in
the matrix A, it is possible to prove the positive definiteness of Di, i ≥ 1.

The following lemma is a useful combination of Lemmas 5.1 and 5.2.
Lemma 5.3. If 0 < τ < σ, στ ≥ β > 0, |δn| < inf |n∗|, and

λi < min

{
1

2C̄R
, β inf n∗

}
, λi < inf




H(e)(
1
2n

∂p
∂S

)2 (
1 + 2Θ |Dn|2

n2

)



∗

, i ≥ 0,(5.7)

then there exist some positive constants kH, KH, kD, KD (depending only on λi,
e(n, S), n∗, and β) such that the functions Hi and Di (i ≥ 0) satisfy

kH
∥∥DiδU

∥∥2 ≤
∫

Hi dx ≤ KH
∥∥DiδU

∥∥2
,(5.8)

kD

(
1

τ

∥∥Diu
∥∥2
+
1

σ

∥∥∥DiδÛ
∥∥∥2
)

(5.9)

≤
∫

Di dx ≤ KD

(
1

τ

∥∥Diu
∥∥2
+
1

σ

∥∥∥DiδÛ
∥∥∥2
)
.

6. A priori estimates. This section is entirely devoted to the proof of Lemma
4.2. For some fixed positive number T , we assume that a solution δU of (4.5) exists
and δU(x, t) ∈ Hs(RN ) for an integer s > N/2 + 1 for all t ∈ (0, T ). We introduce
the vector

δUτ =

(
δn,

1

τ
u, δS, δE

)
(6.1)

and define

U(T ) = sup
0≤t≤T

‖δUτ (·, t)‖Hs .(6.2)

Using the standard Sobolev inequalities, there exists a positive constant CU such that

sup
0≤t≤T

‖δUτ (·, t)‖Cr ≤ CUU(T ), r < s− N

2
.(6.3)

For any function f ∈ Hs, we introduce the norm

‖f‖2
η,s =

s∑
i=0

ηi ‖f‖2
Hs ,

where η0 = 1, and ηi, i = 1, 2, . . . , s, are positive constants to be determined. Also,
we introduce the energy

W =

∫ (
s∑
i=0

ηiHi

)
dx,(6.4)
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where the energy densities Hi are defined by (5.1), (5.2), and the constants λi, i ≥ 0,
are chosen according to the condition (5.7). Then, using Lemma 5.3, it is immediate
to see that W is equivalent to the Hs-norm of δU . Lemma 4.2 follows from the
subsequent energy estimate.

Lemma 6.1. If 0 < τ < σ and Dn∗ ∈ Hs(RN ), there exist positive constants C∗

(depending only on the function e(n, S) and on b±), ε, ηi, i = 1, 2, . . . , s, such that if

στ ‖Dn∗‖2 ≤ C∗(6.5)

and the solution is so small that U(T ) ≤ ε, then the following a priori estimate holds
for t ∈ [0, T ]:

‖u(·, t)‖η,s ≤
W(0)

kH
e−

ct
τ ,

∥∥∥δÛ(·, t)∥∥∥
η,s

≤ W(0)

kH
e−cτt,(6.6)

where the constant c depends only on the equation of state, on the equilibrium state,
and on the product τσ, and kH is given by (5.8).

Proof. To begin with, we consider the function H0 defined by (5.1). Deriving with
respect to t, using (1.1)–(1.3), (4.1), and (4.2), and integrating on the whole space,
we obtain

d

dt

∫
H0 dx =

∫ {
∂

∂t

(n
2
|u|2 + e

)
−
(
∂e

∂n

)∗
∂n

∂t
−
(
∂e

∂S

)∗
∂S

∂t
(6.7)

+ δE · ∂δE
∂t

− λ0

σn∗

[
nu · ∂δE

∂t
+

∂

∂t
(nu) · δE

]}
dx

=

∫ {
nu ·E + TQ− 1

τ
n |u|2 + φ∗D · (nu)

− T ∗Q− δE ·D∆−1D · (nu) + λ0

σn∗nu ·D∆−1D · (nu)

+
λ0

σn∗
[
D · (nu⊗ u) +D (p− p∗)− nδE − δnE∗ +

nu

τ

]
· δE

}
dx.

Integrating by parts and observing that δE is a gradient, it is immediate to see that∫ {
nu ·E + φ∗D · (nu)− δE ·D∆−1D · (nu)} dx = 0.

Moreover, using the estimate (4.3), we get

∫ {
λ0

σn∗nu ·D∆−1D · (nu)
}

dx ≤ λ0CR

σ inf n∗ ‖nu‖2
.

Also, by Schwarz’s inequality, and recalling the first condition in (5.7), we have∫
λ0n

σn∗
(
−δE +

u

τ

)
· δE dx(6.8)

≤
∫ {

n

2τ
|u|2 − λ0n

2σn∗

(
2− λ0

στn∗

)
|δE|2

}
dx

≤
∫ {

n

2τ
|u|2 − λ0n

2σn∗ |δE|2
}

dx.
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Using these results in (6.7), we find

d

dt

∫
H0 dx ≤ −

∫ {
n

2τ

(
1− λ0

2τCRn

σ inf n∗

)
|u|2 −QδT +

λ0n

2σn∗ |δE|2
}

dx(6.9)

+

∫ {
λ0

σn∗ δE · [D · (nu⊗ u) +D (p− p∗)− δnE∗]
}

dx ≡ I01 + I02,

where

QδT =
(
1− τ

2σ

) n

T
δT

|u|2
τ

− 1

σT

(
∂e

∂T

)
n

(δT )2.

Taylor expanding T (n, S) and e(n, S) around (n∗, S∗), and recalling that τ < σ, we
can estimate

I01 ≤ CU
(
1

τ
‖u‖2

+
1

σ

∥∥∥δÛ∥∥∥2
)
−
∫ {

n∗

2τ
(1− 2C̄Rλ0) |u|2(6.10)

+
1

σT ∗

(
∂e

∂T

)∗

n

[(
∂T

∂n

)∗
δn+

(
∂T

∂S

)∗
δS

]2

+
λ0

2σ
|δE|2

}
dx,

where C̄R = CR supn
∗/ inf n∗ ≥ 1.

To estimate I02, we integrate by parts and use (4.6). We obtain

I02 = −
∫

λ0τn

σn∗

[
(u ·D)δE − Dn∗

n∗ (u · δE)
]
· u
τ
dx(6.11)

−
∫

λ0

σ

[
(p− p∗)

(
δn

n∗ − 1

(n∗)2
δE ·Dn∗

)
+

δn

(n∗)2
δE ·Dp∗

]
dx

≤ CU
(
1

τ
‖u‖2

+
1

σ

∥∥∥δÛ∥∥∥2
)
−
∫

λ0δn

σn∗

[(
∂p

∂n

)∗
δn+

(
∂p

∂S

)∗
δS

]
dx

−
∫

λ0

σ

(
1

n2

∂p

∂S

)∗
(δnDS∗ − δSDn∗) · δE dx.

Using (6.10) and (6.11) in (6.7), we find

d

dt

∫
H0 dx ≤ −

∫
D0 dx+ τC ′

0U ‖δUτ‖2
,(6.12)

where C ′
0 is a positive constant and D0 is the quadratic form defined by (5.4). In

conclusion, using (5.9), at order zero we can estimate the energy as

d

dt

(∫
H0 dx

)
≤ −kD

(
1

τ
‖u‖2

+
1

σ

∥∥∥δÛ∥∥∥2
)
+ τC ′

0U ‖δUτ‖2
.(6.13)

Next, we consider the function Hk, defined by (5.2), with 1 ≤ k ≤ s. We can
write

d

dt

∫
Hk dx =

∫
∂

∂t

{
1

2
n
∣∣Dku

∣∣2 + 1

2

∣∣DkδE
∣∣2} dx(6.14)

+

∫
∂

∂t

{
1

2

∂2e

∂n2

∣∣Dkδn
∣∣2 + ∂2e

∂n∂S
Dkδn ·DkδS +

1

2

∂2e

∂S2

∣∣DkδS
∣∣2} dx

−
∫

∂

∂t

{
λkn

σn∗D
ku ·DkδE

}
dx = I1 + I2 + I3.
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Using the perturbation equation (4.5), we find

I1 = −
∫ {

D · (nu)1
2

∣∣Dku
∣∣2 +DkδE ·Dk(nu)

+nDku ·Dk

[
(u ·D)u+ 1

n
Dp− 1

n∗Dp∗ − δE +
u

τ

]}
dx

= −
∫

nDku · [Dk((u ·D)u)− (u ·D)(Dku)] dx

−
∫

DkδE · [Dk(nu)− nDku] dx−
∫

nDku ·Dk

(
1

n
Dp− 1

n∗Dp∗
)

dx

−
∫

n

τ

∣∣Dku
∣∣2 dx ≡ I11 + I12 + I13 + I14.

Applying Lemma 2.1, the first integral in the previous expression can be estimated as

I11 ≤ ‖n‖L∞
∥∥Dku

∥∥ N∑
r=1

∥∥Dk(ur(∂ru))− urDk(∂ru)
∥∥(6.15)

≤ C
∥∥Dku

∥∥ N∑
r=1

(‖Dur‖L∞
∥∥Dk−1∂ru

∥∥+ ‖∂ru‖L∞
∥∥Dkur

∥∥)
≤ τCU ∥∥Dku

∥∥2
.

In a similar way, we find

I12 ≤ ∥∥DkδE
∥∥ (∥∥Dk(δnu)

∥∥+ ‖δn‖L∞
∥∥Dku

∥∥+ ∥∥Dk(n∗u)− n∗Dku
∥∥)(6.16)

≤ C
∥∥DkδE

∥∥ (‖δn‖L∞
∥∥Dku

∥∥+ ‖u‖L∞
∥∥Dkδn

∥∥+ ‖Dn∗‖Hk−1 ‖u‖Hk−1

)
≤ τCU

∥∥∥DkδÛ
∥∥∥(1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)
+C ‖Dn∗‖Hk−1 ‖u‖Hk−1

∥∥DkδE
∥∥ .

Using the Corollary 2.4, we can estimate

I13 ≤ C
(∥∥∥δÛ∥∥∥

C1

∥∥∥DkδÛ
∥∥∥+ ‖Dn∗‖Hk

∥∥∥δÛ∥∥∥
Hk−1

)∥∥Dku
∥∥(6.17)

−
N∑
r=1

∫
Dkur ·

{
∂p

∂n
Dk∂rδn+

∂p

∂S
Dk∂rδS

+ knD

(
1

n

∂p

∂n

)∗
⊗Dk−1(∂rδn) + knD

(
1

n

∂p

∂S

)∗
⊗Dk−1(∂rδS)

+n

[
∂

∂n

(
1

n

∂p

∂n

)∗
Dkδn+

∂

∂S

(
1

n

∂p

∂n

)∗
DkδS

]
∂rn

∗

+n

[
∂

∂n

(
1

n

∂p

∂S

)∗
Dkδn+

∂

∂S

(
1

n

∂p

∂S

)∗
DkδS

]
∂rS

∗
}

dx

≤ C
(
U
∥∥∥DkδÛ

∥∥∥+ ‖Dn∗‖Hk

∥∥∥δÛ∥∥∥
Hk−1

)∥∥Dku
∥∥

−
N∑
r=1

∫
Dkur · ∂r

{
∂p

∂n
Dkδn+

∂p

∂S
DkδS

}
dx
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−
N∑
r=1

∫
Dkur ·

{
kn∗D

(
1

n

∂p

∂n

)∗
⊗Dk−1(∂rδn)

+ kn∗D
(
1

n

∂p

∂S

)∗
⊗Dk−1(∂rδS)− 1

n∗ ∂rp
∗Dkδn

}
dx.

Next, we turn our attention to I2. We can write

I2 = −
∫ {(

∂2e

∂n2
Dkδn+

∂2e

∂n∂S
DkδS

)
DkD · (nu)

+

(
∂2e

∂n∂S
Dkδn+

∂2e

∂S2
DkδS

)
Dk[D · (Su)−Q]

−1
2

∂

∂t

∂2e

∂n2
DkδnDkδn− ∂

∂t

∂2e

∂n∂S
DkδnDkδS − 1

2

∂

∂t

∂2e

∂S2
DkδSDkδS

}
dx

=

∫ {
1

2

∣∣Dkδn
∣∣2 [ ∂

∂t

∂2e

∂n2
+D ·

(
∂2e

∂n2
u

)]
+Dkδn ·DkδS

[
∂

∂t

∂2e

∂n∂S

+D ·
(

∂2e

∂n∂S
u

)]
+
1

2

∣∣DkδS
∣∣2 [ ∂

∂t

∂2e

∂S2
+D ·

(
∂2e

∂S2
u

)]}
dx

−
∫ {(

∂2e

∂n2
Dkδn+

∂2e

∂n∂S
DkδS

)
· [DkD · (nu)− nDkD · u− (u ·D)Dkδn

]
+

(
∂2e

∂n∂S
Dkδn+

∂2e

∂S2
DkδS

)
· [DkD · (Su)− SDkD · u− (u ·D)DkδS

]}
dx

−
∫ [

n

(
∂2e

∂n2
Dkδn+

∂2e

∂n∂S
DkδS

)
+ S

(
∂2e

∂n∂S
Dkδn+

∂2e

∂S2
DkδS

)]
DkD · u dx

+

∫ (
∂2e

∂n∂S
Dkδn+

∂2e

∂S2
DkδS

)
DkQdx = I21 + I22 + I23 + I24.

In order to estimate I21, we observe that, for any function a(n, S),

∂a

∂t
+D · (au) =

(
a− ∂a

∂n
n− ∂a

∂S
S

)
D · u+ ∂a

∂S
Q

≤ C

(
‖Du‖L∞ +

1

τ
‖u‖2

L∞ +
1

σ

∥∥∥δÛ∥∥∥2

L∞

)
≤ τCU .

We can conclude that

I21 ≤ τCU
∥∥∥DkδÛ

∥∥∥2

.(6.18)

To estimate I22, we recall that n = n∗ + δn, S = S∗ + δS. Then, posing µ = n, S
and using Moser’s calculus, we can estimate∥∥DkD · (δµu)− δµDkD · u− (u ·D)Dkδµ

∥∥(6.19)

≤ ∥∥Dk(δµD · u)− δµDkD · u∥∥+ ∥∥Dk(u ·Dδµ)− (u ·D)Dkδµ
∥∥

≤ C(‖Du‖L∞
∥∥Dkδµ

∥∥+ ‖Dδµ‖L∞
∥∥Dku

∥∥)
≤ τCU

(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥) .
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Also, recalling Lemma 2.2, we have

∥∥DkD · (µ∗u)− µ∗DkD · u−Dku ·Dµ∗ − kDµ∗ ⊗ (Dk−1(D · u))∥∥(6.20)

≤ ∥∥Dk(µ∗D · u)− µ∗DkD · u− kDµ∗ ⊗ (Dk−1(D · u))∥∥
+

N∑
r=1

∥∥Dk(ur∂rµ
∗)−Dkur∂rµ

∗∥∥
≤ C

∥∥D2µ∗∥∥
Hk−2 ‖D · u‖Hk−2 + C

N∑
r=1

‖D∂rµ
∗‖Hk−1 ‖ur‖Hk−1

≤ C
∥∥D2µ∗∥∥

Hk−1 ‖u‖Hk−1 .

Using (6.19) and (6.20) we obtain

I22 ≤ τCU
(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)∥∥∥DkδÛ
∥∥∥+ C

∥∥D2n∗∥∥
Hk−1 ‖u‖Hk−1

∥∥∥DkδÛ
∥∥∥

−
∫ {(

∂2e

∂n2
Dkδn+

∂2e

∂n∂S
DkδS

)∗
· [Dku ·Dn∗ + kDn∗ ⊗ (Dk−1(D · u))]

+

(
∂2e

∂n∂S
Dkδn+

∂2e

∂S2
DkδS

)∗
· [Dku ·DS∗ + kDS∗ ⊗ (Dk−1(D · u))]} dx

= τCU
(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)∥∥∥DkδÛ
∥∥∥+ C

∥∥D2n∗∥∥
Hk−1 ‖u‖Hk−1

∥∥∥DkδÛ
∥∥∥

−
∫ {

Dkδn ·
[
Dku ·D

(
∂e

∂n

)∗
+ kD

(
∂e

∂n

)∗
⊗ (Dk−1(D · u))

]

+DkδS ·
[
Dku ·D

(
∂e

∂S

)∗
+ kD

(
∂e

∂S

)∗
⊗ (Dk−1(D · u))

]}
dx

= τCU
(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)∥∥∥DkδÛ
∥∥∥+ C

∥∥D2n∗∥∥
Hk−1 ‖u‖Hk−1

∥∥∥DkδÛ
∥∥∥

−
N∑
r=1

∫
Dkδn · [Dkur∂rφ

∗ + kDφ∗ ⊗ (Dk−1(∂ru
r))

]
dx.

Here, we have used the equilibrium condition (3.2). Integrating two times by parts,
we arrive at the estimate

I22 ≤ τCU
(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)∥∥∥DkδÛ
∥∥∥(6.21)

+C
∥∥D2n∗∥∥

Hk−1 ‖u‖Hk−1

∥∥∥DkδÛ
∥∥∥

−
N∑
r=1

∫
Dkur · [Dkδn∂rφ

∗ + kDφ∗ ⊗ (Dk−1(∂rδn))
]
dx.

Next, using (1.8) and integrating by parts, we can write

I23 =

N∑
r=1

∫
Dkur · ∂r

(
∂p

∂n
Dkδn+

∂p

∂S
DkδS

)
dx.(6.22)
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This term cancels out with the first integral on the right-hand side of (6.17). Next,
we come to I24. We observe that

∥∥∥∥DkQ+
1

σ

(
∂S

∂T

)
n

DkδT

∥∥∥∥
= τ

∥∥∥∥∥
(
1− τ

2σ

)
Dk

(
n |u|2
Tτ2

)
− 1

στ

[
Dk

((
∂S

∂T

)
n

δT

)
−
(
∂S

∂T

)
n

DkδT

]∥∥∥∥∥
≤ τCU

(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)+ τC ‖Dn∗‖Hk−1

∥∥∥δÛ∥∥∥
Hk−1

.

Then, proceeding as before, we find

I24 =

∫ (
∂T

∂n
Dkδn+

∂T

∂S
DkδS

)(
DkQ+

1

σ

∂S

∂T
DkδT

)
dx(6.23)

−
∫
1

σ

∂S

∂T

(
∂T

∂n
Dkδn+

∂T

∂S
DkδS

)(
DkδT − ∂T

∂n
Dkδn− ∂T

∂S
DkδS

)
dx

−
∫
1

σ

∂S

∂T

(
∂T

∂n
Dkδn+

∂T

∂S
DkδS

)2

dx

≤ τCU
(
1

τ

∥∥Dku
∥∥+ ∥∥∥DkδÛ

∥∥∥)∥∥∥DkδÛ
∥∥∥

+ τC ‖Dn∗‖Hk−1

∥∥∥δÛ∥∥∥
Hk−1

∥∥∥DkδÛ
∥∥∥

−
∫
1

σ

(
∂S

∂T

)∗ [(
∂T

∂n

)∗
Dkδn+

(
∂T

∂S

)∗
DkδS

]2

dx.

Summing up, using (6.15), (6.16), (6.17), (6.18), (6.21), (6.22), and (6.23), we obtain
the estimate

I1 + I2 ≤ τCU ∥∥DkδUτ
∥∥2
+ τC ‖Dn∗‖Hk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥(6.24)

−
N∑
r=1

∫
Dkur · k

{[
Dφ∗ + n∗D

(
1

n

∂p

∂n

)∗]
⊗Dk−1(∂rδn)

+n∗D
(
1

n

∂p

∂S

)∗
⊗Dk−1(∂rδS)

}
dx−

∫
n

τ

∣∣Dku
∣∣2 dx

−
∫
1

σ

(
∂S

∂T

)∗ [(
∂T

∂n

)∗
Dkδn+

(
∂T

∂S

)∗
DkδS

]2

dx,

≤ τCU ∥∥DkδUτ
∥∥2
+ τC ‖Dn∗‖Hk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥

+ c∗ ‖Dn∗‖ ∥∥Dku
∥∥ ∥∥∥DkδÛ

∥∥∥−
∫

n

τ

∣∣Dku
∣∣2 dx

−
∫
1

σ

(
∂S

∂T

)∗ [(
∂T

∂n

)∗
Dkδn+

(
∂T

∂S

)∗
DkδS

]2

dx,

where the constant c∗ depends only on the function e(n, S) and on b±.
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Next, we consider I3.

I3 =

∫
λk
σn∗

{
nDku ·Dk

(
D∆−1D · (nu))+D · (nu)Dku ·DkδE

+nDk

(
u ·Du+ 1

n
Dp− 1

n∗Dp∗ − δE +
1

τ
u

)
·DkδE

}
dx

=

∫
λkn

σn∗D
ku ·Dk

(
D∆−1D · (nu)) dx

+

∫
λk
σn∗

[
D · (nu)Dku+ nDk((u ·D)u)] ·DkδE dx

+

∫
λkn

σn∗D
k

[
1

n
Dp− 1

n∗Dp∗
]
·DkδE dx∫

λkn

σn∗

(
DkδE − 1

τ
Dku

)
·DkδE dx ≡ I31 + I32 + I33 + I34.

We can estimate I31 immediately as

I31 ≤ λk
σ inf n∗

∥∥nDku
∥∥∥∥DkD∆−1D · (nu)∥∥(6.25)

=
λk

σ inf n∗
∥∥nDku

∥∥∥∥Dk−1D · (nu)∥∥
≤ λk

σ inf n∗
∥∥nDku

∥∥ (∥∥Dk(nu)− nDku
∥∥+ ∥∥nDku

∥∥)
≤ λk

σ inf n∗
∥∥nDku

∥∥2
+

C

σ

∥∥Dku
∥∥ (‖Dn∗‖L∞

∥∥Dk−1u
∥∥

+
∥∥Dkn∗∥∥ ‖u‖L∞ + ‖u‖L∞

∥∥Dkδn
∥∥+ ‖δn‖L∞

∥∥Dku
∥∥)

≤ λk
σ inf n∗

∥∥nDku
∥∥2

+ τC
∥∥DkδUτ

∥∥ (‖Dn∗‖Hk−1 ‖δUτ‖Hk−1 + U ∥∥DkδUτ
∥∥) .

For I32, integrating by parts, recalling that δE = Dδφ, and using (4.6), we find

I32 ≤ C
λk
σ
(‖n‖L∞ ‖Du‖+ ‖u‖L∞ ‖Dn‖)∥∥Dku

∥∥ ∥∥DkδE
∥∥(6.26)

+

N∑
j,r=1

∫
λk
σ
∂jD

k−1((u ·D)ur) ·
{ n

n∗ ∂jD
k−1δEr

}
dx

≤ C
λk
στ

U ∥∥Dku
∥∥ ∥∥DkδE

∥∥
−

N∑
j,r=1

∫
λk
σ
Dk−1((u ·D)ur) · ∂j

{ n

n∗ ∂rD
k−1δEj

}
dx

≤ τCU ∥∥DkδUτ
∥∥2
+

λk
σ

N∑
r=1

∥∥Dk−1((u ·D)ur)∥∥{∥∥∥ n

n∗ ∂rD
k−1δn

∥∥∥
+

∥∥∥∥D
(
δn

n∗

)∥∥∥∥
L∞

∥∥∂rDk−1δE
∥∥}

≤ τCU ∥∥DkδUτ
∥∥2
+

C

σ
‖u‖L∞

∥∥Dku
∥∥ (∥∥Dkδn

∥∥+ ‖δn‖C1

∥∥DkδE
∥∥) .
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In a similar way, we find

I33 = −
∫

λk
σ
Dk−1

(
1

n
Dp− 1

n∗Dp∗
)
·
N∑
r=1

∂r

{ n

n∗D
k−1∂rδE

}
dx

≤ λk
σ

∥∥∥∥Dk−1

(
Dp

n
− Dp∗

n∗

)∥∥∥∥
∥∥∥∥∥
N∑
r=1

∂r

(
δn

n∗

)
Dk−1∂rδE +

δn

n∗D
kδn

∥∥∥∥∥
+
λk
σ

∥∥∥∥Dk−1

(
Dp

n
− Dp∗

n∗

)
−
(
1

n

∂p

∂n

)∗
Dkδn−

(
1

n

∂p

∂S

)∗
DkδS

∥∥∥∥∥∥Dkδn
∥∥

−
∫

λk
σ

{(
1

n

∂p

∂n

)∗
Dkδn+

(
1

n

∂p

∂S

)∗
DkδS

}
·Dkδn dx.

Using Lemma 2.3 and Corollary 2.4, we can estimate

I33 ≤ τCU ∥∥DkδUτ
∥∥2
+ τC ‖Dn∗‖Hk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥(6.27)

−
∫

λk
σ

{(
1

n

∂p

∂n

)∗
Dkδn+

(
1

n

∂p

∂S

)∗
DkδS

}
·Dkδn dx.

Proceeding as in (6.8), we find

I34 ≤
∫ {

n

2τ

∣∣Dku
∣∣2 − λ0n

2σn∗
∣∣DkδE

∣∣2} dx.(6.28)

In conclusion, using (6.25), (6.26), (6.27), and (6.28), we can estimate I3 as

I3 ≤ τCU ∥∥DkδUτ
∥∥2
+ τC ‖Dn∗‖Hk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥(6.29)

−
∫

λk
σ

{(
1

n

∂p

∂n

)∗
Dkδn+

(
1

n

∂p

∂S

)∗
DkδS

}
·Dkδn dx

−
∫ {

λk
2σ

∣∣DkδE
∣∣2 − (

1

2τ
+

λk supn
∗

σ inf n∗

)
n∗ ∣∣Dku

∣∣2} dx.

Using the estimates (6.24) and (6.29) in (6.14), we find

d

dt

∫
Hk dx ≤ −

∫
Dk dx+ c∗ ‖Dn∗‖ ∥∥Dku

∥∥ ∥∥∥DkδÛ
∥∥∥(6.30)

+ τC ′
kU

∥∥DkδUτ
∥∥2
+ τC ′′

k ‖Dn∗‖Hk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥ ,

where C ′
k and C ′′

k are positive constants which depend only on the equilibrium state
and on στ . Next, we observe that the assumption

στ ‖Dn∗‖2 ≤ C∗ ≡ k2
D

4c∗2
(6.31)

implies

c∗ ‖Dn∗‖ ∥∥Dku
∥∥ ∥∥∥DkδÛ

∥∥∥(6.32)

≤ 1

2
c∗ ‖Dn∗‖

(
kD

2τc∗ ‖Dn∗‖
∥∥Dku

∥∥2
+
2τc∗ ‖Dn∗‖

kD

∥∥∥DkδÛ
∥∥∥2
)

≤ kD
4

(
1

τ

∥∥Dku
∥∥2
+
1

σ

∥∥∥DkδÛ
∥∥∥2
)
.
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Thus, using (5.9) and the assumption (6.31), we obtain

d

dt

∫
Hk dx ≤ −3

4
kD

(
1

τ

∥∥Dku
∥∥2
+
1

σ

∥∥∥DkδÛ
∥∥∥2
)

(6.33)

+ τC ′
kU

∥∥DkδUτ
∥∥2
+ τC ′′

k ‖Dn∗‖Hk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥ .

Next, we use (6.13) and (6.33) in order to estimate the energy W, given by (6.4).
We find

dW
dt

=
s∑

k=0

ηk
d

dt

∫
Hk dx ≤ −τk∗D

(
‖δUτ‖2

+
3

4

s∑
k=1

ηk
∥∥DkδUτ

∥∥2

)
(6.34)

+ τC ′U
s∑

k=0

ηk
∥∥DkδUτ

∥∥2
+ τC ′′ ‖Dn∗‖Hs

s∑
k=1

ηk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥ ,

with

k∗D =
kD

max{1, τσ} , C ′ = max{C ′
0, C

′
1, . . . , C

′
s}, C ′′ = max{C ′′

1 , . . . , C
′′
s }.

Recalling Lemma 2.5, we pose

η = 2, K =
k∗D

4C ′′ ‖Dn∗‖Hs

and choose

ηk = 2η

(
K2

1 +K2

)k

, k = 1, . . . , s.

Then it follows that

C ′′ ‖Dn∗‖Hs

s∑
k=1

ηk ‖δUτ‖Hk−1

∥∥DkδUτ
∥∥(6.35)

≤ k∗D
4

(
2 ‖δUτ‖2

+

s∑
k=1

ηk
∥∥DkδUτ

∥∥2

)
.

Using (6.35) in (6.34), we get

dW
dt

≤ −τ

(
k∗D
2

− C ′U
) s∑
k=0

ηk
∥∥DkδUτ

∥∥2
.

If the solution satisfies

U(T ) ≤ ε ≡ k∗D
4C ′ ,(6.36)

we have

dW
dt

≤ −τk∗D
4

s∑
k=0

ηk
∥∥DkδUτ

∥∥2
.(6.37)
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After integration with respect to time and recalling Lemma 5.3, we find

∥∥DkδU(·, t)∥∥2

η,s
≤ K − τc

∫ t

0

∥∥DkδUτ (·, t′)
∥∥2

η,s
dt′,(6.38)

with

K =
W(0)

kH
c =

k∗D
4kH

.(6.39)

In particular, from (6.38) we can derive

∥∥Dku(·, t)∥∥2

η,s
≤ K − c

τ

∫ t

0

∥∥Dku(·, t′)∥∥2

η,s
dt′,(6.40)

∥∥∥DkδÛ(·, t)
∥∥∥2

η,s
≤ K − τc

∫ t

0

∥∥∥DkδÛ(·, t′)
∥∥∥2

η,s
dt′.(6.41)

The sought a priori estimate follows immediately from (6.40) and (6.41) after applying
Gronwall’s lemma.

Appendix. In this appendix, we prove Lemmas 2.2, 2.3, 2.4, and 2.5.
Proof of Lemma 2.2. From the identity (2.1), we find∥∥∥∥∥Dk(fg)−

j−1∑
r=0

(
k
r

)
(Drf)⊗ (Dk−rg)

∥∥∥∥∥ ≤
k−j∑
r=0

(
k

j + r

)∥∥Dr(Djf)
∥∥∥∥Dk−j−rg

∥∥ .
Using Schwarz’s inequality, we obtain the thesis.

Proof of Lemma 2.3. If k = 1, we find immediately that

‖D(F (f)− F (g))‖ ≤
∣∣∣∣∂F∂w

∣∣∣∣
C0

‖D(f − g)‖+
∥∥∥∥∂F∂w (f)− ∂F

∂w
(g)

∥∥∥∥ ‖Dg‖ ,∥∥∥∥D(F (f)− F (g))− ∂F

∂w
(f)D(f − g)

∥∥∥∥
≤
∥∥∥∥
(
∂F

∂w
(f)− ∂F

∂w
(g)

)
D(f − g)

∥∥∥∥+
∥∥∥∥∂F∂w (f)− ∂F

∂w
(g)

∥∥∥∥ ‖Dg‖ .

The estimates (2.6) and (2.7) follow from the identity

∂F

∂w
(f)− ∂F

∂w
(g) =

{∫ 1

0

∂

∂w

∂F

∂w
(g + λ(f − g))dλ

}
(f − g).(A.1)

Next, let α be an N -tuple of nonnegative integers, with |α| = k ≥ 2. Then we
have

Dα(F (f)− F (g))(A.2)

=
∑

µ1+···+µr=α
Cµ

[
(Dµ1f) · · · (Dµrf)F (r)(f)− (Dµ1g) · · · (Dµrg)F (r)(g)

]

=
∑

µ1+···+µr=α
Cµ

{
Dµ1(f − g) · · ·Dµr (f − g)F (r)(f) +

[
(Dµ1f) · · · (Dµrf)

− (Dµ1g) · · · (Dµrg)−Dµ1(f − g) · · ·Dµr (f − g)

]
F (r)(f)

+ (Dµ1g) · · · (Dµrg)
[
F (r)(f)− F (r)(g)

]}
,
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where F (r) denotes the rth derivative of F with respect to its argument. We write
f = g+(f−g) in (A.2), evaluate the L2-norm, and use the Cauchy–Schwarz inequality.
Then the Gagliardo–Nirenberg inequality yields

‖Dµ1(f − g) · · ·Dµr (f − g)‖ ≤ C ‖f − g‖r−1
L∞

∥∥Dk(f − g)
∥∥ .(A.3)

Furthermore, we have∥∥∥(Dµ1g) · · · (Dµrg)
[
F (r)(f)− F (r)(g)

]∥∥∥(A.4)

≤ ‖(Dµ1g) · · · (Dµrg)‖
∥∥∥F (r)(f)− F (r)(g)

∥∥∥
≤ C ‖g‖r−1

L∞
∥∥Dkg

∥∥∥∥∥∥
{∫ 1

0

(
∂F (r)

∂w

)
(g + λ(f − g))dλ

}
(f − g)

∥∥∥∥
≤ C

∣∣∣F (r+1)
∣∣∣
C0

‖g‖r−1
L∞

∥∥Dkg
∥∥ ‖f − g‖ .

Also, for r ≥ 2, we find

‖(Dµ1f) · · · (Dµrf)− (Dµ1g) · · · (Dµrg)−Dµ1(f − g) · · ·Dµr (f − g)‖(A.5)

≤ C

r−1∑
i=1

‖Dµ1(f − g) · · ·Dµi(f − g)‖ ‖(Dµi+1g) · · · (Dµrg)‖

≤ C

r−1∑
i=1

‖f − g‖i−1
L∞

∥∥∥D|µ1+···+µi|(f − g)
∥∥∥ ‖g‖r−i−1

L∞

∥∥∥Dk−|µ1+···+µi|g
∥∥∥ .

In (A.5), we note that the number i of derivatives of f−g cannot exceed |µ1+· · ·+µi|,
and the number r − i of derivatives of g cannot exceed k − |µ1 + · · ·+ µi|. Using the
estimates (A.3), (A.4), (A.5), we find

‖Dα(F (f)− F (g))‖ ≤ C

k∑
i=1

∣∣∣F (i)
∣∣∣
C0

‖f − g‖i−1
L∞

∥∥Dk(f − g)
∥∥(A.6)

+C

k−1∑
r=1

r∑
i=1

k−r∑
j=1

∣∣∣F (i+j)
∣∣∣
C0

‖f − g‖i−1
L∞ ‖g‖j−1

L∞ ‖Dr(f − g)‖ ∥∥Dk−rg
∥∥

+C

k∑
j=1

∣∣∣F (j+1)
∣∣∣
C0

‖g‖j−1
L∞ ‖f − g‖ ∥∥Dkg

∥∥

≤ C

∣∣∣∣∂F∂w
∣∣∣∣
Ck−1

(
k∑
i=1

‖f − g‖i−1
L∞

)∥∥Dk(f − g)
∥∥

+C

∣∣∣∣∂F∂w
∣∣∣∣
Ck


 k∑

i=1

k∑
j=1

‖f − g‖i−1
L∞ ‖g‖j−1

L∞


 k−1∑

r=0

‖Dr(f − g)‖ ∥∥Dk−rg
∥∥ .

The estimate (2.6) follows immediately, with

C(F, f, g) = C

∣∣∣∣∂F∂w
∣∣∣∣
Ck


 k∑

i=1

k∑
j=1

‖f − g‖i−1
L∞ ‖g‖j−1

L∞


 .
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To prove (2.7), we proceed in the same way to obtain∥∥∥∥Dα(F (f)− F (g))− ∂F

∂w
(f)Dα(f − g)

∥∥∥∥(A.7)

≤
∥∥∥∥
(
∂F

∂w
(f)− ∂F

∂w
(g)

)
Dα(f − g)

∥∥∥∥
+C

∣∣∣∣∂F∂w
∣∣∣∣
Ck−1

(
k∑
i=2

‖f − g‖i−2
L∞

)
‖f − g‖L∞

∥∥Dk(f − g)
∥∥

+C

∣∣∣∣∂F∂w
∣∣∣∣
Ck


 k∑

i=1

k∑
j=1

‖f − g‖i−1
L∞ ‖g‖j−1

L∞


 k−1∑

r=0

‖Dr(f − g)‖ ∥∥Dk−rg
∥∥ .

The estimate (2.7) follows from the identity (A.1).
Proof of Corollary 2.4. The proof of (2.8) and (2.9) is perfectly analogous to the

proof of (2.6) and (2.7). To prove (2.10), we observe that∣∣∣∣
∣∣∣∣Dk [F (f)∂f − F (g)∂g]− F (f)Dk∂(f − g)

− kD [F (g)]⊗Dk−1 [∂(f − g)]− ∂F

∂w
(g)Dk(f − g)∂g

∣∣∣∣
∣∣∣∣

≤ ∥∥Dk [(F (f)− F (g))∂(f − g)]− (F (f)− F (g))Dk∂(f − g)
∥∥

+
∥∥Dk [F (g)∂(f − g)]− F (g)Dk∂(f − g)− kD [F (g)]⊗Dk−1 [∂(f − g)]

∥∥
+
∥∥Dk [(F (f)− F (g))∂g]−Dk(F (f)− F (g))∂g

∥∥
+

∥∥∥∥Dk [F (f)− F (g)]− ∂F

∂w
(g)Dk(f − g)

∥∥∥∥ ‖∂g‖L∞ .

The thesis follows from Lemmas 2.1, 2.2, and 2.3.
Proof of Lemma 2.5. Using the Cauchy–Schwarz inequality, we have

k∑
j=1

ηj ‖f‖Hj−1

∥∥Djf
∥∥ ≤ 1

2

k∑
j=1

ηj

(
1

αj
‖f‖2

Hj−1 + αj
∥∥Djf

∥∥2
)

=
1

2

k∑
j=1

ηjαj
∥∥Djf

∥∥2
+
1

2

k∑
j=1

j−1∑
i=0

ηj
αj

∥∥Dif
∥∥2

=
1

2

k∑
j=1

ηjαj
∥∥Djf

∥∥2
+
1

2

k−1∑
j=0

k∑
i=j+1

ηi
αi

∥∥Djf
∥∥2

=
1

2
ηkαk

∥∥Dkf
∥∥2
+
1

2

k−1∑
j=1


ηjαj +

k∑
i=j+1

ηi
αi


∥∥Djf

∥∥2
+
1

2

k∑
i=1

ηi
αi

‖f‖2
,

where αj , j = 1, . . . , k, are constants to be chosen. The thesis amounts to proving
that we can choose ηj and αj , j = 1, . . . , k, such that

ηkαk = 2Kηk,

ηjαj +

k∑
i=j+1

ηi
αi
= 2Kηj , j = 1, . . . , k − 1,
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k∑
i=1

ηi
αi
= 2Kη.

Recursively, we obtain

2K − αk = 0,

2K − αj =

k∑
i=j+1

ηi
αiηj

=

k∑
i=j+2

ηi
αiηj

+
ηj+1

αj+1ηj

=

(
2K − αj+1 +

1

αj+1

)
ηj+1

ηj
> 0, j = 1, . . . , k − 1,

η1

(
2K − α1 +

1

α1

)
= 2Kη.

Then we can choose

αj = 2(1− βj)K, j = 1, . . . , k − 1, αk = 2K,

η1 =
2Kη

2K − α1 +
1
α1

, ηj =
2Kβj−1ηj−1

2K − αj +
1
αj

, j = 2, . . . , k,

for any constants βj < 1, j = 1, . . . , k − 1. In particular, choosing βj = 1/2, we get
the simple expression

ηj = 2η

(
K2

1 +K2

)j

, j = 1, . . . , k.
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Abstract. In this paper we consider a method of adapting Dubuc–Deslauriers subdivision,
which is defined for bi-infinite sequences, to accommodate sequences of finite length. After deriving
certain useful properties of the Dubuc–Deslauriers refinable function on R, we define a multiscale
finite sequence of functions on a bounded interval, which are then proved to be refinable. Using
this fact, the resulting adapted interpolatory subdivision scheme for finite sequences is then shown
to be convergent. Corresponding interpolation wavelets on an interval are defined, and explicit
formulations of the resulting decomposition and reconstruction algorithms are calculated. Finally,
we give two numerical examples on signature smoothing and two-dimensional feature extraction of
the subdivision and wavelet algorithms.
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1. Introduction. Consider the following simple iterative procedure: Let M be
the linear space of bi-infinite vector-valued sequences c = {cj} = {cj : j ∈ Z}, and
begin with an ordered sequence c(0) ∈ M, called the initial control points. From these
points, generate a new sequence c(1) of control points in M where the even-indexed
new control points interpolate the old ones. In contrast to standard interpolation pro-
cedures, subdivision schemes generate the new points by taking a linear combination
of the old control points. For example, if one generates the new points using

c
(1)
2j = c

(0)
j and c

(1)
2j+1 = 1

2 (c
(0)
j + c

(0)
j+1), j ∈ Z,(1.1)

then the odd-indexed new points are generated halfway between the old ones. This
step can of course be repeated indefinitely, roughly “doubling” the number of points
at each step. In this case the points fill in or converge to the straight lines connecting
the initial control points (see Figure 1). Thus we obtain a continuous piecewise linear
curve. In general, the existence and smoothness of this limit curve depend on the
choice of the coefficients of the linear combination. The initial task is to find suitable
choices for these coefficients which (i) ensure convergence to a limit curve, and (ii)
yield appropriate smoothness of the limit curve.

In general, given a finitely supported real-valued sequence a, we define the corre-
sponding subdivision operator S : M → M by

(Sc)j =
∑
k

aj−2kck, j ∈ Z, c ∈ M.(1.2)

∗Received by the editors March 23, 2001; accepted for publication (in revised form) September 6,
2002; published electronically July 18, 2003.

http://www.siam.org/journals/sima/35-2/38683.html
†Department of Mathematics, University of Stellenbosch, Private Bag X1, Matieland, 7602, Stel-

lenbosch, South Africa (jmdv@sun.ac.za, karin@goose.sun.ac.za).
‡Department of Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland,

7602, Stellenbosch, South Africa (herbst@ibis.sun.ac.za).

423



424 J. M. DE VILLIERS, K. M. GOOSEN, AND B. M. HERBST

(a) The original control points (�). (b) The new control points (◦) after one

iteration.

Fig. 1. Illustration of the iterative procedure (1.1).

Unless stated otherwise we sum over all the integers. The resulting subdivision scheme
is then defined, for a given initial sequence c ∈ M , by

c(0) = c, c(r+1) = Sc(r), r = 0, 1, . . . ,(1.3)

or, equivalently,

c(0) = c, c(r) = Src, r = 1, . . . .(1.4)

The sequence a = {aj} is called the mask of the subdivision scheme.
There is no unique or best way of obtaining a mask. One possibility is to demand

that if the original control points fall on a polynomial of degree 2N + 1, then the
newly generated control points must also lie on the same polynomial. This is, in
fact, the idea behind Dubuc–Deslauriers subdivision [15, 12], which is a symmetric
interpolatory scheme. In section 2.1, we develop this idea to eventually calculate an
explicit formulation of the resulting mask sequence {aj}.

To investigate the convergence of Dubuc–Deslauriers subdivision, we first refer
to a result by Micchelli [24], according to which there exists a compactly supported
fundamental interpolant φ ∈ C(R) which is refinable with respect to the sequence
{aj}. We then deduce, in Theorem 2.1, further properties of φ, including polynomial
reproduction and information on its zeros, which prove to be necessary for our argu-
ments in the subsequent two sections. It can then be shown as in Theorem 2.2 below
that Dubuc–Deslauriers subdivision converges in the sense that, at each step of the
iteration, the subdivision sequence lies entirely on the limit curve.

The Dubuc–Deslauriers subdivision operator has the form (1.2) and is there-
fore formulated for bi-infinite sequences. In section 3 we consider the case of finite
sequences and propose a method to adapt Dubuc–Deslauriers subdivision to this sit-
uation. We base our construction on a multiscale finite sequence of fundamental
interpolants {φrj} defined on a bounded interval. Away from the boundaries the in-
teger shifts of the original functions φ suffice, while the adjustments in the proximity
of the boundaries preserve the polynomial reproduction property of φ. The resulting
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adapted interpolatory subdivision scheme, which corresponds to Dubuc–Deslauriers
subdivision away from the boundaries, then also preserves the above-mentioned poly-
nomial filling property. In fact, most results derived in this paper depend on these
polynomial filling or polynomial reproduction properties.

Our main result, as proved in Theorem 3.2, is that, on each fixed level r, the
sequence {φrj} is refinable in the sense that the function φrj can be expressed as a

finite linear combination of the (finite) sequence {φr+1
j (2 •)}. Using this result, it is

then a simple matter to prove, in Theorem 3.3, that our adapted Dubuc–Deslauriers
subdivision for finite sequences converges. We end section 3 by calculating an explicit
formulation for this adapted scheme.

The refinability of the sequence {φrj} allows a multiresolutional construction of
interpolation wavelets on an interval, and we pursue this idea in section 4. The main
result of this section is the direct sum (nonorthogonal) space decomposition of Theo-
rem 4.1, by virtue of which we obtain compactly supported symmetric interpolation
wavelets. By giving up orthogonality we describe here the construction of symmetric
interpolation wavelets resulting in finite decomposition and reconstruction formulas
with rational coefficients given by the values of certain Lagrange polynomials at half
integers. Also, a connection between interpolation wavelet decomposition on an in-
terval and the adapted subdivision of section 3 is explained.

Alternative approaches to the construction of wavelets on an interval include work
by Daubechies [11, section 10.7] and Cohen, Daubechies, and Vial [9], in which peri-
odization and related methods are used for the construction of orthonormal wavelet
bases on an interval. In the spline setting, explicit constructions of symmetric biorthog-
onal spline wavelets on an interval, as well as the corresponding decomposition and
reconstruction algorithms, appear in Chui and Quak [8], Quak and Weyrich [25], Chui
and de Villiers [6], and Chui [5, section 7.3.2].

The connection between the compactly supported orthonormal wavelets of Dau-
bechies [10, 11] and Dubuc–Deslauriers subdivision has been noted by several authors
(see, e.g., [24, section 3]) and exploited for the construction of biorthogonal interpo-
latory wavelets by Beylkin and Saito [4] and Bertoluzza and Naldi [2, 3]. A further
study of the relationship between interpolation processes and wavelets construction
appears in the paper [21] by Lee, Sharma, and Tan.

The idea, as used here in section 4, to construct interpolation wavelets by means
of a nonorthogonal linear space decomposition and an interpolation operator has been
studied for wavelets on R by Chui and Li [7] and used in the context of the Sweldens
lifting scheme in [27].

Our interpolation wavelet decomposition and reconstruction algorithms for finite
data sets, as given by (4.32), (4.33), and (3.34)–(3.38) below, are identical to those
derived by Aràndiga, Donat, and Harten [1, equations (55) and (56)]. Making use of
ideas developed by Harten [17, 18], these authors derive their equations from a general
framework—our approach has the advantage that it allows an explicit construction
of the underlying refinable sequence {φrj} as demonstrated by our equation (3.12).
This is perhaps closer to the unpublished work of Donoho [13] in the sense that
both are based on the principle of polynomial extrapolation. An essential difference,
however, lies in the way in which the associated nested sequence of linear spaces
{Vr} is defined. While Donoho’s construction is consistently based on a polynomial
extrapolation operator, we define the linear space Vr as the span of the sequence {φrj}.
The nesting property of the {Vr} then follows from the refinability of {φrj}, as proved
in Theorem 3.2 below.
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Note that the wavelets constructed in this manner do not have vanishing moments
—the mean of our wavelet is not zero. In this regard our wavelets are similar to
those mentioned by Mallat [22, p. 301]. We show, however, that the corresponding
interpolation wavelet space can be characterized in terms of a projection operator
which is exact on polynomials, thereby causing the interpolation wavelet coefficients
of a function to be relatively small in those regions where the function exhibits lo-
cal polynomial-like behavior. For the construction of (nonorthogonal) interpolation
wavelets on the interval with vanishing moments, we refer to Donoho [14].

In [26], Schröder and Sweldens develop algorithms implementing interpolation
wavelets on an interval without providing detailed proofs.

The main algorithms are illustrated in the final section using examples from sig-
nature verification and two-dimensional image processing.

2. Dubuc–Deslauriers subdivision for bi-infinite sequences. In this sec-
tion we introduce Dubuc–Deslauriers subdivision as an optimally local curve filling
iterative procedure which reproduces polynomials of a given odd degree. We next
prove the existence of an associated refinable function, which is then shown to pro-
vide a limit curve for the Dubuc–Deslauriers subdivision scheme.

2.1. Construction of the mask. For a given nonnegative integer N , consider
the problem of finding a minimally supported mask a such that the (2N +1)th degree
polynomial filling property

∑
k

aj−2kp(k) = p

(
j

2

)
, j ∈ Z, p ∈ π2N+1,(2.1)

holds. Here π2N+1 denotes the linear space of polynomials of degree ≤ 2N + 1.

For this purpose we introduce the Lagrange fundamental polynomials Lk ∈π2N+1,
k = −N, . . . , N + 1, as defined by

Lk(x) =

N+1∏
k �=j=−N

x− j

k − j
, x ∈ R, k = −N, . . . , N + 1,(2.2)

for which

Lk(j) = δk,j , k, j = −N, . . . , N + 1,(2.3)

and

N+1∑
k=−N

p(k)Lk(x) = p(x), x ∈ R, p ∈ π2N+1.(2.4)

Setting j = 0 and j = 1 in (2.1), and using (2.3) and (2.4), the equation (2.1) implies

a2j +
∑

k �∈{−N,...,N+1}
a2kL−j(k) = δj,0,

a2j+1 +
∑

k �∈{−N,...,N+1}
a1−2kL−j(k) = L−j

(
1
2

)
,




j = −N − 1, . . . , N.(2.5)
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A necessary condition for a minimally supported mask a = {aj} to satisfy (2.1) is
thus

a2j = δj,0, j ∈ Z,(2.6a)

a2j+1 = L−j
(

1
2

)
, j = −N − 1, . . . , N,(2.6b)

a2j+1 = 0, j ≥ N + 1 or j ≤ −N − 2.(2.6c)

The choice (2.6) is also sufficient to fulfill (2.1). In fact, if j = 2m, m ∈ Z, then, for
p ∈ π2N+1, (2.6a) implies

∑
k

aj−2kp(k) =
∑
k

a2m−2kp(k) =
∑
k

a2kp(m− k) = p(m) = p

(
j

2

)
,

whereas if j = 2m + 1, m ∈ Z, then (2.6b), (2.6c), and (2.4) give

∑
k

aj−2kp(k) =
∑
k

a2k+1p(m−k) =

N∑
k=−N−1

L−k
(

1
2

)
p(m−k) = p

(
m + 1

2

)
= p

(
j

2

)
.

Hence the subdivision scheme corresponding to the mask (2.6), which was introduced
by Deslauriers and Dubuc in [12], is indeed a minimally supported mask sequence
a = {aj} for which (2.1) holds.

Observe that (1.2) implies, with reference to (1.3), the interpolatory property

c
(r+1)
2j = c

(r)
j , j ∈ Z, r = 0, 1, . . . ,(2.7)

by virtue of which Dubuc–Deslauriers subdivision is called an interpolatory scheme.

We now derive an explicit expression for the mask. Since, for k ∈ {−N, . . . , N+1},
we have

N+1∏
k �=j=−N

(
1
2 − j

)
=

1

22N+1

1

1 − 2k

N∏
j=−N−1

(2j + 1) =
(−1)N

24N+1

1

2k − 1

[
(2N + 1)!

N !

]2

and

N+1∏
k �=j=−N

(k − j) = (−1)N+1+k(N + k)!(N + 1 − k)!,

we deduce from (2.6) and (2.2) that the Dubuc–Deslauriers mask sequence a = {aj}
has the explicit formulation

a2j+1 =
N + 1

24N+1

(
2N + 1

N

)
(−1)j

2j + 1

(
2N + 1

N + j + 1

)
, j = −N − 1, . . . , N,

a2j = δj,0, j = −N, . . . , N,

aj = 0, |j| ≥ 2N + 2.




(2.8)
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For example, if N = 1, (2.8) gives

a2j+1 =




− 1
16 , j = −2,

9
16 , j = −1,

9
16 , j = 0,

− 1
16 , j = 1,

0 otherwise.

From (2.8) observe that the mask coefficients are symmetric, i.e.,

aj = a−j , j ∈ Z.(2.9)

Therefore we call Dubuc–Deslauriers subdivision a symmetric scheme.
For N = 0, note that (2.8), (1.2), and (1.3) yield, for r = 0, the iteration procedure

in (1.1). This subdivision scheme converges to a continuous piecewise linear function
which interpolates the original control points (see Figure 1). In contrast, subdivision
with the mask obtained by setting N = 1 in (2.8) converges to a smoother function,
while still interpolating the original control points (see Figure 2). Incidentally, this
example is not completely arbitrary. In fact Knuth based his construction of TEX
fonts on ideas remarkably similar to subdivision schemes [19, Chapter 2], more than
10 years before the Dubuc–Deslauriers scheme was introduced in [12].

(a) Original control points (�) and one step of

the subdivision algorithm (◦).
(b) Original control points with limit curve.

Fig. 2. Illustration of Dubuc–Deslauriers subdivision for N = 1.

We now show that, for any given initial sequence c ∈ M , the Dubuc–Deslauriers
subdivision sequence {c(r) : r = 0, 1, . . . } ⊂ M converges to a limit curve which will
be specified in terms of an associated refinable function.

2.2. The corresponding refinable function. Before investigating the conver-
gence of Dubuc–Deslauriers subdivision, we establish the existence and properties of
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the corresponding refinable function, following an approach employed by Micchelli in
[24] (see also [16]).

Theorem 2.1. For any given nonnegative integer N , let the sequence a = {aj}
be chosen as in (2.6). Then there exists a compactly supported function φ ∈ C(R)
such that

φ(x) =
∑
j

ajφ(2x− j), x ∈ R;(2.10)

φ(j) = δj,0, j ∈ Z;(2.11)

φ(x) = 0, x 
∈ (−2N − 1, 2N + 1);(2.12)

∑
j

p(j)φ(x− j) = p(x), x ∈ R, p ∈ π2N+1;(2.13)

φ(x) = φ(−x), x ∈ R;(2.14)

φ

(
j

2

)
= aj , j ∈ Z;(2.15)

φ(2N + 1 − 2−j(N − 1
2 − k)) = 0, k = 0, 1, . . . , j = 0, 1, . . . .(2.16)

Proof. The existence of a compactly supported function of φ ∈ C(R) satisfying
the properties (2.10), (2.11), and (2.12) was proven in [24, Lemma 3.1, Theorem 4.1,
and Corollary 4.1].

To prove (2.13), suppose � ∈ {0, 1, . . . , 2N + 1}, k ∈ Z, and r ∈ {0, 1, . . . }. We
shall prove that

∑
j

j	φ

(
k

2r
− j

)
=

(
k

2r

)	
,(2.17)

which then implies (2.13), since the set { k
2r : k ∈ Z, r = 0, 1, . . . } is dense in R, and

since φ is a compactly supported continuous function on R.
Noting that (2.17) is an immediate consequence of (2.11) if r = 0, we assume next

that r ≥ 1. Then, using consecutively (2.10), (2.1), and (2.11), we get

∑
j

j	φ

(
k

2r
− j

)
=
∑
j

j	
∑
m

amφ

(
k

2r−1
− 2j −m

)

=
∑
m


∑

j

am−2jj
	


φ

(
k

2r−1
−m

)

=
1

2	

∑
m

m	φ

(
k

2r−1
−m

)

...

=
1

2	r

∑
m

m	φ(k −m) =

(
k

2r

)	
.
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Similarly, the property (2.14) will be proved if we can show that, for k ∈ Z and
r ∈ {0, 1, . . . },

φ

(
k

2r

)
= φ

(
− k

2r

)
.(2.18)

For r = 0, (2.18) follows from (2.11), whereas for r = 1, it follows from (2.10), (2.9),
and (2.11) that φ(−k

2 ) =
∑
jajφ(−k − j) =

∑
jajφ(−k + j) =

∑
jajφ(k − j) = φ(k2 ).

If r ≥ 2, we also use (1.2) to deduce that

φ

(
− k

2r

)
=
∑
j

ajφ

(
− k

2r−1
− j

)

=
∑
j

ajφ

(
− k

2r−1
+ j

)

=
∑
j

aj
∑
	

a−	φ
(
− k

2r−2
+ 2j − �

)

=
∑
	


∑

j

a	−2jaj


φ

(
− k

2r−2
+ �

)

=
∑
	

(Sa)	φ

(
− k

2r−2
+ �

)

...

=
∑
	

(
Sr−1a

)
	
φ(−k + �) = (Sr−1a)k.(2.19)

A similar strategy shows that

φ

(
k

2r

)
= (Sr−1a)k,

which, together with (2.19), proves (2.18) for r ≥ 2.
Property (2.15) is an immediate consequence of (2.10) and (2.11).
Finally, we prove (2.16) by induction. For j = 0, property (2.16) follows from

(2.15) and (2.6c). To advance the inductive hypothesis from j to j + 1, we use (2.10)
and (2.6c) to deduce that, for k ∈ {0, 1, . . . },

φ(2N + 1 − 2−(j+1)(N − 1
2 − k)) =

∑
	

a	φ(4N + 2 − 2−j(N − 1
2 − k) − �)

=

4N+2∑
	=0

a2N+1−	φ(2N + 1 − 2−j(N − 1
2 − [k + 2j�])).

Using (2.12) we complete the proof.
Remarks.
1. Equations (2.10) and (2.15) imply

φ(x) =
∑
j

φ

(
j

2

)
φ(2x− j), x ∈ R.(2.20)
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2. Equations (2.14) and (2.16) imply

φ(−2N − 1 + 2−j(N − 1
2 − k)) = 0, k = 0, 1, . . . , j = 0, 1, . . . .(2.21)

3. For k ≥ N , (2.16) and (2.21) hold because the argument falls outside the
support of φ, while for k = 0, 1, . . . , N − 1 the argument falls within the
support. This in turn implies that φ has an infinite number of zeros within
its support and that these zeros are clustered more densely toward the edges
of the support, as illustrated in Figure 3.

4. A detailed study of the regularity of φ as a function of N is given in [12].
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Fig. 3. Illustration of the refinable function with clustered zeros.

2.3. Convergence of the subdivision scheme. We now show that the Dubuc–
Deslauriers subdivision scheme converges in the sense that, for each r ∈ {0, 1, . . . , },
the sequence c(r) lies entirely on the limit curve.

Theorem 2.2. For each initial sequence c = {cj} ∈ M , the Dubuc–Deslauriers
subdivision scheme (1.3), (1.2), and (2.6) converges to the function

f(x) =
∑
j

cjφ(x− j), x ∈ R,(2.22)

with φ defined as in Theorem 2.1, in the sense that

c
(r)
k = f

(
k

2r

)
, k ∈ Z, r = 0, 1, . . . .(2.23)
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Proof. If r = 0, then (2.23) follows from (2.11). For r ≥ 1, we use (2.10), (1.2),
(1.3), and (2.11) to deduce, for k ∈ Z,

f

(
k

2r

)
=
∑
j

cjφ

(
k

2r
− j

)

=
∑
j

cj
∑
	

a	−2jφ

(
k

2r−1
− �

)

=
∑
	

(Sc)kφ

(
k

2r−1
− �

)

...

=
∑
	

(Src)	φ(k − �) = (Src)k = c
(r)
k ,

the last equality by virtue of (1.4).

3. A modified subdivision scheme for finite sequences. The algorithms
for bi-infinite sequences, as described in the previous sections, are applied mainly in
the case of periodic sequences. For finitely supported sequences these algorithms must
be modified to accommodate the boundaries. We consider here a method of adapting
the Dubuc–Deslauriers subdivision scheme of section 2 to the situation where the
initial sequence c is finite.

3.1. Construction of a modified scheme. We first show that refinable func-
tions defined on an interval allow one to construct a subdivision scheme for finite
sequences. We derive the specific properties of these refinable functions from those of
the refinable (on R) function φ of section 2, with appropriate modifications near the
boundaries.

With N as in section 2, assume n is a positive integer with n ≥ 4N +2, and let r
be a nonnegative integer. On the basis of Theorem 2.1, and the subsequent equation
(2.20), we seek to construct a sequence {φrj} = {φrj : j = 0, 1, . . . , 2rn, r = 0, 1, . . . }
such that, for each fixed r,

φrj ∈ C[0, 2rn], j = 0, 1, . . . , 2rn;(3.1)

φrj(x) = 0, x 
∈




[0, 2N + 1 + j), j = 0, 1, . . . , 2N + 1,

(−2N − 1 + j, 2N + 1 + j), j = 2N + 2, . . . , 2rn− 2N − 2,

(−2N − 1 + j, 2rn], j = 2rn− 2N − 1, . . . , 2rn;

(3.2)

φrj(k) = δj,k, j, k = 0, 1, . . . , 2rn;(3.3)

2rn∑
j=0

p(j)φrj(x) = p(x), x ∈ [0, 2rn], p ∈ π2N+1;(3.4)

φrj(x) =

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2x), x ∈ [0, 2rn], j = 0, 1, . . . , 2rn.(3.5)
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Denoting the linear space of vector-valued sequences

c = {cj} = {cj : j = 0, 1, . . . , 2rn}
by Mr, the subdivision operator sequence {Sr : r = 0, 1, . . . , . . . } for Sr : Mr → Mr+1

is then defined by

(Src)j =

2rn∑
k=0

φrk

(
j

2

)
ck, j = 0, 1, . . . , 2r+1n.(3.6)

The corresponding subdivision scheme is defined by

c(0) = c ∈ M0, c(r+1) = Src
(r), r = 0, 1, . . . ,(3.7)

or, equivalently,

c(0) = c, c(r+1) = Sr(. . . (S1(S0c)) . . . ), r = 0, 1, . . . .(3.8)

Observe that (3.3), (3.6), and (3.7) imply

c
(r+1)
2j = c

(r)
j , j = 0, 1, . . . , 2rn, r = 0, 1, . . . ,(3.9)

i.e., the subdivision scheme (3.6)–(3.7) is interpolatory, whereas (3.4) implies

2rn∑
k=0

φrk

(
j

2

)
p(k) = p

(
j

2

)
, j = 0, 1, . . . , 2r+1n, p ∈ π2N+1,(3.10)

according to which the subdivision scheme (3.6)–(3.7) has the (2N+1)th degree poly-
nomial filling property. In (3.6)–(3.10) we have obtained the analogues of, respectively,
(1.2), (1.3), (1.4), (2.7), and (2.1).

To find a sequence {φrj} satisfying (3.1)–(3.5), we observe from (2.12) and (2.13)
that

2rn∑
j=0

p(j)φ(x− j) =
∑
j

p(j)φ(x− j) = p(x), x ∈ [2N, 2rn− 2N ], p ∈ π2N+1.

(3.11)

Thus, the sequence {φ(· − j)} provides suitable refinable functions away from the
boundaries. The boundary modifications can again be based on property (2.1). Using
arguments similar to the ones which led to the construction of the mask (2.6), we
define, for each fixed r ∈ {0, 1, . . . . }, the sequence {φrj} on the interval [0, 2rn] by

φrj(x) = φ(x− j) +

−1∑
k=−2N

Lj−N (k −N)φ(x− k), j = 0, 1, . . . , 2N + 1,(3.12a)

φrj(x) = φ(x− j), j = 2N + 2, . . . , 2rn− 2N − 2,(3.12b)

φrj(x) = φr2rn−j(2
rn− x), j = 2rn− 2N − 1, . . . , 2rn,(3.12c)

where the sequence {Lk : k = −N, . . . , N + 1} ⊂ π2N+1 is given by (2.2). Examples
are plotted in Figure 4.
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φφ
0

φ
1 φ

2
φ

3

Fig. 4. Illustration of definition (3.12) with N = 1.

Using

φ

(
N +

3

2
+ k

)
= 0, k = 0, 1, 2, . . . ,(3.13)

and

φ

(
−N − 3

2
− k

)
= 0, k = 0, 1, 2, . . . ,(3.14)

which follow from (2.16) and (2.21), we prove the following useful properties of the

sequence {φ(r)
j }.

Proposition 3.1. For given nonnegative integers N and r, let n be an integer
with n ≥ 4N + 2. Then the sequence {φrj}, as defined by (3.12), satisfies

φrj(x) = φ(x− j), x ∈ [2N, 2rn− 2N ], j = 0, 1, . . . , 2rn,(3.15)

φrj(x) = Lj−N (x−N), x ∈ [0, 1], j = 0, . . . , 2N + 1,(3.16)

φrj

(
k

2

)
=




Lj−N (k2 −N), k = 0, . . . , 2N + 1,

φ(k2 − j), k = 2N, . . . ,
j = 0, . . . , 2N + 1.(3.17)

Proof. For j = 0, . . . , 2rn− 2N − 2, (3.15) follows from the definition (3.12) and
the finite support (2.12) of φ. It therefore suffices to prove (3.15) for j = 2rn− 2N −
1, . . . , 2rn. But then, from (3.12c), and (3.12a),

φrj(x) = φr2rn−j(2
rn− x) = φ(−x + j) = φ(x− j),

by virtue of (2.14).

To prove (3.16), suppose x ∈ [0, 1] and j ∈ {0, 1, . . . , 2N+1}. Then (3.12a), (2.3),
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and (2.12) yield

φrj(x) =

2N+1∑
k=−2N

Lj−N (k −N)φ(x− k)

=
∑
k

Lj−N (k −N)φ(x− k) = Lj−N (x−N),

by virtue of (2.13).
For the proof of (3.17), we first let k ∈ {0, 1, . . . , 2N+1} and j ∈ {0, 1, . . . , 2N+1}.

Then, using consecutively (3.12a), (2.3), (3.14), (2.12), and (2.13), we get

φrj

(
k

2

)
= φ

(
k

2
− j

)
+

−1∑
	=−2N

Lj−N (�−N)φ

(
k

2
− �

)
(3.18)

=

2N+1∑
	=−2N

Lj−N (�−N)φ

(
k

2
− �

)

=

3N+1∑
	=−2N

Lj−N (�−N)φ

(
k

2
− �

)

=
∑
	

Lj−N (�−N)φ

(
k

2
− �

)

= Lj−N

(
k

2
−N

)
.(3.19)

Next, for k ∈ {2N +2, . . . } and j ∈ {0, 1, . . . , 2N +1}, we see that (3.18) holds again,
and the bottom part of (3.17) therefore follows since φ(k2 − �) = 0, � = −2N, . . . ,−1,
by virtue of (2.11) and (3.13).

To complete the proof of (3.17), it remains to show that for j ∈ {0, 1, . . . , 2N+1},
we have

φ

(
k

2
− j

)
= Lj−N

(
k

2
−N

)
for k = 2N and k = 2N + 1.(3.20)

For k = 2N , the property (3.20) is a consequence of (2.11) and (2.3), whereas for
k = 2N + 1 we use (2.15) and (2.6b) to deduce that

φ

(
k

2
− j

)
= a2N+1−2j = Lj−N

(
1

2

)
= Lj−N

(
k

2
−N

)
.

Remark. Observe from (3.15) and (3.12a), (3.12b), together with the support
properties (3.2) and (2.12), that

φrj(x) = φ(x− j), x ∈ [2N, 2rn], j = 0, 1, . . . , 2rn− 2N − 2.(3.21)

3.2. The refinability of the sequence {φr
j}. Analogous to the bi-infinite

case, our proof in section 3.3 below of the convergence of the subdivision scheme will
depend on the refinability of the sequence {φrj}, as proved in this section.

Theorem 3.2. The sequence {φrj}, as defined in (3.12), satisfies the properties
(3.1)–(3.5).
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Proof. The properties (3.1)–(3.3) are immediate consequences of (2.11) and (2.12).
To prove (3.4), we choose p ∈ π2N+1 and assume first that x ∈ [0, 2N). Using

(3.2), (3.12a), (3.12b), (2.4), (2.12), and (2.13) consecutively, one has

2rn∑
j=0

p(j)φrj(x) =

4N∑
j=0

p(j)φrj(x)

=

4N∑
j=0

p(j)φ(x− j) +

−1∑
k=−2N


2N+1∑
j=0

p(j)Lj−N (k −N)


φ(x− k)

=

4N∑
j=−2N

p(j)φ(x− j) =
∑
j

p(j)φ(x− j) = p(x).

For x ∈ [2N, 2rn − 2N ], the property (3.4) follows from (3.15) and (3.11). Similar
arguments establish polynomial reproduction for x ∈ (2rn− 2N, 2rn].

To prove the refinability (3.5), assume first that j ∈ {0, 1, . . . , 2N + 1} and x ∈
[0, 2N). Then (3.12a) and (2.3) imply

φrj(x) =

2N+1∑
k=−2N

Lj−N (k −N)φ(x− k).

Now, use the refinement equation (2.20), together with the support property (2.12),
to obtain

φrj(x) =

6N∑
	=−2N

[
2N+1∑
k=−2N

Lj−N (k −N)φ

(
�

2
− k

)]
φ(2x− �).(3.22)

For the first part of the sum in (3.22) we get, from (2.11), (3.13), (3.14), the polynomial
reproduction (2.13), and definition (3.12a),

2N+1∑
	=−2N

[
2N+1∑
k=−2N

Lj−N (k −N)φ

(
�

2
− k

)]
φ(2x− �)

=

2N+1∑
	=−2N

[∑
k

Lj−k(k −N)φ

(
�

2
− k

)]
φ(2x− �)

=

2N+1∑
	=−2N

Lj−N

(
�

2
−N

)
φ(2x− �)

=

−1∑
	=−2N

Lj−N

(
�

2
−N

)
φ(2x− �) +

2N+1∑
	=0

Lj−N

(
�

2
−N

)
φr+1
	 (2x)

−
−1∑

k=−2N

[
2N+1∑
	=0

Lj−N

(
�

2
−N

)
L	−N (k −N)

]
φ(2x− k)

=

2N+1∑
	=0

Lj−N

(
�

2
−N

)
φr+1
	 (2x) =

2N+1∑
	=0

φrj

(
�

2

)
φr+1
	 (2x),(3.23)

having also used the polynomial reproduction (2.4) and (3.17).
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For the remaining part of the sum in (3.22), we use the interpolatory properties
(2.3) and (2.11), as well as (3.13) and (3.17), to obtain

6N∑
	=2N+2

[
2N+1∑
k=−2N

Lj−N (k −N)φ

(
�

2
− k

)]
φ(2x− �)

=
6N∑

	=2N+2

φ

(
�

2
− j

)
φ(2x− �)

=

6N∑
	=2N+2

φrj

(
�

2

)
φr+1
	 (2x) =

2r+1n∑
	=2N+2

φrj

(
�

2

)
φr+1
	 (2x),(3.24)

where we also used the definition (3.12b) and the inequality n ≥ 4N + 2. Combining
(3.22), (3.23), and (3.24) then yields the result (3.5) for j ∈ {0, 1, . . . , 2N + 1} and
x ∈ [0, 2N).

Next, for j ∈ {0, 1, . . . , 2N +1} and x ∈ [2N, 2N +1+ j), we use Proposition 3.1,
Theorem 2.1, and (3.13) to get

φrj(x) = φ(x− j) =
∑
k

φ

(
k

2
− j

)
φ(2x− k)

=

4N+2j+2∑
k=2N

φ

(
k

2
− j

)
φ(2x− k)

=

4N+2j+2∑
k=2N

φrj

(
k

2

)
φr+1
k (2x)

=

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2x),

since n ≥ 4N + 2, thereby establishing (3.5) for this subcase.

For j ∈ {0, 1, . . . , 2N +1} and x ∈ [2N +1+ j, 2rn], we deduce from (3.2), (3.17),
(2.11), and (3.13) that

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2x) =

4N+1+2j∑
k=2N+2+2j

φrj

(
k

2

)
φr+1
k (2x)

=

4N+1+2j∑
k=2N+2+2j

φ

(
k

2
− j

)
φr+1
k (2x) = 0 = φrj(x),

by virtue of the top part of (3.2). Hence we have established equation (3.5) for all
j ∈ {0, 1, . . . , 2N + 1}.

Now consider the case j ∈ {2N + 2, . . . , 2rn − 2N − 2} and x ∈ (−2N − 1 + j,
2N + 1 + j). We use definition (3.12b), (2.20), (2.12), as well as (3.13) and the finite
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support property (3.2), to find that

φrj(x) = φ(x− j) =

2N+1+2j∑
k=−2N−1+2j

φ

(
k

2
− j

)
φ(2x− k)

=

2N+1+2j∑
k=−2N−1+2j

φ

(
k

2
− j

)
φr+1
k (2x)

=

2r+1n∑
k=0

φ

(
k

2
− j

)
φr+1
k (2x)

=

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2x),

based on the inequalities −2N − 1+ 2j ≥ 2N +3 and 2N +1+2j ≤ 2r+1n− 2N − 3.
For j ∈ {2N +2, . . . , 2rn−2N−2} and x ∈ [0,−2N−1+j], we use (3.2), (3.12b),

(2.11), and (3.14) to get

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2x) =

−2N−2+2j∑
k=0

φ

(
k

2
− j

)
φr+1
k (2x) = 0 = φrj(x).

Similarly, for j ∈ {2N + 2, . . . , 2rn− 2N − 2} and x ∈ [2N + 1 + j, 2rn], with (3.13),
we have

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2x) =

2r+1n∑
k=2N+2+2j

φ

(
k

2
− j

)
φr+1
k (2x) = 0 = φrj(x).

Hence (3.5) also holds for j ∈ {2N + 2, . . . , 2rn− 2N − 2}.
Finally, let j ∈ {2rn− 2N − 1, . . . , 2rn} and x ∈ [0, 2rn]. Then (3.12c), together

with the fact that (3.5) holds for j ∈ {0, 1, . . . , 2N + 1}, gives

φrj(x) = φr2rn−j(2
rn− x)

=
2r+1n∑
k=0

φr2rn−j

(
k

2

)
φr+1
k

(
2r+1n− 2x

)

=

2r+1n∑
k=0

φr2rn−j

(
2rn− k

2

)
φr+1

2r+1n−k(2
r+1n− 2x)

=

2r+1n∑
k=0

φrj

(
k

2

)
φr+1

2r+1n−k(2
r+1n− 2x).

We claim that

φr+1
2r+1n−k(2

r+1n− 2x) = φr+1
k (2x), x ∈ [0, 2rn], k = 0, 1, . . . , 2r+1n,(3.25)

which, if true, completes the proof of the theorem. Definition (3.12c) implies that
(3.25) is true for k ∈ {0, 1, . . . , 2N + 1} ∪ {2rn − 2N − 1, . . . , 2rn}, whereas if k ∈
{2N + 2, . . . , 2rn− 2N − 2}, we find that (3.12b) and (2.14) yield, for x ∈ [0, 2rn],

φr+1
2r+1n−k(2

r+1n− 2x) = φ(k − 2x) = φ(2x− k) = φr+1
k (2x).
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3.3. Convergence of the modified subdivision scheme. We now prove the
analogue of Theorem 2.2 for finite subdivision sequences.

Theorem 3.3. For each initial sequence c = {cj} ∈ M0, the subdivision scheme
(3.6)–(3.7) converges to the function

g(x) =
n∑
j=0

cjφj(x), x ∈ [0, n],(3.26)

with φj = φ0
j defined as in (3.12), in the sense that

c
(r)
k = g

(
k

2r

)
, k = 0, 1, . . . , 2rn, r = 0, 1, . . . .(3.27)

Proof. Repeatedly using (3.5), (3.6), (3.7), and eventually (3.3), for k ∈ {0, 1, . . . ,
2rn} and r ∈ {0, 1, . . . }, we obtain

g

(
k

2r

)
=

n∑
j=0

cjφ
0
j

(
k

2r

)

=

n∑
j=0

cj

2n∑
	=0

φ0
j

(
�

2

)
φ1
	

(
k

2r−1

)

=

2n∑
	=0

c
(1)
	 φ1

	

(
k

2r−1

)

...

=

2rn∑
	=0

c
(r)
	 φr	(k) = c

(r)
k .

3.4. An explicit formulation. We derive an explicit formulation for the sub-
division scheme (3.6)–(3.7).

Let c ∈ Mr. Then, from the subdivision operator definition (3.6), we obtain

(Src)2j+1 =

2rn∑
k=0

φrk
(
j + 1

2

)
ck, j = 0, 1, . . . , 2rn− 1,(3.28)

and thus, using also (3.12b), (3.14), and the top of (3.17), we get

(Src)2j+1 =

2N+1∑
k=0

Lk−N
(
j + 1

2 −N
)
ck, j = 0, 1, . . . , N.(3.29)

Next, we claim that

(Src)2j+1 =

N+1+j∑
k=−N+j

Lk−j
(

1
2

)
ck, j = N + 1, . . . , 2rn− 2N − 2.(3.30)

Indeed, if j ∈ {N + 1, . . . , 2N − 1}, then (3.28), (3.2), (3.17), (3.12b), (2.15), and
(2.6c) yield

(Src)2j+1 =

4N∑
k=0

φ
(
j + 1

2 − k
)
ck =

N+1+j∑
k=−N+j

a2j+1−2kck,
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and (3.30) then follows from (2.6b) for that range of j. Similarly, if j ∈ {2N, . . . , 2rn−
2N − 2}, we additionally use (3.15) to get

(Src)2j+1 =

2rn∑
k=0

φ
(
j + 1

2 − k
)
ck =

N+1+j∑
k=−N+j

a2j+1−2kck,

which, together with (2.6b), then proves (3.30).
For j ∈ {2rn− 2N − 1, . . . , 2rn− 1}, we first note the symmetry

φrk(x) = φr2rn−k(2
rn− x), x ∈ [0, 2rn], k = 0, 1, . . . , 2rn,(3.31)

which follows from (3.12c), and the fact that, for k ∈ {2N + 2, . . . , 2rn − 2N − 2},
(3.12b) and (2.14) give

φr2rn−k(2
rn− x) = φ(k − x) = φ(x− k) = φrk(x).

Thus, from (3.31),

φrk
(
j + 1

2

)
= φr2rn−k

(
(2rn− 1 − j) + 1

2

)
, k = 0, 1, . . . , 2rn,

j = 2rn− 2N − 1, . . . , 2rn− 1.(3.32)

Combining (3.29), (3.30), (3.32), and using (3.9), we find that the subdivision scheme
(3.6)–(3.7) has, for a given initial sequence c(0) = c ∈ M0, the explicit formulation

c
(r+1)
2j = c

(r)
j , j = 0, 1, . . . , 2rn,

c
(r+1)
2j+1 =

2rn∑
k=0

a
(r)
j,kc

(r)
k , j = 0, 1, . . . 2rn− 1,




r = 0, 1, . . . ,(3.33)

where

a
(r)
j,k =




Lk−N
(
j + 1

2 −N
)
, k = 0, 1, . . . , 2N + 1,

0, k = 2N + 2, . . . , 2rn,

j = 0, 1, . . . , N − 1,
(if N ≥ 1),

(3.34)

a
(r)
j,k =




Lk−j( 1
2 ), k = −N + j, . . . , N + 1 + j,

0, k ∈ [0,−N − 1 + j] ∪ [N + 2 + j, 2rn],
j = N, . . . , 2rn−N − 1,

(3.35)

a
(r)
j,k = a

(r)
2rn−1−j,2rn−k, k = 0, 1, . . . , 2rn, j = 2rn−N, . . . , 2rn− 1.

(3.36)

Explicit formulations of (3.34) and (3.35) are now obtained by using a calculation
similar to the one which yielded the top of (2.8). We find that, for k = 0, 1, . . . , 2N+1
and j = 0, 1, . . . , N − 1,

Lk−N (j + 1
2 −N) =

(−1)j+k

24N+1

1

2j + 1 − 2k

(2j + 1)!(4N + 1 − 2j)!

(2N − j)!(2N + 1 − k)!j!k!
,(3.37)
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whereas for k = −N + j, . . . , N + 1 + j and j = N, . . . , 2rn−N − 1,

Lk−j( 1
2 ) =

N + 1

24N+1

(
2N + 1

N

)
(−1)j+k

2j + 1 − 2k

(
2N + 1

N + 1 + j − k

)
.(3.38)

For example, if N = 1, (3.34) and (3.38) give

a
(r)
0,k =




5
16 , k = 0,

15
16 , k = 1,

− 5
16 , k = 2,

1
16 , k = 3,

0, k = 4, . . . , 2rn.

4. Interpolation wavelets on an interval. We show how the refinable se-
quence {φrj : j = 0, 1, . . . , 2rn, r = 0, 1, . . . } of section 3 can be used to explicitly
construct interpolation wavelets on an interval. Our definition in (4.10) below co-
incides, in an inner region bounded away from the endpoints, with the definition of
interpolation wavelets on R as given in, e.g., [7, equation (1.11)], [22, p. 300], and [27,
p. 193].

4.1. Decomposition based on interpolation. Let the integers N and n ≥
4N + 2 be as in section 3, and let R be a given positive integer. We define the linear
space sequence {Vr : r = 0, 1, . . . , R} by

Vr = span{φrj(2r−R •) : j = 0, 1, . . . , 2rn}, r = 0, 1, . . . , R,(4.1)

and the linear operator sequence {Pr : r = 0, 1, . . . , R} for Pr : C[0, 2Rn] → Vr by

(Prf)(x) =

2rn∑
j=0

f(2R−rj)φrj(2
r−Rx), x ∈ [0, 2Rn], r = 0, 1, . . . , R.(4.2)

It follows from (3.3) that Pr is an interpolation operator, which means that, for each
f ∈ C[0, 2Rn],

(Prf)(2R−rj) = f(2R−rj), j = 0, . . . , 2rn, r = 0, 1, . . . , R.(4.3)

Also, a proof based on (3.3) shows that Pr is a projection on Vr. Thus,

Prf = f, f ∈ Vr.(4.4)

Furthermore, (3.4) gives

2rn∑
j=0

p(2R−rj)φrj(2
r−Rx) = p(x), x ∈ [0, 2Rn], p ∈ π2N+1, r = 0, 1, . . . , R,(4.5)

by virtue of which

π2N+1 ⊂ Vr, r = 0, 1, . . . , R,(4.6)
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where here π2N+1 is restricted to the interval [0, 2Rn].
Since (3.5) yields the refinement equation

φrj(2
r−Rx) =

2r+1n∑
k=0

φrj

(
k

2

)
φr+1
k (2r+1−Rx), x ∈ [0, 2Rn], j = 0, 1, . . . , 2rn,

r = 0, . . . , R− 1,(4.7)

we have the nesting property

Vr ⊂ Vr+1, r = 0, 1, . . . , R− 1.(4.8)

Based on (3.3) one can prove that for each fixed r the set {φrj(2r−R •) : j = 0, 1, . . . , 2rn}
is linearly independent on [0, 2Rn], and thus, from (4.1), we have

dimVr = 2rn + 1, r = 0, 1, . . . , R.(4.9)

Now define the sequence {ψrj} = {ψrj : j = 0, 1, . . . , 2rn− 1, r = 0, 1, . . . , R− 1} by

ψrj (x) = φr+1
2j+1(x), x ∈ [0, 2Rn], j = 0, 1, . . . , 2rn− 1, r = 0, 1, . . . , R− 1,(4.10)

with corresponding linear spaces

Wr = span{ψrj (2r+1−R •) : j = 0, 1, . . . , 2rn− 1}, r = 0, 1, . . . , R− 1.(4.11)

From (4.10) and (4.1) it follows that

Wr ⊂ Vr+1, r = 0, 1, . . . , R− 1.(4.12)

If U , V , and W are linear spaces, we use the direct sum notation U = V ⊕W to denote
the fact that, for each f ∈ V , there exist g ∈ V and h ∈ W such that f = g + h, and
with g and h uniquely determined by f .

The following direct sum decomposition result holds.
Theorem 4.1.

Vr+1 = Vr ⊕Wr, r = 0, 1, . . . , R− 1,(4.13)

with Vr and Wr defined by (4.1) and (4.11).
To prove Theorem 4.1, we first introduce the linear spaces Ur and Xr, where

Ur = {f − Prf : f ∈ Vr+1}, r = 0, 1, . . . , R− 1,(4.14)

with Pr defined by (4.2), and

Xr = {f ∈ Vr+1 : f(2R−rj) = 0, j = 0, 1, . . . , 2rn}, r = 0, 1, . . . , R− 1,(4.15)

in terms of which the following preliminary result holds.
Proposition 4.2. The linear spaces Vr,Wr, Ur, and Xr, as defined by (4.1),

(4.11), (4.14), and (4.15), satisfy

Wr = Ur = Xr, r = 0, 1, . . . , R− 1;(4.16)

Vr ∩Wr = {0}, r = 0, 1, . . . , R− 1.(4.17)
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Proof. First, we show that Ur = Xr. If g ∈ Ur, then (4.2) and (4.3) yield
g(2R−rj) = 0, j = 0, . . . , 2rn, i.e., g ∈ Xr, so that Ur ⊂ Xr. If g ∈ Xr, then (4.2)
and (4.15) imply Prg = 0; hence, g = f − Prf with f = g, and thus, since also
f ∈ Xr ⊂ Vr+1 from (4.15), we have from (4.14) that g ∈ Ur. Consequently, Xr ⊂ Ur.

Next, we prove that Wr ⊂ Xr. If g ∈ Wr, there exists a coefficient sequence

{c0, . . . , c2rn−1} such that g(x) =
∑2rn−1
	=0 c	ψ

r
	 (2

r+1−Rx), x ∈ [0, 2Rn]. But then,
from (4.10), we have

g(2R−rj) =

2rn−1∑
	=0

c	φ
r+1
2	+1(2j) = 0, j ∈ {0, 1, . . . , 2rn},

by virtue of (3.3). Definition (4.15) then implies that g ∈ Xr. So, Wr ⊂ Xr.
We now show that Ur ⊂ Wr, thereby completing the proof of (4.16). Suppose

therefore that g ∈ Ur, so that, from (4.14) and (4.1), there exists a coefficient sequence
{cj : j = 0, 1, . . . , 2r+1n} such that the function f ∈ Vr+1 given by

f(x) =
2r+1n∑
j=0

cjφ
r+1
j (2r+1−Rx), x ∈ [0, 2Rn],(4.18)

satisfies the equation

g(x) = f(x) − (Prf)(x), x ∈ [0, 2Rn].(4.19)

However, from (4.2), (4.18), (3.3), and (3.5), we obtain

(Prf)(x) =

2r+1n∑
	=0

[
2rn∑
k=0

φr+1
	 (2k)φrk(2

r−Rx)

]
c	

=

2rn∑
	=0

c2	φ
r
	(2

r−Rx)

=

2rn∑
	=0

c2	

2r+1n∑
k=0

φr	

(
k

2

)
φr+1
k (2r+1−Rx)

=
2rn∑
	=0

c2	φ
r+1
2	 (2r+1−Rx)

+
2rn∑
	=0

c2	

2rn−1∑
k=0

φr	
(
k + 1

2

)
φr+1

2k+1(2
r+1−Rx).(4.20)

Also, from (4.18),

f(x) =

2rn∑
j=0

c2jφ
r+1
2j (2r+1−Rx) +

2rn−1∑
j=0

c2j+1φ
r+1
2j+1(2

r+1−Rx).(4.21)

Combining (4.19), (4.20), and (4.21) yields

g(x) =

2rn−1∑
j=0

[
c2j+1 −

2rn∑
k=0

c2kφ
r
k

(
j + 1

2

)]
φr+1

2j+1(2
r+1−Rx),(4.22)
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which, together with (4.11), (4.10), implies that g ∈ Wr. Thus Ur ⊂ Wr, thereby
completing our proof of (4.16).

Finally, to prove (4.17), suppose f ∈ Vr ∩Wr. Then (4.4) and (4.2) imply that,
for x ∈ [0, 2Rn],

f(x) = (Prf)(x) =

2rn∑
j=0

f(2R−rj)φrj(2
r−Rx) = 0,

after noting from (4.16) that f ∈ Xr and then using the definition (4.15).
We can now prove Theorem 4.1.
Proof. Let r ∈ {0, 1, . . . , R − 1} be fixed. Take any f ∈ Vr+1 and define g = Prf

and h = f − Prf . Then (4.2) implies that g ∈ Vr, whereas (4.14) and (4.16) imply
that h ∈ Wr. We have therefore shown that there exist functions g ∈ Vr and h ∈ Wr

such that f = g + h. It remains to be proven that g and h are uniquely determined
by f . But, if g0 ∈ Vr and h0 ∈ Wr were such that f = g0 + h0, then u = g0 − g ∈ Vr
and v = h−h0 ∈ Wr, with u = v. Thus u ∈ Vr ∩Wr and v ∈ Vr ∩Wr, and the desired
uniqueness result follows from (4.17).

From (4.13) one concludes that dim Wr = dimVr+1−dimVr, so that (4.9) leads to

dim Wr = 2rn, r = 0, 1, . . . , R− 1.(4.23)

Hence, based on the definition (4.11), we conclude that the set {ψrj (2r+1−R •) : j =

0, 1, . . . , 2rn− 1} is linearly independent on [0, 2Rn] and therefore is a basis for Wr.
We have therefore established, for each fixed r ∈ {0, 1, . . . , R−1}, an interpolation

wavelet basis {ψrj (2r+1−R •) : j = 0, 1, . . . , 2rn− 1} for the interpolation wavelet space
Wr. The elements of the sequence {ψrj} are called interpolation wavelets. Examples
for N = 1 are plotted in Figure 5.

ψ
0
r ψ

1
r

Fig. 5. Boundary interpolation wavelets with N = 1.

In the next section, we derive the corresponding decomposition and reconstruction
algorithms.

4.2. Decomposition and reconstruction algorithms. To obtain the decom-
position algorithm, let r ∈ {0, 1, . . . , R−1} be fixed, and suppose fr+1 ∈ Vr+1 is given
by

fr+1(x) =

2r+1n∑
j=0

c
(r+1)
j φr+1

j (2r+1−Rx), x ∈ [0, 2Rn].(4.24)
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According to Theorem 4.1, and for the bases {φrj} and {ψrj} of Vr and Wr, we know

that there exist unique coefficient sequences {c(r)j : j = 0, 1, . . . , 2rn} and {d(r)
j : j =

0, 1, . . . , 2rn− 1} such that the functions fr ∈ Vr and gr ∈ Wr defined by

fr(x) =

2rn∑
j=0

c
(r)
j φrj(2

r−Rx), x ∈ [0, 2Rn],(4.25)

and

gr(x) =

2rn−1∑
j=0

d
(r)
j ψrj (2

r+1−Rx), x ∈ [0, 2Rn],(4.26)

satisfy

fr+1 = fr + gr.(4.27)

In particular, observe that we then have the interpolation wavelet decomposition

fR = f0 +

R−1∑
j=0

gj .

Moreover,

fr = Prfr+1(4.28)

and

gr = fr+1 − Prfr+1.(4.29)

The coefficients {d(r)
j } in (4.26) are called the interpolation wavelet coefficients.

Using (4.24), (4.10), and (4.29), and the argument which led to (4.22), we obtain,
for all x ∈ [0, 2Rn],

2rn−1∑
j=0

d
(r)
j ψrj (2

r+1−Rx) =

2rn−1∑
j=0

[
c
(r+1)
2j+1 −

2rn∑
k=0

c
(r+1)
2k φrk

(
j + 1

2

)]
ψrj (2

r+1−Rx).

Since {ψrj (2r+1−R •) : j = 0, 1, . . . , 2rn − 1} is a linearly independent set on [0, 2Rn],
we have

d
(r)
j = c

(r+1)
2j+1 −

2rn∑
k=0

c
(r+1)
2k φrk

(
j + 1

2

)
, j = 0, 1, . . . , 2rn− 1.(4.30)

Next, using (4.25), (4.28), (4.2), and (3.3) we get, for all x ∈ [0, 2Rn],

2rn∑
j=0

c
(r)
j φrj(2

r−Rx) = fr(x) = (Prfr+1)(x)

=

2rn∑
j=0


2r+1n∑

	=0

c
(r+1)
	 φr+1

	 (2j)


φrj(2

r−Rx)

=

2rn∑
j=0

c
(r+1)
2j φrj(2

r−Rx).
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Since the set {φrj(2r−R •) : j = 0, 1, . . . , 2rn} is linearly independent on [0, 2Rn], we
deduce that

c
(r)
j = c

(r+1)
2j , j = 0, 1, . . . , 2rn.(4.31)

Now observe from (3.28), (3.7), and (3.33) that

φrk(j + 1
2 ) = a

(r)
j,k, k = 0, 1, . . . , 2rn, j = 0, 1, . . . , 2rn− 1,

which, together with (4.30) and (4.31), then yield, for a given data sequence {c(R)
j :

j = 0, 1, . . . , 2Rn}, the following interpolation wavelet algorithms.
Decomposition algorithm:

c
(r)
j = c

(r+1)
2j , j = 0, 1, . . . , 2rn,

d
(r)
j = c

(r+1)
2j+1 −

2rn∑
k=0

a
(r)
j,kc

(r+1)
2k , j = 0, 1, . . . , 2rn− 1,


 r = R− 1, R− 2, . . . , 0.

(4.32)

Reconstruction algorithm:

c
(r+1)
2j = c

(r)
j , j = 0, 1, . . . , 2rn,

c
(r+1)
2j+1 = d

(r)
j +

2rn∑
k=0

a
(r)
j,kc

(r)
k , j = 0, 1, . . . , 2rn− 1,


 r = 0, 1, . . . , R− 1.

(4.33)

Here the coefficient sequence {a(r)
j,k : k = 0, 1, . . . , 2rn, j = 0, 1, . . . , 2rn − 1, r =

0, 1, . . . , R−1} is defined by (3.34), (3.35), (3.36), with explicit formulations in (3.37)
and (3.38).

Suppose f ∈ C[0, 2Rn], with the integers R and n suitably chosen. The sequence
{fr : r = R − 1, R − 2, . . . , 0} is then defined by (4.28), with fR = f , whereas the
sequence {gr : r = R− 1, R− 2, . . . , 0} is defined by (4.29). The coefficient sequences

{c(r)j : j = 0, 1, . . . , 2rn, r = R,R − 1, . . . , 0} and {d(r)
j : j = 0, 1, . . . , 2rn − 1, r =

R−1, R−2, . . . , 0} are computed recursively by means of (4.32). In particular, observe
that since (4.2) and (4.25) yield

2Rn∑
j=0

c
(R)
j φRj (x) = fR(x) = (PRf)(x) =

2Rn∑
j=0

f(j)φRj (x),

we have c
(R)
j = f(j), j = 0, 1, . . . , 2Rn, and thus the interpolation wavelet decompo-

sition algorithm (4.32) can, in this context, be rewritten as

c
(r)
j = f(2R−rj), j = 0, 1, . . . , 2rn,

d
(r)
j = f(2R−r−1(2j + 1)) −

2rn∑
k=0

a
(r)
j,kf(2R−rk), j = 0, 1, . . . , 2rn− 1,




r = R− 1, R− 2, . . . , 0.(4.34)

The reconstruction is then performed by means of (4.33).
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At this stage, it is of interest to point out the following relationship between
the interpolation wavelet procedure (4.34), (4.33) and the interpolatory subdivision
scheme (3.33).

After the decomposition with (4.34) has been performed, suppose that we set the
interpolation wavelet coefficients

d
(r)
j = 0, j = 0, 1, . . . , 2rn− 1, r = 0, 1, . . . , R− 1,(4.35)

at each successive step of the reconstruction phase (4.33). The final reconstructed
(and smoothed) function is then

fR(x) =

2Rn∑
j=0

c
(R)
j φRj (x), x ∈ [0, 2Rn],(4.36)

with, as is clear from the top parts of (4.33) and (4.34), and (3.3),

fR(2Rk) = c
(R)

2Rk
= f(2Rk), k = 0, 1, . . . , n.

Now observe that the zero values (4.35) substituted into the bottom part of (4.33)
yield precisely the bottom part of the subdivision formula (3.33).

Hence the interpolation wavelet decomposition and reconstruction scheme de-
scribed above is equivalent to the following interpolatory subdivision scheme:

Choose c = c(0) = f(2Rk), k = 0, 1, . . . , and apply the interpolatory subdivision
scheme (3.33). According to Theorem 3.3, this scheme converges to the limit curve

g(x) =

n∑
j=0

f(2Rj)φ0
j (x), x ∈ [0, n].(4.37)

Then, using the refinement equation (3.5), as well as (3.6)–(3.7), we get

g(x) =

n∑
j=0

c
(0)
j φ0

j (x)

=

n∑
j=0

c
(0)
j

2n∑
	=0

φ0
j

(
�

2

)
φ1
j (2x)

=

2n∑
	=0

c
(1)
	 φ1

j (2x)

...

=

2Rn∑
	=0

c
(R)
	 φRj (2Rx) = fR(2Rx)

from (4.36). Hence,

g(x) = fR(2Rx), x ∈ [0, n].(4.38)

The subdivision approach therefore has the significant advantage of providing an
efficient iterative procedure for the construction of the function fR in (4.36).
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Finally, suppose in the decomposition procedure defined by the algorithm (4.34)
we have, for some given polynomial p ∈ π2N+1, and for a fixed r ∈ {R−1, R−2, . . . , 0},
that there exists an integer µ ∈ [0, 2rn] such that

f(x) = p(x), x ∈ [α, β],

where

α = max{0, 2R−r(µ− 2N)}, β = min{2Rn, 2R−r(µ + 2N)}.
Then, using also (4.34), (4.30), (3.2), and (3.4), we find

d(r)
µ = p(2R−r−1(2µ + 1)) −

k=min{2rn,µ+2N}∑
k=max{0,µ−2N}

p(2R−rk)φrk
(
µ + 1

2

)

= p(2R−r−1(2µ + 1)) −
2rn∑
k=0

p(2R−rk)φrk
(
µ + 1

2

)
= 0.

Hence the interpolation wavelet coefficients d
(r)
j corresponding, according to (3.2), to

those regions in [0, 2Rn] where the function f has polynomial-like behavior can be ex-

pected to be small relative to the interpolation wavelet coefficients d
(r)
j corresponding

to those regions in [0, 2Rn] where f exhibit nonpolynomial-like behavior.
For example, choose the function f in (4.34) as the cubic cardinal B-spline, with

an arbitrary choice of the integers R and n. The B-spline consists of four cubic
polynomial pieces joined together in such a way that the second derivative of the B-
spline is continuous, while the third derivative has jump discontinuities at the nodes.
Now choose N = 1 to ensure, by the above argument, that the wavelet coefficients

d
(r)
j , r = R−1, R−2, . . . , 0, are zero in the regions where f is identical to a polynomial

and nonzero in the regions where the third derivative has a jump discontinuity.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c
j
(3)

Fig. 6. Cubic B-spline, sampled at 257 equally spaced points.

In Figure 6, we have chosen R = 3 and n = 32 and plotted the sequence of

sampled values c
(3)
j = f(j) versus their indices. Figure 7 shows the result of the

interpolation wavelet decomposition algorithm (4.34), where the resulting coefficients
are also plotted versus their indices.

We observe that the average values c
(0)
j , as shown in Figure 7(a), consist of pre-

cisely every eighth value of the original B-spline. What is of more interest is the set
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(a) Average component.
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d
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(b) Detail components.

Fig. 7. Third level decomposition of the B-spline of Figure 6.

of detail components shown in Figure 7(b). Note that, as expected, the interpolation

wavelet coefficients d
(r)
j , r = 2, 1, 0, are nonzero only where the B-spline has jump

discontinuities in its third derivative.

5. Examples. In this section we illustrate the interpolation wavelets by applying
them to two practical problems. Of course we do not claim that the schemes described
above are more efficient in practice than any of the alternatives. This would require a
detailed study, which we leave for future consideration. These examples merely serve
to illustrate the theory developed above. Note in particular how the interpolation
wavelet decomposition on an interval avoids any edge artifacts.

5.1. Signature smoothing. Figure 8(a) shows part of a signature that was
captured by a digitized tablet. One clearly sees the quantization effect of the under-
lying grid of this particular tablet. Almost all applications require that the signature
should be smoothed. We therefore applied a single level of the interpolation wavelet
decomposition (4.34) with N = 1. All the detail coefficients were set equal to zero,
and a single reconstruction step was performed using the zero detail coefficients. The
result is the smoothed signature in Figure 8(b). Note that we follow standard practice

by displaying only the discrete coefficients c
(R)
j , connected by straight line segments.

This is different from the smooth curve given by (4.36).
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(a) Original signature sample.
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(b) Smoothed signature.

Fig. 8. Illustration of smoothing with interpolation wavelet decomposition.

A closer look at the original and reconstructed signature is given in Figure 9. Note
from Figure 9(a) how every other data point stays the same (due to the interpolation
property). The remaining points, however, are calculated in such a way that the
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result is a smoother signature. In fact, this procedure is exactly the same as if we
discarded every other data point of the original signature and then applied one step
of the subdivision scheme with N = 1 to the result, as described in section 4. As
mentioned above we plot only the data points connected by straight lines, and not
the smooth curve fR described by (4.36). An efficient way of calculating fR is by
subdivision: according to the argument leading from (4.36) to (4.38), each step of the
subdivision scheme doubles the number of points on the curve fR. The result of two
more subdivision steps is shown in Figure 9(b). Note how the reconstructed curve
has become noticeably smoother.
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(a) A single reconstruction step.
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Smoothed signature

(b) After two more subdivision steps.

Fig. 9. Magnification of original and smoothed signature.

Note that the main problem in this case is that the data points themselves are
corrupted by noise. Insisting that the data points are interpolated is therefore not the
best way to proceed. In this case noninterpolatory schemes such as Lane–Riesenfeld
[20] (see also [23, Chapter 2]) might prove beneficial. Even in this less than ideal
situation, the interpolation wavelets provide a surprisingly good smoothing, with no
artificial edge effects.

5.2. Two-dimensional interpolation wavelet decomposition. For our sec-
ond example we use the well-known painting by Salvador Dali, Gala Contemplating
the Mediterranean, Figure 10(a), the original of which can be seen in the Dali museum
in Figueres, Spain. Although painted in 1976, it is a beautiful illustration of Dali’s
awareness of images on different scales, in this case, a portrait of Abraham Lincoln,
the 16th president of the United States of America, and Gala, Dali’s wife, looking out
to sea.

Constructing a two-dimensional tensor product from the interpolation wavelet
(4.10) (see, e.g., [5, section 6.4]) allows us to perform a two-dimensional decomposition
of Dali’s painting, as illustrated in Figure 10(b). Note how clearly the image of
Abraham Lincoln is captured by the average component, displayed in the top left-
hand corner of Figure 10(b). The remaining part of the figure consists of the various
detail components.

Now we set the detail components equal to zero, and then reconstruct according
to a two-dimensional reconstruction algorithm also based on the tensor product in-
terpolation wavelet. The result, as shown in Figure 11(a), is the image of Abraham
Lincoln interpolated back onto the original grid of Figure 10(a). If we set the average
component equal to zero, and then reconstruct, we obtain the image in Figure 11(b),
which contains all the areas of sharp transition which are absent from Figure 11(a).
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(a) Original image. (b) Decomposition of image.

Fig. 10. Illustration of two-dimensional interpolation wavelet decomposition.

(a) Detail removed. (b) Average removed.

Fig. 11. Reconstructed images.
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Abstract. We consider a competitive reaction-diffusion model of two species in a bounded
domain which are identical in all aspects except for their birth rates, which differ by a function
g. Under a fairly weak hypothesis, the semitrivial solutions always exist. Our analysis provides a
description of the stability of these solutions as a function of the diffusion rate µ and the difference
between the birth rates g. In the case in which the magnitude of g is small we provide a fairly
complete characterization of the stability in terms of the zeros of a single function. In particular,
we are able to show that for any fixed number n, one can choose the difference function g from an
open set of possibilities in such a way that the stability of the semitrivial solutions changes at least
n times as the diffusion µ is varied over (0,∞). This result allows us to make conclusions concerning
the existence of coexistence states. Furthermore, we show that under these hypotheses, coexistence
states are unique if they exist.

The biological implication is that there is a delicate balance between resource utilization and
dispersal rates which can have a dramatic impact with regards to extinction. Furthermore, we show
that there is no optimal form of resource utilization. To be more precise, given a fixed diffusion
rate and a particular spatially dependent utilization of resources which are expressed in terms of the
birth rate, there always exists a birth rate, which on average is the same but differs pointwise, which
allows the corresponding species to invade.
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1. Introduction. We study the semilinear parabolic system

ut = µ∆u+ u(α(x)− u− v),(1.1a)

vt = µ∆v + v(β(x)− u− v)(1.1b)

in Ω × (0,∞), where Ω is a bounded region in R
N with smooth boundary ∂Ω. On

∂Ω× (0,∞), we impose the homogeneous Neumann boundary condition
∂u

∂n
=
∂v

∂n
= 0,(1.1c)

where n is the outward unit normal vector on ∂Ω. The diffusion rate µ is a positive
constant, while the intrinsic growth rates α(x), β(x) are nonconstant functions in Ω.
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To motivate this work, consider first the single equation

ut = µ∆u+ u(α(x)− u) in Ω× (0,∞), ∂u

∂n
= 0 on ∂Ω× (0,∞).(1.2)

If
∫
Ω
α > 0 and α is Hölder continuous in Ω, then it is well known that there exists a

unique positive equilibrium solution ũ satisfying

µ∆ũ+ ũ(α− ũ) = 0 in Ω,
∂ũ

∂n
= 0 on ∂Ω.(1.3)

Furthermore, ũ depends smoothly on µ, is asymptotically stable, and is the global
attractor for the set of nontrivial, nonnegative initial conditions. In a slight abuse of
language we shall refer to a solution with this property as a global attractor. When it
is important to express the dependence on µ we will write ũ(x, µ). Equations of this
form have attracted considerable attention in biology, where u might represent the
density of an organism. The fact that ũ is a global attractor can be interpreted as a
statement that the species survives.

One of the fundamental driving forces in evolution is competition. An elementary,
but not unreasonable, approach to understanding the relative fitness of two such
organisms is to couple two equations of the form of (1.2) in a competitive manner.
Using the classical Lotka–Volterra interaction terms we are led to the system

ut = µ∆u+ u(α(x)− u− bv),
vt = ν∆v + v(β(x)− cu− v),

(1.4)

assuming Neumann boundary conditions again. In a suitable ordering, (1.4) defines a
strongly monotone semiflow on the cone of continuous vector functions with both com-
ponents positive. This has strong implications for the global dynamics. In particular,
combining general results on monotone semiflows with special features of (1.4), one
can prove that either there is a coexistence steady state (that is, a steady state with
both components positive) or else for each solution in the cone one of the components
tends to 0 as t→ ∞ (see [He, HSW]). Our goal here is to gain an understanding of the
relationship between diffusion rates, spatial heterogeneity, and competitive coupling.
In the tradition of bifurcation theory, this suggests looking for a system which is an
organizing center for these parameters.

With this in mind consider the following degenerate version of (1.4):

ut = µ∆u+ u(α(x)− u− v),
vt = µ∆v + v(α(x)− u− v).(1.5)

Obviously in this system u and v play an identical role, and hence for each fixed µ
there is a set of nonnegative equilibria {(sũ, (1− s)ũ) | 0 ≤ s ≤ 1}. Furthermore,
this set of equilibria is the global attractor for the set of nontrivial nonnegative initial
conditions. Thus, the ultimate goal would be to provide a complete unfolding of the
degenerate system in the directions of the general systems taking the form of (1.4).
This would provide us with detailed information concerning the existence, multiplicity,
and stability of the equilibria, along with an understanding of the global dynamics.

Unfortunately, we are far from attaining this goal. However, this paper can
be viewed as a natural addition to a series of work [HLMV, DHMP, HLM, HMP]
in which we have obtained partial results. In particular, in [DHMP] the case of
b = c = 1 and β = α, α being a nonconstant function, was analyzed. Without loss
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of generality assume that ν > µ (otherwise (1.5) is recovered). The result, under
no further hypotheses, is that (ũ, 0) is the global attractor for the set of positive
initial conditions. Observe that this implies that there are no other equilibria in the
cone of positive functions. Biologically this suggests that if the two species interact
identically with the environment, then the slower diffuser always survives and the
faster diffuser is always driven to extinction. As is shown in [HMP], corresponding
results are not always true if, in addition, one assumes that the reproductive rate α
is periodic in time.

To gain an understanding of the importance of this phenomena as compared to the
effects of relative strengths of competition, the case of ν > µ, b > 1, c < 1, and α = β
was considered in [HLM]. Here we wish to consider similar questions; however, our
focus is on the interaction between diffusion rates and the form of the heterogeneity
of the environment. This justifies the assumption that b = c = 1. Furthermore, to
make progress on this problem we have assumed that µ = ν, which results in system
(1.1).

This system was studied in [HLMV], motivated by the following biological ques-
tion. Consider a species with spatially dependent reproductive rate β(x). The form
of β may be regarded as reflecting the manner in which the resources are utilized.
Suppose now that there is a mutation leading to another phenotype with a spatially
distinct reproductive rate α(x) but otherwise identical. Typically, the initial popula-
tion of the mutant species will be very small. Problem (1.1) may be taken to be a
model representing the first stage in speciation, with different species differing only
in the spatial dependence of their reproductive rate. A well-known example is the
different beak size in “Darwin’s finches” [G]. There are two key questions. First,
under what circumstances will this mutant invade? Second, if it does invade, will it
go to fixation, i.e., force extinction of the original phenotype, or will there be coex-
istence, which one would regard as a speciation event? Mathematically this leads to
the system (1.1). The analysis of such a system when the difference between α and
β is small occupies a major portion of the present paper. Our results go some way
towards clarifying the question of the existence of a coexistence state and its depen-
dence on the size of the difference between α and β and on the value of the diffusion
coefficient. In a number of situations we are able to give a complete description of the
global dynamics. We shall return to a discussion of the implications of our results at
the end of this section.

Turning now to a description of the results, we start by recalling a few conclusions
from [HLMV]. Let ṽ be a positive solution of

µ∆ṽ + ṽ(β − ṽ) = 0 in Ω,
∂ṽ

∂n
= 0 on ∂Ω.(1.6)

As was remarked earlier, if
∫
Ω
β > 0, and β is Hölder continuous in Ω, then ṽ is

uniquely determined and depends smoothly on µ. Observe that the solutions ũ of
(1.2) and ṽ of (1.6) define equilibria (ũ, 0) and (0, ṽ) of (1.1).

It was shown in [HLMV] that if
∫
Ω
α >

∫
Ω
β > 0, then for large enough µ, (ũ, 0)

is a global attractor. Thus, in particular, (ũ, 0) is asymptotically stable and (0, ṽ) is
unstable. From the biological perspective this implies that the species u always drives
the species v to extinction, no matter what the initial data may be. On the other
hand, [HLMV] also demonstrates that if α+ − β+ (α+ denotes the positive part of α)
changes sign, then for small enough µ both semitrivial states (ũ, 0) and (0, ṽ) of (1.1)
are unstable. This in turn implies that there is at least one stable coexistence state
of (1.1), i.e., an equilibrium (u, v) of (1.1) with u, v > 0 on Ω.
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Fig. 1. Expected bifurcation diagram of coexistence states of (1.1): for µ > µ0, (ũ, 0) is the
global attractor of (1.1); for µ < µ0, (1.1) has a coexistence state which is stable and possibly the
global attractor of (1.1). In this and all other figures, the vertical axis is r = ‖u‖/(‖u‖+ ‖v‖), where
‖ · ‖ is the L2 norm.
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Fig. 2. Another possible bifurcation diagram suggested by computation.

The simplest interpretation of these results suggests the following scenario. As
µ decreases from a large value, a branch of coexistence states of (1.1) bifurcates
from (ũ, 0) at some value µ0 and remains in the interior of the positive cone for all
µ < µ0; see Figure 1. This would suggest some type of monotone relation between
the stability of (ũ, 0) and the rate of diffusion. Surprisingly, according to [HLMV],
numerical computations show that this simple situation is not always the case. For
reasonable choices of α and β, the branch of coexistence states bifurcating from (ũ, 0)
at µ0 can reach (0, ṽ), which becomes globally attracting for some range of µ as µ
decreases. Eventually another branch of coexistence states of (1.1) bifurcates from
(0, ṽ) and remains in the positive cone for the rest of µ; see Figure 2.

It is worthwhile comparing these figures. In Figure 1, the species u can always
invade when rare, that is, (0, ṽ) is unstable for any µ; in Figure 2, the species u cannot
invade when rare if µ ∈ (µ2, µ1), and indeed (0, ṽ) is the global attractor of (1.1)
for this range of µ. This is surprising because for the above-mentioned numerical
computations species u was chosen to have better than average reproductive rate
resource utilization than species v; i.e., it was assumed that

∫
Ω
α >

∫
Ω
β. These

numerical results also show that there need not be a monotone relation between
stability (in the case of (0, ṽ)) and the rate of diffusion. Furthermore, the coexistent
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states can appear and disappear as a function of the diffusion rate.
These observations suggest that the task of characterizing the equilibria for (1.1)

will not be trivial. In fact, recall that, given the degenerate equation (1.5) and letting
µ vary over (0,∞), one has a two-dimensional set of degenerate equilibria. Setting

α(x) := β(x) + τg(x),(1.7)

and treating both τ and µ as parameters, one might be inclined to conclude that
the structure of the set of possible equilibria and their stability obtained from an
arbitrary perturbation would be beyond a simple description. Remarkably, as we
shall demonstrate, this is not the case.

Using (1.7) we rewrite (1.1) as

ut = µ∆u+ u
[
β(x) + τg(x)− u− v],(1.8a)

vt = µ∆v + v
[
β(x)− u− v],(1.8b)

∂u

∂n
=
∂v

∂n
= 0,(1.8c)

where τ > 0. The following assumption guarantees the existence of semitrivial equi-
libria for all diffusion rates.

A1. β is a C1 nonconstant function on Ω and
∫
Ω
β(x) dx > 0.

A2. g is a C1 function on Ω satisfying
∫
Ω
g(x) dx ≥ 0.

On occasion we will make use of the slightly stronger condition:
A2+. g is a C1 function on Ω satisfying

∫
Ω
g(x) dx > 0.

Observe that if g(x) > 0 for all x ∈ Ω, then α(x) > β(x). As was mentioned
above, this case was studied in [HLMV]. Here we concentrate on the case when g
changes sign. Although not assumed explicitly, this property is a consequence of the
hypotheses of most of our theorems.

We remark that our regularity requirement on β, g can be relaxed at several
places. For the sake of simplicity, however, we assume β, g ∈ C1(Ω) throughout the
paper.

Though unmotivated at the moment, it will soon become clear that the following
function plays an essential role in all our analyses. Let G : [0,∞)→ R be defined by

G(µ) =




∫
Ω

g(x)ṽ2(x, µ) dx if µ > 0,∫
Ω

g(x)β2
+(x) dx if µ = 0.

(1.9)

The fact that ṽ2(x, µ) is a smooth function of µ and [HLMV, Theorem 4.1] implies
that G is differentiable on (0,∞) and continuous at 0. Note in particular that, under
condition A2+, G can assume a nonpositive value only if g changes sign.

We begin our study by analyzing the stability of (0, ṽ) and confirm the numerical
indication that the stability can change, and indeed can do so more than once, as the
diffusion rate µ is varied.

Theorem 1.1. Suppose that A1 and A2+ hold. If G(0) < 0, then there exists a
unique τ0 > 0 such that

(i) τ > τ0 implies that (0, ṽ) is unstable for any µ;
(ii) τ < τ0 implies that (0, ṽ) changes stability

1 at least once as µ varies from zero
to infinity. It changes stability at least twice, provided the following additional

1We say a steady state changes stability at µ0 if for µ ≈ µ0 it is stable on one side of µ0 and
unstable on the other side of µ0.
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condition is satisfied:

g > 0, β > 0 on a nonempty set Ω+ ⊂ Ω.(1.10)

As mentioned earlier, the instability of (0, ṽ) means that the species u with low
density can successfully invade. Theorem 1.1 qualitatively illustrates how the invasion
of species relies on its diffusion rate and the difference between its intrinsic growth
rate and that of its competitor. The invasion of species has always been an active
and important subject in biology, and we refer to [SK, CC] and references therein for
some recent biological and mathematical developments.

Theorem 1.1 immediately raises two questions:
1. What are the values of µ where (0, ṽ) changes stability?
2. If there are coexistence states bifurcating from (0, ṽ) or (ũ, 0), what can be
said about their stability and how does this influence the global dynamics?

In general, these are hard questions to answer, but for small τ we shall give fairly
complete answers, and shall obtain some partial understanding when τ is large.

For small τ , the roots of G approximate the values of µ where (0, ṽ) and (ũ, 0)
change stability. Stated differently, if (0, ṽ) or (ũ, 0) changes stability at µ = µτ , then
as τ → 0+, either µτ → 0 or µτ → µ̄ with G(µ̄) = 0. With some further minor
assumptions on G the converse is also true. The precise statement is given in the
following theorem (see Figure 3).

Theorem 1.2. Assume A1 and A2. Let G−1(0) = {µ1 < · · · < µk}. Further-
more, assume that G′(µi) = 0 for every 1 ≤ i ≤ k. Fix η ∈ (0, µ1). Then there exists
some τ0 > 0 and functions µ

∗
i (τ), µi,∗(τ) : (0, τ0)→ (η,∞), i = 1, . . . , k, such that

µ1,∗(τ) < µ∗1(τ) < µ2,∗(τ) < µ∗2(τ) < · · · < µk,∗(τ) < µ∗k(τ),(1.11a)

lim
τ→0
µi,∗(τ) = lim

τ→0
µ∗i (τ) = µi, 1 ≤ i ≤ k,(1.11b)

and for µ∈ [η, µ∗k(τ)), (1.8) has a coexistence state if and only if µ∈
⋃k

i=1(µi,∗(τ), µ
∗
i (τ)).

Moreover, for µ ≥ η, any coexistence state of (1.8) is the global attractor of (1.8).
Under the stricter assumption A2+, µ∗k(τ) can be chosen such that (1.8) has no

coexistence states for µ > µ∗k(τ), and (ũ, 0) is the global attractor.
We remark that A2 is not needed for the first statement of the theorem. If g

is strictly positive, then G−1(0) = ∅, and hence the theorem is vacuously true. A
more subtle point is the assumption that G′(µi) = 0. Recall that µ enters into the
definition of G indirectly, via ṽ(x, µ); thus it is neither evident that this is a generic
condition nor that G can have arbitrarily many roots. We clarify these issues in the
next proposition.

Let C1(Ω) be equipped with the standard norm:

‖g‖ = sup
x∈Ω

(|g(x)|+ |Dg(x)|).

Let U be an open set in C1(Ω). We say that a statement holds for generic g ∈ U if the
set of functions g for which the statement holds contains the intersection of countably
many open and dense subsets of U . Such an intersection is dense by Baire’s theorem.

Proposition 1.3.
(i) Let β satisfy A1. Then for generic g ∈ C1(Ω), 0 is a regular value of the

function G; that is, G′(µ) = 0 whenever G(µ) = 0.
(ii) For generic β ∈ U = {β ∈ C1(Ω) :

∫
Ω
β > 0} the following holds: given

any nonnegative integer k, there exists g ∈ U such that G has at least k
nondegenerate zeros.



COMPETING SPECIES NEAR A DEGENERATE LIMIT 459

. . .

*

*

* *
µ2

*

µ
2,

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

0

(0,v)
µ

∼

∼
(u, 0)

µη

µ1

µ

µ *

1,

r

k,

k

Fig. 3. Bifurcation diagram of coexistence states of (1.8) when τ is small and µ is bounded
away from zero.

Theorem 1.2 handles the case where τ is small and µ is bounded away from zero.
What happens when both τ and µ are small? As was indicated earlier, for fixed τ ,
both (ũ, 0) and (0, ṽ) are unstable if µ is small enough. In view of Figure 3, for fixed τ ,
either (ũ, 0) or (0, ṽ) will change stability at least once when µ ∈ (0, η]. The following
result gives a characterization of this bifurcation point when τ and µ are both small.

Theorem 1.4. Suppose that A1 and A2 hold and that β > 0 in Ω̄. Denote by µ1

the smallest positive root of G and assume that G′(µ1) = 0. Let µ∗1(τ) and µ1,∗(τ) be
as in Theorem 1.2.

(i) If G(0) < 0, there exists τ0 > 0 such that for every τ ≤ τ0, (ũ, 0) is unstable
for µ < µ∗1(τ). Furthermore, there exists a unique µ0(τ) ∈ (0, µ1,∗(τ)) such
that (0, ṽ) is unstable for µ < µ0(τ) and stable for µ ∈ (µ0(τ), µ1,∗(τ)) (see
Figure 4a). Moreover, µ0(τ) satisfies

lim
τ→0

τ

µ0(τ)
= inf{

ψ∈H1:
∫
Ω
gβ2ψ2>0

}
∫
Ω
β2|∇ψ|2∫

Ω
gβ2ψ2

> 0.(1.12)

(ii) If G(0) > 0, there exists τ0 > 0 such that for every τ ≤ τ0, (0, ṽ) is unstable
for µ < µ∗1(τ). Furthermore, there exists a unique µ0(τ) ∈ (0, µ1,∗(τ)) such
that (ũ, 0) is unstable for µ < µ0(τ) and stable for µ ∈ (µ0(τ), µ1,∗(τ)) (see
Figure 4b). Moreover, µ0(τ) satisfies

lim
τ→0

τ

µ0(τ)
= inf{

ψ∈H1:
∫
Ω
gβ2ψ2<0

}
∫
Ω
β2|∇ψ|2

− ∫
Ω
gβ2ψ2

> 0.(1.13)

From Figure 4a we see that a branch of coexistence states bifurcate from (0, ṽ)
at µ = µ0(τ). We suspect that if G(0) < 0 and τ � 1, for 0 < µ < µ0(τ), (1.8) has a
unique coexistence state and it is the global attractor of (1.8). We also believe that
for µ ∈ (µ0, µ1,∗(τ)), (0, ṽ) is the global attractor of (1.8). However, these questions
remain open.

Again, motivated by biology the following question is natural. Given a dispersal
rate µ, is there a birth rate β(x) that is “optimal” in the sense that an invading mutant
with intrinsic growth rate β(x) + τg(x) necessarily dies out? Mathematically, this is
equivalent to asking that (0, ṽ(x, µ)) be stable for all sufficiently small τ , no matter
how g is chosen. In order not to bias the result, e.g., by allowing one phenotype to
have a higher reproductive rate at every point, it is reasonable to impose an additional
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Fig. 4. Bifurcation diagrams of coexistence states for τ � 1, µ < µ1,∗ and (a)
∫
Ω gβ

2 < 0,
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global “fairness” assumption
∫
Ω
g(x) dx = 0. However, Theorem 1.2 indicates that

the stability of (0, ṽ(x, µ)) is determined by the sign of G(µ). Therefore, if (0, ṽ(x, µ))
is stable under a perturbation in the direction of g(x), then it is unstable under
a perturbation in the opposite direction −g(x). In particular, given a particular
environment and dispersal rate, there is no optimal birth rate.

The instability of (0, ṽ(x, µ)) indicates that a new mutant can easily invade and
suggests the possibility of coexistence. This leads to the following question: for any
fixed µ, can one always find g such that there is a coexistence for all small τ > 0?
Interestingly, the answer depends on the relation of µ to a single value µ∗ depending
only on β and Ω. Of course, as we know from the previous results, if the coexistence
is to hold for all small τ , then g must be chosen such that G(µ) =

∫
Ω
ṽ2(·, µ)g = 0.

Theorem 1.5. Assume A1. There exists a unique µ∗ > 0, depending only on β
and Ω, with the following properties:

(i) If µ > µ∗, (1.8) has no coexistence state for any g satisfying A2, provided
0 < τ < τ0, where τ0 = τ0(g).

(ii) If µ < µ∗, then there exists a nonempty open subset U of{
g ∈ C1(Ω) :

∫
Ω

ṽ2(·, µ)g = 0 and
∫

Ω

g > 0

}

(with the topology induced from C1(Ω)) such that (1.8) has a coexistence state
that is the global attractor of (1.8), provided g ∈ U and 0 < τ < τ0, where
τ0 = τ0(g).
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Fig. 5. Bifurcation diagram of coexistence states of (1.8) when τ � 1.

Thus µ = µ∗ is a critical value for the diffusion rate above which if an invasion
can occur, then the invading mutant necessarily goes to fixation. Below µ∗, invasions
leading to either fixations or coexistence are possible, depending on the choice of g.

From the point of view of biology, a possible objection to Theorem 1.5 is that
the requirement

∫
Ω
ṽ2(·, µ)g = 0 is not generic, and therefore statement (ii) is not

applicable. However, stability properties of coexistence equilibria, examined in detail
in section 5, guarantee their persistence. Thus if one chooses τ small but bounded
away from zero, then coexistence occurs for nonempty open sets of functions g (not
restricted to U) and diffusion rates µ. Furthermore, if one thinks of the change in the
birth rate as being caused by a mutation, then it makes sense to think of τ as having
some finite, though possibly small, size.

We now turn to the case of large τ . In this setting, assuming A2+, it is not hard
to show that (0, ṽ) is unstable for any µ. On the other hand, (ũ, 0) changes stability
at least once as µ varies from ∞ to 0. This prompts the following question: given
τ � 1, what is the range of values of µ for which (ũ, 0) changes stability? To this
end, set

Ω+ = {x ∈ Ω : g(x) > 0}, Ω− = {x ∈ Ω : g(x) < 0}, Γ = {x ∈ Ω̄ : g(x) = 0}.
In the next theorem we shall assume that the closure of Ω− is a nonempty subset

of Ω and that β > 0 on Ω̄. This guarantees that there is a unique value µ0 > 0 such
that the linear problem

µ0∆φ+ β(x)φ = 0 in Ω−, φ > 0 in Ω−, φ = 0 on Γ(1.14)

has a solution.
Theorem 1.6 (see Figure 5). Assume A1, A2+, that the closure of Ω− is a

nonempty subset of Ω, g ∈ C2(Ω), ∇g = 0 on Γ, and that β > 0 on Ω̄. Let µ0 be the
value introduced above. Then the following statements hold true:

(i) There exists τ0 > 0 such that if τ ≥ τ0, then (0, ṽ) is unstable for any µ > 0.
(ii) For any ε > 0, there exists τ1 = τ1(ε) such that if τ ≥ τ1, then (ũ, 0) is

unstable for µ ≤ µ0 − ε (this implies that (1.8) has a stable coexistence state
for µ ≤ µ0 − ε), and (ũ, 0) is the global attractor of (1.8) for µ ≥ µ0 + ε.

To have an overview of the results presented here, it may be helpful to the reader
to refer to Figure 6, which is sketched from computed results. This shows a sequence
of bifurcation curves for various values of τ . This sketch suggests of course a great
deal more than we have proved.



462 V. HUTSON, Y. LOU, K. MISCHAIKOW, AND P. POLÁČIK
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Fig. 6. Sketch based on computation with β(x) = 1−cos(πx), g(x) = 0.25+cos(πx), Ω = (0, 1),
and ε =

√
µ.

We conclude with some remarks on the implications for the biological considera-
tions which motivate this model. The first issue highlighted by the analysis, and one
which we suggest is very striking, is the following. We have shown that for a large
class of functions g, and for small τ , representing small variations of the phenotype,
the stability of the two phenotypes varies with diffusion in a complex manner, and
one which appears to be highly unintuitive. In particular, there is no monotonicity
with respect to the diffusion rate µ. As is shown in Figure 3 (and proved in Theo-
rem 1.2 and Proposition 1.3) the stability may change back and forth several times as
µ changes. Furthermore, unless µ is large, this has no relation to the total resource
utilizations,

∫
Ω
β and

∫
Ω
(β + τg). This is surprising. From the observer’s point of

view, this suggests that without careful measurement and elaborate experiments, it
is totally unpredictable which species will survive.

A second comment is that mutation leads to multiple opportunities for coexis-
tence and thus potentially for speciation. For small τ , which is more realistic biologi-
cally, this only happens for narrow ranges of µ, but as τ increases, the ranges widen.
Nonetheless, it suggests that there is no surprise in finding a large range of coexisting
phenotypes which differ only in one, sometimes small, manner, which is the precise
manner in which they utilize the resources of the environment. Indeed, Theorem 1.5
ensures that, given µ, there is a large class of functions for which there will be (stable)
coexistence.

Finally, we make a comment on the role of the diffusion µ as one of the bifurcation
parameters. This appears to be a relevant mathematical tool for modeling situations
when changes in the environment or mutation affect the diffusion rates of the species.
One can think of the direct effects caused by changes in climate (temperature, rainfall)
or indirect effects of changes in the biotic environment (resources). The bifurcation
problem is appropriate in the study of long-term changes—those that occur at a
much slower rate than the growth of the species. If they occur on a comparable time
scale, a diffusion problem with time-dependent diffusion coefficients may be a more
appropriate model.

This paper is organized as follows: In section 2 we summarize basic material
concerning local and global stability of equilibria. In section 3 we prove Theorem 1.1.
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We study the τ � 1 case in section 4, where Theorems 1.2–1.5 are established.
In section 5, we consider the τ � 1 case and prove Theorem 1.6. Some tedious
computations needed in the proof of Theorem 1.2 are carried out in Appendix A.
Appendix B is devoted to the proof of Proposition 1.3.

2. Preliminaries. In this section we summarize basic properties of equilibria of
(1.8) related to their stability. We start by making more precise the statements given
in the introduction regarding the scalar equation

µ∆ũ+ ũ(β − ũ) = 0 in Ω,
∂ũ

∂n
= 0 on ∂Ω.(2.1)

It is well known that for each β ∈ C(Ω) with ∫
Ω
β > 0, there exists a unique positive

solution ũ ∈ H2(Ω) of this problem; it is a classical solution if β is Hölder continuous.
It is further known (see, e.g., [He, sect. III.28]) that ũ is the global attractor for the
corresponding parabolic problem: the solution of (1.2) with any nonnegative nonzero
initial condition u0 ∈ C(Ω) converges as t→ ∞ to ũ. Also ũ is linearly stable, which is
to say that all eigenvalues of the linearized operator −∆− (β − 2ũ), under Neumann
boundary condition, are positive. In particular ũ is a nondegenerate equilibrium;
hence, by the implicit function theorem, it depends analytically (as a W 2,p(Ω)-valued
function for any p > 1) on µ ∈ (0,∞) and β ∈ C(Ω).

At several places below we shall use asymptotic behavior of the positive solution
ṽ = ṽ(·, µ) of (2.1) when µ → 0 or ∞. The following properties have been proved
in [HLMV]:

ṽ → β+ in L∞(Ω) as µ→ 0+,(2.2a)

ṽ → 1

|Ω|
∫

Ω

β in L∞(Ω) as µ→ ∞.(2.2b)

Let us now turn to the system (1.8). By standard theory (see, e.g., [L, H1]), it
defines a smooth dynamical system on

X := C(Ω)× C(Ω).
We understand the notions of stability and asymptotic stability of equilibria of (1.8)
with respect to the topology of X . We restrict our attention to physically relevant
solutions, that is, solutions with nonnegative initial conditions. They are positive
for all times by the maximum principle. We say an equilibrium (ue, ve) is the global
attractor if it is stable and for each nontrivial (u0, v0) ∈ X with u0 ≥ 0, v0 ≥ 0 one
has (u(·, t), v(·, t))→X (ue, ve) as t→ ∞, where (u(·, t), v(·, t)) is the solution of (1.8)
with the initial conditions

u(·, 0) = u0, v(·, 0) = v0.
An equilibrium (ue, ve) with both components positive is called a coexistence state
(or coexistence equilibrium); (ue, ve) is a semitrivial equilibrium if one component is
positive and the other one is zero.

Let us now assume hypothesis A1 to be satisfied. Then system (1.8) has two
semitrivial equilibria (ũ, 0) and (0, ṽ) for each µ > 0 and each τ sufficiently small (for
each τ > 0 if also A2 is satisfied). They are given by the unique solutions of the
corresponding scalar equations.

Due to the competitive Lotka–Volterra structure of the system, knowledge of
equilibria and their stability is in some cases sufficient for complete understanding of
the global dynamics of (1.8). We recall a few results to that effect (see [He, Chap. IV]):
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(a) If there is no coexistence state, then one of the semitrivial equilibria is un-
stable and the other one is the global attractor.

(b) If there is a unique coexistence state and it is stable, then it is the global
attractor (in particular, both semitrivial equilibria are unstable).

(c) If all coexistence states are asymptotically stable, then there is at most one
of them, so either (a) or (b) applies.

Let us now discuss in some detail the linearized stability of an equilibrium (u, v).
We thus consider the eigenvalue problem

µ∆ϕ+ (β + τg − 2u− v)ϕ+ (−u)ψ = −λϕ in Ω,(2.3a)

µ∆ψ + (−v)ϕ+ (β − u− 2v)ψ = −λψ in Ω,(2.3b)

∂ϕ

∂n
=
∂ψ

∂n
= 0 on ∂Ω.(2.3c)

It is well known (see, e.g., [He]) that if (u, v) is a coexistence state, one can put
this eigenvalue problem in the context of spectral theory of compact strongly positive
operators with respect to the order cone

C = {(φ, ψ) ∈ X : φ ≥ 0, ψ ≤ 0}.
In particular, using the Krein–Rutman theorem [De, He], one can show that (2.3)
has an eigenvalue λ (called the principal eigenvalue of (2.3)), which has the following
properties: it is real, algebraically simple, and all other eigenvalues have their real
part greater than λ. Moreover, λ corresponds to an eigenfunction in the interior of
C, and it is the only eigenvalue with an eigenfunction in C. The linearized stability
criterion for (u, v) can be expressed in terms of the principal eigenvalue: (u, v) is
asymptotically stable if λ > 0; it is unstable if λ < 0.

When (u, v) is a semitrivial equilibrium, for example, (u, v) = (u, 0), then (2.3)
simplifies to a triangular system

µ∆ϕ+ (β + τg − 2u)ϕ+ (−u)ψ = −λϕ in Ω,(2.4a)

µ∆ψ + (β − u)ψ = −λψ in Ω,(2.4b)

∂ϕ

∂n
= 0 on ∂Ω,(2.4c)

∂ψ

∂n
= 0 on ∂Ω.(2.4d)

Again one can examine the eigenvalues using a suitable positive operator (see [He]).
This time, however, such a positive operator is not strongly positive (the reason
is that the second equation decouples), and one gets weaker conclusions from the
general theory. Nonetheless, employing the triangular structure, one can still establish
the existence of a principal eigenvalue, that is, a simple real eigenvalue which is
smaller than the real part of any other eigenvalue. Specifically, the principal eigenvalue
coincides with the principal eigenvalue of the scalar eigenvalue problem (2.4b), (2.4d)
(see [HMP, Lem. 3.2] for the proof of this fact; the corresponding eigenfunction for the
system is (0,−ψ) ∈ C, where ψ > 0 is the principal eigenfunction of (2.4b), (2.4d)).

Similarly, if (u, v) = (0, v), then the principal eigenvalue of (2.3) coincides with
the principal eigenvalue of the scalar problem

µ∆ϕ+ (β + τg − v)ϕ = −λϕ in Ω,
∂ϕ

∂n
= 0 on ∂Ω.(2.5)
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We remark that since the principal eigenvalue is always simple, it inherits the
smoothness properties of the data in the problem. In particular, we consider below
the principal eigenvalue of (2.5), v = ṽ(·, µ) being the positive solution of (1.6).
As remarked above, v(·, µ) is analytic in µ as a W 2,p(Ω)-valued function (for any
p > 1). Therefore, by standard analytic perturbation theory (see [K1]), the principal
eigenvalue of (2.5) is an analytic function of τ > 0 and µ > 0.

3. Invasion of new species. As pointed out in the introduction, biologically it
is important to understand the invasion of new species with low density. Mathemat-
ically, the invasion of species is determined by the stability of (0, ṽ). This section is
devoted to the study of this, and in particular we are interested in discovering condi-
tions under which (0, ṽ) will change stability twice (or more) as µ varies from ∞ to
0. The principal aim is to prove Theorem 1.1.

Recall that ṽ = ṽ(·, µ) > 0 is the unique positive solution of (1.6). As mentioned
in section 2, for the stability of (0, ṽ), it suffices to determine the sign of the principal
eigenvalue, denoted by λ1 = λ1(µ, τ), of the linear eigenvalue problem

µ∆ϕ+ (β + τg − ṽ)ϕ = −λϕ in Ω,
∂ϕ

∂n

∣∣∣
∂Ω
= 0.(3.1)

For any µ > 0, set

C(µ) := inf{
φ∈H1(Ω):

∫
Ω
gṽ2φ2>0

}
∫
Ω
ṽ2|∇φ|2∫

Ω
gṽ2φ2

.(3.2)

Lemma 3.1. The following holds under the standing assumption τ > 0:

λ1 > 0⇔ τ < µC(µ);(3.3a)

λ1 = 0⇔ τ = µC(µ);(3.3b)

λ1 < 0⇔ τ > µC(µ).(3.3c)

Proof. Let ϕ1 > 0 be an eigenfunction corresponding to the principal eigenvalue
λ1 of (3.1). Set ψ = ϕ1/ṽ. It is straightforward to see that ψ > 0 satisfies

µ∇ · (ṽ2∇ψ) + τgṽ2ψ = −λ1ṽ
2ψ in Ω,(3.4a)

∂ψ

∂n

∣∣∣
∂Ω
= 0.(3.4b)

Suppose first that
∫
Ω
gṽ2 > 0. Dividing (3.4a) by ψ and integrating in Ω we have

λ1

∫
Ω

ṽ2 = −
[
µ

∫
Ω

ṽ2

ψ2
|∇ψ|2 + τ

∫
Ω

gṽ2
]
< 0,(3.5)

so that λ1 < 0. On the other hand, it is obvious (by taking φ = 1 in (3.2)) that
C(µ) = 0. This proves (3.3) when

∫
Ω
gṽ2 > 0. The case

∫
Ω
gṽ2 = 0 can be handled in

a similar way.
Next assume

∫
Ω
gṽ2 < 0. By the variational characterization (3.2) we know (see

[F]) that C(µ) > 0, and there exists ψ̃ > 0 such that ψ̃ satisfies

∇ · (ṽ2∇ψ̃) + C(µ)gṽ2ψ̃ = 0 in Ω,(3.6a)

∂ψ̃

∂n

∣∣∣
∂Ω
= 0.(3.6b)
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Notice that λ1 = λ1(µ, τ), as a function of τ , is concave [K1]. It is easy to see that
λ1(µ, 0) = 0 from (3.4) (with corresponding eigenfunction ψ = 1), and it follows
from (3.6) that λ1(µ, µC(µ)) = 0. Therefore λ1(µ, τ) > 0 for 0 < τ < µC(µ), and
λ1(µ, τ) < 0 for τ > µC(µ). This completes the proof of Lemma 3.1.

Proof of Theorem 1.1. The assumptions of the theorem and asymptotic properties
(2.2) yield

lim
µ→0+

G(µ) =

∫
Ω

gβ2
+ < 0,(3.7a)

lim
µ→+∞G(µ) =

(∫
Ω

g

)(∫
Ω

β/|Ω|
)2

> 0.(3.7b)

Hence G(µ) = 0 has at least one positive root. Let µ ≤ µ denote the smallest and
largest positive root of G, respectively. Recall that C(µ) > 0 if G(µ) < 0, and
C(µ) = 0 if G(µ) ≥ 0 (see the proof of Lemma 3.1). This ensures that C(µ) = 0 for
µ ≥ µ̄, and C(µ) > 0 for 0 < µ < µ.

Choose φ = 1/ṽ in (3.2): since
∫
Ω
g > 0 and ṽ → β+ uniformly as µ → 0, we

see that

0 ≤ µC(µ) ≤
−µ ∫

Ω
∇
(
1

ṽ

)
∇ṽ∫

Ω
g

=
µ
∫
Ω

1

ṽ
∆ṽ∫

Ω
g

=

∫
Ω
(ṽ − β)∫

Ω
g

→
∫
Ω
(β+ − β)∫

Ω
g

as µ→ 0. This ensures that µC(µ) is bounded. Moreover, if (1.10) is satisfied, then

µC(µ)→ 0 as µ→ 0 + .(3.8)

Indeed, choose a smooth nonzero function φ with compact support in Ω+. Then
for all small µ > 0, we have∫

Ω

gṽ2φ2 =

∫
Ω+

gṽ2φ2 ≈
∫

Ω+

gβ2φ2 > 0

(so that φ is an admissible test function in (3.2)) and

C(µ) ≤
∫
Ω+ ṽ

2|∇φ|2∫
Ω+ gṽ2φ2

→
∫
Ω+ β

2|∇φ|2∫
Ω+ gβ2φ2

;

hence µC(µ)→ 0.
We verify that

τ0 := sup
0<µ<∞

µC(µ)(3.9)

has the properties stated in the theorem. If τ > τ0, then τ > µC(µ) for any µ ∈ (0,∞).
By Lemma 3.1, this implies that (0, ṽ) is unstable for any µ. On the other hand, if
0 < τ < τ0, then τ − µC(µ) has at least one root and, by (3.8), it has at least two
roots if condition (1.10) is satisfied. We claim that µ �→ τ − µC(µ) actually changes
sign, and it does so at least twice if (1.10) is satisfied. By Lemma 3.1, this proves
that (0, ṽ) changes stability, and it does so at least twice if (1.10) holds.

To prove the claim, it suffices to exclude the possibility that µC(µ) ≡ τ in some
interval of µ, say [µ1, µ2]. We argue by the contradiction: if this is the case, by
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Lemma 3.1 we see that λ1(µ, τ) ≡ 0 for µ ∈ [µ1, µ2]. Since λ1 is an analytic function
of µ (see section 2), λ1 ≡ 0 for any µ > 0. However, (2.2b), (3.5), and A2+ imply
that λ1(µ, τ) < 0 for large values of µ—a contradiction.

The above proof shows that if µ > µ, then for τ > 0 we have τ > µC(µ), and
hence (0, ṽ) is unstable. For future reference we state this in a more precise form as
the following.

Corollary 3.2. Assume A1, A2+ are satisfied. Further assume that for some
µ > 0 one has G(µ) = 0 for µ > µ (hence G(µ) > 0 for µ > µ, by (3.7b)). Then for
any µ > µ and τ > 0 the semitrivial equilibrium (0, ṽ) is unstable.

4. Two similar competing species. In this section we consider the case τ
positive but small; i.e., the two competing species are very similar. In subsection 4.1
we shall discuss the coexistence states and the dynamics of (1.8) for τ � 1 and µ
bounded away from zero. Theorem 1.2 will be proved in this subsection. In subsec-
tion 4.2 we shall establish Theorem 1.4, which covers the remaining case τ � 1 and
µ� 1. Finally in subsection 4.3 we shall address some biological questions and prove
Theorem 1.5. As can be seen later, Theorem 1.5 is supplementary to the results of
subsection 4.1 as it gives more detailed information on the bifurcation diagram of
coexistence states of (1.8).

4.1. Dynamics of (1.8) for τ � 1 and µ bounded away from zero. The
main purpose of this subsection is to prove Theorem 1.2. As will become clear later,
Theorem 1.2 is a consequence of the following result.

Theorem 4.1. Assume A1. For any µ̃ > 0 the following statements hold true:
(i) If G(µ̃) = 0, then there exists ε > 0 such that for µ ∈ (µ̃ − ε, µ̃ + ε) and
τ ∈ (0, ε) problem (1.8) has no coexistence states.

(ii) If G(µ̃) = 0 and G′(µ̃) = 0, then for any sufficiently small ε > 0, there exists
τ̃ = τ̃(ε) > 0 with the following property. For every τ ∈ (0, τ̃), there exist
µ∗ < µ∗ with µ∗, µ∗ ∈ (µ̃− ε, µ̃+ ε) such that for µ ∈ [µ̃− ε, µ̃+ ε], (1.8) has a
coexistence state if and only if µ ∈ (µ∗, µ∗); moreover, any coexistence state,
if it exists, is the global attractor of (1.8).

A crucial step in the proof of the theorem is a local bifurcation analysis. For
τ ≈ 0, we look for triples (u, v, µ) that satisfy

µ∆u+ u(β(x) + τg(x)− u− v) = 0, x ∈ Ω,
µ∆v + v(β(x)− u− v) = 0, x ∈ Ω,
∂u

∂n
=
∂v

∂n
= 0 on ∂Ω

(4.1)

and that are close to the curve Υµ̃ × {µ̃}, where

Υµ := {(sṽ(·, µ), (1− s)ṽ(·, µ)) : s ∈ [0, 1]}.

Note that for any µ, Υµ ×{µ} is a curve of solutions of (4.1) for τ = 0. Also, for any
small τ , (4.1) has the semitrivial solutions

(0, ṽ(·, µ), µ) (independent of τ),

(ũ(·, µ, τ), 0, µ),(4.2)

where ũ(·, µ, τ) is the positive solution of (1.3) with α(x) := β(x) + τg(x).
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For the functional analytic framework of the local analysis we introduce the fol-
lowing spaces:

Y = Lp(Ω)× Lp(Ω),

X =

{
(y, z) ∈W 2,p(Ω)×W 2,p(Ω) :

∂y

∂n
=
∂z

∂n
= 0 on ∂Ω

}
,

X2 =

{
(y, z) ∈ X :

∫
Ω

(y(x)− z(x))ṽ(x, µ̃) dx = 0
}
,

where p > N/2 (so that W 2,p(Ω) ↪→ C(Ω)).
Proposition 4.2. Let the hypotheses of Theorem 4.1 be satisfied. Then there

exist a neighborhood U of the curve Υµ̃ × {µ̃} in X × (0,∞) and δ > 0 with the
following properties:

(i) If G(µ̃) = 0, then for τ ∈ (0, δ) there are no solutions of (4.1) in U other than
the semitrivial solutions (4.2).

(ii) If G(µ̃) = 0 and G′(µ̃) = 0, then for τ ∈ (0, δ) the set of solutions of (4.1)
in U consists of the semitrivial solutions and of the set Ξ ∩ U , where Ξ is a
smooth curve given by

Ξ = {(u(τ, s), v(τ, s), µ(τ, s)) : −δ ≤ s ≤ 1 + δ}.(4.3)

Here (τ, s) �→ (u(τ, s), v(τ, s)) ∈ X and (τ, s) �→ µ(τ, s) ∈ (0,∞) are smooth
functions on [0, δ)× (−δ, 1 + δ) satisfying the following relations:

(u(τ, 0), v(τ, 0)) = (0, ṽ(·, µ(τ, 0))),(4.4)

(u(τ, 1), v(τ, 1)) = (ũ(·, µ(τ, 1), τ), 0),(4.5)

(u(0, s), v(0, s), µ(0, s)) =(sṽ(·, µ̃), (1− s)ṽ(·, µ̃), µ̃).(4.6)

In other words, a branch of coexistence states bifurcates from the branch of
semitrivial equilibria (ũ, 0) at µ = µ(τ, 1) and meets the other branch of
semitrivial equilibria (0, ṽ) at µ = µ(τ, 0). For τ = 0 the branch coincides
with with Υµ̃.

Note that from (4.6) it follows that the functions u(τ, s), v(τ, s), µ(τ, s) have the
following expansions for −δ ≤ s ≤ 1 + δ and τ → 0:

u(τ, s) = sṽ(·, µ̃) + τu1(s) +O(τ2),
v(τ, s) = (1− s)ṽ(·, µ̃) + τv1(s) +O(τ2),
µ(τ, s) = µ̃+ τ µ̃1(s) +O(τ

2),

(4.7)

where (u1, v1) ∈ X and µ̃1 ∈ (0,∞) are smooth functions of s. We will use these
expansions below.

Proof of Proposition 4.2. For any triple (u, v, µ) near Υµ̃ × {µ̃}, (u, v) can be
written in a unique way as

(u, v) = (sṽ(·, µ), (1− s)ṽ(·, µ)) + (y, z),(4.8)

where s ∈ R and (y, z) ∈ X2, and they are in or near [0, 1] and {(0, 0)}, respectively.
We shall thus look for solutions of (4.1) in this form. For that, an explicit expression
of s and (y, z) in (4.8) will be useful. Writing (4.8) as

(u, v − ṽ(·, µ)) = s(ṽ(·, µ),−ṽ(·, µ)) + (y, z),
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we find s and (y, z) from

(y, z) = Q(µ)(u, v − ṽ(·, µ)),
s(ṽ(·, µ),−ṽ(·, µ)) = (I −Q(µ))(u, v − ṽ(·, µ)),

where I is the identity on X and Q(µ) is the projection of X onto X2 along the
subspace

X1(µ) := span{(ṽ(·, µ),−ṽ(·, µ))}.
(Note that X1(µ) is a complement of X2 in X for µ ≈ µ̃.) In particular, we find the
following values of s and (y, z) for semitrivial equilibria:

(0, ṽ(·, µ)) = (0, ṽ(·, µ)) + (0, 0) (i.e., s = 0, (y, z) = (0, 0)),(4.9a)

(ũ(·, µ, τ), 0) = (sṽ(·, µ), (1− s)ṽ(·, µ)) + (η(τ, µ), ζ(τ, µ)), with s = σ(τ, µ),(4.9b)

where (η, ζ) and σ are smooth functions of (τ, µ) taking values in X2 and R, respec-
tively. Clearly,

σ(0, µ) = 1, (η(0, µ), ζ(0, µ)) = (0, 0),(4.10)

as ũ(·, µ, 0) = v(·, µ).
For a small δ > 0 let H be the map on

X × (−δ, δ)× (−δ, 1 + δ)× (µ̃− δ, µ̃+ δ)
defined by

H(y, z, τ, s, µ) =

[
µ∆y − (y + z)sṽ(·, µ) + (β − ṽ(·, µ))y − (y + z)y + τgsṽ(·, µ) + τgy
µ∆z − (y + z)(1− s)ṽ(·, µ) + (β − ṽ(·, µ))z − (y + z)z

]
.

Note that, since X ↪→ C(Ω) × C(Ω) ↪→ Y , H is well defined and smooth (in fact
polynomial) as a Y -valued map. To find solutions of (4.1), we need to solve the
equation

H(y, z, τ, s, µ) = 0,(4.11)

with (y, z) ∈ X2. It will be useful, however, to examine properties of H(y, z, τ, s, µ)
for (y, z) ∈ X. From the form of the solutions of (4.1) mentioned above (see (4.2)
and the text preceding it) and by (4.9), we have

H(0, 0, 0, s, µ) ≡ 0 (s ∈ (−δ, 1 + δ), µ ∈ (µ̃− δ, µ̃+ δ)),(4.12a)

H(0, 0, τ, 0, µ) ≡ 0 (τ ∈ (−δ, δ), µ ∈ (µ̃− δ, µ̃+ δ)),(4.12b)

H(η(τ, µ), ζ(τ, µ), τ, σ(τ, µ), µ) ≡ 0 (τ ∈ (−δ, δ), µ ∈ (µ̃− δ, µ̃+ δ)).(4.12c)

Define

L(s, µ) := D(y,z)H(0, 0, 0, s, µ) ∈ L(X,Y ).
It is a standard consequence of the compactness of the embedding W 2,p(Ω) ↪→ Lp(Ω)
that L(s, µ) is a Fredholm operator of zero index. By the definition of H, the vector
(ṽ(·, µ),−ṽ(·, µ)) is in the kernel of L(s, µ). Put differently, (ṽ(·, µ),−ṽ(·, µ)) is an
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eigenfunction corresponding to the eigenvalue 0 of L(s, µ), when L(s, µ) is viewed as
an operator on Y with domain X. Since ṽ(·, µ) > 0, zero must be a simple eigenvalue
(cf. section 2) and we have

kerL(s, µ) = span{(ṽ(·, µ),−ṽ(·, µ))} = X1(µ).

Let P (s, µ) be the continuous linear projection of Y onto X1(µ) along the range of
L(s, µ) (the range R(L(s, µ)) is a closed subspace of Y of codimension one). We can
write P (s, µ) explicitly as follows:

P (s, µ)(y, z) =
(1− s) ∫

Ω
ṽ(·, µ)y − s ∫

Ω
ṽ(·, µ)z∫

Ω
ṽ2(·, µ)

(
ṽ(·, µ),−ṽ(·, µ)).(4.13)

To verify this formula, one needs to show that

R(P (s, µ)) = X1(µ), (P (s, µ))2 = P (s, µ), and P (s, µ)L(s, µ) = 0.

The first property is obvious; the other two follow from a straightforward computation,
which is left to the reader. Formula (4.13) in particular implies

Y2(s, µ) := R(L(s, µ)) =

{
(y, z) ∈ Y : (1− s)

∫
Ω

ṽ(·, µ)y − s
∫

Ω

ṽ(·, µ)z = 0
}
.

Also note that (s, µ) �→ P (s, µ) is smooth (in the operator norm). Following the
Lyapunov–Schmidt scenario, we now consider the system

P (s, µ)H(y, z, τ, s, µ) = 0,(4.14a)

(I − P (s, µ))H(y, z, τ, s, µ) = 0,(4.14b)

where (y, z) ∈ X2 and I is the identity on Y . If µ is sufficiently close to µ̃ (and we
make δ small enough for that to hold for all µ ∈ (µ̃− δ, µ̃+ δ)), then

ker(L(s, µ)) ∩X2 = {0}.
It follows that L(s, µ) is an isomorphism of X2 onto Y2(s, µ). By the implicit function
theorem, we can thus solve (4.14b) for (y, z), which leads to the following conclusion.
There exist δ1 > 0, a neighborhood V of (0, 0) ∈ X2, and a smooth function

(τ, s, µ) �→ (y(τ, s, µ), z(τ, s, µ)) : (−δ1, δ1)× (−δ1, 1 + δ1)× (µ̃− δ1, µ̃+ δ1)→ X2

such that (y(0, s, µ), z(0, s, µ)) = (0, 0) and (y, z, τ, s, µ) ∈ V × (−δ1, δ1) × (−δ1, 1 +
δ1) × (µ̃ − δ1, µ̃ + δ1) satisfies (4.11) if and only if (y, z) = (y(τ, s, µ), z(τ, s, µ)) and
(τ, s, µ) solves the bifurcation equation

P (s, µ)H(y(τ, s, µ), z(τ, s, µ), τ, s, µ) = 0.

By (4.12b), (4.12c), y and z necessarily satisfy

(y(τ, 0, µ), z(τ, 0, µ)) = (0, 0),

(y(τ, σ(τ, µ), µ), z(τ, σ(τ, µ), µ)) = (η(τ, µ), ζ(τ, µ)).
(4.15)

Now, defining ξ(τ, s, µ) by

ξ(τ, s, µ)
(
ṽ(·, µ),−ṽ(·, µ)) = P (s, µ)H(y(τ, s, µ), z(τ, s, µ), τ, s, µ),
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the bifurcation equation is equivalent to

ξ(τ, s, µ) = 0.(4.16)

We immediately have the following solutions of (4.16):

ξ(0, s, µ) ≡ ξ(τ, 0, µ) ≡ ξ(τ, σ(τ, µ), µ) ≡ 0.(4.17)

These identities hold because for each of the indicated values of (τ, s, µ) ∈ (−δ1, δ1)×
(−δ1, 1 + δ1)× (µ̃− δ1, µ̃+ δ1), there is a solution (y, z) ∈ V of (4.11); see (4.12) (we
make δ1 smaller, if necessary, so that the solutions are indeed contained in V ). Recall
in passing that, from these solutions, the triples (τ, 0, µ) and (τ, σ(τ, µ), µ) correspond
to semitrivial equilibria of (4.1); see (4.9), (4.15).

It follows from (4.17) that

ξ(τ, s, µ) ≡ s(σ(τ, µ)− s)τξ1(τ, s, µ)
for some smooth function ξ1(τ, s, µ). Solutions of (4.16) different from (4.17) are
found by solving

ξ1(τ, s, µ) = 0.(4.18)

Observe that

∂τξ(0, s, µ) ≡ s(1− s)ξ1(0, s, µ),
as σ(0, µ) ≡ 1. The derivative on the left-hand side is computed from(

ṽ(·, µ),−ṽ(·, µ))∂τξ(0, s, µ) = ∂τ (P (s, µ)H(y(τ, s, µ), z(τ, s, µ), τ, s, µ))τ=0

= P (s, µ)Hτ (0, 0, 0, s, µ) + P (s, µ)L(s, µ)(yτ , zτ )

= P (s, µ)Hτ (0, 0, 0, s, µ)

(recall that R(L(s, µ)) = kerP (s, µ)). Using (4.13), we find

P (s, µ)Hτ (0, 0, 0, s, µ) = P (s, µ)
(
sgṽ(·, µ), 0) = s(1− s)

∫
Ω
gṽ2∫

Ω
ṽ2

(
ṽ(·, µ),−ṽ(·, µ)).

Thus

∂τξ(0, s, µ) =
s(1− s)G(µ)∫

Ω
ṽ2

,

i.e.,

ξ1(0, s, µ) =
G(µ)∫
Ω
ṽ2
.(4.19)

To complete the proof, consider first the case G(µ̃) = 0. Making δ1 yet smaller,
if necessary, we infer from (4.19) that (4.18) has no solution in (−δ1, δ1) × (−δ1, 1 +
δ1)× (µ̃− δ1, µ̃+ δ1). This implies statement (i) of Proposition 4.2.

Now assume G(µ̃) = 0. Then

∂µξ1(0, s, µ)

µ=µ̃

=
G′(µ̃)∫

Ω
ṽ2(x, µ̃)

.
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If G′(µ̃) = 0, the implicit function theorem implies that for some δ2 > 0, all solutions
of (4.18) in (−δ2, δ2)× (−δ2, 1 + δ2)× (µ̃− δ2, µ̃+ δ2) are given by

µ = m(τ, s), τ ∈ (−δ2, δ2), s ∈ (−δ2, 1 + δ2),

where m(τ, s) is a smooth function satisfying m(0, s) ≡ µ̃. Thus, in addition to the
immediate solutions (4.17), the bifurcation equation (4.16) has the family of solutions

{(τ, s,m(τ, s)) : τ ∈ (−δ2, δ2), s ∈ (−δ2, 1 + δ2)}.(4.20)

In this family, the point (τ, 0,m(τ, 0)) is also contained in the set of solutions found
in (4.17), and it corresponds to the semitrivial solution (0, ṽ(·, µ)) of (4.1) with µ =
m(τ, 0) (see the remarks following (4.17)). Next we look for points (τ, s,m(τ, s)) in
the family corresponding to the semitrivial equilibria (ũ(·, µ, τ), 0). Referring to the
remarks following (4.17) again, we see that s and τ are found from the equation

s = σ(τ,m(τ, s)).(4.21)

Since σ(0, µ) ≡ 1, for τ ≈ 0 there is a unique solution s = s̄(τ) of (4.21), and it depends
smoothly on τ . Hence for each fixed τ ≈ 0, (τ, s̄(τ),m(τ, s̄(τ))) is a point contained in
the family (4.20) which corresponds to the semitrivial solution (ũ(·, µ, τ), 0) of (4.1)
with µ = m(τ, s̄(τ)).

Using the scaled variable s̃ = ss̄(τ), we now define

u(τ, s) = s̃ṽ(·,m(τ, s̃)) + y(τ, s̃,m(τ, s̃)),
v(τ, s) = (1− s̃)ṽ(·,m(τ, s̃)) + z(τ, s̃,m(τ, s̃)),
µ(τ, s) = m(τ, s̃) (s̃ = ss̄(τ)).

Clearly, these are smooth functions of (τ, s) ∈ (−δ, δ)× (−δ, 1 + δ) if δ is sufficiently
small, and (u(τ, s), v(τ, s)) is a solution of (4.1) for µ = m(τ, s). By construction, these
solutions, together with the semitrivial equilibria, contain all solutions of (4.1) in a
small neighborhood of Υµ̃ ×{µ̃} for τ ∈ (−δ, δ). The relations (y(0, s, µ), z(0, s, µ)) =
(0, 0), m(0, s) = µ̃, and s̄(0) = 1 imply (4.6). The correspondences between the
solutions (τ, s̄(τ),m(τ, s̄(τ))), (τ, 0, µ(0, τ)) of (4.16) and the semitrivial equilibria, as
discussed above, imply (4.4), (4.5). This completes the proof.

The next lemma shows that by the local analysis we have found all coexistence
states.

Lemma 4.3. Let the hypotheses of Theorem 4.1 be satisfied. Then given any
neighborhood U of the curve Υµ̃ × {µ̃} in X × (0,∞) there exists δ > 0 such that
for τ ∈ (−δ, δ) all solutions (u, v, µ) of (4.1) with u, v ≥ 0 and |µ − µ̃| ≤ δ are
contained in U .

Proof. The conclusion follows once we prove the following claim. If τj → 0+,
µj → µ̃, and (uj , vj , µj) is a sequence of solutions of (4.1) with τ = τj , µ = µj such
that uj , vj ≥ 0, then (uj , vj) approaches the curve Υµ̃.

By the maximum principle, we have the following a priori bound on the nonneg-
ative solutions:

uj ≤ sup(β(x) + τg(x)), vj ≤ supβ(x).

Since τj → 0+, µj → µ̃, by standard elliptic estimates (see [GT]), passing to a
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subsequence we may assume that (uj , vj)→ (û, v̂) in X, where û, v̂ ≥ 0 in Ω̄, and

µ̃∆û+ û(β − û− v̂) = 0 in Ω,(4.22a)

µ̃∆v̂ + v̂(β − û− v̂) = 0 in Ω,(4.22b)

∂û

∂n
=
∂v̂

∂n
= 0 on ∂Ω.(4.22c)

Since any solution (û, v̂) of (4.22) with û, v̂ ≥ 0 is contained on the curve Υµ̃, the
claim follows.

In the remainder of the subsection, we simplify the notation by writing

ṽ = ṽ(x, µ̃).

For other values of µ we keep the notation ṽ(x, µ).
The next crucial step is the stability of coexistence states on the curve Ξ: Let

(u, v, µ) = (u(τ, s), v(τ, s), µ(τ, s)) ∈ Ξ,

and consider the corresponding linear eigenvalue problem (2.3). When τ = 0, we have
(u, v) = (sṽ, (1 − s)ṽ) and (2.3) has an eigenvalue λ = 0, the corresponding eigen-
function being (ṽ,−ṽ). Since ṽ > 0, λ = 0 is the principal eigenvalue (see section 2);
in particular, it is (algebraically) simple and all other eigenvalues are positive. By
standard spectral perturbation theory [K2], for |τ | � 1, (2.3) has a unique eigenvalue,
denoted by λ(τ, s) such that limτ→0 λ(τ, s) = 0, and all the other eigenvalues of (2.3)
are positive and uniformly bounded away from zero for any s ∈ [0, 1] and small pos-
itive τ . Hence the sign of λ(τ, s) determines the stability of coexistence states on Ξ.
Note that

λ(τ, 0) = λ(τ, 1) = 0(4.23)

for µ(τ, 0) and µ(τ, 1) are bifurcation points (points of intersections of Ξ with the
branches of semitrivial solutions). It is not hard to check that λτ (0, s) = 0 (see
Appendix A) and Proposition 4.4 below gives a formula for λττ (0, s); the proof is a
straightforward but tedious computational exercise and is given in Appendix A. For
the formulation we introduce some notation. Let H = L2(Ω) be the usual Hilbert
space with norm ‖ · ‖ and inner product (·, ·). Take the linear subspace spanned by ṽ
to be Θ and let Θ⊥ be its orthogonal complement. Denote the domain and kernel of a
linear operator L by dom(L) and ker(L), respectively, so L : dom(L)→ H. Consider
the formally self-adjoint operator µ̃∆+ β − ṽ and define in the standard manner the
self-adjoint operator on H corresponding to zero Neumann boundary conditions. We
thus have the self-adjoint operators

L = µ̃∆+ β − ṽ,
L − ṽ = µ̃∆+ β − 2ṽ.

Since the principal eigenvalue of L is 0 (the eigenfunction is ṽ), it is straightforward
to show that L − ṽ has the bounded inverse (L − ṽ)−1 on H, and we define L−1 on
Θ⊥ by setting L−1φ = ψ if and only if Lψ = φ and φ, ψ ∈ Θ⊥.
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Proposition 4.4. For 0 ≤ s ≤ 1 and 0 < τ � 1, the following statements hold:
(i)

λ(τ, s) = s(1− s)τ2
{

2∫
Ω
ṽ2

∫
Ω

gṽ
[
(L − ṽ)−1 − L−1

]
gṽ + C1(τ, s)τ

}
,

where C1(τ, s) is some constant uniformly bounded for s ∈ [0, 1] and τ � 1.
(ii) With µ̃1 as in (4.7), one has

µ̃1(s) =
1

G′(µ̃)

∫
Ω

gṽ
[
2s(L − ṽ)−1(gṽ) + (1− 2s)L−1(gṽ)

]
.

Note that, by our assumption, G(µ̃) =
∫
gṽ2 = 0, so that L−1(gṽ) is well defined.

Lemma 4.5. The following holds for any nontrivial ϕ ∈ Θ⊥:∫
Ω

ϕ
[
(L − ṽ)−1 − L−1

]
ϕ > 0.(4.24)

Proof. For τ > 0 let

h(τ) =

∫
Ω

ϕ(L − τ ṽ)−1ϕ.(4.25)

Since L − τ ṽ is invertible for τ > 0, h is well defined. We claim that h is strictly
increasing. To prove this set Φ = (L − τ ṽ)−1ϕ. It is easy to check that

∂Φ

∂τ
= (L − τ ṽ)−1(ṽΦ).(4.26)

Then

dh

dτ
=

∫
Ω

ϕ
∂Φ

∂τ
=

∫
Ω

ϕ(L − τ ṽ)−1(ṽΦ)

=

∫
Ω

(L − τ ṽ)−1ϕ · ṽΦ (self-adjointness of (L − τ ṽ)−1)(4.27)

=

∫
Ω

ṽΦ2 > 0.

The last inequality in (4.27) is strict since Φ ≡ 0. In particular, we have h(1) >
limτ→0+ h(τ). In the following we show that

lim
τ→0+

h(τ) =

∫
Ω

ϕL−1ϕ(4.28)

for every ϕ ∈ Θ⊥, from which (4.24) follows.
To prove (4.28), let Mu := ṽu for u ∈ H. We always assume that τ > 0

is small and that Ci are strictly positive constants independent of τ . Note that
Ldom(L) = Θ⊥, L−1Θ⊥ � Θ⊥, and

‖L−1‖ ≤ C1,(4.29a)

(−Lφ, φ) ≥ C2‖φ‖2, φ ∈ Θ⊥ ∩ dom(L),(4.29b)

‖M‖ ≤ C3,(4.29c)

(Mu, u) ≥ C4‖u‖2, u ∈ H.(4.29d)
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Consider the equation

(L − τM)u = ϕ, ϕ ∈ Θ⊥.(4.30)

We claim that for the solution u of (4.30) (that is, u = (L − τM)−1ϕ) we have

‖u‖ ≤ C5‖ϕ‖.(4.31)

To prove this assertion, put u = aṽ + φ, where a ∈ R, φ ∈ Θ⊥. Substituting in
(4.30), we have

Lφ− τaMṽ − τMφ = ϕ.(4.32)

Take the inner product with ṽ and use (4.29c) and (4.29d):

|a| = |(Mφ, ṽ)/(Mṽ, ṽ)| ≤ C6‖φ‖.(4.33)

Take the inner product of (4.32) with −φ and use (4.29b), (4.29c), and (4.33), ob-
taining

C2‖φ‖2 ≤ (−Lφ, φ) = −(ϕ, φ)− τa(Mṽ, φ)− τ(Mφ,φ)
≤ ‖ϕ‖‖φ‖+ τ(C6 + 1)C3‖φ‖2,(4.34)

which implies that

‖φ‖ ≤ C7‖ϕ‖(4.35)

if τ is small enough. Estimates (4.33) and (4.35) prove claim (4.31).
For u given by (4.30) set

w =
1

τ

(
u− L−1ϕ+

(ML−1ϕ, ṽ)

(Mṽ, ṽ)
ṽ

)
.(4.36)

It is easy to check that

(L − τM)w = ϕ1,(4.37)

where

ϕ1 =ML−1ϕ− (ML−1ϕ, ṽ)

(Mṽ, ṽ)
Mṽ ∈ Θ⊥.(4.38)

Obviously ‖ϕ1‖ ≤ C8‖ϕ‖, so using (4.31) on (4.37) with ϕ1, w replacing ϕ, u, respec-
tively, we find that ‖w‖ ≤ C5‖ϕ1‖ ≤ C9‖ϕ‖.

Finally, for any ϕ ∈ Θ⊥, from (4.36)

h(τ) = (ϕ, u) = (ϕ,L−1ϕ) + τ(ϕ,w).(4.39)

Since ‖w‖ is uniformly bounded, we deduce that, as required, limτ→0+ h(τ) = (ϕ,L−1ϕ).
This proves Lemma 4.5.

Proof of Theorem 4.1. By Proposition 4.2 and Lemma 4.3, for µ ≈ µ̃ and τ ≈ 0,
all coexistence states lie on the branch Ξ. On the branch we have

µ(τ, s) = µ̃+ τ µ̃1(s) + τ
2H(τ, s)
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for some smooth function H. By Proposition 4.4 and Lemma 4.5, µ̃1 is a nonconstant
affine function, and thus for small τ , µ(τ, ·) is strictly monotone. It follows that the
first statement of the theorem holds with

µ∗ = min
s∈[0,1]

µ(τ, s), µ∗ = max
s∈[0,1]

µ(τ, s)

and that the coexistence state is unique for each fixed µ ∈ (µ∗, µ∗). By Proposition 4.4
and Lemma 4.5, we also have λ(τ, s) > 0 for small τ , and thus the coexistence state
is stable. As noted in section 2, the uniqueness and stability of the coexistence state
implies that it is the global attractor. The theorem is proved.

We end this subsection by applying Theorem 4.1 to the proof of Theorem 1.2.
Proof of Theorem 1.2. In view of Theorem 4.1 and Lemma 4.3, by the standard

compactness argument, the dynamics and the structures of the coexistence state are
clear for values of µ in any compact subset of (0,∞). To complete the proof of
Theorem 1.2, it suffices to show that under the stronger assumption A2+, (ũ, 0) is the
global attractor of (1.8) for µ > µ∗k(τ). By Corollary 3.2 and Theorem 4.1, we see that
(0, ṽ) is unstable for µ > µk,∗(τ). Therefore in view of property (a) of system (1.8)
(see section 2), it suffices to show that (1.8) has no coexistence state for µ ≥ µ∗k(τ).
By Lemma 4.3 and Theorem 4.1, it suffices to prove this for sufficiently large µ and
positive bounded τ . To this end, we argue by contradiction. Suppose that there exist
sequences τj uniformly bounded and µj → ∞ such that (1.8) has coexistence states
{(uj , vj)}∞j=1 with (τ, µ) = (τj , µj). Set ûj = uj/‖uj‖∞, v̂j = vj/‖vj‖∞. It is easy to
check that ûj , v̂j satisfy

µj∆ûj + ûj(β + τjg − uj − vj) = 0 in Ω,(4.40a)

µj∆v̂j + v̂j(β − uj − vj) = 0 in Ω,(4.40b)

∂ûj
∂n

=
∂v̂j
∂n

= 0 on ∂Ω.(4.40c)

Since τj is uniformly bounded, by standard elliptic estimates (see [GT]) and
passing to a subsequence we may assume that (ûj , v̂j) → (û, v̂) in C2(Ω). Since
µj → ∞ and ‖ûj‖∞ = ‖v̂j‖∞ = 1, it is easy to see that û ≡ 1 and v̂ ≡ 1. That is,
(ûj , v̂j)→ (1, 1) uniformly. By Lemma A.1,

∫
Ω
gujvj = 0 for all j, i.e.,

∫
Ω
gûj v̂j = 0.

Passing to the limit we get
∫
Ω
g = 0, which contradicts our assumption

∫
Ω
g > 0. This

completes the proof of Theorem 1.2.

4.2. Dynamics of (1.8) for τ � 1 and µ < µ1,∗. The goal of this subsection
is to establish Theorem 1.4. We shall consider the case

∫
Ω
gβ2 < 0 only since the case∫

Ω
gβ2 > 0 is very similar. In this subsection ṽ stands for ṽ(·, µ), and ṽµ stands for

∂ṽ
∂µ (·, µ).

Proof of Theorem 1.4. We first consider the stability of (0, ṽ). Recall that C(µ)
is defined as in (3.2), C(µ) > 0 if G(µ) < 0, and C(µ) = 0 if G(µ) ≥ 0. Since C(µ)
is the principal eigenvalue, it is a smooth function of µ. By Lemma 3.1, it suffices to
solve the equation τ = µC(µ) for τ, µ small.

We claim that the following hold:

lim
µ→0+

C(µ) = C∗ := inf{
ψ∈H1:

∫
Ω
gβ2ψ2>0

}
∫
Ω
β2|∇ψ|2∫

Ω
gβ2ψ2

,(4.41a)

lim
µ→0+

µC ′(µ) = 0.(4.41b)
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Note that C∗ > 0 because
∫
Ω
gβ2 < 0. Assuming (4.41), we prove (i) of The-

orem 1.4 (the proof of (ii) is quite analogous). Set F (τ, µ) = τ − µC(µ). Since
∂F
∂µ → −C∗ as µ → 0+, by the implicit function theorem we see that there exists

η1, η2 > 0 such that for every 0 < τ < η1, there exists a unique µ0 = µ0(τ) ∈ (0, η2)
such that τ > µC(µ) when 0 < µ < µ0, τ = µ0C(µ0), and τ < µC(µ) when
µ0 < µ ≤ η2. By Lemma 3.1, this proves that (0, ṽ) is unstable for µ < µ0 and
stable for µ0 < µ ≤ η2. Choose η = η2 in Theorem 1.2. From the proof of The-
orem 1.2 we see that (0, ṽ) does not changes its stability for η2 ≤ µ < µ1,∗ and
τ < τ0(η2). Hence for τ < min{η1, τ0(η2)}, (0, ṽ) is unstable for µ < µ0 and stable for
µ0 < µ < µ1,∗.

To prove (1.12), observe that as limτ→0+ µ0(τ) = 0, we have by (4.41a)

τ

µ0(τ)
= C(µ0(τ))→ C∗.(4.42)

It remains to prove the instability of (ũ, 0) for suitable µ when
∫
Ω
gβ2 < 0. It

suffices to show that the principal eigenvalue, denoted by λ1, of the problem

µ∆ϕ+ (β − ũ)ϕ = −λϕ in Ω,
∂ϕ

∂n

∣∣∣
∂Ω
= 0(4.43)

is negative. Observe that ϕ/ũ satisfies

∇ ·
(
ũ2∇ ϕ

ũ

)
− τ
µ
gũ2
ϕ

ũ
= −λ

µ
ũ2
ϕ

ũ
in Ω,

∂

∂n

(ϕ
ũ

) ∣∣∣
∂Ω
= 0.(4.44)

Hence λ1 can be characterized as

λ1 = inf{
ψ∈H1:ψ 
=0

} µ
∫
Ω
ũ2|∇ψ|2 + τ ∫

Ω
gũ2ψ2∫

Ω
ũ2ψ2

.(4.45)

By letting ψ ≡ 1 in (4.45), we have λ1 ≤ τ
∫
Ω
gũ2/

∫
Ω
ũ2. Note that

∫
Ω
gũ2 →∫

Ω
g(β+ τg)2+ as limµ→0+ ũ = (β+ τg)+. For sufficiently small τ , (β+ τg)+ = β+ τg

since β > 0, and
∫
Ω
g(β + τg)2+ < 0 since

∫
Ω
gβ2 < 0. Therefore there exist η3, η4 > 0

such that λ1 < 0 for 0 < µ ≤ η3 and τ ≤ η4. This proves the instability of (ũ, 0) for
µ ≤ η3; for µ ≥ η3, choose η = η3 in Theorem 1.2. From the proof of Theorem 1.2 we
see that (ũ, 0) does not change its stability for µ ∈ [η3, µ∗1) if τ < τ0(η3). This shows
that (ũ, 0) is unstable for µ ∈ (µ0, µ

∗
1) provided that τ < min{η4, τ0(η3)}. Thus, the

theorem follows from (4.41).
Hence it suffices to establish (4.41). Since β > 0 in Ω̄, ṽ → β uniformly when

µ→ 0+ (cf. (2.2a)), and thus (4.41a) follows by a standard argument.
For (4.41b), by the definition of C(µ), there exists Φ > 0 such that∫

Ω

ṽ2∇Φ · ∇Ψ = C(µ)
∫

Ω

gṽ2ΦΨ(4.46)

for every Ψ ∈ H1(Ω). We can normalize Φ so that ‖Φ‖L2(Ω) = 1. Differentiate (4.46)
with respect to µ, obtaining

2

∫
Ω

ṽṽµ∇Φ · ∇Ψ+
∫

Ω

ṽ2∇Φµ∇Ψ = C ′
∫

Ω

gṽ2ΦΨ+ 2C

∫
Ω

gṽṽµΦΨ+ C

∫
Ω

gṽ2ΦµΨ

(4.47)
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for every Ψ ∈ H1(Ω), where C ′ = dC/dµ. Letting Ψ = Φ in (4.47), we have

C ′
∫

Ω

gṽ2Φ2 = 2

∫
Ω

ṽṽµ|∇Φ|2 − 2C
∫

Ω

gṽṽµΦ
2,(4.48)

where (4.46) has been used again.
We first observe that ‖Φ‖H1 is uniformly bounded for small µ: to see this, set

Ψ = Φ in (4.46). As ṽ → β > 0 uniformly and ‖Φ‖L2 = 1, we get ‖∇Φ‖L2 ≤ K1,
where K1 is independent of µ when µ � 1. This proves that ‖Φ‖H1 is uniformly
bounded.

Next we show that
∫
Ω
gṽ2Φ2 ≥ K2 > 0 for some K2 independent of µ. We argue

by contradiction: if not, suppose that
∫
Ω
gṽ2Φ2 → 0 as µ → 0. By the Sobolev

embedding theorem (see [A]), we may assume, passing to a sequence if necessary,
that Φ → Φ0 weakly in H

1 and strongly in L2. This implies that Φ0 ≥ 0 a.e. in Ω,
‖Φ0‖L2(Ω) = 1, and by (4.46)

∫
Ω
β2∇Φ0 · ∇Ψ = 0 for every Ψ ∈ H1. Therefore the

only possibility is Φ0 ≡ 1. However, this is impossible since
∫
Ω
gṽ2Φ2 → ∫

Ω
gβ2 < 0,

which contradicts
∫
Ω
gṽ2Φ2 → 0 as µ→ 0. Therefore

‖Φ‖H1 ≤ K3,

∫
Ω

gṽ2Φ2 ≥ K2 > 0,(4.49)

provided that µ� 1.
By (4.48) and (4.49), to prove (4.41b) we need to show only that µṽµ → 0

uniformly as µ→ 0+. To this end, differentiating (1.3) with respect to µ we have

µ∆ṽµ + (β − 2ṽ)ṽµ +∆ṽ = 0 in Ω,
∂ṽµ
∂n

= 0 on ∂Ω.(4.50)

Choose xµ ∈ Ω such that ṽµ(xµ) = maxΩ ṽµ. We have

(β − 2ṽ)ṽµ +∆ṽ = −µ∆ṽµ ≥ 0
at x = xµ. This is obvious if xµ ∈ Ω; for xµ ∈ ∂Ω it follows from the boundary
condition (cf. Proposition 2.2 of [LN]).

Note that β − 2ṽ → −β < 0 uniformly as µ → 0. Therefore for 0 < µ � 1, we
have ṽµ(xµ) ≤ K4‖∆ṽ‖∞ for some positive constant K4 which is independent of µ.
That is, maxΩ ṽµ ≤ K4‖∆ṽ‖∞. Similarly we can show that minΩ ṽµ ≥ −K5‖∆ṽ‖∞.
Hence we have ‖ṽµ‖L∞ ≤ K6‖∆ṽ‖L∞ . Therefore

µ‖ṽµ‖L∞ ≤ K6µ‖∆ṽ‖L∞ = K6‖ṽ(β − ṽ)‖L∞ ≤ K7‖β − ṽ‖L∞ → 0(4.51)

as µ→ 0+. This implies that (4.41b) holds.
Remark 4.6. We conjecture that for τ small, if there is a coexistence state of

(1.8), it is always unique and is the global attractor of (1.8). The following weaker
uniqueness result may be proved, but we omit the proof here: suppose that the
assumptions in Theorems 1.2 and 1.4 hold. Then for any η > 0, there exists τ̂(η) > 0
such that if 0 < τ ≤ τ̂ and µ ≥ ητ , (1.8) has at most one coexistence state; moreover,
if a coexistence state exists, it must be the global attractor of (1.8).

4.3. Coexistence or fixation?. We now turn to the question raised in the in-
troduction as to whether there are mutants (which mathematically are represented by
functions g) which invade but always (that is, for all small τ > 0) yield coexistence.
Recall from the remarks in the introduction that necessarily G(µ) =

∫
Ω
g(x)ṽ2(x, µ) =
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0, so the question is to discover whether there are functions g satisfying this require-
ment which lead to coexistence for all small τ .

To answer this question, first recall that near any µ with G(µ) = 0 and G′(µ) = 0,
we have shown that there is a branch of positive coexistence states which connects
both branches of semitrivial coexistence states (ũ, 0) and (0, ṽ). Moreover, for each
µ, there exists at most one coexistence state; if it exists, it is stable and the global
attractor of (1.8). Therefore the question is basically about the location of the two
ends of this bifurcation branch. From Proposition 4.2, we know that this branch of
coexistence states can be represented by a smooth curve as

(u, v, µ) =
(
sṽ + τu1(·, s) +O(τ2), (1− s)ṽ + τv1(·, s) +O(τ2), µ+ τ µ̃1(s) +O(τ

2)
)
,

(4.52)

where s ∈ (0, 1). By Proposition 4.4(ii), µ̃1(s) is given as

µ̃1(s) =
1

G′(µ)

∫
Ω

gṽ
[
2s(L − ṽ)−1(gṽ) + (1− 2s)L−1(gṽ)

]
.(4.53)

It is now clear that the answer to the above question depends on whether µ̃1(0) and
µ̃1(1) have opposite signs under the assumption

∫
Ω
gṽ2 = 0. It is easy to see that

sign(µ̃1(0)) = sign(−G′(µ)) since by (4.53),

µ̃1(0)G
′(µ) =

∫
Ω

gṽL−1(gṽ) ≤ 0.(4.54)

The inequality in (4.54) is in fact strict since gṽ ∈ Θ⊥ and the self-adjoint operator
L−1 from Θ⊥ to Θ⊥ is negative.

Therefore it remains to find the sign of µ̃1(1), i.e., the sign of

I(µ, g) :=

∫
Ω

gṽ
[
2(L − ṽ)−1 − L−1

]
(gṽ).(4.55)

Note that I(µ,−g) = I(µ, g), thus the sign of ∫ g is irrelevant in our computations.
It is easy to see that Theorem 1.5 follows from the next result.

Theorem 4.7. There exists a (unique) µ∗ > 0, depending only on β and Ω, with
the following properties:

(i) If µ > µ∗, then I(µ, g) < 0 for any g satisfying
∫
Ω
gṽ2(·, µ) = 0.

(ii) If µ < µ∗, then there exists a nonempty open subset U of{
g ∈ C1(Ω) :

∫
Ω

gṽ2(·, µ) = 0
}

such that I(µ, g) > 0 for any g ∈ U .
Proof. Consider the following linear eigenvalue problem with weight function ṽ:

−µ∆ϕ− βϕ = λṽϕ in Ω,
∂ϕ

∂n

∣∣∣
∂Ω
= 0.(4.56)

Denote the eigenvalues of (4.56) by λ1 < λ2 ≤ λ3 · · · and the corresponding eigenfunc-
tions by ϕ1, ϕ2, . . . ; from the definition of ṽ we see that λ1 ≡ −1 for any µ, and ϕ1 is
a scalar multiple of ṽ. The eigenfunctions can be chosen such that the following hold:

(a)
∫
Ω
ṽϕ2

i = 1, i ≥ 1.
(b)

∫
Ω
ṽϕiϕj = 0, i = j, i, j ≥ 1. In particular,

∫
Ω
ṽ2ϕi = 0 for any i ≥ 2.
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(c) {ϕi}∞i=1 is a basis for the Hilbert space L
2(Ω, ṽ) := {ψ : ∫

Ω
ṽψ2 < ∞}, with

the inner product

〈φ, ψ〉 =
∫

Ω

ṽφψ.(4.57)

Now for any function ϕ satisfying
∫
Ω
ϕṽ = 0 (and in particular for ϕ = gṽ) ϕ/ṽ

is orthogonal to ṽ in L2(Ω, ṽ). Therefore

ϕ

ṽ
=

∞∑
i=2

aiϕi,(4.58)

where the convergence of (4.58) is in the L2(Ω, ṽ) norm, which is equivalent to con-
vergence in the L2 norm. It is easy to check that the following hold:

(µ∆+ β − ṽ)−1(ṽϕi) =
ϕi

−λi − 1 + ciṽ, i ≥ 2,

2(µ∆+ β − 2ṽ)−1(ṽϕi) =
2ϕi

−λi − 2 , i ≥ 2,(4.59)

where ci is some constant. Notice that λi + 1 > 0 for any i ≥ 2 since λ1 = −1. It
follows from (4.59) that

(2(L − ṽ)−1 − L−1)(ṽϕi) =
−λiϕi

(λi + 2)(λi + 1)
− ciṽ, i ≥ 2.(4.60)

Therefore from (4.58) and (4.60),

∫
Ω

ϕ(2(L − ṽ)−1 − L−1)ϕ = −
∞∑
i=2

a2iλi
(λi + 2)(λi + 1)

.(4.61)

In the calculation of (4.61), the terms involving ci vanish because
∫
Ω
ϕṽ = 0. Note

that the λi depend on µ. Applying (4.61), (4.58) to ϕ = gṽ and noting that I(µ, g) is
continuous in g, we see that Theorem 4.7 follows from the following lemma.

Lemma 4.8. There exists a unique µ∗ > 0 such that λ2(µ) > 0 if µ > µ
∗, and

λ2(µ) < 0 if µ < µ
∗.

Proof. Recall that ϕ1 is a multiple of ṽ, and thus by the variational characteriza-
tion of eigenvalues we see that

λ2(µ) = inf
ϕ∈Qµ

∫
Ω

[
µ|∇ϕ|2 − βϕ2

]∫
Ω
ṽϕ2

,(4.62)

where the set Qµ is defined by

Qµ :=

{
ϕ ∈ H1(Ω),

∫
Ω

ϕṽ2 = 0

}
.(4.63)

Notice that ṽ → β+ uniformly as µ→ 0. Therefore by choosing a suitable test function
in (4.62) we see that λ2(µ) < 0 for sufficiently small µ; on the other hand, ṽ →

∫
Ω
β/|Ω|

uniformly as µ → ∞. Therefore standard arguments imply that λ2(µ) > 0 for large
µ. In fact, λ2(µ)/µ ≥ c > 0 for some constant c > 0 when µ is large. This implies
that λ2(µ) = 0 has at least one root. For the uniqueness, we need the following result.
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Claim. If λ2(µ0) = 0 for some µ0 > 0, then for µ ≈ µ0, λ2(µ) < 0 (µ < µ0) and
λ2(µ) > 0 (µ > µ0).

To prove this assertion, consider the operator on L2(Ω, ṽ) defined by

L̃(µ)ϕ = −1
ṽ
(µ∆ϕ+ βϕ)(4.64)

with domain H2
N (Ω) := {ψ ∈ H2(Ω), ∂ψ∂n |∂Ω = 0}. Assume that for some µ0 we have

λ2(µ0) = 0 for the second eigenvalue of L̃(µ0) and that this eigenvalue has multiplicity
k. Let ϕ0

i , i = 1, . . . , k, be an L2(Ω, ṽ)-orthonormal basis of the eigenspace of the
eigenvalue 0. By standard perturbation theory (see [K2]), there exist functions ϕi(µ),
i = 1, . . . , k, defined and smooth for µ in a neighborhood of µ0 such that

ϕi(µ
0) = ϕ0

i , i = 1, . . . , k,(4.65)

the space

X(µ) := span{ϕi(µ) : i = 1, . . . , k}(4.66)

is invariant under L̃(µ), and the functions ϕi(µ) are orthonormal. (Note that ϕi(µ)
may not be eigenfunctions of L̃(µ).) Now, with respect to the basis ϕi(µ), the restric-
tion of L̃(µ) to X(µ) is represented by the matrix

M(µ) =
(
〈L̃(µ)ϕi, ϕj〉

)
1≤i,j≤k

= −
(∫

Ω

(µ∆+ β)ϕiϕj

)
1≤i,j≤k

.(4.67)

We have M(µ0) = 0 and

M ′(µ0) =

(∫
Ω

∇ϕ0
i∇ϕ0

j

)
1≤i,j≤k

.(4.68)

To prove (4.68), observe that

d

dµ

∫
Ω

(µ∆+ β)ϕiϕj =

∫
Ω

∆ϕiϕj +

∫
Ω

(µ∆+ β)
∂ϕi
∂µ
ϕj +

∫
Ω

(µ∆+ β)ϕi
∂ϕj
∂µ

= −
∫

Ω

∇ϕi∇ϕj +
∫

Ω

∂ϕi
∂µ

(µ∆+ β)ϕj +

∫
Ω

(µ∆+ β)ϕi
∂ϕj
∂µ

= I + II + III,(4.69)

where in the second equality the self-adjointness of the operator µ∆ + β has been
used. Obviously, I → − ∫ ∇ϕ0

i∇ϕ0
j as µ → µ0. For II, as µ → µ0, (µ∆ + β)ϕj →

(µ0∆ + β)ϕ
0
j ≡ 0 since λ2(µ0) = 0. This implies that II → 0 as µ → µ0. A similar

conclusion holds for III.
It remains to show that the matrix M ′(µ0) is positive definite. For any ζ =

(ζ1, . . . , ζk), set

ϕ̄ =

k∑
i=1

ζiϕ
0
i .(4.70)

Then

k∑
i,j=1

∫
Ω

∇ϕ0
i∇ϕ0

jζiζj =

∫
Ω

|∇ϕ̄|2 ≥ 0.(4.71)
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If the equality in (4.71) holds, then ϕ̄ is equal to some constant, say c1. By the
equations for ϕ0

i , we see that µ0∆ϕ̄ + βϕ̄ = 0, which implies that βc1 = 0. That
is, c1 = 0. Hence ϕ̄ = 0. Since the ϕ0

i are orthogonal to each other in L
2(Ω, ṽ), we

see that ζi = 0 for all i. This together with (4.71) proves that the matrix M
′(µ0) is

positive definite. Hence for µ close to µ0, all eigenvalues of M(µ) are positive when
µ > µ0, and negative when µ < µ0.

5. The case τ � 1. The goal of this section is to study (1.8) with τ � 1, and
Theorem 1.6 will be established. Throughout this section, we assume the hypotheses
of the theorem to be satisfied.

Lemma 5.1. If τ is sufficiently large, (0, ṽ) is unstable for any µ > 0.
Proof. It suffices to show that the principal eigenvalue, denoted by λ1, of the

linear eigenvalue problem (2.5) is negative. Note that λ1 can be characterized by

λ1 = inf{
ϕ∈H1:ϕ 
=0

}
∫
Ω

[
µ|∇ϕ|2 − (β + τg − ṽ)ϕ2

]∫
Ω
ϕ2

.(5.1)

With ϕ = ṽ in (5.1) we have

λ1 ≤ −τ
∫
Ω
gṽ2∫

Ω
ṽ2

(5.2)

for every τ > 0 and µ > 0. Since limµ→+∞ ṽ =
∫
Ω
β/|Ω| uniformly (see (2.2b)) and∫

Ω
g > 0, there exists µ̄ such that if µ ≥ µ̄, ∫

Ω
gṽ2 > 0. Therefore for µ ≥ µ̄ and

τ > 0, λ1 < 0.
Next we consider the case 0 < µ ≤ µ̄: Choose a test function ϕ such that ϕ ≥ 0,

ϕ ≡ 0, and suppϕ � Ω+. Then by (5.1) and the boundedness of ṽ(·, µ) (see (2.2a)),
if τ � 1 and 0 < µ ≤ µ̄, we have

λ1 ≤
∫
Ω

[
µ̄|∇ϕ|2 + ṽϕ2

]− τ ∫
Ω
gϕ2∫

Ω
ϕ2

< 0.(5.3)

This completes the proof of Lemma 5.1.
The above lemma yields (i) of Theorem 1.6. We next prove (ii).
Proof of Theorem 1.6(ii). Recall that ũ = ũ(x, µ, τ) is the unique positive solution

of (1.3) with α = β + τg, and the stability of (ũ, 0) relative to (1.8) is determined by
the sign of the principal eigenvalue of the linear eigenvalue problem (2.4b), (2.4d).

Claim. Let Ω̃ be any compact subset of Ω−. Then, as τ → +∞ and τ/µ→ +∞,
ũ/µ→ 0 uniformly with respect to x ∈ Ω̃.

To establish this assertion, choose a domain Ω̂ such that Ω̃ �� Ω̂ �� Ω−, where
��means the inclusion of the closure of a given domain. By Proposition A.1 of [HLM]
and the comparison arguments given there, for some k1 > 0 one has ũ ≤ k1τ2/3µ1/3

in Ω− for τ � 1 and τ/µ� 1. Here and below, k1, k2, . . . are constants independent
of τ and µ, provided that both τ and τ/µ are sufficiently large.

Set û = ũ/
(
τ2/3µ1/3

)
. Since g < 0 in Ω̂, we have

−µ∆û ≤ −k2τ û in Ω̂, û
∣∣
∂Ω̂

≤ k3(5.4)

for sufficiently large τ and τ/µ. Let wτ be the unique solution of

−µ∆wτ = −k2τwτ in Ω̂, wτ

∣∣
∂Ω̂
= k3.(5.5)
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It can be shown that

wτ (x) ≤ k4 exp
[
−k5 dist(x, ∂Ω̂)(τ/µ)1/2

]
(5.6)

for every x ∈ Ω̂, where k4 and k5 are positive constants independent of x and large
τ and τ/µ. Indeed, for any fixed x ∈ Ω̂, let Bx denote the ball centered at x with
radius dist(x, ∂Ω̂). Let z be the unique solution of

µ∆z = k2τz in Bx, z|∂Bx = k3.(5.7)

By the maximum principle, wτ ≤ k3 in Ω̂. Hence by the comparison principle, wτ ≤ z
in Bx. It is easy to see that z is radially symmetric, from which it can be shown
that there are positive constants k4, k5, independent of τ , τ/µ, and x, such that
z(x) ≤ k4 exp[−k5 dist(x, ∂Ω̂)(τ/µ)1/2]. This proves (5.6).

By the comparison principle, û ≤ wτ in Ω̂. Hence for ũ we have, as τ/µ→ +∞,

ũ(x)/µ ≤ k4(τ/µ)2/3 exp
[
−k5 dist(x, ∂Ω̂)(τ/µ)1/2

]
→ 0(5.8)

for any x ∈ Ω̃ �� Ω̂. This proves the claim.
To continue with the proof of assertion (ii), let µ0 be as in the theorem and fix

ε > 0. For µ ≤ µ0 − ε and τ sufficiently large we want to choose a ψ such that

II :=

∫
Ω

[
µ|∇ψ|2 − (β − ũ)ψ2

]
< 0,(5.9)

which will yield the instability of (ũ, 0). To this end, choose some Ω̃ �� Ω− such that
the number µ̃, uniquely determined by the requirement that there exist a solution of
the problem

µ̃∆ϕ̃+ βϕ̃ = 0 in Ω̃, ϕ̃ > 0 in Ω̃, ϕ̃|∂Ω̃ = 0,(5.10)

satisfies µ̃ ∈ (µ0 − ε
2 , µ0

)
. We refer here to standard continuity and monotonicity

properties of principal eigenvalues (see the definition of µ0). Set

ψ =

{
ϕ̃(x), x ∈ Ω̃,
0 otherwise.

(5.11)

Then it is easy to check that for µ ≤ µ0 − ε,

II =

∫
Ω̃

[
µ|∇ϕ̃|2 − (β − ũ)ϕ̃2

]
=

∫
Ω̃

[(
µ

µ̃
− 1
)
β + ũ

]
ϕ̃2

≤
∫

Ω̃

[(
µ0 − ε
µ0 − ε/2 − 1

)
β + ũ

]
ϕ̃2

≤
[
‖ũ‖L∞(Ω̃) −

ε

2µ0
min

Ω̄
β

] ∫
Ω̃

ϕ̃2 < 0,(5.12)

provided that τ � 1 since ũ→ 0 uniformly in Ω̃.
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Next we consider the case µ ≥ µ0+ε and show that (ũ, 0) is the global attractor of
(1.8) provided that τ � 1. Since (0, ṽ) is unstable in this case, the result will follow if
the existence of a coexistence equilibrium is ruled out. We proceed by contradiction,
assuming (u, v) is a coexistence state of (1.8) for a sequence of values µ ≥ µ0 + ε and
τ → +∞.

First consider the case when µ/τ → 0. Since v > 0, we see that u/τ is a subsolu-
tion to the following problem:

µ

τ
∆w+ + w+

(‖β‖∞
τ

+ g − w+

)
= 0 in Ω,

∂w+

∂n

∣∣∣
∂Ω
= 0.(5.13)

As discussed in section 2, (5.13) has a unique positive solution w+ which is globally
attractive for the corresponding logistic parabolic equation. Therefore, by a standard
super-sub solution method we conclude that u/τ ≤ w+. Similarly, since β ≥ 0 and
‖v‖∞ ≤ ‖β‖∞, u/τ is a supersolution of

µ

τ
∆w− + w−

(
−‖β‖∞
τ

+ g − w−

)
= 0 in Ω,

∂w−
∂n

∣∣∣
∂Ω
= 0.(5.14)

Thus u/τ ≥ w− for the positive solution w− of (5.14). It is not difficult to prove
(cp. [HMP, proof of Lemma 3.4]) that both w+ and w− converge to g+ uniformly
as τ → ∞ and µ/τ → 0+. This proves that u/τ → g+ uniformly as µ/τ → 0 and
τ → ∞. Multiplying the equation for v by any ϕ ∈ H1(Ω) and integrating it over Ω
we have

µ

∫
Ω

∇v · ∇ϕ =
∫

Ω

vϕ(β − v − u).(5.15)

It is easy to see that ‖v‖L∞ and ‖∇v‖L2 , and so ‖v‖H1 , are uniformly bounded.
Therefore by the Sobolev embedding theorem, passing to a sequence if necessary,
v → v̄ weakly in H1, strongly in L2 as µ/τ → 0. Obviously, v̄ ≥ 0 a.e. in Ω. Dividing
(5.15) by τ and passing to the limit, we have∫

Ω

g+v̄ϕ = 0(5.16)

for every ϕ ∈ H1. This implies that v̄ = 0 a.e. in Ω+. Therefore v → 0 weakly in
H1(Ω+), and by the trace theorem (see [A]), v̄|Γ = 0.

We claim that v̄ = 0 a.e. in Ω−. To prove this, choose ϕ ∈ C∞
0 (Ω

−) in (5.15).
For any coexistence state of (1.8), by the comparison principle we have u ≤ ũ. Hence
it follows from the claim above that u/µ→ 0 uniformly in any compact subset of Ω−

as µ/τ → 0 and τ → ∞. Dividing (5.15) by µ and passing to the limit we have either
µ→ µ̄ for some µ̄ ∈ (µ0,∞) and∫

Ω−
∇v̄ · ∇ϕ = µ̄−1

∫
Ω−
ϕv̄(β − v̄), ϕ ∈ C∞

0 (Ω
−),(5.17)

or µ̄ = ∞. When µ̄ = ∞, we see that v̄ is a harmonic function, which together with
v̄|Γ = 0 ensures that v̄ = 0 a.e. in Ω−. When µ̄ < ∞, since v̄|Γ = 0, by standard
elliptic regularity we see that v̄ is a classical solution of

µ̄∆v̄ + v̄(β − v̄) = 0 in Ω−, v̄|Γ = 0, v̄ ≥ 0 in Ω−.(5.18)



COMPETING SPECIES NEAR A DEGENERATE LIMIT 485

To show that v̄ = 0 a.e. in Ω−, we argue by contradiction: If not, then by the strong
maximum principle and the Hopf boundary lemma (see [PW, GNN]), v̄ > 0 in Ω−

and ∂v̄/∂n < 0, where n is the unit outward normal to ∂Ω. Multiplying (5.18) by
ϕ0 > 0 (a solution of (1.14) corresponding to µ0) and integrating in Ω

− we have[
− µ̄
µ0
+ 1

] ∫
Ω−
βϕ0v̄ =

∫
Ω−
ϕ0v̄

2 > 0,(5.19)

which is a contradiction since µ̄ > µ0.
Therefore v̄ = 0 a.e. in Ω−, and thus v̄ = 0 a.e. in Ω. Hence we see that v → 0

weakly in H1(Ω) and strongly in L2(Ω). We shall use this to reach a contradiction.
To this end, set v̂ = v/‖v‖L2 . Then ‖v̂‖L2 = 1 and v̂ satisfies

µ

∫
Ω

∇v̂ · ∇ϕ =
∫

Ω

v̂ϕ(β − v − u)(5.20)

for every ϕ ∈ H1(Ω).
Since ‖v̂‖L2 = 1, by letting ϕ = v̂ in (5.20) we see that ‖∇v̂‖L2 is uniformly

bounded, i.e., ‖v̂‖H1 is uniformly bounded. Hence we may assume that v̂ → v∗

weakly in H1 and strongly in L2. In particular, this implies that ‖v∗‖L2(Ω) = 1,
v∗ ≥ 0 a.e. in Ω. Similarly, as before we can show that

∫
Ω
v∗ϕg+ = 0 for every

ϕ ∈ H1(Ω). Then v∗ = 0 a.e. in Ω+ and v∗|Γ = 0. Again, by passing to a sequence
if necessary, we may assume that µ→ µ̄ ∈ (0,∞]. If µ̄ <∞, by similar argument as
before we see that v∗ solves

µ̄∆v∗ + βv∗ = 0 in Ω−, v∗|Γ = 0.(5.21)

Note that v∗ ≥ 0, and ‖v∗‖L2(Ω−) = ‖v∗‖L2(Ω) = 1 since v∗ = 0 a.e. in Ω+. By
the strong maximum principle, v∗ > 0 in Ω−. This implies that µ̄ = µ0, which is
a contradiction! When µ̄ = ∞, since u/µ → 0 uniformly in any compact subset of
Ω− we see that v∗ is a harmonic function, which implies that v∗ = 0 in Ω− because
v∗|Γ = 0. This is again impossible since ‖v∗‖L2(Ω−) = 1.

It remains to handle the case of µ/τ → γ for some γ ∈ (0,∞]. For this case, it can
be shown, by passing to a sequence if necessary, that u/τ converges to some positive
function uniformly. (Arguments here are similar to those used in the case µ/τ → 0
and are omitted.) This implies that β(x)− u− v is strictly negative in Ω for large τ .
However, by integrating the equation of v in Ω, we get

∫
Ω
v(β(x)− u− v) = 0, which

is a contradiction since v is positive in Ω. This completes the proof.
Remark 5.2. Let µ∗(τ) denote any value of µ where (ũ, 0) changes stability.

Theorem 1.6 simply says that limτ→∞ µ∗(τ) = µ0. We suspect that such µ
∗ is unique,

and any coexistence state of (1.8), if it exists, should also be unique and globally
stable.

Appendix A. Proof of Proposition 4.4. The proof of Proposition 4.4 is given
here after establishing some preliminary computational results. Throughout, (u, v)
will be a coexistence state of (1.8), µ̃1, u1, v1 are given by (4.7), and (ϕ,ψ) is the
solution of (2.3) corresponding to the eigenvalue λ(τ, s). Throughout the appendix
we assume that G(µ̃) = 0, where G is given by (1.9). We normalize (ϕ,ψ) such that∫
Ω
ϕ2 +

∫
Ω
ψ2 = 2

∫
Ω
ṽ2 and ϕ > 0 > ψ. In particular, for τ = 0 ϕ = ṽ, ψ = −ṽ.

Lemma A.1. The following statements hold:
(i) ∫

Ω

guv = 0.(A.1)
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(ii)

λ(τ, s) = −τ
∫

Ω

g(ϕv + ψu)
/∫

(ϕv − ψu).(A.2)

Note that by (4.7) and the normalization of (ϕ,ψ), we have for small τ > 0

ϕv − ψu = ṽ2 +O(τ)

and ∫
Ω

g(ϕv + ψu) = (1− 2s)
∫

Ω

gṽ2 +O(τ) = O(τ).

In particular, the denominator in (A.2) is nonzero for small τ , and (A.2) implies

λτ (0, s) = 0.

Proof of Lemma A.1. (i) Multiply (1.8a) by v, (1.8b) by u and subtract, obtaining

µ(v∆u− u∆v) + τguv = 0.(A.3)

The result follows on integrating (A.3) over Ω.
(ii) Multiply (2.3a) by v, (2.3b) by u and subtract, obtaining

−λ(τ, s)(ϕv − ψu) = v [µ∆ϕ+ ϕ(β + τg − u− v)]− u [µ∆ψ + ψ(β − u− v)] .(A.4)

Integrating (A.4) over Ω and using (1.8) we deduce that

−λ(τ, s)
∫
(ϕv − ψu) =

∫
Ω

ϕ [µ∆v + v(β + τg − u− v)]−
∫

Ω

ψ [µ∆u+ u(β − u− v)]

= τ

∫
Ω

g(ϕv + ψu).

Set

A = (L − ṽ)−1 (µ̃1∆ṽ) ,(A.5a)

B = (L − ṽ)−1 (gṽ) ,(A.5b)

C = L−1 (gṽ) ,(A.5c)

and expand the eigenfunctions ϕ,ψ in the form

ϕ = ṽ + τϕ1(·, s) + τ2ϕ2(·, τ, s),(A.6a)

ψ = −ṽ + τψ1(·, s) + τ2ψ2(·, τ, s).(A.6b)

Lemma A.2. For some γi ∈ R, we have
(i)

u1 = −s [A+ sB + (1− s)C] + γ1ṽ,(A.7a)

v1 = −(1− s) [A+ sB − sC]− γ1ṽ,(A.7b)
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(ii)

ϕ1 = −A− 2sB + (2s− 1)C + γ2ṽ,(A.8a)

ψ1 = A+ (2s− 1)B − (2s− 1)C − γ2ṽ.(A.8b)

Proof. (i) From direct calculation u1, v1 satisfy zero Neumann boundary condi-
tions on ∂Ω, and the following hold in Ω:

µ̃∆u1 + (β − ṽ)u1 + sṽ(g − u1 − v1) + sµ̃1∆ṽ = 0,(A.9a)

µ̃∆v1 + (β − ṽ)v1 + (1− s)ṽ(−u1 − v1) + (1− s)µ̃1∆ṽ = 0.(A.9b)

Multiplying (A.9a), (A.9b) by (1−s) and s, respectively, and subtracting, we find that
L[(1− s)u1 − sv1] + s(1− s)gṽ = 0,

from which it follows on taking the inverse and using definition (A.5c) that

(1− s)u1 − sv1 = −s(1− s)C + γ3ṽ.(A.10)

Adding (A.9a) and (A.9b) we have in a similar manner

u1 + v1 = −A− sB.(A.11)

Then (A.7) follows from (A.10) and (A.11) by straightforward manipulation.
(ii) Since λτ (0, s) = 0, it is easy to check that ϕ1 and ψ1 satisfy the following in

Ω, together with zero Neumann boundary conditions:

Lϕ1 − sṽ(ϕ1 + ψ1) + µ̃1∆ṽ + ṽ(g − u1 − v1) = 0,(A.12a)

Lψ1 − (1− s)ṽ(ϕ1 + ψ1)− µ̃1∆ṽ + ṽ(u1 + v1) = 0.(A.12b)

Adding (A.12a) and (A.12b), we have by an argument similar to that used in the
previous lemma

ϕ1 + ψ1 = −B.(A.13)

By (A.11), u1+v1 = −A−sB. Substituting this and (A.13) in (A.12a), we obtain the
equation which determines ϕ1 up to an additive term γ4ṽ. Using definitions (A.5), it
is easy to see that ϕ1 given by (A.8a) satisfies that equation, which verifies (A.8a).
This and (A.13) yield (A.8b).

Lemma A.3. The following holds:∫
Ω

gṽ[2A+ 2sB + (1− 2s)C] = 0.(A.14)

Proof. By (4.7) and (A.1),

0 =

∫
Ω

guv = τ

∫
Ω

gṽ[sv1 + (1− s)u1] +O(τ2)

since
∫
Ω
gṽ2 = 0. Therefore ∫

Ω

gṽ[sv1 + (1− s)u1] = 0.(A.15)
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The result follows from (A.15) together with (A.7).
Proof of Proposition 4.4. The result is a consequence of the following calculation

of the denominator and numerator of (A.2). In the followingHi(τ, s) denote quantities
that are uniformly bounded for s ∈ [0, 1] and small τ . From (A.6),∫

Ω

(ϕv − ψu) =
∫

Ω

ṽ2 + τH1(τ, s).(A.16)

We now use (A.7) and (A.8) successively, obtaining∫
Ω

g(ϕv + ψu) = (1− 2s)
∫

Ω

gṽ2 + τ

∫
Ω

gṽ[v1 − u1 + (1− s)ϕ1 + sψ1] + τ
2H2(τ, s)

= τ

∫
Ω

gṽ[(4s− 2)A+ (6s2 − 4s)B + (−1 + 6s− 6s2)C] + τ2H3(τ, s).(A.17)

From (A.14) and (A.17),∫
Ω

g(ϕv + ψu) = 2s(1− s)τ
∫

Ω

gṽ(C −B) + τ2H4(τ, s).(A.18)

As a consequence of (A.2), (A.16), and (A.18) we have

λ(τ, s) = τ2
[
2s(1− s) ∫

Ω
gṽ(B − C)∫

Ω
ṽ2

+ τH5(τ, s)

]
.(A.19)

Since λ(τ, 0) = λ(τ, 1) ≡ 0 for all τ (see (4.23)), we have H5(0, τ) = H5(1, τ) ≡ 0.
This implies that we can write H5 as H5(τ, s) = s(1 − s)H6(τ, s). This proves part
(i) of Proposition 4.4.

Part (ii) follows directly from Lemma A.3 and the relation

A = µ̃1(L − ṽ)−1 (∆ṽ) = −µ̃1ṽµ.

The latter equality is obtained by differentiating the equation for ṽ with respect
to µ.

Appendix B. Proof of Proposition 1.3. (i) Fix any β satisfying A1, and
define the map

Ψ : (µ, g) �→ Ψ(µ, g) :=

∫
Ω

ṽ2(x, µ)g(x) dx : (0,∞)× C1(Ω)→ R.

Then Ψ is smooth, it is linear in g, and, since ṽ > 0, Ψ(µ, ·) is surjective. Thus
0 is a regular value of Ψ. Consequently, by the parametric transversality theorem
[AR, Q, H2], for generic g ∈ C1(Ω), 0 is a regular value of G = Ψ(·, g). This proves
statement (i).

(ii) Fix any sequence 0 < µ1 < µ2 < · · · . We claim that for generic β ∈ U = {β ∈
C1(Ω) :

∫
Ω
β > 0} the following condition holds for all k = 1, 2, . . . :
ṽ2(·, µ1), . . . , ṽ

2(·, µk+1) are linearly independent functions.(B.1)

Suppose for the moment that the claim is true. Observe that (B.1) allows us to
choose a function g̃ ∈ C1(Ω) such that∫

Ω

g̃(x)ṽ2(x, µi) dx

∫
Ω

g̃(x)ṽ2(x, µi+1) dx < 0 (i = 1, . . . , k)(B.2)
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(for example, we can choose g̃ as a linear combination of the functions in (B.1)).
Then, for any g in a sufficiently small neighborhood of g̃, the function G has at least
k zeros (at least one per each interval (µi, µi+1)). By (i), we can choose g in this
neighborhood such that G has only simple zeros, and, replacing g̃ by −g̃ if necessary,
we can in addition take g̃ ∈ U . Conclusion (ii) thus follows from our claim.

To prove the claim, it is clearly sufficient to show that for each fixed k, the set of
all β ∈ U for which (B.1) holds is open and dense in U . The openness is obvious, as ṽ
is a continuous function of β. To prove the density, fix any β̃ ∈ U . Arbitrarily close to
β̃, we have to find β ∈ U for which (B.1) holds. To this end let 0 = λ1 < λ2 ≤ λ3 · · ·
be the eigenvalues of −∆ on Ω under Neumann boundary condition. Let φ1, φ2, . . . be
an orthonormal basis of L2(Ω) consisting of the corresponding eigenfunctions. Clearly,
we can find β̄ ∈ U , as close to β̃ as we wish, such that

βj :=

∫
Ω

(β̄(x)− 1)φj(x) dx =
∫

Ω

β̄(x)φj(x) dx = 0 (j = 2, 3, . . . );(B.3)

that is, the Fourier coefficients of β̄ with respect to the eigenfunctions are all nonzero
(the first one is positive, as β̄ ∈ U). We further show that arbitrarily close to 1 there
is a constant δ < 1 such that (B.1) holds for

β = 1− δ + δβ̄.
This will complete the proof of density.

Denote the solution of (1.6) with β = 1− δ + δβ̄ by ṽ(·, µ, δ). Observe that
δ �→ ṽ(·, µ, δ) ∈ L2(Ω)

is an analytic function. Consider the Gram determinant

D(δ) = det

(∫
Ω

ṽ2(x, µi, δ)ṽ
2(x, µj , δ) dx

)k+1

i,j=1

.

We have D(δ) = 0 if and only if
ṽ2(·, µ1, δ), . . . , ṽ

2(·, µk+1, δ) are linearly independent functions.(B.4)

Since δ �→ D(δ) is analytic, the desired property (i.e., D(δ) = 0 for any δ < 1
sufficiently close to 1) is established, provided D ≡ 0. To prove the latter we examine
the limit δ → 0. At δ = 0, we have the following equation for ṽ(·, µ, 0):

µ∆v + (1− v)v = 0 in Ω,
∂v

∂n
= 0 on ∂Ω.

Thus ṽ(·, µ, 0) ≡ 1. As ṽ(·, µ, δ) is a nondegenerate solution, we can expand
ṽ(·, µ, δ) = 1 + δz(·, µ) +O(δ2)

and find the equation for z to be

µ∆z − z + β̄ − 1 = 0 in Ω,
∂z

∂n
= 0 on ∂Ω.

By an eigenfunction expansion,

z(·, µ) =
∞∑
 =1

β 
µλ + 1

φ ,
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where β , A = 1, 2, . . . , are the Fourier coefficients of β̄ − 1; cf. (B.3). Now,
ṽ2(·, µj , δ) = 1 + 2δz(·, µj) +O(δ2), j = 1, . . . , k + 1.

These functions are linearly independent if such are the functions

δQz(·, µj) +O(δ2), j = 1, . . . , k + 1,(B.5)

where Qu = u− ∫ u is the orthogonal projection with kernel span{φ1}. Clearly, (B.5)
are linearly independent for all small δ > 0 if and only if the functions Qz(·, µj) are
linearly independent. This is equivalent to the independence of the k + 1 infinite
vectors (

β 
µjλ + 1

)∞

 =2

, j = 1, . . . , k + 1,

and a sufficient condition for this is the independence of the k + 1 vectors in R
k+1

(
β i

µjλ i + 1

)k+1

i=1

, j = 1, . . . , k + 1,(B.6)

for some choice of indices Ai. We choose the Ai such that λ̃i := λ i , i = 1, . . . , k + 1,
are mutually distinct. To test for the independence, we compute the determinant of
the matrix with rows (B.6). It is easy to check by listing the obvious roots of the
determinant that

det

(
β i

µj λ̃i + 1

)k+1

i,j=1

=

k+1∏
m=1

β m
λm

det

(
1

µj + λ̃
−1
i

)k+1

i,j=1

=

k+1∏
m=1

β m
λm

∏
1≤i,j≤k+1

1

µj + λ̃
−1
i

∏
1≤i<j≤k+1

(µj − µi)
∏

1≤i<j≤k+1

(λ̃−1
j − λ̃−1

i ).

Since βi = 0 (see (B.3)), our choice of λ̃j implies that the determinant is nonzero.
Therefore the vectors (B.6) and the functions (B.5) are linearly independent. This
completes the proof.
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Abstract. We consider a piecewise smooth solution of a one-dimensional hyperbolic system of
conservation laws with a single Lax or overcompressive noncharacteristic shock. We show that it is
a zero dissipation limit assuming that there exist linearly stable viscous profiles associated with the
discontinuities. In particular, following the approach of [Grenier and Rousset, Comm. Pure Appl.
Math., 54 (2001), pp. 1343–1385], we replace the smallness condition obtained by energy methods in
[Goodman and Xin, Arch. Ration. Mech. Anal., 121 (1992), pp. 235–265] in the case of Lax shocks
by a weaker spectral assumption which is sharp.
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1. Introduction. Consider a one-dimensional system of conservation laws

ut + f(u)x = 0(1)

with a smooth flux f : R
n → R

n. We assume that (1) is hyperbolic: there exist
smooth matrices P (u), D(u) such that P (u)−1f ′(u)P (u) = D(u), where D(u) is
a diagonal matrix. The eigenvalues of D will be denoted by λ1(u), . . . , λn(u). We
consider a piecewise smooth solution u which is a distributional solution of (1) in the
domain R × [0, T ∗] with a single shock; that is to say that u(x, t) is smooth at any
point (x, t), x �= s(t), where x = s(t) is a smooth curve in the (x, t) plane. Moreover
the limits

∂kxu
−(t) := ∂kxu(s(t)− 0, t) = lim

x→s(t)−
∂kxu(x, t),

∂kxu
+(t) := ∂kxu(s(t) + 0, t) = lim

x→s(t)+
∂kxu(x, t)

exist. We also assume that the shock is a noncharacteristic Lax or overcompressive
shock that is

λ1(u
−(t)), . . . , λn−i−(u−(t)) < s′(t) < λn−i−+1(u

−(t)) < · · · < λn(u
−(t)),(2)

λ1(u
+(t)), . . . , λi+(u

+(t)) < s′(t) < λi++1(u
+(t)) < · · · < λn(u

+(t)),(3)

i− + i+ = n + q + 1. We have a Lax shock when q = 0 and an overcompressive
shock when q > 0. A general conjecture is that the admissible solutions of (1) can be
obtained as limits of solutions of

uεt + f(uε)x = εuεxx(4)
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when ε tends to zero. This conjecture has been proved for scalar conservation laws
by using the maximum principle [19] and for some special 2 × 2 systems (for which
a weak maximum principle holds) by the method of compensated compactness [4].
This conjecture motivated the work of Goodman and Xin [8], who have shown that
a solution of (1) with a Lax shock is the limit of a solution of (4) under a smallness
assumption on the amplitude of the shock

sup
t∈[0,T ]

|u(s(t) + 0, t)− u(s(t)− 0, t)| ≤ η0,(5)

η0 being sufficiently small.1 Under this smallness assumption and in the case of Lax
shocks, they have built an approximate solution uapp of (4) thanks to the method
of matched asymptotic expansions. More precisely, away from the shock there is an
outer expansion

O(x, t) = u(x, t) + εu1(x, t) + ε2u2(x, t),(6)

where u is the piecewise smooth solution of (1) that we considered, and ui, i ≥ 2,
are solutions of some linear hyperbolic systems. Similarly, near the shock there is an
inner expansion

I(x, t) = V (ξ, t) + εV1(ξ, t) + ε2V2(ξ, t),(7)

where ξ = x−s(t)
ε + δ(t) is the stretched variable. We also have an expansion of δ(t)

which is a perturbation of the shock position:

δ(t) = δ0(t) + εδ1(t).

Note that it is actually possible to get expansions at every order by assuming more
regularity on u.

The viscous shock profile V (ξ, t) is a solution of

Vξ = f(V )− f(u−(t))− s′(t)(V − u−(t))(8)

such that

lim
ξ→±∞

V (ξ, t) = u±(t).(9)

The higher order terms are solutions of some linear ordinary differential equations.
Taking a smooth function m such that m(x) = 1 when |x| ≤ 1 and m(x) = 0, when
|x| ≥ 2, one finally gets an approximate solution of (4),

uapp(x, t) = m

(
x− s(t)

εγ

)
I(x, t) +

(
1−m

(
x− s(t)

εγ

))
O(x, t) + d(x, t),(10)

where d is a higher order correction term that allows us to put the error term in
conservative form (see section 2.2 for more details), and γ ∈ ( 2

3 , 1). The approximate
solution uapp then solves

uappt + f(uapp)x − εuappxx = (f(uapp)− f(uapp − d))x .

1More recently the convergence of uε was proved in [1] if the initial data of (4) has sufficiently
small total variation.
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It is then shown that a solution uε of (4) with initial condition uapp(x, 0) tends to
uapp when ε goes to zero. As explained in [7], it is better to deal with an integrated
equation when we study the stability of shocks. It relies on the fact that in case
λx < 0 the scalar equation

vt + λ(x)vx = 0

has a better behavior than the equation

vt + (λ(x)v)x = 0

when we make energy estimates. Actually, the first one gives

d

dt

∫
R

v2(t, x) dx−
∫

R

λxv
2 dx = 0,

and hence d
dt

∫
R
v2(t, x) dx ≤ 0, as the second one gives

d

dt

∫
R

v2(t, x) dx+

∫
R

λxv
2 dx = 0,

which does not have the good sign. Consequently, as in [8], we set wx = uε − uapp,
which gives

wt + f ′(uapp)wx − εwxx = Q(uapp, wx) + (f(uapp)− f(uapp − d)),(11)

w(x, 0) = 0.

The error term Q(uapp, wx) is O(|wx|2). The convergence of wx to zero is shown in
[8] by means of energy estimates. This method leads to a smallness assumption on
the amplitude of the shock. Consequently, the convergence is shown only for weak
shocks satisfying (5). The same kind of result with a more precise description of the
convergence and the study of the evolution of an initial layer into a shock layer is
shown in [20] using the method of approximate Green’s functions in [14], but there is
still the restriction (5). These results can be seen as a kind of generalization of the
results of [7], [12], [18] about the asymptotic stability of weak viscous shock profiles.
Nevertheless, the smallness assumption is not sharp even when we study the linear
stability of shock profiles. There are strong shocks for which a viscous shock profile
V (ξ, τ) associated is linearly stable for zero-mass perturbation; that is to say that the
solutions of

∂tu+ ∂ξ(f
′(V (ξ, τ))u)− ∂ξξu = 0,

u(ξ, 0) = ∂ξu0(ξ)

tend to zero when t → +∞. However, when the shock does not satisfy a smallness
assumption, the classical energy estimates are not sufficient to prove the stability.
The main difficulty is due to the fact that the energy tends to zero when t→ +∞ but
not in a monotonous way. To conclude, refined methods are needed as in [10], [21].
Note that these methods do not apply in our time-dependent case since they both
rely on the Laplace transform. The aim of this paper is to show the convergence of
uε towards uapp when the viscous profiles are linearly stable using the method of [9].
This implies the result of [8] in the case of weak Lax shocks.

We now present our hypotheses more precisely. First we assume the following:
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(H0) ∀t ∈ [0, T ∗], there exists a viscous profile which is a solution of (8), (9).
Moreover in the case of overcompressive shocks (q ≥ 1), we make the generic
assumption that there exists a q-dimensional manifold of profiles ϕ(ξ, t, h),
h ∈ U , U being a vicinity of zero in R

q.

Note that thanks to (2) and (3), u+(t) and u−(t) are hyperbolic rest points for the
ordinary differential equation (8); consequently, we have for any α, β,

|∂αt ϕ(ξ, t, h))− ∂αt u
+(t)| ≤ e−ωξ ∀ξ ≥ 0, |∂αt ϕ(ξ, t, h))− ∂αt u

−(t)| ≤ eωξ ∀ξ ≤ 0,

|∂αξ ϕ(ξ, t, h)| ≤ e−ω|ξ|, |∂βhϕ(ξ, t, h)| ≤ e−ω|ξ| ∀ξ

for some ω > 0.

Let us formalize the notion of linear stability. Consider for each τ ∈ [0, T ∗] the
operators

Lτv = vξξ −
(
f ′(ϕ(ξ, τ, 0))− s′(τ)

)
vξ

and

L̃τv = vξξ −
(
f ′(ϕ(ξ, τ, 0)− s′(τ))v

)
ξ

in Lp with domain W 2,p for p < +∞. For each time τ we want the profile ϕ(ξ, τ, 0)
to be linearly stable. As stated in [21], it is equivalent to the Evans function criterion

(H) ∀τ ∈ [0, T ∗], L̃τ is such that D̃τ (λ) �= 0 ∀λ, � λ ≥ 0, λ �= 0, and D̃
(q+1)
τ (0) �= 0,

where D̃τ is the Evans function of L̃τ . We refer to [6] and [21] for the definition of
the Evans function. This hypothesis means that L̃τ does not have eigenvalues in the
closed right half plane and that zero is semisimple in the effective spectrum. (We
again refer to [21] for the definition of the effective spectrum.) This hypothesis is
necessary for the linear stability of Lax shocks and overcompressive shocks as stated
in [21]. Note that (H) can be checked by energy methods in the case of weak shocks.
We point out that this hypothesis has an equivalent form (see [21]):

(H′) ∀τ ∈ [0, T ∗], the “integrated operator” Lτ is such that Dτ (λ) �= 0 ∀λ, �λ ≥ 0,

where Dτ is the Evans function associated with Lτ . This second form is more useful
for our work since we deal with an integrated equation (11). Note that we can prove

by a direct computation that Dτ (0) = D̃
(q+1)
τ (0). Note also that this is another

justification of the better behavior of the “integrated” equation explained in [7]. We

finally point out that the assumption D̃
(q+1)
τ (0) �= 0 implies that the eigenspace of L̃τ

associated with the eigenvalue zero is generated by ϕξ, ϕh1 , . . . , ϕhq .

The main theorems of this paper are as follows.

Theorem 1. Assume (H0) and D̃′
τ (0) �= 0 for any τ ∈ [0, T ∗] in the case of Lax

shocks and D̃
(q+1)
0 (0) �= 0 in the case of overcompressive shocks; then there exists an

approximate solution of (4) defined on [0, T ] for some T > 0. Moreover, in the case
of Lax shocks, we have T = T ∗.

Theorem 2. Assume (H0) and (H); then we have

||uε − uapp||L∞([0,T ],L1(R)) → 0
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and

||uε − uapp||L∞([0,T ]×R) → 0

when ε tends to zero. Consequently, we have

||uε − u||L∞([0,T ],L1(R)) → 0

and, for any η ∈ (0, 1),

sup
0≤t≤T, |x−s(t)|≥εη

|uε(x, t)− u(x, t)| → 0

when ε tends to zero. Moreover, in the case of Lax shocks, we have T ∗ = T .

We can also get a convergence in L∞([0, T ],Wm,1(R)), where m depends only
on the regularity of u. Note that this theorem is sharp since (H) is necessary for
linear stability of each profile and since we can expect that linear instability implies
nonlinear instability as in [3]. Moreover this theorem implies the result of [8] up to a
change of L2-type to L1-type Sobolev space.

In the first part of this paper, we prove Theorem 1, and we show that the error
term of the approximate solution satisfies the same estimates as in [8]. The fact that

even if we assume that D̃
(q+1)
τ �= 0 for any τ ∈ [0, T ∗], we may have T < T ∗ in the

case of overcompressive shocks will appear in this construction. Actually, since we
also look for a perturbation h(t) in U of the viscous profile, the construction can be
led only for small t since in general U �= R

n. A motivating example is given in [5].
Hence the convergence will be shown only for T sufficiently small. It seems to be
related to the “instability” of overcompressive shocks that is pointed out in [13].

Next, we set z = x− s(t) + εδ(t); hence (11) becomes

w̃t +
(
f ′(ũapp(z, t))− s′(t) + εδ′(t)

)
w̃z − εw̃zz(12)

= Q(ũapp, w̃z) + (f(ũapp)− f(ũapp − d̃)),

where ũapp(z, t) = uapp(z + s(t)− εδ(t), t), d̃(z, t) = d(z + s(t)− εδ(t)), and w̃(z, t) =
w(z + s(t) − εδ(t), t). We note that now the viscous shock is located at z = 0. In
the second part of this paper, we use the iterative construction of Green’s functions
described in [9] to get a Green’s function for the operator

Lεw = wt + (f ′(ũapp)− s′(t) + εδ′(t))wz − εwzz

and to derive uniform estimates in ε on the L1 norm of this Green’s function. To
use this method, we construct an approximate Green’s function. This function is
obtained by combining approximate Green’s functions away from the shock and the
exact Green’s function for the shock problem with frozen time in the viscous profiles
built in [21]. Finally we show the nonlinear convergence using a standard argument
for parabolic equations as in [10].

2. Construction and estimates on the error term of the approximate
solution. In this section we explain how the hypothesis (H) allows us to make the
same construction as in [8] with the same type of estimates on the error term but
without using the smallness assumption (5).
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2.1. Proof of Theorem 1. We look for an outer expansion under the form
(6) where u1, u2 are smooth up to x = s(t), but since we also want to deal with
overcompressive shocks, we look for an inner expansion under the more general form

I(x, t) = ϕ(ξ, t, h0(t)) + ε
(
∂hϕ(ξ, t, h0(t))h1(t) + V1(ξ, t)

)
+ ε2V2(ξ, t),

where ξ is still under the form ξ = x−s(t)
ε + δ(t), ϕ is a solution of

ϕξ = f(ϕ)− f(u−(t))− s′(t)(ϕ− u−(t)),

ϕ(−∞, t, h0(t)) = u−(t), and ϕ(+∞, t, h0(t)) = u+(t). In the case of Lax shocks,
we have h0(t) = 0 and h1(t) = 0. In the case of overcompressive shocks, h0(t) is a
parametrization of the viscous profiles. The method of matched asymptotic expansion
leads to

u1t + (f ′(u)u1)x = uxx,(13)

u2t + (f ′(u)u2)x = u1xx + (f ′′(u)(u1, u1))x(14)

for the outer expansion and to

V1ξξ =
(
(f ′(ϕ)− s′(t))V1

)
ξ
+ δ′0(t)ϕξ + ∂hϕh

′
0(t) + ϕt,(15)

V2ξξ =
(
(f ′(ϕ)− s′(t))V2

)
ξ
+ δ′1(t)ϕξ + ∂hϕh

′
1(t)(16)

+ (∂t∂hϕ+ δ′0∂ξ∂hϕ+ ∂2
hϕ · h′0) · h1

+
(
f ′′(ϕ)(∂hϕh1 + V1, ∂hϕh1 + V1)

)
ξ
+ V1t + δ′0V1ξ

for the inner expansion. Here we have used

(∂hϕ)ξξ =
(
(f ′(ϕ)− s′(t))∂hϕ

)
ξ
.

Moreover we want the two solutions to be valid in an intermediate zone. This gives
the matching conditions

V1(ξ, t) = u±1 (t) + (ξ − δ0)∂xu
±(t) + o(1),(17)

V2(ξ, t) = u±2 (t) + (ξ − δ0)∂xu
±
1 (t)− δ1(t)∂xu

±(t)(18)

+
1

2
(ξ − δ0)

2∂2
xu

±(t) + o(1)

when ξ → ±∞.
We give the construction of u1, V1, δ0, and h0, which are built simultaneously.

The construction of u2, V2, δ1, and h1 will be similar. As in [8], it is convenient to
deal with bounded solutions; hence we first lift the dominant term in the asymptotic
expansion (17) by choosing D1 smooth such that

D1(ξ, t) =

{
ξ∂xu(s(t)− 0, t), ξ < −1,
ξ∂xu(s(t) + 0, t), ξ > 1.

Consequently, U1 = V1 −D1 solves

U1ξξ −
(
(f ′(ϕ)− s′(t))U1

)
ξ
= δ′0(t)ϕξ + ∂hϕh

′
0(t) + g(ξ, t, h0(t)),



498 FREDERIC ROUSSET

where

g(ξ, t, h0(t)) =
(
(f ′(ϕ)− s′)D1

)
ξ
+ ∂tϕ(ξ, t, h0(t)).(19)

Note that

g(ξ, t, h0(t)) =
(
f ′(u±)− s′

)
∂xu

± +
d

dt
u±(t) +O(e−α|ξ|), α > 0.

Hence

|g(ξ, t, h0(t))| ≤ Ce−α|ξ|,

since thanks to (1)

∂tu
± + f ′(u±)∂xu± = 0.

Moreover (17) becomes

U1(ξ, t) = u±1 (t)− δ0∂xu
±
0 (t) + o(1), ξ → ±∞.(20)

Setting

G(ξ, t, h0(t)) =

∫ ξ

0

g(η, t, h0(t)) dη,(21)

we get

U1ξ −
(
f ′(ϕ)− s′(t)

)
U1 = δ′0(t)ϕ+

∫ ξ

0

∂hϕ(ζ, t, h(t))h
′
0(t) dζ(22)

+G(ξ, t, h0(t)) + c(t),

where c(t) is an integration constant.
We have to solve the coupled systems (13), (22), (20). The first step of the proof

is to show that with t, δ0, h0 fixed we can find a solution of (22) having limits at ±∞
which depend on t, δ0, h0. Then, using these limits and the matching conditions (20),
we rewrite (13) as a hyperbolic initial boundary value problem where δ0 and h0 are
also unknown. We use the techniques of [11], [16] to solve it. Finally using the δ0 and
h0 obtained, we take the corresponding solutions of (22) which have limits which by
construction verify the matching condition (20).

Let us consider the homogeneous ordinary differential system

vξ =
(
f ′(ϕ)− s′(t)

)
v.(23)

Since

|f ′(ϕ)− f ′(u+(t))| ≤ e−αξ, ξ ≥ 0,

|f ′(ϕ)− f ′(u−(t))| ≤ eαξ, ξ ≤ 0,

and since f ′(u+(t))− s′(t), f ′(u−(t))− s′(t) do not have eigenvalues on the imaginary
axis thanks to (2), (3), Proposition 1 in [2, Chap. 2] concerning the roughness of
exponential dichotomy states that the differential system (23) has an exponential
dichotomy on both half lines. Hence we can use Lemma 4.2 of [17]. Let us denote
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by Cb(R) the space of continuous bounded functions on R and by C1
b (R) the space of

C1 functions bounded together with their derivative. We consider the linear operator
At,h0

defined from C1
b to C0

b by

At,h0v = v′ −
(
f ′(ϕ)− s′(t)

)
v.

Lemma 4.2 of [17] states that At,h0
is a Fredholm operator. The index of At,h0

is
dim E + dim F − n, where E and F are the stable and unstable subspaces of (23);
that is to say

E = {x ∈ R
n, ∃v solution of (23), v(0) = x, v(+∞) = 0},

F = {x ∈ R
n, ∃v solution of (23), v(0) = x, v(−∞) = 0}.

Using [2] again, E has the same dimension as the stable subspace of

v′ =
(
f ′(u+(t))− s′(t)

)
v,

i.e., i+, thanks to (3). Similarly F has the same dimension as the unstable subspace
of

v′ =
(
f ′(u−(t))− s′(t)

)
v,

i.e., i−, thanks to (2). Consequently, the index of the Fredholm operator (At,h0)

is q + 1. Moreover, in the case of Lax shocks, our assumption D̃′
t(0) �= 0 for any

t ∈ [0, T ∗] implies that ker At = Span(ϕξ) (in this case, there is no dependence on
h); hence dim ker At = 1 and At is onto. In the case of overcompressive shocks, by

continuity we have D̃
(q+1)
t,h0

(0) �= 0 for any t ∈ [0, T ], for some positive T , and for any

h0 in a vicinity of zero in R
q, where D̃t,h0

is the Evans function of the operator

L̃t,h0
v = vξξ −

(
(f ′(ϕ(ξ, t, h0))− s′(t))v

)
ξ
.

Consequently ker At,h0
= Span(ϕξ, ϕh1 , . . . , ϕhq ); hence dim ker At,h0 = q + 1 and

At,h0
is onto. Finally, there exists a bounded solution U1 of (22) in a closed supple-

mentary of the kernel for any t ∈ [0, T ∗], δ0 ∈ R in the case of Lax shocks and for any
t ∈ [0, T ], δ0 ∈ R and h0 in a vicinity of zero in the case of overcompressive shocks.

We now show that every bounded solution U1 of (22) actually has limits at both
±∞ which do not depend on its choice, and we compute them. For ξ ≥ 0, we have

U1ξ =
(
f ′(u+(t))− s′(t)

)
U1 + F,(24)

where

F =
(
f ′(ϕ)− f ′(u+(t))

)
U1 + δ′0ϕ+

∫ ξ

0

∂hϕ · h′0(t) +G+ c

is bounded and such that

lim
ξ→+∞

F = δ′0u
+ +

∫ +∞

0

∂hϕ · h′0 +G+ + c,
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where we denote limξ→+∞G by G+. Denoting by r+i (t) and a
+
i (t) eigenvectors and

eigenvalues of f ′(u+(t))− s′(t), we can write

U1(ξ, t) =

n∑
i=1

αi(ξ, t)r
+
i (t),

F (ξ, t) =

n∑
i=1

Fi(ξ, t)r
+
i (t).

Hence, we get

αiξ = a+
i (t)αi + Fi.

Consequently, we get the expression of αi:

αi(ξ, t) = −
∫ +∞

x

Fi(z, t)e
a+
i

(t)(ξ−z) dz if a+
i (t) > 0,

αi(ξ, t) = Cea
+
i

(t)x +

∫ x

0

Fi(z, t)e
a+
i

(t)(ξ−z) dz if a+
i (t) < 0.

Hence, in both cases we find that αi(ξ, t) = − 1
ai
limξ→+∞ Fi+O(e−ωξ), ω > 0, when

ξ → +∞. Consequently, we have shown

lim
ξ→+∞

U1(ξ, t) =−
(
f ′(u+(t))−s′(t)

)−1
(
δ′0(t)u

+(t) +

∫ +∞

0

∂hϕ · h′0 +G+(t, h0(t)) + c(t)

)
.

(25)

Similarly, we can show

lim
ξ→−∞

U1(ξ, t) =−
(
f ′(u−(t))−s′(t)

)−1
(
δ′0(t)u

−(t) +
∫ −∞

0

∂hϕ · h′0 +G−(t, h0(t)) + c(t)

)
.

(26)

Going back to (20), we must also have

lim
ξ→+∞

U1 = u+
1 (t)− δ0(t)∂xu

+(t),(27)

lim
ξ→−∞

U1 = u−1 (t)− δ0(t)∂xu
−(t).(28)

We now set A+(t) = f ′(u+(t))− s′(t), A−(t) = f ′(u−(t))− s′(t). By combining (25),
(27), (26), (28) and eliminating c(t), we get

A+(t)u+
1 (t)−A−(t)u−1 (t) = δ0(A

+(t)∂xu
+(t)−A−(t)∂xu−(t))(29)

− δ′0(u
+(t)− u−(t))− ∂hm · h′0 − (G+ −G−),

where

m(t, h0) =

∫ +∞

−∞
(ϕ(ξ, t, h0)− ϕ(ξ, t, 0)) dξ.

Using (1) and (21), we get

A+∂xu
+ −A−∂xu− = − d

dt
(u+ − u−)
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and

G+ −G− = − d

dt
(u+ − u−) +

∫ +∞

−∞
∂tϕ(ξ, t, h0)dξ.

Hence we can rewrite (29) as

A+u+
1 −A−u−1 +

d

dt

(
δ0(u

+ − u−) +m(t, h0)
)
=

d

dt
(u+ − u−).(30)

We want to use (30) to solve (13). We first rewrite (13) as a hyperbolic initial boundary
value problem. Let

W (z, t) =

(
u1(z + s(t), t)
u1(s(t)− z, t)

)

be the new unknown. We get that W solves

Wt + (A(z, t)W )z = S, z > 0,(31)

where

A(z, t) =

(
f ′(u0(z + s(t), t))− s′(t) 0

0 −(f ′(u(s(t)− z, t))− s′(t))

)

and

S =

(
uzz(s(t) + z, t)
uzz(s(t)− z, t)

)
.

Note that

A(0, t) =

(
A+(t) 0
0 −A−(t)

)
.

Hence thanks to (2), (3) the boundary {z = 0} is noncharacteristic for (31).
We first give the end of the proof in the case of Lax shocks. In this case q = 0, and

we can forget the dependence on h0. Consequently, (31), (30) is a linear system. We
can solve it with initial conditions W (z, 0) =W0(z), δ0(0) = 0, where W0 is a smooth
function which satisfies suitable compatibility conditions at 0 with the source term
S to get a solution W sufficiently smooth to build the next terms of the asymptotic
expansion. Using [16], it suffices to check the well-posedness for every s ∈ [0, T ∗] for
the system

Wt + A(0, s)Wz = 0, z > 0,(32)

A+(s)u+
1 (t)−A−(s)u−1 (t) + δ′0(t)(u

+(s)− u−(s)) = 0,(33)

where

W (0, t) =

(
u+

1 (t)
u−1 (t)

)
.
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This system is similar to the one which arises in the study of linear stability of inviscid
shocks [16]. The system (32), (33) is well posed if there is no nonzero solution under
the form

W (z, t) = eτtX(z), X(+∞) = 0, �τ > 0,(34)

δ0(t) = eτtd0.(35)

In our one-dimensional setting, this condition is equivalent to the Majda–Liu condition

∆(s) = det
(
r+i++1(s), . . . , r

+
n (s), r

−
1 (s), . . . , r

−
n−i−(s), u

+(s)− u−(s)
)
�= 0 ∀s ∈ [0, T ∗].

Using [22, Proposition 5.3], we have

D̃′
s(0) = Γ∆(s).

Hence our hypothesis D̃′
s(0) �= 0 implies the Majda–Liu condition. Consequently,

using [11], [15], [16], there exists W and δ0 which are solutions of (32), (33) defined
on [0, T ∗]. We now choose a bounded solution U1 of (22), W and δ0 being known.
This solution satisfies the matching condition thanks to the choice of W and δ0. This
ends the proof in the case of Lax shocks.

In the case of overcompressive shocks, (30) is a nonlinear equation in h0. Using
the techniques of [16], [15], there exist W , δ0, and h0 solutions of (31), (30) with
initial conditions W (0, z) = W0(z), δ0(0) = 0, h0(0) = 0 defined on [0, T ] for some
positive T if we have well-posedness for the linearized system

Wt + A(0, 0)Wz = 0,

A+(0)u+
1 (t)−A−(0)u−1 (0) + δ′0(t)(u

+(0)− u−(0)) +mh(0, 0)h
′
0(t) = 0.

Thanks to [11], [16], this linear system is well posed if there is no nonzero solution
(W, δ0, h0) under the form (34), (35) and

h0(t) = eτtH, h ∈ R
q.

This is equivalent to

∆ = det
(
r+i++1(0), . . . , r

+
n (0), r

−
1 (0), . . . , r

−
n−i−(0), u

+(0)− u−(0),

∂h1m(0, 0), . . . , ∂hqm(0, 0)
)
�= 0.

Using [22, Proposition 6.2], we have

D̃
(q+1)
0 (0) = Γ∆.

Hence ∆ �= 0 since D̃
(q+1)
0 (0) �= 0. The end of the proof is similar to the case of Lax

shocks.
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2.2. Bounds on the error terms of the approximate solution. In the
following we will denote ϕ(ξ, t, h0(t)) by V (ξ, t). Since we want to integrate the
equation, we need to choose an approximate solution of (4) with an error term in a
conservative form. If we choose an approximate solution under the basic form

uapp(x, t) = m

(
x− s(t)

εγ

)
I(x, t) +

(
1−m

(
x− s(t)

εγ

))
O(x, t),

we find that

uappt + f(uapp)x − εuappxx = q,

where q(x, t) =
∑3
i=1 qi(x, t),

q1(x, t) = (1−m)

{(
f(O)− f(u)− εf ′(u)u1 − ε2f ′(u)u2 − 1

2
f ′′(u)(u1, u1)

)
x

− ε3u2xx

}
,

q2(x, t) = m

{(
f(I)− f(V )− εf ′(V )V1 − ε2f ′(V )V2 − 1

2
ε2f ′′(V )(V1, V1)

)
x

+ ε2 (δ′1(t)∂ξ∂hϕ+ δ′1V1ξ + ∂t∂hϕ+ V2t + δ′V2ξ)

}
,

q3(x, t) = mt (I −O)− εmxx(I −O)− 2εmx (I −O)x +mx (f(I)− f(O))

+ (f(mI + (1−m)O)x − (mf(I) + (1−m)f(O)))x .

Consequently, the error is not in a conservative form. Hence, following the idea of [8],
we choose an approximate solution in the form (10),

uapp(x, t) = m

(
x− s(t)

εγ

)
I(x, t) +

(
1−m

(
x− s(t)

εγ

))
O(x, t) + d(x, t),

where d is such that

dt − εdxx = −q(x, t),

d(0, x) = d0(x).

Thanks to this choice, uapp now solves

uappt + (f ′(uapp))x − εuappxx = (f(uapp − d)− f(uapp))x,

and we will be able to integrate the equation. Let us set Rε(z, t) = f(ũapp − d̃) −
f(ũapp), which is the error term of the approximate solution in (12). Recall that we
have set z = x− s(t) + εδ(t). We show the following.

Proposition 3. There exists a positive constant C independent of ε such that ∀
γ ∈ ( 2

3 , 1), t ∈ [0, T ],

||Rε(·, t)||L1 ≤ Cε3γ , ||Rεt (·, t)||L1 ≤ Cε3γ−
1
2 , ||Rεtt(·, t)||L1 ≤ Cε3γ−1,
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||Rεz(·, t)||L1 ≤ Cε3γ−1, ||Rεzz(·, t)||L1 ≤ Cε2γ−
1
2 .

Proof. We have a result similar to that of [8] thanks to the matching conditions

||q̃(·, t)||L1 + ||q̃(·, t)t||L1 + ||q̃tt(·, t)||L1 ≤ Cε3γ

and

||q̃||L∞ + ||q̃z(·, t)||L1 ≤ Cε2γ .

Next since d̃(z, t) = d(x+ s(t)− εδ(t), t), d̃ is a solution of

d̃t − (s′(t)− εδ(t))d̃z − εd̃zz = −q̃(z, t),(36)

with the initial condition d̃(z, 0) = 0. Consequently, we can write

d̃(z, t) =

∫ t

0

∫ +∞

−∞
kε(z − y, t, τ)q̃(y, τ) dydτ,

where

kε(z, t, τ) =
1√

4πε(t− τ)
exp


−

(
z +

∫ t
τ
s′(µ)− εδ′(µ) dµ

)2

4ε(t− τ)


 .

Since ||k(·, t, τ)||L1 +
√
ε||kz(·, t, τ)||L1 is independent of ε, we get

||d̃(·, t)||L1 ≤ Cε3γ , ||d̃z(·, t)||L1 ≤ Cε3γ−
1
2 ,

||d̃(·, t)||L∞ ≤ Cε2γ , ||d̃z(·, t)||L∞ ≤ Cε2γ−
1
2 .

To bound ||d̃t(·, t)||L1 and ||d̃tt(·, t)||L1
, we take the time derivative of (36) and get

(d̃t)t − (s′(t)− εδ(t))(d̃t)z − ε(d̃t)zz = q̃t + (s′(t)− εδ(t))d̃z,

with the initial condition d̃t(z, 0) = q̃(z, 0). Hence we can write

d̃t(z, t) =

∫ +∞

−∞
kε(z − y, t, 0)q̃(y, 0) dy

+

∫ t

0

∫ +∞

−∞
kε(z − y, t, τ)(q̃t + (s′(τ)− εδ(τ))d̃z)(y, τ) dydτ.

This leads to

||d̃t(·, t)||L1 ≤ Cε3γ−
1
2 , ||d̃tz(·, t)||L1 ≤ Cε3γ−1.

The bound for ||d̃tt||L1 is obtained by taking again the time derivative of the equation
and using the bound on ||d̃tz(·, t)||L1 . To get the bound on ||d̃zz||L1 , we take the
derivative of (36) with respect to z. To end the proof of the proposition, we use the
Taylor formula, the previous bounds, and

||ũapp||L∞ + ||ũappt ||L∞ + ||ũapptt ||L∞ + ε||ũappz ||L∞ + ε2||ũappzz ||L∞ ≤ C,

where C is independent of ε.
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3. The Green’s function for a pure viscous profile problem. Here we
recall part of the results of [21] about the behavior of the Green’s function GSτ (t, x, y)
of the operator

Lετu = ∂tu−
(
f ′
(
V
(x
ε
, τ
))

− s′(τ)
)
ux − εuxx.

The Green’s function is a solution of LετG
S
τ = 0 for t > 0 such that

lim
t→0+

GSτ (t, x, y) = δy(x)In

and

GSτ (t, x, y) = 0, t < 0.

Note that

GSτ (t, x, y) =
1

ε
GHZτ

(
t

ε
,
x

ε
,
y

ε

)
,(37)

where GHZτ (t, x, y) is the Green’s function of the operator

Lτu = ∂tu− (f ′(V (x, τ))− s′(τ))ux − uxx

studied very precisely in [21]. We will denote by a+
j (τ), r

+
j (τ) the eigenvalues and

the associated eigenvectors of f ′(u+(τ))− s′(τ) and by a−j (τ), r
−
j (τ) the eigenvalues

and the associated eigenvectors of f ′(u−(τ))− s′(τ). Using (37) and [21], we get the
following.

Theorem 4 (Zumbrun–Howard [21]). Under hypothesis (H), we have

GSτ (t, x, y) =
∑

j,a+
j

(τ)>0

O


exp

(
− (x−a+j (τ)t)

2

Mεt

)
√
εt


 r+j (τ)χx≥0(38)

+
∑

j,a−
j

(τ)<0

O


exp

(
− (x−a−j (τ)t)

2

Mεt

)
√
εt


 r−j (τ)χx≤0 + O


e− (x−y)2

Mεt√
εt

e−σ
t
ε


 ,

∂xG
S
τ (t, x, y) =

∑
j,a+

j
(τ)>0

O


exp

(
− (x−a+j (τ)t)

2

Mεt

)
εt


 r+j (τ)χx≥0(39)

+
∑

j,a−
j

(τ)<0

O


exp

(
− (x−a−j (τ)t)

2

Mεt

)
εt


 r−j (τ)χx≤0 + O


e− (x−y)2

Mεt

εt
e−σ

t
ε


 ,

where M and σ are positive constants, and

χz≤0 =

{
1 if z ≤ 0,
0 if z > 0.
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All the O’s stand for linear forms which are uniformly bounded in (t, x) and locally
bounded in y.

Note that we do not use the whole expansion of the Green’s function obtained in
[21]. We use simplified (and weaker) bounds since we only need estimates for bounded
y. Indeed the far field behavior will be handled by another Green’s function in our
iterative construction. Moreover, there are no excited terms thanks to the hypothesis
Dτ (0) �= 0 since we deal with an integrated equation. Similar weaker estimates were
obtained in [9] for boundary layers.

4. The Green’s function for the general operator Lε. The aim of this
section is to prove the following theorem.

Theorem 5. There exists a Green’s function G(t, τ, x, y) of Lε defined for 0 ≤
τ, t ≤ T , z, y ∈ R such that G(t, τ, z, y) = 0 if t < τ and

sup
0≤τ≤T,y

∫ T

0

∫
R

|G(t, τ, z, y)| dzdt+√
ε sup

0≤τ≤T,y

∫ T

0

∫
R

|∂zG(t, τ, z, y)| dzdt(40)

is bounded uniformly in ε.
Proof. We use the iterative construction of the Green’s functions given in [9]. We

choose an approximate Green’s function Gapp(t, τ, z, y) under the form

Gapp(t, τ, z, y) =

N∑
k=1

Sk(t, τ, z, y)Πk(τ, y),

where Sk(t, τ, z, y) are Green’s kernels and Πk ∈ C∞([0, T ]× R,L(Rn)) are such that

||Πk(t, x)v|| ≤ C||v|| ∀x ≥ 0, t ∈ [0, T ], v ∈ R
n

and ∑
k

Πk = Id.

For each Sk, we define the error Rk(t, τ, z, y) = LεSk. We then define the matrix of
errors M(T1, T2) = (σkl(T1, T2))1≤k,l≤N , where

σkl(T1, T2) = sup
T1≤τ≤T2, y∈supp Πl

∫ T2

T1

∫
R

|Πk(t, z)Rl(t, τ, z, y)| dzdt.

This matrix describes how each part of the approximate Green’s function is handled
at the next step of the iterative method. Theorem 5 of [9] states that to prove (40),
it suffices to check that there exists η such that T2 − T1 ≤ η implies

lim
p→+∞Mp(T1, T2) = 0.

Let us now introduce some definitions that are necessary for the construction of our
approximate Green’s function. We use two smooth cut-off functions χ+ and χ− such
that

χ+(z) =

{
0 if z ≤ 1,
1 if z ≥ 2

and χ−(z) =
{

0 if z ≥ −1,
1 if z ≤ −2.
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We also assume that the cut-off function m already used was under the form (1 −
χ+)(1− χ−). We denote by P±(t, z), D±(t, z) matrices such that

f ′(u(z + s(t), t))− s′(t) = P+D+(P+)−1 ∀z > 0,

f ′(u(z + s(t), t))− s′(t) = P−D−(P−)−1 ∀z < 0,

and D±(±z, t) = diag(λ1(u(s(t)± z, t))− s′(t), . . . , λn(u(s(t)± z, t))− s′(t)) if z > 0.
Setting

λ+
i (z, t) =

{
λi(u(z + s(t), t))− s′(t) if z > 0,
λi(u(s(t) + 0, t))− s′(t) if z ≤ 0

and

λ−i (z, t) =
{
λi(u(z + s(t), t))− s′(t) if z < 0,
λi(u(s(t)− 0, t))− s′(t) if z ≥ 0,

we define the characteristic curves X±
i (t, τ, y) by

∂tX
±
i (t, τ, y) = λ±i (X

±
i (t, τ, y), t), t ≥ τ,

with initial data X±
i (τ, τ, y) = y. As in [9], we first make a stronger hypothesis than

(2), (3) and assume that

|λk(z, t)| ≥ C ∀z, t.(41)

This hypothesis will be removed in the last part of the proof of the theorem by a
localization argument.

We also define the projections

P+
out(t, z) = P+(t, z)D+

out(t, z)(P
+)−1(t, z),

P+
in(t, z) = P+(t, z)D+

in(t, z)(P
+)−1(t, z),

P−
out(t, z) = P−(t, z)D−

out(t, z)(P
−)−1(t, z),

P−
in(t, z) = P−(t, z)D−

in(t, z)(P
−)−1(t, z),

where

D+
out = diag(0, . . . , 0, 1, . . . 1), with p+ 1 null coefficients,

D+
in = diag(1, . . . , 1, 0, . . . , 0), with p unit coefficients,

D−
out = diag(1, . . . , 1, 0, . . . , 0), with p− 1 unit coefficients,

D−
in = diag(0, . . . , 0, 1, . . . , 1), with p unit coefficients.

Let

G±
T (t, τ, z, y) = diag


e−

(z−X±
i

(t,τ,y))2

4ε(t−τ)√
4πε(t− τ)


 .
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We define the Green’s functions for the incoming and outgoing waves as

G+
out(t, τ, z, y) = χ+

(
z

M1ε

)
P+(t, z)D+

out(t, z)GT (t, τ, z, y)(P
+(τ, y))−1 = χ+G̃+

out,

G+
in(t, τ, z, y) = χ+

(
z

M1ε

)
P+(t, z)D+

in(t, z)GT (t, τ, z, y)(P
+(τ, y))−1 = χ+G̃+

in,

G−
out(t, τ, z, y) = χ−

(
z

M1ε

)
P−(t, z)D−

out(t, z)GT (t, τ, z, y)(P
−(τ, y))−1 = χ−G̃−

out,

G−
in(t, τ, z, y) = χ−

(
z

M1ε

)
P−(t, z)D−

in(t, z)GT (t, τ, z, y)(P
−(τ, y))−1 = χ−G̃−

in,

where M1 > 0 is to be chosen. We also define

Gshock(t, τ, z, y) = m

(
z

M3ε

)
GSτ (t− τ, z, y),

where GSτ was defined in section 3. The kernels of the theorem of [9] will be S1 = S2 =
G−
out, S3 = G−

in, S4 = Gshock, S5 = G+
in, S6 = S7 = G+

out. The truncation functions
will be

Π1(τ, y) = χ−
(

y

M2ε

)(
1− χ−

(
2y

M3ε

))
P−
out(τ, y),

Π2(τ, y) = χ−
(

2y

M3ε

)
P−
out(τ, y),

Π3(τ, y) = χ−
(

y

M2ε

)
P−
in(τ, y),

Π4(τ, y) = m

(
y

M2ε

)
,

Π5(τ, y) = χ+

(
y

M2ε

)
P+
in(τ, y),

Π6(τ, y) = χ+

(
2y

M3ε

)
P+
out(τ, y),

Π7(τ, y) = χ+

(
y

M2ε

)(
1− χ+

(
2y

M3ε

))
P+
out(τ, y).

The constants M1, M2, and M3 are such that M1 ≤ 4M2 ≤ 16M3 and will
be carefully chosen at the end of the proof. G1 and G5 describe the creation and
propagation of outgoing waves in a vicinity of the shock layer, G2 and G6 describe
the creation and propagation of outgoing waves away from the shock layer, G3 and G7

describe the creation and propagation of ingoing waves, andG4 describes the dynamics
of the shock layer. Note that with this choice we get a relevant approximate Green’s
function since Gapp(τ, τ, z, y) = δy(z)In. Moreover Gapp satisfies the estimate (40);
hence we can use Theorem 5 of [9]. We have to compute M, which is the aim of the
following lemmas. For any error term E(t, τ, z, y), we use the notation

||E|| = sup
0≤τ≤T,y∈R

∫ T

τ

∫ +∞

−∞
|E(t, τ, z, y)| dzdt.

The following lemma of [9] is crucial for the estimations of the error terms. Conse-
quently, we recall it for the sake of completeness.
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4.1. A technical lemma. Let us define for some trajectory X(t) such that
X(0) = 0

I(y) =

∫ +∞

0

∫ +∞

0

exp
(
− (x− y −X(t))2

t

)
exp(−σx)dxdt√

t
,

J(y) =

∫ +∞

0

∫ +∞

0

exp
(
− (x− y −X(t))2

t

)
exp(−σx)dxdt

t
,

K(y) =
1

M

∫ +∞

0

∫ 2M

M

exp
(
− (x− y −X(t))2

t

)dxdt√
t
,

L(y) =
1

M

∫ +∞

0

∫ 2M

M

exp
(
− (x− y −X(t))2

t

)dxdt
t
,

Lemma 6 (see [9]).
(i) If γ ≥ X ′(t) ≥ δ > 0, then I(y) and J(y) are bounded uniformly in y ≥ 0 and

go to 0 as y → +∞.
(ii) If −γ ≤ X ′(t) ≤ −δ < 0, then I(y) and J(y) are bounded uniformly in y ≥ 0.
(iii) If γ ≥ X ′(t) ≥ δ > 0, then K(y) and L(y) are bounded uniformly in y ≥ 0

and M and go to 0 as y − 2M goes to +∞.
(iv) If −γ ≤ X ′(t) ≤ −δ < 0, then K(y) and L(y) are bounded uniformly in y ≥ 0

and M .
Note that as xe−x

2 ≤ Ce−x
2/2 the same result is true if we replace J(y) by

∫ +∞

0

∫ +∞

0

|x− y −X(t)|
t

exp
(
− (x− y −X(t))2

t

)
exp(−σx)dxdt√

t

and L(y) by

1

M

∫ +∞

0

∫ 2M

M

|x− y −X(t)|
t

exp
(
− (x− y −X(t))2

t

)dxdt√
t
.

Moreover if M ≥ 0,

∫ +∞

0

∫ +∞

M

exp
(
− (x− y −X(t))2

t

)
exp(−σx)dxdt√

t
≤ e−σMI(y −M)

and therefore goes to 0 as M → +∞, provided that y ≥M , and similarly for J .
Note also that we have opposite results according to the direction of the transport

if we study the integrals for x varying in (−∞, 0) or in (−2M,−M) when y goes to
−∞.

4.2. Bounds on the error terms of the shock Green’s function. Call
ES(t, τ, z, y) this error term; we have

ES(t, τ, z, y) = Lε
(
m

(
z

M3ε

)
GSτ (t− τ, z, y)

)
.
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As in [9], we split it into an evolution error

ES1 = m

(
z

M3ε

)
LεGSτ

and a truncation error

ES2 =

(
1

M3ε
m′
(

z

M3ε

)
(f ′(uapp)− s′(t) + εδ′(t))− 1

M2
3 ε
m′′
(

z

M3ε

))
GSτ(42)

− 2

M3
m′
(

z

M3ε

)
∂xG

S
τ .

We then split ES2 into four parts: the ingoing parts at the right- and left-hand sides
of the shock and the outgoing part at the right- and left-hand sides of the shock

ES+
2in = χz≥0P+

inE
S
2 , ES+

2out = χz≥0P+
outE

S
2 ,

ES−2in = χz≤0P−
inE

S
2 , ES−2out = χz≤0P−

outE
S
2 .

Estimates on these terms are given by the following lemma.

Lemma 7. We have

(i) ||1|y|≤2M2εE
S
1 (t, τ, z, y)||L∞

τ,y,L
1
t,z

≤ C1(T + ε2γ−1),

(ii) ||1|y|≤2M2εE
S+
2out(t, τ, z, y)||L∞

τ,y,L
1
t,z
+ ||1|y|≤2M2εE

S−
2out(t, τ, z, y)||L∞

τ,y,L
1
t,z

≤ C2,

(iii) ||1|y|≤2M2εE
S+
2in(t, τ, z, y)||L∞

τ,y,L
1
t,z

+ ||1|y|≤2M2εE
S−
2in(t, τ, z, y)||L∞

τ,y,L
1
t,z

≤ C3 + C4T ,

where C1 is locally bounded in M2 and M3, C2 and C4 are locally bounded in M2

(uniformly in M3), and C3, which depends on M2 and M3, goes to 0 as M3 → +∞.
Note that 2γ − 1 > 0.

Proof. We give only the proof for the “+” terms, that is, estimates for z ≥ 0,
since the proof for the other side is completely symmetric. Let us begin with the
evolution error. We have

ES1 = m

(
z

M3ε

)(
f ′
(
(1−m)

(
z − εδ(t)

εγ

)
O(z + s(t)− εδ(t), t)

+m

(
z − εδ(t)

εγ

)
I
(z
ε
, t
)
+ d̃(z, t)

)

−f ′
(
V
(z
ε
, τ
))

+ (s′(t)− s′(τ)) + εδ(t)

)
∂zG

S
τ .

Hence

|ES1 | ≤ m

(
z

M3ε

)
(|t− τ |+ εγ)|∂zGSτ |

since for ε sufficiently small, we have m( z
M3ε

)(1−m)( z−εδ(t)εγ ) = 0 ∀t ∈ [0, T ]. It leads
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to estimate

α1,j =

∫ T

τ

∫ 2M3ε

0

1

ε
e−

(z−a+
j

(τ)(t−τ))2

ε(t−τ) dzdt,

α1,r =

∫ T

τ

∫ 2M3ε

0

e−σ
t−τ
ε e−

(z−y)2
ε(t−τ) dzdt,

α̃1,j = εγ
∫ T

τ

∫ 2M3

0

e−
(z−a+

j
(τ)(t−τ))2

ε(t−τ)

ε(t− τ)
dzdt,

α̃1,r = εγ
∫ T

τ

∫ 2M3ε

0

e−σ
t−τ
ε e−

(z−y)2
ε(t−τ)

ε(t− τ)
dzdt.

The integrals α1,j and α1,r are obviously bounded by 2M3T . To bound α̃1,j , we set

z̃ =
z−α+

j
(t−τ)√

ε(t−τ) , giving an O(εγ−
1
2

√
T ) bound. We easily get a similar bound for α̃1,r.

Hence (i) is proved.
We now prove (ii). Using (42) and estimates on GSτ and ∂xG

S
τ , given in Theorem

5, we have to bound

β1,j =
1

M3ε

∫ T

τ

∫ 2M3ε

M3ε

e−
(z−a+

j
(τ)(t−τ))2

ε(t−τ)√
ε(t− τ)

dzdt,

β2,j =
1

M3ε

∫ T

τ

∫ 2M3ε

M3ε

e−
(z−a+

j
(τ)(t−τ))2

ε(t−τ)

ε(t− τ)
dzdt,

β1,r =
1

M3

∫ T

τ

∫ 2M3ε

M3ε

e−
(z−y)2
ε(t−τ)√

ε(t− τ)
e−

σ(t−τ)
ε dzdt,

β2,r =
1

M3

∫ T

τ

∫ 2M3ε

M3ε

e−
(z−y)2
ε(t−τ)

ε(t− τ)
e−

σ(t−τ)
ε dzdt,

To bound β1,j and β2,j , we set z̃ =
z
ε and s = t−τ

ε and use Lemma 6. To bound β1,r

and β2,r, we set z̃ =
z−y√
ε(t−τ) and then set s = t−τ

ε . We get O( 1
M3

) bounds.

It remains to prove (iii). Thanks to Theorem 4, we can write for z ≥ 0

GSτ (t− τ, z, y) = P+
out(τ, 0)G̃(t, τ, z, y) +R(t, τ, z, y),

where G̃ is bounded by Gaussians which travel at speeds a+
j (τ, 0) and R is the residual

term bounded by 1
ε(t−τ)e

− (z−y)2
Mε(t−τ) e−σ

t−τ
ε . Consequently, we get

|P+
in(t, z)G

S
τ | ≤ C

(
(|t− τ |+ z) |G̃|+ |R|

)
.

Similarly, since

m′
(

z

M3ε

)
f ′(uapp) = m′

(
z

M3ε

)
f ′
(
V
(z
ε
, t
)
+O(εγ)

)

= m′
(

z

M3ε

)
f ′(u(z + s(t), t)) +O (e−α zε + εγ

)
,



512 FREDERIC ROUSSET

we get∣∣∣∣m′
(

z

M3ε

)
P+
in(t, z)f

′(uapp)GSτ

∣∣∣∣ ≤ (|t− τ |+ |z|+ e−α
z
ε + εγ

) |G̃|+ |R|.

Using also the polarization of ∂zG
S
τ given in Theorem 2, we get

|P+
in(t, z)∂zG

S
τ | ≤ C((|t− τ |+ z + εγ) |G̃|+ |R|).

Hence ES+
2in is bounded by terms like β1,r, β2,r, α1,j , α1,r which have already been

bounded and by

γ1,j =
1

M3ε

∫ T

τ

∫ 2M3ε

M3ε

x
e−

(z−a+
j

(τ)(t−τ))2

ε(t−τ)√
ε(t− τ)

dzdt,

γ2,j =
1

M3

∫ T

τ

∫ 2M3ε

M3ε

x
e−

(z−a+
j

(τ)(t−τ))2

ε(t−τ)

ε(t− τ)
dzdt,

γ3,j =
1

M3ε

∫ T

τ

∫ 2M3ε

M3ε

e−α
z
ε
e−

(z−λj(t−τ))2
ε(t−τ)√

ε(t− τ)
dzdt.

We have

γ1,j ≤ 2

∫ T

τ

∫ +∞

0

e−
(z−a+

j
(τ)(t−τ))2

ε(t−τ)√
ε(t− τ)

dzdt ≤ 2
√
πT.

Similarly, we have the estimate γ2,j ≤ 2
√
π
√
εT . Finally γ3,j ≤ e−αM3β1,j , which ends

the proof since β1,j is uniformly bounded in M3.

4.3. Bounds on the error terms of G±
out. In this section, we compute and

estimate the error terms of G+
out and G−

out. These error terms are respectively de-
noted by R+

out and R−
out. As usual we write R±

out = E±
1out + E±

2out, where E
±
1out =

χ±
(
z
Mε

)LεG̃±
out is the evolution error and E±

2out is the truncation error.
Lemma 8. Let M ≥M2. We have

||1y≥MεE+
1out(t, τ, z, y)||+ ||1y≤−MεE−

1out(t, τ, z, y)|| ≤ C5(T + ε2γ−1) + C6,

where C5 is independent of M1, M2, and M3, and where C6, which depends only on
M , goes to 0 as M → +∞. Moreover,

||1y≥MεE+
2out(t, τ, z, y)||+ ||1y≤−MεE−

2out(t, τ, z, y)|| ≤ C7(M)

with

lim
M→+∞

C7(M) = 0.

Note that since γ > 2
3 , we have a good bound in ε for ||E±

1out||.
Proof. We give only the outlines of the proof since it is almost the same as in

[9, section 5.3]. Note that here in and out stand for the direction of the transport
according to the shock, whereas in [9] they stand for the direction of the transport
according to the domain. Let us consider, for example, the “+” term. The proof
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for the “−” term is symmetric. Compared to [9], the only terms that are different
are those involving f ′(uapp). More precisely, as f ′(uapp) is uniformly bounded in ε
as Aint(t, x) +Ab

(
t, xε
)
was in [9], the truncation error is already studied in [9]. The

only new term which has to be studied is

χ+

(
z

M1ε

)
(f ′(uapp)− f ′(u(z + s(t), t)))P+D+

out∂zGT (P
+)−1.

Note that for z ≥M1ε,

|f ′(uapp)− f ′(u(z + s(t), t)| ≤ Cm
(z − εδ(t)

εγ

)(∣∣∣V (z
ε
, t
)
− u(z + s(t), t)

∣∣∣+O(εγ)
)

≤ C

(
e−α

z
ε + εγ

+ m

(
z − εδ(t)

εγ

)
|u(z + s(t), t)− u(s(t) + 0, t)|

)
≤ C

(
e−α

z
ε + εγ

)
since m( z−εδ(t)εγ ) vanishes for z ≥ 2εγ + εδ(t). The term involving e−α

z
ε is already

bounded in [9] thanks to Lemma 6. Consequently, it remains only to bound

δj = εγ
∫ T

τ

∫ +∞

M1ε

|z −X+
j |

(ε(t− τ))
3
2

e−
(z−X+

j
)2

ε(t−τ) dzdt.

Setting z̃ =
x−X+

j√
ε(t−τ) , we get

δj ≤ Cεγ−
1
2

√
T ≤ C(T + ε2γ−1).

4.4. Bounds on the error terms of Gin. In this section, we estimate the
error terms of G+

in, and G
−
in. These terms are respectively denoted by R+

in and R−
in.

As usual we write R±
in = E±

1in + E±
2in, where E

±
1in = χ±

(
z
Mε

)LεG̃±
in is the evolution

error and E±
2in is the truncation error.

Lemma 9. We have

||1y≥M2εE
+
1in||+ ||1y≤−M2εE

−
1in|| ≤ C8(T + ε2γ−1) + C9,

where C8 is locally bounded in M1 and C9 → 0 when M1 → +∞. Moreover

||1y≥M2εE
+
2in||+ ||1y≤−M2εE

−
2in|| ≤ C10,

where C10 is bounded uniformly in M1.

We do not give the proof of this lemma since it is very similar to the proof of the
corresponding lemma in [9]. The minor changes that we have to bring in the proof of
[9] are already explained in the previous section. We point out only that the estimate
on the truncation error is worse than in the previous section. It relies on the different
estimates on K(y) and L(y) according to the direction of the transport in Lemma 6.
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4.5. End of the proof with (41). Combining all the previous estimates, we
can write the matrix of errors M(0, T ) as

M =




η(M2) η(M3) η(M1) η(M3) 0 0 0
η(M2) η(M3) η(M1) C 0 0 0
η(M2) η(M3) η(M1) η(M3) 0 0 0
η(M2) η(M3) C η(M3) C η(M3) η(M2)

0 0 0 η(M3) η(M1) η(M3) η(M2)
0 0 0 C η(M1) η(M3) η(M2)
0 0 0 η(M3) η(M1) η(M3) η(M2)



,

where “η(M1)” stands for the coefficients which go to 0 as M1 → +∞ (independently
of M2 and M3), T → 0 and ε → 0, “η(M2)” stands for coefficients which go to 0
as M2 → +∞ (M1 being fixed, but independently of M3), T → 0 and ε → 0, and
“η(M3)” stands for the coefficients which go to 0 as M3 → +∞ (M1 and M2 being
fixed), T → 0 and ε → 0, and where C is a constant depending on M1, M2 (but
independent ofM3). Next we conclude as in [9]. Let α < 1

1000 , we first fixM1 and T1,
ε1 such that for T ≤ T1, ε ≤ ε1 all the η(M1) are smaller than α. Next we fixM2, and
we can reduce T1 and ε1 such that all the η(M2) are smaller than α. Finally, by taking
M3 sufficiently large, and by reducing T1 and ε1 we can make η(M3) arbitrarily small.
After the choice of M1, M2, T1, and ε1 the constants are fixed. Using a perturbation
argument, we have to consider only the powers of

M̃ =




α 0 α 0 0 0 0
α 0 α C 0 0 0
α 0 α 0 0 0 0
α 0 C 0 C 0 α
0 0 0 0 α 0 α
0 0 0 C α 0 α
0 0 0 0 α 0 α



.

Since the eigenvalues of M are 0 and 2α, the theorem with assumption (41) is proved.

4.6. Without (41). In this section we only assume (2), (3). By continuity,
inequalities (2), (3) are still true for −4η ≤ z ≤ 4η. We again use Theorem 5 of [9]
with

Π1 = χ+

(
y

η

)
, Π2 = χ−

(
y

η

)
, Π3 = m

(
y

η

)
,

and

S1 = χ+

(
4z

η

)
G+
T , S2 = χ−

(
4z

η

)
G−
T ,

S3 = m

(
z

2η

)
G,

where G is the Green’s function that was constructed in the previous section. Since
the errors corresponding to each Si are as small as we want if we choose T and ε small
(T being independent of ε), Theorem 5 of [9] allows us to conclude.
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5. Convergence of w̃. In this section we prove Theorem 2. To prove the
convergence of w̃ to zero, we use a standard argument for parabolic equations as in
[10], [9]. Local existence of a smooth solution for (12) with initial condition w̃(z, 0) = 0
is classical; hence we define

T ε = sup {T1 ∈ [0, T ], ∃w̃ solution on R × [0, T1), E(T1) ≤ 1} ,(43)

where

E(T1) =

∫ T1

0

∫ +∞

−∞

|w̃|
ε3γ−α

+
|w̃z|

ε3γ−α−
1
2

+
|w̃t|

ε3γ−2α− 1
2

+
|w̃tz|

ε3γ−2α−1

+
|w̃zz|

ε3γ−3α− 3
2

+
|w̃tt|

ε3γ−3α−1
+

|w̃ttz|
ε3γ−3α− 3

2

+
|w̃tzz|

ε3γ−4α−2
dzdt;

the small positive constant α will be carefully chosen in the following. Note that we
have

||w̃z||L∞(R×[0,T1]) ≤ ||w̃tzz||L1(R×[0,T1]) ≤ ε3γ−4α−2 ≤ 1(44)

as soon as ε ≤ 1 if we choose γ ∈ ( 2
3 , 1), and α > 0 so small that 3γ − 4α − 2 > 0.

There are two possibilities:
(i) T ε = T,
(ii) T ε < T and E(T ε) = 1.

Let us assume that we are in the second case. From now on, we will denote by C a
generic number which may depend on T but which is independent of ε. Moreover,
until the end of the proof, we set

||w̃|| = ||w̃||L1(R×[0,T ε]), ||w̃||∞ = ||w̃||L∞(R×[0,T ε]).

Since w̃ is a solution of (12), we have for all t ∈ [0, T ε),

w̃(z, t) =

∫ t

0

∫ +∞

−∞
G(t, τ, z, y)(Rε(z, τ) +Q(ũapp, w̃z)) dydτ,(45)

where G is the Green’s function built in the previous section. Consequently, using
(40) and Proposition 3, we get

||w̃|| ≤ C(ε3γ + ||Q(ũapp, w̃z)||).

Since

Q(ũapp, w̃z) =

∫ 1

0

(1− µ)f ′′(ũapp + µw̃z) dµ · (w̃z, w̃z),(46)

we get, thanks to (44),

||Q(ũapp, w̃)|| ≤ C||w̃z||∞||w̃z|| ≤ Cε6γ−5α− 5
2 .

Hence

||w̃||
ε3γ−α

≤ C(εα + ε3γ−4α− 5
2 ).(47)
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Note that we can choose γ ∈ ( 2
3 , 1) and α > 0 such that 3γ − 4α− 5

2 > 0. Going back
to (45), we also have

w̃z(z, t) =

∫ t

0

∫ +∞

−∞
∂zG(t, τ, z, y)(R

ε(z, τ) +Q(ũapp, w̃z)) dydτ.

Hence, again using (40), we get

||w̃z||
ε3γ−α−

1
2

≤ C(εα + ε3γ−4α− 5
2 ).(48)

Next we take the time derivative of (12) to obtain

(w̃t)t + (f ′(ũapp)− s′(t) + εδ′(t))(w̃t)z − ε(w̃t)zz(49)

= Rεt + ∂tQ(ũ
app, wz)− ∂t(f

′(ũapp)− s′(t) + εδ′(t))w̃z,

with the initial condition

w̃t(z, 0) = Rε(z, 0)(50)

given by (12). Hence, again using the Green’s function, we can write

w̃t(z, t) =

∫ +∞

−∞
G(t, 0, z, y)Rε(z, 0) dy(51)

+

∫ t

0

∫ +∞

−∞
G(t, τ, z, y)

(
Rεt + ∂tQ(ũ

app, wz)− ∂t(f
′(ũapp)− s′(t) + εδ′(t))w̃z

)
.

Consequently, thanks to (40) and Proposition 3, we get

||w̃t|| ≤ C(ε3γ−
1
2 + ε3γ−α−

1
2 + ||∂tQ(ũapp, wz)||).

Taking the time derivative of (46), we get

||∂tQ(ũapp, wz)|| ≤ C(||w̃zt||||w̃tzz||+ ||w̃z||||w̃tzz||) ≤ Cε6γ−6α−3.(52)

This gives the estimate

||w̃t||
ε3γ−2α− 1

2

≤ C(εα + ε3γ−4α− 5
2 ).(53)

Taking the derivative with respect to z of (51) and again using (40), we also get

||w̃tz||
ε3γ−2α−1

≤ C(εα + ε3γ−3α− 5
2 ).(54)

Next we use (12) to express ||w̃zz||. We get

||w̃zz|| ≤ C

ε
(||w̃t||+ ||Rε||+ ||Q(ũapp, w̃z)||.

Hence

||w̃zz||
ε3γ−3α− 3

2

≤ C(εα + ε3γ−α−2).(55)
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The next step is to take the time derivative of (49), which gives

(w̃tt)t + (f ′(ũapp)− s′(t) + εδ′(t))(w̃tt)z − ε(w̃tt)zz

= Rεtt + ∂ttQ(ũ
app, w̃z)− 2∂t(f

′(ũapp)− s′(t) + εδ′(t))w̃zt
− ∂tt(f

′(ũapp)− s′(t) + εδ′(t))w̃z.

Using (50) now, we get

w̃tz(z, 0) = Rεz(z, 0), w̃tzz = Rεzz(z, 0).(56)

Hence, also using (49) and Proposition 3, we get

||w̃tt(·, 0)|| ≤ C(ε3γ−1 + ε2γ+
1
2 ) ≤ Cε3γ−1,

since γ < 3
2 .

Consequently, again using the Green’s function, we get

||w̃tt|| ≤ C(ε3γ−1 + ε3γ−2α−1 + ε3γ−α−
1
2 + ||∂ttQ(ũapp, w̃t)||).(57)

It remains to estimate ||∂ttQ(ũapp, w̃t)||; we have

||∂ttQ(ũapp, w̃z)|| ≤ C(||w̃ztt||||w̃z||+ ||w̃ztt||||w̃zt||+ || |w̃zt|2||)
≤ C(ε6γ−7α− 7

2 + || |w̃zt|2||).

Since

|| |w̃zt|2|| ≤
∫ T

0

∫ +∞

−∞

(∫ z

−∞
|w̃zzt(t, y)|dy

)(∫ t

0

|w̃ztt(s, z)|ds+ |w̃zt(0, z)|
)
dzdt,

we get, thanks to (56),

|| |w̃zt|2|| ≤ Cε6γ−7α− 7
2 .

Consequently, going back to (57), we have shown

||w̃tt||
ε3γ−3α−1

≤ C(εα + ε3γ−4α− 5
2 ).(58)

As previously shown, we also have, thanks to the estimate on the derivative of the
Green’s function,

||w̃ttz||
ε3γ−3α− 3

2

≤ (εα + ε3γ−4α− 5
2 ).(59)

Finally, thanks to (49), (52), and Proposition 3, we find

||w̃tzz||
ε3γ−4α−2

≤ C(εα + ε3γ−α−2).(60)

To conclude, we choose γ ∈ ( 2
3 , 1) and α > 0 such that 3γ − 4α − 5

2 > 0 and collect
(47), (48), (53), (54), (55), (58), (59), (60), which gives us

E(T ε) ≤ Cεβ
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for some β > 0. Consequently the equality is impossible in (ii), hence T ε = T and

E(T ) ≤ 1.

Moreover since

||uε − uapp||L∞([0,T ],L1(R)) = ||w̃z||L∞([0,T ],L1(R)) ≤ ||w̃tz|| ≤ ε3γ−2α−1

and

||uε − uapp||L∞([0,T ]×R) = ||w̃z||L∞(R×[0,T ]) ≤ ||w̃tzz||L1(R×[0,T ]) ≤ ε3γ−4α−2

the theorem is proved.

Acknowledgments. I thank Emmanuel Grenier and Denis Serre for many fruit-
ful discussions.
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Abstract. We prove the existence of stationary or traveling waves in a lattice dynamical sys-
tem arising in the theory of binary phase transitions. The system allows infinite-range couplings
with positive and negative weights. The allowance for negative coupling coefficients precludes the
possibility of a maximum principle. Instead, a weakened type of ellipticity is stipulated that is used
with spectral theory in a perturbative fixed point argument to construct a traveling wave when the
nonlinearity is unbalanced and the coupling is sufficiently strong. When the nonlinearity is balanced,
a variational technique is used to obtain stationary waves, which are then analyzed in more detail for
strong couplings. From a physical perspective these models are important since long-range and indef-
inite interactions occur in nature and can lead to pattern formation. Our results provide conditions
under which patterned states tend to be swept away by traveling waves even when the interaction
is of excitatory-inhibitory type. The results also have implications for the numerical analysis of
spatially discretized reaction-diffusion equations, where it is important to know whether solutions to
the discretized equations converge to solutions to the continuum equation as the mesh size tends to
zero.
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1. Introduction. We consider the heteroclinic traveling wave problem for the
lattice dynamical system

u̇n =
1

ε2

∞∑
k=−∞

αkun−k − f(un), n ∈ Z,(1.1)

where 0 < ε,
∑

k αk = 0, α0 < 0, α−k = αk, and f is a smooth bistable function with
nondegenerate zeros at ±1 and an intermediate zero at q ∈ (−1, 1). Thus, we seek a
solution having the form un(t) = u(εn + ct) for some constant c and with the profile
satisfying u(±∞) = ±1. We shall not assume positivity of the αk’s for k �= 0; there
may be some which are negative, but we assume that

∑
k>0 αkk

2 > 0 (without loss
of generality we take this sum to be 1). We will assume another (spectral) positivity
condition, but the foregoing describes the basic problem under consideration. The
symmetry, α−k = αk, is suggested by the application to material science as indicated
below, but it also assures that the convolution operator on the right in (1.1) is self-
adjoint in �2.
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Setting un(t) = u(εn+ ct) and using the properties of the αk’s, we may write the
traveling wave equation for (1.1) in variable x = εn + ct as

cu′ −
∑
k>0

αkk
2u(x + kε) + u(x− kε) − 2u(x)

(kε)2
+ f(u) = 0.(1.2)

We seek a solution u such that u(±∞) = ±1.
Formally, as ε → 0, we obtain the traveling wave equation for the bistable

reaction-diffusion equation or Allen–Cahn equation:

cu′ − u′′ + f(u) = 0 in R, u(±∞) = ±1.(1.3)

It is well known (e.g., [13]) that (1.3) has a unique (up to translation) traveling
wave profile, u0, and a unique wave speed, c0. Furthermore, u′

0 > 0, and the operator
obtained by setting c = c0 and linearizing the left-hand side of (1.3) at u0 has 0 as a
simple isolated eigenvalue, the remaining spectrum being in the open right half-plane
[16, section 5.4]. With this nondegeneracy of the wave u0, it is therefore natural to
hope that for ε > 0 and sufficiently small, (1.2) also has a unique traveling wave (uε, cε)
close to (u0, c0). This is a singular perturbation problem, however, and intuition is
not always correct in such problems. In the case that c0 �= 0, which is equivalent to∫ 1

−1
f(u)du �= 0 (we say that f is unbalanced), and under certain positivity conditions

on the set of coefficients {αk}, we prove that there is a locally unique traveling wave
for ε > 0 and sufficiently small. In the case that c0 = 0, under slightly stronger
assumptions on the αk’s, we prove that there is a stationary wave for all ε > 0, but
when ε is small the solution is not unique. The proofs in the two cases are completely
different, the first being obtained through a perturbation argument and the second
through a variational argument.

When c0 �= 0, we use the Fredholm alternative and a contraction mapping ar-
gument to obtain a locally unique solution near (u0, c0). However, there are hurdles
to overcome due to the facts that the linearized operator is not self-adjoint, and it is
a bounded, nonlocal operator which is in some sense approximating an unbounded,
local operator.

In the case that c0 = 0 (f is balanced), the linearized operator is now self-adjoint,
but, in addition to the approximation difficulties mentioned above, there is a loss of
regularity since (1.2) is not even a differential equation, unlike the case when c0 �= 0.
To compensate, we slightly strengthen the spectral positivity assumption on {αk}
but still allow some terms to be negative. A variational argument employing Fourier
analysis is used to prove the existence of a stationary wave profile for any ε > 0. Thus,
the result is global in ε in contrast to the perturbative nature of the result for c0 �= 0.
The argument involves splitting the energy functional into a part which we call kinetic
energy and a part which we call potential energy. By the assumptions on {αk}, the
kinetic energy is nonnegative and the potential energy is coercive. This assures that
any minimizing sequence of transition states has a convergent subsequence. However,
because of the long-range and indefinite interaction terms, one cannot conclude that
transitions are monotone, and in fact it is difficult to localize the transitions of the
terms in the minimizing sequence. It can be shown that transitions have a minimal
“cost” and that a pair of well-separated transitions costs more than a single transition.
These ideas are used to obtain convergence of a subsequence of suitably translated
members of a minimizing sequence to an energy minimizing state which has a single
transition. This minimizer is the desired stationary wave. Uniqueness is not assured.
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In fact, for ε > 0 sufficiently small, using a minimax argument we show the existence
of a second wave, in sharp contrast to the continuum case.

Concerning the origins of (1.1), consider the free energy of an Ising-like spin
system on a lattice, Λ, with spins taking values (probabilistically) in an interval, I,
and which interact in pairs according to the spin values and their separation. Assume
that the “temperature” is below critical so that two stable spin-phases exist.

Consistent with the second law of thermodynamics, we postulate that the spin
field {ur}r∈Λ evolves according to the negative gradient of the free energy. The
resulting dynamical system is (1.1) in the case that Λ = Z, the integers. This was
described in some detail in [1], where it was also shown that, in general, the coefficients
{αk} may not all be nonnegative and that f may not be balanced, even without an
external field. Because the interaction coefficients represent an aggregate of different
forces, αk may change sign with k, as in the Lennard–Jones potential (see [18]). The
subscript k refers to the separation between a pair of interacting lattice sites, and so
it is natural that we take α−k = αk.

In taking ε small, we are considering the case where the pairwise interaction is
very large, which may be the case when the lattice sites are very closely packed.

Another motivation for studying (1.1) is that one may want to establish a rigorous
connection between continuum theory and numerical approximations. In that case,
ε is obviously proportional to the mesh size. Noticeably, in [5], only approximate
solutions of (1.2) were constructed, although an exact solution would be of more use.

The nearest neighbor version of (1.1), using the finite difference approximation of
the second derivative, was studied in [17] and [21]. We note that even in that special
case our result improves upon the result in [21] to some extent. There the author
considered the usual discretization of the Nagumo equation and constructed traveling
waves for mesh size ε small enough, of the form un(t) = u(n− ct) with c �= 0. In this
paper, we show not only that those waves have nonzero speed but also that the scaled
profile converges to u0 as ε ↘ 0. Furthermore, we find stationary waves for all ε > 0
when f is balanced.

There have been many recent works on other versions of (1.1) besides those men-
tioned above (see, for instance, [3], [8], [9], [1], [19], [14], [15], and [20], the latter of
which has a review and other references). A discrete time version was studied in [10].
Continuum but nonlocal versions were studied in [2], [4], [11], [6], [7], and [12], for
example. However, for most of these results the authors assume that the interaction
is nonnegative. In that case a comparison principle holds, providing some type of
compactness and allowing the construction of unique monotone traveling waves.

An interesting feature of (1.1), first discussed in [17], is that for some unbalanced

nonlinearities, waves are “pinned”; that is,
∫ 1

−1
f(u)du �= 0, but the wave has zero

velocity. Some recent results concerning pinned states may also be found in [19] and
[1], where coupling with positive and negative weights is also allowed. Of course,
that is only for ε sufficiently large, as our results show. That the usual propagation

criterion (
∫ 1

−1
f(u)du �= 0) holds for ε sufficiently small is also established in [1] for

the case ak ≥ 0 when k �= 0.
For brevity and to suggest what is to follow, we introduce the notation

∆εu ≡ 1

ε2

∑
k>0

αk(u(x + εk) + u(x− εk) − 2u(x)).(1.4)

Thus, we study

cεuε
′ − ∆εuε + f(uε) = 0 on R, uε(±∞) = ±1.(1.5)
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We now give explicitly the assumptions on f and the coefficients {αk} and state
our results.

Even though (1.5) contains only αk’s with positive indices, in (A2) below we
mention the symmetry and mean value conditions on the coefficients to remind the
reader of the origins of (1.5). Assume the following:

(A1) f ∈ C2(R) has exactly three zeros, −1, q ∈ (−1, 1), and 1, with fu(±1) > 0.
(A2)

∑
k∈Z

αk = 0, α−k = αk,
∑

k>0 αkk
2 > 0 (without loss of generality we

take this sum to be 1),
∑

k>0 |αk|k2 < ∞, and A(z) ≡ ∑k>0 αk(1 − cos(kz)) ≥ 0
for all z ∈ [0, 2π].

Note that A(z) ≥ 0 for all z ∈ [0, 2π] implies
∑

k>0 αkk
2 ≥ 0 (since A′′(0) ≥ 0).

Theorem 1. Suppose that
∫ 1

−1
f(u)du �= 0. Assume that f satisfies (A1) and

{αk} satisfy (A2). Then there exists a positive constant ε∗ such that for every ε ∈
(0, ε∗), problem (1.5) admits at least one solution, (cε, uε), which is locally unique in
H1(R) up to translation and which has the property that

lim
ε↘0

(cε, uε) = (c0, u0) in R ×H1(R).

In the case that c0 = 0 (i.e.,
∫ 1

−1
f(u)du = 0) the stationary wave equation

derived from (1.1) becomes a functional equation rather than a functional differential
equation, and it does not necessarily produce a solution that is defined at points other
than the integers. Given a stationary solution {uεn} to (1.1) with limn→±∞ = ±1,
one may construct a solution uεn to (1.5) on R with cε = 0 by

uε(x) =
∑

uεnχ
ε
n(x),(1.6)

where χεn is the characteristic function of the interval (ε(n− 1/2), ε(n + 1/2)].
Clearly, translates of uε are also stationary solutions to (1.5). While uε con-

structed in this way is not continuous, we may consider the continuous linear inter-
polant ũε of uεn defined by

ũε(x) =
∑

[uεn + (x/ε− n)(uεn+1 − uεn)]χεn(x− ε/2)(1.7)

to compare with u0.
As far as existence is concerned, the fact that from (1.1) we have only a functional

equation suggests that conditions stronger than (A2) are needed. Also, since (1.1)
involves indices from all Z, unlike (1.5), which has only k > 0, we recall the initial
symmetry and mean value conditions on the coefficients αk. We will require the
following:

(A3)
∑

k∈Z
αk = 0, α−k = αk,

∑
k>0 αkk

2 = 1,
∑

k>0 |αk|k2 < ∞, and for z ∈
(0, 2π), A(z) ≡∑k>0 αk(1 − cos(kz)) > 0.

The main results in this case are summarized in the following theorem.

Theorem 2. Suppose that
∫ 1

−1
f(u)du = 0. Assume that f satisfies (A1) and

{αk} satisfy (A3). Then for any ε > 0 there exists a stationary solution, {uεn}, to
(1.1) with limn→±∞ = ±1. Furthermore, with uε and ũε defined by (1.6) and (1.7),
respectively,

lim
ε↘0

uε = u0 in L∞(R) and lim
ε↘0

ũε = u0 in H1(R).

Finally, for ε > 0 and sufficiently small, there exists a second stationary solution uε
2

to (1.5), not a translate of uε, with limε↘0 uε = u0 in L∞(R).
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Remark 1. The bistable nonlinearity f can have more zeros. What we require
is that for some c = c0 there exists a traveling wave solution, u0, to (1.3) which
approaches ±1 exponentially fast as x approaches ±∞.

Remark 2. Conditions regarding A(z) in (A2) and (A3) are weak ellipticity
conditions or positivity conditions on the operator in the spectral sense. The de-
cay condition on the interaction coefficients translates to a regularity condition in
transform space. In particular, (A2) says that {αk} are the Fourier coefficients of a
smooth, nonpositive, even, 2π-periodic function which is strictly quadratic at 0. It
follows that, even though many of these coefficients may be negative,

∑
k>0 αk > 0

and
∑

k>0 kαk > 0. We will not need these last two observations in our proofs, but
we believe that they do shed more light on the restrictions imposed by (A2). To
prove the first, one need only note that A(z) is nonconstant, nonnegative, with mean∑

k>0 αk. The second may be seen by observing that v(x, y) ≡∑k>0 αke
−yk cos(kx)

is harmonic on (−2π, 2π) × (0,∞) having a strict maximum at (0, 0), and so 0 >
vy(0, 0) = −∑k>0 kαk.

Remark 3. It is natural to ask if the above conditions are vacuous or difficult
to meet with coefficients that change sign. The simplest example may be had for
only nearest and second-nearest neighbor interactions. Then (A3) is equivalent to
α1 > 0 and α2 ≥ −α1/4 (allowing α2 to be negative). As another example we take
the case of only three nonzero weights. Then (A3) is satisfied if, e.g., α2 = α3 > 0
and α1 > −Mα2, where 0 < M ≡ minz∈[0,2π](2− cos(2z)− cos(3z))/(1− cosz). Note
that in the second example α1 need not be positive. Finally, (A3) holds for small
(but global in range) perturbations of the usual finite difference approximation of the
Laplacian.

Remark 4. It is also natural to ask whether or not our conditions (A2) or (A3)
are sharp. The condition that

∑
k>0 αkk

2 = 1 (or just the positivity of that sum)
is clearly what is needed to even formally approximate the Laplacian. We have no
proof that the positivity of A(z) is needed, though we suspect that it is. To support
our beliefs consider the case where α0 = −1/8, α1 = −1/4, α2 = 5/16, α−k = αk, and
all other coefficients are zero. Then (A2) is violated only by A(z) taking on negative
values on the interval (z0, 2π − z0) ⊂ [0, 2π] where cos(z0) = −3/5.

Now take ε = 1 and f(u) = u± 1 for ±u < 0 with f(0) = 0. One can check that
there are no solutions {un} with un → ±1 as n → ±∞ and with un > 0 for ±n > 0.

Even without requiring the extra condition that un change sign only at n = 0
and assuming only that f is bistable and balanced with f ′(±1) = 1, there is strong
evidence against the existence of a connecting orbit between u = 1 and u = −1: If
the recurrence relation involving the un’s is written as a four-dimensional discrete
dynamical system, then u = −1 has only a one-dimensional unstable manifold and
u = 1 has only a one-dimensional stable manifold. Thus, generically, these one-
dimensional curves will not meet in the four-dimensional phase space.

Returning to the above example with piecewise linear f but now taking ε = 1/4,
one can easily show that there is an odd (un = −u1−n for n > 0) stationary solution
that approaches stationary solutions approximately given by {∓1±0.1 cosnθ} for some
θ �= 0 as n → ∓∞ and another odd stationary solution that approaches stationary
solutions approximately given by {∓1±0.05 sinnθ} as n → ∓∞. We believe that these
two connections to oscillatory states form a barrier to the existence of connections
between −1 and +1. It is worth noting that neither of the connections to oscillatory
states takes on the value 0 and therefore f can be modified in a neighborhood of zero
so that it is smooth.
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Part I. Nonstationary waves. Here we assume that
∫ 1

−1
f(s)ds �= 0.

2. Reformulation of the problem. Let (c0, u0(x)) be the unique solution to

c0u
′
0 − u′′

0 + f(u0) = 0 in R, u0(±∞) = ±1, u(0) = 0.(2.1)

Then c0 =
∫ −1

1
f(s)ds/

∫
R
(u′

0(x))2dx �= 0. We write

uε = u0 + φε, φε ∈ H1(R).

Then the traveling wave problem (1.5) is equivalent to finding (cε, φε) ∈ R ×H1(R)
such that

L+
ε,δφε = R(cε, φε),(2.2)

where

L±
ε,δφ = {±c0

d
dx − ∆ε + fu(u0(x)) + δ}φ for all φ ∈ H1(R),(2.3)

R(c, φ) = (c0 − c)(u′
0 + φ′) + (∆ε − d2

dx2 )u0 + δ φ−N(u0, φ),(2.4)

N(u0, φ) = f(u0 + φ) − f(u0) − fu(u0)φ,(2.5)

and δ > 0 is a small positive constant chosen at our convenience. The operator L−
ε,δ is

introduced since it is the adjoint of L+
ε,δ, and we find it more efficient to study them

together.

We shall show in the next section that L+
ε,δ has a bounded inverse (L+

ε,δ)
−1 from

L2(R) to H1(R), and that when restricted to the orthogonal complement of u′
0e

−c0x,
(L+

ε,δ)
−1 is bounded independent of ε and δ (for sufficiently small positive ε). Hence,

for every small φ ∈ H1(R), we choose cε = cε(φ) such that R(cε(φ), φ) is orthogonal
to u′

0e
−c0x. Then we define φ̃ = (L+

ε,δ)
−1R(cε(φ), φ). In section 4, we shall show that

the mapping φ → φ̃ is a contraction and thus possesses a fixed point, in some small
ball in H1(R), thereby establishing the existence of a solution to (1.5).

The introduction of a small positive δ serves dual purposes: (i) It makes the
operator L+

ε,δ invertible, so that one does not have to worry about the kernel; (ii) the

translation invariance of (1.5) is removed by requiring R to be orthogonal to u′
0e

−c0x.
With positive δ, (L+

ε,δ)
−1R automatically selects the required solution; in this way

one avoids the arbitrary addition of a multiple of u′
0 which is in the kernel of the

limiting operator with δ = 0. Thus, it makes the proof more efficient.

In what follows, ‖ · ‖L2 , ‖ · ‖L∞ , and ‖ · ‖Hi (i = 1, 2) denote the norms of the
spaces L2(R), L∞(R), and Hi(R), respectively. Also,

(φ, ψ) ≡
∫

R

φψ dx; φ ⊥ ψ ⇐⇒ (φ, ψ) = 0.

We end this section with a few properties of ∆ε which may be useful in other
contexts.

Lemma 3. Let ∆ε be defined as in (1.4), where {αk} satisfy (A2). Then

(1) for any φ ∈ L∞(R) with φ′′ ∈ L2(R), ‖∆εφ− φ′′‖L2 → 0 as ε ↘ 0;
(2) for any φ ∈ H1(R), (∆εφ, φ

′) = 0;
(3) for any φ, ψ ∈ L2(R), (∆εφ, ψ) = (φ,∆εψ) and (∆εφ, φ) ≤ 0.



526 PETER W. BATES, XINFU CHEN, AND ADAM J. J. CHMAJ

The proof follows from a straightforward calculation and is omitted. We point
out only that, by a Fourier transform and Parseval’s identity,

(∆εφ, φ) = − 1

ε2π

∫
R

∑
k>0

αk(1 − cos(εkξ))
∣∣∣F [φ]

∣∣∣2 dξ,(2.6)

where F [φ](ξ) =
∫

R
ei xξφ(x) dx.

Remark 5. As one can see from our proof, properties (1)–(3) are all that are
required of ∆ε for the assertion of Theorem 1 to hold.

3. The invertibility of L∓
ε,δ. In this section, we prove the following theorem.

Theorem 4. There exist a positive constant C0 and a positive function ε0(·) :
R

+ → R
+ such that for every δ > 0 and every ε ∈ (0, ε0(δ)), L±

ε,δ is a homeomorphism

from H1(R) to L2(R) and∥∥∥ (L±
ε,δ)

−1ψ
∥∥∥
H1

≤ C0

{
‖ψ‖L2 + 1

δ |(ψ, φ∓
0 )|
}
,(3.1)

where φ±
0 is as in (3.3) below. Consequently, for all δ > 0 and ε ∈ (0, ε0(δ)),

‖ (L±
ε,δ)

−1ψ ‖H1 ≤ C0 ‖ψ‖L2 for all ψ ∈ L2 with ψ ⊥ φ±
0 .(3.2)

To prove this theorem, we need a few preparations.

3.1. The limiting operator L±
0 . To study the operator L±

ε,δ, we begin by

studying the ε → 0 limit case, where ∆ε becomes d2

dx2 . Hence, we introduce operators

L±
0 and functions φ±

0 by

L±
0 φ ≡ ±c0φ

′ − φ′′ + fu(u0)φ ,

φ+
0 = u′

0 / ‖u′
0‖L2 , φ−

0 = u′
0e

−c0x / ‖u′
0e

−c0x‖L2 .
(3.3)

Lemma 5. Let L±
0 and φ±

0 be as in (3.3). The following hold:
(1) φ±

0 ∈ H2(R) and L±
0 φ±

0 = 0.
(2) For every ψ ∈ L2(R), the problem

L±
0 φ = ψ, φ ∈ H2 with φ ⊥ φ±

0

has a unique solution φ if and only if ψ ⊥ φ∓
0 . In addition, there exists a positive

constant C1, which depends only on f , such that

‖φ‖H2 ≤ C1‖L±
0 φ ‖L2 for all φ ∈ H2(R) satisfying φ ⊥ φ±

0 .

(3) There exists a positive constant C2, depending only on f , such that for every
δ > 0,

‖φ‖H2 ≤ C2

{
‖ψ‖L2 +

1

δ
|(ψ, φ∓

0 )|
}

for all φ ∈ H2(R), where ψ = L±
0 φ + δφ.

(3.4)

Parts (1) and (2), we believe, can be found in the literature. Here, for complete-
ness, we provide an elementary proof. In fact, L±

0 + δ is invertible, as can be seen by
the same argument used in subsection 3.3.
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Proof. (1) The assertion L±
0 φ±

0 = 0 follows by differentiating c0u
′
0−u′′

0 +f(u0) = 0
and a direct evaluation. We note that for some positive constants a±, depending only
on f ,

u′
0 ∼ a± exp

{(
c0/2 ∓

√
c20/4 + fu(±1)

)
x

}
as x → ±∞,

so that φ±
0 ∈ H2(R). For later use, we remark that for some positive constant C,

φ±
0 (x)

∫ x

0

dy

φ±
0 (y)

≤ C,
1

[φ±
0 (x)]2

∫ ∞

x

[φ±
0 (y)]2 dy ≤ C for all x > 0.(3.5)

Similar estimates also hold for x < 0.

(2) Since for every φ ∈ H2(R), (L±
0 φ, φ∓

0 ) = (φ,L∓
0 φ∓

0 ) = 0, a necessary condition
for L±

0 φ = ψ to have a solution is ψ ⊥ φ∓
0 . We now show that this is also sufficient.

By using the method of variation of constants, one finds a special solution φsp to
L±

0 φ = ψ is given by

φsp(x) = φ±
0 (x)

∫ x

0

1

φ+
0 (y)φ−

0 (y)
dy

∫ ∞

y

φ∓
0 (z)ψ(z)dz.

Using (3.5), we have, for all y > 0,∣∣∣∣
∫ ∞

y

φ∓
0 ψ

∣∣∣∣ ≤√∫∞
y

ψ2
∫∞
y

(φ∓
0 )2 ≤ Cφ∓

0

√∫∞
y

ψ2 .

Thus, for x > 0,

|φsp(x)| ≤ Cφ±
0 (x)

∫ x

0

(φ±
0 )−1

√∫∞
y

ψ2.

Hence, by (3.5), ‖φsp‖L∞((0,∞)) ≤ C‖ψ‖L2 . Also, by l’Hôpital’s rule, limx→∞ φsp(x)
= 0.

Now if ψ ⊥ φ∓
0 , then

∫∞
y

φ∓
0 ψ =

∫ −∞
y

φ∓
0 ψ. In a manner similar to the case where

x is positive, one can show that ‖ψ‖L∞(−∞,0) ≤ C‖ψ‖L2 and limx→−∞ φsp(x) = 0.
Using the differential equation and an energy estimate, we then can conclude that
‖φsp‖H2 ≤ C‖ψ‖L2 .

Now for φ ≡ φsp−(φsp, φ
±
0 )φ±

0 , we have L±
0 φ = ψ, φ ⊥ φ±

0 , and ‖φ‖H2 ≤ C‖ψ‖L2 .

Solutions to L±
0 φ = ψ with φ ⊥ φ±

0 are unique since L±
0 φ = 0 has two linearly

independent solutions, φ±
0 and φ±

0

∫ x
0

1
φ+

0 φ
−
0

, the latter being unbounded.

(3) We consider separately the cases when δ is large, small, and intermediate.

(i) First we consider δ ≥ δ1 ≡ 1 + ‖fu(u0)‖L∞ . Let φ ∈ H2 be arbitrary and set
ψ = L±

0 φ+δφ. Then (L±
0 φ+δφ , φ) = (ψ, φ), so that (δ−‖fu(u0)‖L∞)‖φ‖L2 ≤ ‖ψ‖L2 .

It then follows from ±c0φ
′ − φ′′ = ψ − (fu(u0) + δ)φ that ‖φ‖H2 ≤ C‖ψ‖L2 for some

C independent of δ. Hence, (3.4) holds.

(ii) Next we consider δ ∈ (0, δ0], where δ0 > 0 is to be defined later. Again, set
ψ = L±

0 φ + δφ, where φ ∈ H2 is arbitrary. Decompose φ = (φ, φ±
0 )φ±

0 + φ⊥. Then
L±

0 φ⊥ = ψ − δφ, so that, from the second part of assertion (2),

‖φ⊥‖H2 ≤ C1{‖ψ‖L2 + δ‖φ‖L2}.(3.6)
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In addition, ψ−δφ ⊥ φ∓
0 ; that is, (ψ, φ∓

0 ) = δ(φ, φ∓
0 ) = δ(φ, φ±

0 )(φ+
0 , φ−

0 )+δ(φ⊥, φ∓
0 ).

It then follows that, denoting σ = (φ+
0 , φ−

0 ) =
∫

R
(u′

0)2e−c0xdx/(‖u′
0‖L2‖u′

0e
−c0x‖L2),

σ|(φ, φ±
0 )| ≤ ‖φ⊥‖L2 +

1

δ
|(ψ, φ∓

0 )| .

Adding twice (3.6) to the above, we then obtain

σ|(φ, φ±
0 )| + ‖φ⊥‖H2 ≤ 1

δ
|(ψ, φ∓

0 )| + 2C1‖ψ‖L2 + 2δC1‖φ‖L2 .

It follows, as σ < 1 and ‖φ‖L2 ≤ ‖φ⊥‖L2 + |(φ, φ±
0 )|, that

(σ − 2δC1)‖φ‖L2 ≤ 2C1‖ψ‖L2 +
1

δ
|(ψ, φ∓

0 )|.

Taking δ0 = σ/(4C1) we conclude that if δ ∈ (0, δ0], then ‖φ‖L2 ≤ 4C1

σ {‖ψ‖L2 +
1
δ |(ψ, φ±

0 )|}. Hence, (3.4) holds with C2 independent of δ.

(iii) Finally we consider δ ∈ [δ0, δ1]. Since φ±
0 is a positive solution to L±

0 φ = 0,
by Liouville’s theorem, (L±

0 + δ)φ = 0 does not have any nontrivial bounded solution.

Define Λ̃±(δ) = inf‖φ‖H2=1 ‖L±
0 φ+δφ‖L2 , and Λ̂± = infδ∈[δ0,δ1] Λ̃±(δ). We claim that

Λ̂± > 0, and hence (3.4) holds with C2 independent of δ. To show that Λ̂± > 0, take
a sequence {(δj , φj)} minimizing ‖L±

0 φ + δφ‖L2 . Writing ψj = L±
0 φj + δjφj , we may

assume that δj → δ ∈ [δ0, δ1], φj → φ weakly in H2(R) and strongly in L2
loc(R), and

ψj → ψ weakly in L2(R). One can show that φ is a weak, and hence strong, solution

to L±
0 φ + δφ = ψ, and by the weak lower semicontinuity of the norm, ‖ψ‖L2 ≤ Λ̂±.

If Λ̂± = 0, then ψ = 0 and hence φ = 0.
On the other hand, Cauchy’s inequality applied to

−‖φ′′
j ‖2

L2 + (fu(u0)φj , φ
′′
j ) ≥ (L±

0 φj + δjφj , φ
′′
j ) = (ψj , φ

′′
j )

and squaring gives

2‖fu(u0)‖2
L∞‖φj‖2

L2 ≥ ‖φ′′
j ‖2

L2 − 2‖ψj‖2
L2 .

Using this together with (3.9) and (3.10) below, one finds∫
|x|≤m

φ2
j ≥ C̄3‖φj‖2

H2 − C̄4‖ψj‖2
L2

for some positive constants C̄3 and C̄4. The constant m is defined below, but the basic
idea is that because of the asymptotic values of fu(uo), one can localize the mass of
φj . Passing to the limit gives ∫

|x|≤m

φ2 ≥ C̄3 > 0,

contradicting φ ≡ 0. This completes the proof.

3.2. Bound for the inverse of L±
ε,δ. For every positive δ and ε, we define

Λ±(ε, δ) = inf
‖φ‖H1=1

{
‖L±

ε,δφ ‖L2 +
1

δ
|(L±

ε,δφ , φ∓
0 )|
}
, Λ±(δ) = lim inf

ε↘0
Λ±(ε, δ).

(3.7)



TRAVELING WAVES 529

Lemma 6. There exists a positive constant C0 such that Λ±(δ) > 2/C0 for all
δ > 0.

Proof. Let δ > 0 be any fixed positive constant. By the definition of Λ±(δ), there
exists a sequence {(εj , φj)}∞j=1 in (0, 1)×H1(R) such that limj→∞ εj = 0, ‖φj‖H1 = 1

for all j, and ψj ≡ L±
εj ,δ

φj satisfies

lim
j→∞

{
‖ψj‖L2 +

1

δ
|(ψj , φ

±
0 )|

}
= Λ±(δ).

By taking a subsequence if necessary, we can assume that there exist functions φ ∈ H1

and ψ ∈ L2 such that, as j → ∞,

φj −→ φ in L2
loc(R) and weakly in H1(R),

ψj −→ ψ weakly in L2(R).

By the weak lower semicontinuity of the L2(R) norm, ‖ψ‖L2 + 1
δ |(ψ, φ∓

0 )| ≤ Λ±(δ).

For any test function ζ ∈ C∞
0 (R), (ψj , ζ) = (L±

εj ,δ
φj , ζ) = (φj ,L∓

εj ,δ
ζ). Since

limε↘0 ‖∆εζ − ζ ′′‖L2 = 0, sending j → ∞ we obtain (ψ, ζ) = (φ, (L∓
0 + δ)ζ) for all

ζ ∈ C∞
0 (R). That is, φ ∈ H1(R) is a weak solution to (L±

0 + δ)φ = ψ. An elliptic
estimate then shows that φ is in H2(R). Consequently, by Lemma 5(3),

‖φ‖H2 ≤ C2

{
‖ψ‖L2 +

1

δ
|(ψ, φ∓

0 )|
}
≤ C2Λ±(δ).(3.8)

It remains to find a positive lower bound of ‖φ‖L2 .
First of all, using (L±

εj ,δ
φj , φ

′
j) = (ψj , φ

′
j) and the identity (∆εφj , φ

′
j) = 0 =

(φj , φ
′
j), we obtain ±c0‖φ′

j‖2
L2 = (ψj , φ

′
j) − (fu(u0)φj , φ

′
j). Cauchy’s inequality then

gives

‖fu(u0)‖L∞‖φj‖L2 ≥ |c0| ‖φ′
j‖L2 − ‖ψj‖L2 ,

which implies

2‖fu(u0)‖2
L∞‖φj‖2

L2 ≥ c20‖φ′
j‖2

L2 − 2‖ψj‖2
L2 .(3.9)

Let m be a positive constant such that

0 < a ≡ 1
2 min{fu(1), fu(−1)} = min|x|≥m{fu(u0(x))}.

Using (ψj , φj) = (L±
εj ,δ

φj , φj), the identity (φ′
j , φj) = 0, and the fact (−∆εjφj , φj) ≥

0, we obtain

(ψj , φj) ≥ (fu(u0)φj , φj) ≥ min
|x|≥m

{fu(u0)}
∫
|x|≥m

φ2
j − ‖fu(u0)‖L∞

∫
|x|≤m

φ2
j

= a‖φj‖2
L2 − (a + ‖fu(u0)‖L∞)

∫
|x|≤m

φ2
j .

Therefore,

(a + ‖fu(u0)‖L∞)

∫
|x|≤m

φ2
j ≥ a‖φj‖2

L2 − (φj , ψj) ≥ a
2‖φj‖2

L2 − 1
2a‖ψj‖2

L2 .(3.10)
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Adding a small multiple ( a
2(2‖fu(u0)‖2

L∞+c20)
in fact) of (3.9), we see that there exist

positive constants C3 and C4, which depend on |c0| > 0 and f , such that∫
|x|≤m

φ2
j ≥ C3‖φj‖2

H1 − C4‖ψj‖2
L2 = C3 − C4‖ψj‖2

L2 .

Sending j → ∞ we then conclude that∫
|x|≤m

φ2 ≥ C3 − C4Λ±(δ).(3.11)

In view of (3.8), we then obtain Λ±(δ)2 ≥
√

C3/(C2
2 + C4) ≡ 2/C0. This completes

the proof.
Remark 6. From the proof one sees that the condition c0 �= 0 plays a key role,

for it ensures the boundedness of {φj} in H1(R) and hence guarantees (3.11) for the
weak limit.

3.3. Proof of Theorem 4. Now we are ready to complete the proof of Theo-
rem 4.

Let δ > 0 be fixed. Since Λ±(δ) ≥ 2/C0, there exists ε0(δ) > 0 such that
Λ(ε, δ) ≥ 1/C0 for every ε ∈ (0, ε0(δ)]. Now we consider the operator L±

ε,δ with
ε ∈ (0, ε0(δ)].

First of all, L±
ε,δ is a bounded operator from H1(R) to L2(R). Also, by the

definition and the lower bound of Λ±(ε, δ), L±
ε,δ is a homeomorphism from H1(R) to

its image L±
ε,δ(H

1(R)), and the inverse (L±
ε,δ)

−1 from L±
ε,δ(H

1(R)) ⊆ L2(R) to H1(R)

is bounded by 1/Λ±(ε, δ) ≤ C0. As a consequence of the boundedness, we see that
L±
ε,δ(H

1(R)) is closed in L2(R).

It remains to show that L±
ε,δ(H

1(R)) = L2(R). Indeed, if this were not true, there

would exist a nontrivial ψ ∈ L2(R) orthogonal to L±
ε,δ(H

1(R)), i.e., 0 = (L±
ε,δφ, ψ) =

(φ,L∓
ε,δψ) for all φ ∈ H1(R). In particular, (φ,L∓

ε,δψ) = 0 for all φ ∈ C∞
0 (R), and

therefore the weak derivative of ψ is in L2(R). Consequently, ∓c0ψ
′ = (∆ε−fu(u0)−

δ)ψ is in L2(R) since ψ ∈ L2(R). Thus, ψ ∈ H1(R) and L∓
ε,δψ = 0. By the definition

and the positivity of Λ(ε, δ), we then conclude that ψ = 0 and therefore obtain a
contradiction. Thus L±

ε,δ(H
1(R)) = L2(R), and this completes the proof.

4. Existence of traveling waves.
Proof of Theorem 1. Let δ and η be small positive constants to be determined

later. We define

Xη ≡ {φ ∈ H1(R) : ‖φ‖H1 ≤ η}.

For every φ ∈ Xη, let cε = cε(φ) be the (unique) constant such that R(cε, φ) ⊥ φ−
0 ,

i.e.,

cε(φ) ≡ c0 +
(∆εu0 − u′′

0 , φ−
0 ) + δ(φ, φ−

0 ) − (N(u0, φ), φ−
0 )

(u′
0, φ

−
0 ) + (φ′, φ−

0 )
.(4.1)

We define T : Xη ⊂ H1(R) → H1(R) by

Tφ = (L+
ε,δ)

−1R(cε(φ), φ).(4.2)
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We now show that T maps Xη into itself and is a contraction, so that it possesses
a fixed point, which, after adding u0, gives a solution to (1.5), thereby completing the
proof.

Since R(cε(φ), φ) ⊥ φ−
0 , we derive from Theorem 4 that

‖Tφ‖H1 ≤ C0‖R(cε(φ), φ)‖L2 for all φ ∈ Xη, and(4.3)

‖Tφ1 −Tφ2‖H1 ≤ C0‖R(cε(φ1), φ1) −R(cε(φ2), φ2)‖L2 for all φ1, φ2 ∈ Xη.(4.4)

Now we estimate the right-hand sides.
Let σ̂ be defined as

σ̂ =
1

2
(u′

0, φ
−
0 ) =

∫
R
u′

0
2e−c0x

2(
∫

R
u′

0
2e−2c0x)1/2

> 0.

Then (u′
0 + φ′, φ−

0 ) = 2σ̂ + (φ′, φ−
0 ) ≥ 2σ̂ − η ≥ σ̂ if we require η ≤ σ̂.

To estimate the nonlinear term N(u0, φ), we first recall the embedding ‖φ‖L∞ ≤
‖φ‖H1 for every φ ∈ H1. Hence, setting M = sup|s|≤1+σ̂ |fuu(s)|, we have

|N(u0, φ)| ≤ Mη|φ| and |N(u0, φ1) −N(u0, φ2)| ≤ Mη|φ1 − φ2|
pointwise for all φ, φ1, φ2 ∈ Xη.

By the definition of cε(φ) in (4.1), for all φ, φ1, φ2 ∈ Xη,

|cε(φ) − c0| ≤ σ̂−1{‖∆εu0 − u′′
0‖L2 + (δ + Mη)η}

and

|cε(φ1) − cε(φ2)| ≤ ‖φ1 − φ2‖L2 σ̂−2{‖∆εu0 − u′′
0‖L2 + (σ̂ + η)(δ + Mη)} .

Therefore, using the expression for R(cε(φ), φ) in (2.4) we can estimate

‖R(cε(φ), φ)‖L2 ≤ |cε(φ) − c0|(‖u′
0‖ + η) + ‖∆εu0 − u′′

0‖L2 + δη + Mη2

≤ η{1 + σ̂−1(‖u′
0‖ + η)}{η−1‖∆εu0 − u′′

0‖L2 + δ + Mη}
and

‖R(cε(φ1), φ1) −R(cε(φ2), φ2)‖L2

≤ {|cε(φ1) − c0| + δ + Mη}‖φ1 − φ2‖L2 + (‖u′
0‖L2 + η)|cε(φ1) − cε(φ2)|

≤ ‖φ1 − φ2‖L2 σ̂−2{σ̂ + η + ‖u′
0‖L2}{‖∆εu0 − u′′

0‖L2 + (σ̂ + η)(δ + Mη)}.
It then follows from (4.3) and (4.4) that there exists a positive constant C5, which is
independent of δ, ε and η ∈ (0, σ̂], such that

‖Tφ‖H1 ≤ ηC5{η−1‖∆εu0 − u′′
0‖L2 + δ + Mη}

and

‖Tφ1 −Tφ2‖H1 ≤ C5

{‖∆εu0 − u′′
0‖L2 + δ + Mη

}‖φ1 − φ2‖H1 .

Now we fix

δ =
1

4C5
and η = min

{
σ̂,

1

4MC5

}
.
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We select a small positive ε∗ such that ε∗ ≤ ε0(δ) (cf. Theorem 4) and

sup
ε∈(0,ε∗]

‖∆εu0 − u′′
0‖L2 ≤ min{1, η}

4C5
.

We then conclude that for any fixed ε ∈ (0, ε∗], T maps Xη into itself and is a
contraction. This completes the proof.

Remark 7. From the proof, one sees that the solution to (1.5) is locally unique.

Part II. Stationary waves. Here we assume that
∫ 1

−1
f = 0, and hence

c0 = 0.

5. Assumptions and results. By the assumption that f is balanced, it is the
derivative of a double equal-well potential; more precisely, since fu(±1) > 0 we may
write

f(u) = Fu(u), where F (±1) = 0 and F (u) ≥ m0(1 − u2)2(5.1)

for a positive constant m0 and u ∈ [−2, 2]. When u is outside [−2, 2], we assume that
F is bounded away from zero and approaches infinity as |u| → ∞. We look for a
function uε such that

−∆εuε + f(uε) = 0 for all x ∈ R, lim
x→±∞uε(x) = ±1.(5.2)

Observe that if uε is a solution, then for every x0 ∈ R, if we define un = uε(x0 + nε)
for all n ∈ Z, then {un}∞n=−∞ satisfies{ −ε−2

∑
k>0 αk(un+k + un−k − 2un) + f(un) = 0 for all n ∈ Z,

limn→±∞ un = ±1.
(5.3)

On the other hand, if a sequence {un} satisfies (5.3), then the function uε =
∑

n unχ
ε
n

is a solution to (5.2) where χεn is the characteristic function of the set (ε(n−1/2), ε(n+
1/2)], i.e.,

χεn(x) =

{
1 if x ∈ (ε(n− 1/2), ε(n + 1/2)],
0 otherwise.

(5.4)

Hence, the solvability of (5.2) and (5.3) are equivalent.
In what follows,

∑∞
n=−∞ is denoted by

∑
n. Also a sequence {un} is identified

with a function u defined by u(x) =
∑

n unχ
ε
n(x), where χεn(·) is as in (5.4).

To show that (5.2) or (5.3) admits a solution, we need the stronger assumption,
(A3) given in the introduction, than we needed for the nonstationary wave case. A
useful consequence is given here. Let

B(ζ) ≡
∑
k>0

αk

sin2 kζ
2

sin2 ζ
2

=
∑
k>0

αk

∣∣∣ k−1∑
"=0

ei " ζ
∣∣∣2, ζ ∈ R.(5.5)

Notice that B(·) is 2π-periodic and even. It can be expanded as a Fourier cosine
series:

B(ζ) =
b0
2

+
∑
">0

b" cos(�ζ) for ζ ∈ R, where b" =
1

π

∫ 2π

0

B(ζ) cos(�ζ) dζ.(5.6)
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We assert the following.
Lemma 7. Assume (A3). Then B(ζ) is uniformly positive, bounded, and in

H1/2([0, 2π]); that is, there exists a positive constant B∞ such that

1

B∞
≤ B(ζ) ≤ B∞ for all ζ ∈ R,(5.7) ∑

">0

� b2" < ∞.(5.8)

Proof. By (A3), B(z) > 0 and twice differentiable on (0, 2π) and by l’Hôpital’s
rule, limz→0,2π B(z) = 1. This shows that B is bounded above and below by positive
constants. To show the regularity, it is convenient to write the Fourier series for B as

∞∑
k=−∞

ak cos(kz).

We have

∞∑
k=−∞

αk(1 − cos(kz)) = 2

∞∑
k=−∞

ak cos(kz)(1 − cos(z)).

It follows that

αk = ak+1 + ak−1 − 2ak for k �= 0.

This may be inverted to give

ak =
∑
j>0

jαk+j .

Now, B ∈ H
1
2 is equivalent to the convergence of

∑
k>0 ka

2
k. In light of the above, we

have ∑
k>0

ka2
k =

∑
k>0

k
∑
j>0

jαj+k

∑
i>0

iαi+k

≤
∑
k>0

∑
j>k

∑
i>k

k
(j − k)

j2

(i− k)

i2
|αj |j2|αi|i2

=
∑
j>0

∑
i>0

(min{j−1,i−1}∑
k=1

k
(j − k)

j2

(i− k)

i2

)
|αj |j2|αi|i2.

The proof is completed by observing that the sum over k is bounded by 3
4 and the

other sums are finite by (A3).
We will derive some energy estimates and then prove the existence part of Theo-

rem 2.
Theorem 8. Assume that f(u) satisfies (5.1) and {αk}∞k=1 satisfies (A3). Then

for every ε > 0, problem (5.2) or problem (5.3) admits at least one solution.
We use a minimization method with an energy E defined by

E[u] = Eki[u] + Epo[u], Epo[u] = 2

∫
R

F (u) dx, Eki[u] = −
∫

R

u∆εu dx,(5.9)
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where “po” stands for potential and “ki” for kinetic. We show that E[·] has a mini-
mizer in the following space

X ≡
{
u =

∑
n

unχ
ε
n :

∞∑
n=0

|1 − un|2 +

−∞∑
n=−1

|1 + un|2 < ∞
}

.(5.10)

Lemma 9. If uε ∈ X satisfies E[uε] = infu∈XE[u], then uε solves (5.3).
The proof follows a standard variation technique and is omitted. We only remark

that if u ∈ X, then ∆εu ∈ L2(R), due to the assumption that
∑

k |αk| k2 < ∞.

6. The energy. First we write the kinetic energy −(∆εu, u) in a convenient
form for piecewise constant functions.

Lemma 10. Let u(x) =
∑

n unχ
ε
n and v(x) =

∑
n vnχ

ε
n . Assume that

∑
n(un+1−

un)2 < ∞ and
∑

n(vn+1 − vn)2 < ∞. Then

(−∆εu, v) =
1

2πε

∫ 2π

0

B(ζ)φ(ζ)ψ(ζ) dζ,(6.1)

where B(ζ) is as in (5.5),

φ(ζ) =
∑
n

(un+1 − un)einζ , and ψ(ζ) =
∑
m

(vm+1 − vm)eimζ .(6.2)

Consequently,

Eki[u] =
1

2πε

∫ 2π

0

B(ζ)
∣∣∣φ(ζ)

∣∣∣2 dζ.
Proof. By definition,

(−∆εu, v) =
1

ε2

∑
k>0

αk

{
−
(
u(x + εk) − u(x), v(x)

)
+
(
u(x) − u(x− εk), v(x)

)}

=
1

ε2

∑
k>0

αk

(
u(x + εk) − u(x), v(x + εk) − v(x)

)

=
1

2πε2

∑
k>0

αk

∫
R

F [u(x + εk) − u(x)]F [v(x + εk) − v(x)] dξ

by Parseval’s identity, where F [u] is the Fourier transform of u; see (2.6). For any
h > 0,

(1 − eiεξ)F [u(x + h) − u(x)]

= F [u(x + h) − u(x) − u(x + h− ε) + u(x− ε)]

= F [u(x + h) − u(x + h− ε)] −F [u(x) − u(x− ε)]

=
∑
n

(un+1 − un)

∫ ε(n+3/2)

ε(n+1/2)

eixξdx(e−ih − 1)

=
(1 − eiεξ)e−ihξ/2 sin(hξ/2)

ξ/2

∑
n

(un+1 − un)ei(n+1/2)εξ.

It then follows that

F [u(x) − u(x− h)] = e−ihξ/2 sin(hξ/2)

ξ/2

∑
n

(un+1 − un)eiεξ(n+1/2).
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Consequently, defining φ and ψ as in (6.2), we have

(−∆εu, v) =
1

2π

∫
R

∑
k>0

αk

(2 sin(kεξ/2)

εξ

)2

φ(εξ)ψ(εξ) dξ

=
1

2πε

∫
R

∑
k>0 4αk sin2(kζ/2)

ζ2
φ(ζ)ψ(ζ) dζ

after the change of variables, ζ = εξ. As all the functions, except ζ2, in the integrand
are 2π-periodic,

(−∆εu, v) =
1

2πε

∫ 2π

0

(∑
k>0

4αk sin2 kζ

2

)
φ(ζ)ψ(ζ)

∑
"

1

(ζ + 2π�)2
.

The assertion of the lemma thus follows from the identity
∑

"
1

(ζ+2π")2 = 1
4 sin2(ζ/2)

for

all ζ and the definition of B(ζ) in (5.5).
With the assumption on B we immediately have the following.
Lemma 11. For every u ∈ X,

1

εB∞

∑
n

(un+1 − un)2 ≤ Eki[u] ≤ B∞
ε

∑
n

(un+1 − un)2.(6.3)

7. An energy decomposition. When all αk’s, k > 0, are nonnegative, the
energy of any nonmonotonic function can be decreased by removing the “bumps”
of the function. In our current situation where some of the αk’s may be negative,
we cannot use this modification. Indeed, an energy minimizer may not necessarily
be monotonic. Hence, to show that an energy minimizer satisfies needed asymptotic
behavior as x → ±∞ requires special treatment.

For convenience we denote by m0 a positive constant such that

fu > m0 in (−1 −m0,−1 + m0) ∪ (1 −m0, 1 + m0).(7.1)

Also, we denote, for every positive integer M ,

b̄M ≡
√∑

"≥M � b2" ,(7.2)

where {b"} are the Fourier coefficients of B. Clearly, limM→∞ b̄M = 0.
Lemma 12. Let M be any fixed positive integer. Assume that E[u] < ∞ and

|u + 1| ≤ m0 on (−ε/2, ε(M + 1/2)]. Then for any η ∈ (0, 1),

E[ur] +E[ul]≤ (1+b̄MB∞)
1−η E[u] + 2B∞

η(1−η)

{max0≤n<M |un + 1|2
εM

+
∑

0≤n<M

(un+1 − un)2

ε

}
,

where

ur = −1 + θ(1 + u), ul = −1 + (1 − θ)(1 + u), θ =
∑
n≥0

min
{ n

M
, 1
}
χεn.

Notice that θ = 0 for x ≤ ε/2 and θ = 1 for x ≥ (M − 1/2)ε. It then follows
that ur = −1, ul = u for x ≤ ε/2 and ur = u, ul = −1 for x > (M − 1/2)ε.
This lemma shows that if u is in a “resting” state for a large interval, i.e., both
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ε−1
∑

0≤n<M |un+1 − un|2 and max0≤n<M |un + 1| are small, then the energy of u

can be decomposed as the sum of the energy of ur and that of ul. In particular, it
eliminates the possibility of energy minimizers having transition layers in “remote”
locations. This property will be a key in our proof of the existence of an energy
minimizer with required asymptotics at x = ±∞.

Proof. First we compare the potential energy. Since F (−1) = 0,

Epo[u] − (Epo[ur] + Epo[ul]) =
∑

1≤n≤M−1

2ε {F (un) − F (urn) − F (uln)}.

For each n ∈ {1, . . . ,M−1}, we can calculate, using F (z) =
∫ z
−1

f(s) ds =
∫ 1+z

0
f(s−

1) ds,

F (un) − F (urn) − F (uln) =
{∫ un+1

0

−
∫ θn(un+1)

0

−
∫ (1−θn)(un+1)

0

}
f(s− 1) ds

=

∫ un+1

0

{
f(s− 1) − θnf(θns− 1) − (1 − θn)f((1 − θn)s− 1)

}
ds ≥ 0,

since f(−1) = 0, fu(s − 1) > 0 for all s ∈ (−m0,m0), and 1 + un ∈ (−m0,m0).
Therefore,

Epo[ur] + Epo[ul] ≤ Epo[u].

Next we compare the kinetic energy. For simplicity, we denote φ(ζ) =
∑

n(un+1−
un)einζ , φr(ζ) =

∑
n(urn+1 − urn)einζ , and φl(ζ) =

∑
n(uln+1 − uln)einζ . Since u =

ur + ul + 1, we have φ = φr + φl. Consequently, by the expression for the kinetic
energy in Lemma 10,

Eki[u] − Eki[ur] − Eki[ul] =
1

πε

∫ 2π

0

B(ζ) Re{φr(ζ)φl(ζ) } dζ,(7.3)

where Re represents the real part of a complex valued function. Note that the sum-
mation for φr indeed runs only for n ≥ 0 and that for φl for n ≤ M − 1. Hence, we
can write

B Re{φrφl} = I + II + III + IV, where

I ≡ Re
{
Bφl

∑
0≤n<M

(urn+1 − urn)einζ
}
,

II ≡ Re
{
Bφr

∑
0≤m<M

(ulm+1 − ulm)e−imζ
}
,

III ≡ −B Re
{ ∑

0≤n<M

(urn+1 − urn)einζ
∑

0≤m<M

(ulm+1 − ulm)e−imζ
}
,

IV ≡
∑
n≥M

∑
m<0

(un+1 − un)(um+1 − um)B(ζ) cos([n−m]ζ),

where in IV we have used urn = un for n ≥ M , and similarly ulm = um for m ≤ 0.
We now estimate the contribution of each of the terms. First, for any η > 0,∣∣∣ 1

πε

∫ 2π

0

I dζ
∣∣∣ ≤ 2

( 1

2πε

∫ 2π

0

B|φl|2
)1/2(B∞

ε

∑
0≤n<M

(urn+1 − urn)2
)1/2

≤ η Eki[ul] +
B∞
η ε

∑
0≤n<M

(urn+1 − urn)2 .
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Similarly,

∣∣∣ 1

πε

∫ 2π

0

II dζ
∣∣∣ ≤ η Eki[ur] +

B∞
η ε

∑
0≤n<M

(uln+1 − uln)2 .

Next,

∣∣∣ 1

πε

∫ 2π

0

III
∣∣∣ ≤ 2B∞

ε

( ∑
0≤n<M

(urn+1 − urn)2
)1/2( ∑

0≤m<M

(ulm+1 − ulm)2
)1/2

≤ B∞
ε

{ ∑
0≤n<M

(urn+1 − urn)2 +
∑

0≤m<M

(ulm+1 − urm)2
}
.

To estimate IV, we use the definition of the Fourier coefficients b" to obtain

∣∣∣ 1

πε

∫ 2π

0

IV
∣∣∣ ≤ 1

ε

( ∑
n≥M

(un+1 − un)2
∑
m<0

(um+1 − um)2
∑
n≥M

∑
m<0

b2n−m

)1/2

≤ b̃M
2ε

∑
n

|un+1 − un|2 ≤ b̃MB∞Eki[u],

where

b̃M =
( ∑
n≥M

∑
m<0

b2n−m

)1/2

=
( ∑
"≥M+1

(�−M)b2"

)1/2

≤ b̄M .

Combining these estimates, we then obtain

Eki[ur] + Eki[ul] − Eki[u] ≤ η{Eki[ur] + Eki[ul]} + b̄MB∞Eki[u]

+
2B∞
η ε

∑
0≤n<M

{
(urn+1 − urn)2 + (uln+1 − uln)2

}
.

It remains to estimate the last term. We note that

urn+1 − urn = θn+1(un+1 − un) + (θn+1 − θn)(un + 1)

and

uln+1 − uln = (1 − θn+1)(un+1 − un) − (θn+1 − θn)(un + 1).

It then follows that

(urn+1 − urn)2 + (uln+1 − uln)2 ≤ 2(un+1 − un)2 + 2(θn+1 − θn)2(un + 1)2.

Finally, using θn+1 − θn = 1/M for all n = 0, . . . ,M − 1 we obtain

(1− η)(Eki[ur]+ Eki[ul]) ≤ (1+ b̄MB∞)Eki[u]

+
4B∞
η

{max0≤n<M |un + 1|2
εM

+
1

ε

∑
0≤n<M

(un+1 − un)2
}
.

This completes the proof.
For later applications, we provide an energy lower bound.
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Lemma 13. There exists a positive constant e0 such that E[u] ≥ e0 if u changes
sign at least once, i.e., unun+1 ≤ 0 for some n ∈ Z, where u =

∑
n unχ

ε
n.

Proof. By translation if necessary, we can assume that u0u1 ≤ 0.
(i) If min{|u0|, |u1|} ≤ 1/2, then E[u] ≥ 2ε(F (u0)+F (u1)) ≥ 2εmin|s|≤1/2 F (s) >

0.
(ii) If min{|u0|, |u1|} > 1/2, then since u0u1 ≤ 0, we have |u1−u0| ≥ 1/2. It then

follows from (6.3) that E(u) ≥ (B∞ε)−1|u1 − u0|2 ≥ 1/(4B∞ε).
Combining both cases we then obtain the assertion of the lemma with

e0 = min

{
2ε min

|s|≤1/2
{F (s)}, 1/(4B∞ε)

}
.

8. Existence of a stationary wave. With all these preparations, we can now
prove existence of a solution.

Theorem 14. For every ε > 0, there exists at least one function uε ∈ X such
that

E[uε] = E(ε) ≡ inf
u∈X
E[u].(8.1)

Consequently, problem (5.2) or (5.3) admits at least one solution.
Proof. Note that E(ε) is finite since E[u] < ∞ for the test function u defined by

u = 1 for x > ε/2 and u = −1 for x ≤ ε/2. Hence, there exists a sequence {uj}∞j=1 in

X such that as j → ∞, E[uj ] ↘ E(ε). We write uj =
∑

n ujnχ
ε
n. By a translation if

necessary, we can assume that x = ε/2 is the first place where uj changes sign; i.e.,
ujn < 0 for all n ≤ 0, and uj1 ≥ 0.

Clearly {ujn} are uniformly bounded for all n and j, since for each n and j,
2F (ujn) ≤ 1

εE[uj ] ≤ 1
εE(ε) + 1, and lim|s|→∞ F (s) = ∞. Thus, by a diagonal limit

process, we can extract a subsequence of {uj}, which we still denote by {uj}, such
that for every n, limj→∞ ujn = uεn for some uεn ∈ R. Set uε =

∑
n uεnχ

ε
n. We claim

that uε ∈ X and uε is an energy minimizer.
First, we consider the potential energy of uε. We have∑

n

F (uεn) = lim
N→∞

∑
|n|≤N

F (uεn)

= lim
N→∞

lim inf
j→∞

∑
|n|≤N

F (ujn) ≤ lim inf
j→∞

∑
n

F (ujn).

Next we consider the kinetic energy. Set φj(ζ) =
∑

n(ujn+1 − ujn)einζ . By (6.3),

‖φj‖2
L2((0,2π)) = 2π

∑
n

|ujn+1 − ujn|2 ≤ 2πεB∞E[uj ].

Thus, {φj(·)}∞j=1 is a bounded sequence in L2((0, 2π)), and we can extract a sub-

sequence, which we still denote by {φj}, such that for some φε ∈ L2((0, 2π)), as
j → ∞,

φj −→ φε weakly in L2((0, 2π)).

As weak convergence in L2((0, 2π)) implies the convergence of the Fourier coefficients,
it follows that

φε =
∑
n

(uεn+1 − uεn)einζ .
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Using |φε|2 = |φj |2 − |φε − φj |2 + 2Re{φε(φε − φj)} ≤ |φj |2 + 2Re{φε(φε − φj)}, we
conclude that, since B(ζ) is bounded and nonnegative,

∫ 2π

0

B(ζ)|φε(ζ)|2 ≤ lim inf
j→∞

∫ 2π

0

B(ζ)|φj(ζ)|2.

Therefore,

E[uε] ≤ lim inf
j→∞

E[uj ] = E(ε).

It remains to show that uε ∈ X.

First of all, the boundedness of Epo[uε] = 2ε
∑

n F (uεn) implies that
∑

n |(uεn)2 −
1|2 < ∞. Consequently,

lim
|n|→∞

(uεn)2 = 1.(8.2)

As ujn < 0 for all n ≤ 0 and all j, we conclude that uεn ≤ 0 for all n ≤ 0, so that
limn→−∞ uεn = −1, and

∑
n≤0 |uεn + 1|2 < ∞.

It remains to show that limn→∞ uεn = 1.

The finiteness of ‖φε‖2
L2((0,2π)) = 2π

∑
n |uεn+1 − uεn|2 implies that there are only

finitely many n where |un+1−un| > 1. Consequently, from (8.2), either limn→∞ uεn =
1, which concludes our proof, or limn→∞ uεn = −1, which we show below is impossible.

Suppose, on the contrary, that limn→∞ uεn = −1. Let η ∈ (0, 1) be any fixed
number, and let M be any fixed positive integer. For any n̂ sufficiently large, applying
Lemma 12 (with the origin at point εn̂) to uj and using |ujn+1 − ujn| ≤ |ujn+1 + 1| +
|ujn + 1|, we obtain

E[ujr] +E[ujl] ≤ 1 + b̄MB∞
1 − η

E[uj ] + C(ε, η,M) max
n̂≤n≤n̂+M

|ujn + 1|2,

where ujr = u, ujl = −1 for x ≥ (n̂ + M + 1/2)ε and ujr = −1, ujl = u for x ≤
(n̂− 1/2)ε.

Note that ujr ∈ X, so that E[ujr] ≥ E(ε). Also ujl experiences a sign change, so,
by Lemma 13, E[ujl] ≥ e0. Thus,

e0 + E(ε) ≤ 1 + b̄MB∞
1 − η

E[uj ] + C(ε, η,M) max
n̂≤n≤n̂+M

|ujn + 1|2.

Sending j to ∞ then gives

e0 + E(ε) ≤ 1 + b̄MB∞
1 − η

E(ε) + C(ε, η,M) max
n̂≤n≤n̂+M

|uεn + 1|2.

Sending n̂ to ∞ and using limn→∞ uεn=−1, we further obtain e0+E(ε)≤ 1+b̄MB∞
1−η E(ε).

Finally, sending M → ∞ first and then η → 0, we obtain e0 + E(ε) ≤ E(ε), a
contradiction. This contradiction shows that uε ∈ X. This concludes the proof.

9. Convergence of minimizers to u0 as ε → 0. In this section, we establish
the convergence part of Theorem 2.
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Theorem 15. Let {uε}ε>0 be the energy minimizing solutions to (5.3) obtained
above, translated so that x = ε/2 is the first place where uε =

∑
n uεnχ

ε
n experiences a

sign change; i.e., uεn < 0 for all n ≤ 0 and uε1 ≥ 0. Then

lim
ε↘0

uε = u0 in L∞(R),

lim
ε↘0

(ũε − u0) = 0 in H1(R),

where ũε is the “companion” of uε obtained by a linear interpolation of the node values
of uε at εn, n ∈ Z:

ũε(x) =
∑
n

{
uεn +

(x− εn)

ε
(uεn+1 − uεn)

}
χεn(x− ε/2).

To prove the theorem, we need an upper bound on the minimum energy.
Lemma 16. Let E(ε) = E[uε] be the minimum of the energy. Then

lim sup
ε↘0

E(ε) ≤ E(0) ≡
∫

R

{
1
2 (u′

0)2 + F (u0)
}
dx .(9.1)

The proof follows by taking u0 as a test function and using the fact that ∆εu0 −
u′′

0 → 0 in L2(R). We omit the details.
Proof of Theorem 15. Note that ũε is Lipschitz continuous. Also

‖ũε′‖2
L2(R) = ε

∑
n

(un+1 − un
ε

)2

≤ B∞E(ε)

is uniformly bounded for all ε ∈ (0, 1]. In addition, ũε and uε are close in L2(R) since

‖uε − ũε‖2
L2 =

ε

12

∑
n

(un+1 − un)2 ≤ ε2B∞
12

E(ε).

Hence, we can interchange ũε and uε freely.
Since

2

∫
R

F (uε) = 2ε
∑
n

F (uεn) < E(ε),

we see that {ũε}0<ε<1 is a bounded family in H1((−R,R)) for any R > 1. Hence,
there exists a sequence {εj}∞j=1 and a function u0 ∈ H1

loc(R) such that as j → ∞,
εj → 0 and

ũεj − u0 −→ 0 weakly in H1(R) and uniformly in C0([−R,R]) for every R > 1.

Consequently,

uε −→ u0 in L∞((−R,R)) for any R > 1.

Taking any test function ζ(·) ∈ C∞
0 (R), we obtain by passing to the limit in the

identity (uε,−∆εζ) + (f(uε), ζ) = 0 that (u0,−ζ ′′) + (f(u0), ζ) = 0. That is, u0 is a
weak solution to −(u0)′′ + f(u0) = 0, and consequently, since (u0)′ ∈ L2(R), u0 is a
classical solution to −(u0)′′ + f(u0) = 0.
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Since uε ≤ 0 for all x ≤ 0, we have u0 ≤ 0 for all x ≤ 0. Also, from uε(ε/2) ≥ 0
we see that u0(0) = 0. Note that u0 is the only solution to −u′′ + f(u) = 0 with
the property that (1) u(0) = 0, (2) u ≤ 0 for x < 0, and (3)

∫
R
F (u)dx < ∞. We

then conclude that u0 = u0. The uniqueness of the limit then implies that the whole
family {uε} converges to u0 as ε ↘ 0.

Next we show that uε → u0 in L∞(R). It suffices to show that uε(x) → ±1 as
x → ±∞, uniformly in ε. By symmetry, we need only consider x → −∞.

For this purpose, let J � 1 be any large integer. First of all, there exists a small
positive ε1 such that for all ε ∈ (0, ε1], |uε − u0| ≤ 1/J on the interval [−2J, 0]. Con-
sequently, |uε +1| ≤ 2/J ≤ m0 on [−2J,−J ], since u0 approximates −1 exponentially
fast as x → −∞.

Now consider the interval x ∈ [−2J,−J ]. There exists an interval [xε, xε + 1] ⊂
[−2J,−J ] such that

∫ xε+1

xε
|ũε′|2 ≤ 1

J

∫ −J

−2J

|ũε′|2 ≤ B∞
J
E[uε].

That is,

∑
n∈[xε/ε,(xε+1)/ε]

ε
∣∣∣uεn+1 − uεn

ε

∣∣∣2 ≤ B∞E[uε]

J
.

Consequently, taking η = 1/
√
J and M = 1/ε (we can assume that 1/ε is an integer),

we obtain from the energy decomposition, Lemma 12 (with origin at xε), that

(1 − J−1/2)(E[uεr] +E[uεl]) ≤ (1 + b̄1/εB∞)E[uε]

+ 2
√
JB∞


 max

x∈[xε,xε+1]
|uε + 1|2 +

1

ε

∑
n∈[xε/ε,(xε+1)/ε]

|uεn+1 − uεn|2



≤ (1 + b̄1/εB∞)E[uε] + C/
√
J ,

where C is independent of ε ∈ (0, ε1] and J . As uεr ∈ X, E[uεr] ≥ E[uε]. It then
follows that

E[uεl] ≤ C(1/
√
J + b̄1/ε).

Note that uε = uεl for x ≤ xε. We have

E[uεl] ≥
∑

n≤xε/ε

{ 1

B∞ε
|un+1 − un|2 + 2εF (uε)

}

≥ 2
√

2√
B∞

∑
n≤xε/ε

|un+1 − un|
√

F (uε)

≥ 2
√

2√
B∞

∣∣∣ ∫ uε(x)

−1

√
F (s)ds−O(

√
ε)
∣∣∣

for any x ≤ xε, since
∑

n≤m |uεn+1 − uεn|
√

F (uε) is not less than a Riemann sum for

the integral | ∫ uεm−1

√
F (s)ds| with mesh size no bigger than supn |uεn+1−uεn| = O(

√
ε).
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We obtain, for all x ≤ −2J and ε ∈ (0, ε1],

∣∣∣ ∫ uε(x)

−1

√
F (s)ds

∣∣∣ ≤ C(1/
√
J +

√
ε + b̄1/ε),

where C is independent of J and ε. This inequality implies that uε → −1 as x → −∞,
uniformly in ε. Thus, uε → u0 uniformly on R.

Finally, we show that ũε − u0 → 0 in H1(R). First of all, we have

(−∆ε(u
ε − u0), uε − u0) + (f(uε) − f(u0), uε − u0) = (∆εu0 − u′′

0 , u
ε − u0).

Here, for simplicity, we shall not distinguish between the functions u0,uε0≡
∑

nu0(nε)χεn,
and ũε0 =

∑
n{u0(nε) + [x/ε− n][u(εn + ε) − u0(nε)]}χεn(x− ε/2), since with a small

error added, one can change from one to the other.
Using (6.3), we have

(−∆ε(u
ε − u0), uε − u0) ≥ 1

B∞ ε

∑
n

|(uεn+1 − uεn) − (u0(n+1) − u0n)|2

=
1

B∞

∫
R

|ũε′ − u′
0|2 dx.

Let m0 be as in (7.1). Then by the L∞(R) convergence of uε to u0, there is a
positive constant M > 0 such that {f(uε) − f(u0)}{uε − u0} ≥ m0(uε − u0)2 for all
|x| ≥ M and small enough ε. Thus,

(f(uε) − f(u0), uε − u0) ≥ m0‖uε − u0‖2 − (m0 + ‖fu‖L∞)

∫
|x|<M

|uε − u0|2.

In conclusion, for all small enough ε,

1

B∞
‖ũε′ − u′

0‖2
L2 + m0‖uε − u0‖2

L2 ≤ C‖uε − u0‖2
L2(−M,M) + |(∆εu0 − u′′

0 , u
ε − u0)|.

Sending ε → 0 and using the inequality |(∆εu0−u′′
0 , u

ε−u0)| ≤ ‖∆εu0−u′′
0‖L1(R)‖uε−

u0‖L∞ , we conclude that ũε − u0 → 0 in H1(R). This completes the proof.

10. Nonuniqueness of stationary wave for small ε. In this section, we
show that for small ε, (5.3) admits another solution, which is close to, but different
from, any translation of that solution obtained in the previous sections via the energy
minimization technique.

10.1. An eigenvalue estimate. First we investigate the operator

Lεφ ≡ −∆εφ + fu(u0)φ(10.1)

for functions which are constant on every interval (ε(n − 1/2), ε(n + 1/2)], n ∈ Z,
lying in the space

X0 ≡
{
φ =

∑
n

φnχ
ε
n :

∑
n

φ2
n < ∞

}
.

We define

Λ(ε) ≡ inf
φ∈X0,‖φ‖L2=1,φ(0)=0

{
‖ − ∆εφ + fu(u0)φ‖L2(R\(−ε/2,ε/2])

}
,

Λ0 ≡ lim inf
ε↘0

Λ(ε) .
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Lemma 17. Λ0 > 0. Consequently, Λ(ε) > Λ0/2 for all small positive ε.
Proof. We use the same idea as that for the nonbalanced potential case. Let

{εj , φj , ψj} be a sequence such that limj→∞ εj = 0, limj→∞ ‖ψj‖L2(R\(−εj/2,εj/2]) =
Λ0, and for each j ≥ 1, εj > 0, φj ∈ X0, ‖φj‖L2 = 1, φj = 0 on (−εj/2, εj/2], and
ψj = −∆εjφj + fu(u0)φj .

Using the identity (−∆εjφj , φj) + (fu(u0)φj , φj) = (ψj , φj), that φj = 0 on
(−εj/2, εj/2], and Lemma 11, we obtain

1

B∞
‖φ̃′

j‖2 +

∫
R

f(u0)φ2
j ≤ ‖φj‖L2‖ψj‖L2(R\(−εj/2,εj/2]),

where φ̃j is the linear interpolant of φ at node points. It then follows that ‖φ̃′‖L2 is

uniformly bounded. Consequently, ‖φj − φ̃j‖L2(R) is of size O(ε2
j ).

Thus, we can select a subsequence from {φ̃j , ψj}, still denoted by {φ̃j , ψj}, such
that for some φ ∈ H1(R) and ψ ∈ L2(R),

φ̃j −→ φ in L2
loc(R) and weakly in H1(R),

ψj −→ ψ weakly in L2
loc(R \ {0}).

In addition, φ(0) = 0. In the weak formulation, one can show that −φ′′ + f(u0)φ = ψ
in R \ {0}. By an estimate similar to (3.10), (3.11), we conclude that Λ0 > 0. This
completes the proof.

10.2. Energy minimizer with constraint. For every α ∈ (−1, 1) we define

Xα ≡
{
u =

∑
n

unχ
ε
n : u0 = α,

∑
n>0

|1 − un|2 +
∑
n<0

|1 + un|2 < ∞
}

.

Define

E(α, ε) ≡ inf
u∈Xα

E[u], E(ε) = inf
α∈(−1,1)

E(α, ε).

We note that E(ε) is the energy of the minimizer we studied in the previous sections.
Lemma 18. There exists ε0 > 0 such that for every α ∈ [−1/2, 1/2] and ε ∈

(0, ε0], there exists uαε ∈ Xα such that E[uαε ] = E(α, ε).
Proof. The proof follows the same lines as that of Theorem 8. We can extract

a (weak) limit from a minimizing sequence. This limit is a minimizer if it is in Xα.
To show this, we follow the same contradiction argument as before, obtaining the
inequality ẽ0 + E(ε) ≤ E(α, ε), where ẽ0 is the minimum energy among all functions
which take the value α at the origin. To contradict ẽ0 + E(ε) ≤ E(α, ε), we have
to assume that ε is small. In fact, for small ε, E(ε) = E(0) + o(1) (Theorem 14),

and ẽ0 > C(min{∫ α−1

√
F (s)ds,

∫ 1

α

√
F (s)ds} − O(

√
ε)). Also, taking an appropriate

test function shows that E(α, ε) ≤ E(0) + o(1). Therefore, ẽ0 + E(ε) > E(α, ε) for
all small positive ε and all α ∈ [−1/2, 1/2]. This inequality shows that the limit of
the minimizer has the correct asymptotics, thereby establishing the existence of a
minimizer uαε . We omit the details.

Lemma 19. For every δ > 0, there exists ε1(δ) > 0 such that if ε ∈ (0, ε1(δ)], α ∈
[−1/2, 1/2] and uαε ∈ Xα is a minimizer of E[u] in Xα, then ‖uαε − u0(z(α) +
·)‖L2∩L∞ ≤ δ, where z(α) is the point satisfying u0(z(α)) = α.

The proof follows the same lines as that of Theorem 14 and is omitted.
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Lemma 20. There exists ε2 > 0 such that for every ε ∈ (0, ε2] and α ∈
[−1/2, 1/2], the minimizer uαε ∈ Xα for E[u] in Xα is unique.

Proof. Let uα,1ε and uα,2ε be two minimizers. Set φ = uα,1ε −uα,2ε . Then φ satisfies
the equation

−∆εφ + fu(u0(z̄(α) + x))φ = r(x, φ(x))φ for all x ∈ R \ (−ε/2, ε/2],

where r(x, φ(x)) ≡ ∫ 1

0
[fu(uα,1(x)+sφ(x))−fu(u0(z̄(α)+x))]ds and z̄(α) is an integer

multiple of ε with |z(α) − z̄(α)| ≤ ε/2. In view of the previous lemma, we see that
when ε ≤ ε1(δ), |r(x, φ(x))| ≤ Cδ, where C is a constant depending only on f . Hence,
by the eigenvalue estimate in Lemma 17,

‖φ‖L2 ≤ ‖r(·, φ(·))‖L∞

Λ(ε)
‖φ‖L2(R\(−ε/2,ε/2]).

From this we conclude that φ = 0 if we take δ = Λ0/(4C) and let ε be small enough
such that Λ(ε) ≥ Λ0/2. This completes the proof.

Lemma 21. For every ε ∈ (0, ε2], E(α, ε) is continuously differentiable in α ∈
(−1/2, 1/2) and

d

dα
E(α, ε) = 2ε{−∆εu

α
ε + f(uαε )}

∣∣∣
x=0

.(10.2)

Consequently, uαε solves (5.2) if and only if d
dαE(α, ε) = 0.

Proof. Denote by L(α, ε) the right-hand side of (10.2). Since the uniqueness of
uαε implies the continuity of uαε in α, L(α, ε) is continuous in α ∈ (−1/2, 1/2).

For any small positive h, we have

E(α + h, ε) ≤ E[uαε + hχ0
ε]

= E(α, ε) + L(α, ε)h + ε(−∆εχ
0
ε, χ

0
ε)h

2 + 2ε{F (α + h) − F (α) − f(α)h}.

Similarly, we have

E(α, ε) ≤ E(α + h, ε) − L(α + h, ε)h + O(h2).

It then follows that, for all small positive h,

L(α + h, ε) + O(h) ≤ E(α + h, ε) − E(α, ε)

h
≤ L(α, ε) + O(h).(10.3)

The assertion (10.2) thus follows by letting h ↘ 0.
Note that the minimizer uαε in Xα satisfies −∆εu

α
ε +f(uαε ) = 0 in R\ (−ε/2, ε/2].

Hence, uαε solves (5.2) if and only if d
dαE(α, ε) = 0.

The final part of Theorem 2 is that which gives a second stationary wave for ε > 0
sufficiently small.

Theorem 22. For every ε ∈ (0, ε2], problem (5.3) admits at least two solutions,
u1
ε and u2

ε, which differ by more than translation, and as ε → 0, ‖uiε− u0‖L∞(R) → 0,
i = 1, 2.

Proof. Let uε be one of the global minimizers given in Theorem 14. We write
uε =

∑
n uεnχ

ε
n. Let (a, b) ⊂ [−1/2, 1/2] be an interval such that for some integers n1

and n2, a = uεn1
< b = uεn2

.
Consider the differentiable function E(α, ε) for α ∈ [a, b].
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If E(α, ε) is a constant function, then every uαε is a solution to (5.2), and hence
we have a continuum of solutions to (5.3).

If E(α, ε) is not a constant function, then as it attains the global minimum E(ε)
at α = a and α = b, there exists at least a local maximum of E(·, ε) attained at
some c ∈ (a, b), at which d

dαE(c, ε) = 0. Consequently, the local saddle ucε ∈ Xc is a
solution to (5.3). Clearly, ucε is different from any translation of uε since their energies
are different. Translating ucε and using Lemma 19 completes the proof.

Remark 8. (1) We do not know if (5.2) admits a continuous solution. If this
is true, then E(α, ε) is simply a constant function and (5.2) has a continuum of
truly different solutions, even though they are obtained by translating the underlying
continuous profile. It is shown in [14], for example, that starting with a particular
wave profile, such as u(x) = tanh(µx), one can reverse engineer a nonlinearity so that
this is a traveling wave for a discrete bistable equation with nearest neighbor coupling.
For the profile given here, the equation is

cu′(x)=
1

ε2
[u(x+1)−2u(x)+u(x−1)]−cµ(1−u(x)2)− 2

ε2

u(x)

1+(1−u(x)2) sinh2 µ
+

2u(x)

ε2
.

(2) If f(u) is odd and αk decays to zero exponentially fast in k (e.g., only finitely
many nonzero αk’s), one can show that E(α, ε) − E(ε) is small beyond any power of
ε. The idea is as follows.

Write, as an asymptotic approximation,

∆ε ∼ d2

dx2
+

∞∑
n=2

ε2nan
d2n

dx2n
.

One looks for an asymptotic solution

uε ∼ u0(x) +

∞∑
n=1

εnUn(x), with Un(x) = −Un(−x),

to the equation

−u′′
ε + f(uε) −

∞∑
n=2

ε2nan
d2n

dx2n
uε ∼ 0.

One can show that all Un, n = 1, 2, . . . , exist, and are uniquely determined, by using
the symmetry assumption. For more details, see Chen et al. [5].

Now fix any order of approximation, K, desired. Set uKε = u0 +
∑K

n=1 ε
kUk(x).

Then

−∆uKε + f(uKε ) = O(εK+1) on R.

For any α ∈ [−1/2, 1/2], let z = zε,K(α) be such that uKε (z) = α. Define uK,α
ε (x) =∑

n uKε (z + εn)χεn.

Consider the function Ẽ(α, ε) = E[uK,α
ε ]. Since uK,α

ε satisfies (5.3) up to order
εK+1, one can show that d

dα Ẽ(α, ε) = O(εK+1) and hence is almost independent of
α. On the other hand, following our proof of uniqueness of uαε , one can show that
‖uαε −uK,α

ε ‖L2 is of order εK+1. Thus, E(α, ε) = Ẽ(α, ε)+O(εK+1). As K is arbitrary,
we see that E(α, ε) is a constant, subject to a correction which is smaller than any
power of ε, asymptotically.
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Remark 9. The uniqueness of uαε indeed implies that uαε (·) is monotonic in the
range [−1/2, 1/2]. The reason is as follows. Suppose on the contrary that uαε (·) is
not monotonic in this range. Then, by translation, it attains a local maximum, say
a ∈ (−1/2, 1/2], at the origin. Set c = uaε(ε) and B(α) = uαε (−ε), and let α vary
from a to c. Then B(a) = uaε(−ε) ≤ a and B(c) = ucε(−ε) = uaε(0) = a ≥ c.
Thus, by the continuity of B(·), there exists α̂ ∈ [c, a] such that B(α̂) = α̂; that is,
uα̂ε (0) = uα̂(−ε). Hence, by the uniqueness, we must have uα̂(−ε + ·) = uα̂(·), which
is impossible. Therefore, in the range [−1/2, 1/2], uαε (·) is monotonic. Of course, as
ε becomes smaller, the interval [−1/2, 1/2] can be made arbitrarily close to (−1, 1).
We are not sure whether or not uαε is monotonic overall.

Acknowledgments. PWB and XC gratefully acknowledge the support and hos-
pitality received while visiting the Research Institute for Mathematical Sciences, Ky-
oto University, Japan.
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SOLVING TIME-HARMONIC SCATTERING PROBLEMS BASED
ON THE POLE CONDITION

II: CONVERGENCE OF THE PML METHOD∗
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Abstract. In this paper we study the PML method for Helmholtz-type scattering problems
with radially symmetric potential. The PML method consists of surrounding the computational
domain with a perfectly matched sponge layer. We prove that the approximate solution obtained
by the PML method converges exponentially fast to the true solution in the computational domain
as the thickness of the sponge layer tends to infinity. This is a generalization of results by Lassas
and Somersalo based on boundary integral equation techniques. Here we use techniques based on
the pole condition instead. This makes it possible to treat problems without an explicitly known
fundamental solution.

Key words. transparent boundary conditions, perfectly matched layer, pole condition

AMS subject classification. 65N12

DOI. 10.1137/S0036141002406485

1. Introduction. Since the first paper on the subject by Bérenger in 1994 [1],
the perfectly matched layer (PML) method has become very popular due to its ac-
curacy, simplicity, and flexibility. In this article we explore the connections between
the PML method for time-harmonic scattering problems and the methods based on
the pole condition, which are discussed in [4]. We start with a brief summary of the
derivation of the PML equations. Let u (r, x̂) denote the solution to the scattering
problem in a coordinate system consisting of a radial variable r > 0 and a vector of
angular variables x̂. The first step of the PML method consists of a complex extension
of the solution u (·, x̂) along some given path γ : [a,∞)→ C, a > 0, which satisfies

γ (a) = a, Re γ (r) = r and Im γ′(r) ≥ 0 for r > a.

In Cartesian coordinates the so-called Bérenger solution u(B) (r, x̂) := u (γ (r) , x̂) sat-
isfies a Helmholtz-type equation with an anisotropic damping tensor. If u is outgoing,
then u(B) (r, x̂) decays exponentially as r → ∞. On the other hand, u(B) (r, x̂) grows
exponentially if u is an incoming field. Therefore, the Sommerfeld radiation condition
for u is equivalent to the boundedness of u(B) (r, x̂). In a second step, the boundedness
condition for u(B) (r, x̂) is replaced by the zero Dirichlet condition u(B) (ρ, x̂) = 0 at
some finite distance ρ > a. We end up with an elliptic boundary value problem on a
bounded domain, which can be solved by standard finite element codes.

The analysis in this paper is based on the work of Collino and Monk [2] and
Lassas and Somersalo [8]. We show that, for the Helmholtz equation with a radially
symmetric potential, the solution to the PML equations converges exponentially to the
true solution within the ball {x : |x| < a} as ρ→ ∞. In [9] Lassas and Somersalo show
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the exponential convergence of the PML method for general convex computational
domains, but constant exterior potentials. In [7] the PML method for Maxwell’s
equations is interpreted as a complexification of the metric. Our proof proceeds
along the same lines as in [8], but we replace integral equation techniques with a
representation formula derived in [4]. This allows us to treat problems for which
no fundamental solution is known explicitly. In particular, as shown in numerical
experiments, the method converges for inhomogeneous exterior domains involving
waveguide structures; see [5, 6, 10]. However, the analysis presented in this paper
covers only radially symmetric potentials.

We also show that there exists a close connection between the exponential decay
of Bérenger solutions and the pole condition. The former condition always implies the
latter, and under certain conditions on the singularities in the Laplace domain, the
converse implication holds true as well. As a consequence, the class of applications of
the PML method and methods based on the pole condition is almost the same within
the class of time-harmonic scattering problems. For a comparison of the numerical
performance of the two methods, we refer to [6]. A potential advantage of methods
based on the pole condition is the possibility to evaluate the exterior field numerically
by a representation formula if the location and the type of the singularities in the
Laplace domain are known. This is particularly relevant if a fundamental solution
is not known explicitly. Otherwise, the exterior field can be evaluated by Green’s
representation formula.

The plan of this paper is as follows. In section 2 we introduce the class of problems
considered in this paper and the corresponding Dirichlet-to-Neumann (DtN) map.
Section 3 deals with the analytic continuation properties of the solution and the
relation to the pole condition. In section 4 a more detailed derivation of the PML
equations is given. Finally, in section 5 we prove our main theorem on the exponential
convergence of the solutions to the PML equations as ρ→ ∞.

2. Helmholtz scattering problem and the DtN-operator. We are con-
cerned with Helmholtz-type scattering problems

∆u (x) + k2 (x)u (x) = 0 in R
d \K,(2.1a)

∂

∂ν
u|∂K = f,(2.1b)

lim
r→∞ r

d−1
2

(
∂u

∂r
− iκu

)
= 0.(2.1c)

Here K ⊂ R
d denotes a compact smooth set, f ∈ H−1/2 (∂K), and ν is the normal

vector on ∂K pointing to the interior ofK. We assume that k is a bounded, continuous
function which is given by

k2 (x) = (1 + p (|x|))κ2 for |x| ≥ a∗.
Here p

(
t−1

)
=
∑∞

m=2 pmt
m has a convergence radius greater than 1

ap
, ap ∈ (0,∞]

with a∗ > ap. As proved in [4] the above system has a unique solution. We are
interested only in the restriction of the solution to the interior domain Ωa = B

d
a \K,

where a > a∗. We denote u(int) (x) = u (x) , x ∈ Ωa. u
(int) is the unique solution to

the variational problem∫
Ωa

∇u∇v dx−
∫
Ωa

k2uv dx−
∫
Sd−1
a

DtNauv ds =

∫
∂K

fv ds(2.2)
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for all v ∈ H1 (Ωa) (see [4]). The corresponding boundary value problem is

∆u(int) + k2u(int) = 0 in Ωa,(2.3a)

∂nu
(int) = f on ∂K,(2.3b)

∂ru
(int) −DtNau

(int) = 0 on Sd−1
a .(2.3c)

Here Sd−1
a :=

{
x ∈ R

d : |x| = a} and DtNa : H1/2
(
Sd−1
a

) → H−1/2
(
Sd−1
a

)
denotes

the DtN map defined as follows. Given g ∈ H1/2
(
Sd−1
a

)
DtNag = ∂ru

(ext)|Sd−1
a
,

where u(ext) is the unique solution to the exterior problem

∆u(ext) + k2u(ext) = 0 in Da,∞,(2.4a)

u(ext)|∂Sd−1
a

= g,(2.4b)

lim
r→∞ r

d−1
2

(
∂u(ext)

∂r
− iκu(ext)

)
= 0.(2.4c)

Here and in the following we use the notation

Dθ1,θ2 = B
d
θ2 \Bd

θ1
, Dθ1,∞ = R

d \Bd
θ1
.(2.5)

We call the boundary condition (2.3c) transparent because it leads to the exact solu-
tion in the interior domain without any spurious reflections. It can be seen from the
above definition of the DtNa-operator that the boundary condition (2.3c) is nonlocal.
In particular, it is not given by a finite sum of differential operators acting on the
boundary Sd−1

a . Due to the presence of the potential p, neither an integral representa-
tion nor a series representation of the DtNa-operator is known explicitly. Therefore,
it cannot be used directly for a finite element approximation of the interior problem.
Nevertheless it will provide the theoretical framework of our convergence proof, where
we interpret the action of the sponge layer as a perturbation of the DtNa-operator.

3. The pole condition and analytic continuation of the exterior solu-
tion. We introduce polar coordinates r > 0 and x̂ ∈ Sd−1

1 in R
d.With a slight misuse

of notation, we use the same letter for exterior fields in polar and Cartesian coordi-
nates, i.e., u (r, x̂) = u (rx̂) . If u is a solution to the boundary problem (2.4), we will
show that u (·, x̂) has a holomorphic extension to C

++
a = {z ∈ C : Re z > a, Im z ≥ 0} .

Recall that the Laplace operator in polar coordinates is given by 1
rd−1 ∂r

(
rd−1∂r

)
+

1
r2∆x̂, where ∆x̂ denotes the Laplace–Beltrami operator on the unit sphere. We re-
place the real coordinate r with the complex variable z and define

∆z =
1

zd−1

∂

∂z
zd−1 ∂

∂z
+
1

z2
∆x̂.

As usual, we define ∂
∂z f (z) := limz̃∈C

++
a →z

f(z̃)−f(z)
z̃−z . Thus, ∂z is a one-sided derivative

on the real axis. We consider nonstandard boundary value problems of the form

∆zu (z, x̂) + k
2 (z)u (z, x̂) = 0, z ∈ C

++
z0 , x̂ ∈ Sd−1

1 ,(3.1a)

u (z0, ·) = g̃,(3.1b)

lim
Re z→∞

z
d−1
2

(
∂

∂z
u− iκu

)
= 0,(3.1c)
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where boundary condition (3.1b) has to be understood in the sense of the trace op-
erator. We will also have to consider the case Im z0 > 0, where we seek a solution
defined on C

++
z0 = {z ∈ C : Re z > Re a, Im z ≥ Im z0} . Since the energy argument

in [4, Lemma 8.1] is no longer valid in this case, we cannot guarantee uniqueness in
general. However, we will show in Lemma 5.3 that uniqueness is given if z0 satisfies
certain conditions. The next theorem is a generalization of [4, Theorems 8.4 and 9.3]
for complex arguments. Since the proof is almost the same, it is omitted here.

Theorem 3.1. Let z0 ∈ C
++
a and assume that (3.1) with g̃ = 0 has only the

trivial solution. Then the following hold true:
1. There exists a unique solution u ∈ C2

(
C
++
z0 × Sd−1

1

)
to (3.1) for all g̃ ∈

H1/2
(
Sd−1
1

)
.

2. There exist functions u∞ ∈ C∞ (
Sd−1
1

)
and Ψ ∈ C1

(
R+ × Sd−1

1

)
and a

constant ã > Re z0 such that the above solution is given by

u (z, x̂) = z
1−d
2 eiκz

(
u∞ (x̂) +

∫ ∞

0

e−t(z−ã)Ψ(t, x̂) dt
)

(3.2)

for Re z ≥ ã. Ψ(t, x̂) decays exponentially as t→ ∞. The formula (3.2) may
be differentiated any number of times with respect to both z and x̂; integration
and differentiation may be interchanged. Moreover, given m ∈ {0, 1} and
l ∈ {0, 1, . . . } , there exists a constant C > 0 such that∥∥u∞∥∥

Cl(Sd−1
1 ) ≤ C

∥∥g̃∥∥
L2 ,(3.3) ∫ ∞

0

tk
∥∥∥∥ ∂m∂tmΨ(t, ·)

∥∥∥∥
Cl(Sd−1

1 )
dt ≤ C∥∥g̃∥∥

L2 .(3.4)

Let us consider the restriction va(z) := u(z + a, x̂), z ∈ C
++
0 , of the solution to a

ray with direction x̂ ∈ Sd−1
1 . It follows from (3.2), (3.3), and (3.4) that

va has a holomorphic extension to C
++
0 and(3.5a)

sup
z∈C

++
0

|e−iκzva(z)| <∞,(3.5b)

i.e., that va(z) decays exponentially as Im z → ∞. Since, for an incoming wave,
va(z) grows exponentially as Im z → ∞, the exponential decay of va(z) as Im z → ∞
characterizes outgoing waves. At the same time it is the foundation of the PML
method.

The pole condition is an alternative characterization of outgoing waves, which is
also the basis of numerical algorithms (cf. [5, 6]). For the differential equation (2.1a),
(2.1c), we have shown in [4] that the Laplace transform v̂a(s) :=

∫∞
0
e−rsva(r) dr,

Re s > 0, satisfies the condition

v̂a has a holomorphic extension to {s ∈ C : Im s < κ̃},(3.6a)

sup
Im s<0

|s+ iκ̃||v̂a(s+ iκ̃)| <∞(3.6b)

for κ̃ ≤ κ. For general differential equations, e.g., problems with waveguides, we
do not have a proof that either (3.5) or (3.6) is an appropriate characterization of
outgoing waves sufficient to show both existence and uniqueness of a solution. Let us
now look at the relation between the conditions (3.5) and (3.6).

Theorem 3.2. Let κ̃ < κ and ã > a. If va : (0,∞) → C satisfies (3.5), then
vã(r) := va(r + ã− a) satisfies (3.6).
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Fig. 3.1. Relation of the pole condition and the exponential decay of the Bérenger functions.

Proof. For the contour in Figure 3.1(a), we have
∫
γR1 +γR2 +γR3

e−szvã(z) dz = 0

for all R > 0 by Cauchy’s integral theorem. Since limR→∞
∫
γR2
e−szvã(z) dz = 0 for

Re s > 0 and Im s ≤ 0 due to (3.5), it follows that

v̂ã(s) = lim
R→∞

∫
γR1

e−szvã(z) dz = − lim
R→∞

∫
γR3

e−szvã(z) dz =
∫ ∞

0

e−sitvã(it) idt.

A partial integration yields

(s+ iκ̃)v̂ã(s+ iκ̃) = vã(0) +

∫ ∞

0

e−sit+sκ̃tv′ã(it) idt.(3.7)

Differentiating Cauchy’s formula va(z) = (2πi)−1
∫
{|ζ−z|=ε} va(ζ)(ζ − z)−1 dζ with

z = it+ ã− a and 0 < ε < ã− a and using assumption (3.5b), we obtain

|v′ã(it)| = |v′a(it+ ã− a)| ≤ sup
|ζ−z|≤ε

ε−1|va(ζ)| ≤ Ce−κt

for all t > 0 with some constant C > 0. Since κ̃ < κ, the integrand in (3.7) decays
exponentially with t for Im s ≤ 0. This shows that (3.6) holds true.

We immediately obtain the following.

Corollary 3.3. If u ∈ C(C++
a∗ × Sd−1

1 ) is holomorphic in the first variable and
satisfies

sup
z∈C

++
a∗ ,x̂∈Sd−1

|e−iκzz d−1
2 u(z, x̂)| <∞(3.8)

for κ > 0, then u satisfies the pole condition; i.e., the functions Ûa(s, x̂) :=
∫∞
0
e−sr(r+

a)(d−1)/2u(r + a, x̂) dr, initially defined for �s > 0, have holomorphic extensions to
{s ∈ C : �s < 0} for all x̂ ∈ Sd−1 and all a > a∗.

The converse, that the pole condition implies the exponential decay of the Bérenger
function, follows from the representation formula (3.2) for problems of the form (2.1).
The basic idea of the proof of this formula is a contour deformation in the Fourier
inversion formula

va(r) =
1

2πi
lim
R→∞

∫
γR1

esrv̂a(s) ds, r > 0
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(cf. Figure 3.1(b)). We assume that va is smooth and satisfies (3.6). Then we have
limR→∞

∫
γR2 +γR4

esz v̂a(s) ds = 0, and it follows from Cauchy’s integral theorem that

va(z) = − 1

2πi
lim
R→∞

∫
γR3

esz v̂a(s) ds(3.9)

for z > 0. Here the path γR3 is chosen such that the distance to the singularities of
v̂a(s) is ≥ 1/R. If the above limit exists, not only for z > 0 but also for z ∈ C

++
0 ,

we obtain the desired extension of va to C
++
0 . However, without further information

on the singularities, we cannot guarantee that this limit exists and use it to estimate
|va(z)| for z ∈ C

++
0 . Only if v̂a is sufficiently well behaved can we derive the bound

(3.5b).

4. The PML equations. We assume that γ (r) = r
(
1 + i

r

∫ r
a
σ (t) dt

)
with a

function σ ∈ C1 ([a,∞) , [0,∞)) satisfying

σ (a) = 0,(4.1a)

sup
r≥a

σ (r) <∞,(4.1b)

lim
r→∞ inf

r′≥r
σ (r′) > 0.(4.1c)

Let u denote the solution to (3.1). Then the Bérenger function defined by

u(B) (r, x̂) = u (γ (r) , x̂)(4.2)

solves the boundary value problem

1

γd−1γ′
∂

∂r

(
γd−1

γ′
∂

∂r
u(B)

)
+

1

γ2
∆x̂u

(B) + k2 (γ (r))u(B) = 0,(4.3a)

u(B)(a′, ·) = g̃.(4.3b)

If a′ = a and g̃ = g, we have u(B) (ax̂) = u(ext) (ax̂) and ∂ru(B) (ax̂) = ∂ru(ext) (ax̂) due
to (4.1a). Thus concerning the variational formulation of the inner domain problem,
u(B) is as good as u(ext).

Lemma 4.1. Under the assumptions of Theorem 3.1 with z0 = γ(a
′), the boundary

value problem (4.3) has a unique solution u(B) in H1 (Da′,∞) for all g̃ ∈ H1/2
(
Sd−1
1

)
.

It satisfies
∥∥u(B)∥∥

H1 ≤ C∥∥g̃∥∥
H1/2(Sd−1

1 ) with a constant C independent of g̃.

Proof. Let u denote the solution to (3.1), and let u(B) be defined by (4.2). It
follows from Theorem 3.1(2) that there exist constants C and ã > a′ such that∥∥u(B)∥∥

H1(Dã,∞)
≤ C

∥∥g̃∥∥
L2 . In order to show that

∥∥u(B)∥∥
H1(Da′,ã)

≤ C
∥∥g̃∥∥

H1/2 , we

consider a Fourier expansion

u(B) (r, x̂) =

∞∑
j=1

g̃jRj(r)ϕj (x̂) .(4.4)

Here {ϕj , λj : j ∈ N} is a complete orthonormal system of eigenfunctions and eigen-
values of the Laplace–Beltrami operator ∆x̂ on the sphere S

d−1
1 , g̃j =

∫
Sd−1

1
g̃ϕj ds,

and Rj(a
′) = 1. By virtue of the orthogonality of the Fourier modes with respect to
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the H1-norm we have

‖u(B)‖2H1(Da′,ã)
=

∞∑
j=1

|g̃j |2
{
‖Rj(r)ϕ(x̂)‖2L2(Da′,ã)

+ ‖ gradRj(r)ϕ(x̂)‖2L2(Da′,ã)

}

=

∞∑
j=1

|g̃j |2
∫ ã

a′
rd−1

{(
1− λj

r2

)
|Rj(r)|2 + |R′

j(r)|2
}
dr.

Since Rj = (γ(κa
′)

γ(κr) )
d−1
2

Hj(γ(κr))
Hj(γ(κa′)) in the notation of [4, Corollary 8.3], there exists a

constant N such that

|R(l)
j (r)| ≤ C

√−λj l
∣∣∣∣γ(a′)γ(r)

∣∣∣∣
√

−λj
(4.5)

for all j ≥ N, a′ ≤ r ≤ ã, and l = 0, 1 with a generic constant C independent of
j. Plugging this into the previous equation and using the estimate |γ(a′)/γ(r)| ≤
|γ(a′)|(r2 + Im γ(a′)2)−1/2 yields

‖u(B)‖2H1(Da′,ã)
≤ C

∞∑
j=1

(1 + |λj |1/2)|g̃j |2 ≤ C‖g̃‖2H1/2

since ‖g̃‖2
H1/2 =

∑
j(1 + |λ|)1/2|g̃j |2.

Assume now that u(B) ∈ H1(Da′,∞) is any solution to (4.3) not necessarily re-
lated to a solution of (3.1) by (4.2). By [4, Theorem 6.4] and assumption (4.1c),

the Fourier coefficients u
(B)
j (r) :=

∫
Sd−1

1
u(B)(r, ·)ϕj ds are linear superpositions of an

exponentially decreasing function proportional to Rj and an exponentially increasing
function. It follows from the orthogonality of the Fourier modes and the boundedness

of ‖u(B)‖H1 that u
(B)
j (r) = g̃gRj(r) as in (4.4). This shows uniqueness of a solution

to (4.3).
Lemma 4.2. In Cartesian coordinates (4.3a) has the form ∆γu+ k

2
γu = 0, where

k2γ (r) = k
2 (γ (r)) and

∆γ = ∇ ·Aγ∇+ bγ∇.
Aγ ∈ C1

(
[a,∞) ,Cd×d) and bγ ∈ C0

(
[a,∞) ,C1×d) satisfy

Aγ (r, x̂) = G
T
x̂ diag

(
1

(γ′ (r))
2 ,

r2

γ2 (r)
, . . . ,

r2

γ2 (r)

)
Gx̂,(4.6a)

bγ (r, x̂) =

(
d− 1

r
− d− 1

γ (r) γ′ (r)
− γ

′′
(r)

(γ′ (r))
, 0, . . . , 0

)
Gx̂(4.6b)

for any orthogonal matrix Gx̂ whose first line is x̂.
Proof. Let ∆γu be defined by the first two terms in (4.3a). Then∫
Da,∞

∆γuv dx =

∫ ∞

a

∫
Sd−1

rd−1

[
1

γd−1γ′
∂

∂r

(
γd−1

γ′
∂

∂r
u

)
+

1

γ2
∆x̂u

]
v dsdr

= −
∫ ∞

a

∫
Sd−1

rd−1

[
1

(γ′)
2

∂

∂r
u
∂

∂r
v̄ +

1

γ2
∇x̂u · ∇x̂

]
v dsdr

−
∫ ∞

a

∫
Sd−1

rd−1

[(
d− 1

r
− d− 1

γγ′ − γ
′′

(γ′)
3

)
∂

∂r
u

]
v dx
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for u, v ∈ C∞
0 (Da,∞), where ∇x̂ denotes the surface gradient on S

d−1
1 . Recall that

∇x̂u (r, x̂) is the projection of r∇u (rx̂) to the tangential plane, which is orthogonal
to x̂. Since this projection is given by GT

x̂ diag (0, 1, . . . , 1)Gx̂ we get

∇x̂u (r, x̂) = rG
T
x̂ diag (0, 1, . . . , 1)Gx̂∇u (rx̂) .

Analogously, x̂ ∂
∂ru (r, x̂)G

T
x̂ diag (1, 0, . . . , 0)Gx̂∇u (rx̂) . Therefore

∂

∂r
u (r, x̂)

∂

∂r
v (r, x̂) = (∇u (rx̂))TGT

x̂ diag (1, 0, . . . , 0)Gx̂∇v (rx̂),
∇x̂u (r, x̂) · ∇x̂v (r, x̂) = r

2 (∇u (rx̂))TGT
x̂ diag (0, 1, . . . , 1)Gx̂∇v (rx̂).

Inserting this yields
∫
Da,∞

∆γuv dx =
∫
Da,∞

Aγ∇u · ∇v + bγ∇uv dx for all v ∈
C∞
0 (Da,∞) . This implies the asserted form of ∆γ . To prove the regularity of Aγ

and bγ we may choose Gx̂ such that it locally depends smoothly on x̂.

Lemma 4.3. The operator γγ′

r ∆γ is strongly elliptic on Da,∞.
Proof. By (4.6a) we must show that there exists δ > 0 with

max
a≤r<∞

{
Re

γ (r)

rγ′ (r)
,Re

rγ′ (r)
γ (r)

}
> δ > 0.

This follows from the assumption (4.1b) since Re( γ
rγ′ ) =

1+σ 1
r

∫ r
a
σ(t) dt

1+σ2 ≥ 1
1+maxσ2

and Re( rγ
′

γ ) =
1+σ 1

r

∫ r
a
σ(t) dt

1+( 1
r

∫ r
a
σ(t) dt)

2 ≥ 1
1+maxσ2 .

So far, we have replaced the exterior Helmholtz problem (2.4) with the Bérenger
problem (4.3), which is still posed on an unbounded domain. Motivated by the ex-
ponential decay of u(B), we restrict (4.3) onto a bounded domain, say Da,ρ, ρ > a,
and impose a zero Dirichlet boundary condition on the artificial boundary Sd−1

ρ . This
yields the so-called PML system

∆γu+ k
2
γu = 0, x ∈ Da,ρ,(4.7a)

u|Sd−1
a

= g,(4.7b)

u|Sd−1
ρ

= 0.(4.7c)

We define DtN(PML)
a,ρ : H1/2

(
Sd−1
a

) → H−1/2
(
Sd−1
a

)
by

DtN(PML)
a,ρ g = ∂ru

(PML)
ρ

∣∣∣
Sd−1
a

.

To derive a reformulation of (2.2) with DtNa replaced with DtN
(PML)
a,ρ which does

not involve a DtN-operator, we extend Aγ , bγ , and kγ to Ωa by Id, [0, . . . , 0], and k
2,

respectively, and introduce the Hilbert space H1
(0) (Ωρ) := {v ∈ H1 (Ωρ) : v|Sd−1

ρ
= 0}.

Then the variational formulation of the total PML system is∫
Ωρ

(Aγ∇u)∇v + bγ∇uv + k2PMLuv dx =

∫
∂K

fv ds for all v ∈ H1
(0)(Ωρ).(4.8)

This problem can be solved by standard finite element codes. Using elliptic regularity
results, it is easy to show that any solution to (2.2) with DtNa replaced with DtN

(PML)
a,ρ

can be extended to a solution of (4.8), and conversely the restriction of any solution

to (4.8) is a solution to (2.2) with DtNa replaced with DtN
(PML)
a,ρ . In the next sections

we show that (4.8) has a unique solution u
(PML)
ρ for ρ large enough and suitable γ and

that u
(PML)
ρ converges exponentially fast to the true solution in the interior domain

Ωa.
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5. Convergence analysis. In the following we are repeatedly concerned with
boundary value problems of type (4.3) and (4.7) on domains Dθ1,θ2 , defined in (2.5).
For a compact notation of these problems we make the following definitions.

Definition 5.1. Let a < θ1 < θ2 <∞ be given. We define the operators

Lθ1,θ2 : H1 (Dθ1,θ2)→ H−1 (Dθ1,θ2)×H1/2
(
Sd−1
θ1

)×H1/2
(
Sd−1
θ2

)
and

Lθ1,∞ : H1
loc (Dθ1,∞)→ D′ (Dθ1,∞)×H1/2

(
Sd−1
θ1

)
by u �→ (∆γu+ k

2
γu, u|Sd−1

θ1

, u|Sd−1
θ2

) and u �→ (∆γu+ k
2
γu, u|Sd−1

θ1

), respectively.

Remark 5.2. A function u ∈ H1 (Da,∞) solves the Bérenger system (4.3) if and
only if it satisfies La,∞u = (0, g) . A function u ∈ H1 (Da,ρ) solves the PML system
(4.7) if and only if it satisfies La,ρu = (0, g, 0) .

For the proof of the following lemma we restrict the class of admissible paths γ
by the following condition: There exist constants a′ > a and σ0 > 0 such that

γ (r) = (1 + iσ0) r(5.1a)

for r ≥ a′. Later we will also need that

κ2|α0|2|p(α0r)| <
min

(
1, κ2

)
σ0

|α0|(5.1b)

for r ≥ a′ with α0 := (1 + iσ0) . This can always be achieved by increasing the value of
a′. For simplicity we also assume a′ ≥ 1. Condition (5.1a) means that γ is a straight
line in the complex plane for r ≥ a′. It is easily checked that ∆γ =

1
α2

0
∆ for r ≥ a′.

Therefore (4.3a) is equivalent to(
∆+ α20k

2 (α0 |x|)
)
u(B) = 0, |x| > a′;(5.2)

i.e., u(B) satisfies a Helmholtz equation with a complex wave number for |x| > a′.
Lemma 5.3. The following hold true:
1. The operator L−1

a′,∞ is well defined and bounded from {0} × H1/2
(
Sd−1
a′

)
to

H1 (Da′,∞).
2. The operator La′,ρ has a bounded inverse for ρ > a′ + 1, where a′ is defined

in (5.1). There exists a constant C such that
∥∥L−1

a′,ρ

∥∥ ≤ Cρ for all ρ > a′+1.
3. Lθ1,θ2 is a Fredholm operator with index zero for all a < θ1 < θ2 <∞.
Proof. (1) The assertion follows from Lemma 4.1 if we can show that a solution u

to (3.1) with g̃ = 0 and z0 = γ(a
′) must vanish. Let uj(r) :=

∫
Sd−1

1
u(r, ·)ϕj ds denote

the Fourier coefficients of u. Due to (5.2) it satisfies r−d+1(rd−1u′j(r))
′−λjr−2uj(r)+

k2(α0r)uj(r) = 0. By (3.1b) it satisfies uj(a
′) = 0. Moreover, by [4, Theorem 6.4]

and (3.1c), uj(r) decreases exponentially as r → ∞. Therefore, we can multiply the

differential equation by rd−1uj(r) and integrate by parts to obtain∫ ∞

a′
−rd−1|u′j(r)|2 − rd−3λj |uj(r)|2 + α20k2(αr)rd−1|uj(r)|2 dr = 0.

Taking the imaginary part of this equation gives uj = 0 since

Im
(
α20k

2(α0r)
) ≥ κ22σ0 − κ2 ∣∣α20p(α0r)∣∣ > κ2σ0

|α0| − κ2 ∣∣α20p(α0r)∣∣ > 0
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for all r ≥ a′ by virtue of assumption (5.1b).
(2) Let (f, ha′ , hρ) ∈ H−1 (Da′,ρ)×H1/2

(
Sd−1
a′

)×H1/2
(
Sd−1
ρ

)
.We introduce the

operator L̃ : H1 (Da′,ρ)→ H−1 (Da,ρ) with

L̃u := [
∆+ (1 + p(α0|x|))κ2α20

]
u.

Due to (5.2) we have to show that the boundary value problem

L̃u = α20f,(5.3a)

u|Sd
a′
= ha′ , u|Sdρ = hρ(5.3b)

has a unique solution u ∈ H1 (Da′,ρ) and that
∥∥u∥∥ ≤ Cρ

∥∥ (f, ha′ , hρ)
∥∥ with a

constant C independent of (f, ha′ , hρ) and ρ. To this end we reformulate (5.3) as
a problem in H1

0 (Da′,ρ). Let Ra′,ρ denote a right inverse of the trace mapping
H1 (Da′,ρ) → H1/2

(
Sd−1
a′

) × H1/2
(
Sd−1
ρ

)
, u �→ (u|Sd−1

a′
, u|Sd−1

ρ
), and let A,P :

H1
0 (Da′,ρ)→ H1

0 (Da′,ρ) be the operators defined by〈(
∆w + κ2α20w

)
, v
〉
= (Aw, v) ,〈

κ2α20p(α0|x|)w, v
〉
= (Pw, v)

for all w, v ∈ H1
0 (Da′,ρ) . Finally, let J : H−1(Da′,ρ) = H1

0 (Da′,ρ)
′ → H1

0 (Da′,ρ)
denote the canonical isomorphism. Then u solves (5.3) if and only if w := u −
Ra′,ρ (ha′ , hρ) satisfies

(A+ P)w = α20J f − J L̃Ra′,ρ (ha′ , hρ) .(5.4)

Since

Im

(
1

α0
Au, u

)
=

σ0
1 + σ20

〈∇u,∇u〉+ κ2σ0 〈u, u〉 ,
we have

min
(
1, κ2

)
σ0

1 + σ20
‖u‖2 ≤ Im

(
1

α0
Au, u

)
≤ 1

|α0|
∥∥Au∥∥∥∥u∥∥

for all u ∈ H1
0 (Da′,ρ). This implies that A is boundedly invertible with ‖A−1‖ ≤

|α0|
min(1,κ2)σ0

. Since ‖P‖ < min(1,κ2)σ0

|α0| by virtue of assumption (5.1b), it follows that

‖A−1P‖ ≤ c < 1 with a constant c independent of ρ. Therefore, A+P = A(I+A−1P)
is invertible and ‖ (A+ P)−1 ‖ ≤ ‖A‖(1 − c)−1 ≤ C with a constant C independent
of ρ. It follows from (5.4) that∥∥u∥∥ ≤ C∥∥J (α20f − L̃Ra′,ρ (ha′ , hρ))

∥∥+ ∥∥Ra′,ρ (ha′ , hρ)
∥∥.

As both ‖J ‖ and ‖J L̃‖ are uniformly bounded with respect to ρ, it remains to
estimate the norm of Ra′,ρ. We select a right inverse R1,2 of the trace mapping
H1 (D1,2)→ H1/2

(
Sd−1
1

)×H1/2
(
Sd−1
2

)
, u �→ (u|Sd−1

1
, u|Sd−1

2
). Using R1,2 we define

Ra′,ρ by

Ra′,ρ (ha′ , hρ) (rx̂) := [R1,2 (ha′ (a′·) , hρ (ρ/2·))]
(
ρ+ r − 2a′

ρ− a′ x̂

)
.
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Recall that a′ ≥ 1, ρ ≥ 2 and that∥∥f∥∥
H1/2(Sd−1

θ ) = θ
(d−1)/2

∥∥ (1− θ−2∆x̂

)1/4
f
(
θ−1·) ∥∥

L2(Sd−1
1 ).

Now∥∥Ra′,ρ (ha′ , hρ)
∥∥ ≤ Cρd/2max

{∥∥ha′ (a′·)∥∥
H1/2(Sd−1

1 ),
∥∥hρ (ρ/2·)∥∥H1/2(Sd−1

2 )

}

≤ Cρd/2max
{

(a′)1/2

(a′)(d−1)/2

∥∥ha′
∥∥
H1/2(Sd−1

a′ ),
2(d−1)/2

ρ(d−1)/2

(
ρ2

4

)1/4 ∥∥hρ∥∥H1/2(Sd−1
ρ )

}

≤ Cρmax
{∥∥ha′

∥∥
H1/2(Sd−1

a′ ),
∥∥hρ∥∥H1/2(Sd−1

ρ )

}
.

Therefore,
∥∥Ra′,ρ

∥∥ ≤ Cρ with C independent of ρ.
(3) We use Theorem 13.4 in [11]. The case d > 2 is clear. For d = 2 we must

show that ∆γ is properly elliptic. By definitions 10.5.2 and 10.5.3 in [11] and (4.6a),

it suffices to show that the polynomial P (z) = 1
(γ′(r))2 + z

2 r2

γ2(r) has one root with

Im z > 0 and one root with Im z < 0. The roots are given by z± = i γ(r)
rγ′(r) . Since

Re( γ
rγ′ ) =

1+σ 1
r

∫ r
a
σ(t) dt

1+σ2 ≥ 1
1+maxσ2 , the assertion follows from (4.1b).

We emphasize that in the previous lemma we did not prove the existence of
a solution to the PML system (4.7) or equivalently the existence of a solution to
La,ρu = (0, g, 0). This will be done in the following for ρ large enough by a technique
proposed by Lassas and Somersalo in [8]. The key idea is to introduce propagation
operators which allow an equivalent formulation of the Bérenger and PML problems
on a fixed domain. Then the PML problem can be interpreted as a perturbed Bérenger
problem.

Definition 5.4. Let a′ < a′′ ≤ ρ with a′ > a given by (5.1). The propagation

operators P
(ρ)
a′′ , P

(∞)
a′′ : H1/2

(
Sd−1
a′

) → H1/2
(
Sd−1
a′′

)
are defined by

P
(ρ)
a′′ h = L−1

a′,ρ (0, h, 0) |Sd−1
a′′
,

P
(∞)
a′′ h = L−1

a′,∞ (0, h) |Sd−1
a′′
.

Lemma 5.5. For a′ < a′′ ≤ ρ with a′ > a given by (5.1), the following hold true:
1. The restriction of u(B) to Da,a′′ is the unique solution in u ∈ H1 (Da,a′′) to

the equation

La,a′′u =
(
0, g, P

(∞)
a′′

(
u|Sd−1

a′

))
.(5.5)

2. Let u ∈ H1 (Da,ρ) satisfy (4.7a). Then u satisfies (4.7b) and (4.7c) if and
only if

La,a′′u|Da,a′′ =
(
0, g, P

(ρ)
a′′

(
u|Sd−1

a′

))
.(5.6)

Proof. (1) u(B) satisfies (5.5) by construction. Let u be any solution of (5.5) and
w = L−1

a′,∞(0, u|Sd−1
a′

). Then w|Sd−1
a′

= u|Sd−1
a′

and w|Sd−1
a′′

= u|Sd−1
a′′
. We conclude that

w = u = L−1
a′,a′′(0, w|Sd−1

a′
, w|Sd−1

a′′
) in Ba′′ \ B̄a′ . Therefore, the function

W (x) =

{
u (x) , x ∈ Bd

a′′ \Bd
a,

w (x) , x ∈ R
d \Bd

a′′ ,
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solves La,∞W = (0, g). Hence W = u(B), and in particular u = u(B)|Ba′′\Bda .
(2) Any solution u to (4.7) solves (5.6) by construction. Conversely, let u ∈

H1 (Da,ρ) satisfy (4.7a) and (5.6) and let w = L−1
a′,ρ(0, u|Sd−1

a′
, 0). Then w|Sd−1

a′
=

u|Sd−1
a′

and, as a consequence of (5.6), w|Sd−1
a′′

= u|Sd−1
a′′
. It follows from the invertibility

of La′,a′′ that u (x) = w (x) for all x ∈ Bd
a′′ \ Bd

a′ . By the unique continuation
principle for elliptic equations (see [3, Section 8.3]), we conclude that u (x) = w(x)
for x ∈ Bd

ρ \ Bd
a′ . In particular u satisfies (4.7c). (4.7b) is an immediate consequence

of (5.6).
Again, we did not prove that (5.6) has a solution.
Lemma 5.6. For a′ < a′′ with a′ > a given by (5.1), the following hold true:

1. P
(∞)
a′′ is a compact operator.

2. There exists a constant C such that for all ρ > a′′ and all h ∈ H1/2
(
Sd−1
a′

)
∥∥P (∞)

ρ h
∥∥
H1/2 ≤ Ce−κσ0ρ

∥∥h∥∥
H1/2 .(5.7)

3. There exists a constant C such that for all ρ > a′′∥∥P (∞)
a′′ − P (ρ)

a′′
∥∥ ≤ Cρe−κσ0ρ.(5.8)

Proof. (1) By (4.4) we have (P
(∞)
a′′ h)(a′′x̂) =

∑∞
j=1 ĥjRj(a

′′)ϕj(x̂), where ĥj :=∫
Sd−1

1
h(a′·)ϕj ds. Since limj→∞Rj(a′′) = 0 due to (4.5), P

(∞)
a′′ is compact as an

operator norm limit of the finite rank operators defined by the truncated series.
(2) Let h ∈ H1/2

(
Sd−1
a′

)
be given and define u := L−1

a′,∞(0, h). By Theorem 3.1
(2), with z0 = γ(a

′) = (1 + iσ0)r and g̃ (x̂) = h (a
′x̂), we have

u (rx̂) = [(1 + iσ0) r]
1−d
2 eiκr−κσ0r

(
u∞ (x̂) +

∫ ∞

0

e−t((1+iσ0)r−ã)Ψ(t, x̂) dt
)
.

Further it follows from the estimates (3.3) and (3.4) that there exists a constant C
such that for all z ∈ C

++
z0

∥∥u∞∥∥
H1/2(Sd−1

1 ) +

∥∥∥∥
∫ ∞

0

e−t(z−ã)Ψ(t, ·) dt
∥∥∥∥
H1/2(Sd−1

1 )
≤ C∥∥g̃∥∥

L2(Sd−1
1 ).

Using
∥∥f∥∥

H1/2(Sd−1
ρ ) = ρ

(d−1)/2‖ (1− ρ−2∆x̂

)1/4
f
(
ρ−1·) ‖L2(Sd−1

1 ), we get

‖P (∞)
ρ h‖H1/2 = ‖u|Sd−1

ρ
‖H1/2 ≤ Ce−κσ0ρ

∥∥g̃∥∥
L2(Sd−1

1 ) ≤ Ce
−κσ0ρ

∥∥h∥∥
H1/2(Sd−1

a′ ).

(3) Let h ∈ H1/2
(
Sd−1
a′

)
be given. By the definition of P

(∞)
a′′ and P

(ρ)
a′′ , we have

P
(∞)
a′′ h−P (ρ)

a′′ h = TrS d−1
a′′

L−1
a′,ρ(0, 0, P

(∞)
ρ h). Using Lemma 5.3 (3) and (5.7), we obtain

∥∥P (∞)
a′′ h− P (ρ)

a′′ h
∥∥
H1/2 =

∥∥TrS d−1
a′′

∥∥∥∥L−1
a′,ρ

∥∥∥∥P (∞)
ρ h

∥∥ ≤ Cρe−κσ0ρ
∥∥h∥∥,

which yields (5.8).
Proposition 5.7. There exists a constant ρ0 > a such that (4.7) has a unique

solution for ρ ≥ ρ0. The operator DtN(PML)
a,ρ is well defined for ρ ≥ ρ0, and there exists

a constant C such that ∥∥DtNa −DtN(PML)
a,ρ

∥∥ ≤ Cρe−κσ0ρ.(5.9)
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Here we use the operator norm of L
(
H1/2

(
Sd−1
a

)
, H−1/2

(
Sd−1
a

))
.

Proof. Define the operator

K : H1
(
Bd
a′′ \Bd

a

)
→ H−1

(
Bd
a′′ \Bd

a

)×H1/2
(
Sd−1
a

)×H1/2
(
Sd−1
a′′

)
by u �→ (0, 0, P

(∞)
a′′ u|Sd−1

a′
). By Lemma 5.5 (1) u(B) satisfies

La,a′′u(B) −Ku(B) = (0, g, 0) .(5.10)

The operator La,a′′ is of Fredholm index zero and K is compact by Proposition 5.6
(1). Hence, La,a′′ −K also has Fredholm index zero. Assume that u0 satisfies (5.10)

with g = 0. Then La,a′′u0 = (0, 0, P
(∞)
a′′ u0|Sd−1

a′
), and hence by Lemma 5.5 (1), u0 =

L−1
a,∞ (0, 0) = 0. Thus, (La,a′′ −K)−1

exists.
Next, consider the system (5.6). The same argument as above yields an equation(

La,a′′ − K̃
)
u(PML)
ρ = (0, g, 0)(5.11)

with K̃u = (0, 0, Pa′′,ρTra′). Applying (La,a′′ −K)−1 to both sides of (5.11) yields(
I +

(
K − K̃

))
u(PML)
ρ = u(B).(5.12)

As (K − K̃)u = (0, 0, (P
(∞)
a′′ − P

(ρ)
a′′ )Tra′) it follows from Proposition 5.6 (3) that∥∥K − K̃∥∥ ≤ Cρe−κσ0ρ. Therefore (5.12) is solvable by a Neumann series for ρ large

enough, and we conclude that

∥∥u(B) − u(PML)
ρ

∥∥
H1(Da,a′′)

≤ Cρe−κσ0ρ

1− Cρe−κσ0ρ

∥∥u(B)∥∥ ≤ Cρe−κσ0ρ
∥∥g∥∥.(5.13)

To finish the proof, it remains to show that any u ∈ H1 (Da,a′′) satisfying ∇·Aγ∇u+
bγ∇u + k2γu = 0 has a normal derivative ∂ru|Sd−1

a
∈ H−1/2

(
Sd−1
a

)
which satisfies∥∥∂ru|Sd−1

a

∥∥
H−1/2 ≤ C

∥∥u∥∥
H1 with some constant C > 0 independent of u. To see

this we choose a right inverse Ra : H
1/2

(
Sd−1
a

) → H1 (Da,a′′) of the trace operator

ϕ �→ ϕ|Sd−1
a

satisfying supp Raϕ ⊂ D
a, a+a

′′
2

for all ϕ ∈ H1/2
(
Sd−1
a

)
. Given ϕ ∈

H1/2
(
Sd−1
a

)
, we multiply the differential equation by Raϕ, integrate, and formally

use the Gauss divergence theorem and the identity Aγ (a, x̂) = Id to obtain

〈
∂ru|Sd−1

a
, ϕ
〉
=

∫
Da,ρ

−Aγ∇u · ∇Raϕ+ bγ · ∇uRaϕ+ k2γuRaϕdx.

Since the right-hand side of this equation is bounded by C
∥∥u∥∥

H1

∥∥ϕ∥∥
H1/2 , we have

proved the existence of ∂ru ∈ H−1/2
(
Sd−1
a

)
and the asserted bound. Hence,∥∥DtNag −DtN(PML)

a,ρ g
∥∥
H−1/2 ≤ C∥∥u(PML)

ρ − u(B)∥∥
H1(Da,a′′)

.

Together with (5.13) this implies the estimate (5.9).
Theorem 5.8. After possibly increasing the constant ρ0 in Proposition 5.7, there

exists a constant C > 0 such that the variational problem (4.8) has a unique solution

u
(PML)
ρ ∈ H1

(0)(Ωρ) for all ρ ≥ ρ0 satisfying∥∥u(B) − u(PML)
ρ

∥∥
H1(Ωa)

≤ Cρe−κσ0ρ.(5.14)
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Proof. We introduce the operators L,G,Gρ : H1(Ω)→ H1(Ω) with

(Lu, v) = 〈gradu, grad v〉 − 〈k2u, v〉,
(Gu, v) =

∫
Sd−1
a

DtNauv ds,

(Gρu, v) =
∫
Sd−1
a

DtNPML
a,ρ uv ds

for all u, v ∈ H1(Ωa). Moreover, we define F ∈ H1(Ωa) by (F, v) =
∫
∂K
fv ds,

v ∈ H1(Ωa). Then (L+G)u(int) = F and (L+Gρ)u(PML)
ρ

∣∣
Ωa
= F. Since we know that

L+ G is boundedly invertible (cf. [4]), it follows by a Neumann series argument that
there exist constants C, ε > 0 such that L+ Gρ is invertible for ‖G − Gρ‖H1 < ε and

‖u(PML)
ρ

∣∣
Ωa

− u‖H1 ≤ C‖G − Gρ‖H1 ≤ C‖DtNa −DtN(PML)
a,ρ ‖.

Now the assertion follows from Proposition 5.7.
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Toulouse, 2002, ONERA, pp. 251–256.

[7] M. Lassas, J. Liukkonen, and E. Somersalo, Complex Riemannian metric and absorbing
boundary conditions, J. Math. Pures Appl., 80 (2001), pp. 739–768.

[8] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML
equations, Computing, 60 (1998), pp. 228–241.

[9] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry,
Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), pp. 1183–1207.

[10] F. Schmidt, Solution of interior-exterior Helmholtz-type problems based on the pole condition:
Theory and algorithms, Habilitation thesis, Freie Universität Berlin, Berlin, Germany, 2001.

[11] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1987.



A PARABOLIC CROSS-DIFFUSION SYSTEM FOR
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Abstract. We analyze a cross-diffusion system of parabolic equations for the relative concentra-
tion and the dynamic repose angle of a mixture of two different granular materials in a long rotating
drum. The main feature of the system is the ability to describe the axial segregation of the two
granular components. The existence of global-in-time weak solutions is shown for arbitrary large
cross-diffusion by using entropy-type inequalities and approximation arguments. The uniqueness of
solutions is proved if cross-diffusion is not too large. Furthermore, we derive a sufficient condition
on the parameters to have nonsegregation. Finally, numerical simulations illustrate the long-time
coarsening of the segregation bands in the drum.

Key words. strongly nonlinear parabolic system, cross-diffusion, segregation, existence of weak
solutions, uniqueness of solutions, entropy-type estimates
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1. Introduction. One important feature of granular materials, consisting of
different components, is their ability to segregate under external agitation rather
than further mixing [21]. Consider a long cylinder rotating about its longitudinal axis
which is partially filled with a mixture of two different kinds of granular particles.
The mixture of grains may exhibit both radial and axial size segregation. Roughly
speaking, radial segregation occurs during the first few revolutions of the drum and
is often followed by slow axial segregation. Axial segregation leads to either a stable
array of concentration bands or, after a very long time, to complete segregation [2, 3,
24].

In this paper we are interested in the existence analysis of a specific model for
granular materials derived in [3]. Consider a mixture of two kinds of particles with
volume concentrations u1, u2 ∈ [0, 1] placed in a horizontal long narrow rotating
cylinder of length L > 0. Let u = u1 − u2 ∈ [−1, 1] be the relative concentration of
the mixture. Introduce the so-called dynamic angle of repose θ as the arctangent of
the average slope of the free surface of the mixture, which is assumed to be flat (see
Figure 1.1). The variables u and θ are assumed to be constant in each cross section
of the drum and depend therefore only on the axial coordinate z ∈ Ω = (0, L) and on
the time t > 0.
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y

x

z

θθ

u

Fig. 1.1. Relative concentration u and dynamical angle of repose θ in the geometry of the cross
section of a rotating drum. The gray region indicates the mixture partially filling the drum. The
variables u and θ are assumed to be constant in each cross section.

In [3] the following cross-diffusion system for the evolution of u and θ was derived:

ut − (νuz − (1− u2)θz)z = 0,(1.1)

θt − (γu+ θ)zz + θ = µu in QT := Ω× (0, T ),(1.2)

where the subindices denote partial derivatives. The model (1.1)–(1.2) is obtained by
averaging the mass conservation laws for the two components of the granular matter
over the cross section of the cylinder, under the main assumptions that the mass of
grains in each cross section of the drum remains constant and that the grains separate
predominantly near the surface of the drum, whereas in the bulk of the drum particles
are equally advected by the bulk flow (see [3] for details of the derivation).

The positive constant ν is related to the Fickian diffusion constants arising in
the surface fluxes of the two materials. The constant γ > 0 is proportional to the
difference of the Fickian diffusivities. Finally, µ is related to the difference of the
static repose angles of the two kind of particles.

We impose as in [3, 20] periodic boundary conditions and initial conditions for u
and θ, as we are not interested in effects due to the boundary conditions:

u(0, ·) = u(L, ·), uz(0, ·) = uz(L, ·)
θ(0, ·) = θ(L, ·), θz(0, ·) = θz(L, ·) in (0, T ),

u(·, 0) = u0, θ(·, 0) = θ0 in Ω.

(1.3)

In the physical literature, periodic boundary conditions have been employed in nu-
merical simulations of the dynamics of the granular materials in order to eliminate
boundary effects [3, 20]. The subsequent analysis also works for no-flux and Dirichlet
boundary conditions (with appropriate changes of the obtained estimates).

We remark that the problem is intrinsically one-dimensional in space since the
equations are obtained by averaging over the cross section. For a two-dimensional
model we refer, for instance, to [10].

The terms ((1 − u2)θz)z and γuzz in (1.1)–(1.2) are called cross-diffusion terms
[17]. We remark that segregation effects due to cross-diffusion are well known in
population dynamics, and related cross-diffusion systems have been studied in math-
ematical biology (see, e.g., [18, 22]).
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Segregation phenomena of granular material in rotating drums have been inten-
sively investigated in the physical literature. For instance, radial segregation has been
investigated numerically using particle methods [10] and analytically using leading-
order analysis [6] or shock-wave analysis [14]. Axial segregation has been simulated,
for instance, in [2, 3, 20] and analyzed in [3, 5, 16]. For more references, particularly
for experimental studies, we refer to the monograph [21] and the review paper [19].

Mathematically, the evolution problem (1.1)–(1.2) has a full and nonsymmetric
diffusion matrix:

A :=

(
ν −(1− u2)
γ 1

)
.

Problems with full diffusion matrices also arise, for instance, in semiconductor theory
[7], population dynamics [18], and nonequilibrium thermodynamics [9]. As a conse-
quence, no classical maximum principle arguments and no regularity theory as for
single equations are generally available for such problems.

Notice that there are values for u and the parameters ν and γ for which the above
matrix A is not positive definite in the sense that x�Ax < 0 may hold for some x.
The ellipticity of the system (1.1)–(1.2) is guaranteed if 4ν > γ (and |u| ≤ 1). For
these values, the existence of global-in-time solutions of (1.1)–(1.3) can be proved
using standard techniques. The question arises if it is possible to prove the existence
of global weak solutions for any values of the parameters ν > 0 and γ > 0. In this
paper we give a positive answer to this question.

The key of the existence analysis is the observation that the system (1.1)–(1.2)
possesses a functional whose time derivative is uniformly bounded in time if |u| < 1.
Indeed, using the functions φ(u), where

φ(s) :=
γ

2
log

1 + s

1− s for − 1 < s < 1,

and θ in the weak formulation of (1.1) and (1.2), respectively, and adding the resulting
equations leads to the inequality

d

dt

∫ L

0

(
Φ(u) +

1

2
θ2
)
dz +

∫ L

0

(γνu2
z + θ

2
z)dz =

∫ L

0

(µuθ − θ2)dz ≤ c,(1.4)

where c > 0 depends only on µ and L. Here the function Φ(s) := γ
2 (1 − s) log(1 −

s) + γ
2 (1 + s) log(1 + s) ≥ 0 is the primitive of φ such that Φ(0) = 0. Observe that

this estimate is purely formal since the values |u| = 1 are possible.
The estimate (1.4) has an important consequence. With the change of unknowns

u = g(v), where g is the inverse of φ, i.e., g : R → (−1, 1) is given by

g(s) :=
e2s/γ − 1

e2s/γ + 1
,(1.5)

the system (1.1)–(1.2) becomes, for |u| < 1,

g(v)t − (νg′(v)vz − (1− g(v)2)θz)z = 0,(1.6)

θt − (γg′(v)vz + θz)z + θ = µg(v).(1.7)

Since γg′ = 1− g2, the diffusion matrix of the transformed problem

B :=

(
νg′(v) −(1− g(v)2)
γg′(v) 1

)
(1.8)
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satisfies for any values of ν > 0 and γ > 0

(x, y)B(x, y)� = νg′(v)|x|2 + |y|2 ≥ 0 ∀x, y ∈ R.

The fact that the above transformation of variables leads to a system of elliptic
equations for all values of the parameters can be related to some analytical work on
more general equations. Indeed, this fact is in some sense related to the equivalence
between the existence of an entropy and the symmetrizability of hyperbolic conser-
vation laws or parabolic systems [8, 15]. Using the definition of the (generalized)
“entropy”

η(s) := g(s)s− χ(s) + χ(0)(1.9)

from [4] (first used in [1]), where χ′ = g, gives η(v) = Φ(g(v)) = Φ(u), with Φ as above.
In this sense, the functional Φ(u(t)) + θ(t)2/2 can be interpreted as an “entropy” for
the system (1.1)–(1.2) as long as |u| < 1. However, notice that the matrix B is not
symmetric but satisfies the inequality x�Bx > 0 for all x 
= 0, which is sufficient for
our existence analysis. The question of whether this observation leads to an existence
theory for elliptic systems with general full diffusion matrices is under investigation
[12].

In order to make the above “entropy” estimate rigorous, we have to overcome
the difficulties near the points where |u| = 1. For the transformed problem (1.6)–
(1.7) this difficulty translates into the fact that the matrix B does not satisfy the
uniform positive definiteness condition. Therefore, we have to approximate (1.6)–
(1.7) appropriately; see section 2.

Our main existence result is as follows.
Theorem 1.1. Let γ, ν > 0, µ ≥ 0, and u0, θ0 ∈ L2(Ω) with −1 ≤ u0 ≤ 1 in Ω.

For any T > 0, there exists a weak solution (u, θ) of (1.1)–(1.2) such that

u, θ ∈ H1(0, T ; (H1
per(Ω))

′) ∩ L2(0, T ;H1
per(Ω)),

−1 ≤ u ≤ 1 in QT = Ω× (0, T ).
(1.10)

As explained above, the main difficulties of the proof of this theorem are that
the system (1.1)–(1.2) is generally not positive definite and no maximum principle to
show |u| ≤ 1 is available. Nevertheless, we are able to prove the existence of solutions
for any values of ν and γ and thus for arbitrary large cross-diffusion.

The proof consists of three steps. First, instead of using the transformation g,
we make a change of unknowns which takes into account the singular points |u| =
1 (section 2.1). Then the parabolic problem is discretized in time by a recursive
sequence of elliptic equations which can be solved each by Schauder’s fixed point
theorem (section 2.2). Finally, a priori bounds independent of the time discretization
parameter are obtained from an inequality similar to (1.4), and standard compactness
results lead to the existence of a solution of the original problem (1.1)–(1.2) (section
2.3). The bound on u can be proved by using Stampacchia’s truncation method in
the approximate problem.

We notice that for γ = 0, the diffusion matrix for (1.1)–(1.2) becomes tridiagonal,
and thus the problem can be solved, for instance, by methods employed in chemotaxis
problems [11].

Besides the existence analysis we show two additional results. We prove the
uniqueness of solutions in a slightly smaller class of functions if the cross-diffusion is
not too large (section 3).
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Theorem 1.2. Let γ < 4ν. Then under the assumptions of Theorem 1.1 there
exists at most one solution (u, θ) of (1.1)–(1.2) in the class of functions satisfying
(1.10) and θ ∈ L∞(0, T ;H1

per(Ω)).
Furthermore, we derive a sufficient condition on the parameters in order to get

nonsegregation, i.e., convergence of the transient solutions to the constant steady state
given by

ū =
1

L

∫ L

0

u0(z)dz, θ̄ =
1

L

∫ L

0

θ0(z)dz.

The rate of convergence turns out to be exponential (section 4).
Theorem 1.3. Let the assumptions of Theorem 1.1 hold and assume that |u0| ≤

c < 1 in Ω for some c < 1, µū = θ̄ and

νγ

µ2
>

L4

8(L2 + 1)
.(1.11)

Then there exist constants c0 > 0, depending on u0, θ0, and constants δ1, δ2 > 0,
depending on the parameters, such that for all t > 0,

‖u(t)− ū‖L2(Ω) ≤ c0e−δ1t, ‖θ(t)− θ̄‖L2(Ω) ≤ c0e−δ2t.
The constants c0 and δ1, δ2 are defined in (4.1) and (4.4), respectively. The

proof of the above result is based on careful estimates using the “entropy” (1.9).
Aranson, Tsimring, and Vinokur [3] have determined from linear stability theory that
the condition µ > ν is necessary to have size segregation. The assumption (1.11)
shows that the condition µ > ν need not be sufficient. In fact, there are parameter
values for which both µ > ν and (1.11) hold; i.e., the granular materials are not
segregating (see section 5).

Clearly, the dynamics of granular segregation pattern is of much greater interest
for the applications than nonsegregation conditions. Therefore, our result must be
seen as a first step in the understanding of segregation dynamics.

Finally, we present in section 5 some numerical examples illustrating the segre-
gation or nonsegregation behavior.

2. Proof of Theorem 1.1.

2.1. Ideas of the proof. In this section we present and explain the approxima-
tions needed in the proof of Theorem 1.1. As already mentioned in the introduction,
the function g provides an “entropy” estimate only if |u| < 1. Since u = ±1 is possi-
ble, we use another change of unknowns which includes the points u = ±1. Let the
assumptions of Theorem 1.1 hold and let α > 1. Define the transformation u = gα(v)
with gα : [−sα, sα] → [−1, 1], given by

gα(s) := α
e2αs/γ − 1

e2αs/γ + 1
and sα :=

γ

2α
log

α+ 1

α− 1
.(2.1)

Observe that for α → 1, gα equals g on R; see (1.5). As the range of gα is [−1, 1],
the critical points u = ±1 are included in that transformation. In the following we
fix some α > 1 and again write g for gα.

With this change of unknown we obtain the system (1.6)–(1.7), with periodic
boundary conditions for v and θ and initial conditions

v(·, 0) = v0 := g−1(u0), θ(·, 0) = θ0 in Ω.(2.2)



566 GONZALO GALIANO, ANSGAR JÜNGEL, AND JULIÁN VELASCO

The new diffusion matrix B is given by (1.8). It holds for any (x, y) ∈ R
2

(x, y)B(x, y)� = νg′(v)x2 + y2 +
(
γg′(v)− (1− g(v)2))xy

= νg′(v)x2 + y2 + (α2 − 1)xy.

Clearly, if α = 1, the matrix satisfies x�Bx > 0 for all x 
= 0, and it seems reasonable
that this will also be the case for α > 1 sufficiently close to 1. In fact, let (v, θ) be a
weak solution to (1.1)–(1.2) and use v and θ as test functions in the weak formulation
of (1.6)–(1.7), respectively, to obtain the identity

∫
Ω

(
G(v(t)) +

1

2
θ(t)2

)
dz +

∫ t

0

∫
Ω

(
νg′(v)2v2z + θ

2
z + θ

2
)
dzdt

=

∫
Ω

(
G(v0) +

1

2
θ20

)
dz − (α2 − 1)

∫ t

0

∫
Ω

vzθzdzdt+

∫ t

0

∫
Ω

µg(v)θdzdt,

where G is defined by G′(s) = sg′(s) and G(0) = 0, i.e.,

G(s) =
2αs

γ

e2αs/γ

e2αs/γ + 1
+ log

2

e2αs/γ + 1
.(2.3)

Since |g| is bounded by 1 and g′ ≥ (α2 − 1)/γ in [−sα, sα] (see Lemma 2.2), we can
estimate∫

Ω

(
G(v(t)) +

1

2
θ(t)2

)
dz +

∫ t

0

∫
Ω

(
ν

γ
(α2 − 1)v2z + θ

2
z

)
dzdt(2.4)

≤
∫

Ω

(
G(v0) +

1

2
θ20

)
dz − (α2 − 1)

∫ t

0

∫
Ω

vzθzdzdt+

∫ t

0

∫
Ω

(µ|θ| − θ2)dzdt,

as long as −sα ≤ v ≤ sα in Qt. Choosing α > 1 small enough and applying Young’s
inequality, it is possible to control the second integral on the right-hand side by the
integrals on the left-hand side. This gives the estimates vz ∈ L2(0, T ;L2(Ω)) and
θ ∈ L2(0, T ;H1

per(Ω)). The inequality (2.4) is made rigorous in Lemma 2.6 for a
time-discretized version of (1.6)–(1.7).

Still there remain two difficulties: the elliptic operator corresponding to (1.6)–
(1.7) is not uniformly elliptic (since g′ is only positive, but not uniformly positive in
R), and we have to deal with time derivatives in g(v) (instead of having time and
space derivatives in v). The first difficulty can be overcome by adding a small number
ε > 0 to the diffusion term containing νg′(v) and passing to the limit ε → 0 after
solving the approximate problem. To overcome the second difficulty we approximate
the system by a semidiscrete problem in time (backward Euler method). This method
is also interesting from a numerical point of view; see, e.g., [13].

2.2. A semidiscrete problem. The main objective of this section is to prove
that for given τ > 0 and (w̃, θ̃) ∈ (H1

per(Ω))
2, there exists a solution (w, ξ) ∈

(H1
per(Ω))

2, satisfying −sα ≤ w ≤ sα in Ω, of the problem

1

τ
(g(w)− g(w̃))− (νg′(w)wz − (1− g(w)2)ξz

)
z
= 0,(2.5)

1

τ
(ξ − θ̃)− (γg′(w)wz + ξz)z + ξ = µg(w) in Ω.(2.6)
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This system is a time-discretized version of (1.6)–(1.7). The function g(s) is defined
as in (2.1), but we allow for arguments s ∈ R. We shall use the following notion of
weak solution.

Definition 2.1. The pair (w, ξ) is called a weak solution of (2.5)–(2.6) if (w, ξ)
∈ (H1

per(Ω))
2, −sα ≤ w ≤ sα in Ω, the initial conditions in (1.3) are satisfied in the

sense of (H1
per(Ω))

′, and for every (ϕ,ψ) ∈ (H1
per(Ω))

2 we have

1

τ

∫
Ω

(g(w)− g(w̃))ϕdz +
∫

Ω

(
νg′(w)wz − (1− g(w)2)ξz

)
ϕzdz = 0,(2.7)

1

τ

∫
Ω

(ξ − θ̃)ψdz +
∫

Ω

(γg′(w)wz + ξz)ψzdz +
∫

Ω

ξψdz = µ

∫
Ω

g(w)ψdz.(2.8)

As explained in section 2.1, we approximate the system (2.5)–(2.6) by a system
where an additional ellipticity constant ε > 0 is introduced: Find (w, ξ) ∈ (H1

per(Ω))
2

such that in Ω

1

τ
(g(w)− g(w̃))− ((νg′(w) + ε)wz − (1− g(w)2)+ξz

)
z
+ εw = 0,(2.9)

1

τ
(ξ − θ̃)− (γg′(w)wz + ξz)z + ξ = µg(w),(2.10)

where s+ = max{0, s}.
The following properties of the function g can be easily shown.

Lemma 2.2. The function g : R → (−α, α) defined by (2.1) satisfies g ∈ C∞(R)∩
W 1,∞(R) and

0 < g′ ≤ α2/γ in R, g′ ≥ (α2 − 1)/γ in [−sα, sα].(2.11)

Fix α > 1 such that 2(α2 − 1) ≤ ν/2γ and define h1, h2 : R → R by

h1 := νg
′ − δ|γg′ − (1− g2)+|, h2 := 1− 1

δ
|γg′ − (1− g2)+|,

with 2(α2 − 1) ≤ δ ≤ ν/2γ. Then

h1 > 0, h2 ≥ 1/2 in R, and h1 ≥ ν

2γ
(α2 − 1) in [−sα, sα].(2.12)

We prove the existence of a solution of (2.9)–(2.10) using Schauder’s fixed point
theorem. In order to define the fixed point operator, we consider first the following
linearized problem: Let (ŵ, ξ̂) ∈ (L2(Ω))2 be given and find (w, ξ) ∈ (H1

per(Ω))
2 such

that

−((νg′(ŵ) + ε)wz − (1− g(ŵ)2)+ξz
)
z
+ εw =

1

τ
(g(w̃)− g(ŵ)),(2.13)

−(γg′(ŵ)wz + ξz)z + ξ = µg(ŵ) + 1

τ
(θ̃ − ξ̂)(2.14)

in Ω. The definition of a weak solution of problem (2.13)–(2.14) is similar to Definition
2.1.

Lemma 2.3. Let (w̃, θ̃) ∈ (H1
per(Ω))

2 and (ŵ, ξ̂) ∈ (L2(Ω))2 be given. Then there
exists a unique weak solution of problem (2.13)–(2.14).
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Proof. We define the bilinear form a : (H1
per(Ω))

2 × (H1
per(Ω))

2 → R,

a((w, ξ), (ϕ,ψ)) :=

∫
Ω

[(
(νg′(ŵ) + ε)wz − (1− g(ŵ)2)+ξz

)
ϕz + εwϕ

]
dz

+

∫
Ω

(
(γg′(ŵ)wz + ξz)ψz + ξψ

)
dz,

and the linear functional f : (L2(Ω))2 → R,

f(ϕ,ψ) :=
1

τ

∫
Ω

(
(g(w̃)− g(ŵ))ϕ+ (θ̃ − ξ̂)ψ)+ µ∫

Ω

g(ŵ)ψ.

In order to apply the Lax–Milgram lemma, we have to check that a is continuous
and coercive in (H1

per(Ω))
2 × (H1

per(Ω))
2 and that f is continuous in (L2(Ω))2. The

continuity of a and f follows easily from the pointwise bounds of g and g′ and the
regularity of w̃, θ̃, ŵ, and ξ̂. For the coercivity of a we estimate

a((w, ξ), (w, ξ)) =

∫
Ω

(
(νg′(ŵ) + ε)|wz|2 + |ξz|2 + ε|w|2 + |ξ|2)dz

+

∫
Ω

(
(γg′(ŵ)− (1− g(ŵ)2)+)wzξz

)
dz

≥
∫

Ω

(
(ε+ h1(ŵ))|wz|2 + h2(ŵ)|ξz|2 + ε|w|2 + |ξ|2)dz

using Young’s inequality, where the functions h1 and h2 are defined in Lemma 2.2.
The bounds (2.12) then imply that

a((w, ξ), (w, ξ)) ≥ min{ε, 1/2}
(
‖w‖2

H1
per(Ω) + ‖ξ‖2

H1
per(Ω)

)
,

and the coercivity of a is proved.

Lemma 2.4. Let (w̃, θ̃) ∈ (H1
per(Ω))

2. Then there exists a unique weak solution
of problem (2.9)–(2.10).

Proof. We use the Schauder fixed point theorem. For this define the map S :
(L2(Ω))2 → (L2(Ω))2 by S(ŵ, ξ̂) = (w, ξ), where (w, ξ) is the weak solution of (2.13)–
(2.14). We have to check that S is continuous and compact and that the set

Λ :=
{
u ∈ (L2(Ω))2 : u = λS(u)

}
for λ ∈ [0, 1] is bounded. The continuity of S follows by standard arguments.
The compactness of S is just a consequence of the compactness of the embedding
H1

per(Ω) ⊂ L2(Ω).

It remains to show that Λ is bounded. If λ = 0, then Λ = {(0, 0)} is trivially

bounded. For λ ∈ (0, 1], the equation S(ŵ, ξ̂) = 1
λ (ŵ, ξ̂) is equivalent to∫

Ω

((
(νg′(ŵ) + ε)ŵz − (1− g(ŵ)2)+ξ̂z

)
z
ϕz + εŵϕ

)
dz =

λ

τ

∫
Ω

(g(w̃)− g(ŵ))ϕdz,∫
Ω

(
(γg′(ŵ)ŵz + ξ̂z)ψz + ξ̂ψ

)
dz = λ

∫
Ω

(
µg(ŵ) +

1

τ
(θ̃ − ξ̂)

)
ψdz.
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Using (ϕ,ψ) = (ŵ, ξ̂) as a test function, adding the resulting integral identities, and
applying Young’s inequality as in (2.12), we obtain

∫
Ω

(
(ε+ h1(ŵ))|ŵz|2 + h2(ŵ)|ξ̂z|2 + ε|ŵ|2 + |ξ̂|2)dz = λ

τ

∫
Ω

(g(w̃)− g(ŵ))ŵdz

+ λ

∫
Ω

(
µg(ŵ) +

1

τ
(θ̃ − ξ̂)

)
ξ̂dz.

Using again Young’s inequality on the right-hand side of this equation and employing
the estimate (2.12), we deduce

∫
Ω

(
ε(|ŵz|2 + |ŵ|2) + |ξ̂z|2 + |ξ̂|2)dz ≤ λ2

τ2ε

∫
Ω

(g(w̃)− g(ŵ))2dz + 2λ2

τ2

∫
Ω

θ̃2dz

+ 2(λµ)2
∫

Ω

|g(ŵ)|2dz,

and since g ∈ L∞(R), the assertion follows.

In the following we derive uniform bounds for the solution of (2.9)–(2.10) which
allow us to pass to the limit ε → 0. This proves the existence of a solution of (2.5)–
(2.6). We need the following auxiliary result, whose proof is standard.

Lemma 2.5. Let ϕ ∈ C(R) be nondecreasing with ϕ(0) = 0 and define Φ ∈ C1(R)
by Φ(s) :=

∫ s
0
g′(σ)ϕ(σ)dσ. Then it holds for all s, t ∈ R that

Φ(s)− Φ(t) ≤ (g(s)− g(t))ϕ(s).(2.15)

Lemma 2.6. Let (w̃, ξ̃) ∈ (H1
per(Ω))

2 be such that −sα ≤ w̃ ≤ sα in Ω and let
(wε, ξε) ∈ (H1

per(Ω))
2 be a solution of (2.9)–(2.10). Then the following estimates hold:

−sα ≤ wε ≤ sα in Ω,(2.16) ∫
Ω

(
G(wε) +

1

2
ξ2ε

)
dz + Cτ

∫
Ω

(|wεz|2 + |ξεz|2 + |ξε|2)dz

≤
∫

Ω

(
G(w̃) +

1

2
ξ̃2
)
dz + C ′τ(2.17)

for some positive constants C, C ′ independent of ε and τ , and for G defined in (2.3).

In addition, there exists a subsequence of (wε, ξε) (not relabeled) such that (wε, ξε)
⇀ (w, ξ) weakly in (H1

per(Ω))
2 and strongly in (L2(Ω))2 as ε→ 0, and (w, ξ) is a weak

solution of problem (2.5)–(2.6).

Proof. We use ϕ(wε) := max(wε−sα, 0) as a test function in the weak formulation
of (2.9). Since ϕ is increasing and ϕ(0) = 0 we can employ Lemma 2.5. Let Φ be
defined as in Lemma 2.5. Then, together with the identities (1− g(s)2)+ϕ′(s) = 0 for
all s ∈ R and Φ(w̃) = 0, we obtain

0 ≥ 1

τ

∫
Ω

(g(wε)− g(w̃))ϕ(wε)dx ≥
∫

Ω

(Φ(wε)− Φ(w̃))dx =

∫
Ω

Φ(wε)dx.

This implies Φ(wε) = 0 and therefore wε ≤ sα in Ω. In a similar way we deduce
wε ≥ −sα in Ω. Observe that these bounds imply that (1− g(wε)2)+ = 1− g(wε)2 in
Ω.
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Now we use (wε, ξε) as a test function in the weak formulation of problem (2.9)–
(2.10). Adding the corresponding integral identities and using property (2.15) we get,
after multiplication by τ ,

∫
Ω

(
G(wε) +

1

2
ξ2ε

)
dz + τ

∫
Ω

(
h1(wε)|wεz|2 + h2(wε)|ξεz|2 + |ξε|2

)
dz

≤ µτ
∫

Ω

g(wε)ξεdz +

∫
Ω

(
G(w̃) +

1

2
ξ̃2
)
dz.

Applying Young’s inequality and the bounds (2.11) and (2.12) for g′, h1, and h2, we
deduce (2.17).

Finally, the uniform estimates (2.16) and (2.17) imply the existence of a sub-
sequence (not relabeled) of (wε, ξε) and of a pair (w, ξ) ∈ (H1

per(Ω))
2 such that, as

ε→ 0,

wε
∗
⇀ w weakly* in L∞(Ω),(2.18)

wεz ⇀ wz weakly in L2(Ω),(2.19)

ξε ⇀ ξ weakly in H1
per(Ω).

In fact, the convergences (2.18) and (2.19) imply wε ⇀ w weakly in H1
per(Ω) and thus,

by the compactness of the embedding H1
per(Ω) ⊂ L2(Ω), we deduce for a subsequence,

as ε → 0, wε → w, and ξε → ξ strongly in L2(Ω) and a.e. in Ω. These convergence
results and the continuity of g and g′ allow us to pass to the limit ε → 0 in the
weak formulation of problem (2.9)–(2.10) and to identify (w, ξ) as a weak solution of
(2.5)–(2.6).

2.3. End of the proof of Theorem 1.1. Let T > 0 and N ∈ N be given and
let τ = T/N be the time step. We define recursively pairs (vk, θk) ∈ (H1

per(Ω))
2,

k = 1, . . . , N , as the weak solution of the problem (2.5)–(2.6) corresponding to the
data (w̃, θ̃) = (vk−1, θk−1), and with (v0, θ0) = (v0, θ0). Then we define the piecewise
constant functions

vτ (x, t) := vk(x) and θτ (x, t) := θk(x) if (x, t) ∈ Ω× ((k − 1)τ, kτ ]

for k = 1, . . . , N and introduce the discrete entropies

ηk :=

∫
Ω

(
G(vk) +

1

2
|θk|2

)
dz, ητ (t) :=

∫
Ω

(
G(vτ (·, t)) + 1

2
|θτ (·, t)|2

)
dz.(2.20)

We have the following consequence of Lemma 2.6.
Corollary 2.7. There exist uniform bounds with respect to τ for the norms

‖ητ‖L∞(0,T ), ‖vτ‖L2(0,T ;H1
per(Ω)), ‖g(vτ )‖L2(0,T ;H1

per(Ω)), and ‖θτ‖L2(0,T ;H1
per(Ω)).

In addition,

−sα ≤ vτ ≤ sα in QT = Ω× (0, T ).(2.21)

Proof. From the “entropy” inequality (2.17) we obtain

ηm − η0 =
m∑
k=1

(ηk − ηk−1) ≤ C ′mτ − Cτ
m∑
k=1

∫
Ω

(|vkz |2 + |θkz |2 + |θk|2)dz
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for m = 1, . . . , N . Taking the maximum over m yields

‖ητ‖L∞(0,T ) + C

∫
QT

(|vτz |2 + |θτz |2 + |θτ |2)dzdt ≤ η0 + C ′T.

Since both g and g′ are smooth and bounded we also deduce the estimate for the
norm ‖g(vτ )‖L2(0,T ;H1

per(Ω)). Finally, (2.21) follows directly from (2.16).
We need uniform estimates of the time derivatives. For this, we introduce the

shift operator and linear interpolations in time. For t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N ,
we define στv

τ (·, t) := vk−1 and στθ
τ (·, t) := θk−1 in Ω. Setting δt := (t/τ−(k−1)) ∈

[0, 1], we introduce

g̃τ := g(στv
τ ) + δt

(
g(vτ )− g(στvτ )

)
, θ̃τ := στθ

τ + δt
(
θτ − στθτ

)
(2.22)

in QT .
Lemma 2.8. There exist uniform bounds with respect to τ for the norms

‖g̃τt ‖L2(0,T ;(H1
per(Ω))′), ‖g̃τ‖L2(0,T ;H1

per(Ω))∩L∞(QT ),

‖θ̃τt ‖L2(0,T ;(H1
per(Ω))′), and ‖θ̃τ‖L2(0,T ;H1

per(Ω)).

Proof. From the definition (2.22) of g̃τ and (2.5) we compute

g̃τt =
1

τ

(
g(vτ )− g(στvτ )

)
=
(
νg′(vτ )vτz − (1− g(vτ )2)θτz

)
z
.

Using the boundedness of g′ in R and Corollary 2.7 we obtain a uniform bound for
‖g̃τt ‖L2((0,T ;H1

per)
′). Moreover, since g is bounded, it is clear that g̃τ ∈ L∞(QT ) for

any τ ≥ 0. We also have

g̃τz = δtg′(vτ )vτz + (1− δt)g′(στvτ )(στvτ )z.(2.23)

Since (στv
τ )z = στv

τ
z , the L

∞(QT ) bound for g̃τ together with (2.23) and Corollary
2.7 implies a uniform bound for ‖g̃τ‖L2(0,T ;H1

per(Ω)). In a similar way we obtain uniform

estimates for θ̃τ .
Proof of Theorem 1.1. The functions vτ , θτ , g̃τ , θ̃τ satisfy the weak formulation∫ T

0

〈g̃τt , ϕ〉dt+
∫
QT

(
νg′(vτ )vτz − (1− g(vτ )2)θτz

)
ϕzdzdt = 0,(2.24)

∫ T

0

〈θ̃t, ψ〉dt+
∫
QT

(
γg′(vτ )vτz + θ

τ
z

)
ψzdzdt+

∫
QT

θτψdydt

= µ

∫
QT

g(vτ )ψdzdt(2.25)

for any ϕ,ψ ∈ L2(0, T ;H1
per(Ω)). The estimates of Lemma 2.8 allow us to extract a

subsequence (not relabeled) such that, as τ → 0,

g̃τt ⇀ ut weakly in L2(0, T ; (H1
per(Ω))

′),(2.26)

g̃τ ⇀ u weakly in L2(0, T ;H1
per(Ω)),(2.27)

g̃τ
∗
⇀ u weakly* in L∞(QT ),

θ̃τt ⇀ θt weakly in L2(0, T ; (H1
per(Ω))

′),(2.28)

θ̃τ ⇀ θ weakly in L2(0, T ;H1
per(Ω)).(2.29)
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The compact embedding H1
per(Ω) ⊂ L∞(Ω), the convergence results (2.26)–(2.29),

and Aubin’s lemma [23] imply, up to a subsequence,

g̃τ → u strongly in L2(0, T ;L∞(Ω)),(2.30)

θ̃τ → θ strongly in L2(0, T ;L∞(Ω)).

Moreover, Corollary 2.7 yields the existence of a subsequence such that

vτ ⇀ v weakly in L2(0, T ;H1
per(Ω)),

vτ
∗
⇀ v weakly* in L∞(QT ),

g(vτ )⇀ û weakly in L2(0, T ;H1
per(Ω)),(2.31)

θτ ⇀ θ̂ weakly in L2(0, T ;H1
per(Ω)).

It holds that g̃τ − g(vτ ) = τ(δt− 1)g̃τt , and therefore, by Lemma 2.8,

‖g̃τ − g(vτ )‖L2(0,T ;(H1
per)

′) → 0 as τ → 0.(2.32)

Hence, u = û. In a similar way we obtain θ = θ̂. Finally,

‖g(vτ )− u‖L1(0,T ;L2(Ω))

≤ ‖g(vτ )− g̃τ‖L1(0,T ;L2(Ω)) + ‖g̃τ − u‖L1(0,T ;L2(Ω))

≤ ‖g(vτ )− g̃τ‖1/2
L1(0,T ;(H1

per(Ω))′)‖g(vτ )− g̃τ‖1/2
L1(0,T ;H1

per(Ω))

+ ‖g̃τ − u‖L1(0,T ;L2(Ω))

≤ C‖g(vτ )− g̃τ‖1/2
L2(0,T ;(H1

per(Ω))′) + ‖g̃τ − u‖L1(0,T ;L2(Ω))

→ 0(2.33)

as τ → 0. Therefore, g(vτ ) → u strongly in L1(0, T ;L2(Ω)) and a.e. in QT . Now,
letting τ → 0 in (2.24)–(2.25), we obtain, for ϕ,ψ ∈ L2(0, T ;H1

per(Ω)),∫ T

0

〈ut, ϕ〉dt+
∫
QT

(
νuz − (1− u2)θz

)
ϕzdzdt = 0,(2.34)

∫ T

0

〈θt, ψ〉dt+
∫
QT

(
γuz + θz

)
ψzdzdt+

∫
QT

θψdz = µ

∫
QT

uψdzdt.(2.35)

This proves Theorem 1.1.

3. Proof of Theorem 1.2. Let (u1, θ1) and (u2, θ2) be two weak solutions of
(1.1)–(1.3) with the same initial data satisfying (1.10) and θ1 ∈ L∞(0, T ;H1

per(Ω)).
Set Qt = Ω× (0, t). The equations satisfied by u = u1 − u2 and θ = θ1 − θ2 read

ut − νuzz + θzz =
(
(u1 + u2)uθ1z + u

2
2θz
)
z
,(3.1)

θt − θzz + θ = γuzz + µu.(3.2)

Take u and θ as test functions in the weak formulations of (3.1) and (3.2), respectively,
and add (3.2), multiplied by some number a > 0, and (3.1) to obtain

1

2

∫
Ω

(u(t)2 + aθ(t)2)dz +

∫
Qt

(νu2
z + aθ

2
z + aθ

2)dzdt

=

∫
Qt

(1− aγ − u2
2)uzθzdzdt+ aµ

∫
Qt

uθdzdt−
∫
Qt

(u1 + u2)uθ1zuzdzdt.(3.3)
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We apply Young’s inequality to the second integral on the right-hand side:

aµ

∫
Qt

uθdzdt ≤ aµ2

2

∫
Qt

u2dzdt+
a

2

∫
Qt

θ2dzdt.

For the third integral on the right-hand side of (3.3) we use the Gagliardo–Nirenberg
inequality

‖u‖L∞(Ω) ≤ C0‖u‖1/2
H1(Ω)‖u‖1/2

L2(Ω) ∀u ∈ H1(0, L)

and the Young inequality

x1/2y3/2 ≤ ε

2
x2 + C(ε)y2 ∀x, y ≥ 0, ε > 0.

Then, with the abbreviation C1 = 2C0‖θ1z‖L∞(0,T ;L2(Ω)) <∞ and |u1|, |u2| ≤ 1,∫
Qt

(u1 + u2)uθ1zuzdzdt

≤ 2‖u‖L2(0,t;L∞(Ω))‖θ1z‖L∞(0,t;L2(Ω))‖uz‖L2(0,t;L2(Ω))

≤ C1‖u‖1/2
L2(0,t;L2(Ω))

(
‖u‖2

L2(Qt)
+ ‖uz‖2

L2(Qt)

)1/4

‖uz‖L2(0,t;L2(Ω))

≤ C1

(
‖u‖L2(Qt)‖uz‖L2(Qt) + ‖u‖1/2

L2(Qt)
‖uz‖3/2

L2(Qt)

)
≤ ε

2
‖uz‖2

L2(Qt)
+
C2

1

2ε
‖u‖2

L2(Qt)
+
ε

2
‖uz‖2

L2(Qt)
+ C(ε)C4

1‖u‖2
L2(Qt)

.

With these inequalities we can estimate (3.3) as

1

2

(
‖u(t)‖2

L2(Ω) + a‖θ(t)‖2
L2(Ω)

)
+
a

2
‖θ‖2

L2(Qt)

≤ −
∫
Qt

(−(|1− aγ|+ 1)|uz||θz|+ (ν − ε)u2
z + aθ

2
z

)
+

(
aµ2

2
+
C2

1

2ε
+ C(ε)C4

1

)
‖u‖2

L2(Qt)
.(3.4)

It can be easily seen that the quadratic form

A(x, y) = −(|1− aγ|+ 1)xy + (ν − ε)x2 + ay2, x, y ≥ 0,

is positive definite if we choose a = 1/γ and ε = ν − γ/4 > 0 (since γ < 4ν by
assumption). Then Gronwall’s lemma applied to (3.4) implies that u(t) = θ(t) = 0 in
Ω for any t > 0. This proves Theorem 1.2.

4. Proof of Theorem 1.3. Let (u, θ) be a weak solution of (1.1)–(1.3) given by
Theorem 1.1. Let α > 1 and set

c0 =
1

2

∫ L

0

(
γ(u0 + 1) ln

1 + u0

1 + ū
+ γ(1− u0) ln

1− u0

1− ū + (θ0 − θ̄)
)
dz.(4.1)

Notice that c0 is well defined even if u0(z) = ±1. For the proof of Theorem 1.3 we
need the following lemma.
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Lemma 4.1. Define the function ψ : [−1, 1] → R by

ψ(u) =
γ

2α
ln

(
α+ u

α+ ū

α− ū
α− u

)
.

Then the function Ψ : [−1, 1] → R, defined by

Ψ(u) =
γ

2α
(α+ u) ln

α+ u

α+ ū
+
γ

2α
(α− u) ln α− u

α− ū ,

satisfies for all u ∈ [−1, 1]

Ψ′(u) = ψ(u), Ψ′′(u) =
γ

α2 − u2
, Ψ(u) ≥ γ

2α2
(u− ū)2.

The lemma follows from Taylor expansion around ū:

Ψ(u) = Ψ(ū) + Ψ′(ū)(u− ū) + 1

2
Ψ′′(ξ)(u− ū)2 ≥ γ

2α2
(u− ū)2.

Proof of Theorem 1.3. We use ψ(u) ∈ L∞(QT ) ∩ L2(0, T ;H1
per(Ω)) and θ −

θ̄ ∈ L2(0, T ;H1
per(Ω)) as test functions in the weak formulation of (1.1) and (1.2),

respectively, and add the resulting equations:∫
Ω

(
Ψ(u(t)) +

1

2
(θ(t)− θ̄)2

)
dz +

∫
Qt

(νψ′(u)u2
z + θ

2
z)dzdt(4.2)

=

∫
Ω

(
Ψ(u0) +

1

2
(θ0 − θ̄)2

)
dz +

∫
Qt

((1− u2)ψ′(u)− γ)uzθzdzdt

+

∫
Qt

(µu− θ)(θ − θ̄)dzdt.

For the second integral on the right-hand side we use Young’s inequality:∫
Qt

((1− u2)ψ′(u)− γ)uzθzdzdt = γ
∫
Qt

1− α2

α2 − u2
uzθzdzdt

≤ νγ

2
(α2 − 1)1/2

∫
Qt

u2
z

α2 − u2
dzdt+

γ

2ν
(α2 − 1)3/2

∫
Qt

θ2z
α2 − u2

dzdt

≤ νγ

2
(α2 − 1)1/2

∫
Qt

u2
z

α2 − u2
dzdt+

γ

2ν
(α2 − 1)1/2

∫
Qt

θ2zdzdt.

Since µū = θ̄, the last integral on the right-hand side of (4.2) becomes∫
Qt

(µu− θ)(θ − θ̄)dzdt = µ
∫
Qt

(u− ū)(θ − θ̄)dzdt−
∫
Qt

(θ − θ̄)2dzdt

≤ µ2δ

2

∫
Qt

(u− ū)2dzdt+
(

1

2δ
− 1

)∫
Qt

(θ − θ̄)2dzdt,

where we choose

L2

2(L2 + 2)
< δ <

4νγ

µ2L2
.
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This is possible by assumption (1.11). We employ Lemma 4.1 to estimate the first
integral on the left-hand side of (4.2):

∫
Ω

(
Ψ(u(t)) +

1

2
(θ(t)− θ̄)2

)
dz ≥

∫
Ω

(
γ

2α2
(u(t)− ū)2 + 1

2
(θ(t)− θ̄)2

)
dz.

Finally, the second term on the left-hand side of (4.2) can be estimated by using the
Poincaré inequality

‖v − v̄‖L2(Ω) ≤ L√
2
‖vz‖L2(Ω) ∀v ∈ H1

per(Ω) with v̄ =

∫ L

0

v(z)dz.

We obtain∫
Qt

(νψ′(u)u2
z + θ

2
z)dzdt ≥

∫
Qt

(
2νγ

L2

(u− ū)2
α2 − u2

+
2

L2
(θ − θ̄)2

)
dzdt.

Putting the above estimates together, we infer from (4.2) that

∫
Ω

(
γ

2α2
(u(t)− ū)2 + 1

2
(θ(t)− θ̄)2

)
dz(4.3)

≤ c20 +
∫
Qt

(
µ2δ

2
− 2νγ

L2
+
νγ

L2
(α2 − 1)1/2

)
(u− ū)2
α2 − u2

dzdt

+

(
1

2δ
− L2 + 2

L2
+

γ

νL2
(α2 − 1)1/2

)∫
Qt

(θ − θ̄)2dzdt.

Observing that

(u− ū)2
α2 − u2

≥ (u− ū)2
α2

,

we can let α→ 1 in (4.3) to obtain

1

2

∫
Ω

(
γ(u(t)− ū)2 + (θ(t)− θ̄)2) dz ≤ c20 −

∫
Qt

(
2νγ

L2
− µ2δ

2

)
(u− ū)2dzdt

−
(
L2 + 2

L2
− 1

2δ

)∫
Qt

(θ − θ̄)2dzdt.

Defining

δ1 =
4ν

L2
− µ2δ

γ
> 0, δ2 =

2(L2 + 2)

L2
− 1

δ
> 0,(4.4)

the theorem follows from Gronwall’s lemma.

5. Numerical examples. In this section we illustrate by numerical experiments
the long-time coarsening of the segregation bands in a drum. For the numerical dis-
cretization, we use a time-discretized version of (1.6)–(1.7) (backward Euler scheme),
as motivated by the existence analysis of section 2,instead of discretizing (1.1)–(1.2)
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(a) L = 1, 0 ≤ t ≤ 0.159.
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(b) L = 30, 0 ≤ t ≤ 3049.

Fig. 5.1. γ = 2, µ = 3, ν = 2, u0(z) = 0.8 cos(4πz/L), N = 50.

directly. The space discretization is performed by using finite differences. The non-
linear system is solved by a simple fixed point strategy.

In the following examples, we illustrate the segregation behavior of the component
u of the solutions of (1.1)–(1.2). The behavior relies on three important conditions.
First, condition (1.11) ensures the convergence of u to a constant steady state. Second,
the authors of [3] conjectured that the condition µ > ν is a necessary condition to
have segregation. This conjecture arises from a linear stability analysis sketched in [3],
showing that perturbations of the form exp(λt+2πz/4), where λ ∈ R and 4 > 0 is the
wavelength of the perturbations, are unstable if µ > ν+4π2(ν+γ)/42. Therefore, this
instability is captured only if the length L of the domain satisfies the third condition

L > 2π
√
(γ + ν)/(µ− ν).(5.1)

In Figure 5.1 we present the behavior of u in the (z, t)-plane for two different
domain lengths. The number of grid points is N = 50. The parameters in Figure
5.1(a) satisfy µ > ν and (1.11) but not (5.1). We observe convergence of u to a
constant steady state. We expect this behavior in view of Theorem 1.3. This example
shows that the condition µ > ν is not sufficient for segregation. The parameters in
Figure 5.1(b) satisfy the segregation condition (5.1) but not (1.11). The granular
materials segregate since the length of the cylinder is large enough, as claimed by the
linear stability analysis.

Figure 5.2 shows that (1.11) is a sufficient but not necessary condition to have
nonsegregation. Indeed, the parameters are chosen such that (1.11) is not satisfied,
but the granular materials do not segregate.

A more detailed view of the same segregation phenomena as above but with a
larger number of bands is presented in Figure 5.3. The parameters do not satisfy (1.11)
but (5.1) holds. Thus, we expect segregation. The initial short-wave perturbations
produce decaying standing waves (Figure 5.3(a)). The segregated bands emerge,
and we observe metastable long-wave bands. Finally, after a long time, the system
segregates again (Figure 5.3(b)). This illustrates the very slow coarsening of the band
structure (see [3]).
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Fig. 5.2. L = 4, γ = 2, µ = 2, ν = 3, u0(z) = 0.8 cos(4πz/L), N = 50.
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(a) 0 ≤ t ≤ 1.06.
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(b) 4.8 ≤ t ≤ 8.9.

Fig. 5.3. γ = 100, µ = 40, ν = 0.5, L = 30, u0(z) = 0.75 cos(80πz/L), N = 1000.
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[8] P. Degond, S. Génieys, and A. Jüngel, Symmetrization and entropy inequality for general
diffusion systems, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), pp. 963–968.
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Abstract. We consider the Cauchy problem related to the partial differential equation

Lu ≡ ∆xu+ h(u)∂yu− ∂tu = f(·, u),
where (x, y, t) ∈ R

N × R × ]0, T [, which arises in mathematical finance and in the theory of
diffusion processes. We study the regularity of solutions regarding L as a perturbation of an operator
of Kolmogorov type. We prove the existence of local classical solutions and give some sufficient
conditions for global existence.
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1. Introduction. In this paper we study the Cauchy problem

Lu = f(·, u) in ST ≡ R
N+1 × ]0, T [,(1.1)

u(·, 0) = g in R
N+1,(1.2)

where L is the nonlinear operator defined by

Lu = ∆xu+ h(u)∂yu− ∂tu,(1.3)

(x, y, t) = z denotes the point in R
N × R × R, and ∆x is the Laplace operator acting

in the variable x ∈ R
N . We assume that f, g, and h are globally Lipschitz continuous

functions.
One of the main features of operator (1.3) is the strong degeneracy of its char-

acteristic form due to the lack of diffusion in the y-direction, so that (1.1)–(1.2) may
include the Cauchy problem for the Burgers equation, when h(u) = u, g = g(y), and
f ≡ 0. On the other hand, L can be considered as nonlinear version of the operator

K = ∆x + x1∂y − ∂t,(1.4)

which was introduced by Kolmogorov [17] and has been extensively studied by Kuptsov
[12] and Lanconelli and Polidoro [14]. Among the known results of K, we recall that
every solution to Ku = 0 is smooth; thus we may expect some regularity properties
also for the solutions to (1.1).

Problem (1.1)–(1.2) arises in mathematical finance as well as in the study of
nonlinear physical phenomena such as the combined effects of diffusion and convection
of matter.
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Escobedo, Vazquez, and Zuazua [8] prove that there exists a unique distributional
solution to (1.1)–(1.2) satisfying an entropy condition that generalizes the one by
Kruzhkov [11]. This solution is characterized in the vanishing viscosity sense; i.e.,
it is the limit of a sequence of classical solutions to Cauchy problems related to the
regularized operator

Lεu = ∆xu+ ε
2∂2
yu+ h(u)∂yu− ∂tu.(1.5)

Vol’pert and Hudjaev [19] prove similar existence and uniqueness results in a space
of bounded variation functions whose spatial derivatives are square integrable with
respect to (w.r.t.) a suitable weight. In this framework, it is natural to consider
bounded and integrable initial data g and nonlinearities of the form h(u) = up−1 for
p ∈ ]1, N+2

N+1 [.
Our paper is mainly motivated by the theory of agents’ decisions under risk,

arising in mathematical finance. The problem is the representation of agents’ pref-
erences over consumption processes. Antonelli, Barucci, and Mancino [1] propose
a utility functional that takes into account aspects of decision making such as the
agents’ habit formation, which is described as a smoothed average of past consump-
tion and expected utility. In that model the processes utility and habit are described
by a system of backward-forward stochastic differential equations. The solution of
such a system, as a function of consumption and time, satisfies the Cauchy problem
(1.1)–(1.2). Our regularity assumption on f, g, h is required by the financial model,
since these functions appear in the backward-forward system as Lipschitz continuous
coefficients.

In the paper by Antonelli and Pascucci [2] an existence result, in the case N = 1,
is proved by probabilistic techniques that exploit the properties of the solutions to the
system of backward-forward stochastic differential equations related to (1.1)–(1.2). In
[2], the existence of a viscosity solution, in the sense of [7], is proved. The solution is
defined in a suitably small strip R

2 × [0, T ] and satisfies the following conditions:
|u(x, y, t)− u(x′, y′, t)| ≤ c0(|x− x′|+ |y − y′|),
|u(x, y, t)− u(x, y, t′)| ≤ c0(1 + |(x, y)|)|t− t′| 12

(1.6)

for every (x, y), (x′, y′) ∈ R
2, t, t′ ∈ [0, T ], where c0 is a positive constant that depends

on the Lipschitz constants of f, g, and h. Concerning the regularity of u, we remark
that the results by Caffarelli and Cabré [3] and Wang [20, 21] do not apply to our
operator.

In this paper we prove the existence of a classical solution u to problem (1.1)–
(1.2) by combining the analysis on Lie groups with the standard techniques for the
Cauchy problem related to degenerate parabolic equations. We say that u is a classical
solution if ∂xjxku, j, k = 1, . . . , N, the directional derivative

z �−→ Y u(z) =
∂u

∂νz
(z), ν(z) = (0, h(u(z)),−1),

are continuous functions, and (1.1)–(1.2) are verified at every point. Our main result
is the following.

Theorem 1.1. There exists a positive T and a unique function u ∈ C(ST ),
verifying estimates (1.6) on ST , which is a classical solution to (1.1)–(1.2).

We stress that the regularity stated above is natural for the problem under con-
sideration. Indeed, although Y u is the sum of the more simple terms h(u)∂yu and
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∂tu, it is not true in general that they are continuous functions. Further regularity
properties of solutions can be obtained under additional conditions. For instance,
in [5, 6] in collaboration with Citti, we considered the nonlinear equation in three
variables,

∂xxu+ u∂yu− ∂tu = 0,(1.7)

which is a special case of (1.1). Assuming a hypothesis formally analogous to the
classical Hörmander condition, we proved that the viscosity solution u of (1.7) con-
structed in [2] actually is a C∞ classical solution.

In this paper we give a direct proof of the existence of a classical solution to
the Cauchy problem (1.1)–(1.2) by using analytical methods. The regularity part in
Theorem 1.1 is based on a modification of the classical freezing method, introduced
by Citti in [4] for the study of the Levi equation. More precisely, for any z̄ ∈ ST , we
approximate L by the linear operator

Lz̄ = ∆x + (h(u(z̄)) + x1 − x̄1) ∂y − ∂t,(1.8)

and we represent a solution u in terms of its fundamental solution. Note that up to
a straightforward change of coordinates, Lz̄ is the Kolmogorov operator (1.4), and
hence an explicit expression of the fundamental solution of Lz̄ is available. Also note
that Lz̄ is a good approximation of L in the sense that, by (1.6), we have

|Lu(z)− Lz̄u(z)| = |u(z)− u(z̄)− (x1 − x̄1)| |∂yu(z)| ≤ c0d(z̄, z),

where d(z̄, z) is the standard parabolic distance.
The existence part of Theorem 1.1 relies on the Bernstein technique. We explicitly

note that the nonlinearity in (1.3) is not monotone; therefore a maximum principle
for the operator Lv + h′(u)v2, which occurs when we differentiate both sides of (1.1)
w.r.t. y, does not hold unless we assume condition (1.6).

We end this introduction with a remark about the existence of global solutions.
We first note that the space of functions characterized by conditions (1.6) is, in some
sense, optimal for the existence of local classical solutions. Indeed the linear growth
of the initial data g does not allow, in general, solutions that are defined at every
time t > 0, as the following example given in [2] shows. Consider the problem (1.7),
with f ≡ 0 and g(x, y) = x + y: a direct computation shows that u(x, y, t) = x+y

1−t
is the unique solution to the problem and blows up as t → 1. This fact is expected
since, if u grows as a linear function, then its Cole–Hopf transformed function grows
as exp(y2), which is the critical case for the parabolic Cauchy problem. Next we give
a simple sufficient condition for the global existence of classical solutions.

Theorem 1.2. Let f, g, and h be globally Lipschitz continuous functions. Suppose
that g is nonincreasing w.r.t. y, that f is nondecreasing w.r.t. y, and that there exists
c0 ∈ ]0, c1] such that

c0(u− v) ≤ h(u)− h(v)(1.9)

for every u, v ∈ R. Then the Cauchy problem (1.1)–(1.2) has a solution u that is
defined in R

N+1 × R
+.

This paper is organized as follows. In section 2 we prove Theorem 1.1, and in
section 3 we prove the existence of a viscosity solution of (1.1)–(1.2). Section 4 is
devoted to the proof of Theorem 1.2.
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2. Classical solutions. In this section we prove Theorem 1.1. We first state an
existence and uniqueness result of a strong solution u to problem (1.1)–(1.2). And
then we prove that u is a solution in the classical sense. We say that a continuous
function u is a strong solution to (1.1)–(1.2) if u ∈ H1

loc(ST ), ∂xjxku ∈ L2
loc(ST ),

j, k = 1, . . . , N , it satisfies equation (1.1) a.e., and it assumes the initial datum g.
Theorem 2.1. If T is suitably small, there exists a unique strong solution of

(1.1)–(1.2) verifying estimates (1.6) on ST .
The proof of Theorem 2.1 is postponed to section 3. We remark that in the above

statement, we consider the term

Y u = h(u)∂yu− ∂tu
as a sum of weak derivatives. Here we aim to prove that Y u is a continuous function
and that it coincides with the directional derivative w.r.t. the vector νz = (0, h(u),−1),
namely,

Y (u(z)) =
∂u

∂νz
(z) ∀z ∈ ST .(2.1)

In what follows, when we consider a function F that depends on many variables, to
avoid any ambiguity we shall systematically write the directional derivative introduced
in (2.1) as

Y (z)F (·, ζ) = ∂F (·, ζ)
∂νz

(z).

Our technique is inspired by the recent paper [6], where, in collaboration with Citti,
we developed some ideas for a general study of a nonlinear equation of the form (1.4).
We recall the following lemma, which has been proved in Lemma 3.1 of [6], for the
Cauchy problem (1.7). We state the lemma for the operator (1.3) and omit the proof,
since it is analogous to the one given in [6].

Lemma 2.2. Let v be a continuous function defined in ST . Assume that its weak
derivatives vy, vt ∈ L2

loc and that the limit

lim
δ→0

v(z + δνz)− v(z)
δ

exists and is uniform w.r.t. z in compact subsets of ST . Then

∂v

∂νz
(z) = (h(u)∂yv − ∂tv)(z) a.e. z ∈ ST .

We next prove Theorem 1.1 by using a representation formula of the strong so-
lution u in terms of the fundamental solution of the operator Lz̄ introduced in (1.8).
We define the first order operators (vector fields)

Xj = ∂xj , j = 1, . . . , N, Yz̄ = (h(u(z̄)) + x1 − x̄1) ∂y − ∂t.(2.2)

Thus we can rewrite the operator Lz̄ in the standard form

Lz̄ =

N∑
j=1

X2
j + Yz̄.(2.3)
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Let us recall some preliminary facts about real analysis on nilpotent Lie groups.
More details about this topic can be found in [15] and [18]. We define on R

N+2 the
composition law

θ ⊕ θ′ =
(
θ1 + θ

′
1, . . . , θN + θ

′
N , θN+1 + θ

′
N+1, θN+2 + θ

′
N+2 +

1

2
(θ1θ

′
N+1 − θN+1θ

′
1)

)

and the dilations group

δλ(θ) = (λθ1, . . . , λθN , λ
2θN+1, λ

3θN+2), λ > 0.

We remark that G = (RN+2,⊕) is a nilpotent stratified Lie group which, in the
case N = 1, coincides with the standard Heisenberg group. Since the Jacobian Jδλ
equals λN+5, the homogeneous dimension of G w.r.t. (δλ)λ>0 is the natural number
Q = N + 5. A norm which is homogeneous w.r.t. this dilations group is given by

‖θ‖ = (|θ1|6 + · · ·+ |θN |6 + |θN+1|3 + |θN+2|2
) 1

6 .

Let ∇z̄ = (X1, . . . , XN , Yz̄, ∂y) be the gradient naturally associated to Lz̄ and
consider any z ∈ R

N+2. The exponential map

Ez̄(θ, z) = exp(〈θ,∇z̄〉)(z)
is a global diffeomorphism and induces a Lie group structure on R

N+2 whose product
is defined by

ζ ◦ z = Ez̄
((
E−1
z̄ (ζ, 0)⊕ E−1

z̄ (z, 0)
)
, 0
)
,

and it can be explicitly computed as

ζ ◦ z = (x+ ξ, y + η − tξ1, t+ τ).
Moreover, a control distance dz̄ in (R

N+2, ◦) is defined by
dz̄(z, ζ) = ‖E−1

z̄

(
ζ−1 ◦ z, 0) ‖

=

(
|x− ξ|6 + |t− τ |3 +

∣∣∣∣y − η + (t− τ)
(
h(u(z̄)) +

x1 − ξ1 − 2x̄1

2

)∣∣∣∣
2
) 1

6

,(2.4)

where ζ−1 is the inverse in the group law “◦”. We denote by Γz̄(z, ζ) the fundamental
solution of Lz̄ with pole in ζ and evaluated at z. We refer to [12, 14, 13, 9] for known
results about Γz̄. The following bound holds:

Γz̄(z, ζ) = Γz̄(ζ
−1 ◦ z, 0) ≤ cdz̄(z, ζ)−Q+2,(2.5)

where the constant c continuously depends on z̄. We are now in a position to prove
Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2.1 there exists a unique strong solution of
(1.1)–(1.2) verifying (1.6) in ST for T suitably small. In order to prove that u is a
classical solution, we represent it in terms of the fundamental solution Γz̄:

(uϕ)(z) =

∫
ST

Γz̄(z, ζ) (U1,z̄(ζ)− U2,z̄(ζ)) dζ ≡ I1(z)− I2(z)(2.6)
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for every ϕ ∈ C∞
0 (ST ), where

U1,z̄ = ϕf(·, u) + uLz̄ϕ+ 2〈∇xu,∇xϕ〉,
U2,z̄ =(h(u)− h(u(z̄))− (x1 − x̄1)) ∂yuϕ

are bounded functions with compact support. Therefore it is straightforward to prove
that uϕ ∈ C1+α

dz̄
, α ∈ ]0, 1[, where Ck+αdz̄

denotes the space of Hölder continuous
functions w.r.t. the control distance dz̄. In particular, by choosing ϕ ≡ 1 in a compact
neighborhood K of z̄, we have that

Xju(z) =

∫
Xj(z)Γz̄(·, ζ) (U1,z̄(ζ)− U2,z̄(ζ)) dζ, z ∈ K, j = 1, . . . , N,

and

|Xju(z)−Xju(ζ)| ≤ cdz̄(z, ζ)α ∀z, ζ ∈ K, α ∈ ]0, 1[.(2.7)

This proves the Hölder continuity of the first order derivatives of u. Let us now
consider the second order derivatives XjXhu, j, k,= 1, . . . , N , and Y u.

We next prove the existence of the directional derivative Y u(z̄) by studying sep-
arately the terms I1, I2. Since Y is the unique nonlinear vector field to be considered,
the proof of our result for the derivatives XjXhu is simpler and will be omitted.

The term I2. We set

J(z̄) =

∫
ST

Y (z̄)Γz̄(·, ζ)U2,z̄(ζ)dζ.

We remark that J is well defined and continuous since, by (1.6), we have

|U2,z̄(ζ)| ≤ c dz̄(z̄, ζ).(2.8)

We denote by χ ∈ C∞([0,+∞[, [0, 1]) a cut-off function such that

χ(s) = 0 for 0 ≤ s ≤ 1

2
, χ(s) = 1 for s ≥ 1,

and we set

I2,δ(z) =

∫
ST

Γz̄(z, ζ)χ

(
dz̄(z̄, ζ)

c̄ δ
1
2

)
U2,z̄(ζ)dζ, c̄, δ > 0.

In what follows we shall assume dz̄(z̄, z) ≤ δ 1
2 ; then by the triangular inequality

dz̄(z̄, ζ) ≤ c (dz̄(z̄, z) + dz̄(z, ζ)) ,(2.9)

we can choose c̄ suitably large so that

χ

(
dz̄(z̄, ζ)

c̄ δ
1
2

)
= 0 if dz̄(z, ζ) < δ

1
2 ,

and, as a consequence, I2,δ is smooth for any δ > 0. We claim that

sup
dz̄(z̄,z)≤δ

1
2

|I2,δ(z)− I2(z)| ≤ c δ 3
2 ,(2.10)

sup
dz̄(z̄,z)≤δ

1
2

|Yz̄I2,δ(z)− J(z̄)| ≤ c δ 1
2 | log(δ)|(2.11)
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for some positive constant c. We postpone the proof of (2.10)–(2.11) to the end.
Let us now compute the derivative ∂I2∂νz̄ (z̄). For every positive δ we have∣∣∣∣I2(z̄ + δνz̄)− I2(z̄)δ

− J(z̄)
∣∣∣∣ ≤

∣∣∣∣I2,δ(z̄ + δνz̄)− I2,δ(z̄)δ
− J(z̄)

∣∣∣∣
+

∣∣∣∣I2(z̄ + δνz̄)− I2,δ(z̄ + δνz̄)δ

∣∣∣∣+
∣∣∣∣I2(z̄)− I2,δ(z̄)δ

∣∣∣∣ .
We first note that, using the expression (2.4), we find dz̄(z̄, z̄ + δνz̄) = δ

1
2 . Thus, by

(2.10) and by the mean value theorem, there exists a δ0 ∈ ]0, δ[ such that∣∣∣∣I2(z̄ + δνz̄)− I2(z̄)δ
− J(z̄)

∣∣∣∣ ≤ |(h(u(z̄))∂yI2,δ − ∂tI2,δ) (z̄ + δ0νz̄)− J(z̄)|+ cδ 1
2

= |Yz̄I2,δ(z̄ + δ0νz̄)− J(z̄)|+ cδ 1
2 ≤ c δ 1

2 | log δ|,

where the last inequality follows from (2.11). Therefore we have

∂I2
∂νz

(z) = J(z),

and, by Lemma 2.2, we get (2.1).

We are left with the proof of (2.10)–(2.11). We assume dz̄(z̄, z) ≤ δ 1
2 . By (2.8)

and (2.5), we have

|I2,δ(z)− I2(z)| ≤ c
∫
dz̄(z,ζ)<δ

1
2

dz̄(z, ζ)
−Q+2dz̄(z̄, ζ)dζ

(since, by (2.9), dz̄(z̄, ζ) < cδ
1
2 , and by using the homogeneous polar coordinates)

≤ δ
1
2

∫
�<δ

1
2

1−Q+2+Q−1d1 = cδ
3
2 .

This proves (2.10). Next we recall the following estimate which immediately follows
by the mean value theorem:

|Yz̄(z)Γz̄(·, ζ)− Yz̄(z̄)Γz̄(·, ζ)| ≤ cdz̄(z̄, z)dz̄(z̄, ζ)−Q−1(2.12)

for dz̄(z̄, ζ) ≥ c̄dz̄(z̄, z). Then we have

|Yz̄I2,δ(z)− J(z̄)| ≤
∫

|Yz̄(z)Γz̄(·, ζ)− Yz̄(z̄)Γz̄(·, ζ)|χ
(
dz̄(z̄, ζ)

c̄ δ
1
2

)
|U2,z̄(ζ)|dζ

+

∫
dz̄(z̄,ζ)<δ

1
2

|Yz̄(z̄)Γz̄(·, ζ)U2,z̄(ζ)|dζ

(by (2.12) and since the second term can be estimated as before)

≤ cδ 1
2

∫
dz̄(z̄,ζ)>c̄δ

1
2

dz̄(z̄, ζ)
−Q−1|U2,z̄(ζ)|dζ + cδ 1

2 = cδ
1
2 | log(δ)|.

This concludes the proof of (2.11).
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The term I1. Let G(z, ζ) = g(ζ
−1 ◦ z), where g is a smooth function. A direct

computation gives

Yz̄(z)G(·, ζ) = Rz̄(ζ)G(z, ·),(2.13)

where

Rz̄(ζ) = −Yz̄(ζ)− (x1 − ξ1)∂η
(see [16, p. 295] for a general statement of this result). We aim to prove that

Y (z̄)I1 =

∫
Ω

Y (z̄)Γz̄(·, ζ) (U1,z̄(ζ)− U1,z̄(z̄)) dζ + U1,z̄(z̄)

∫
∂Ω

Γz̄(z̄, ζ)〈Rz̄(ζ), ν(ζ)〉dσ,
(2.14)

where ν is the outer normal to the set Ω = supp(ϕ), for which we assume that the
divergence theorem holds. By (2.5), the homogeneity of the fundamental solution,
and the Hölder continuity of U1,z̄, the function

V (z) =

∫
Ω

Y (z)Γz̄(·, ζ) (U1,z̄(ζ)− U1,z(z)) dζ + U1,z̄(z)

∫
∂Ω

Γz̄(z, ζ)〈Rz̄(ζ), ν(ζ)〉dσ(ζ)
(2.15)

is well defined. Let K be a compact subset of Ω. We set, for δ > 0,

I1,δ(z) =

∫
Ω

Γz̄(z, ζ)χ

(
dz̄(z, ζ)

δ

)
U1,z̄(ζ)dζ,

where χ is the cut-off function previously introduced. We choose δ suitably small so
that

χ

(
dz̄(z, ζ)

δ

)
= 1(2.16)

for any z ∈ K, ζ ∈ ∂Ω. Clearly I1,δ is a smooth function, and differentiating we get

Yz̄(z)I1,δ =

∫
Ω

Yz̄(z)

(
Γz̄(·, ζ)χ

(
dz̄(·, ζ)
δ

))
(U1,z̄(ζ)− U1,z̄(z)) dζ

+ U1,z̄(z)

∫
Ω

Yz̄(z)

(
Γz̄(·, ζ)χ

(
dz̄(·, ζ)
δ

))
dζ.(2.17)

By (2.13) and the divergence theorem, we have∫
Ω

Yz̄(z)

(
Γz̄(·, ζ)χ

(
dz̄(·, ζ)
δ

))
dζ =

∫
Ω

Rz̄(ζ)

(
Γz̄(z, ·)χ

(
dz̄(z, ·)
δ

))
dζ

=

∫
∂Ω

Γz̄(z, ζ)χ

(
dz̄(z, ζ)

δ

)
〈Rz̄(ζ), ν(ζ)〉dσ(ζ).(2.18)

Then, by (2.18) and (2.16), the last terms in (2.17) and (2.15) are equal. Hence we
get

|V (z)− Yz̄(z)I1,δ|

=

∣∣∣∣∣
∫
δz̄(z,ζ)≤δ

Yz̄(z)

(
Γz̄(·, ζ)

(
1− χ

(
dz̄(·, ζ)
δ

)))
(U1,z̄(ζ)− U1,z̄(z)) dζ

∣∣∣∣∣
≤ C

∫
δz̄(z,ζ)≤δ

(
dz̄(z, ζ)

−Q + Γz̄(z, ζ)
dz̄(z, ζ)

−1

δ

)
dz̄(z, ζ)

αdζ ≤ Cδα.
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Since the constant C continuously depends on z̄, we have that Yz̄(z)I1,δ converges to
V as δ → 0 uniformly on K. Since I1,δ converges to I1 we get (2.14). This completes
the proof of Theorem 1.1.

3. A priori estimates. In this section we prove Theorem 2.1 by using a modifi-
cation of the classical Bernstein method. Here we adopt the notation of [10, Chap. 3],
which we briefly recall for the reader’s convenience. Given a bounded domain Ω in
R
N+2 and α ∈ ]0, 1[, Cα(Ω) denotes the space of Hölder continuous functions w.r.t.
the parabolic distance

d(z, z′) ≡ |x− x′|+ |y − y′|+ |t− t′| 12 ,

i.e., the family of all functions u on Ω for which

|u|Ωα = |u|α = |u|0 + sup
Ω

|u(z)− u(z′)|
d(z, z′)α

<∞,

where |u|Ω0 = |u|0 = supΩ |u|. The spaces of Hölder continuous functions Ck+α, k ∈ N,
are defined straightforwardly. We set

Br = {(x, y) ∈ R
N × R | |(x, y)| < r}, Sr,T = Br × ]0, T [, T, r > 0.(3.1)

The “parabolic” boundary of the cylinder Sr,T is defined by

∂pSr,T = (Br × {0}) ∪ (∂Br × [0, T ]) .(3.2)

Given two points z, z′ ∈ Sr,T in (3.1), we denote by dz the distance from z to the
parabolic boundary ∂pSr,T (cf. (3.2)), and dzz′ = min{dz, dz′}. We set

|u|Sr,Tα = |u|α = |u|0 + sup
Sr,T

dαzz′
|u(z)− u(z′)|
d(z, z′)α

.

The space of all functions u with finite norm |u|Sr,Tα is denoted by Cα(Sr,T ). The
spaces Ck+α of Hölder continuous functions of higher order are defined analogously.
We say that u ∈ Ck+α,loc(ST ) if u ∈ Ck+α(Sr,T ) for every r > 0.

We consider the Cauchy problem

Lεu = f(·, u) in ST ≡ R
N+1 × ]0, T [,(3.3)

u(·, 0) = g in R
N+1,(3.4)

where Lε, ε > 0, is the regularized operator in (1.5). We assume that the functions
f, g, h are globally Lipschitz continuous; then there exists a positive constant c1 such
that

c1 ≥ max{Lipschitz constants of f, g, h},
|h(v)| ≤ c1

√
1 + v2, |g(x, y)| ≤ c1

√
1 + |(x, y)|2,(3.5)

|f(x, y, t, v)| ≤ c1
√
1 + |(x, y, t, v)|2, (x, y, t, v) ∈ ST × R.

The following result holds.
Theorem 3.1. There exist two positive constants T, c that depend only on the

constant c1 in (3.5) such that for every ε > 0 and α ∈ ]0, 1[ the Cauchy problem
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(3.3)–(3.4) has a unique solution uε ∈ C2+α,loc (ST ) ∩ C
(
ST
)
verifying the following

ε-uniform estimates:

|uεxi |0, |uεy|0 ≤ 4c1, i = 1, . . . , N,(3.6)

|uε(x, y, t+ s)− uε(x, y, t)| ≤ c
√
1 + |(x, y)|2 |s| 12 ,(3.7)

|uε(x, y, t)| ≤ 2c1
√
1 + |(x, y, t)|2 ∀(x, y, t) ∈ ST .(3.8)

Before proving Theorem 3.1, we introduce some further notation. If χ = χ(x, y) ∈
C∞

0

(
R
N+1

)
is a cut-off function such that χ = 1 in B 1

2
and supp(χ) ⊂ B1, we set

χn(x, y) = χ
(x
n
,
y

n

)
, fn = fχn, gn(·, t) = gχn, hn(·, v) = h(v)χn, n ∈ N,

(3.9)

so that, by (3.5) and readjusting the constant c1 if necessary, we have

|∇χn|0 ≤ |∇χ|0
n
, |∇gn| ≤ c1,

|∇x,yfn(x, y, t, v)| ≤ |χn∇x,yf |+ c1 |∇χ|0
n

√
1 + n2 + T 2 + v2 ≤ c1

if |v|
n is bounded and t ∈ [0, T ].
Finally, fixing n ∈ N and ε > 0, we consider the linearized Cauchy–Dirichlet

problem

Lε,nv u ≡ ∆xu+ ε2uyy + hn(·, v)∂yu− ∂tu = fn(·, v) in Sn,T ,(3.10)

u = gn in ∂pSn,T .(3.11)

Given α ∈ ]0, 1[, we assume that the coefficient v in (3.10)–(3.11) belongs to the space
C1+α(Sn,T ) and satisfies the estimates

|v(x, y, t)| ≤ 2c1
√
1 + |(x, y)|2 in Sn,T ,(3.12)

|vxi |0 ≤ 4c1, i = 1, . . . , N,(3.13)

|vy|0 ≤ 4c1.(3.14)

Then a classical solution u ∈ C2+α (Sn,T ) to (3.10)–(3.11) exists by known results
(see, for example, [10, Chap. 3, Thm. 7], since hn(·, v), fn(·, v) ∈ C1+α (Sn,T ), gn ∈
C∞ (Sn,T ), and the compatibility condition Lε,nv gn = fn = 0 holds on ∂Bn. Once
we have given the following ε-uniform a priori estimates, the proof of Theorem 3.1 is
rather standard.

Lemma 3.2. Under the above assumptions, there exists T > 0 such that, for any
n ∈ N, every classical solution of (3.10)–(3.11) verifies (3.12)–(3.14).

Proof. Let u be a classical solution of (3.10)–(3.11). We prove estimate (3.12) for
u by applying the maximum principle to the functions H ± u, where H is defined as

H(x, y, t) = (c1 + µt)
√
1 + |(x, y)|2

and µ is to be suitably fixed. Keeping in mind (3.5) and (3.12), it is easily verified
that

Lε,nv H(x, y, t) ≤
(1 + ε2)(c1 + µT )√

1 + |(x, y)|2 + ((c1 + µT ) c1 − µ)
√
1 + |(x, y)|2

≤ − |fn(x, y, t, v(x, y, t))|
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if µ, 1
T are suitably large. On the other hand, by (3.5), H|∂pSn,T ≥ |gn|. Therefore,

by the maximum principle, we infer that

|u| ≤ H ≤ 2c1
√
1 + |(x, y)|2 if T ≤ c1

µ
.

Next we prove estimate (3.14) for the y-derivative of u. Our method is based
on the maximum principle. We start by proving a gradient estimate for u on the
parabolic boundary of Sn,T . Since u ∈ C2+α (Sn,T ), it is clear that ∇x,yu = ∇x,ygn
in Bn × {0}. In order to estimate ∇x,yu on ∂Bn × ]0, T [, we employ the classical
argument of the barrier functions on the cylinder Q ≡ Sn,T \ Sn

2 ,T
. More precisely,

given (x0, y0, t0) ∈ ∂Bn× ]0, T [, we set
w(x, y) = 4c1〈(x− x0, y − y0), ν〉,

where ν is the inner normal to Q at (x0, y0, t0). Then we have

Lε,nv (w ± u) = ±fn(·, v) = 0 in Q,

since fn and hn vanish on Q. On the other hand, it is straightforward to verify that
|u| ≤ w on ∂pQ. Therefore, by the maximum principle, we get |u| ≤ w and, in
particular,

|∇x,yu(x0, y0, t0)| ≤ |∇x,yw(x0, y0)| ≤ 4c1.(3.15)

Now we are in a position to prove estimate (3.14) for u. We differentiate equation

(3.10) w.r.t. the variable y and then multiply it by e−2λtuy. Denoting ω =
(
e−λtuy

)2
,

we obtain

Lεvω = e
−2λtLεvu

2
y + 2λω

= 2
(
e−2λt

(
|∇xuy|2 + ε2u2

yy + uy ((fn)y + (fn)vvy)
)
+ ω (λ− h′(v)vy)

)
≥ 2 (e−2λtuy ((fn)y + (fn)vvy) + ω (λ− h′(v)vy)

)
.(3.16)

Hence, by setting w = ω − (4c1)2, we get from (3.16)
Lεvw ≥ 2√ω (− |(fn)y| − |vy(fn)v|+

√
ω (λ− |h′vy|)

)
(by (3.5), (3.14), and by the elementary inequality

√
ω ≥

√
2

2 (4c1 + sgn(w)
√|w|))

≥
√
2ω
(√
2c1

(
2
√
2
(
λ− 4c21

)− 4c1 − 1)+ (λ− 4c21) sgn(w)√|w|
)

(for λ = λ(c1) suitably large)

≥ c
√
ω|w|sgn(w)(3.17)

for some positive constant c = c(c1). By contradiction, we want to prove that w ≤ 0
in Sn,T . It will follow that

|uy| ≤ c1eλt,
which implies (3.16) if T = T (c1) > 0 is sufficiently small. Let z0 be the maximum
of w on QT . If w(z0) > 0, then z0 ∈ Sn,T \ ∂pSn,T , since by (3.15) w ≤ 0 on ∂pSn,T .
This leads to a contradiction, since by (3.17)

0 ≥ Lεvw(z0) ≥ c
√
ω(z0)w(z0) > 0.
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This concludes the proof of (3.14). By a similar technique, we prove estimate (3.13)
of the x-derivatives of u:

|uxk |0 ≤ 4c1, k = 1, . . . , N.

We set

ω =
(
e−λtuxk

)2
, w = ω − (4c1)2.

Differentiating (3.10) w.r.t. xk and multiplying it by e
−2λtuxk , we get

Lεvw = e
−2λtLεvu

2
xk
+ 2λω

= 2
(
e−2λtuxk ((fn)xk + vxk ((fn)v − uyh′)) + λω

)
(by (3.5), (3.13), and estimate (3.14) of uy previously proved)

≥ c
√
ω|w|sgn(w),

if λ = λ(c1) is suitably large, for some positive constant c which depends only on c1.
As before, we infer that w ≤ 0, which yields (3.13).

We are in a position to prove Theorem 3.1.
Proof of Theorem 3.1. In order to prove the existence of a unique classical solution

to (3.3)–(3.4), we consider, for every ε > 0 and n ∈ N, the Cauchy–Dirichlet problem

∆xu+ ε
2uyy + hn(·, u)∂yu− ∂tu = fn(·, u) in Sn,T ,(3.18)

u = gn in ∂pSn,T .(3.19)

We split the proof into four steps: We first use Schauder’s fixed point theorem to
solve the above problem. Then we let n go to infinity under the assumption that the
coefficients are smooth. Next we prove estimates (3.6), (3.7), and (3.8). Finally we
remove the smoothness assumption.

First step. Assume that f, g, h are C∞ functions. We fix α ∈ ]0, 1[, n ∈ N and
denote by W the family of functions v ∈ C1+α (Sn,T ) such that

|v|1+α ≤M,(3.20)

|v(x, y, t)| ≤ 2c1
√
1 + |(x, y)|2 in Sn,T ,(3.21)

|vxi |0 ≤ 4c1, i = 1, . . . , N,(3.22)

|vy|0 ≤ 4c1,(3.23)

where the positive constantsM,T will be suitably chosen later. Clearly,W is a closed,
convex subset of C1+α (Sn,T ). We define a transformation u ≡ Zv onW by choosing u
as the unique classical solution of the linear Cauchy–Dirichlet problem (3.10)–(3.11).
If we show that

(i) Z (W) is precompact in C1+α (Sn,T );
(ii) Z is a continuous operator;
(iii) Z (W) ⊆ W,

then we are done. The proof of (i) and (ii) is quite standard and relies on the following
two estimates of u (see, for example, [10, Chap. 3, Thm. 6 and Chap. 7, Thm. 4]:

|u|2+α ≤ c
(
|gn|2+α + |fn (·, v) |α

)
≤ c̄

(
|gn|2+α + |v|α

)
(3.24)
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for some constant c̄ > 0 dependent on ε, n,M,α;

|u|1+δ ≤ c̃
(
|fn|0 + |Lεvgn|0 + |gn|1+δ

)
, δ ∈ ]0, 1[,(3.25)

for some positive constant c̃ dependent on ε, n, δ but not onM . Besides, (iii) is exactly
the content of Lemma 3.2. Therefore, by Schauder’s theorem, the operator Z has a
fixed point u in W.

Note that, by (3.6), a comparison principle in the space W does hold; therefore u
is the unique classical solution of problem (3.18)–(3.19) verifying estimates (3.6) and
(3.8). Moreover, by a standard bootstrap argument, u ∈ C∞(Sn,T ).

Second step. We fix ε > 0 and denote by un the solution of the Cauchy–Dirichlet
problem (3.18)–(3.19), whose existence has been proved in the previous step. We now
want to obtain the solution of the Cauchy problem (3.3)–(3.4) letting n go to infinity.

Fixing k ∈ N, we consider the sequence (unχ4k)n≥4k, where χ is the cut-off
function introduced in (3.9). Then we have

Lεun (u
nχ4k) = f4k(·, un) + 2

(〈∇xun,∇xχ4k〉+ ε2∂yun∂yχ4k

)
+ unLεunχ4k

≡ Fn,4k on S4k,T ,

(unχ4k) |∂pS4k,T
= g4k.

By classical Hölder estimates, we deduce

|un|S2k,T

δ ≤ |unχ4k|S4k,T

1+δ ≤ c
(
|Fn,4k|S4k,T

0 + |Lεung4k|S4k,T

0 + |g4k|S4k,T

1+δ

)
≤ c̄

for every n ≥ 4k and δ ∈ ]0, 1[, where c̄ = c̄(δ, ε, c1, k) does not depend on n. Moreover,
since

Lεun (u
nχ2k) = Fn,2k on S4k,T ,

(unχ2k) |∂pS2k,T
= g2k,

we obtain

|un|Sk,T2+δ ≤ |unχ2k|S2k,T

2+δ ≤ c
(
|Fn,2k|S2k,T

δ + |g2k|S2k,T

2+δ

)
≤ ¯̄c ∀n ≥ 4k,

where ¯̄c = ¯̄c(δ, ε, c1, k) does not depend on n.
Then, by the Ascoli–Arzelà theorem and Cantor’s diagonal argument, we can

extract from un a subsequence | |2+α-convergent on compacts of ST for every α ∈ ]0, 1[
to the solution uε of (3.18)–(3.19) verifying estimates (3.6) and (3.8). The uniqueness
of uε follows again from standard results.

Third step. We still assume f, g, h ∈ C∞∩Lip. We aim to prove estimate (3.7)
for the solution uε found in the previous step. We fix (x̄, ȳ) ∈ R

n × R and set

w(x, y, t) = uε(x, εy, t)χ̄(x, εy), ε > 0, (x, y, t) ∈ ST ,
where χ̄(x, y) = χ(x− x̄, y − ȳ) and χ is the cut-off function in (3.9). We have

(∆x + ∂yy − ∂t)w = Ψε on ST ,

where

Ψε(x, y, t) =
[
χ̄
(
f(·, uε)− h(uε)uεy

)
+ uε

(
∆xχ̄+ ε

2χ̄yy
)

+ 2
(〈∇xuε,∇xχ̄〉+ ε2uεyχ̄y) ](x, εy, t), (x, y, t) ∈ ST .
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Denoting by ΓH(z; ζ) the fundamental solution of the heat operator in R
N+2 with pole

at ζ = (ξ, η, τ) and evaluated in z = (x, y, t), we have the following representation of
w:

w(z) =

∫ t
0

∫
RN+1

ΓH(z; ζ)Ψ
ε(ζ)d(ξ, η)dτ

−
∫

RN+1

ΓH(z; ξ, η, 0)gχ̄(ξ, εη)d(ξ, η) ≡ I1(z)− I2(z).(3.26)

In order to estimate I1, it suffices to note that, by (3.5), (3.6), and (3.8), we have
that

|Ψε|0 ≤ c
√
1 + |(x̄, ȳ)|2,(3.27)

with c dependent only on c1. Hence, by an elementary argument, we get

|I1(x, y, t+ s)− I1(x, y, t)| ≤ c
√
1 + |(x̄, ȳ)|2 |s| 12 ∀(x, y, t) ∈ ST , s ∈ [−t, T − t],

(3.28)

where c depends only on c1.
To estimate I2, we begin by noting that a simple change of variables gives

I2(x, y, t) =

∫
RN+1

ΓH(ξ, η, 1; 0)gχ̄
(
x− ξ√t, ε(y − η√t)

)
dξdη.

Then

|I2(x, y, t+ s)− I2(x, y, t)| ≤
∫

RN+1

ΓH(ξ, η, 1; 0)

·
∣∣∣gχ̄ (x− ξ√t+ s, ε(y − η√t+ s))− gχ̄(x− ξ√t, ε(y − η√t))∣∣∣ dξdη

(by the mean value theorem, for some constant c = c(c1) > 0)

≤ c
√
1 + |(x̄, ȳ)|2

∣∣∣√t+ s−√
t
∣∣∣ ∫

RN+1

ΓH(ξ, η, 1; 0) (|ξ|+ ε|η|) dξdη

≤ c
√
1 + |(x̄, ȳ)|2

√
2|s| ∀(x, y, t) ∈ ST , s ∈ [−t, T − t],(3.29)

where c depends only on c1.
Then, by the definition of w and by (3.26), we obtain

uε(x̄, ȳ, t) = I1

(
x̄,
ȳ

ε
, t
)
− I2

(
x̄,
ȳ

ε
, t
)
,

and estimate (3.7) follows from (3.28), (3.29).
Fourth step. We finally consider the general case where f, g, h are only assumed to

be globally Lipschitz continuous. We use the standard mollifiers to approximate f, g, h
uniformly on compacts by some sequences (fn), (gn), (hn) in C

∞∩Lip that verify the
estimates (3.5). Since the interval [0, T ] of existence of the solution constructed in the
second step does not depend on the regularity of the coefficients, we may employ the
usual density argument to find a function uε which is the unique classical solution of
(3.3)–(3.4).
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Proof of Theorem 2.1. By Theorem 3.1, there exists a sequence

uεn ∈ C2+α,loc (ST ) ∩ C
(
ST
)
,

with εn ↓ 0, such that every function uεn is a solution of (3.3)–(3.4) with ε = εn
and verifies (1.6) for a constant c0 that does not depend on n, and (u

εn) converges
uniformly on compact subsets of ST to a function u.

Arguing as in [6, Lem. 2.4], we can prove the following a priori estimates of Cacci-
oppoli type for the derivatives of the functions (uεn): if ϕ ∈ C∞

0 (ST ), there exists a
positive constant c which depends only on f, ϕ and on the constant c0 in (1.6) such
that

N∑
j=1

(
‖uεnxjxjϕ‖2 + ‖uεnxjyϕ‖2

)
+ εn‖uεnyyϕ‖2 + ‖uεnt ϕ‖2 ≤ c(3.30)

for every n. Therefore, up to a subsequence, ∂xj ,xku
εn , ε2n∂yyu

εn , ∂yu
εn , and ∂tu

εn

weakly converge in L2
loc(ST ) to ∂xj ,xku, 0, ∂yu, and ∂tu, respectively. Hence u ∈

H1
loc(ST ), ∂xjxku ∈ L2

loc(ST ) for j, k = 1, . . . , N , and (1.1) is satisfied a.e.
The uniqueness of the solution can be proved as in [2, Prop. 5.1]. Indeed, since

(uεn) converges uniformly on compact sets, it is standard to prove that the limit u is
a viscosity solution of (1.1)–(1.2) satisfying (1.6). Then the uniqueness of u follows
by the comparison principle for viscosity solutions.

4. Global existence. The main purpose of this section is to prove Theorem 1.2
by a simple continuation argument which relies on a bound of the gradient of u.

Proof of Theorem 1.2. The local existence result stated in Theorem 3.1 and a
standard argument ensure that there exist an interval I = [0, T [, where T ∈ R

+ or
T = +∞, and a solution u ∈ C2(RN+1 × I) to problem (1.1)–(1.2), which cannot
be defined for t ≥ T . We claim that our assumptions on f, g, and h yield T = +∞.
To this end, we consider the local solution u ∈ C2(RN+1 × [0, T ]), which has been
constructed in Theorem 3.1, and we denote by cT the spatial Lipschitz constant
corresponding to the strip ST :

cT = inf
{
c > 0 : |u(x, y, t)− u(x′, y′, t)| ≤ c(|x− x′|2 + |y − y′|2)1/2

∀(x, y, t),(x′, y′, t) ∈ R
N+1 × [0, T ]

}
.

We explicitly note that if T �= +∞, then ct → +∞ as t → T ; hence a bound of the
form

ct ≤ cekt(4.1)

for some positive constants c, k will prove our claim.
In order to prove (4.1) we first observe that, as in the proof of Theorem 3.1, it

is not restrictive to assume that f, g, and h are smooth and that u is the classical
solution of the regularized equation (1.5). We next show that

0 ≤ −uy ≤ c1
c0
+ 1,(4.2)

|uxj | ≤ c1ekt for j = 1, . . . , N(4.3)
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for every (x, y, t) ∈ ST , where c1 is the Lipschitz constant defined in (3.5) and k > 0
does not depend on ε. To prove the first inequality in (4.2) we set w(x, y, t) =
e−λtuy(x, y, t) for some λ > 0, and we note that since u is smooth, w is a solution to{

Lεw = e
−λtfy + (λ− h′(u)uy + fu)w in ST ,

w( · , 0) = gy.

By our assumptions fy ≥ 0, gy ≤ 0, c0 ≤ h′ ≤ c1 and also by Theorem 3.1, h′(u)uy+fu
is bounded in ST . Then λ−h′(u)uy+fu > 0 for suitably large λ and, as a consequence,
w ≤ 0 by the maximum principle. This proves the first inequality in (4.2). To prove
the second one we set w(x, y, t) = 1

2

(
u2
y(x, y, t)−λ2

)
, λ > 0, and argue as in the proof

of Theorem 3.1: w is a solution to{
Lεw = |∇xuy|2 + ε2u2

yy − uy(h′(u)u2
y − uyfu − fy) in ST ,

w( · , 0) = 1
2

(
g2y − λ2

)
.

Since uy ≤ 0, we may choose λ sufficiently large (for instance, λ = c1
c0
+1) so that the

right-hand side of the above differential equation is positive when w > 0. Then the
second inequality in (4.2) follows again from the maximum principle.

We finally consider the function w(x, y, t) = e−2λt
u2
xj

2 − c21
2 for j = 1, . . . , N .

Clearly w(x, y, 0) ≤ 0 and

Lεw = e
−2λt

(
u2
xj (λ− h′(u)uy + fu) + |∇xuxj |2 + ε2u2

xj ,y + uxjfxj

)
≥ e−2λt

(
u2
xj (λ+ fu) + uxjfxj

)
by (4.2). Since w ≥ 0 implies |uxjfxj | ≤ u2

xj then, for suitably large λ, we find
Lεw ≤ 0 for w ≥ 0 and prove (4.3) as above. This gives (4.1) and concludes the proof
of Theorem 1.2.

Remark 4.1. Hypothesis (1.9) on h is related to the natural assumptions in the
theory of conservation laws. A simple counterexample shows that we cannot drop this
condition. Indeed if h(u) = −u, f ≡ 0 and g(x, y) = x− y, then u(x, y, t) = x−y

1−t .
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Abstract. We consider scalar delay differential equations x′(t) = −δx(t)+f(t, xt) (∗) with non-
linear f satisfying a sort of negative feedback condition combined with a boundedness condition. The
well-known Mackey–Glass-type equations, equations satisfying the Yorke condition, and equations
with maxima all fall within our considerations. Here, we establish a criterion for the global asymptot-
ical stability of a unique steady state to (∗). As an example, we study Nicholson’s blowflies equation,
where our computations support the Smith conjecture about the equivalence between global and
local asymptotical stabilities in this population model.
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1. Introduction. We start by considering the simple autonomous linear equa-
tion

x′(t) = −δx(t) + ax(t− h),(1.1)

governed by friction (δ ≥ 0) and delayed negative feedback (a < 0). Necessary and
sufficient conditions for the asymptotic stability of (1.1) are well known [5]. For
example, in the simplest case δ = 0, (1.1) is asymptotically stable if and only if
−ah ∈ (0, π/2). If we allow for a variable delay in (1.1), we obtain the equation

x′(t) = −δx(t) + ax(t− h(t)), 0 ≤ h(t) ≤ h,(1.2)

whose stability analysis is more complicated than that of the autonomous case. Nev-
ertheless several sharp stability conditions were established for (1.2). The first of
them is due to Myshkis (see [5, p. 164]) and it states that in the case δ = 0 the
inequality −a supR h(t) < 3/2 guarantees the asymptotic stability in (1.2). This con-
dition is sharp (this fact was established by Myshkis himself). In particular, the upper
bound 3/2 cannot be increased to π/2. Later on, the result by Myshkis was improved
by different authors, the most celebrated extensions being those of Yorke [17] and
Yoneyama [16] (both for δ = 0). Finally, the Myshkis condition has been recently
generalized [6] for δ > 0: equation (1.2) is asymptotically stable if

− δ

a
exp (−hδ) > ln

a2 − aδ

δ2 + a2
.(1.3)
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We note that for every fixed a, δ, and h > 0, condition (1.3) is sharp, and in the limit
case δ = 0 it coincides with the Myshkis condition. Here the sharpness means that
if a, δ, h do not satisfy (1.3), then the asymptotic stability of (1.2) can be destroyed
by an appropriate choice of a periodic delay h(t) (see [6, Theorem 4.1]). Returning
to (1.1), we can observe that (1.3) approximates exceptionally well the exact stability
domain for (1.1) given in [5]; see Figure 2.1, where the domains of local (dashed line)
and global (solid line) stability are shown in coordinates (−a/δ, exp(−δh)). When
δ = 0, we obtain 3/2 as an approximation for π/2.

It is a rather surprising fact that the sharp global stability condition (1.3) works
not only for linear equations but also for a variety of nonlinear delay differential
equations of the form

x′(t) = −δx(t) + f(t, xt), (xt(s)
def
= x(t+ s), s ∈ [−h, 0]),(1.4)

where f : R × C → R, C def
= C[−h, 0], is a measurable functional satisfying the

additional condition (H) given below. Due to the rather general form of (H), (1.4)
incorporates, possibly after some transformations, some of the most celebrated delay
equations, such as equations satisfying the Yorke condition [17], equations of Wright
[5, 8], Lasota–Wazewska and Mackey–Glass [2, 7, 10], and equations with maxima
[6, 11]. Solutions to some of these equations can exhibit chaotic behavior so that the
analysis of their global stability is of great importance—at least during the first stage
of the investigation (see [7, p. 148] for further discussion). As an example, in section
2 we consider Nicholson’s blowflies equation, for which our computations support the
conjecture of Smith posed in [14].

Let us explain briefly the nature of our further assumptions. In part, they are
motivated by the sharp stability results for (1.4) obtained in [17] (δ = 0) and [6]
(δ > 0) under the assumption that for some a < 0 and for all φ ∈ C, the following
Yorke condition holds:

aM(φ) ≤ f(t, φ) ≤ −aM(−φ).(1.5)

Here M : C → R is the monotone continuous functional (sometimes called the Yorke
functional) defined by M(φ) = max{0,maxs∈[−h,0] φ(s)}. In general, f satisfying
(1.5) is nonlinear in φ. On the other hand, in some sense it has a “quasi-linear”
form (for example, f(φ) = maxs∈[−h,0] φ(s) can be written as f(φ) = φ(−sφ)). In
particular, f is sublinear in φ, which makes impossible the application of the results
from [6, 17] to the strongly nonlinear cases such as the celebrated Wright equation

x′(t) = a(1− exp(−x(t− h))), a < 0,(1.6)

which is also globally asymptotically stable if −ah ∈ (0, 3/2). Roughly speaking,
the Yorke 3/2-stability condition does not imply the Wright 3/2-stability result. Our
recent studies [8] of (1.6) revealed the following interesting fact: the essential feature
of the function f(x) = a(1 − exp(−x)) in (1.6) allowing the extension of the Wright
3/2-stability result to some other nonlinearities is the position of the graph of f with
respect to the graph of the rational function r(x) = ax/(1+ bx) which coincides with
f , f ′, and f ′′ at x = 0. This suggests the idea to consider a “rational in M” version
of the “linear in M” condition (1.5) to manage the strongly nonlinear cases of (1.4).
Therefore, we will assume the following conditions (H):
(H1) f : R×C → R satisfies the Carathéodory condition (see [5, p. 58]). Moreover, for

every q ∈ R there exists ϑ(q) ≥ 0 such that f(t, φ) ≤ ϑ(q) almost everywhere
on R for every φ ∈ C satisfying the inequality φ(s) ≥ q, s ∈ [−h, 0].
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(H2) There are b ≥ 0, a < 0 such that

f(t, φ) ≥ aM(φ)

1 + bM(φ)
for all φ ∈ C;(1.7)

f(t, φ) ≤ −aM(−φ)

1− bM(−φ)
for all φ ∈ C such that min

s∈[−h,0]
φ(s) > −b−1 ∈ [−∞, 0).(1.8)

(H) is a kind of negative feedback condition combined with a boundedness condition;
they will cause solutions to remain bounded and to tend to oscillate about zero.
Furthermore, (H) implies that x = 0 is the unique steady state solution for (1.4) with
δ > 0. On the other hand, (H) does not imply that the initial value problems for (1.4)
have a unique solution. In any case, the question of uniqueness is not relevant for our
purposes. Notice finally that if (H2) holds with b = 0 (which is precisely (1.5)), then
(H1) is satisfied automatically with ϑ(q) = −aM(−q).

Now we are ready to state the main result of this work.

Theorem 1.1. Assume that (H) holds and let x : [α, ω) → R be a solution of
(1.4) defined on the maximal interval of existence. Then ω = +∞ and x is bounded on
[α,+∞). If, additionally, condition (1.3) holds, then limt→+∞ x(t) = 0. Furthermore,
condition (1.3) is sharp within the class of equations satisfying (H): for every triple
a < 0, δ > 0, h > 0 which does not meet (1.3), there is a nonlinearity f satisfying
(H) and such that the equilibrium x(t) = 0 of the corresponding equation (1.4) is not
asymptotically stable.

It should be noticed that in this paper we do not consider the limit cases when
b = 0 and/or δ = 0. When b = 0, δ > 0, Theorem 1.1 was proved in [6, Theorem 2.9].
The limit case δ = 0, b ≥ 0 can be addressed by adapting the proofs in [8]. Here, due
to the elimination of the friction term −δx, an additional condition is necessary (see
[9] for details). In this latter case, (1.3) takes the limit form −ah ∈ (0, 3/2).

Remark 1.1. The set of four parameters (h > 0, δ > 0, a < 0, b > 0) can be
reduced. Indeed, the change of time τ = δt transforms (1.4) into the same form
but with δ = 1. Finally, since M is a positively homogeneous functional (M(kφ) =
kM(φ) for every k ≥ 0, φ ∈ C), and since the global attractivity property of the trivial
solution of (1.4) is preserved under the simple scaling x = b−1y, the exact value of
b > 0 is not important and we can assume that b = 1. Also, the change of variables
x = −y transforms (1.4) into y′(t) = −δy(t) + [−f(t,−yt)] so that it suffices that at
least one of the two functionals f(t, φ),−f(t,−φ) satisfies (1.7) and (1.8).

To prove Theorem 1.1, in sections 3 and 4 we will construct and study several
one-dimensional maps which inherit the stability properties of (1.4). The form of
these maps depends strongly on the parameters: in fact, we will split the domain
of all admissible parameters given by (1.3) into several disjoint parts, and each one-
dimensional map will be associated to a part. Some of the maps are rather simple,
and an elementary analysis is sufficient to study their stability properties. Some other
maps are more complicated: for example, the proof of Lemma 3.6 involves the concept
of the Schwarz derivative, whose definition and several properties are recalled below.
Unfortunately, several important one-dimensional maps appear in an implicit form,
and though this form may be simple, its analysis requires considerable effort. For the
convenience of the reader, the hardest and most technical parts of our estimations are
placed in an appendix (section 6). In section 2, we will show the significance of the
hypotheses (H) again by applying Theorem 1.1 to the well-known Nicholson blowflies
equation.
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1
c

θ
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Fig. 2.1. Domains of global and local stability in coordinates (c, θ), c = −a/δ, θ = exp(−δh).

2. On the Smith conjecture and equations with nonpositive Schwarzian.

2.1. A global stability condition. In this section we will apply our results to
the delay differential equation

N ′(u) = −δN(u) + pN(u− h)e−γN(u−h), h > 0,(2.1)

used by W. S. C. Gurney, S. P. Blythe, and R. M. Nisbet in 1980 to describe the
dynamics of Nicholson’s blowflies (see, for example, [1, section 3.6] or [14, p. 112]).
Here p is the maximum per capita daily egg production rate, 1/γ is the size at which
the population reproduces at its maximum rate, δ is the per capita daily adult death
rate, h is the generation time, and N(u) is the size of population at time u. In view
of the biological interpretation, we consider only positive solutions of (2.1). If p ≤ δ,
then (2.1) has only one constant solution x ≡ 0. For p > δ, the equation has an
unstable constant solution x ≡ 0 and a unique positive equilibrium N∗ = γ−1 ln(p/δ).
Global stability in (2.1) (when all positive solutions tend to the equilibrium N∗) has
been studied by various authors by using different methods (see [2, 3, 14] for more
references). Nevertheless, the exact global stability condition was not found. In
this aspect, the work [14], where the conjecture about the equivalence between local
and global asymptotic stabilities for (2.1) was posed (see [14, p. 116]), is of special
interest for us. Indeed, an application of our main result to (2.1) strongly supports
this conjecture, showing a surprising proximity between the boundaries of local and
global stability domains; see Figure 2.1 and the following theorem.

Theorem 2.1. The positive equilibrium N∗ of Nicholson’s blowflies equation
(2.1) is globally asymptotically stable if either c ∈ (−1, 0] or

θ > c ln[(c2 + c)/(c2 + 1)] , c > 0,(2.2)

where θ = exp(−δh) , c = ln(p/δ)− 1.
It follows from the observation given below (1.3) that condition (2.2) is sharp

within the class of equations N ′(u) = −δN(u) + pN(u − ρ(u))e−γN(u−ρ(u)) with
variable delay ρ : R → [0, h].

As can be seen from (2.2), not all parameters are independent in (2.1). Indeed,
if we set τ = hδ, u = t/δ, q = p/δ, x(t) = γN(u), then (2.1) takes the form

x′(t) = −x(t) + g(x(t− τ)),(2.3)
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where g(x) = qx exp(−x). For every q > 1, it has a unique positive equilibrium
x(t) ≡ ln q, which is globally asymptotically stable if ln(q) ≤ 2 (see [3]). The change
of variables x(t) = ln q+y(t) reduces (2.3) to the equation y′(t) = −y(t)+w(y(t−τ)),
where w(y) = (y + ln q)e−y − ln q. In section 5, we will show that the nonlinearity
w(y) satisfies the following conditions (W) within some domain which attracts all
nonnegative solutions of (2.3):
(W1) w ∈ C3(R,R), xw(x) < 0 for x = 0, and w′(0) < 0.
(W2) w is bounded below and has at most one critical point x∗ ∈ R which is a local

extremum.
(W3) The Schwarz derivative (Sw)(x)=w′′′(x)(w′(x))−1−(3/2) (w′′(x)(w′(x))−1

)2
of w is nonnegative: (Sw)(x) ≤ 0 for all x = x∗.

Since w′(0) = ln(eδ/p) < 0 and w′′(0) > 0 if ln q > 2, Theorem 2.1 is a consequence
of the following results.

Lemma 2.2 (see [8]). Let w meet conditions (W) and w′′(0) > 0. Then the
functional f(t, φ) = w(φ(−h)) satisfies hypotheses (H) with a = w′(0) and b =
−w′′(0)/(2w′(0)).

Corollary 2.3. Suppose that w satisfies (W) and w′′(0) > 0. If (1.3) holds with
a = w′(0), then the trivial steady state attracts all solutions of the delay differential
equation

x′(t) = −δx(t) + w(x(t− h)), δ > 0.(2.4)

Corollary 2.3 can be applied in a similar way to obtain global stability conditions
for the positive equilibrium of other delay differential equations arising in biological
models. For example, we can mention the celebrated Mackey–Glass equation proposed
in 1977 to model blood cell populations (see, e.g., [10]), which is of the form (2.4) with
w(x) = b/(1 + xn), b > 0, n > 1. Another important model that can be considered
within our approach is the Wazewska-Czyzewska and Lasota equation describing the
erythropoietic (red blood cell) system. In this case w(x) = b1 exp(−b2x), bi > 0.

As proved in [8], the conclusion of Corollary 2.3 also holds for δ = 0 by replacing
(1.3) with its limit form −ah ≤ 3/2. In the particular case of the Wright equation, this
result coincides with the 3/2-stability theorem by Wright (see [8] for more details).

2.2. The Smith and Wright conjectures revisited. Let us look again at
Figure 2.1, which shows the boundaries of the domains of local and global asymptotic
stability for the Nicholson equation; this observation (as well as Proposition 3.3 stated
below) suggests the following.

Conjecture 2.1. Under conditions (W), the trivial solution of (2.4) is globally
attracting if it is locally asymptotically stable.

An interesting particularity of Conjecture 2.1 is that it coincides with the cele-
brated Wright conjecture if we take δ = 0, w(x) = a(1 − exp(−x)), and it coincides
with the Smith conjecture if we take Nicholson’s blowflies equation.

Now, the following result was obtained in [15] as a simple consequence of an
elegant approach toward stable periodic orbits for (2.4) with Lipschitz nonlinearities.

Proposition 2.4 (see [15]). For every α ≥ 0 there exists a smooth strictly
decreasing function w satisfying (W1), (W2), −w′(0) = α, and such that (2.4) has
a nontrivial periodic solution which is hyperbolic, stable, and exponentially attracting
with asymptotic phase (so therefore (2.4) is not globally stable).

Proposition 2.4 shows clearly that the strong dependence between local (at zero)
and global asymptotical stabilities of (2.4) cannot be explained only with the concepts
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presented in (W1), (W2). We notice here that the condition of negative Schwarz
derivative in (2.4) appears naturally also in some other contexts of the theory of delay
differential equations; see, e.g., [10, sections 6–9], where it is explicitly used, and [5,
Theorem 7.2, p. 388], where the condition Sw < 0 is implicitly required.

3. Preliminary stability analysis of (1.4). Throughout the paper, in view
of Remark 1.1, we assume that δ = 1 in (1.4) and b = 1 in (1.7), (1.8). Hence, with

θ
def
= exp(−h), (1.3), (1.4), (1.7), and (1.8) take, respectively, the forms

−θ/a > ln
a2 − a

a2 + 1
;(3.1)

x′(t) = −x(t) + f(t, xt);(3.2)

f(t, φ) ≥ r(M(φ)) for all φ ∈ C;(3.3)

f(t, φ) ≤ r(−M(−φ)) for all φ ∈ C such that min
s∈[−h,0]

φ(s) > −1,(3.4)

where the rational function r(x) = ax/(1+x) will play a key role in our constructions.
In this section, we establish that the “linear” approximation to (3.1) of the form

−θ/a > −(a+ 1)/(a2 + 1)(3.5)

implies the global stability of (3.2) (note here that ln(1 + x) < x is true for x > 0).
In what follows we will use some properties of the Schwarz derivative. The fol-

lowing lemma can be checked by direct computation.
Lemma 3.1. If g and f are functions which are at least C3, then S(f ◦ g)(x) =

(g′(x))2(Sf)(g(x)) + (Sg)(x). As a consequence, the inverse f−1 of a smooth diffeo-
morphism f with Sf > 0 has negative Schwarzian: Sf−1 < 0.

We will also need the following lemma from [13].
Lemma 3.2 (see [13, Lemma 2.6]). Let q : [α, β] → [α, β] be a C3 map with

(Sq)(x) < 0 for all x. If α < γ < β are consecutive fixed points of some iteration
g = qN of q, N ≥ 1, and [α, β] contains no critical point of g, then g′(γ) > 1.

This lemma allows us to prove the following proposition, which plays a central
role in our analysis.

Proposition 3.3. Let q : [α, β] → [α, β] be a C3 map with a unique fixed point
γ and with at most one critical point x∗ (maximum). If γ is locally asymptotically
stable and the Schwarzian derivative (Sq)(x) < 0 for all x = x∗, then γ is the global
attractor of q.

Proof. Let W be the connected component of the open set S = {x ∈ [α, β] :
limk→+∞ qk(x) = γ} which contains γ. Clearly, g(W ) ⊂ W . If W = [α, β], then we
have three possibilities: W = [α, r), W = (l, β], or W = (l, r), α < l < r < β.

If W = [α, r), then q(r) = limε→0+ q(r − ε) ≤ r ≤ q(r), a contradiction with the
fact that q does not have fixed points in [α, β] different from γ. The case W = (l, β]
is completely analogous.

In the case W = (l, r), by the same arguments, it should hold that q(l) = r,
q(r) = l. Thus l < γ < r are consecutive fixed points of g = q2 and g′(γ) = (q′(γ))2 ≤
1. By Lemma 3.2, x∗ ∈ (l, r), and therefore q(x∗) < r. Since q has a maximum at x∗,
r > q(x∗) ≥ q(l), a contradiction.

Hence W = [α, β], and therefore {γ} attracts each point of [α, β]. This implies
that γ is the global attractor of q (see [4, Chapter 2]).

Now we are in a position to begin the stability analysis of (3.2).
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Lemma 3.4. Suppose that (H) holds and let x : [α − h, ω) → R be a solution
of (3.2) defined on the maximal interval of existence. Then ω = +∞ and M =
lim supt→∞ x(t), m = lim inft→∞ x(t) are finite. Moreover, if m ≥ 0 or M ≤ 0, then
M = m = limt→∞ x(t) = 0.

Proof. Note that (3.3) implies that f(t, φ) ≥ a for all t ∈ R and φ ∈ C. Next, if
q ≤ xα(s) ≤ Q, s ∈ [−h, 0], then for all t ∈ [α, ω), we have

x(t) = exp(−(t− α))x(α) +

∫ t

α

exp(−(t− s))f(s, xs)ds(3.6)

≥ a+ (min{q, a} − a) exp(−(t− α)) ≥ min{q, a}.

Next, (H1) implies that f(s, xs) ≤ ϑ(min{q, a}) for all s ≥ α, so that

x(t) ≤ max{Q, 0}+ ϑ(min{q, a}), t ∈ [α, ω).

Hence x(t) is bounded on the maximal interval of existence, which implies the bound-
edness of the right-hand side of (3.2) along x(t). Thus ω = +∞ due to the corre-
sponding continuation theorem (see [5, Chapter 2]).

Next, suppose, for example, that M = lim supt→∞ x(t) ≤ 0. Thus we have

limt→∞ M(xt)= 0 so that, by virtue of (3.3), f(t, xt) ≥ infs≥t aM(xs)/(1+M(xs))
def
=

a(t), where a : [α,+∞)→ (−∞, 0] is nondecreasing and continuous, with limt→+∞ a(t)
= 0. Thus, by (3.6), x(t) ≥ exp(−(t− β))x(β) + a(β) for all t ≥ β > α. This implies
that m = lim inft→∞ x(t) = 0 so that M = 0.

Lemma 3.5. Suppose that (H) holds and let x : [α − h,∞) → R be a solution
of (3.2). If x has a negative local minimum at some point s > α, then M(xs) > 0.
Analogously, if x has a positive local maximum at t > α, then M(−xt) > 0.

Proof. If x(u) ≤ 0 for all u ∈ [s − h, s], then x′(s) ≥ −x(s) + r(M(xs)) > 0, a
contradiction. The other case is similar.

Lemma 3.6. Suppose that (H) holds and let x : [α− h,∞)→ R be a solution of
(3.2). If (3.5) holds, then limt→∞ x(t) = 0.

Proof. Let M = lim supt→∞ x(t), m = lim inft→∞ x(t). In view of Lemma 3.4,
we only have to consider the case m < 0 < M , since otherwise (m ≥ 0 or M ≤ 0) we
have a nonoscillatory solution to (3.2), which tends to zero as t → +∞. Thus in what
follows we will consider only the oscillating solutions x(t). In this case there are two
sequences of points tj , sj of local maxima and local minima, respectively, such that
x(tj) =Mj → M,x(sj) = mj → m, and sj , tj → +∞ as j → ∞.

First we prove that M = m = 0 if a(1− θ) > −1. Indeed, for each sj we can find
εj → 0+ such that 0 < M(xs) < M + εj for all s ∈ [sj − h, sj ]. Next, by Lemma
3.5, there exists hj ∈ [0, h] such that x(sj − hj) = 0. Therefore, by the variation of
constants formula,

mj =

∫ sj

sj−hj

es−sjf(s, xs)ds ≥
∫ sj

sj−hj

es−sjr(M(xs))ds ≥ r(M + εj)(1− θ).

As a limit form of this inequality, we get m ≥ r(M)(1 − θ). Hence m > −1 and we
can use (3.4) for φ = xt with sufficiently large t. Thus, in a similar way, we obtain
that

Mj =

∫ tj

tj−h∗
j

es−tjf(s, xs)ds ≤
∫ tj

tj−h∗
j

es−tjr(−M(−xs))ds ≤ r(m− ε∗j )(1− θ)
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for some sequences ε∗j → 0+ and h∗
j ∈ [tj−h, tj ]. Hence we obtainM ≤ r(m)(1−θ) ≤

r(r(M)(1− θ))(1− θ). This gives M2 ≤ M(a(1− θ)− 1), which is only possible when
M = 0.

Now, assume that a(1 − θ) ≤ −1. Since m ≥ r(M)(1 − θ) > a (see the first
part of the proof), we conclude that r−1(m) = m/(a−m) > 0 is well defined. Next,
for sj we can find a sequence of positive εj → 0 such that mj < m + εj < 0. We
claim that x(sj − hj) ≥ r−1(m + εj) for some hj ∈ [0, h]. Indeed, in the opposite
case, x(s) < r−1(m + εj) for all s in some open neighborhood of [sj − h, sj ]. Thus
f(s, xs) ≥ r(M(xs)) > m+εj for all s close to sj . Finally, x

′(s) > −x(s)+m+εj > 0
almost everywhere in some neighborhood of sj , contradicting the choice of sj .

Next, there exists a sequence of positive ε∗j → 0 such that x(s) < M + ε∗j for all
s ∈ [sj − h, sj ]. Therefore, by the variation of constants formula,

mj = x(sj) = e−hjx(sj − hj) +

∫ sj

sj−hj

es−sjf(s, xs)ds

≥ e−hjr−1(m+ εj) +

∫ sj

sj−hj

es−sjr(M(xs))ds

≥ e−hjr−1(m+ εj) + r(M + ε∗j )(1− e−hj ) ≥ θr−1(m+ εj) + r(M + ε∗j )(1− θ),

so that m− θr−1(m) ≥ r(M)(1− θ) ≥ a(1− θ). This implies that m ≥ a(1− θ)(a−
m)/(a−m− θ) > −1, where the last inequality is evident when 1+ a(1− θ) = 0 and
follows from the relations m < 0 ≤ (a2(1− θ)+ a− θ)/(1+ a(1− θ)) otherwise. Since
m > −1 we can use (3.4) for φ = xt with sufficiently large t. Thus, in a similar way,
we obtain that

Mj = x(tj) = e−h#
j x(tj − h#

j ) +

∫ tj

tj−h#
j

es−tjf(s, xs)ds ≤ e−h#
j r−1(M − εj)

+

∫ tj

tj−h#
j

es−tjr(−M(−xs))ds ≤ θr−1(M − εj) + r(m− ε∗j )(1− θ)

for some sequences εj , ε
∗
j → 0+ and h#

j ∈ [tj −h, tj ]. Thus ψ(M)
def
= M − θr−1(M) ≤

r(m)(1 − θ). Now, ψ : (a,+∞) → R is a strictly increasing bijection so that χ(x) =
ψ−1((1− θ)r(x)) is well defined and strictly decreases on (−1,+∞). A direct compu-
tation shows that χ(−1−) = +∞ and that χ(+∞) = ψ−1((1− θ)a) > −1. Therefore
χ : [χ(+∞), χ2(+∞)]→ [χ(+∞), χ2(+∞)]. Moreover, since M ≤ χ(m), m ≥ χ(M),
we conclude that m,M ∈ [χ(+∞), χ2(+∞)] and that [m,M ] ⊂ χ([m,M ]). Next, for
x > a we obtain by direct computation that (Sψ)(x) = −6θa(a2−2xa+x2−θa)−2 > 0.

Since (Sr)(x) = 0 for all x > −1, it follows from Lemma 3.1 that

(Sχ)(x) = ((1− θ)r′(x))2(Sψ−1)((1− θ)r(x)) < 0.

Finally, by (3.5), χ′(0) = (1 − θ)a2/(a − θ) ∈ (−1, 0) so that we apply Proposition
3.3 (where we set q = χ, [α, β] = [χ(+∞), χ2(+∞)], and γ = 0) to conclude that
χk([α, β]) → 0 as k → ∞. Since [m,M ] ⊆ χk([m,M ]) ⊆ χk([α, β]) for all integers
k ≥ 1, it is clear that m =M = 0.

4. Proof of the main result. The analysis done in the previous section shows
that the only case that remains to be considered is when

0 < ln
a2 − a

a2 + 1
< −θ/a ≤ − a+ 1

a2 + 1
.
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This case will be studied in the present section: we start describing a finer decompo-
sition of the above-indicated domain of parameters (denoted below as D).

4.1. Notation and domains. In what follows, we will always assume that h > 0
and a < −1, and we will use the following notation:

θ = exp(−h); λ = exp(θ/a); a∗ = a+
θ

1− θ
; µ = −1

a
;

α(a, θ) = (1− a) exp(θ/a) + a;

β(a, θ) = −a2 + exp(θ/a)(1− 2a+ 2θ(a− 1))− (1− a)2 exp(2θ/a)

a2 + (a− a2) exp(θ/a)
;

γ(a, θ) = a3α(a, θ)
1− θ + ln θ

2− θ + ln θ
; R(r) = R(r, a, θ) = α(a, θ)r

1− β(a, θ)r
.

Obviously, θ, µ ∈ (0, 1), a∗ > a, and γ(a, θ) is well defined for all θ ∈ (0.16, 1), where
it can be checked that 2− θ + ln θ > 0. Next, we will need the following four curves
considered within the open square (θ, µ) ∈ (0, 1)2:

Π1 =

{
(θ, µ) : θ = Π1(µ)

def
=

1− µ

1 + µ2

}
; Π2 =

{
(θ, µ) : θ = Π2(µ)

def
=
1

µ
ln
1 + µ

1 + µ2

}
;

Π3 =

{
(θ, µ) : θ = Π3(µ)

def
=
95− 108µ
5(19 + 5µ)

}
; Π4 =

{
(θ, µ) : θ = Π4(µ)

def
= 0.8

}
.

The geometric relations existing between curves Π1–Π4 are shown schematically on
Figure 4.1. Notice that all three curves Πj , j = 4, have the following asymptotics at
zero: Πj(µ) = 1−kjµ+o(µ), where k1 = 1, k2 = 1.5, k3 = 1.4. An elementary analysis
shows that Π3 does not intersect Π1 and Π2 when θ ∈ (0.8, 1). Next, to prove our main
result, we will have to use different arguments for the different domains of parameters
a, h. For this purpose, we introduce here the following three subsets D,D∗,S of (0, 1)2:

D = {(θ, µ) : Π2(µ) ≤ θ ≤ Π1(µ)};

D∗ = D \ S, where S = {(θ, µ) ∈ D : θ ∈ [0.8, 1), Π3(µ) ≤ θ ≤ Π1(µ)}.

We can see that D is situated between Π1 and Π2, while the sector S is placed among
Π1, Π3, and Π4. Sometimes it will be more convenient for us to use the coordinates
(a, θ) instead of (θ, µ); we will preserve the same symbols for the domains and curves
considered both in (a, θ) and (θ, µ).

Let us end this subsection indicating several useful estimations which will be of
great importance for the proof of our main result.

Lemma 4.1. We have α(a, θ) > 0, β(a, θ) > 0, and aα(a, θ)/(1− aβ(a, θ)) > −1
for all (a, θ) ∈ D. Next, if (a, θ) ∈ S, then γ(a, θ) < 1.

The proof of the lemma is given in section 6 (Lemmas 6.1, 6.2, and 6.3).

4.2. One-dimensional map F : I → R. Throughout this subsection, we
will suppose that (a, θ) ∈ D. Therefore a(θ − 1)/θ − 1 > 0 so that the interval I =
(−1, a(θ−1)/θ−1) is not empty. Furthermore, t1 = t1(z) = − ln(1−z/r(z)) ∈ [−h, 0]



GLOBAL STABILITY CRITERION 605

µ

θ
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1
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D*

D*

0.8

Π4

Fig. 4.1. Domains of global stability in coordinates (θ, µ).

for every z ∈ I \ {0}. Consider now the map F : I → R defined in the following way:

F (z) =



0 if z = 0;
min
t∈[0,h]

y(t, z) if z ∈ I and z > 0;

max
t∈[0,h]

y(t, z) if z ∈ (−1, 0),

where y(t, z) is the solution of the initial value problem y(s, z) = z, s ∈ [t1(z) −
h, t1(z)], z ∈ I, for

y′(t) = −y(t) + r(y(t− h)).(4.1)

Observe that y(0, z) = 0 for all z ∈ I since y(t, z) = r(z)(1 − exp (−t)) for all t ∈
[t1(z), t1(z) + h]. The following lemma explains why we have introduced such F
(moreover, condition (3.1) says precisely that F ′(0) > −1; see section 6.2).

Lemma 4.2. Let x(t) be a solution of (3.2) and set M = lim supt→∞ x(t), m =
lim inft→∞ x(t). If m,M ∈ I, then m ≥ F (M) and M ≤ F (m).

Proof. Consider two sequences of extremal values mj = x(sj) → m, Mj =
x(tj) → M such that sj → +∞, tj → +∞ as j → ∞. Let ε > 0 be such that
(m− ε,M + ε) ⊂ I. Then mj ≥ m− ε and Mj ≤ M + ε for big j. We will prove that
m ≥ F (M), the case M ≤ F (m) being completely analogous.

By Lemma 3.5, we can find τj ∈ [sj −h, sj ] such that x(τj) = 0 while x(t) < 0 for
t ∈ (τj , sj ]. Next, vj = τj+t1(M+ε) ≥ τj−h because ofM+ε ∈ I. Thus the solution
y(t) of (4.1) with initial condition y(s) = M + ε, s ∈ [vj − h, vj ], satisfies y(τj) = 0
while M + ε ≡ y(t) ≥ x(t) for all t ∈ [vj − h, vj ]. Furthermore, for all s ∈ [vj , τj ], we
have M(xs) ≤ M + ε so that, by (3.3), f(s, xs) ≥ r(M(xs)) ≥ r(M + ε), and

y(t)− x(t) =

∫ t

τj

e−(t−s)[r(M + ε)− f(s, xs)]ds ≥ 0, t ∈ [vj , τj ],
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proving that y(t) ≥ x(t) for all t ∈ [τj − h, τj ]. Now, for t ∈ (τj , sj ],

y(t)− x(t) =

∫ t

τj

exp{−(t− s)}(r(y(s− h))− f(s, xs))ds ≤ 0,(4.2)

since f(s, xs) ≥ r(M(xs)) ≥ r(M(ys)) = r(y(s− h)). Hence, by (4.2), mj = x(sj) ≥
y(sj) ≥ F (M + ε), which proves that m ≥ F (M).

To study the properties of F , we use its more explicit form given below.
Lemma 4.3. Set r−1(u) = u/(a− u). For z ∈ I, (F (z)− r(z))z ≥ 0 and

θ =

∫ F (z)

r(z)

du

r−1(u)− r(z)
.(4.3)

Proof. Let us consider z > 0, the case z < 0 being similar. Consider the solution
y(t, z) of (4.1), and recall that y(t, z) = z for t ∈ [t1 − h, t1], where t1 = − ln(1 −
z/r(z)) ∈ [−h, 0]. Next, y(t, z) = r(z)(1−exp (−t)), t ∈ [t1, t1+h], so that y(0, z) = 0
and y′(h, z) = −y(h, z). Therefore F (z) = y(t∗, z) at some point t∗ ∈ (t1+h, h), where
also y′(t∗, z) = 0.

Since t∗ ∈ [t1 + h, h], by the variation of constants formula we have

y(t∗, z) = F (z) = e−(t∗−h)

[
y(t1 + h, z)et1 +

∫ t∗−h

t1

evr(y(v, z))dv

]
.(4.4)

On the other hand, y′(t∗, z) = 0 = −y(t∗, z)+r(y(t∗−h, z)), so that F (z) = y(t∗, z) =
r(y(t∗ − h, z)) ≥ r(z) and r−1(F (z)) = y(t∗ − h, z) = r(z)[1− exp{−(t∗ − h)}]. Thus

t∗ − h = ln(r(z)/[r(z)− r−1(F (z))]).

Now let y(v, z) = w (so that exp(v) = r(z)/(r(z)− w)); then

∫ t∗−h

t1

evr(y(v, z))dv =

∫ r−1(F (z))

z

r(w)d
r(z)

r(z)− w

= r(z)

[
r(z)

z − r(z)
− F (z)

r−1(F (z))− r(z)
+

∫ r−1(F (z))

z

dr(w)

w − r(z)

]
.

Now putting the last expression and the values of t1, t∗−h in (4.4), we get (4.3).
Finally, we state an important technical lemma whose proof can be found in

Lemmas 6.5 and 6.6 of the appendix.
Lemma 4.4. Assume that (a, θ) ∈ D. Then F (z) < R(r(z)) if z ∈ ((aβ−1)−1, 0),

and F (z) > R(r(z)) if z ∈ (0, a(θ − 1)/θ − 1), where R is defined in subsection 4.1.
We will also consider F : (a∗,+∞)→ R defined by F(x) = F (x/(a− x)). It can

be easily seen that F(r(z)) = F (z) for all z ∈ I.

4.3. One-dimensional map F1 : [0,+∞) → (a, 0]. By definition, for z ≥ 0,
F1(z) = mint∈[0,h] y(t), where y(t, z) satisfies (4.1) and has the initial value y(s, z) =
(1− e−s)r(z), s ∈ [−h, 0]. We will need the following lemma.

Lemma 4.5. Let x(t) be a solution of (3.2) and set M = lim supt→∞ x(t), m =
lim inft→∞ x(t). If (a, θ) ∈ D, then m ≥ F1(M).
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Proof. Take ε, sj , tj ,mj ,Mj , τj as in the first two paragraphs of the proof of
Lemma 4.2. Then, for t ∈ [τj − h, τj ], we have

x(t) =

∫ t

τj

e−(t−u)f(u, xu)du ≤
∫ t

τj

e−(t−u)r(M + ε)du = y(t− τj ,M + ε).

Thus, if u ∈ [sj − h, sj ], then M(xu(s)) ≤ M(yu(s,M + ε)) so that

f(u, xu) ≥ r(M(yu(s,M + ε))) = r(r(M)(1− e−(u−h−τj))).

This implies that

mj = x(sj) ≥
∫ sj

τj

e−(sj−u)r(r(M)(1− e−(u−h−τj)))du

=

∫ sj

τj

e−(sj−u)r(y(u− h,M + ε))du = y(sj − τj ,M + ε) ≥ F1(M + ε).

Since ε > 0 and mj → m are arbitrary, the lemma is proved.
Lemma 4.6. Set r1(z) = r(r(z)(1− eh)). For z > 0 we have that F1(z) > a and

r1(z)θ

r(z)
=

∫ F1(z)

r1(z)

du

r−1(u)− r(z)
.(4.5)

Proof. Take t∗ ∈ (0, h) such that

F1(z) = y(t∗, z) =
∫ t∗

0

e−(t∗−u)r(r(z)(1− e−(u−h)))du.(4.6)

Since y′(h) > 0, we have that y′(t∗) = 0, and therefore F1(z) = y(t∗) = −y′(t∗) +
r(y(t∗ − h)) = r(y(t∗ − h)) > a. This implies that r−1(F1(z)) = y(t∗ − h) = r(z)(1−
exp{−(t∗ − h)}), from which

t∗ − h = ln(r(z)/[r(z)− r−1(F1(z))]).(4.7)

Now, using (4.7) and setting ξ = r(z)(1− e−(u−h)) in (4.6), we obtain

F1(z) = −(r(z)− r−1(F1(z)))

∫ r−1(F1(z))

r(z)(1−eh)

r(ξ)d
1

ξ − r(z)

= −(r(z)− r−1(F1(z)))

(
r(ξ)

ξ − r(z)

∣∣∣∣∣
r−1(F1(z))

r(z)(1−eh)

+

∫ r−1(F1(z))

r(z)(1−eh)

dr(ξ)

ξ − r(z)

)
.

Simplifying this relation, we obtain (4.5).
We conclude this section by stating two lemmas which compare F1 and the asso-

ciated function F1(r)
def
= F1(r/(a − r)) with rational functions. The proofs of these

statements are based on rather careful estimations of identity (4.5) and are given in
Lemmas 6.7, 6.10, and 6.11 in the appendix. (It should be noted that R approximates
F1 extremely well so that a very meticulous analysis of (4.5) is needed.)

Lemma 4.7. If (a, θ) ∈ D∗ and z ≥ a(θ − 1)/θ − 1, then F1(z) > R(r(z)).
Lemma 4.8. If (a, θ) ∈ S and z > 0, then

F1(r(z)) >
1 + ln θ − θ

2 + ln θ − θ

ar(z)

1 + r(z) 1+ln θ−θ
1−θ

= R2(r(z)).(4.8)

Furthermore, R2(a) > −1 and r(R2(a)) < 1/β.
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4.4. Proof of Theorem 1.1. Let x : [α − h,∞) → R be a solution of (3.2)
and set M = lim supt→∞ x(t), m = lim inft→∞ x(t). We will reach a contradiction if
we assume that m < 0 < M . (Note that the cases M ≤ 0 and m ≥ 0 were already
considered in Lemma 3.4.)

First suppose that (a, θ) ∈ S. By Lemmas 4.5 and 4.8, we obtain that

m ≥ F1(M) = F1(r(M)) > R2(r(M)) > −1.(4.9)

Now take an arbitrary z ≥ 0. Since r(z) ∈ (a, 0] and R2(z) is increasing on (a, 0],

we get r(R2(r(z))) < 1/β due to Lemma 4.8. Therefore, the rational function λ
def
=

R ◦ r ◦ R2 ◦ r : [0,∞)→ [0,∞) is well defined. By Lemmas 4.2 and 4.4, we obtain

M ≤ F(r(m)) < R(r(R2(r(M)))) = λ(M).

On the other hand, due to the inequality λ′(0) = γ(a, θ) < 1 (see Lemma 4.1), we
obtain that λ(z) < z for all z > 0, a contradiction.

Now let (a, θ) ∈ D∗ and define the rational function R : [0,+∞) → (−∞, 0] as
R = R ◦ r. We note that (3.1) implies R′(0) = aα(a, θ) ∈ (−1, 0). Next,

m > R(M) > R(a) > −1.(4.10)

Indeed, if M ≤ a(θ − 1)/θ − 1, then Lemmas 4.2 and 4.4 imply that m ≥ F (M) >
R(r(M)) = R(M). If M ≥ a(θ − 1)/θ − 1, then Lemmas 4.5 and 4.7 give that m ≥
F1(M) > R(r(M)) = R(M). The last inequality in (4.10) follows from Lemma 4.1.
Finally, applying Lemmas 4.2 and 4.4, and using (4.10) and the inequality R◦R(x) <
x, x > 0, which holds since (R ◦R)′(0) = (R′(0))2 < 1, we obtain that

M ≤ F (m) < R(r(m)) < R(r(R(M))) = R(R(M)) < M,

a contradiction.
To prove the second part of Theorem 1.1 take a < 0 and h > 0 such that (3.1) is

not satisfied. Then, by Theorem 2.9 from [6] there is a continuous functional f satisfy-
ing (1.5) and such that the equilibrium x(t) = 0 in (3.2) is not locally asymptotically
stable.

5. Some estimations of the global attractor for (2.3). To complete the
proof of Theorem 2.1, we need to estimate the bounds of the global attractor to (2.3).
We start by stating a result from [3].

Lemma 5.1 (see [3]). Let q > 1. Then there exist finite positive limits

M = lim sup
t→∞

x(t) , m = lim inf
t→∞ x(t)

for every nonnegative solution x(t) ≡ 0 of (2.3). Moreover, [m,M ] ⊆ g([m,M ]) and
[m,M ] ⊆ g1([m,M ]), where g1 = θ ln q + (1− θ)g, θ = exp(−τ).

Since the global stability of (2.3) for ln q ∈ (0, 2] was already proved in [3], we
can suppose that ln q > 2. In this case the minimal root x1 of equation g(x1) = ln q
belongs to the interval (0, 1). Note that x = 1 < ln q is the point of absolute maximum
for g and g1 = (1− θ)g + θ ln q, so that g(1) > ln q and g1(1) > ln q. We will use the
information about the values of g and g1 at x1 < 1 < ln q in the subsequent analysis.

Now, let us consider an arbitrary solution x(t) of (2.3) and its bounds m,M
defined in Lemma 5.1. It is clear that if we prove the existence of m∗ = m∗(q) such
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thatm ≥ m∗(q) > x1 andm∗(q) does not depend on x(t), then the change of variables
y = x − ln q transforms (2.3) into an equation satisfying (W) within the domain of
attraction, and therefore Theorem 1.1 can be applied.

Since [m,M ] ⊆ g([m,M ]), we obtain immediately that either m = M = ln q or
m < ln q < M . In the first case the theorem is proved, so we will consider the second
possibility. Next, since z < g(z) for z ∈ (0, ln q), we have that g(m) > m and

[m,M ] ⊆ g([m,M ]) ⊆ [min{g(m), g(M)}, g(1)] = [g(M), g(1)].

Hence, [m,M ] ⊆ g([g(M), g(1)]) ⊆ [min{g2(1), g2(M)}, g(1)]. On the other hand,
since g(M) < ln q we get analogously that g2(M) > g(M). Next, since g is decreasing
on [1,+∞) and g(1) ≥ M we find that g2(1) ≤ g(M). Thus g2(1) ≤ g(M) < g2(M) so
that min{g2(1), g2(M)} = g2(1) and [m,M ] ⊆ [g2(1), g(1)]. Therefore m ≥ g(g(1)).
Since the inequality m ≥ g1(g1(1)) can be proved analogously, the proof of theorem
will be completed if we establish that m∗(q) = max{g2(1), g2

1(1)} > x1. We have the
following:

(i) g2(1) > x1 for all ln q ∈ [2, 2.833157]. This is an obvious fact if g2(1) ≥ 1, so
that we need only consider the case x1, g

2(1) ∈ (0, 1). Since g is increasing on (0, 1),
the inequality g2(1) > x1 is equivalent to g3(1) > g(x1) = ln q in this case. Finally, a
direct computation shows that

g3(1)− ln q = q3e−1−q/e exp(−q2e−1−q/e)− ln q > 0

whenever ln q ∈ [2, 2.833157].
(ii) g2

1(1) > x1 for all ln q > 2.5. First, let us note that x1 ≤ ln q + y1, where

y1 =
(
2− ln q −

√
(ln q)2 + 4 ln q − 4

)
/2

is the negative root of g̃(y) = (y+ln q)(1−y+y2/2)−ln q. Indeed, with x = y+ln q and
y ∈ (y1, 0), we have that g(x)− ln q = qxe−x − ln q = (y + ln q)e−y − ln q ≥ g̃(y) > 0.

Since g2
1(1) ≥ g1(+∞) = θ ln q, to finish the proof of (ii), it suffices to show that

θ ln q ≥ ln q + y1. Taking into account (2.2) and using the inequality ln(1 + x) ≥
x/(1 + x), we obtain that

(θ − 1) ln q − y1 = (θ − 1)(1 + c)− y1 ≥ (1 + c)(−1 + c ln((c2 + c)/(c2 + 1)))− y1

≥ −2− 2− ln q −√(ln q)2 + 4 ln q − 4
2

≥ 0 for ln q ≥ 5/2.

6. Appendix.

6.1. Preliminary estimations.

Lemma 6.1. For all (a, θ) ∈ D, we have that α(a, θ) > 0, β(a, θ) > 0, and

T (a, θ)
def
= (a2 − a)β(a, θ)(1− θ) + α(a, θ)− (1− θ) ≥ 0.

Proof. Since a(θ − 1) > 1 for all (a, θ) ∈ D and

1 + x < exp(x) < 1 + x+ x2/2 for x < 0,

exp(x) > 1 + x+ x2/2 + x3/6 for x > 0,
(6.1)
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we have α(a, θ) = (1 − a) exp(θ/a) + a > (1 − a)(1 + θ/a) + a = 1 − θ + θ/a > 0.
Analogously, β(a, θ) > 0 for all (a, θ) ∈ D because of the following chain of relations:

− aα(a, θ)β(a, θ)e−θ/a = a2e−θ/a − (1− a)2eθ/a + (1− 2a+ 2θ(a− 1))

≥ a2

(
1− θ

a
+

θ2

2a2
− θ3

6a3

)
− (1− a)2

(
1 +

θ

a
+

θ2

2a2

)
+ (1− 2a+ 2θ(a− 1))

=
θ

6a2
(−3θ − a(θ2 − 6θ + 6)) > θ(2θa− 2a− θ)

2a2
> 0.

To prove that T (a, θ) ≥ 0 for all (a, θ) ∈ D, we replace α, β with their values in αT :

α(a, θ)T (a, θ) = a(2a− a2 − aθ + a2θ − 1 + θ)

+2θ(a− 1)(−2a+ aθ + 1− θ)λ− (1− a)2(−a+ aθ − θ)λ2.
(6.2)

It should be noticed that −a + aθ − θ = a(θ − 1) − θ > 1 − θ > 0. Similarly,
2θ(a− 1)(−2a+ aθ + 1− θ) < 0 so that T (a, θ) ≥ 0 if

θ(−a+ aθ − θ)(4a4)−1[−θ(−θ + aθ − 2a)2 + 4(θ − 1)a3] > 0,

where the last expression was obtained from (6.2) by replacing λ = exp(θ/a) by
1 + θ/a + θ2/2a2 > exp(θ/a). Taking into account that a(θ − 1) > 1 and θ < 1 for
(a, θ) ∈ D, we end the proof of this lemma by noting that 4(θ−1)a3−θ(θ−aθ+2a)2 ≥
4a2 − (θ − aθ + 2a)2 = (−4a− θ + aθ)θ(1− a) > 0.

Lemma 6.2. For all (a, θ) ∈ D one has

aα(a, θ)

1− aβ(a, θ)
> −1.(6.3)

Proof. It follows directly from the definitions of α(a, θ) and D that aα(a, θ) > −1
for all (a, θ) ∈ D. Now, (6.3) follows from the fact that aβ(a, θ) < 0 if (a, θ) ∈ D.

Lemma 6.3. If (a, θ) ∈ S, then γ(a, θ) < 1.
Proof. Notice that (a, θ) ∈ S implies that θ ∈ [0.8, 1) and θ > Π3(−1/a) (or,

equivalently, a > π3(θ)
def
= −1/Π−1

3 (θ) = (108 + 25θ)(95θ − 95)−1). Here Π−1
3 is the

inverse function of Π3. Next we prove the inequality

1− θ + ln θ

2− θ + ln θ
+
(θ − 1)2(2− θ)

2
> 0, θ ∈ [0.8, 1),(6.4)

which is equivalent to the relation

Ξ(q)
def
= q(q − 2)(q2 + 1) + (2 + q2 − q3) ln(q + 1) > 0, q ∈ [−0.2, 0),

with θ = q + 1 (note that 1− q + ln(q + 1) > 0 for q ∈ [−0.2, 0)). To do that, we will
need the following approximation of ln(1 + q) when q ∈ [−0.2, 0):

ln(1 + q) > q − 0.5q2 + 0.4q3, q ∈ [−0.2, 0).(6.5)

(Indeed, function y(x) = ln(1+ x)− (x− 0.5x2+0.4x3) has exactly one critical point
x = −1/6 on [−0.2, 0), and y(−0.2) = 0.00005644 . . . > 0, y(0) = 0.) Inequality (6.5)
implies that Ξ(q) ≥ −0.1q3(5q + 2− 9q2 + 4q3). Now, since (5q + 2− 9q2 + 4q3) > 0
for all q ∈ [−0.2, 0), we have that Ξ(q) > 0, and thus (6.4) is proved.
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Next, due to (6.1) and (6.4),

γ(a, θ) ≤ a3

(
1− θ +

θ

a
− θ2

2a
+

θ2

2a2

)
(θ − 1)2(θ − 2)

2
= w(a, θ),

so that γ(π3(θ), θ) ≤ w(π3(θ), θ). Now, w(π3(θ), θ) is a fifth degree polynomial, and
an elementary analysis shows that w(π3(θ), θ) < 1 for all θ ∈ [0.8, 1). Since

∂w(a, θ)/∂a = 0.25(2− θ)(θ − 1)2[a(θ − 1)(2a+ 2θ) + a(4a(θ − 1)− 2θ)] < 0,

we conclude that γ(a, θ) ≤ w(a, θ) < 1 for a > π3(θ).
Lemma 6.4. Let (a, θ) ∈ D and r > −1/4. Set J (r) = I(N(r)), where I(N) =

N coth(νN/2), ν = −θ/a, N(r) =
√
1 + 4r. Then J ′(0) > 0 and

J (r) ≤ J (0) + J ′(0)r =
1 + λ

1− λ
+

(
2
1 + λ

1− λ
+

4θλ

a(1− λ)2

)
r.(6.6)

Proof. Set k(N) = e2νN − 2νNeνN − 1 > 0; then k(0) = 0 and k′(N) =
2νeνN [eνN − 1 − νN ] > 0 for all N > 0. Hence I ′(N) = k(N)/(eνN − 1)2 > 0
and J ′(0) = I ′(1)N ′(0) > 0.

Next, since dN/dr = 2(1 + 4r)−1/2 = 2/N, d2N/dr2 = −4/N3, we obtain that

J ′′(r) =
∂2I(N(r))

∂r2
=

∂2I(N)
∂N2

(
∂N(r)

∂r

)2

+
∂I(N)
∂N

(
∂2N(r)

∂r2

)

=
4[−e3νN + e2νN (2ν2N2 − 2νN + 1) + eνN (2ν2N2 + 2νN + 1)− 1]

N3(eνN − 1)3

=

∑+∞
j=0 pj(νN)

j

N3(eνN − 1)3 < 0, since (νN) > 0, pj = 0, j = 0, . . . , 5, and

pj =
4

(j − 2)!
(−3j + 2j + 1

j(j − 1) +
−2j + 2
j − 1 + 2j−1 + 2

)
< 0, j ≥ 6.

Thus J (r) ≤ J (0) + J ′(0)r and (6.6) is proved.

6.2. Properties of function F . To study the properties of functions F : I → R

and F : J = (a∗,+∞) → R, defined in subsection 4.2, it will be more convenient to
use the integral representation (4.3) instead of the original definition of F . It should
be noted that conditions xF (x) < 0, (F (x) − r(x))x > 0, x ∈ I \ {0}, define F in a
unique way: moreover F and F are continuous and smooth at 0 with F ′(0) = α(a, θ),
F ′′(0) = 2α(a, θ)β(a, θ). We have taken into consideration these facts to define the
rational functions R and R (see subsection 4.2); however, since we do not use these
characteristics of F anywhere, their proof is omitted here.

Lemma 6.5. Assume that r ∈ [a∗, 0]. Then

F(r) > αr/(1− βr) = R(r).(6.7)

Proof. 1. First, suppose that 4r+1 > 0 and r = 0. Since 0 > F(r) > r, we have,
for every z ∈ [r,F(r)] and a < 0,

r−1(z) = z/(a− z) = (z/a)(1 + (z/a) + (z/a)2 + · · ·) > (z/a) + (z/a)2.(6.8)
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Hence

θ =

∫ F(r)

r

dz

z(a− z)−1 − r
<

∫ F(r)

r

dz
z
a + (

z
a )

2 − r
= a

∫ F(r)/a

r/a

du

u+ u2 − r
.(6.9)

Now, since for r < 0 the roots α1 = (−1−
√
1 + 4r)/2, α2 = (−1+

√
1 + 4r)/2 of the

equation u2 + u− r = 0 are negative, we obtain

a

∫ F(r)/a

r/a

du

u+ u2 − r
= − a√

1 + 4r
ln

(F(r)− aα1

F(r)− aα2

r − aα2

r − aα1

)
> θ.(6.10)

The last inequality implies that

F(r)− aα1

F(r)− aα2

r − aα2

r − aα1
> exp

(
θ
√
1 + 4r

−a

)
def
= ω(r) ≥ 1.(6.11)

Taking into account that F(r) − aα2 < 0 and r − aα1 < 0, and replacing α1, α2 in
(6.11) by their values, we obtain

F(r) >
r(2a2 − a+ aω(r)+1

ω(r)−1

√
1 + 4r)

2r + a+ aω(r)+1
ω(r)−1

√
1 + 4r

.

Next, since J (r) = ω(r)+1
ω(r)−1

√
1 + 4r, we can apply Lemma 6.4 to see that

F(r) >
r(2a− 1 + J (r))
2r/a+ 1 + J (r) ≥ r(2a− 1 + J (0) + J ′(0)r)

2r/a+ 1 + J (0) + J ′(0)r

=
r(λ+ a(1− λ)) + 1

2J ′(0)(1− λ)r2

1 + ( 1−λ
a + 1

2J ′(0)(1− λ))r

def
= L(r).

(6.12)

Now, L(r) = (a1r+a2r
2)/(1+a3r), with a1 > 0, a2 > 0. Moreover, since 0 < J (r) ≤

J (0) + J ′(0)r, all denominators in (6.12) are positive so that 1 + a3r > 0. Next,

a1a3 − a2 = (λ+ a(1− λ))

(
1− λ

a
+
1

2
J ′(0)(1− λ)

)
−1
2
J ′(0)(1− λ) ≤ 0.(6.13)

Indeed, the last inequality is equivalent to the obvious relation

λ+ a(1− λ)

a
< 0 ≤ 1

2
(1− λ)(1− a)J ′(0).

(Notice that α = λ+ a(1− λ) > 0, while, by Lemma 6.4, J ′(0) > 0.)
Finally, since the inequality (a1r + a2r

2)(1 + a3r)
−1 ≥ a1r(1 + (a3 − a2/a1)r)

−1

holds for r < 0, a1 > 0, a2 > 0, 1 + a3r > 0, a1a3 ≤ a2, we obtain

F(r) > a1r

1 + (a3 − a2

a1
)r
=

r(λ+ a(1− λ))

1 + ( 1−λ
a + J ′(0) 1−λ

2 − J ′(0)(1−λ)
2(λ+a(1−λ)) )r

= R(r).

Hence the statement of the lemma is proved for r ∈ (−1/4, 0). As an important
consequence of the first part of the proof, we get the relation

lim
r→−1/4

r(2a2 − a+ aω(r)+1
ω(r)−1

√
1 + 4r)

2r + a+ aω(r)+1
ω(r)−1

√
1 + 4r

=
a2(1− θ) + θa/2

θ(2a− 1)− 4a2
≥ R(−1/4),

which will be used in the next stage of proof.
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2. The case r = −1/4. From (6.9), evaluated at r = −1/4, we get θ <
(−2a2)/(2F(−1/4) + a) + (4a2)/(2a− 1), so that

F(−1/4) > a2(1− θ) + θa/2

θ(2a− 1)− 4a2
≥ R(−1/4).

3. Assume now that 4r + 1 < 0. We have

a

∫ F(r)/a

r/a

du

u+ u2 − r
=

2a√−4r − 1

(
arctan

2F(r) + a

a
√−4r − 1 − arctan

2r + a

a
√−4r − 1

)
.(6.14)

By (6.9) and (6.14), we obtain

2F(r) + a > a
√−4r − 1

2r+a
a
√−4r−1

+ tan θ
√−4r−1

2a

1− 2r+a
a
√−4r−1

tan θ
√−4r−1

2a

.

Now, since tanx ≤ x+ x3/3 for x ∈ (−π/2, 0) and a < 0, we obtain

F(r) > r
a2(1− θ) + θa/2 + θ3(−r − 1

4 )(
1
2a − 1)(3)−1

a2 − θ(r + a
2 )− θ3(−r − 1

4 )(
a
2 + r)(3a2)−1

= G(r).(6.15)

Therefore it will be sufficient to establish that G(r) ≥ R(r) for r < −1/4. First, note
that by the second part of the proof

G(−1/4) = a2(1− θ) + θa/2

θ(2a− 1)− 4a2
≥ R(−1/4).

Let us consider now the function H(r) = G(r) − R(r) for r ≤ 0. Since G(r) =
G1(r)/G2(r), where Gj are polynomials in r of second degree, H(r) can be written as

H(r) =
G1(r)(1− βr)− αrG2(r)

G2(r)(1− βr)
=

H1(r)

H2(r)
,(6.16)

so thatH is a quotient of two polynomials of third degree withH2(r) > 0 for r ≤ 0. We
get limr→−∞ G(r) = a2(1−1/(2a)) > 0, and therefore H(−∞) = limr→−∞ H(r) > 0.
Furthermore, H(0) = 0 and

H ′(0) =
1− θ(1− 1

2a ) +
θ3

12a2 (1− 1
2a )

1− θ
2a +

θ3

24a3

− (a+ e
θ
a (1− a)) =

∑+∞
k=5 pkθ

k

1− θ
2a +

θ3

24a3

> 0,

since the denominator of the last fraction is positive and p2m+1 > 0, p2m < 0, p2m+1+
p2m+2 > 0 for m ≥ 2. Here we use the formula

pk =
a− 1
akk!

(
1− k

2
+

k(k − 1)(k − 2)
24

)
, k ≥ 5.

Finally, since H(−1/4) = G(−1/4) − R(−1/4) ≥ 0, there exists at least one zero of
H(r) in the interval [−1/4, 0). H1(r) is a polynomial of third degree in r, and therefore
it cannot have more than three zeros. Hence, since H(−∞) > 0 and H(−1/4) ≥ 0,
we obtain that H(r) ≥ 0 if r < −1/4.

Lemma 6.6. If (a, θ) ∈ D, then F(r) < R(r) for all r ∈ (0, 1/β).
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Proof. By definition of F , we have that z > 0 if r > 0 and z ∈ [F(r), r]. We
begin the proof by assuming that r ∈ (0, a2 − a). Since z > 0, a < 0, we find that
z(a− z)−1 < z/a+ z2/a2. Therefore, (6.9) holds under our present conditions. Now,
since r > 0, the roots of equation u2 + u − r = 0 are α1 = (−1 − √

1 + 4r)/2 < 0,
α2 = (−1+

√
1 + 4r)/2 > 0. Next, since F(r)−aα1 < r−aα1 < 0 for all r ∈ (0, a2−a),

we obtain that the relations (6.10), (6.11) hold in the new situation, and therefore

F(r) < a2α1α2(ω(r)− 1) + ar(α1 − ω(r)α2)

−aα2 + r + ω(r)(aα1 − r)
=

r(2a2 − a+ aω(r)+1
ω(r)−1

√
1 + 4r)

2r + a+ aω(r)+1
ω(r)−1

√
1 + 4r

,

where the denominator is positive for every r ∈ (0, a2 − a). Now, recall that J (r) =
ω(r)+1
ω(r)−1

√
1 + 4r; applying Lemma 6.4, we obtain J (r) ≤ J (0) + J ′(0)r. Next, since

for all r ∈ (0, a2 − a) we have that 2r/a+ 1+J (r) = −2(a(ω(r)− 1))−1(−aα2 + r+
ω(r)(aα1−r)) > 0, and the function p(x) = (r(2a−1+x))(2r/a+1+x)−1 is increasing
in x, we get F(r) < L(r) (compare with (6.12)). Now, (a1r + a2r

2)(1 + a3r)
−1 ≤

a1r(1 + (a3 − a2/a1)r)
−1 if a1a3 − a2 ≤ 0, r > 0, a1 > 0, a2 > 0. Therefore, by

(6.13), L(r) ≤ R(r).
Now we assume that r ≥ a2 − a. Taking into account that z(a − z)−1 < 0 for

z > 0, we obtain the inequality

θ =

∫ F(r)

r

dz

z(a− z)−1 − r
<

∫ F(r)

r

dz

−r
=

F(r)− r

−r
,

so that F(r) < r(1 − θ). Finally, the inequality r(1 − θ) ≤ R(r) = αr/(1 − βr) is
equivalent to r ≥ (1 − θ − α)/((1 − θ)β), which holds for all r ≥ a2 − a due to the
relation a2 − a ≥ (1− θ − α)/((1− θ)β), established in Lemma 6.1.

6.3. Properties of function F1 in the domain D∗. Suppose now that (a, θ) ∈
D∗. We study some properties of function F1 and the associated function F1 : (a, 0)→
R defined as F1(r(z)) = F1(z), which, by Lemma 4.6, satisfies

r1(r)θ

r
=

∫ F1(r)

r1(r)

dz

r−1(z)− r
, where r1(r) =

ar(θ − 1)
θ + r(θ − 1) .

Lemma 6.7. Assume that (a, θ) ∈ D∗ and that the inequalities a < r ≤ a∗ =
a+ θ/(1− θ) hold. Then F1(r) > R(r).

Proof. Since r1(r) < F1(r) < 0 and a∗ < −1 for (a, θ) ∈ D∗, using (6.8) we get

r1(r)θ

r
<

∫ F1(r)

r1(r)

dz
z
a + (

z
a )

2 − r
= a

∫ F1(r)/a

r1(r)/a

du

u+ u2 − r
.

The last integral can be transformed as in (6.14) to obtain

r1(r)θ

r
<

2a√−4r − 1

(
arctan

2F1(r) + a

a
√−4r − 1 − arctan 2r1 + a

a
√−4r − 1

)
.

Therefore

ς1
def
= arctan

2F1(r) + a

a
√−4r − 1 < arctan

2r1 + a

a
√−4r − 1 +

θr1
√−4r − 1
2ar

def
= ς2 + ς3,
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and since ς1, ς2 ∈ (0, π/2), ς3 < 0, we obtain

2F1(r) + a > a
√−4r − 1

2r1+a
a
√−4r−1

+ tan θr1
√−4r−1
2ar

1− 2r1+a
a
√−4r−1

tan θr1
√−4r−1
2ar

.

Since tanx < x+ x3/3 for x ∈ (−π/2, 0), we have

F1(r) >
A1(P )r +A2(P )r

2

B0(P ) +B1(P )r +B2(P )r2
= G1(r, P, a, θ),(6.17)

where

A1(P ) = (1− θ)P +
θ

2a
P 2 +

θ3

24a3
(2a− P )P 3, A2(P ) =

θ3

6a3
(2a− P )P 3,

B0(P ) = 1− θP

2a
+

θ3P 3

24a3
, B1(P ) = −θP 2

a2
+

θ3P 3

6a3
+

θ3P 4

12a4
, B2(P ) =

θ3P 4

3a4
,

P = P (r, a, θ) = r1/r =
a(θ − 1)

θ + r(θ − 1) .

After substitution of the value of P into (6.17), we get

F1(r) > G1(r, P (r, a, θ), a, θ)
def
= G1(r, a, θ) =

rM(r, a, θ)

N(r, a, θ)
,

where

M(r, a, θ) = 24(A1(P ) +A2(P )r)(θ + r(θ − 1))4
= −(θ − 1)2a[13θ3 − θ5 − 2θ2(θ − 1)(θ + 3)(3θ − 8)r

−4θ(2θ2 − 15)(θ − 1)2r2 + 24(θ − 1)3r3],

N(r, a, θ) = 24(B0(P ) +B1(P )r +B2(P )r
2)(θ + r(θ − 1))4 = 35θ4 − 9θ5

+θ7 − 3θ6 + θ3(θ − 1)(7θ3 − 17θ2 − 47θ + 153)r + 12θ2(θ3 − 2θ2

−6θ + 19)(θ − 1)2r2 − 12θ(3θ − 11)(θ − 1)3r3 + 24(θ − 1)4r4.

To prove our lemma, it suffices to check the inequality G1(r, a, θ) ≥ R(r) for r ∈ [a, a∗].
First, considering N(r, a, θ) = N(r, θ) as a polynomial in r of the form N(r, a, θ) =∑4

k=0 Nk(θ)r
k, we can check that (−1)kNk(θ) > 0 for θ ∈ (0, 1), and therefore, for all

θ ∈ (0, 1) and r < 0,

N(r, a, θ) = 24(B0(P ) +B1(P )r +B2(P )r
2)(θ + r(θ − 1))4 > 0.(6.18)

Since N(r, a, θ) > 0, 1 − βr > 0 (recall that β(a, θ) > 0 in the domain D), the
inequality rM(r, a, θ)/N(r, a, θ) ≥ αr/(1− rβ) is equivalent to

Q(r, a, θ)
def
= (1− rβ(a, θ))M(r, a, θ)− α(a, θ)N(r, a, θ) ≤ 0.(6.19)

Now, an easy comparison of G1(a∗, a, θ) = G1(a∗, 1, a, θ) with G(a∗) given in (6.15)
shows that the inequality (6.19) is fulfilled for r = a∗. In the next two lemmas, we
will prove that ∂Q(r, a, θ)/∂r > 0 for all r ∈ [a, a∗]. Therefore, since Q(a∗, a, θ) ≤ 0,
we obtain Q(r, a, θ) ≤ 0 for r ∈ [a, a∗], which proves that F1(r) > R(r).
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Lemma 6.8. S(r, a, θ) = ∂
∂rQ(r, a, θ) > 0 at the point r = a∗.

Proof. Recall that we are interested in the case r = a∗ (when P = 1). By (6.19)
and the above definitions of M(r, a, θ), N(r, a, θ),

Q(r, a, θ) = 24(θ+r(θ−1))4((A1(P )+A2(P )r)(1−βr)−α(B0(P )+B1(P )r+B2(P )r
2)).

Next, setting P ′ = ∂P (r, a, θ)/∂r |r=a∗= −a−1, A′
j = ∂Aj(a, θ, P )/∂P |P=1, B

′
j =

∂Bj(a, θ, P )/∂P |P=1, Aj = Aj(a, θ, 1), Bj = Bj(a, θ, 1), we obtain that

∂Q(r, a, θ)/∂r|r=a∗ = 24(Q1(r, a, θ) +Q2(r, a, θ)),(6.20)

where

Q1 = 4a
3(θ − 1)4((A1 +A2a∗)(1− βa∗)− α(B0 +B1a∗ +B2a

2
∗))

+a4(θ − 1)4((A′
1 +A′

2a∗)(1− βa∗)− α(B′
0 +B′

1a∗ +B′
2a

2
∗))P

′;
Q2 = a4(θ − 1)4(A2 − βA1 − αB1 − 2a∗βA2 − 2a∗αB2).

Now, for the convenience of the reader, the following part of the proof will be divided
into several steps.

Step (i): Q2(r, a, θ) > 0. Indeed, consider the second degree polynomial

χ1(r)
def
= (A1 +A2r)(1− βr)− α(B0 +B1r +B2r

2).

Notice that χ1(r) =
H1(r)
r , where H1 is defined in (6.16). This implies that the unique

critical point of χ1 belongs to (−1/4,+∞) and that χ1(+∞) = −∞. Hence χ′
1(r) > 0

for all r < −1/4 so that Q2(θ, a, r) = a4(θ − 1)4χ′
1(r) > 0.

Step (ii). The following inequality holds:

(A′
1 +A′

2a∗)(B0 +B1a∗ +B2a
2
∗)− (A1 +A2a∗)(B′

0 +B′
1a∗ +B′

2a
2
∗) > 0.(6.21)

Indeed, the left-hand side of (6.21) can be transformed into

1

576a6(1− θ)3
(−θ6(3θ + 1)3 + 12θ6(3θ + 1)2(θ − 1)a

−24θ4(θ − 1)(3θ + 1)(2θ3 − 2θ2 + 3θ − 5)a2 + 32θ3(2θ4 − 2θ3 + 18θ2

−39θ − 9)(θ − 1)2a3 − 48θ2(8θ3 − 41θ2 + 30θ − 9)(θ − 1)2a4

−576θ(θ2 − θ + 2)(θ − 1)3a5 + 576(θ − 1)4a6).

(6.22)

Taking into account that η
def
= (θ − 1)a > 1, the sum of the first two terms in (6.22)

is positive:

−θ6(3θ + 1)3 + 12θ6(3θ + 1)2(θ − 1)a = θ6(3θ + 1)2(−(3θ + 1) + 12(θ − 1)a) > 0.

The other terms in (6.22) can be written as

a2(−24θ4(θ − 1)(3θ + 1)(2θ3 − 2θ2 + 3θ − 5)
+32θ3(2θ4 − 2θ3 + 18θ2 − 39θ − 9)(θ − 1)η
−48θ2(8θ3 − 41θ2 + 30θ − 9)η2 − 576θ(θ2 − θ + 2)η3 + 576η4)

def
= a2Υ(θ, η).

By the Taylor formula,

Υ(θ, η) = Υ(θ, 1) + (η − 1)∂Υ(θ, 1)/∂η + 0.5(η − 1)2∂2Υ(θ, η1)/∂η
2,(6.23)
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where η1 ∈ [1, 2]. It is easy to verify that
Υ(θ, 1) = −8(θ − 1)2[θ4(18θ3 − 2θ2 + 27θ − 81) + (108θ3 − 54θ2 − 72)] > 0,

∂Υ(θ, 1)/∂η = 32(θ − 1)[(2θ6 + 18θ4 + 36)(θ − 1)− 45θ2(θ − 1)2 − 36] > 0,

∂2Υ(θ, η)/∂η2 = 3456η(2η − θ(θ2 − θ + 2))− 96θ2(8θ3 − 41θ2 + 30θ − 9) > 0.

(Here we use the inequality 8θ3 − 41θ2 + 30θ − 9 < 0, θ ∈ [0, 1].)
Finally, by (6.23), Υ(θ, η) > 0 for θ ∈ (0, 1), η ∈ (1, 2).
Step (iii). We have

E
def
= (B′

0 +B′
1a∗ +B′

2a
2
∗)(B0 +B1a∗ +B2a

2
∗)

−1 < 1.(6.24)

Indeed, taking into account (6.18), the latter inequality is equivalent to

(υ
def
=)

θ3

12a3
+ a∗

(
− θ

a2
+

θ3

3a3
+

θ3

4a4

)
+

θ3

a4
a2
∗ < 1.

Now, we know that |a∗| ≤ |a| and |a−1| < 1 − θ (so that θ/|a| < 1/4). Therefore
υ < 1/4 + (1/3)(1/16) + 1/16 < 1.

Step (iv): Q1(r, a, θ) > 0. First, using (6.18) and (6.21), we obtain that

(A′
1 +A′

2a∗)(1− βa∗)− α(B′
0 +B′

1a∗ +B′
2a

2
∗)

≥ E((A1 +A2a∗)(1− βa∗)− α(B0 +B1a∗ +B2a
2
∗)).

Next, using inequality (6.19), which was proved at r = a∗, we find that

(A1 +A2a∗)(1− βa∗)− α(B0 +B1a∗ +B2a
2
∗) =

Q(a∗, a, θ)
24(θ + a∗(θ − 1))4 < 0.

Therefore,

Q1(r, a, θ) ≥ a3(θ − 1)4((A1 +A2a∗)(1− βa∗)− α(B0 +B1a∗ +B2a
2
∗))(4− E) > 0.

Step (v). Recalling (6.20) and Steps (i) and (iv), we finish the proof of the
lemma.

Lemma 6.9. S(r, a, θ) > 0 for r ∈ [a, a∗].
Proof. Differentiating function Q given by (6.19), we obtain

S(r, a, θ) =

3∑
i=0

Si(θ, a)r
i = 96(θ − 1)4(βa(θ − 1)− α)r3

+(−12(θ − 1)4aθ(2θ2 − 15)β + 36θ(θ − 1)3(3θ − 11)α− 72(θ − 1)5a)r2

+(−4aθ2(θ − 1)3(θ + 3)(3θ − 8)β − 24θ2(θ − 1)2(θ3 − 2θ2 − 6θ + 19)α
+8aθ(θ − 1)4(2θ2 − 15))r
+a(θ − 1)2θ3(13− θ2)β − θ3(θ − 1)(7θ3 − 17θ2 − 47θ + 153)α
+2aθ2(θ − 1)3(θ + 3)(3θ − 8).

Now, inequalities Si(a, θ)r
i < 0, i = 3, 2, 1, 0, are equivalent to aθ(θ − 1)β > Ti(a, θ),

where

T3(a, θ) = θα, T2(a, θ) =
−6a(θ − 1)2 + 3θ(3θ − 11)α

2θ2 − 15 ,
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T1(a, θ) =
2a(θ − 1)2(2θ2 − 15)− 6θ(θ3 − 2θ2 − 6θ + 19)α

3θ2 + θ − 24 ,

T0(a, θ) =
2a(θ − 1)2(3θ2 + θ − 24)− θ(7θ3 − 17θ2 − 47θ + 153)α

θ2 − 13 .

Next, for (a, θ) ∈ D∗, the following inequalities hold:

T3(a, θ) > T2(a, θ),(6.25)

T2(a, θ) > T1(a, θ),(6.26)

T1(a, θ) > T0(a, θ).(6.27)

Indeed, taking into account that α = (1−a) exp(θ/a)+a, inequality (6.26) is equivalent
to

4θ6 − 8θ5 − 41θ4 + 108θ3 + 99θ2 − 312θ − 306
+3θ(4θ5 − 8θ4 − 45θ3 + 106θ2 + 97θ − 306)eθ/a(1− a)a−1 < 0.

(6.28)

Since 3θ(4θ5−8θ4−45θ3+106θ2+97θ−306) < 0, it is sufficient to prove (6.28) for the

maximum value in a of the function 1−a
−a e

θ
a . The derivative of this function is equal to

−eθ/a(aθ−a−θ)/a3, and it is positive if a < θ/(θ−1). Hence, it is sufficient to verify
(6.28) at a = π1(θ) = −1/Π−1

1 (θ) = (1 +
√
1 + 4θ(1− θ))/(2(θ − 1)) if θ ∈ (0, 0.8],

and at a = π3(θ) = −1/Π−1
3 (θ) = (133 + 25(θ − 1))/(95(θ − 1)) if θ ∈ [0.8, 1).

Using (6.1) and replacing the value a = π3(θ) in (6.28), we get the following
expression:

q2

2(133 + 25q)3
[−40522972 +220135634q − 410248779q2 +204446752q3 +279016108q4

+ 23396520q5 −209505145q6 −30804850q7 +35072100q8 +7581000q9],

which is negative for θ = q+1 ∈ [0.8, 1). Direct computations show that (6.28) holds
if a = π1(θ) and θ ∈ [0, 0.8].

Analogously, inequality (6.25) is equivalent to

−(6− 3θ2 + 6θ + 2θ3)− θ(18− 9θ + 2θ2)eθ/a(1− a)a−1 < 0.(6.29)

Using (6.1) and substituting the value a = π3(θ) in (6.29), we get the expression

q2

2(133 + 25q)3
[−4465209− 971090q − 12743680q2

− 5731130q3 − 2242475q4 + 1103900q5 − 1263500q6],

which is negative for θ = q+1 ∈ [0.8, 1). Direct computations show again that (6.29)
is satisfied for a = π1(θ) and θ ∈ [0, 0.8].

Finally, (6.27) is equal to

(θ6 − 16θ5 + 2θ4 + 226θ3 + 63θ2 − 570θ − 762)
+θ(15θ5 − 32θ4 − 212θ3 + 550θ2 + 813θ − 2190)eθ/a(1− a)a−1 < 0.

(6.30)
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Next, employing (6.1) and using the value a = π3(θ) in (6.30), we get the expression

q2

2(133+25q)3
[−14595952 + 471367808q − 1571124744q2 − 18258802q3+ 723267159q4

+ 399356020q5 −311046000q6 −73063100q7 +42576625q8+9476250q9],

which is negative for θ = q + 1 ∈ [0.8, 1). Direct computations also show in this case
that (6.30) holds if a = π1(θ) and θ ∈ [0, 0.8].

To finish the proof of this lemma, we take an arbitrary r ∈ [a, a∗] (so that r =
a∗k, k ≥ 1) and write function S(r, a, θ) in the form

S(r, a, θ) =
3∑

i=0

Si(a, θ)a
i
∗k

i = k3

(
S3a

3
∗ +

1

k
S2a

2
∗ +

1

k2
S1a∗ +

1

k3
S0

)
.

First, note that S3a
3
∗ > 0. Indeed, if S3a

3
∗ ≤ 0, then, in view of (6.25)–(6.27),

Sia
i
∗ ≤ 0 for i = 0, 1, 2, and therefore S(a∗, a, θ) ≤ 0, contradicting Lemma 6.8.

Next, the conclusion of Lemma 6.9 is obvious if Sia
i
∗ ≥ 0 for all i = 0, 1, 2. Finally,

if Sia
i
∗ ≤ 0 and Si+1a

i+1
∗ > 0 for some i, then using the above representation for

S(r, a, θ) and relations (6.26)–(6.27), it is easy to see that S(r, a, θ) ≥ S(a∗, a, θ) > 0
for r ∈ [a, a∗].

6.4. Properties of function F1 in the domain S.
Lemma 6.10. If r ∈ (a, 0) and h ≤ 1, then

F1(r) >
1− h− e−h

2− h− e−h

ar

1 + r 1−h−e−h
1−e−h

= R2(r).(6.31)

Proof. Take z > 0 and consider the point t∗ ∈ (0, h) defined in (4.6); by Lemma
4.6, F1(z) > a. Since r(r(z)(1 − e−(s−h))) < 0 for all s ∈ (0, h), it follows from (4.6)
that

F1(r(z)) = F1(z) > e−(t∗−h)

∫ h

0

es−hr(r(z)(1− e−(s−h)))ds

=
r(z)− r−1(F1(z))

r(z)

∫ 0

−h

eur(r(z)(1− e−u))du(6.32)

= φ(r(z))− r−1(F1(z))ψ(r(z)),

where

ψ(x) = φ(x)/x, φ(x) =

∫ 0

−h

eur(x(1− e−u))du.

Applying Jensen’s inequality [12, p. 110] to the last integral, we obtain that

φ(x) =

∫ 0

−h

(1− e−h)r(x(1− e−u))d
(
eu/(1− e−h)

)
≥ (1− e−h)r

(∫ 0

−h
x(eu − 1)du
1− e−h

)
=

ax(1− h− e−h)

1 + x 1−h−e−h
1−e−h

def
= xH(x).

(6.33)

Denote ψ = ψ(r), φ = φ(r), F1 = F1(r). Now, for r < 0, (6.32) implies that
F1 > φ− (F1ψ)/(a−F1). Since a−F1 < 0, we conclude that

F2
1 −F1(φ+ ψ + a) + aφ > 0.(6.34)
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Next we prove that, under our assumptions,

(ψ + φ+ a)2 − 4aφ > (ψ + φ− a− 2ψ0)
2 ≥ 0,(6.35)

where ψ0 = a(1− h− e−h). Indeed, (6.35) amounts to

ψ(ψ0r + a+ ψ0) > ψ0(a+ ψ0).

Since ψ0r + a+ ψ0 < 0, the latter inequality is equivalent to

ψ <
ψ0(a+ ψ0)

ψ0r + a+ ψ0
=

a(1− h− e−h)

1 + r 1−h−e−h
2−h−e−h

def
= G(r),

which holds because for a < 0, r < 0, h ≤ 1 we have H(r) < G(r), and because, by
(6.33), ψ(r) ≤ H(r). Now, the inequalities aφ(r(z)) > 0, (6.35) and the continuous
dependence of φ(r), ψ(r),F1(r) on r ∈ (a, 0) imply that the quadratic polynomial
y(x) = x2−x(φ+ψ+a)+aφ has two roots x1 = x1(r) < x2 = x2(r) with the same sign
and that this sign is the same for all r ∈ (a, 0). Similarly, by (6.34), we have that either
F1(r) < x1(r) or F1(r) > x2(r) for all r ∈ (a, 0). Since F1(0

−) = 0 > x1(0
−) = ψ0+a,

we conclude that x1(r), x2(r) are negative for all r ∈ (a, 0), and F1(r) > x2(r). In
other words,

F1 >
1

2
(ψ + φ+ a+

√
(ψ + φ+ a)2 − 4aφ)

=
2aφ

ψ + φ+ a−√(ψ + φ+ a)2 − 4aφ ≥ 2aφ

2(a+ ψ0)
,

(6.36)

where the last inequality is due to the following consequence of (6.35):√
(ψ + φ+ a)2 − 4aφ ≥ −a+ φ+ ψ − 2ψ0.

Finally, combining (6.33) and (6.36), we obtain (6.31).
Lemma 6.11. Assume that (a, θ) ∈ S. Then r(R2(a)) < β−1.
Proof. Step (i). In the new variables q = θ − 1, k = a(θ − 1), the expression for

R2(a) takes the form

R2(a) =
−q + ln(q + 1)

1− q + ln(q + 1)

k2

q2 − k(−q + ln(q + 1))
.

Next we prove that

R2(a) ≥ 6k2(q − 1)
3kq2 − 4kq + 12 + 6k

def
= R̄2(q, k)(6.37)

for all q ∈ [−0.2, 0), k ∈ [1, 1.5]. (Note that for (a, θ) ∈ D, the inequalities 1 ≤
a(θ − 1) ≤ 1.5 hold.) Indeed, we have

R2(a)− R̄2 =
−k2C(q, k)

(1− q + L)(−q2 − kq + kL)(3kq2 − 4kq + 12 + 6k) ,

where L = ln(1 + q), and

C(q, k) = q(6q3 − 12q2 + 3kq2 + 6q − 8kq − 12)
+(14kq + 12− 9kq2 + 6q2 − 6q3)L+ 6k(q − 1)L2.
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Next, the following inequalities hold in an obvious way for q ∈ [−0.2, 0) and k ∈
[1, 1.5]:

1− q + ln(1 + q) ≥ 1− q + q/(1 + q) > 0,

3kq2 − 4kq + 12 + 6k > 0,

−q2 − kq + k ln(1 + q) < −q2 < 0.

Thus C(q, k) > 0 will imply that R2(a) > R̄2. Now, in view of (6.5) and the obvious
inequalities min{q∈[−0.2,0),k∈[1,1.5]}(14kq + 12 − 9kq2 + 6q2 − 6q3) ≥ 7.26 > 0 and
6k(q− 1) < 0, we obtain that C(q, k) > (q3/50)(−168kq3+48kq4 − 120q3+255kq2+
270q2 − 150q − 110kq − 50k − 60) ≥ −0.356176q3 > 0.

Step (ii). Using the new variables, we obtain the following expression for α:

α(a, θ) = α(k/q, 1 + q) = (1− k/q) exp(q(q + 1)/k) + k/q.

We will prove that α > −q(24k2 − 12k− 7q)/(24k2)
def
= ᾱ > 0. Indeed, since exp(x) >

1 + x+ x2/2 + x3/6 for all x = q(1 + q)/k < 0, we get

α(q, k)− ᾱ > q2(24k)−3[4q4 + (12− 4k)q3 + 12q2 + (−12k2 + 12k + 4)q + k],

where the right-hand side is positive for all q ∈ [−0.2, 0), k ∈ [1, 1.5].
Step (iii). Set E = exp( q(q+1)

k ). Here we prove that

αβ = −k/q − (q/k)(−2q + 2k − 1)E + (k − q)2(kq)−1E2

< β̄0
def
= q2(q + 1)[2k2 − q(k + 2k2) + q2(9− 11k + 2k2)](6k4)−1.

Indeed, due to (6.1) and since −q
k (−2q + 2k − 1) > 0, (k−q)2

kq < 0, we obtain

β̄0 − αβ > (1/6)(q/k)4(q + 1)(−8q2 + 10kq − 16q + 1) > 0

if q ∈ [−0.2, 0), k ∈ [1, 1.5].
Step (iv). First, note that R̄2(q, k) > −1 for all q ∈ [−0.2, 0), k ∈ [1, 1.5] so that

r(R̄2(q, k)) and r(R2(a)) are well defined. Moreover, since r is strictly decreasing over
(−1, 0), by virtue of (6.37) we get

0 < r(R2(a)) < r(R̄2) =
6k3(q − 1)

q[3kq2 + q(6k2 − 4k)− 6k2 + 6k + 12]
.(6.38)

Step (v). The above steps imply that

r(R2(a))β = r(R2(a))αβ/α < r(R̄2)β̄0/ᾱ.

Hence, Lemma 6.8 will be proved if we show that r(R̄2)β̄0/ᾱ− 1 < 0. We have

r(R̄2)
β̄0

ᾱ
− 1 =

∑4
i=0 Ziq

i

(3kq2 − 4qk + 12 + 6k − 6k2 + 6qk2)(−12k − 7q + 24k2)
,(6.39)

where Z0 = 24k(6k3 − 7k2 − 9k + 6), Z1 = −144k4 + 120k3 − 114k2 + 42k + 84,
Z2 = −2k(36k2 + 93k − 94), Z3 = 3k(16k

2 + 8k + 7), Z4 = −24k(k − 1)(2k − 9).
Now, in view of (6.38), we have that the denominator of the right-hand side of

(6.39) is positive for all q ∈ [−0.2, 0), k ∈ [1, 1.5]. Therefore it suffices to prove that∑4
i=0 Ziq

i < 0; we finish the proof by observing that, for q ∈ [−0.2, 0), k ∈ [1, 1.5],
Z0 + Z1q ≤ Z0 − 0.2Z1 = 0.3(2k − 3)(288k3 + 112k2 − 154k − 5)− 21.3 < 0,

Z2q
2 = −2kq2(36k2 + 93k − 94) < 0,

Z3 + Z4q ≥ Z3 − 0.2Z4 = 57.6k
3 − 28.8k2 + 64.2k > 0.
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Abstract. The properties of oversampled affine frames are considered here with two main goals
in mind. The first goal is to generalize the approach of Chui and Shi [Proc. Amer. Math. Soc., 121
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setting for expanding, lattice-preserving dilations, whereby we obtain a new proof of the second
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renormalization), provided that P and M satisfy a certain relative primality condition. In this
case, the matrix P is said to be admissible for M . The second goal of this work is to examine the
compatibility of admissible oversampling with the refinable affine frames arising from a certain class
of scaling functions. In this setting we show that oversampling dual affine systems by an admissible
P preserves the multiresolution structure and, from this fact, that the oversampled systems remain
dual. We then show that the admissibility of P is also sufficient to endow the dual oversampled
systems with a discrete wavelet transform. The novelty of this work lies both in our approach to
the second oversampling theorem as well as our consideration of oversampling in the context of
multiresolution analysis.
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1. Introduction. Unless otherwise stated, M will denote a fixed n× n dilation
matrix with integer entries such that each eigenvalue λ of M satisfies |λ| > 1. We will
refer toM ∈ GLn(R) as expanding if its eigenvalues satisfy this latter condition. Thus
M is a Z

n-lattice preserving, expanding dilation. The unitary dilation operator on
L2(Rn) induced by M will be denoted D and is defined by Df(x) := |detM | 12 f(Mx)
for f ∈ L2(Rn). For u ∈ R

n, let Tu denote the usual translation operator, i.e.,
Tuf(x) := f(x− u). With these basic ingredients we may now recall the definition of
an affine system.
Definition 1.1. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The affine system generated

by Ψ, denoted X(Ψ), is the collection

X(Ψ) = {ψ�;j,k : 1 ≤ � ≤ L, j ∈ Z, k ∈ Z
n},

where ψ�;j,k := DjTkψ�.
Our interest lies in those affine systems that constitute frames for L2(Rn).
Definition 1.2. Let H be a Hilbert space. The collection {hj}j∈J ⊂ H is a frame

for H if there exist constants A,B > 0 such that for all f ∈ H

A‖f‖2
H
≤
∑
j∈J

|〈f, hj〉H|2 ≤ B‖f‖2
H
.(1.1)

The constants A and B are referred to as the lower and upper frame bounds,
respectively. In the case that A = B the frame is said to be tight. If only the right
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inequality holds, the system is called a Bessel system, and in this case B is referred to
as the Bessel bound. We say two frames for H, {hj}j∈J and {h̃j}j∈J , are dual frames
if for each f ∈ H we have

f =
∑
j∈J

〈f, h̃j〉hj .(1.2)

Let GLn(Z) denote the set of all n × n matrices with integer entries having
nonzero determinant. Given P ∈ GLn(Z), we now define the oversampled affine
system generated by a family Ψ relative to P .
Definition 1.3. Let Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn). The oversampled affine

system generated by Ψ relative to P ∈ GLn(Z), denoted XP (Ψ), is the collection

XP (Ψ) := {ψP�;j,k : 1 ≤ � ≤ L, j ∈ Z, k ∈ Z
n},

where ψP�;j,k :=
1√
pD

jTP−1kψ� and p := |detP |.
The factor 1√

p in Definition 1.3 compensates for the increase in the density of

the lattice of translations caused by the oversampling. This allows us to compare the
frame bounds of the oversampled and nonoversampled systems.

This notion of oversampling was introduced by Chui and Shi in [2] when they
proved that oversampling a dyadic affine frame (M = 2) in one dimension by p
odd preserves the frame bounds. In [3], Chui and Shi later extended this result to
the multivariate case in which the dilation M ∈ GLn(Z) is expanding and P = pI
with gcd (p, |detM |) = 1. The result is referred to there as the second oversampling
theorem. Since the one-dimensional result appeared, several other researchers have
investigated the problem of bound-preserving oversampling for affine frames. In the
case that M,P ∈ GLn(Z) withM expanding, Ron and Shen have used their Gramian
analysis to show that a relative primality condition on the latticesMT

Z
n and PTZ

n is
sufficient for bound-preserving oversampling [7]. More recently, the work of Laugesen
[6] provides another approach to the second oversampling theorem, which employs the
concept of almost periodicity. In [6] it is observed that the conditions onM and P for
bound-preserving oversampling described in [7] and [6] are equivalent. We should also
mention that Chui, Czaja, Maggioni, and Weiss have developed a notion of tightness-
preserving oversampling based on the characterization of affine tight-frames [1]. In
their work the dilation matrix M is not required to have integer entries; however, the
result applies only to tight-frames.

During the revision of this paper the author became aware of an interesting work
by Hernández et al. [4] in which the various embodiments of oversampling are uni-
fied into a single theory, including quasi-affine systems as well as oversampled affine
systems.

The techniques used by Ron and Shen in [7] and Laugesen in [6] are quite different
from those used originally by Chui and Shi in [2]. In each case a notion of relative pri-
mality between the dilation matrix and the oversampling matrix has proven essential
in the proof of the second oversampling theorem. One of the goals of our work is to
extend the original ideas of Chui and Shi to the matrix oversampling case with a care-
ful development of the relative primality conditions. These conditions are introduced
in section 2, where we define a notion of admissible oversampling and develop related
elementary results. In section 3 we present our version of the second oversampling
theorem.

The second goal of this work is to explore the compatibility of admissible over-
sampling with multiresolution analysis. In section 4 we restrict our attention to dual
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refinable affine systems associated with a certain class of scaling functions. We in-
troduce multiresolution operators for the oversampled systems and show that they
behave much like those associated with the original affine systems. This allows us to
prove that the duality of refinable affine frames is preserved under admissible oversam-
pling. Finally, we show that admissible oversampling endows the dual oversampled
systems with a discrete wavelet transform (DWT).

To close the section let us note that we will adopt the following definition for the
Fourier transform, f̂ , of f ∈ L2(Rn):

f̂(ξ) =

∫
Rn

f(x)e−i〈ξ,x〉dx.

2. Admissible oversampling matrices. Given a candidate oversampling ma-
trix, P ∈ GLn(Z), we are concerned with the quotient group P−1

Z
n/Zn. Let {θr}p−1

r=0

be a complete set of distinct coset representatives of the quotient group P−1
Z
n/Zn,

where again p = |detP |. In the following proposition we consider conditions on P
such that the action of M on P−1

Z
n/Zn is nice.

Proposition 2.1. Suppose M,P ∈ GLn(Z) with m := |detM | and p := |detP |.
Let {θr}p−1

r=0 be a complete set of distinct coset representatives of P−1
Z
n/Zn with θ0 =

0. Suppose PMP−1 ∈ GLn(Z). Then {Mθr}p−1
r=0 is a complete set of representatives

of P−1
Z
n/Zn if and only if M and P satisfy M−1

Z
n
⋂
P−1

Z
n = Z

n.
Proof. The statement is trivial if p = 1. We proceed to prove the result in the

case that p ≥ 2.
(⇒) By way of contradiction assume that M−1

Z
n
⋂
P−1

Z
n

� Z
n. Then there

exists θr0 , 1 ≤ r0 ≤ p− 1, such that θr0 ∈ (P−1
Z
n
⋂
M−1

Z
n
) \Z

n. This implies that

Mθr0 ≡ 0 (mod Z
n), which means {Mθr}p−1

r=0 cannot be a complete set of represen-
tatives of P−1

Z
n/Zn. This is a contradiction.

(⇐) The condition PMP−1 ∈ GLn(Z) implies that Mx ∈ P−1
Z
n if x ∈ P−1

Z
n;

i.e., the multiplication map induced byM maps P−1
Z
n into itself. Suppose {Mθr}p−1

r=0

is not a complete set of coset representatives of P−1
Z
n/Zn. Then there is some

θr0 , 1 ≤ r0 ≤ p − 1, such that Mθr0 ∈ Z
n, which implies that θr0 ∈ M−1

Z
n.

Since r0 �= 0, θr0 /∈ Z
n, implying that θr0 ∈ (P−1

Z
n
⋂
M−1

Z
n
) \ Z

n, and we have
M−1

Z
n
⋂
P−1

Z
n

� Z
n, a contradiction.

Definition 2.2. Let P ∈ GLn(Z). P is an admissible oversampling matrix for
M if PMP−1 ∈ GLn(Z) and M−1

Z
n
⋂
P−1

Z
n = Z

n. If the matrix M is clear from
the context we will simply say that P is admissible.

In the terminology of the preceding proposition, notice that if gcd (m, p) = 1,
then M−1

Z
n
⋂
P−1

Z
n = Z

n. Indeed, suppose θ ∈ (M−1
Z
n
⋂
P−1

Z
n). Since the

order of θ divides both m and p we conclude that θ ∈ Z
n.

Example 1. Consider the following examples of admissible oversampling matrices.

(a) Let M =
(

1 1
−1 1

)
, the Quincunx dilation matrix, and let P =

(
3 1
−2 1

)
. It is

easy to check that PMP−1 has integer entries and, in light of the previous
remark, that P is admissible.

(b) Let M = mIn, where m ≥ 2 is an integer and In is the n×n identity matrix.
Clearly, PMP−1 ∈ GLn(Z) for all P ∈ GLn(Z), which means a sufficient
condition for P to be admissible is that gcd (m, |detP |) = 1.

Given that P is admissible, Proposition 2.1 tells us that the mapping θr �→ Mθr,
0 ≤ r ≤ p− 1, acts to permute the coset representatives of P−1

Z
n/Zn. Let σ be the

permutation of {0, . . . , p− 1} such that θσ(r) ≡ Mθr (mod Z
n) in P−1

Z
n. Let σ−1 be

the associated inverse permutation. The following result, which replaces Lemma 2 of
[2] in this setting, describes a basic property of the permutation σ.
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Lemma 2.3. Let j0 ∈ Z. If P ∈ GLn(Z) is admissible, then for j ≥ j0 and
0 ≤ r ≤ p− 1, θσj(r) ≡ M j−j0θσj0 (r) (mod Z

n) in P−1
Z
n.

Proof. The statement holds trivially for j = j0. By induction, assume the formula
holds for j, and we will derive the formula for j+1. Proposition 2.1 and the definition
of σ imply that

θσj+1(r) ≡ Mθσj(r) ≡ M j+1−j0θσj0 (r) (mod Z
n).

Corollary 2.4. Let j, j0 ∈ Z with j ≥ j0, and suppose P ∈ GLn(Z) is admissi-
ble. For 0 ≤ r ≤ p− 1,

{DjTθσj(r)+kψ� : 1 ≤ � ≤ L, k ∈ Z
n} = {TM−j0θ

σj0 (r)
DjTkψ� : 1 ≤ � ≤ L, k ∈ Z

n}.

3. The second oversampling theorem. We now seek to describe our version
of the second oversampling theorem, generalizing the approach of Chui and Shi in-
troduced in [2]. We begin by demonstrating the preservation of Bessel bounds for
admissible oversampling, which follows essentially from Proposition 2.1.
Lemma 3.1. Suppose X(Ψ) is a Bessel system with bound B > 0 relative to an ex-

panding dilation matrix M ∈ GLn(Z). If P ∈ GLn(Z) is an admissible oversampling
matrix, then XP (Ψ) is a Bessel system with the same bound.

Proof. The fact thatX(Ψ) is Bessel with boundB > 0 implies for each f ∈ L2(Rn)
that

L∑
�=1

∑
j≥0

∑
k∈Zn

p−1∑
r=0

1

p

∣∣〈T−θrf, ψ�;j,k〉
∣∣2 ≤ B‖f‖2.

We now relate this sum to the inner products of the oversampled system, XP (Ψ):

L∑
�=1

∑
j≥0

∑
k∈Zn

p−1∑
r=0

1

p

∣∣〈T−θrf, ψ�;j,k〉
∣∣2 = L∑

�=1

∑
j≥0

∑
k∈Zn

p−1∑
r=0

1

p

∣∣〈f,DjTMjθr+kψ�〉
∣∣2

(by Proposition 2.1) =

L∑
�=1

∑
j≥0

∑
k∈Zn

1

p

∣∣〈f,DjTP−1kψ�〉
∣∣2

=

L∑
�=1

∑
j≥0

∑
k∈Zn

∣∣〈f, ψP�;j,k〉∣∣2.

Letting J ≥ 0 and observing that ‖DJf‖2 = ‖f‖2 it is easily shown that for each
f ∈ L2(Rn)

L∑
�=1

∑
j≥−J

∑
k∈Zn

∣∣〈f, ψP�;j,k〉∣∣2 ≤ B‖f‖2.

Letting J → ∞ we see that XP (Ψ) is a Bessel system with upper bound B.
Given an admissible oversampling matrix we can use the permutation σ guaran-

teed by Proposition 2.1 to rewrite the oversampled system as the union of appropriate
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affine-like systems, one for each coset of P−1
Z
n/Zn. Namely,

XP (Ψ) =

p−1⋃
r=0

1√
p
Sr (disjointly),

where Sr := {DjTθσj(r)+kψ� : 1 ≤ � ≤ L, j ∈ Z, k ∈ Z
n}. S0 is precisely X(Ψ), while

the remaining collections Sr, 1 ≤ r ≤ p − 1, are slightly more complicated. This
decomposition plays a key role in our proof of the second oversampling theorem.
Theorem 3.2 (second oversampling theorem). Suppose X(Ψ) is a frame with

lower and upper bounds A,B > 0, respectively, relative to an expanding dilation matrix
M ∈ GLn(Z). If P ∈ GLn(Z) is an admissible oversampling matrix, then XP (Ψ) is
a frame with the same bounds.

Remark. In [6], Laugesen shows that if X(Ψ) and X(Ψ̃) are dual frames and P
is admissible, then XP (Ψ) and XP (Ψ̃) are also dual frames. This statement will be
proven in the next section (see Theorem 4.4 below) for a certain class of refinable
functions.

Proof. The preservation of the upper bound was discussed above; hence, it suffices
to demonstrate the lower bound. Since S0 = X(Ψ), S0 is a frame with lower bound
A. It is, therefore, sufficient to prove that each of the collections Sr, 1 ≤ r ≤ p − 1,
is a frame with lower bound A.

Fix r, 1 ≤ r ≤ p− 1, and let f ∈ L∞
c (Rn), the dense subset of L2(Rn) consisting

of essentially bounded functions of compact support. It is sufficient to demonstrate
the lower bound for such an f . Suppose that supp f ⊂ K, where K is a compact
subset of R

n containing 0. Let R := diamK. Lastly, let λ− > 1 and λ+ be the strict
lower and upper bounds, respectively, for the moduli of the eigenvalues of M .

1. For j0 ∈ Z, let frj0 = T−M−j0θ
σj0 (r)

f . By defining Kr
j0
:= K−M−j0θσj0 (r) we

see that suppfrj0 ⊂ Kr
j0
. Observe that by Corollary 2.4 we have

∑
g∈Sr

|〈f, g〉|2 =
L∑
�=1

∑
j∈Z

∑
k∈Zn

∣∣〈f,DjTθσj(r)+kψ�〉
∣∣2

=

L∑
�=1

∑
j≥j0

∑
k∈Zn

∣∣〈frj0 , DjTkψ�〉
∣∣2 + L∑

�=1

∑
j<j0

∑
k∈Zn

∣∣〈f,DjTθσj(r)+kψ�〉
∣∣2

≥
L∑
�=1

∑
j∈Z

∑
k∈Zn

∣∣〈frj0 , ψ�;j,k〉∣∣2 −
L∑
�=1

∑
j<j0

∑
k∈Zn

∣∣〈frj0 , ψ�;j,k〉∣∣2

≥ A‖f‖2 −
L∑
�=1

∑
j<j0

∑
k∈Zn

∣∣〈frj0 , ψ�;j,k〉∣∣2.
We are left to prove that the latter sum tends to 0 as j0 → −∞.

2. Let ε > 0. Let us adopt the notation

Srj0(f) =

L∑
�=1

∑
j<j0

∑
k∈Zn

∣∣〈frj0 , ψ�;j,k〉∣∣2.
Estimating the inner product of frj0 with ψ�;j,k by∣∣〈frj0 , ψ�;j,k〉∣∣2 ≤ ‖frj0‖2 ‖ψ�;j,kχKr

j0
‖2 ≤ ‖f‖2

∫
MjKr

j0

|ψ�(x− k)|2dx,
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we obtain a bound on Srj0(f):

Srj0(f) ≤ ‖f‖2
L∑
�=1

∑
j<j0

∑
k∈Zn

∫
MjKr

j0
−k

|ψ�(x)|2dx.

We will break up the sum over j into two pieces, corresponding to j < j0 − J
and j0 − J ≤ j < j0, where J > 0 will be fixed below (independent of j0).
Since M is expanding it is well known that there exists β ≥ 1 such that for
x ∈ R

n and j > 0 we have the estimates

β−1λj−‖x‖ ≤ ‖M jx‖ ≤ βλj+‖x‖
and

β−1λ−j
+ ‖x‖ ≤ ‖M−jx‖ ≤ βλ−j

− ‖x‖,
where β ≥ 1 depends on λ−, λ+, and M .
We now make a pair of technical assumptions that will be used below, each
of which relies on the expanding property of M .
(a) We may assume j0 is negative and sufficiently less than 0 such that

R <
1

2
‖M−j0θσj0 (r)‖.

(b) We will assume J > 0 is such that λJ− > 2β−1(R+ ‖θσj0 (r)‖).
3. Let us first handle the terms for which j < j0 − J . Consider the set

E :=
⋃

j<j0−J
M jKr

j0 =
⋃

j<j0−J

(
M j(K −M−j0θσj0 (r))

)
.

Our first estimate involves replacing the sum over j by integration over E,
which requires the that the sets {M jKr

j0
}j<j0−J have finite overlaps which

can be bounded independently of j0. Supposing for the moment that this is
the case, we have

I1 := ‖f‖2
∑
�,k

∑
j<j0−J

∫
MjKr

j0
−k

|ψ�(x)|2dx ≤ C‖f‖2
∑
�,k

∫
E−k

|ψ�(x)|2dx.

We now investigate the disjointness of {M jKr
j0
}j<j0−J . Suppose that

M j1Kr
j0

⋂
M j2Kr

j0 �= ∅,

with j1 > j2; then M j1−j2Kr
j0

⋂
Kr
j0

�= ∅. Thus it suffices to prove that there
exists j1 > 0 (independent of j0) such that M jKr

j0

⋂
Kr
j0
= ∅ for all j ≥ j1.

For x ∈ Kr
j0
we have by assumption (a) that

‖x‖ ≤ R+ ‖M−j0θσj0 (r)‖ ≤ 3

2
‖M−j0θσj0 (r)‖

and

‖x‖ ≥ ‖M−j0θσj0 (r)‖ −R ≥ 1

2
‖M−j0θσj0 (r)‖.
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Again using the expanding property of M , we have for x ∈ Kr
j0
and j > 0

‖M jx‖ ≥ 1

β
λj−

1

2
‖M−j0θσj0 (r)‖.

Hence, a sufficient condition for the disjointness of the setsM jKr
j0
and Kr

j0
is

1

β
λj−

1

2
‖M−j0θσj0 (r)‖ ≥ 3

2
‖M−j0θσj0 (r)‖,

or, equivalently,

λj− ≥ 3β.

Again, since M is expanding we have λ− > 1, so we may choose j1 > 0 to be
the smallest j for which this last inequality holds.

4. Returning to the estimate from step 3 above, we will next fix J large enough
to control the term I1. Let us examine a typical j in the sum defining I1,
which is of the form j = j0 − J − j1 with j1 ≥ 1. If x ∈ M jKr

j0
, then

‖x‖ ≤ βλj0−J−j1− R+ βλ−J−j1
− ‖θσj0 (r)‖ ≤ βλ−J−j1

−
(
R+ ‖θσj0 (r)‖

)
,

where we have used the assumption that j0 < 0 and β is as above. We con-
clude that if x ∈ E, then ‖x‖ ≤ λ−J−1

−
(
R+‖θσj0 (r)‖

) ≤ 1
2 by the assumption

(b) above regarding J . This means that diamE ≤ 1, implying that any dis-
tinct integer translates of E are disjoint. While the definition of E above
does depend on both j0 and J , we just showed that the measure of E can
be made arbitrarily small independent of j0, by choosing J sufficiently large.
Since each ψ� ∈ L2(Rn) the dominated convergence theorem allows us to fix
J > 0 so large that I1 < ε independent of j0.

5. We now estimate the terms in Srj0(f) for j0 − J ≤ j < j0 with J fixed as
in the last step. It suffices to consider an arbitrary term of this sort, which
can be written as j = j0 − j1 with 1 ≤ j1 ≤ J . By definition, M jKr

j0
=

M j0−j1K−M−j1θσj0 (r), whereM
−j1θσj0 (r) is one of p−1 constants depending

on j0. Hence,

I2,j :=
∑
�,k

∫
MjKr

j0
−k

|ψ�(x)|2dx =
∑
�,k

∫
Mj0−j1K−M−j1θ

σj0 (r)
−k

|ψ�(x)|2dx.

Applying the dominated convergence theorem we may choose j0 sufficiently
less than zero such that I2,j < ε.

By definition we have

Srj0 = I1 +

j0−1∑
j=j0−J

I2,j ,

so, combining all the estimates, we have shown that Srj0 → 0 as j0 → −∞. Thus, Sr
is a frame with lower bound A for each r, 0 ≤ r ≤ p− 1, completing the proof.
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4. Oversampling and multiresolution analysis. Consider two families of
generating functions, Ψ := {ψ1, . . . , ψL} and Ψ̃ := {ψ̃1, . . . , ψ̃L} ⊂ L2(Rn). Let us
assume that the families are produced by refinement with scaling functions ϕ, ϕ̃ ∈ E,
respectively, where E := {f ∈ L2(Rn) : [f̂ , f̂ ] ∈ L∞(Tn)}. Recall that [f, g], the
bracket product of f, g ∈ L2(Rn), is defined by

[f, g] =
∑
k∈Zn

T2πkfT2πkg.

Adopting the convention that ψ0 := ϕ and ψ̃0 := ϕ̃ for notational convenience, we
have the refinement identities

ψ̂�(M
T ξ) = m�(ξ)ϕ̂(ξ) and

ˆ̃
ψ�(M

T ξ) = m̃�(ξ)ˆ̃ϕ(ξ)(4.1)

for 0 ≤ � ≤ L and a.e. ξ ∈ R
n, where m�, m̃� ∈ L∞(Tn) for 0 ≤ � ≤ L. We assume

here that M ∈ GLn(Z) is expansive. Finally, we assume that the filters satisfy the
generalized Smith–Barnwell equations for the dilation M ; namely, for 0 ≤ s ≤ m− 1
we have

L∑
�=0

m�(ξ)m̃�(ξ + 2π(MT )−1ϑs) = δ0,s a.e. ξ ∈ T
n,(4.2)

where {ϑs}m−1
p=0 is a complete set of distinct coset representatives of Z

n/MT
Z
n, m :=

|detM |, and δ0,s is the Kronecker delta. Implicitly assumed here is the fact that
ϑ0 = 0. Together, the scaling functions and filters specify the generating families Ψ
and Ψ̃ that define the affine systems X(Ψ) and X(Ψ̃). We will rely on some basic
properties of this class of refinable affine systems as found in [5].

Given that these two systems are dual frames for L2(Rn) we are interested in
two properties of the resulting oversampled systems. First, we will investigate when
the oversampled affine systems XP (Ψ) and XP (Ψ̃) relative to a matrix P ∈ GLn(Z)
are again dual frames. Second, we will examine the scaling equations associated with
the oversampled system and determine conditions on the oversampling matrix that
endow the oversampled system with a bonafide DWT. We conclude the section by
reconciling the conditions required for these two properties.

4.1. Multiresolution operators and duality. Our analysis will involve mul-
tiresolution operators that arise naturally as generalizations of the orthogonal pro-
jections found in the orthonormal MRA case. The affine approximation and detail
operators at the scale j ∈ Z, Pj and Qj , respectively, act on f ∈ L2(Rn) by

Pjf :=
∑
k∈Zn

〈f, ϕ̃j,k〉ϕj,k and Qjf :=

L∑
�=1

∑
k∈Zn

〈f, ψ̃�;j,k〉ψ�;j,k,(4.3)

whereas the oversampled affine approximation and detail operators at the scale j, PPj
and QP

j , respectively, are defined similarly by

PPj f :=
∑
k∈Zn

〈f, ϕ̃Pj,k〉ϕPj,k and QP
j f :=

L∑
�=1

∑
k∈Zn

〈f, ψ̃P�;j,k〉ψP�;j,k.(4.4)

We have the following basic properties for Pj and Qj .

Lemma 4.1 (see [5]). Suppose ϕ, ϕ̃ ∈ E and Ψ, Ψ̃ ⊂ L2(Rn) are such that (4.1)
and (4.2) hold.
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(a) Pj and Qj are bounded operators on L2(Rn) for each j ∈ Z.
(b) Pj +Qj = Pj+1 for each j ∈ Z.
(c) For each f ∈ L2(Rn), limj→−∞ ‖Pjf‖ = 0.

(d) If X(Ψ) and X(Ψ̃) are dual frames for L2(Rn), then for each f ∈ L2(Rn)
we have

f = lim
j→∞

Pjf =
∑
j∈Z

Qjf.(4.5)

Our objective is to establish similar properties for the oversampled multiresolution
operators armed with this information. We begin by expressing the oversampled
multiresolution operators in terms of the original affine counterparts.
Proposition 4.2. Let ϕ, ϕ̃ ∈ E. Let P ∈ GLn(Z). For each j ∈ Z, PPj and QP

j

are bounded operators on L2(Rn), and we have

(a) PPj = 1
p

∑p−1
r=0 TM−jθrPjT−M−jθr ,

(b) QP
j = 1

p

∑p−1
r=0 TM−jθrQjT−M−jθr .

Proof. It is sufficient to derive (a). We have for each f ∈ L2(Rn)

PPj f =
∑
k∈Zn

〈f, ϕ̃Pj,k〉ϕPj,k

=
1

p

p−1∑
r=0

∑
k∈Zn

〈f,DjTθr+kϕ̃〉DjTθr+kϕ

=
1

p

p−1∑
r=0

∑
k∈Zn

〈T−M−jθrf,D
jTkϕ̃〉TMjθrD

jTkϕ

=
1

p

p−1∑
r=0

TM−jθrPjT−M−jθrf.

It is important to realize that the representations of PPj and QP
j above are inde-

pendent of the choice of coset representatives. This is because Pj and Qj are invariant
under conjugation by translation operators overM−j

Z
n. Indeed, for each f ∈ L2(Rn)

and k0 ∈ Z
n we have

TM−jk0PjT−M−jk0f =
∑
k∈Zn

〈T−M−jk0f,D
jTkϕ̃〉TM−jk0D

jTkϕ

=
∑
k∈Zn

〈f, TM−jk0D
jTkϕ̃〉TM−jk0D

jTkϕ

=
∑
k∈Zn

〈f,DjTk+k0 ϕ̃〉DjTk+k0ϕ

= Pjf.
Since any two representatives of the same coset in P−1

Z
n/Zn differ by an element of

Z
n the claim follows. This independence is particularly important for the following

proposition.
Proposition 4.3. Let ϕ, ϕ̃ ∈ E. If P ∈ GLn(Z) is an admissible oversampling

matrix, then for each j ∈ Z

PPj +QP
j = PPj+1.
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Proof. The condition on the oversampling matrix P guarantees that {Mθr}p−1
r=0

is a complete set of coset representatives for P−1
Z
n/Zn. This fact, together with the

previous proposition, implies that for f ∈ L2(Rn)

PPj f +QP
j f =

1

p

p−1∑
r=0

(
TM−jθrPjT−M−jθrf + TM−jθrQjT−M−jθrf

)

=
1

p

p−1∑
r=0

TM−jθrPj+1T−M−jθrf

=
1

p

p−1∑
r=0

TM−(j+1)MθrPj+1T−M−(j+1)Mθrf

=
1

p

p−1∑
r=0

TM−(j+1)θrPj+1T−M−(j+1)θrf

= PPj+1f.

We are now in the position to examine the duality of the oversampled systems.
Theorem 4.4. Suppose ϕ, ϕ̃ ∈ E and Ψ, Ψ̃ ⊂ L2(Rn) are such that (4.1) and

(4.2) hold. If X(Ψ) and X(Ψ̃) are dual frames and P ∈ GLn(Z) is an admissible
oversampling matrix, then XP (Ψ) and XP (Ψ̃) are dual frames with the same bounds
as X(Ψ) and X(Ψ̃), respectively. Moreover, for each f ∈ L2(Rn) we have

f = lim
j→∞

PPj f =
∑
j∈Z

QP
j f = f(4.6)

and

lim
j→−∞

‖PPj f‖ = 0.(4.7)

Proof. For this class of scaling functions we use the corresponding properties
of Pj and Qj contained in Lemma 4.1. Let f ∈ L2(Rn). Since PPj is the finite
sum of translated versions of Pj we conclude (4.7) directly from Lemma 4.1(c) and
Proposition 4.2. By Lemma 4.1(d) we also have that Pjf → f in L2(Rn) as j → ∞,
from which we will obtain the first equality of (4.6) by approximation. Indeed, for
each u ∈ R

n we have the estimate

‖TM−juPjT−M−juf − f‖ ≤ ‖TM−juf − f‖+ ‖TM−juPjT−M−juf − TM−juf‖
≤ ‖TM−juf − f‖+ ‖PjT−M−juf − f‖
≤ ‖TM−juf − f‖+ ‖Pjf − f‖+ ‖PjT−M−juf − Pjf‖
≤ ‖TM−juf − f‖+ ‖Pjf − f‖+ C‖T−M−juf − f‖.

Each of the three terms in this estimate tend to zero as j → ∞, and thus the first
equality of (4.6) follows by summing the above as u = θr, 0 ≤ r ≤ p− 1.

By Theorem 3.2, we have that XP (Ψ) and XP (Ψ) are frames with the same
bounds as their respective affine counterparts. Lastly, the second equality of (4.6)
follows from a telescoping argument using Proposition 4.3 and the fact that the over-
sampled systems are Bessel, thereby implying that XP (Ψ) and XP (Ψ̃) are indeed
dual.
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Remark. We should note that in many cases the assumption in Theorem 4.4 that
the original affine systems are actually dual frames may be avoided. For example,
in [8] Ron and Shen have derived sufficient conditions (assuming a weak smoothness
condition on the refinable family) involving identities of the form (4.2) under which
a pair of refinable affine Bessel systems will constitute dual frames.

4.2. Discrete wavelet transform. Throughout this section we assume that
P ∈ GLn(Z) is an admissible oversampling matrix for the dilation M . Recall that
the refinement equations (4.1) can be written in the space domain as

ψ�;j,k = m
1
2

∑
r∈Zn

α�;rϕj+1,r+Mk

for 0 ≤ � ≤ L, j ∈ Z, and k ∈ Z
n, where m�(ξ) =

∑
r∈Zn

α�;re
−i〈ξ,r〉. We omit the

analogous formulas for the dual functions and filters. We can obtain a similar formula
for the oversampled system by observing that

ψP�;j,k =
1√
p
ψ�;j,P−1k =

√
m
∑
r∈Zn

α�;r
1√
p
ϕj+1,r+MP−1k

=
√
m
∑
r∈Zn

α�;r
1√
p
ϕj+1,P−1(Pr+M̃k)

=
√
m
∑
r∈Zn

α�;rϕ
P
j+1,Pr+M̃k

,

where M̃ := PMP−1. Notice that because P is admissible M̃ has integer entries.
Letting αP�;r be the coefficient sequence given by

αP�;r :=

{
α�;s, r = Ps, s ∈ Z

n,

0 otherwise,

we arrive at

ψP�;j,k =
√
m
∑
r∈Zn

αP�;rϕ
P
j+1,r+M̃k

.

Thus, given f ∈ L2(Rn) the sequence of inner products {〈f, ψP�;j,k〉}k∈Zn is given by

〈f, ψP�;j,k〉 =
√
m
∑
r∈Zn

∑
r∈Zn

αP�;r〈f, ϕPj+1,r+M̃k
〉

for 0 ≤ � ≤ L and j ∈ Z. To those familiar with subband coding theory, this is
immediately recognizable as a convolution followed by a downsampling operation.
Note that the downsampling is relative to M̃ rather than M , as for the original
affine system. We would like this decomposition to be reversible, meaning that the
sequence {〈f, ϕj+1,k〉}k∈Zn should be recoverable from the sequences {〈f, ψ�;j,k〉}k∈Zn ,

0 ≤ � ≤ L, by first upsampling each sequence by M̃ and then summing the respective
convolutions with the dual filter coefficient sequences α̃P�;r. It is well known that this

is equivalent to the coefficient sequences αP�;r and α̃P�;r satisfying the filter equations

(4.2) with M̃ instead of M . Letting mP
� be defined by

mP
� (ξ) =

∑
r∈Zn

αP�;re
−i〈ξ,r〉
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for 0 ≤ � ≤ L, we have mP
� (ξ) = m�(P

T ξ) by the definition of αp�;r. The necessary
generalized Smith–Barnwell equations are thus

L∑
�=0

mP
� (ξ)m̃

P
� (ξ + 2π(M̃T )−1ϑ̃s) = δ0,s(4.8)

for a.e. ξ ∈ T
n and 0 ≤ s ≤ m − 1, where {ϑ̃s}m−1

s=0 is a complete set of coset
representatives of Z

n/M̃T
Z
n with ϑ̃s = 0. In terms of the original filters, (4.8) is

equivalent to

L∑
�=0

m�(ξ)m̃�(ξ + 2πPT (M̃T )−1ϑ̃s) = δ0,s(4.9)

for 0 ≤ s ≤ m − 1, because mP
� (ξ) = m�(P

T ξ). With the following theorem we
describe a condition on the oversampling matrix that reduces (4.9) to (4.2), giving a
condition under which the dual oversampled affine systems have an associated DWT.
Theorem 4.5. Let P ∈ GLn(Z) be an admissible oversampling matrix, and

assume that P also satisfies (PT )−1
Z
n
⋂
(M̃T )−1

Z
n = Z

n. Then (4.2) and (4.9) are
equivalent.

Proof. It is sufficient to prove that {MTPT (M̃T )−1ϑ̃s}m−1
s=0 is a complete set of

representatives for Z
n/MT

Z
n. In other words we need to show only that

(MT )−1
Z
n =

m−1⋃
s=0

(
PT (M̃T )−1ϑ̃s + Z

n
)
.

Observing that {(M̃T )−1ϑ̃s}m−1
s=0 is a complete set of representatives of (M̃T )−1

Z
n/Zn

our problem is equivalent to showing that if {γs}m−1
s=0 is a complete set of distinct

coset representatives for (M̃T )−1
Z
n/Zn, then {PT γs}m−1

s=0 is a compete set of coset
representatives for (MT )−1

Z
n/Zn.

The first bit of business is to establish that PT γs ∈ (MT )−1
Z
n. This requires

for each x ∈ Z
n a corresponding y ∈ Z

n such that PT (M̃T )−1x = (MT )−1y or,
equivalently, that MTPT (M̃T )−1 has integer entries. Computing this we see

MTPT (M̃T )−1 =MTPT (PT )−1(MT )−1PT = PT ,

which clearly has integer entries.
We now proceed by way of contradiction. Suppose that {PT γs}m−1

s=0 is not a
complete set of coset representatives. Then PT γs0 ∈ Z

n for some s0, 1 ≤ s0 ≤ m− 1.
Since γs0 /∈ Z this implies that (PT )−1

Z
n
⋂
(M̃T )−1

Z
n

� Z
n, a contradiction.

4.3. Reconciliation of the hypotheses. In the last subsection we found a
relationship between the dilation matrix, M , and the oversampling matrix, P , that
is sufficient for the existence of a DWT for the oversampled system. This condition
essentially ensures that the perfect reconstruction filter equations for the matrix M̃ :=
PMP−1 are equivalent to those associated with M . It turns out that this condition
is automatically satisfied for all admissible oversampling matrices.
Theorem 4.6. Let M,P ∈ GLn(Z) such that M̃ := PMP−1 ∈ GLn(Z). Then

P−1
Z
n
⋂

M−1
Z
n = Z

n(4.10)
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and

(PT )−1
Z
n
⋂
(M̃T )−1

Z
n = Z

n(4.11)

are equivalent.
Proof. We prove the result step by step.
1. By symmetry, it is sufficient to prove (4.10) implies (4.11). Indeed, letting

M ′ = M̃T and P ′ = PT we have (M̃ ′)T =M and (P ′)T = P .
2. Consider (4.11). If x ∈ (M̃T )−1

Z
n
⋂
(PT )−1

Z
n, then x = (M̃T )−1r =

(PT )−1s for some r, s ∈ Z
n. This allows us to write

(M̃T )−1
Z
n
⋂
(PT )−1

Z
n =

{
(PT )−1s : s ∈ Z

n and (PT )−1MT s ∈ Z
n
}
.

Letting S = {s ∈ Z
n : (PT )−1MT s ∈ Z

n}, we have (M̃T )−1
Z
n
⋂
(PT )−1

Z
n =

(PT )−1S. Thus, (4.11) is equivalent to S = PTZ
n.

3. PTZ
n ⊆ S. Proof. Let s ∈ PTZ

n, and write s = PTx, x ∈ Z
n. Then

(PT )−1MTPTx = M̃Tx ∈ Z
n because M̃ has integer entries. Hence, s ∈ S.

4. We now provide an unusual characterization of S. It is easy to see that
x ∈ Z

n if and only if 〈x, y〉 ∈ Z for all y ∈ Z
n. Thus, s ∈ S if and only if

〈(PT )−1MT s, y〉 ∈ Z for all y ∈ Z
n. This, in turn, is equivalent to s ∈ S if

and only if 〈s,My〉 ∈ Z for all y ∈ P−1
Z
n.

5. Recall from Proposition 2.1 that (4.10) is equivalent to {Mθr}p−1
r=0 being a

complete set of coset representatives for P−1
Z
n/Zn. In other words, (4.10)

allows us to write u ∈ P−1
Z
n as u = y +Mv, where y ∈ Z

n and v ∈ P−1
Z
n.

Notice that if u /∈ Z
n, then v /∈ Z

n. This will be used below.
6. S ⊆ PTZ

n. Proof. Let s ∈ Z
n, and suppose that s /∈ PTZ

n. Then there
exists u ∈ P−1

Z
n \Z

n such that 〈s, u〉 /∈ Z. As explained above, (4.10) allows
us to write u = y +Mv, where y ∈ Z

n and v ∈ P−1
Z
n. Since u /∈ Z

n, we
must have v /∈ Z

n. Then 〈s, u〉 = 〈s, y〉 + 〈s,Mv〉 /∈ Z, and since 〈s, y〉 ∈ Z

we conclude that 〈s,Mv〉 /∈ Z. Hence, s /∈ S.
Theorem 4.6 shows that the additional assumption of (4.11) in Theorem 4.5 is

redundant and that the dual oversampled affine systems always have an associated
DWT if P is admissible.
Corollary 4.7. If P ∈ GLn(Z) is an admissible oversampling matrix, then

(4.2) and (4.9) are equivalent.

5. Discussion of related work. With the number of variations on this theme
of bound-preserving oversampling, some comparisons are in order. In particular, we
will discuss in detail how our work relates to that of Chui and Shi, Ron and Shen,
and Laugesen.

As mentioned in the introduction, the problem of identifying sufficient conditions
for the bound-preserving oversampling of affine frames started with Chui and Shi in
the one-dimensional setting with dyadic wavelets frames and oversampling by an odd
integer [2]. Our proof for Theorem 3.2 is an adaptation of that given in [2] to the
n-dimensional case for expansive dilations M ∈ GLn(Z) and admissible oversampling
matrices P . Chui and Shi improved on their one-dimensional result in [3], extending
the second oversampling theorem to expanding dilations M ∈ GLn(Z) (i.e., λ an
eigenvalue ofM implies |λ| > 1) and P = pIn, with gcd (p,detM) = 1. This version of
the second oversampling theorem also allows for the replacement of the Z

n-translations
by bZn-translations, where b > 0. We will see below, more generally, that this case
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actually follows from the Z
n-translation case, which means that Theorem 3.2 implies

each of the results of Chui and Shi.
We turn now to the Gramian analysis of Ron and Shen. The version of the second

oversampling theorem offered by Ron and Shen in [7] achieves the result of Theorem
3.2, provided that M ∈ GLn(Z) is expansive and P ∈ GLn(Z) satisfies

PTZ
n
⋂
(MT )jZn = (MT )jPTZ

n(5.1)

for each j ≥ 0. We will see that this rather complicated expression is actually equiv-
alent to our notion of admissibility. Let us begin by showing that (5.1) implies that
P is admissible in terms of Definition 2.2. The j = 1 statement of (5.1) says that

PTZ
n
⋂

MT
Z
n =MTPTZ

n,

which is equivalent to

Z
n
⋂
(PT )−1MT

Z
n = (PT )−1MTPTZ

n =: M̃T
Z
n,

from which we conclude that M̃ := PMP−1 ∈ GLn(Z). Moreover, we have

PTZ
n
⋂

MT
Z
n =MTPTZ

n ⇔ (M̃T )−1
Z
n
⋂
(PT )−1

Z
n = Z

n.

But by Theorem 4.6 we have

(M̃T )−1
Z
n
⋂
(PT )−1

Z
n = Z

n ⇔ M−1
Z
n
⋂

P−1
Z
n = Z

n,

implying that P satisfies our admissibility condition.
For the reverse implication, assume P is admissible according to Definition 2.2.

Using the notation of Proposition 2.1 we have that {M jθr}p−1
r=0 is a complete set of

coset representatives for P−1
Z
n/Zn for each j ≥ 0. This is achieved by successively

applying the proposition to the collection {M j−1θr}p−1
r=0. Note that since PMP−1 ∈

GLn(Z), it follows that PM
jP−1 = M̃ j ∈ GLn(Z). Thus, Proposition 2.1 implies

that

M−j
Z
n
⋂

P−1
Z
n = Z

n.

Theorem 4.6 now guarantees

M−j
Z
n
⋂

P−1
Z
n = Z

n ⇔ (M̃T )−jZn
⋂
(PT )−1

Z
n = Z

n,

but we also have

(M̃T )−jZn
⋂
(PT )−1

Z
n = Z

n ⇔ (MT )jZn
⋂

PTZ
n = (MT )jPTZ

n.

This string of equivalences shows that our notion of admissibility is equivalent to (5.1).
Finally, we compare our version of the second oversampling theorem to the one

of Laugesen [6]. Laugesen handles two kinds of dilation matrices M ∈ GLn(Z):
the expanding and amplifying dilations. The expanding dilations include, but are not
limited to, the expansive dilations considered in this work, while the class of amplifying

matrices includes such dilations as
(

2 0
0 1

)
. Thus, Laugesen’s result applies to a larger

class of dilations than Theorem 3.2.
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Laugesen also considers translations over the lattice bZn, where b ∈ GLn(R)
commutes with M . This generalization is not essential, as we will now describe using
notation as in Theorem 3.2. Let us denote the affine system generated by Ψ ⊂ L2(Rn)
relative to translations over bZn by Xb(Ψ) and, similarly, the associated oversampled
system {DjTbP−1kψ� : 1 ≤ � ≤ L, j ∈ Z, k ∈ Z

n} by XP
b (Ψ). For b ∈ GLn(R), let

Db be the unitary dilation operator mapping f ∈ L2(Rn) to Dbf := |det b| 12 f(b·).
Suppose that Xb(Ψ) is a frame for L2(Rn) with lower bound A and upper bound B.
We then have for each f ∈ L2(Rn)

A‖f‖2 ≤
L∑
�=1

∑
j∈Z

∑
k∈Zn

∣∣〈D−1
b f,DjTbkψ�〉

∣∣2 ≤ B‖f‖2.

Using the fact that b and M commute we obtain for each f ∈ L2(Rn)

A‖f‖2 ≤
L∑
�=1

∑
j∈Z

∑
k∈Zn

∣∣〈f,DjTkDbψ�〉
∣∣2 ≤ B‖f‖2.

This argument shows that Xb(Ψ) is a frame with bounds A,B if and only if X(DbΨ)
is a frame with the same bounds. If P is admissible, then using Theorem 3.2 we
conclude that XP (DbΨ) is a frame with bounds A,B. Thus, for each f ∈ L2(Rn) we
have

A‖f‖2 ≤
L∑
�=1

∑
j∈Z

∑
k∈Zn

∣∣〈Dbf,D
jTP−1kDbψ�〉

∣∣2 ≤ B‖f‖2,

from which it follows that

A‖f‖2 ≤
L∑
�=1

∑
j∈Z

∑
k∈Zn

∣∣〈f,DjTbP−1kψ�〉
∣∣2 ≤ B‖f‖2.

Hence, if M and P satisfy the hypotheses of Theorem 3.2 and Xb(Ψ) is a frame with
bounds A,B, then the preceding argument shows that Theorem 3.2 is sufficient to
conclude that XP

b (Ψ) is a frame with the same bounds.
We will now discuss how the notion of admissibility for an oversampling matrix

P in [6] is equivalent to ours. Laugesen uses a notion of relative primality for M,P ∈
GLn(Z) in which M is prime relative to P if MT

Z
n
⋂
PTZ

n ⊆ MTPTZ
n. In [6],

given a dilation M (which we will assume is expansive), an oversampling matrix
P ∈ GLn(Z) is admissible if PMP−1 ∈ GLn(Z) and M is prime relative to P .
Observe that

MT
Z
n
⋂

PTZ
n ⊆ MTPTZ

n ⇔ (PT )−1
Z
n
⋂
(M̃T )−1

Z
n ⊆ Z

n,(5.2)

where M̃ = PMP−1. On the other hand, since PT , M̃T ∈ GLn(Z) we have

Z
n ⊆ (PT )−1

Z
n
⋂
(M̃T )−1

Z
n.

It follows that under the hypothesis that PMP−1 ∈ GLn(Z), M being prime relative
to P requires equality rather than containment in (5.2). In light of Theorem 4.6 we
see that the notion of admissibility in [6] is equivalent to ours.
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Abstract. The orbital stability of possibly large semidiscrete shock waves is considered. These
waves are traveling wave solutions of discrete in space and continuous in time systems of conservation
laws, which constitute a class of lattice dynamical systems (LDSs). The underlying lattice ∆xZ

is by nature not invariant by change of frame. Thus semidiscrete shock waves cannot really be
transformed into stationary waves, unlike other kinds of approximate shock waves (e.g., viscous or
relaxation shocks). This implies that the linearization of the LDS about a given semidiscrete shock
wave yields a nonautonomous linear LDS, which cannot be tackled by means of Laplace transform
in time. However, viewing the LDS as a finite-difference PDE and performing afterall the change of
frame, the profile becomes a stationary solution of the transformed equation. Then, linearizing about
the profile, we get an evolution finite-difference PDE in which the spatial operator L, a delayed and
advanced differential operator, plays a crucial role in our stability analysis. In particular, we point
out an integral formula relating the Green’s function of the linearized LDS to the Green’s function
Gλ of (λ − L). Specializing to the upwind scheme, we take advantage of the material introduced
in an earlier work [S. Benzoni-Gavage, J. Dynam. Differential Equations, 14 (2002), pp. 613–674],
in particular of an Evans function, to decompose the Green’s function similarly as Zumbrun et al.
did for other approximate shock waves. This decomposition relies on explicit representations of the
projections involved in the exponential dichotomies and their extensions through the gap lemma. It
enables us in turn to prove the orbital stability of the wave, provided that the Evans function D
does not vanish in the right half-plane but on the discrete set 2iπσZ (σ being the speed of the wave)
and that D has a simple root at 0. Additionally, we show that this spectral stability condition is
satisfied at least for (extreme) weak shocks. Our spectral stability condition, and more specifically
the D′(0) �= 0 part, appears to be a relaxed version of the requirement of Chow, Mallet-Paret,
and Shen [J. Differential Equations, 149 (1998), pp. 248–291], which we show to be too strong for
traveling waves in conservative LDSs.
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1. Introduction. Besides numerical analysis, which is concerned with the con-
vergence of numerical schemes, the study of qualitative features of schemes on fixed
meshes is of interest to apprehend computer simulations. When the scheme is discrete
in space and continuous in time, it is also called a lattice dynamical system (LDS),
and when it is fully discrete it is called a coupled map lattice (CML). LDSs and CMLs
are also interesting from a purely analytical point of view. They are believed to ex-
hibit richer structures than evolution PDEs, similar to discrete dynamical systems
compared to ODEs. The existence and stability of special, traveling wave solutions is
still a wide open problem for most LDSs and CMLs. In particular, no direct method is
known to tackle the existence of traveling waves in CMLs. A very nice approach was
proposed by Chow, Mallet-Paret, and Shen [6], who were able to deduce the existence
of discrete traveling waves from the existence of stable enough semidiscrete traveling

∗Received by the editors November 18, 2002; accepted for publication (in revised form) February
7, 2003; published electronically October 2, 2003.

http://www.siam.org/journals/sima/35-3/41805.html
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waves. However, their general theorems were designed for, and basically apply to,
scalar dissipative equations (in connection with reaction-diffusion equations). Here
we are interested in conservative systems, having in mind the schemes discretizing
hyperbolic systems of conservation laws.

We proved in earlier papers the existence of semidiscrete shock waves of small
enough amplitude by means of a center manifold argument. In [2], we dealt with the
basic upwind scheme, valid when all characteristic speeds are of the same sign. The
center manifold theorem used in [1] came from the standard theory of delay differen-
tial equations. In [3], we were able to generalize our existence result to more general
schemes, by first proving a center manifold theorem for functional differential equa-
tions of mixed type (i.e., with both delay and advance). In the present paper, we are
concerned with the time asymptotic stability of these semidiscrete waves. This prob-
lem was first addressed in [2], where we constructed an Evans function, presumably
encoding the linearized stability of the wave, regardless of its amplitude. Our first
purpose is to clarify this claim. In particular, we shall make the connection with the
approach of Chow, Mallet-Paret, and Shen [6] and show that their stability condition
is in fact too restrictive in our context. The stability condition we propose instead
is, in terms of the Evans function, the same as the one derived by Zumbrun et al. for
viscous shock waves [8, 24, 23] and also relaxation shocks [18]. The drawback of this
approach is that, up to the present day, we have been able to construct the Evans
function only for the upwind scheme. However, this construction is basically linked to
exponential dichotomies. On this topic, some recent results obtained simultaneously
and independently by Härterich, Sandstede, and Scheel [10] and Mallet-Paret and
Verduyn Lunel [17] for delayed and advanced differential operators indicate that it
might be possible to define and take advantage of an Evans function for more general
schemes. This is why within this paper we consider general schemes whenever it is
possible. The other important point is that we aim at dealing with waves of arbitrary
amplitude. This makes at least two basic differences with the approach adopted by
Bianchini in his nevertheless very interesting related work [5].

Going through the contents, section 2 provides all the background necessary for
our analysis. We discuss the assumptions on the scheme, recall the existence result
of [3], and prove a corollary giving uniform bounds on the profile and its derivatives.
These bounds will in turn enable us to prove the stability of small amplitude profiles
(Theorem 3.9) by means of an energy method in the manner of Goodman [9] (also
see [13] for fully discrete shocks of rational speed), thus providing an example where
our spectral stability condition holds. In section 3, we concentrate on the spectral
stability of semidiscrete shocks, making the connection with Chow, Mallet-Paret, and
Shen’s approach [6]. In particular, we show spectral mapping properties between
the bounded operator R considered in [6] (made out of the solution operator of the
LDS linearized about the wave and the shift operator, in a rather natural way as we
explain in section 3.1) and the delayed and advanced differential operator L obtained
after a not natural (because it does not preserve the lattice) change of frame. The
interplay between the two approaches eventually appears to be very useful to gain
insight. This should be clear to the reader from the derivation of the Green’s function
in section 4.1. Before that, we build in section 3.7 all the material necessary to have
suitable decompositions of that Green’s function. In the meanwhile, we also recall the
construction of the Evans function. That part of our work is for the moment restricted
to the upwind scheme. However, it is to be noted that the argument given at the end
of section 3.7 is valid for all schemes. It shows that Chow, Mallet-Paret, and Shen’s
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spectral condition fails for conservative systems, thus stressing the interest of our
alternative approach. Also valid for general schemes is our Theorem 4.2, giving the
Green’s function of the linearized LDS in terms of a Cauchy integral for the Green’s
function Gλ of (λ − L). From section 4.2, we specialize the upwind scheme, for which
we have explicit representations of the projections involved in the decomposition of
the Green’s function Gλ (Proposition 4.4 and Theorem 4.7). Eventually, we arrive at
a decomposition of Gλ (Theorem 4.8) that is analogous to those obtained by Zumbrun
et al. in different contexts [24, 23, 18]. This enables us to prove suitable pointwise
estimates (Theorem 4.11) on the Green’s function of the linearized LDS by choosing
appropriates shiftings of the contour. In fact, we make use of simple, pointwise straight
contours, as in [23, 18]. Although not surprising, the interesting point is that we
recover in those estimates some heat kernels with diffusion coefficients corresponding
to the viscosity matrix of the scheme. This gives an a posteriori interpretation of the
scheme’s properties in terms of the modified (viscous) system of conservation laws.
Finally, we deduce from Theorem 4.11 the orbital nonlinear stability in all discrete
spaces1

Lα(Z;RN ) =


 v = (vj)j∈Z ;

∑
j∈Z

|vj |α < +∞

 , α ≥ 1,

with respect to small enough summable perturbations (i.e., in L1), of semidiscrete
shocks that satisfy our spectral assumption. This is our Theorem 5.1, in which the
expected rates of decay are also obtained.

2. Semidiscrete conservative systems.

2.1. Background. We consider a conservative semidiscrete scheme

dvj
dt

+
1

∆x
( g(vj−p+1, . . . , vj+q)− g(vj−p, . . . , vj+q−1) ) = 0,(2.1)

where p and q are given integers. For the most classical schemes p and q are in fact
less than or equal to 1. We are interested in systems, and thus the unknowns vj are
vector valued, say, in R

N .
We equivalently look at (2.1) as an LDS operating on sequences v = (vj)j∈Z,

dv

dt
= G(v),(2.2)

where by definition

G(v)j=G(vj−p, . . . , vj+q) := − 1
∆x (g(vj−p+1, . . . , vj+q)− g(vj−p, . . . , vj+q−1)) .(2.3)

The form of G in (2.3) actually characterizes finitely supported LDSs that are con-
servative, in the sense that constants are solutions of (2.2) and that solutions associ-
ated with summable initial data are mass preserving (i.e.,

∑
v is independent of t).

Conversely, it is well known and easy to show that a finitely supported mapping G,
vanishing on constants and such that

∑G(v) = 0 for all summable v, is necessarily
of the form (2.3).

1Our somewhat unusual notation is intended to reserve the notation 	m for left eigenvectors of
the system.
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We are concerned with the stability of traveling wave solutions of (2.1), approxi-
mating shock waves of the underlying continuous system of conservation laws

∂tu + ∂xf(u) = 0,(2.4)

with

f(u) := g(u, . . . , u).(2.5)

Those traveling waves are referred to as semidiscrete shock waves. Our motivation is
not the convergence of the scheme (2.1) as ∆x → 0, which is still an open problem in
general (see, however, the very interesting recent work by Bianchini [5], dealing with
small total variations solutions). Rather, we address the long time behavior of (2.2)
for initial data close to a possibly large reference semidiscrete shock. The question
is of interest in itself, since very few results are known on the nonlinear stability of
traveling waves in vector valued LDSs. Furthermore, part of our motivation was to
investigate the possibility of obtaining fully discrete profiles from semidiscrete ones.
Indeed, the existence of semidiscrete profiles has been shown in earlier works [1, 3].
But the existence of traveling wave solutions of the fully discrete (explicit) scheme

vn+1 = H(vn) := vn +∆tG(vn)(2.6)

remains an open problem in general. Discrete shock profiles must solve a “boundary
value problem”

V (j − η) = H(V (j − p), . . . , V (j + q)), V (±∞) = u±,(2.7)

where η is the discrete wave speed and H is just related to H by the formula

H(v)j =: H(vj−p, . . . , vj+q).

This problem has received much attention in the last few decades, but, up to now,
the existence results are limited to η rational [15] and η Diophantine [14]. In other re-
spects, the work of Chow, Mallet-Paret, and Shen [6] has provided a unified treatment
of —discrete traveling—waves irrespective of whether their speed is rational or irra-
tional (sic), showing in particular (Theorem B) that the existence of spectrally stable
semidiscrete traveling waves implies the existence of fully discrete traveling waves for
small enough time step ∆t. In this paper, we show that the spectral requirement of
Chow, Mallet-Paret, and Shen is in fact too strong for shock waves and propose a
way to relax it in terms of an Evans function.

Our main purpose is to show the nonlinear stability, with a shift, of semidiscrete
shocks. It is to be noted that this result would directly follow from Theorem A in [6]
if their spectral requirement were satisfied.

We introduce below rather standard assumptions. Namely, we assume that g is
at least of class C2. To avoid confusion with left eigenvectors appearing below, we
denote by Lα(Z;RN ), or simply Lα, the Banach space of sequences with values in R

N

of which the αth power is summable on Z. Then G obviously maps Lα into Lα for all
α ≥ 1 (for this we need only that g be Lipschitz). We point out that G is of class Cr
if g is so—the “only if” part being also true when considering the smoothness of G
on L1. Next, we assume that the exact flux f is strictly hyperbolic in some connected
domain U of R

N ; that is, the Jacobian matrix A(u) := df(u) has N distinct real
eigenvalues denoted by

a1(u) < · · · < aN (u).(2.8)
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As usual, we introduce a basis of eigenvectors, {r1(u), . . . , rN (u)}, and the dual basis
{�1(u), . . . , �N (u)}. This means that

L(u)A(u)R(u) = diag (a1(u), . . . , aN (u)) =: a(u),

where

L(u) :=




−�1(u)−
...

−�N (u)−


 and R(u) :=


 | |
r1(u) · · · rN (u)
| |


 .

For later use, we also define rN+j = rj and �N+j = �j ; that is, the superscripts
numbering the eigenvectors are in fact viewed in Z/NZ. Furthermore, we assume
that there is a k ∈ {1, . . . , N} such that the kth characteristic field is genuinely
nonlinear. We thus choose rk so that

dak(u) · rk(u) > 0 ∀u ∈ U .(2.9)

The exact system of conservation laws (2.4) is known to admit shock wave solutions
of the form u(x, t) = U(x − σt) with U being a step function connecting a “left
state” u− to a “right state” u+, and the speed σ being related to u− and u+ by the
Rankine–Hugoniot condition

f(u+) − f(u−) = σ (u+ − u− ).(2.10)

Shock wave solutions are also submitted to an admissibility criterion. A convenient
criterion is the one due to Lax [11]. It is relevant at least for shocks of small strength,
that is, when the endstates are close enough.

Definition 2.1 (Lax [11]). A triple (u−, u+, σ) is called a k-shock if and only if
the Rankine–Hugoniot condition (2.10) holds, together with the following inequalities:

ak(u+) < σ < ak(u−),
ak−1(u−) < σ < ak+1(u+).

(2.11)

The existence of k-shocks (of small strength) is implied by the genuine nonlinearity
of the kth characteristic field (see [11] or any textbook on hyperbolic conservation
laws).

2.2. Assumptions on the scheme. We proved in [3] the existence of semidis-
crete shocks of small strength under two basic assumptions on the scheme, namely
dissipativeness and nonresonance, plus a “technical” one. More precisely, we denote
for l ∈ {−p+ 1, . . . , q}

Cl(u) := ∂lg(u, . . . , u).(2.12)

Note that Cl is matrix valued (in R
N×N ) and because of (2.5) we have

q∑
l=−p+1

Cl(u) = A(u).

We also introduce the so-called viscosity matrix

Q(u) :=

q∑
l=−p+1

(1− 2l)Cl(u).(2.13)
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(H1) Dissipativeness. There exists µ > 0 so that

Q(u) ≥ µ I ∀u ∈ U .(2.14)

(H2) Nonresonance. For all u ∈ U , σ �= 0, and z in iR \ {0},

∆(σ; z, u) := σ z I + (e−z − 1)

q∑
l=−p+1

ezl Cl(u) ∈ GLN (C).(2.15)

(H3) Joint reduction. For all l ∈ {−p+ 1, . . . , q} and all u ∈ U ,

Cl(u)A(u) = A(u)Cl(u).(2.16)

These assumptions are discussed in [3]. For the existence of semidiscrete shocks,
dissipativeness is required only in the kth characteristic direction. But we need more
for stability. This is why we have strengthened the assumption (H1) here. However,
the examples given in [3], the generalized Lax–Friedrichs schemes (or Rusanov scheme)
and the Godunov scheme away from sonic points, are still valid. More generally, it
is to be noted that for any 3-point scheme the assumptions (H1) and (H3) together
imply (H2). As a matter of fact, in that case we can adopt the simpler (and more
standard) notations

D = C0 and C := −C1

in such a way that

Q = C + D and A = D − C.

Then the “characteristic matrix” defined in (2.15) just reads

∆(σ; z, u) = σzI + e−zD(u) + ez C(u) − Q(u).

After simultaneous diagonalization, the coefficients of this matrix are, for z = i ξ
with ξ ∈ R, of the form

i (σξ − a sin ξ ) + q (cos ξ − 1).

This is clearly nonzero for σ �= 0 and q �= 0, unless ξ equals zero.

2.3. Existence of semidiscrete shocks. Semidiscrete shocks are by definition
traveling wave solutions of (2.1) connecting an endstate u− at −∞ to another endstate
u+ at +∞. Of course, stationary waves are also solutions of the fully discrete scheme,
and they enter the rational framework of Majda and Ralston [15]. Here we consider
only nonstationary waves.

Definition 2.2. A semidiscrete profile associated with a k-shock (u−, u+, σ) with
σ �= 0 is a solution of (2.1) of the form

vj(t) = V (j − st), s := σ/∆x,

such that

vj(t) −−−−→
j→±∞

u±.(2.17)
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Equivalently, V must solve the “boundary value problem”

σV ′(x) = g(V (x− p+ 1), . . . , V (x+ q)) − g(V (x− p), . . . , V (x+ q − 1)),(2.18)

V (±∞) = u±.(2.19)

We recall from [3] the following.
Theorem 2.3. Assuming that the flux f is strictly hyperbolic, that the kth char-

acteristic field is genuinely nonlinear, and that the scheme satisfies the requirements
in (H1)–(H3), there is a ε > 0 such that all k-shocks (u−, u+, σ) of strength smaller
than ε admit a (one-parameter family of) semidiscrete profiles.

2.4. Properties of semidiscrete shocks. In addition to the pure existence
result in Theorem 2.3, we can show the following, which will be extensively used in
the stability analysis.

Proposition 2.4. In the framework of Theorem 2.3, there exists C > 0 such
that the profiles associated with shocks lying in a small enough neighborhood, say, of
size ε, of a nonsonic point satisfy

|V (x) − u± | ≤ C ε, |V ′(x) | ≤ C ε, |V ′′(x) | ≤ C ε2(2.20)

for all x ∈ R and

|V ′(x+ l) | ≤ C |V ′(x) | ∀x ∈ R and l ∈ {−p, . . . , q},

|V ′(x) | ≤ C
(
ak(V (x− 1)) − ak(V (x))

) ∀x ∈ R.
(2.21)

Furthermore, those profiles are exponentially decaying. There exist θ± so that ∓θ± > 0
and

|V (x) − u± | ≤ C eθ± x(2.22)

for all x ∈ R.
The estimates in (2.20) are the same as for viscous profiles. The estimates in

(2.21) are designed to deal with the mixing of continuous and discrete derivatives.
Proof. We recall that semidiscrete profiles were found in [3] on a (N + 1)-

dimensional center manifold, containing the N -dimensional vector space of constant
solutions of (2.18). It is not difficult to see that the dynamics on that manifold is
given by a system of ODEs of the form


y′m = �m F (y), m �= k , m �= N + 1,
y′k = yN+1 + c �k F (y),
y′N+1 = �k F (y),

(2.23)

where the �m are suitably normalized left eigenvectors of A(ui) and ui denotes the
(nonsonic) bifurcation point, c is a scalar, and the nonlinear term F (y) is such that
F (y1, . . . , yN , 0) = 0 (the N -dimensional vector space of fixed points being precisely
{yN+1 = 0}). The first estimate in (2.20) comes from the fact that connecting orbits
stay globally in the neighborhood of ui, and the second one follows in a standard way
from the profile equation (2.18) and the mean value theorem. The third one is, as for
viscous profiles, a little bit more subtle. We first note that, in a neighborhood of 0 of
size ε,

F (y) = O(ε2).
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This is due only to the fact that, by definition of F , F (0) = 0 and dF (0) = 0. Hence,
for any (global) solution of (2.23) lying in that neighborhood, we have

y′m = O(ε2) for m �= k and y′k = O(ε)

(uniformly on R). Now, differentiating (2.23), we infer that

y′′m = O(ε2) ∀m.

Recalling that V (x) can be recovered from its coordinates y(x) through a formula

V (x) =
N∑

m=1

ym(x) rm(ui) + h(y(x)),

where the function h is such that h(0) = 0, dh(0) = 0 (by construction of the center
manifold), and differentiating twice, we see that V ′′ = O(ε2) uniformly on R.

The estimates in (2.21) require a finer knowledge of the behavior of profiles at
infinity. If u0 is close to, but different from, ui, and the corresponding constant
solution of (2.18), V ≡ u0, has coordinates (y

0
1 , . . . , y

0
N , 0), we have

�k
∂F

∂yN+1
(y0

1 , . . . , y
0
N , 0) = ϑ(u0),

where ϑ(u0) is the root of det∆(σ, ϑ, u0) bifurcating from 0. And, as already shown
in [3], we have ϑ(u−) > 0 and ϑ(u+) < 0 if u± are the endstates of a k-shock close
to ui. Additionally, the corresponding connecting orbits lie on an invariant curve,
which crosses the space {yN+1 = 0} transversally at points (y±1 , . . . , y

±
N , 0) (see [3,

Lemma 6.2]). This is due to the fact that solutions of (2.18)–(2.19) must solve the
integrated equation

σ V (x) −
∫ 0

−1

g(V (x+ θ − p+ 1), . . . , V (x+ θ + q)) dθ = σ u± − f(u±).(2.24)

Observe that this integration procedure restores hyperbolicity of the endpoints. As a
matter of fact, linearizing (2.24) about V ≡ u±, we get

σ V (x) −
∫ 0

−1

q∑
l=−p+1

Cl(u±)V (x+ θ + l) dθ = 0.(2.25)

We obtain the “characteristic matrix” of this equation by looking for exponential
solutions, in the same way as the matrix ∆ is obtained from the linearized version of
the original equation (2.18). Unsurprisingly, we find the matrix ∆(σ; z, u±)/z, which
is nonsingular for all z ∈ iR. And in the neighborhood of z = 0, there is only one
point, z = ϑ(u±), for which it is singular, its kernel being spanned by rk(u±). In other
words, x �→ rk(u±) eϑ(u±)x is a solution of (2.25). Returning to the center manifold,
the invariant curve containing connecting orbits can be parametrized by yN+1 in the
neighborhood of (y±1 , . . . , y

±
N , 0) Therefore, those orbits are scalar-like, and we are just

led to study the behavior of solutions tending to 0 as x → ±∞ of scalar ODEs of the
form y′N+1 = f±(yN+1), with f±(0) = 0 and (f±)′(0) = ϑ(u±). An elementary
lemma then shows the existence of nonzero constants c± so that

yN+1(x) ∼ c± eϑ(u±)x as x → ±∞.
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This implies that V (x) − u± behaves accordingly. Therefore, the observation made
above on solutions of (2.25) implies that

V (x) − u± ∼ c rk(u±) eϑ(u±)x, x → ±∞,

for some nonzero constant c. In particular, this implies (2.22). Besides this asymptotic
behavior, we also know that V ′ does not vanish, since solutions of (2.23) do not reach
any fixed point in finite time. Combining these two facts, we get the first estimate
in (2.21). Next, we observe that, for ε small enough, y′k vanishes only at fixed points
(characterized by yN+1 = 0). Furthermore, (2.23) implies that

dak(V ) · V ′ = yN+1 ( da
k(ui) · rk(ui) + O(ε) )

does not vanish either, for ε small enough, because of (2.9). By (2.11), this means
that ak◦V is monotonically decaying. Using the mean value theorem and the previous
observations, we get the second estimate in (2.21).

3. Spectral stability of semidiscrete shocks. There are basically two ap-
proaches to the spectral stability of a semidiscrete traveling wave. One way was
proposed by Chow, Mallet-Paret, and Shen [6]. They exhibited the linear operator,
which we denote by R below, that encodes the spectral stability of rather general
semidiscrete traveling waves. Some features of their approach are presented in sec-
tion 3.1. However, their abstract theorems are intended to be applied to equations
of reaction-diffusion type. We show in section 3.5 below that their spectral condition
fails for conservative LDSs. The other possible approach seems more classical. It
consists of forcing the wave to be stationary through a change of frame, as usual in
traveling wave analysis. This approach is at first glance questionable since the lattice
is not preserved by the change of frame. But it will appear to be complementary to
the first one and especially useful to gain insight.

3.1. The LDS point of view. From now on, we fix a semidiscrete shock,
denoted by uj(t) = U(j − st), in order to avoid confusion with general solutions
of (2.1). Unless otherwise specified, it is not necessarily of small amplitude.

Without loss of generality, we assume that s, or equivalently σ, is positive. We
introduce

T := 1/s = ∆x/σ,

which is the time taken for the shock to travel across one mesh.2 This is characteristic
of all waves traveling with speed σ, as it can be formalized using the shift operator.
If T is defined by

(T · v)j := vj−1

for any sequence v = (vj)j∈Z, then traveling waves of speed σ are characterized by

v(t+ T ) = T · v(t).(3.1)

As a matter of fact, (3.1) obviously holds if vj(t) = V (j−st) and, conversely, if (3.1)
holds, then, defining V (x) := v0(−Tx), we have by induction

vj(t) = V (j − st)

for all j ∈ Z and all t. This simple remark is nonetheless crucial in what follows.

2From place to place, we shall do a rescaling in order to have ∆x = 1 and thus simplify the
writing. But it is worth keeping in mind the dimensionality of the various quantities: T (time), s
(frequency), ∆x (distance), σ (speed).
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Other important observations are that T is an isometry in all the spaces Lα and
that T commutes with the nonlinear mapping G, that is,

T G = G T .
Following along the lines of [6], a first step in the stability analysis of the special

solution u is to linearize (2.2) about u. This yields the nonautonomous linear LDS

dv

dt
= DG(u) · v.(3.2)

We denote by S the solution operator of (3.2). By definition, for all solutions v of
(3.2) and all times t ≥ t0 we have

v(t) = S(t, t0) · v(t0).
Differentiating once the relation du/dt = G(u) and applying (3.1) to v = u′ we

easily see that

T · u′(0) = S(T, 0) · u′(0).
This means that u′(0) is an eigenvector of the operator

R := T −1 S(T, 0)(3.3)

for the eigenvalue 1. We point out that since U is exponentially decaying (see section
2.4), this holds true in any space Lα , 1 ≤ α ≤ ∞.

Another simple remark makes use of the following properties.
Proposition 3.1 (Chow, Mallet-Paret, and Shen [6]). The shift operator T and

the solution operator S of (3.2) satisfy the identities

S(t+ T, T ) = T S(t, 0) T −1 ∀t ≥ 0,(3.4)

( T −1 S(T, 0) )n = T −n S(nT, 0).(3.5)

Proof. Regarding (3.4), it is sufficient to show that both sides applied to any
sequence satisfy the linear LDS

dv

dt
= DG(T u) · v

and coincide at t = 0. And (3.5) is proved by induction, using (3.4).
Equation (3.5) also reads

Rn = T −n S(nT, 0).
Now assume that the operator R has an eigenvalue ζ of modulus greater than 1.
There is a sequence w so that Rw = ζ w. Then we have by (3.5)

S(nT, 0) · w = ζn T n · w,
which shows that the solution v(t) = S(t, 0) · w of (3.2) blows up in all spaces Lα as
t tends to infinity.

Chow, Mallet-Paret, and Shen have proved in [6] the following nonlinear result,
which shows that the operator R fully encodes the stability of the semidiscrete trav-
eling wave u.

Theorem 3.2 (Chow, Mallet-Paret, and Shen [6]). If a traveling wave solution u
of (2.2) satisfies the following spectral stability conditions, in terms of the R defined
in (3.3) acting on L∞,
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(i) the spectrum of R is

Σ(R) ⊂ { ζ ; |ζ| < 1 } ∪ { 1 }(3.6)

and
(ii) the eigenvalue 1 is simple,

then u is orbitally stable in L∞.
Chow, Mallet-Paret, and Shen have applied their theorem to a semidiscrete

(scalar) Nagumo equation. In what follows we investigate (i) and (ii) in the con-
text of conservative systems.

We shall show that (i) holds at least in two cases, namely, for scalar shocks and
for shocks of small enough amplitude. The proof will proceed in several steps. First
of all, we show in section 3.4 that the location of the essential spectrum of R can
be determined in a rather standard way by Fourier analysis. Using an observation
of Chow, Mallet-Paret, and Shen [6], the essential spectrum of R is seen to coincide
with the essential spectrum of a modified operator R0 associated with a “fake profile.”
Together with some Fourier analysis of the autonomous systems about the endstates,
this enables us to prove that (i) holds for the essential spectrum of R. With regard to
the point spectrum of R, we observe that it is tightly related to the point spectrum
of a differential operator with delay and advance. This operator L appears naturally
when we look at (2.1) as a delayed and advanced PDE and perform a change of frame
that makes the wave stationary; see section 3.2. We show that any nonzero eigenvalue
of R reads exp(Λ/σ) with λ an eigenvalue of L and that their multiplicities coincide.
Constructing an Evans function for L [2] then yields a necessary condition for the
point spectrum of R to lie in the unit disk. In other respects, for shocks of small
strength, we can perform some energy estimates on the LDS (2.1), in the spirit of
the work of Goodman on viscous shocks [9]. This enables us to show that the point
spectrum of R does lie in the unit disk.

But we shall also show that (ii) must fail. In fact, this is reminiscent of the
viscous shock wave analysis. Computing the local behavior of the Evans function
about 0 yields a sufficient condition for (ii) to hold true in L2. This condition is the
same as for viscous shocks and is satisfied for shocks of small strength. But we show
that, like for viscous shocks, there are too many bounded solutions of the equation
L · Y = 0. Hence condition (ii) does not hold in L∞, contrary to what is required by
Chow, Mallet-Paret, and Shen.

3.2. The change of frame point of view. The other point of view alluded
to above was already used in [2]. It starts from the following (formal) observation.
Solutions of the LDS (2.1) may be regarded as restrictions to Z × R

+ of solutions of
a “finite difference-PDE.” Indeed, rewriting vj(t) = V (j∆x, t) as a solution of (2.1),
we have

∂V

∂t
+

1

∆x
(g(V (x− (p− 1)∆x, t), . . . , V (x+ q∆x, t))

− g(V (x− p∆x, t), . . . , V (x+ (q − 1)∆x, t))) = 0.

(3.7)

Introducing the change of variables (x̃ := (x− σ t)/∆x, t̃ := t/∆x), V (x, t) = Ṽ (x̃, t̃)

is a solution of (3.7) if and only if Ṽ solves

∂Ṽ

∂t̃
− σ

∂Ṽ

∂x̃
+ g(Ṽ (x̃−p+1, t̃), . . . , Ṽ (x̃+q, t̃))−g(Ṽ (x̃−p, t̃), . . . , Ṽ (x̃+q−1, t̃)) = 0.
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Dropping the tildes, this equation reads

∂tV − σ ∂xV + g(V (x− p+ 1, t), . . . , V (x+ q, t))

− g(V (x− p, t), . . . , V (x+ q − 1, t)) = 0,

(3.8)

of which semidiscrete profiles, solving (2.18), are obviously stationary solutions. Lin-
earizing (3.8) about a stationary solution U yields the linear finite-difference PDE

∂tV − L · V = 0,(3.9)

where L is the spatial operator defined by

(L · V )(x) = σ V ′(x) −
q∑

l=−p

(∂lg(U(x− p+ 1), . . . , U(x+ q) )

− ∂l+1g(U(x− p), . . . , U(x+ q − 1) ) · V (x+ l).

(3.10)

We have adopted here the convention that

∂−pg ≡ 0 and ∂q+1g ≡ 0.

To facilitate the reading, we shall use more compact notations, just writing

(L · V )(x) = σ V ′(x) −
q∑

l=−p

(Cl(x) − Cl+1(x− 1) ) · V (x+ l)

with

Cl(x) := ∂lg(U(x− p+ 1), . . . , U(x+ q) ).

This is an abuse of notation since the matrices Cl were originally defined as functions
of a (single) state u ∈ R

N . Consistently, Cl(±∞) will stand for Cl(u±) and will
merely be denoted by Cl

±.
We see on its definition (3.10) that L is a closed unbounded operator on L2(R),

with dense domain H1 in L2. An easy preliminary result is the following.
Proposition 3.3. The operator L defined by (3.10) is the infinitesimal generator

of a strongly continuous semigroup on L2(R).
Proof. This follows from a consequence of the Hille–Yosida theorem. Since L is

closed with dense domain, it is sufficient to prove that the resolvent set of L contains
a ray {λ ∈ (M,+∞) } and that the resolvent enjoys the estimate

‖ (λ − L )−1‖ ≤ 1

λ − M

for λ > M (see [19, p. 12]).3 So assume that (λ − L ) · V = W . Taking the inner
product with V gives the equality

λ ‖V ‖2
L2(R) +

∫
R

V (x)

q∑
l=−p

(Cl(x) − Cl+1(x− 1)) dx

= 〈V , W 〉L2(R).

3In fact, this result follows from our more precise Lemma 4.1 on the Green’s function of λ − L;
this is why we just show the estimate of the resolvent here.
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Then by Cauchy–Schwarz inequality and the invariance of the L2 norm under trans-
lation we get

(λ − 2(p+ q + 1) γ ) ‖V ‖L2(R) ≤ ‖W‖L2(R),

where

γ := max { ‖Cl(x) ‖RN×N ; l ∈ {−p+ 1, . . . , q} , x ∈ R }.
In fact, a slightly more general energy estimate than in the above proof shows

that any complex number λ satisfying Reλ > 2(p+q+1) γ belongs to the resolvent set
of L. Of course, a natural spectral stability condition for the stationary solution U is
that the whole open right half-plane lies in the resolvent set of L. This actually holds
true simultaneously with the spectral condition (i) of Theorem 3.2 on the operator
R, due to the spectral mapping results that we show in the next subsections.

3.3. Link between the two points of view. It is clear that solutions V of
(3.9) are related to solutions of (3.2) through the equality

vj(t) = V (j − σt/∆x , t/∆x ).

In particular, at t = T = ∆x/σ we find that

vj(T ) = V (j − 1, 1/σ).

We can interpret this relation in terms of operators. Denoting by etL the semigroup
associated with L and by P the mapping

P : C(R) → L∞

V �→ (V (j))j∈Z,

the previous equality means that

RP = P eσ
−1 L

on the domain (H1 ⊂ C(R)) of L. This suggests that the spectrum of R is related
to that of L. Even though P is obviously not invertible, we can prove some spectral
mapping results. We study separately the essential spectrum and the point spectrum
(i.e., the set of eigenvalues).

For clarity, we recall that the essential spectrum of an operator L can be defined
by

Σess(L) = {λ ∈ C ; (L − λ) is not Fredholm index 0 }.(3.11)

An alternative definition is that λ belongs to Σess(L) if and only if λ belongs to the
spectrum of L +K for any compact operator K. Both definitions are equivalent for
closed operators (see [22, p. 15]). With the first definition, it is clear that the whole
spectrum Σ(L) consists of the union of Σess(L) and the set of eigenvalues.

3.4. Essential spectrum.
Lemma 3.4. The essential spectrum of the operator R defined in (3.3) and the

essential spectrum of the operator L defined in (3.10) are such that

Λ(u±) ⊂ Σess(L) ⊂
⋃
u∈U

Λ(u) =: Λ,

Λ(u) := {λ ∈ C ; ∃ξ ∈ R, det (∆(σ; iξ, u) − λ ) = 0 },
(3.12)
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where the matrix ∆ is defined as in (2.15), and

eσ
−1 Λ(u±) ⊂ Σess(R)\{0} ⊂ eσ

−1 Λ.(3.13)

Proof. We begin with (3.12). The basic step consists of showing that Λ(u±) is
exactly the spectrum of the asymptotic operator, L±, defined by

(L± · V )(x) = σ V ′(x) +
q∑

l=−p

(Cl+1
± − Cl

± ) · V (x+ l).(3.14)

Using Fourier transform, we readily see that λ belongs to Σ(L±) if and only if there
exists ξ ∈ R so that the characteristic equation

det (∆(σ; iξ, u±) − λ ) = 0(3.15)

holds. This is precisely the definition of Λ(u±). Hence Σ(L±) = Λ(u±). In fact,
this is pure essential spectrum, as the following argument shows when applied to L±
instead of L. For λ belongs to Σess(L) as soon as there exists a sequence (V

n)n∈N, with
V n ∈ H1 (the domain of L), which is orthonormal in L2 and such that (L − λ)V n

tends to 0 as n goes to ∞ (this easily implies that λ belongs to the spectrum of
L + K for any compact operator K). Now, (3.15) implies the existence of a vector
r such that the function V : x �→ eiξx r is an approximate eigenfunction of L±; i.e.,
(L± − λ)V = 0, but V does not belong to the domain of L±. To construct a sequence
V n that fulfills the above requirements, it suffices to choose suitably supported C∞

functions χn and take V n = χn V/‖χn V ‖. This is rather classical. The reader may
check that a possible choice is


χn(x) = 1, |x∓ 2n2| ≤ n,
χn(x) = χ1(x), n ≤ |x∓ 2n2| ≤ n+ 1,
χn(x) = 0, |x∓ 2n2| ≥ n+ 1.

This works because the supports of the χn do not intersect and the L2 norms of
χn V are O(n1/2), while the L2 norms of (L − λ) (χn V ) remain bounded, since
(L± − λ)V = 0 and the coefficients of L are converging rapidly enough (namely,
exponentially fast) to the coefficients of L± at ±∞.

Hence all points of Σ(L±) = Λ(u±) belong to Σess(L). The other inclusion in
(3.12) requires a tougher piece of analysis, for which we refer to a work by Mallet-
Paret [16]. For if λ does not belong to Λ, in particular it is not in Σ(L±), and then the
variational operator (L − λ) is asymptotically hyperbolic according to the definition
of Mallet-Paret. Therefore, by Theorems A and B in [16], (L − λ) is Fredholm and its
index depends only on L±. The computation of the index is based on the spectrum
flow formula (Theorem C in [16]), considering a homotopy connecting L− to L+.
The simplest one is given by Lθ, the constant coefficient operator about u(θ), where
θ �→ u(θ) is any smooth curve between u− and u+. If λ �∈ Λ, then, for all θ, (Lθ − λ )
is hyperbolic in the sense of Mallet-Paret. Consequently, we find that the index of
(L − λ) equals 0, which precisely means that λ is not in the essential spectrum of L.
This completes the proof of (3.12).

Regarding R, a similar procedure works. It is to some extent easier due to the
boundedness of R. We first look at the spectrum of R± = T −1 S±(T ), with S±(t)
the solution operator of the autonomous LDS

dv

dt
= DG(u±) · v.(3.16)
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By a slight abuse of notation, u± here stands for the constant sequence (u±). Point-
wisely, (3.16) reads

dvj
dt

+
1

∆x

q∑
l=−p

(Cl
± − Cl+1

± ) · vj+l = 0.(3.17)

Equation (3.17) can be solved through discrete Fourier transform. To be precise, we
fix some notations. Any slowly growing sequence w (for instance, bounded) can be
associated with a tempered distribution of period 2π

F w :=
∑
j∈Z

wj e
−i j ξ.

And, conversely, a tempered distribution g of period 2π is associated with the slowly
growing sequence Fg (of its Fourier coefficients) defined by

(Fg)
j
:=

1

2π
〈 g , ei j ξ 〉R/2πZ.

Of course, we have FF = I and FF = I on the corresponding spaces.
Using that F T −l = ei l ξ F for all l, we find that the solution operator of (3.16)

is given by

S±(t) = F exp


 t

∆x

q∑
l=−p

ei l ξ(Cl+1
± − Cl

± )


 F .

Therefore, for all v and w in Lα(Z), the relation

(R± − ζ) · w = v(3.18)

is by definition of R± equivalent to

exp


i ξ +

1

σ

q∑
l=−p

ei l ξ(Cl+1
± − Cl

± )


 · F w − ζ F w = F v.

Rewriting this with ζ = eλ/σ and using the matrix ∆ introduced in (2.15), we obtain
that (3.18) is equivalent to

ζ B±(iξ, λ) F w = F v, B±(iξ, λ) := e(∆(σ; iξ, u±) − λ )/σ − I.

The special form of ∆ and Lyapunov’s theorem show that the matrix B±(iξ, λ)
is singular for ξ ∈ R if and only if (∆(σ; iξ̃, u±) − λ ) is singular for some ξ̃ ≡ ξ[2π].

Equivalently, (∆(σ; iξ, u±) − λ̃ ) is singular for some λ̃ ≡ λ[2iπσ]; that is, ζ belongs
to exp (Λ(u±)/σ).

This implies that

Σ(R±)\{0} = eσ
−1Λ(u±).

As a matter of fact, elements of exp (Λ(u±)/σ) are obviously eigenvalues of R± (here
the eigenvectors are genuine ones in L∞). Conversely, if ζ is not in exp (Λ(u±)/σ),
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according to an observation already made by Rustichini [21], there exists γ > 0 such
that (∆(σ; z, u±) − λ ) is not singular in the strip { |Rez| ≤ γ }. Indeed, the roots of
the holomorphic function

z �→ det(∆(σ; z, u±) − λ )

have their imaginary parts bounded in terms of their real parts. Hence, B±(z, λ) is
nonsingular for |Rez| ≤ γ. As a consequence (see, for instance, Lemma 9 in [2]), ϕ± :=
F(B±(iξ, λ) ) is exponentially decaying at infinity (with rate β < γ). Therefore,
(3.18)± is equivalent to

w = ϕ± ∗ v, i.e., wj =
∑
k∈Z

ϕ±
j−k vk ∀j ∈ Z,

and we have a constant C so that

‖w‖∞ ≤ C ‖v‖∞.

This means that ζ belongs to the resolvent set of R±.
Now we make an observation that is useful to get information on the essential

spectrum of R. Considering the simpler operator R0 = T −1 S0(T ), where S0 is the
solution operator of the autonomous equation

dv

dt
= DG(u0) · v(3.19)

associated with the (stationary) fake profile defined by u0
j := u−, j < 0, u0

j := u+,
j ≥ 0, it is known from [6, Lemma 7.2] that R−R0 is compact. Therefore, Σess(R) =
Σess(R0).

So (3.13) is equivalent to

eσ
−1 Λ(u±) ⊂ Σess(R0)\{0} ⊂ eσ

−1 Λ.

To show that ζ ∈ eσ
−1Λ(u±) belongs to Σess(R0), it is sufficient to find a sequence

(wn) with no limit point and ‖wn‖L∞ = 1 such that (R0 − ζ)wn tends to 0. (This
is the same argument as the one used for L, except that we cannot use orthonormal
sequences here.) On the contrary, if ζ �∈ eσ

−1Λ, we can show that (R0−ζ) is Fredhlom
index 0. The proof relies on pointwise estimates for the resolvent of both R0 and its
antiadjoint R∗

0. By this we mean, doing a slight abuse of notation, that R0 is the
adjoint of R∗

0. The latter is in fact related to the adjoint LDS

dz

dt
= − (DG(u0) )∗ · z(3.20)

through the formula R∗
0 := S∗

0 (−T ) T , where S∗
0 is the solution operator on L1(Z)

of (3.20). For completeness, we recall those pointwise estimates in Proposition 3.5.
That they imply R0 is Fredholm is a standard exercise. The calculation of the index
uses again a homotopy argument. For more details, the reader may refer to [2, Sec-
tion 4].

Proposition 3.5. For ζ �∈ eσ
−1Λ(u−)

⋃
eσ

−1Λ(u+), there exists C0 > 0 and β > 0
such that for w ∈ L∞,

|wj | ≤ C0 ( ‖(R0 − ζ) · w‖∞ + e− β |j| ‖w‖∞ ) ∀j ∈ Z,(3.21)
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and for z ∈ L1,

| zj | ≤ C0 ( ‖(R∗
0 − ζ̄) · z‖1 + e− β |j| ‖z‖1 ) ∀j ∈ Z.(3.22)

Proof. The proof relies on Duhamel’s formula

S0(t) · w = S+(t) · w +

∫ t

0

S+(t− τ) · ( (DG(u0) − DG(u+))S0(τ) · w) dτ(3.23)

and convolution estimates. The rate β is imposed by the width of the vertical strip in
which (∆(σ; z, u±) − λ ) is nonsingular. See Propositions 3.4.1 and 3.4.2 in [2].

The proof of Lemma 3.4 actually shows that (3.12) holds with a restricted defi-
nition of Λ, ∪Λ(u) for u describing a curve connecting u− to u+ in U . We have left
the whole set U for simplicity.

We complete this subsection by showing that our assumptions on the scheme
eliminate the possibility of having unstable essential spectrum. By unstable we mean
spectrum of positive real part regarding L and spectrum of modulus greater than 1
regarding R. In view of Lemma 3.4, this amounts to showing that the set Λ lies in
the right half-plane. In fact, we have a slightly more precise result.

Theorem 3.6. For 3-point schemes (i.e., p = q = 1) satisfying (H1) and (H3),
the operators R, defined in (3.3), and L, defined in (3.10), are such that

Σess(R) ⊂ { ζ ∈ C ; |ζ| < 1} ∪ {1},

Σess(L) ⊂ {λ ∈ C ; Reλ < 0} ∪ 2 i π σ Z.

Proof. In view of (3.12)–(3.13), this amounts to showing that for any u ∈ U , for
Reλ ≥ 0, and for λ �∈ 2 i π σ Z,

det(∆(σ; iξ, u) − λ ) �= 0 ∀ ξ ∈ R.

For 3-point schemes, this is easy. As a matter of fact, the coefficients of the diagonal-
ized ∆(σ; iξ, u) are of nonpositive real part, as already noticed in section 2.2. Hence
∆(σ; iξ, u) does not have any eigenvalue of positive real part. Furthermore, ∆(σ; iξ, u)
has a purely imaginary eigenvalue only if ξ belongs to 2πZ, and then that eigenvalue
is λ = σξ. For schemes with larger stencil, (H1) and (H3) imply that the real parts of
the coefficients of the diagonalized ∆(σ; iξ, u) have a local maximum at ξ = 0. With
the additional assumption that those coefficients achieve their global maximum on
[−π, π] at ξ = 0, then we would get the same conclusion as for 3-point schemes.

3.5. Point spectrum. With regard to the point spectrum of R, an interesting
preliminary result is the following.

Proposition 3.7. If ζ �∈ exp(Λ/σ), where Λ is defined as in (3.12), and ζ is an
eigenvalue of R in L∞, then the corresponding eigenvector w is actually exponentially
decaying and thus belongs to all the spaces Lα(Z) for α ∈ N

∗.
Proof. The proof relies on a pointwise estimate similar to (3.21) but for R instead

of R0. As a matter of fact, we can show the existence of a constant C and α > 0 such
that for all w ∈ L∞

|wj | ≤ C ( ‖(R − ζ) · w‖∞ + e−α |j| ‖w‖∞ ) ∀j ∈ Z.(3.24)
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The proof of (3.24) is very similar to that of Proposition 3.5. Rewrite (3.2) as

dv

dt
= DG(u±) · v + E±v, E± = DG(u) − DG(u±),

and deduce that v = (R − ζ) · w is equivalent to

w = ϕ± ∗
(
v − T −1

∫ T

0

ψ±(T − t) ∗ (E±S(t) · w) dt
)
,

where the kernels ϕ± and ψ± decay exponentially fast at ±∞. More precisely, ϕ±

decay at most like e−β|j|, where β > 0 is determined by a spectral gap argument, and
ψ± is an O(e−δ|j|) for δ arbitrarily large. Using a uniform bound for S(t) for t ∈ [0, T ]
and the exponential decay (2.22) of the profile, we obtain by a convolution estimate
that ∫ T

0

ψ±(T − t) ∗ (E±S(t) · w) dt ≤ C eθ± j ‖w‖∞, ±j > 0.

Convolution by ϕ± eventually yields (3.24) with α = min(β, θ−,−θ+).
We can now prove a kind of spectral mapping theorem regarding the point spec-

trum of the operators R and L. It is in fact partly contained in [6]. The result about
multiplicities seems to be new though.

Theorem 3.8. We consider the point spectrum, Σα
p (L), of the operator L defined

by (3.10) on W 1,α, 1 ≤ α ≤ ∞, and the point spectrum of the operator R defined in
(3.3) and acting on Lα, that is,

Σα
p (R) := {ζ ∈ C ; ∃w �= 0 ∈ Lα , R · w = ζ w }.

Then

Σα
p (R)\{0} = eσ

−1 Σαp(L).(3.25)

Furthermore, if ζ is a nonzero eigenvalue of R and ζ = eλ/σ, then the multiplicity of
λ as an eigenvalue of L equals the multiplicity of ζ as an eigenvalue of R.

Proof. Assume that R·w = ζ w and consider any λ such that ζ = eλ/σ. We may
preferably write

eλ/σ = eλT , with λ : =
λ

∆x
.

We associate with λ and w the evolving sequence

y(t) := e−λt S(t, 0) · w.
It obviously solves the LDS

dy

dt
= (DG(u) − λ ) · y.(3.26)

Furthermore, y is a traveling wave of speed s. As a matter of fact, it is easy to check
that (3.1) holds for v = y. We have

y(t+ T ) = e−λ(t+T ) S(t+ T, 0) · w =
e−λt

ζ
S(t+ T, T )S(T, 0) · w.
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By assumption on ζ and w and because of (3.4) we have

S(t+ T, T )S(T, 0) · w = ζ S(t+ T, T )T · w = ζ T S(t, 0) · w,
and thus we conclude that y(t+T ) = T · y(t). Therefore, we have yj(t) = Y (j− st).
Substituting in (3.26) and multiplying by ∆x, we get

−σ Y ′(x) =
q∑

l=−p

∂lG(U(x− p), . . . , U(x+ q) ) · Y (x+ l) − λY (x)

for x = j − st, that is, (L− λ) · Y = 0. (Recall that s∆x = σ.)
Conversely, if (L − λ) · Y = 0, then the sequence w defined by wj := Y (j) is

an eigenvector of R for the eigenvalue eλ/σ. This follows from the fact that yj(t) :=
Y (j − st) solves (3.26); hence

eλt/∆x y(t) = S(t, 0) y(0).
At t = T this precisely means, since y is by construction a traveling wave, that

eλ/σy(0) = R · y(0).

Observe that if eλ̃/σ = eλ/σ, that is, if λ̃ = λ + 2iπmσ with m an integer, then
(L− λ̃) and (L−λ) are conjugated under the multiplication by e2iπmx. Therefore, the
multiplicity of λ as an eigenvalue of L does not depend on the chosen representation
of ζ. Furthermore, if Y and Ỹ are, respectively, associated with λ and λ̃, they yield
the same eigenvector wj = Y (j) = Ỹ (j) of R since e2iπmj = 1. This argument
shows that the geometric multiplicities of ζ and λ coincide.

With regard to the algebraic multiplicities, a similar but more technical argument
works to show that they do coincide. We leave the general, cumbersome proof to
the reader. For clarity, we present the proof in the case of double nonsemisimple
eigenvalues. Assume that λ is a double, nonsemisimple eigenvalue of L. Then there
exist Y and Z such that

L · Y = λY, L · Z = λZ + Y.

Let y and z be defined by

yj(t) := Y (j − st), zj(t) := Z(j − st).

Then y solves (3.26), while z solves the LDS

dz

dt
= (DG(u) − λ ) · z − y,(3.27)

where λ = λ/∆x, as denoted above, and similarly y = y/∆x. Hence by Duhamel’s
formula we get

eλt z(t) = S(t, 0)·z(0) +
∫ t

0

S(t, τ)·(−eλτ y(τ)) dτ = S(t, 0)·z(0)− t

∆x
S(t, 0)·y(0).

At t = T this gives

eλT z(0) = R · z(0) − 1

σ
eλ/σ y(0).
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Therefore, z(0) belongs to Ker(R− ζ)2\Ker(R− ζ), which means that the algebraic
multiplicity of ζ is at least 2. Conversely, if ζ �= 0 is a double, nonsemisimple eigenvalue
of R, there exist w and v such that

R · w = ζw, R · v = ζ( v + w/σ ).

Then both

y(t) := e−λt S(t, 0) · w

and

z(t) := e−λt

(
S(t, 0) · v − t

∆x
S(t, 0) · w

)

are traveling waves of speed σ—this is proved using (3.4) again. Introducing Y and
Z so that

yj(t) = Y (j − st), zj(t) = Z(j − st)

and reversing the computation done before, we see that

L · Y = λY, L · Z = λZ + Y.

Thus the algebraic multiplicity of λ is at least 2.
In view of Theorems 3.6 and 3.8, checking the stability condition in (3.6) amounts

to showing that

Σp(L) ⊂ {λ ∈ C ; Reλ < 0} ∪ 2 i π σ Z.

In some special cases (scalar conservation laws or shocks of small amplitude), (3.6)
can be checked through energy estimates. This is performed in the next section. For
arbitrary shocks, Σp(L) is encoded in an Evans function, the construction of which was
derived in [2] for the upwind scheme. There is some indication in very recent results
due independently to Mallet-Paret and Verduyn Lunel [17] and Härterich, Sandstede,
and Scheel [10] that an Evans function might also be constructed for general schemes.
This is discussed in section 3.7. With regard to condition (ii) in Theorem 3.2, we also
show in section 3.7 that it must fail. We propose a weaker condition, in terms of the
Evans function, which ensures stability though.

3.6. Energy estimates. The aim of this section is to deduce from energy esti-
mates the spectral condition (i) of Theorem 3.2 for the point spectrum ofR in the case
of small shocks. Our method is very much inspired from that of Goodman [9] (also
see [13]). In particular, it relies on a special diagonalization process and on the trick
that consists of “integrating” the variational system (2.2) before deriving estimates.
However, some additional difficulties are due to the mixing of true derivatives with
discrete derivatives. This is why we need rather fine properties of profiles, as they are
stated in Proposition 2.4.

To simplify the writing, we perform here a rescaling and set ∆x = 1. Also, for the
sake of clarity, we present the energy estimates procedure in the case of the upwind
scheme, for which p = 1, q = 0. But the very same method works for the more general
scheme (2.1).
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In the case p = 1, q = 0, the semidiscrete system (2.1), or (2.2), then reduces to

dvj
dt

+ f(vj)− f(vj−1) = 0

and the linearized system (3.2) reduces to

dvj
dt

+ Aj vj − Aj−1 vj−1 = 0,(3.28)

where Aj := A(uj). The viscosity matrix here reduces to Q = A, and the dissipa-
tiveness requirement (H1) is that A has positive eigenvalues (which is, by the way,
the appropriate condition for the linear stability of constant states). As for viscous
shocks, a direct estimate on (3.28) is useless. To be convincing, let us multiply (3.28)
by vj and sum on j. We get

d

dt


 +∞∑

j=−∞
|vj |2


 + 2

+∞∑
j=−∞

vj (Aj vj − Aj−1 vj−1 ) = 0.

Assuming for awhile that the matrices Aj are symmetric (for instance diagonal), we
have the identity

2 〈 v , A v − T (Av) 〉 = 〈 v − T v , (T A) ( v − T v) 〉 + 〈 v , (A − T A) v 〉.(3.29)

Here and below in this section, the brackets 〈 , 〉 stand for the inner product in L2(Z),
and the associated norm will be denoted by ‖ ‖. Substituting (3.29) in the previous
equality, we obtain

d

dt
‖v‖2 + 〈 v − T v , (T A) ( v − T v) 〉 + 〈 v , (A − T A) v 〉 = 0.

By (H1) and thus A = Q > 0, the term 〈 v − T v , (T A) ( v − T v) 〉 is nonnegative.
But the term 〈 v , (A − T A) v 〉 is typically not. For instance, in the scalar case, the
characteristic speed a is decreasing along the profile and thus (A−T A) is nonpositive.

Similarly as for viscous shocks [9], this problem can be fixed by considering an
“integrated” version of (3.28). Assume that |ζ| ≥ 1 and ζ �= 1 is an eigenvalue of
R, and w is a corresponding eigenvector. By Theorem 3.6, ζ �∈ exp (Λ/σ). Then
Proposition 3.7 shows that w is summable and thus v(t) := S(t, 0) · w is summable
for all t. Furthermore, we see by summing (3.28) that

∑
j vj(t) =

∑
j wj . This is due

to the conservativity of the scheme. In particular, this shows that
∑R · w =

∑
w.

But we also have by assumption on w that
∑R·w = ζ

∑
w. Therefore, since ζ �= 1,

we must have

+∞∑
j=−∞

wj = 0.

This allows us to define

Wj :=

j∑
i=−∞

wi = −
+∞∑

i=j+1

wi.
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Furthermore, this new sequence W is exponentially decaying and thus belongs to all
the spaces Lα(Z) by Proposition 3.7. Now it is easy to see that Vj(t) :=

∑j
i=−∞ vi(t)

satisfies the “integrated” LDS

dVj
dt

+ Aj (Vj − Vj−1 ) = 0.(3.30)

Performing a similar computation as on the original LDS and using the identity

2 〈 v , A ( v − T v ) 〉 = 〈 v − T v , A ( v − T v) 〉 + 〈 v , (A − T −1A) v 〉,(3.31)

which is valid for symmetric matrices Aj , we obtain

d

dt
‖V ‖2 + 〈V − T V , A (V − T V ) 〉 + 〈V , (A − T −1A)V 〉 = 0.

We observe that the sign of 〈V , (A − T −1A)V 〉 is now the good one, at least in
the scalar case. For systems we must cope with the fact that, in general, the matrices
Aj are not symmetric and that only 〈V , ( ak − T −1ak)V 〉 is nonnegative. This
is done below by using two essential tools originally due to Goodman [9], a special
diagonalization process and weights on the outgoing waves. We first state the theorem.

Theorem 3.9. Assuming (H1), (H2), and (H3), for sufficiently small shock

profiles, the L1 solutions of (3.2) with zero mass are such that Vj :=
∑j

i=−∞ vj
satisfy an estimate

‖̃ T −1V (T ) ‖̃2
L2 + ω

∫ T

0

‖V (t) − T V (t) ‖2
L2 dt ≤ ‖̃V (0) ‖̃2

L2(3.32)

for some positive ω, where ‖̃ · ‖̃ is an equivalent norm on L2. As a consequence, R
does not have any eigenvalue ζ �= 1 with |ζ| ≥ 1.

Proof. The last statement follows directly from (3.32) and the above argument.
As a matter of fact, if R · w = ζw with |ζ| ≥ 1 and ζ �= 1, then v(t) = S(t, 0) · w is
such that v(T ) = ζT v(0). Thus, taking the sum, V (T ) = ζT V (0), and substituting
in (3.32) we get a contradiction unless |ζ| = 1 and V ≡ T V . The latter equality
implies by definition of V that v = 0 and thus also w = 0. So the whole proof is
devoted to the energy estimate (3.32), which will appear to be a direct consequence
of Lemma 3.10. More precisely, with the notations introduced below, (3.32) follows
from (3.35) with

‖̃V ‖̃2
L2 :=

∑
m=k

‖φm(0) �m(u(0))V ‖2 + ‖�k(u(0))V ‖2

and using the characterization of traveling waves in (3.1) for φm �m and �k.
Let us first describe the diagonalization process. To simplify the notations we

write

�mj = �m(uj) and rmj = rm(uj).

The important property to have in mind is that the �m and rm defined this way are
traveling with speed s. Since the profile is exponentially decaying, it is now possible
to renormalize �m and rm in such a way that(

d

dt
�mj

)
· rmj ≡ �mj · d

dt
rmj ≡ 0.(3.33)
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This is achieved by considering

�̃mj =
1

νmj
�mj and r̃mj = νmj rmj ,

with

νmj (t) := νm(j − st) = exp

(
−
∫ j−st

0

�m(U(x)) · d

dx
rm(U(x)) dx

)
.

It is important to note that the weight νm is traveling with the speed s, and thus
also the new vectors �̃m and r̃m. Furthermore, we easily check that �̃m and r̃m satisfy
(3.33).

From now on, we drop the tildes and assume that (3.33) holds for all m ∈
{1, . . . , N}.

Further notations. We denote

Lj :=




−�1j−
...

−�Nj −


 and Rj :=


 | |
r1j · · · rNj
| |


 ,

the square matrices made of eigenvectors satisfying (3.33), and

aj = Lj Aj Rj = diag (a1
j , . . . , a

N
j ).

This is consistent with the notations introduced in section 2.1. And from now on in
this section,

vj := Lj · Vj ,

which has nothing to do with the v = V − T V—satisfying (3.28)—originally con-
sidered. We hope that this choice of notation will not be confusing to the reader.
Observe that, conversely,

Vj = Rj · vj .

Multiplying (3.30) on the left by Lj , we get the LDS satisfied by v,

dvj
dt

+ aj ( vj − vj−1 ) =
dLj

dt
Rj vj + aj Lj (Rj−1 − Rj ) vj−1.(3.34)

Lemma 3.10. Assuming that (H1)–(H3) hold,4 there exist ε0 > 0, weights φm(t),
uniformly bounded from below in L∞ and traveling with speed s, and ω > 0 so that if
the k-shock has an amplitude ε = |u+ − u−| less than ε0 and if v solves (3.34), then

∑
m=k

‖φm(T )vm(T )‖2 + ‖vk(T )‖2 + ω

∫ T

0

‖ v − T v ‖2

≤
∑
m=k

‖φm(0)vm(0)‖2 + ‖vk(0)‖2.

(3.35)

4We recall that for the upwind scheme, (H2) is implied by (H1), and (H3) is trivial.
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Proof. The proof proceeds in two steps. We begin by showing that

d

dt
‖v‖2 +

µ

2
‖ v − T v‖2 +

1

2
〈 vk , ( ak − T −1ak ) vk 〉 ≤ cst 〈 v̌ , ( ak − T −1ak) v̌ 〉,

(3.36)

where v̌ is defined by v̌m = vm, m �= k, and v̌k = 0. Afterwards, we shall construct
weights φm yielding estimates of the “outgoing waves” that can absorb the right-hand
side of (3.36), thus showing that∑

m=k

‖φm(t)vm(t)‖2 + ‖v(t)‖2

is strictly decreasing with t.
Proof of (3.36). Taking the inner product of (3.34) with v we get

d

dt
‖v‖2 + 2 〈 v , a ( v − T v ) 〉 = 2

〈
v ,

dL

dt
R v

〉
+ 2 〈 v , aL ( T R − R ) T v 〉.

Applying the identity (3.31) to the diagonal matrix a, this also reads

d

dt
‖v‖2 + 〈 v − T v , a ( v − T v) 〉 + 〈 v , ( a − T −1a) v 〉

= 2

〈
v ,

dL

dt
Rv

〉
+ 2 〈 v , aL ( T R − R ) T v 〉.

(3.37)

By (2.21) there is a constant such that

| a − T −1a | ≤ cst ( ak − T −1ak ) = cst | ak − T −1ak |.
Hence we see that, if the right-hand side in (3.37) equals 0 (which occurs if the system
(3.30) is already diagonal), (3.37) trivially implies (3.36). In order to deal with the
general right-hand side, we use in a crucial way the special normalization of the
eigenvectors (3.33). As a matter of fact, (3.33) implies that the diagonal coefficients

of the matrices
dLj
dt Rj are zero. (In fact, we need only that the coefficient

d�kj
dt rkj

be zero.) And by (2.21) all the other coefficients are bounded by a constant times
( akj − akj+1 ). Therefore, for all γ > 0 there exists cγ > 0 such that

2

〈
v ,

dL

dt
R v

〉
≤ γ 〈 vk , ( ak − T −1ak ) vk 〉 + cγ 〈 v̌ , ( ak − T −1ak) v̌ 〉.

The last term in (3.37) is the most complicated to deal with. We first split it as
follows:

〈 v , aL ( T R − R ) T v 〉 = 〈 v , aL ( T R − R ) v 〉 + 〈 v , aL ( T R − R ) ( T v − v ) 〉.
The diagonal of the matrices aj Lj (Rj−1 − Rj ) occurring here is not necessarily zero.
However, the diagonal coefficients are of order 2 in terms of the shock strength ε, and
the other coefficients are of order 1, as we show just after. Consequently, for all γ > 0
there is a constant still denoted cγ (up to augmenting the previous one) so that, on
the one hand,

2 〈 v , aL ( T R − R ) v 〉 ≤ ( ε+γ ) 〈 vk , ( ak − T −1ak ) vk 〉+ cγ 〈 v̌ , ( ak − T −1ak) v̌ 〉,
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and, on the other hand,

2 〈 v , aL ( T R − R ) ( T v − v ) 〉 ≤ γ ‖ T v − v ‖2 + cγ ε 〈 v , ( ak − T −1ak ) v 〉.
Collecting these estimates altogether and substituting the resulting inequality in
(3.37), we obtain (3.36) by choosing γ ≤ µ/2 (the lower bound of a which is pos-
itive by (H1)) and ε ≤ ε0 = (1− 2γ)/(2(1 + cγ)).

Estimates on the matrices Lj (Rj−1 − Rj ). We first note that

rmj−1(t) − rmj (t) = rmj (t+ T ) − rmj (t) =

∫ t+T

t

d

dτ
rm(U(j − sτ)) dτ

is bounded by a constant times ( akj − akj+1 ), in view of (2.21). Then, leading further
the procedure, we see that

�mj (t) ( r
m
j−1(t) − rmj (t) ) =

∫ t+T

t

( �mj (t) − �mj (τ) )
d

dτ
rm(U(j − sτ)) dτ

because of (3.33), and thus

�mj (t) ( r
m
j−1(t) − rmj (t) ) =

∫ t+T

t

∫ t

τ

d

dθ
�m(U(j − sθ)) dθ

d

dτ
rm(U(j − sτ)) dτ

is bounded by a constant times ( akj − akj+1 )
2, using twice (2.21).

Proof of the outgoing waves estimates. The mth component of (3.34) reads

dvmj
dt

+ amj ( vmj − vmj−1 ) =
d�mj
dt

Rj vj + amj �mj (Rj−1 − Rj ) vj−1.

We consider a weight of the form

φmj (t) := Φm(j − st) = exp

(
M

a− s

∫ j−st

0

d

dx
ak(U(x)) dx

)
,

where the constant M will be chosen large enough later on, and a is chosen in a way
that either

am ≤ a < s if m ≤ k − 1

or

am ≥ a > s if m ≥ k + 1.

Observe that in all cases

am − s

a− s
≥ 1.

Also observe that φm(t) is uniformly bounded from below and above in L∞, uni-
formly in M , ε when Mε < 1. Then multiplying the previous equality by φmj vmj and
summing, we get

d

dt
〈 vm , φm vm 〉 + 2 〈 vm , φm am ( vm − T vm ) 〉

= 2

〈
vm ,

dφm

dt
vm

〉
+ 2

〈
v , φm

d�m

dt
R v

〉
+ 2 〈 vm , φmam �m ( T R − R ) T v 〉.
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Applying the identity (3.31) to the scalar valued multiplier φmam, this also reads

d

dt
〈 vm , φm vm 〉 + 〈 vm − T vm , φmam ( vm − T vm) 〉

+

〈
vm ,

(
φmam − T −1(φmam) − dφm

dt

)
vm

〉

= 2

〈
vm , φm

d�m

dt
R v

〉
+ 2 〈 vm , φmam �m ( T R − R ) T v 〉.

(3.38)

Due to the boundedness of φm, both terms in the right-hand side of (3.38) can be
bounded exactly in the same way as their counterparts in (3.37). We are going to see
that choosing M large enough and ε small enough such that Mε < 1 makes the last
term of the left-hand side larger than and thus absorbing the right-hand side. As a
matter of fact, we have

φmj a
m
j − φmj+1a

m
j+1 − dφmj

dt
= (φmj − φmj+1 ) a

m
j − dφmj

dt
+ φmj+1 ( a

m
j − amj+1 ).

The last term is bounded by c ( akj − akj+1 ), c a positive constant (independent ofM).
The remaining terms can be rearranged as

(φmj − φmj+1 ) a
m
j − dφmj

dt
=

∫ t

t−T

(
(amj (t)− s)

dφmj
dt

(τ) + s

∫ τ

t

d2φmj
dt2

(τ ′)

)
dτ ′ dτ.

By definition of φm and (2.21) we thus see that there are constants α > 0 and c′ > 0
so that for Mε < 1

(φmj − φmj+1 ) a
m
j − dφmj

dt
≥ αM (1− c′ ε) ( akj − akj+1 ).

Choosing, for instance, M ≥ 4c/α and ε < 1/4c′, we get

φmj a
m
j − φmj+1a

m
j+1 − dφmj

dt
≥ α

M

2
( akj − akj+1 ).

Substituting this in (3.38) and using the usual bound for the right-hand side, we have
for all γ > 0 a constant cγ > 0 so that

d

dt
‖φmvm‖2 + α

M

2
〈 vm , ( ak − T −1ak ) vm 〉

≤ γ ‖ v − T v‖2 + ( ε(1 + cγ) + γ )〈 vk , ( ak − T −1ak ) vk 〉

+ cγ 〈 v̌ , ( ak − T −1ak) v̌ 〉

(3.39)

for m �= k.
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Proof of (3.35). Summing (3.39) on m and adding the result to (3.36), we obtain
the inequality

∑
m=k

d

dt
‖φmvm‖2 +

d

dt
‖vk‖2 +

µ

2
‖ v − T v‖2

+
1

2
〈 vk , ( ak − T −1ak ) vk, 〉 + α

M

2

∑
m=k

〈 vm , ( ak − T −1ak ) vm 〉

≤ γ ‖ v − T v‖2 + N ( ε(1 + cγ) + γ )〈 vk , ( ak − T −1ak ) vk 〉

+ c′γ 〈 v̌ , ( ak − T −1ak) v̌ 〉,

where we have changed φm into 1 + φm, which is harmless. Then, taking γ ≤
min(µ/4, 1/8N), M α ≥ max(4 c′γ , 1), and ε < min(1/(8N(1 + cγ)), 1/M), we find
that

d

dt


 ∑

m=k

‖φmvm‖2 + ‖vk‖2


 +

µ

4
‖ v − T v‖2

+
1

4
〈 v , ( ak − T −1ak ) v 〉 ≤ 0.

The last term of the left-hand side being nonnegative, this proves (3.35) by integration
in time.

3.7. The Evans function. The notion of Evans function extends that of charac-
teristic polynomial to infinite dimensional operators L. It must be analytic in Reλ > 0
and vanish only at eigenvalues of L. Its construction is based on a shooting method,
using solutions of the eigenvalue equations (L − λ ) ·W = 0 that tend to 0 either
at −∞ or +∞. In general, there are infinite dimensional subspaces of such solutions
(called the unstable/stable manifolds), which seems helpless. However, in some cases,
at least one of these subspaces is finite dimensional. This is the case for the operator
L associated with the upwind scheme (i.e., for p = 1, q = 0), of which the unstable
manifold is always of finite dimension. This enabled us to construct an Evans function
in a previous work [2].

We shall recall hereafter some material from [2] that will be useful in section 5.
Before that, we address the question for more general schemes. The first, convenient
step consists of reformulating the eigenvalue equations (L − λ ) ·W = 0 as a linear
system of the form

dW

dx
= A(x;λ)W,(3.40)

where A(x;λ) is an unbounded operator on the Hilbert space

H0 := L2((−p, q);CN )× C
N ,

with dense domain

H1 :=
{
(φ, c) ∈ H0 ; φ ∈ H1((−p, q);CN ) and φ(0) = c

}
.
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Denoting by φ̇ the derivative of φ ∈ H1(−p, q), A(x;λ) is defined by

A(x;λ) : H1 → H0

(
φ
c

)
�→




φ̇

σ−1 λ c+ σ−1

q∑
l=−p

(Cl(x)− Cl+1(x− 1)) · φ(l)


 ,

(3.41)

which makes sense because of the embedding of H1 into C0. Accordingly, we define
the asymptotic operators

A±(λ) : H1 → H0

(
φ
c

)
�→




φ̇

σ−1 λ c + σ−1

q∑
l=−p

(Cl
± − Cl+1

± ) · φ(l)


 .

(3.42)

It is not difficult to show (see Lemma 4.3 in [3]) that A±(λ) has only isolated eigenval-
ues of finite multiplicities and that they are precisely the roots µ of the characteristic
equation

det (∆(σ;µ, u±) − λ ) = 0.(3.43)

In general, there is an infinity of such roots on either side of any vertical line. This is
an argument against the construction of an Evans function. Another, though related,
argument is that both the forward and the backward Cauchy problems for (3.40) are
ill-posed. However, Evans functions basically rely on exponential dichotomies. Recent
works about exponential dichotomies for mixed-type functional differential operators
[10, 17] indicate that it might be possible to overcome the difficulty.

As far as we are concerned, we concentrate on the case with delay only. With
p = 1, q = 0, the operator A reduces to

A(x;λ) : H1 → H0(
φ
c

)
�→

(
φ̇

σ−1 (λ c + A(x)φ(0) − A(x− 1)φ(−1) )
)
.

(3.44)

Then the system (3.40) is associated with a solution operator (Tλ(x, y))x≥y, depending
analytically on λ; see Lemma 4 in [2]. The link with the delay differential equation
(L − λ)W = 0, which reads

σW ′(x) − (A(x) + λ )W (x) + A(x− 1)W (x− 1) = 0,

is merely the following. We denote by Γ the projection

Γ : H0 → C
N(

φ
c

)
�→ c.

Then for all φ ∈ H1, the problem

(L − λ)W = 0, W (y + θ) = φ(θ) ∀ θ ∈ [−1, 0],
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admits a single solution, defined for x ≥ y by

W (x) = ΓW(x) with W(x) = Tλ(x, y)

(
φ

φ(0)

)
.

We shall also need to consider the adjoint system

dY

dx
= −A(x;λ)∗ Y.(3.45)

Although the operator A(x;λ)∗ is awkward (its domain depends on x), the system
(3.45) is associated with a backward solution operator (T ∗

λ (x, y))x≤y, with the stan-
dard relationship

T ∗
λ (x, y) = Tλ(y, x)

∗.

For convenience, we identify the adjoint space H∗
0 with L2(]0, 1[; (CN )∗) × (CN )∗

through the inner product〈(
ψ b

)
,

(
φ
c

)〉
:= b · c +

∫ 0

−1

ψ(θ + 1) φ(θ) dθ.

Note that if Y(x, λ) is a solution of (3.45) and W(x, λ) is a solution of (3.40), then

〈Y(x, λ),W(x, λ)〉 is independent of x.(3.46)

Then we can see that T ∗
λ (x, y) is linked to solutions of the advanced differential equa-

tion (L − λ)∗ Y = 0 as follows. By a slight abuse of notation, Γ also stands for

Γ : H∗
0 → C

N(
ψ , b

) �→ b.

Then the problem

(L − λ)∗ Y = 0, Y (y + θ) = −A(y + θ − 1)−1 ψ(θ) ∀ θ ∈ [0, 1],

admits a single solution, defined for x ≤ y by

Y (x) = ΓY(x) with Y(x) = T ∗
λ (x, y)

(
ψ,−A(y − 1)−1 ψ(0)

)
.

See [2, pp. 636–639] for more details.
In the case where we are looking at (p = 1, q = 0), (3.43) is equivalent to

N∏
m=1

(σµ − am± + am±e
−µ − λ ) = 0,

with am± := ak(u±). We give below some preliminary results about this characteristic
equation. Some of them are not required for constructing the Evans function but will
be useful later.

Lemma 3.11. For 1 ≤ m ≤ N , we consider the equation

σµ− am± + am±e
−µ − λ = 0.(3.47)
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For Reλ > 0, (3.47) admits a unique solution µ of positive real part, which depends
analytically on λ. We denote it by µm± (λ). It can be continued to the strip

Ω := {λ, Reλ ≥ −η, |Imλ| ≤ πσ}

for η > 0 small enough.
The root µm± (λ) remains bounded away from the imaginary axis when λ goes to 0

if and only if am± > σ.
On the contrary, if am± < σ, µm± (λ) goes to 0 when λ goes to 0 and we have the

expansion

µm± (λ) = − λ

am± − σ
+

am± λ2

2(am± − σ)3
+O(λ3).(3.48)

Returning to the case am± > σ, we also find a solution of (3.47) that behaves as

in (3.48) when λ goes to 0. We denote this solution by µN+m
± , which is of course of

negative real part when Reλ > 0. With the convention that aN+m = am, these new
roots satisfy the expansion in (3.48). In view of (2.11), there are N−k+1 such roots,
µN+k
− , . . . , µ2N

− , for the ± = − sign, and N − k such roots, µN+k+1
+ , . . . , µ2N

+ , for the
± = + sign.

The root µm± (λ) is simple, provided that λ �= σ ( log(am±/σ) − am±/σ + 1 ).
If am± > σ, then two of the above roots collide at λ = σ ( log(am±/σ) − am±/σ + 1 ),

namely, µm± = µN+m
± = log(am±/σ) (the indices m lying in {k, . . . , N} for the ± = −

sign and in {k + 1, . . . , N} for the ± = + sign). So, up to diminishing η, all roots
µm± (λ) are simple and analytic in λ ∈ Ω.

Finally, up to diminishing again η, we can find r > η so that

(Ω\Cr) ∩ Σess(L) = ∅,(3.49)

with

Cr := {λ, sup(|Reλ|, |Imλ|) ≤ r}(3.50)

Proof. The first part is contained in [2, Lemma 12]. The next part follows from
bifurcation analysis of (3.47) at (λ, µ) = (0, 0) and elementary calculations. The last
assertion is a consequence of Lemma 3.4. The reader may find it helpful to refer to
Figures 3.1 and 3.2.

Thanks to these properties of the eigenvalues of A±(λ), we can obtain decom-
positions of H0 similar to those used in [2] for constructing our Evans function D.
In fact, the construction of D made in [2], valid in {Reλ > 0} ∪ {0}, did not require
eigenvectors associated with the µN+m

± . But we shall need the modes µN+m
± to extend

the Green’s function to a full neighborhood of 0 (namely, Cr). This is why we state
a result that is slightly different from Lemma 3 in [2].

Lemma 3.12. In the framework of Lemma 3.11, we introduce for λ ∈ Ω,

Φm
± (λ) :=

(
θ �→ eµ

m
± (λ)θ rm±

rm±

)
,

Ψm
± (λ) :=

(
θ �→ − e−µm± (λ)θ am± �m± , σ �m±

)
/ σ,
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σ

aN
+

ak+1
+

a1+

ak
+

a1−
ak−1
−

ak
−

aN
−

(fast modes)

(slow modes)

(fast modes)

(slow modes)

(slow modes) µk+1
+ , . . . , µN

+

µN+k+1
+ , . . . , µ2N+

µk
−, . . . , µ

N
−

µN+k
− , . . . , µ2N−

µ1−, . . . , µ
k−1
−

µ1+, . . . , µ
k
+

(slow modes)

Fig. 3.1. Characteristic speeds (in the (x, t)-plane) and the corresponding modes.

which are eigenvectors of A±(λ) and A±(λ)∗, respectively, associated with the eigen-
values µm± (λ) and µm± (λ), and such that

〈Ψn
±(λ) , Φ

m
± (λ) 〉 = δnm.

(Here and below δnm stands for the usual Kronecker symbol.) We have the decomposi-
tions

H0 = Span{Φ1
−(λ), . . . ,Φ

N
− (λ),Φ

N+k
− (λ), . . . ,Φ2N

− (λ)}

⊕ Span{Ψ1
−(λ), . . . ,Ψ

N
− (λ),Ψ

N+k
− (λ), . . . ,Ψ2N

− (λ)}⊥,

H0 = Span{Φ1
+(λ), . . . ,Φ

N
+ (λ),Φ

N+k+1
+ (λ), . . . ,Φ2N

+ (λ)}

⊕ Span{Ψ1
+(λ), . . . ,Ψ

N
+ (λ),Ψ

N+k+1
+ (λ), . . . ,Ψ2N

+ (λ)}⊥,

and the corresponding projections onto Span{Φm
± (λ)}, Span{Ψm

± (λ)}⊥ are analytic in

λ and λ, respectively, being defined by

Q±(λ) · Φ =
∑
m

〈Ψm
± (λ) , Φ 〉 Φm

± (λ),

P±(λ) = IH0 − Q±(λ).
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Fig. 3.2. The sets Ω and Cr in the λ-plane. Thick curves represent typical plottings of Λ(u)
(with σ = 1), having equations of the form λ = i σ ξ − a + ae−i ξ (ξ ∈ R) with either a < σ
(case without double points) or a > σ. For u = u±, they signal that a root µ of (3.47) crosses
the imaginary axis. Directions of crossings at λ = 0 are explicitly given in Lemma 3.11. From left
to right across such a curve, there is a root µ of σ µ − a + ae−µ = λ crossing from left to right if
a < σ and from right to left if a > σ.

Additionally, since all the eigenvalues of A±(λ) but possibly the µm± (λ) (the indices m
lying in {1, . . . , N} ∪ {N + k, . . . , 2N} for the ± = − sign and in {1, . . . , N} ∪ {N +
k + 1, . . . , 2N} for the ± = + sign) lie in some fixed half-plane {Reµ ≤ γ± < 0} for
all λ ∈ Cr, the semigroup associated with A±(λ), T±

λ , is exponentially decaying when
restricted to the range of P±(λ). More precisely, for all α± < γ± there exists C > 0
so that ∥∥T±

λ (x)P±(λ)
∥∥ ≤ Ce−α± x ∀x ≥ 0, ∀λ ∈ Cr.(3.51)

Proof. The proof is identical to that of Lemma 3 in [2].
Now, using the gap lemma construction, we can deduce decompositions of the

space H0 adapted to A(x, λ) on both half-lines R
±.

For convenience, we shall use the following shortcuts:

M− := {1, . . . , N} ∪ {N + k, . . . , 2N},

M+ := {1, . . . , N} ∪ {N + k + 1, . . . , 2N}.

Lemma 3.13. In the framework of Lemma 3.12, for all m ∈ M± there exist unique
W

m
± and Y

m
± that are solutions on R

± of (3.40) and (3.45), respectively, having the
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following asymptotics:

W
m
± (x, λ) = eµ

m
± (λ)x

(
Φm

± (λ) +O(eω±x)
)

∀x ∈ R
±,(3.52)

Y
m
± (x, λ) = e−µm± (λ)x

(
Ψm

± (λ) +O(eω±x)
)

∀x ∈ R
±,(3.53)

for some uniform ω+ < 0 < ω− on compact subsets of Ω, are analytic in λ and satisfy
the orthogonality relations

〈Y
n
±(x, λ) , W

m
± (x, λ) 〉 = δnm.(3.54)

Additionally, the projection onto Span{Ym
± (x, λ)}⊥ defined by

P±(x, λ) · Φ = Φ −
∑

m∈M±

〈Y
m
± (x, λ) , Φ 〉 W

m
± (x, λ)

is such that the evolution operator Tλ(x, y) associated with (3.40) enjoys the following
(i) commutation property, Tλ(x, y)P±(y, λ) = P±(x, λ)Tλ(x, y) for all x ≥ y ∈

R±,
(ii) and decay estimate

‖Tλ(x, y)P±(y, λ)‖ ≤ Ce−α±(x−y) ∀x ≥ y ∈ R
±(3.55)

for some C ≥ 0 and α± > 0 independent of λ ∈ Cr.
Proof. The construction of the W

m
− (respectively, the Y

m
+ ) was made in Propo-

sition 2 (respectively, Proposition 3) and Lemma 7 in [2]. The construction of W
m
+

for x ≥ x0 and of Y
m
− for x ≤ −x0 works the same way for x0 large enough, through

(revisited) Duhamel’s principle and a fixed point argument. The main difficulty lies
in extending W

m
+ to the whole half-line x ≥ 0 and Y

m
− to x ≤ 0, which amounts to

solving the backward Cauchy problem for (3.40) with data W
m
+ (x0) and the (forward)

Cauchy problem for (3.45) with data Y
m
− (x0). This can be overcome by using Lin’s

method [12, Theorem 3.3], provided that his basic assumptions hold, namely,

Tλ(x, y) · Φ �= 0 ∀x ≥ y ∈ R
−, ∀Φ ∈ H0\{0},

T ∗
λ (x, y) ·Ψ �= 0 ∀x ≤ y ∈ R

+, ∀Ψ ∈ H∗
0\{0}.

In terms of the operator L, this requires that no (nontrivial) eigenfunction of L or L∗

vanishes on an interval of length 1. Because of the invertibility of A(x), an elementary
calculation shows that this is obviously true.5

Away from the essential spectrum, and in particular in Ω\Cr, we recover usual
exponential dichotomies on R

± through the following alternate version of Lemma 3.13
(already pointed out in [2]).

Lemma 3.14. In the framework of Lemma 3.13, we define

Π±(x, λ) = I −
∑

1≤m≤N

W
m
± (x, λ)Y

m
± (y, λ)

5For the more general, mixed-type operator, the same is true, provided that the extreme matrices,
Cq(x) and C−p+1(x), are invertible for all x ∈ R. This is a crucial hypothesis, called atomicity in
[17], to get exponential dichotomies; also see Hypothesis 1 in [10].
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and

Ξ±(x, λ) = I −Π±(x, λ) =
∑

1≤m≤N

W
m
± (x, λ)Y

m
± (x, λ),(3.56)

where by abuse of notation all terms of the kind W Y stand for the operator

Φ �→ 〈Y , Φ 〉 W.

Then we have
(i) Tλ(x, y)Π±(y, λ) = Π±(x, λ)Tλ(x, y) for all x ≥ y ∈ R

±,
(ii) and for every 0 < r < R, there exist α(r,R) > 0 and C(r,R) > 0 such that

for all λ ∈ Ω\Cr, Reλ ≤ R,

||Tλ(x, y)Π±(y, λ)|| ≤ C(r,R)e−α(r,R)(x−y) ∀x ≥ y, x, y ∈ R
±,(3.57)

||Tλ(y, x) Ξ±(x, λ)|| ≤ C(r,R)e−α(r,R)(x−y) ∀x ≥ y, x, y ∈ R
±.

In the above inequality, Tλ(y, x) Ξ±(x, λ) is to be understood as(
Tλ(x, y)|RΞ±(y,λ)

)−1
Ξ±(x, λ).

The construction of the Evans function relies on this lemma. We recall it for com-
pleteness. By Lemma 3.4, Proposition 3.7, and Theorem 3.8, λ ∈ {Reλ ≥ 0}\Σess(L)
is an eigenvalue of L if and only if there exists a nonzero solution W of (3.40) vanishing
at ±∞. Using the exponential dichotomies given by (3.57), we must have

W(x) = Tλ(x, 0) · Φ ∀x ∈ R

and Φ ∈ RΠ+(0, λ) ∩ RΞ−(0, λ). Consequently, we have a nonzero solution if and

only if there is a nonzero linear combination Φ =
∑N

m=1 ϕ
m

W
m
− (0, λ) belonging to

RΠ+(0, λ) = Span{Ym
+ (x, λ) ; m = 1, . . . , N }⊥. This equivalently means that the

linear system

B(λ)ϕ = 0,

where ϕ = (ϕ1, . . . , ϕN ) and B(λ) is the square matrix of coefficients

B(λ)n,m = 〈Y
n
+(0, λ) , W

m
− (0, λ) 〉, 1 ≤ n , m ≤ N,

has a nontrivial solution. This yields as in [1] (also see [4] for a discussion of mixed-
type Evans functions in finite dimensions) the following definition.

Definition 3.15. With the notations introduced in Lemma 3.13, we define an
Evans function associated with L by

D(λ) := det(B(λ)) = det(〈Y
n
+(0, λ) , W

m
− (0, λ) 〉)1≤m,n≤N .(3.58)

A useful remark in practical computations is the following. By construction of
W

m
− , a solution of (3.40), and of Y

n
+, a solution of the adjoint system (3.45), we see

that

B(λ)n,m = 〈Y
n
+(x, λ) , W

m
− (x, λ)〉

for all x, where both W
m
− and Y

n
+ are well defined (which does occur for some of the

indices, as we shall recall below). Not only D vanishes at the eigenvalues of L, but
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we have the following result relating the multiplicity of an eigenvalue to its order as
a root of D.

Proposition 3.16. An eigenvalue of L of positive real part in L2 has algebraic
multiplicity at most equal to the order of vanishing of the Evans function D, defined
in (3.58), at that point.

Proof. The proof is inspired by that of Gardner and Jones [7] in the more classical,
finite dimensional case.

For clarity, we first show that geometric multiplicity is at most the order of van-
ishing. Assume that a given eigenvalue λ0 is of geometric multiplicity K. Then there
exist independent W 1, . . . ,WK and independent Y 1, . . . , Y K such that

(L− λ0) ·Wm = 0, (L− λ0)
∗ · Y m = 0

for all m ≤ K. Using the standard notation Wx(θ) = W (x+ θ) and introducing the
mappings

I : H1(R) → C(R;H1)

W �→ W : x �→
(

Wx

W (x)

)
,

J : H1(R) → C(R;H∗
1,·)

Y �→ Y : x �→ ( −YxAx−1 , σY (x)
)
,

we have that IWn (respectively, J Y n) are global solutions of (3.40) (respectively,
(3.45)) (see [2] for more details), which vanish at both +∞ and −∞. This means we
can modify the Y

m and W
m without changing the Evans function in such a way that

Y
m(±∞, λ0) = 0, W

m(±∞, λ0) = 0 ∀m ≤ K.

This implies that the matrix

(〈Y
n
±(x, λ) , W

m
± (x, λ) 〉)1≤m,n≤N

has at least K null rows (and K null columns) at λ = λ0. Differentiating, at most
m−1 times, its determinant row by row, there always remains a null row. This shows
that

dlD

dλl
(λ0) = 0 ∀l ≤ K − 1.

To show that algebraic multiplicity is at most the order of vanishing, we should
use Jordan chains for L and L∗. This is a little cumbersome in general. For simplicity,
we present the proof in the case when the algebraic multiplicity of λ0 equals 2 (and
the geometric multiplicity equals 1; otherwise the previous case applies). Then there
exist independent V and W , and independent Y and Z, such that

(L− λ0) ·W = 0, (L− λ0)
∗ · Y = 0,

(L− λ0) · V = W, (L− λ0)
∗ · Z = Y.

Similarly as before, we replace one of the W
m and one of the Y

m, for instance with
m = 1, by W = IW and Y = J Y , respectively. We easily see that

IV − ∂W
1

∂λ
(λ0)
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is a solution of (3.40), which vanishes at −∞. Therefore, there exist coefficients
ϕ1, . . . , ϕN so that

V − ∂W
1

∂λ
(λ0) =

N∑
m=1

ϕm W
m (λ0)

with V := IV . So, replacing W
1 by

W
1 +

N∑
m=1

ϕm (λ− λ0)W
m

does not alter D and makes

V =
∂W

1

∂λ
(λ0).

Exactly the same argument shows that we can assume without loss of generality that6

Z := JZ =
∂Y

1

∂λ
(λ0).

The interest is again that they vanish at both +∞ and −∞. This way, we find that
D′(λ0) is proportional to

d

dλ
〈Y1 , W

1〉 (λ0) = 〈Z , W〉 + 〈Y , V〉 = 0.

Hence D′(λ0) = 0.
This proves that multiplicity of λ0 is at most its order as a root of D. Due to the

infinite dimensions, it is not clear whether there is equality though. As a matter of
fact, assuming, for instance, that multiplicity equals 1 and order equals 2, we should
get a contradiction by constructing independent V andW vanishing at ±∞ such that

(L− λ0) ·W = 0, (L− λ0) · V = W.

But we have been able only to construct V such that

〈Ym , V〉 (+∞) = 0 ∀m ≤ N,

which is from far being sufficient for V to vanish at +∞. (This would be sufficient if
V were a solution of the homogeneous system (3.40).)

In fact, the very same proof works at λ = 0, which is of course a zero of D because
of the translation invariance (this means that we may choose one of the W

m to be
IU ′, the derivative of the profile, since L · U ′ = 0 and U ′(−∞) = 0). Thus, if
D′(0) is nonzero, 0 is a simple eigenvalue of L in L2. Under the additional, generic
assumption

(H4) Span(�1+, . . . , �
k
+, �

k
−, . . . , �

N
− ) = (RN )∗,

it was shown in [2] (also see [4]) how to compute D′(0). We found that

D′(0) = hk · (u+ − u−) det(〈Y
n
+(0, λ) , W

m
− (0, λ) 〉)k+1≤n ,m≤N

6The awkward notation Z here has nothing to do with the set of integers.
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up a to a nonzero factor, where hk belongs to Span(�1+, . . . , �
k
+) ∩ Span(�k−, . . . , �

N
− ).

The reduced determinant

det(〈Y
n
+(0, λ) , W

m
− (0, λ) 〉)k+1≤n ,m≤N

can be viewed as a transversality coefficient. For its vanishing means the existence
of a square integrable eigenfunction of L independent of U

′ = Wk (recall that Y
n
+ for

n ≥ k + 1 and Wm
− for m ≥ k are exponentially decaying at ±∞). Of course, in the

case k = N , that reduced determinant is irrelevant. In general, the other factor in
D′(0), hk · (u+ − u−), is related to Majda’s one-dimensional stability condition

det( r1−, . . . , r
k−1
− , u+ − u−, rk+1

+ , . . . , rN+ ) �= 0(3.59)

for the exact shock. Indeed, elementary linear algebra shows that

(hk)⊥ = Span(�1+, . . . , �
k
+)

⊥ ⊕ Span(�k−, . . . , �
N
− )

⊥

= Span(rk+1
+ , . . . , rN+ )⊕ Span(r1−, . . . , r

k−1
− ).

Hence hk · (u+ − u−) �= 0 if and only if Majda’s condition (3.59) holds true. This is
in particular always the case for weak shocks.

To summarize, we have the following.
Proposition 3.17. Under the assumption (H4), the Evans function D defined

in (3.58) admits a simple zero at λ = 0 if and only if 0 is a simple eigenvalue of
L in L2 and the underlying shock is Majda stable; that is, (3.59) is satisfied. For
(extreme) N -shocks, D′(0) �= 0 is merely equivalent to Majda’s stability condition,
which equivalently reads

�N− · (u+ − u−) �= 0.

Theorem 3.2 does not apply. Anyway, D′(0) �= 0 does not imply that 0 is a simple
eigenvalue of L in L∞. As we show hereafter, it cannot be that 0 is simple in L∞,
which in view of Theorem 3.8 implies that the requirement (ii) in Theorem 3.2 fails,
unless N = 1. The argument is similar as for viscous shocks [24, 20] and holds for
general schemes, just assuming that 0 is a simple eigenvalue of L in L2.

It is based on the fact that the eigenvalue equation L · Y = 0 for Y ∈ W 1,∞ is
equivalent to M · Y = const, where M is the integral operator defined by

(M · Y )(x) := σ Y (x) −
∫ x

x−1

q∑
l=−p

Cl(s) · V (s+ l) ds.

In fact, this operator already arose in the proof of Proposition 2.4 (see (2.25)). Con-
trary to L, the operator M is asymptotically hyperbolic, in the sense that the limit
operators

(M± · Y )(x) := σ Y (x) −
∫ 0

−1

q∑
l=−p+1

Cl
± · V (x+ θ + l) dθ

have no purely imaginary spectrum. As a matter of fact, by Fourier transform (in S ′),
we easily see that the spectrum of M± is made of the roots µ of det(∆(σ;µ, u±)/µ).
As already observed, there are no such µ on the imaginary axis. By exactly the
same method as Mallet-Paret in [16], one can show that M is Fredholm and its index
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depends only on M±. Now, as in the proof of Lemma 3.4 concerning L, we can
compute the index of M by a homotopy argument. This works, provided that there
exists a smooth curve θ ∈ [−1, 1] connecting u− at θ = −1 to u+ at θ = 1, along
which ak is monotone (decreasing). Note that this assumption is generically harmless.
For instance, that curve can simply be taken as the profile itself in the framework of
Proposition 2.4. The constant coefficient operator about u(θ), Mθ, is hyperbolic for
all θ but one, the unique θ such that ak(u(θ)) = σ, as computations in the proof of
Theorem 3.6 show. This means there is exactly one eigenvalue µ of Mθ crossing the
imaginary axis when θ is varied from −1 to 1. Therefore, M is Fredholm index 1.

Because of the translation invariance, the derivative of the profile, U ′, belongs to
the kernel of M . Because of the asymptotic hyperbolicity of M , we expect that its
kernel in L∞ coincides with its kernel in L2. Assuming that 0 is a simple eigenvalue
of L in L2, we get that the kernel of M in L∞ is exactly of dimension 1. By the
Fredholm property, this implies thatM is onto. More precisely, there is a codimension
1 subspace of L∞, say H, such that M|H is an isomorphism.

In particular, for any constant c ∈ C
N , there exists a unique Y ∈ H such that

M ·Y = c, and thus, differentiating once, L ·Y = 0. This means that the L∞ kernel
of L is at least N -dimensional.

4. Pointwise Green’s function bounds for the linear LDS.

4.1. Derivation of the Green’s function of the linear LDS. In the previous
section, we have shown that the spectral assumption (i) of Theorem 3.2 is true for weak
shocks and also that D′(0) �= 0 at least for extreme shocks. We claim that D′(0) �= 0
is an appropriate, weaker assumption in place of (i) to get nonlinear orbital stability
in conservative semidiscrete schemes, provided that an Evans function is available.
To support this, we show how to adapt to our setting the method of Zumbrun and
Howard [24], relying on pointwise Green’s functions estimates.

The first difficulty lies in the fact that the linearized system (3.2) is not au-
tonomous, which prevents us from directly applying Laplace transform. This brings
back into favor the change of frame point of view. Indeed, the evolution system (3.9) is
autonomous. But we need a more precise link, in terms of Green’s functions, between
the two approaches. This part works for any scheme.

We call Green’s function of the linear LDS (3.2) the solution vj(t) = Gj0
j (t, t0) of


dv

dt
= DG(u) · v,

vj(t0) = δj0j .

(4.1)

This definition is natural. The general solution of the nonhomogeneous equation

dv

dt
= DG(u) · v + F (t)

is indeed given by the convolution relation

vj(t) =
∑
j0

Gj0
j (t, 0)vj0(0) +

∫ t

0

∑
j0

Gj0
j (t, t0)Fj0(t0) dt0.

Consequently, the behavior of the Green’s function determines the behavior of general
solutions of the LDS.
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By definition, we have Gj0
j (t, t0) = V (j − st, t/∆x), where V solves (3.9) and

satisfies V (x, t0/∆x) = 1 if x = j0 − st0 and V (x, t0/∆x) = 0 if |x − j0 − st0| ≥ 1.
To simplify the writing, we perform a rescaling in space and time so that ∆x = 1 and
σ = s.

Taking the Laplace transform in t of (3.9), we get

(λ − L )L[V (·+ t0)](λ) = V (t0).

(As a usual abuse of notation, V (t) stands for the function x �→ V (x, t).) We know
from Proposition 3.3 that (λ − L ) is invertible for Reλ > M large enough. Then
using the Laplace inversion formula, we get for γ > M

V (t) =
1

2 i π

∫ γ+i∞

γ−i∞
eλ(t−t0) (λ − L )−1 V (t0) dλ, t > t0.(4.2)

(Since L is the infinitesimal generator of a strongly continuous semigroup, by Propo-
sition 3.3, this formula holds true for all t > t0, provided that V (t0) belongs to the
domain of L, that is, H1.) At this stage, we may try to use directly (4.2) to get esti-
mates of V (x, t) and then deduce estimates of Gj0

j (t, t0) = V (j− st, t). But, as shown
in Theorem 3.6, the essential spectrum of L intersects the imaginary axis infinitely
many times on 2iπσZ. This way, it seems difficult to use the method of [24], which
relies on a very careful continuation of (λ − L)−1V (t0) into the essential spectrum.
This is why we use only (4.2) as an intermediate step for obtaining a representation
formula of Gj0

j (t, t0).
We begin with a formal derivation based on the obvious and nevertheless crucial

conjugation formula

(λ+ 2iπσm− L)−1 = Em (λ− L)−1 E−m,

where Em denotes the multiplication operator by the function x �→ e2iπmx. We
deduce from (4.2) that

V (x, t) =
1

2iπ

∑
m∈Z

∫ γ+iπσ

γ−iπσ

e(λ+2iπσm)(t−t0)e2iπmx
{
(λ− L)−1(E−mV (t0))

}
(x) dλ.

And, in particular,

V (j−st, t) = 1

2iπ

∑
m∈Z

∫ γ+iπσ

γ−iπσ

eλ(t−t0)
{
(λ− L)−1 (e−2iπsmt0E−mV (t0))

}
(j−st) dλ.

Now if we (formally) permute the sum and the integral, we get by linearity

V (j−st, t) = 1

2iπ

∫ γ+iπσ

γ−iπσ

eλ(t−t0)

{
(λ− L)−1

(∑
m∈Z

e−2iπsmt0E−mV (t0)

)}
(j−st) dλ.

Finally, recalling the definition of the Dirac comb and the alternative formula∑
m∈Z

e−2iπsmt0 E−m =
∑
j∈Z

δj−st0 ,

we find that ∑
m∈Z

e−2iπsmt0 E−m V (t0) = δj0−st0
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in the sense of distributions. Consequently, the expected formula for the solution of
(4.1) is

Gj0
j (t, t0) =

1

2 i π σ

∫ γ+iπσ

γ−iπσ

eλ(t−t0) Gλ(j − st, j0 − st0) dλ,(4.3)

where Gλ denotes the Green function of (λ− L), defined by

(λ− L)Gλ(·, y) = δy.(4.4)

A useful remark is that the conjugation property of L translates toGλ into the equality

Gλ+2iπσm(x, y) = e2iπm(x−y) Gλ(x, y).(4.5)

Also observe that the formula in (4.3) requires only integration on compact sets in λ.
Moreover, if Gλ is holomorphic for Reλ > M , then, because of (4.5) and Cauchy’s
theorem, the integral in (4.3) is independent of γ > M .

To justify the previous computation, we need estimates on Gλ. Revisiting Propo-
sition 5.2 in [16], we have the following.

Lemma 4.1. We assume that (H1)–(H3) hold and consider the operator L defined
in (3.10). Then for Reλ > M large enough, the Green’s function Gλ defined by (4.4)
enjoys a uniform estimate

|Gλ(x, y)| ≤ K , (x, y) ∈ R
2,(4.6)

for some positive constant K. Furthermore, for all α > 0 there exists Mα such that
for Reλ > Mα

|Gλ(x, y)| ≤ K e−α|x−y| , (x, y) ∈ R
2.(4.7)

Proof. The proof is based on findingGλ through a fixed point argument. Recalling
that L = σd/dx + B with

(B · V )(x) = −
q∑

l=−p

(Cl(x) − Cl+1(x− 1) ) · V (x+ l)

and introducing the Green’s function G0
λ of (λ− σd/dx), we can look for the solution

of (4.4) as a solution of the implicit equation

Gλ(x, y) = G0
λ(x, y) +

∫
R

Gλ(x, z) (BG
0
λ)(z, y) dz.(4.8)

Of course, the advantage of using G0
λ is that it is explicitly known, and in particular

it meets the estimate

|G0
λ(x, y)| ≤

1

σ
e−Reλ|x−y|/σ.

Now a rough estimate shows that for all G ∈ L∞

∣∣∣∣
∫

R

G(x, z) (BG0
λ)(z, y) dz

∣∣∣∣ ≤ c ‖G‖L∞

q∑
l=−p

∫
R

e−Reλ|z+l−y|/σ dz ≤ c′

|Reλ| ‖G‖L∞ .
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Therefore, the mapping G �→ ∫
R
G(·, z) (BG0

λ)(z, y) dz is a contraction in L∞ for
Reλ > c′ large enough so that (4.8) has a unique bounded solution, which must be
Gλ. Hence Gλ is bounded, as claimed in (4.6). The proof of (4.7) is identical, applying
a fixed point argument in the Banach space

Eα := {G ; sup
x,y

|G(x, y)| eα|x−y| < ∞}.

We just evaluate∣∣∣∣
∫

R

G(x, z) (BG0
λ)(z, y) dz

∣∣∣∣ ≤ c ‖G‖Eα
q∑

l=−p

∫
R

e−α|x−z| e−Reλ|z+l−y|/σ dz

≤ c′ e−α|x−y| ‖G‖Eα
∫

R

e− (Reλ−ασ)|z−y|/σ dz ≤ c′′

|Reλ− ασ| e
−α|x−y| ‖G‖Eα .

Hence the mapping G �→ ∫
R
G(·, z) (BG0

λ)(z, ·) dz is a contraction in Eα for Reλ >
ασ + c′′.

Theorem 4.2. Assuming (H1)–(H3), for all t > t0 the Green’s function Gj0
j (t, t0)

of (3.2) is given by (4.3) in terms of the Green’s function Gλ of (λ− L), where L is
the operator defined in (3.10).

Proof. It will be useful to reformulate the definition (4.4) of Gλ as∫
R

σ ζ ′(x)Gλ(x, y) + λ ζ(x)Gλ(x, y)

+ ζ(x)

q∑
l=−p

(Cl(x) − Cl+1(x− 1) ) ·Gλ(x+ l, y) dx = ζ(y)

(4.9)

for all ζ ∈ C∞
c (R).

By Cauchy–Lipschitz theorem (recall that (3.2) is merely a linear ODE in the
Banach space Lα), we know that (4.1) admits a unique solution. We want to show
that vj(t) := Gj0

j (t, t0) defined by (4.3) coincides with that solution on { t ≥ t0 }.
Because of (4.6), we see by making γ tend to +∞ in (4.3) that v(t) = 0 for t < t0.
Therefore, it is sufficient to prove that

∫ ∞

−∞

∑
j∈Z

− dzj
dt

vj + zj

q∑
l=−p

(Cl(j − st) − Cl+1(j − 1− st) ) · vj+l dt = zj0(t0)

(4.10)

for all z ∈ C∞
c (R ; L2). And this is a matter of simple calculus. We have∫ ∞

−∞

∑
j∈Z

− dzj
dt

vj dt + zj

q∑
l=−p

(Cl(j − st) − Cl+1(j − 1− st) ) · vj+l dt

=
1

2 i π

∫ γ+iπσ

γ−iπσ

dλ
∑
j∈Z

∫ ∞

−∞
dt eλ(t−t0)


 − dzj

dt
Gλ(j − st, j0 − st0)

+ zj

q∑
l=−p

(
Cl(j − st) − Cl+1(j − 1− st)

) ·Gλ(j + l − st, j0 − st0)


 .
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The permutation of summations is allowed by the estimate in (4.6), the fact that z
is compactly supported, and Lebesgue’s theorem. Now we see by change of variable
that

∫ t=∞

t=−∞
eλ(t−t0)


 − dzj

dt
Gλ(j − st, j0 − st0)

+ zj

q∑
l=−p

(
Cl(j − st) − Cl+1(j − 1− st)

) ·Gλ(j + l − st, j0 − st0)


 dt

=
1

σ

∫ x=∞

x=−∞
σ
dζj
dx

Gλ(x, j0 − st0) + λ ζj(x, λ)Gλ(x, j0 − st0)

+ ζj(x, λ)

q∑
l=−p

(
Cl(x) − Cl+1(x− 1)

) ·Gλ(x+ l, j0 − st0) dx,

with

ζj(x, λ) := eλ( (j−x)/s−t0 ) zj((j − x)/s).

Since z is compactly supported, (4.9) holds in particular for ζj(·, λ). Hence we have
∫ t=∞

t=−∞
eλ(t−t0)


 − dzj

dt
Gλ(j − st, j0 − st0)

+ zj

q∑
l=−p

(
Cl(j − st) − Cl+1(j − 1− st)

) ·Gλ(j + l − st, j0 − st0)


 dt

=
1

σ
ζj(j0 − st0, λ).

To get (4.10) it remains to show that

1

2 i π σ

∫ γ+iπσ

γ−iπσ

∑
j∈Z

ζj(j0 − st0, λ) dλ = zj0(t0).

But by definition of ζj we have∫ γ+iπσ

γ−iπσ

∑
j∈Z

ζj(j0 − st0, λ) dλ =

∫ γ+iπσ

γ−iπσ

∑
j∈Z

eλ(j−j0)/s zj((j − j0)/s+ t0) dλ.

Noting that

1

2 i π σ

∫ γ+iπσ

γ−iπσ

eλn/σ dλ = δ0
n

we get the result by permuting the integral with the sum.
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4.2. Study of the Green’s function Gλ for the upwind scheme. Similarly
as in [24], our method consists of deriving estimates on the evolutionary Green’s
function Gj0

j (t, t0) from precise bounds on the Green’s function Gλ(x, y), thanks to
the formula (4.3).

From now on, we focus on the upwind scheme and make use of the Evans function
defined in (3.58). We assume linear stability, and more precisely

(H5) D(λ) �= 0 for all λ �∈ 2 i π σ Z, Reλ ≥ 0,
(H6) D′(0) �= 0.

Indeed, the same argument as in [24, Corollary 8.2] shows that both assumptions (H5)
and (H6) are necessary for the linear stability of the semidiscrete shock.

Remark 4.3. Note that, thanks to (H5)–(H6), we can actually assume that

D(λ) �= 0 ∀λ ∈ Ω\Cr

and that 0 is the only root of the Evans function in Cr by choosing r and η smaller,
thanks to the analyticity of the Evans function in Ω.

We already obtained in Lemma 4.1 some uniform estimates on Gλ(x, y) for large
Reλ. The next step consists of constructing and decomposing Gλ into controllable
terms for bounded Reλ. This amounts to constructing and decomposing the Green’s
function Gλ(x, y) of the operator

Lλ := σ

(
− d

dx
+ A(x, λ)

)
.

As a matter of fact, we have

(λ − L ) ·W = f ⇐⇒ Lλ · W = F,

where

W = IW, i.e., W(x) =

(
Wx

W (x)

)
and F =

(
0
f

)
.

Therefore, denoting as before

Γ : H0 → C
N(

φ
c

)
�→ c

and its right inverse

Υ : C
N → H0

c �→
(

0
c

)
,

we have

Gλ(x, y) = ΓGλ(x, y)Υ.(4.11)

Our approach is close to the original one of Zumbrun and Howard [24], Zumbrun [23],
and Mascia and Zumbrun [18] and may be translated to other frameworks. However,
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special care is required because of the infinite dimensions. In this context, the accurate
definition of Gλ(x, y) is that for any F ∈ L2(R, H0),

W(x) =

∫
R

Gλ(x, y)F(y) dy(4.12)

is the uniquemild solution (see, for instance, [19]) in L2(R, H0) of the nonhomogeneous
problem

σ
(
− d

dx
+ A(x, λ)

)
W(x) = F(x).(4.13)

To get an expression of Gλ in Ω\Cr, we shall make a crucial use of the fact that
Lλ has exponential dichotomies on R

+ and R
− (see (3.57)).

Proposition 4.4. We define the projections Π± and Ξ± as in (3.56). Under
the assumption (H5), we have

RΠ+(0, λ)⊕RΞ−(0, λ) = H0 ∀λ ∈ Ω\Cr.(4.14)

Therefore, there exist M1(λ) : H0 → RΠ+(0, λ) and M2(λ): H0 → RΞ−(0, λ) such
that

M1(λ) · Φ−M2(λ) · Φ = Φ ∀Φ ∈ H0, ∀λ ∈ Ω\Cr,(4.15)

and the Green’s function Gλ for λ ∈ Ω\Cr is analytic in λ and can be decomposed as
follows.
• If y ≥ 0,

Gλ(x, y) = Tλ(x, y)Π+(y, λ) + Tλ(x, 0)M1(λ)Tλ(0, y) Ξ+(y, λ), x > y,

= −Tλ(x, y) Ξ+(y, λ) + Tλ(x, 0)M1(λ)Tλ(0, y) Ξ+(y, λ), 0 ≤ x < y,

= Tλ(x, 0)M2(λ)Tλ(0, y)Ξ+(y, λ), x ≤ 0,

• and if y ≤ 0,

Gλ(x, y) = −Tλ(x, y) Ξ−(y, λ) + Tλ(x, 0)M2(λ)Tλ(0, y)Π−(y, λ), x < y,

= Tλ(x, y)Π−(y, λ) + Tλ(x, 0)M2(λ)Tλ(0, y)Π−(y, λ), y < x ≤ 0,

= Tλ(x, 0)M1(λ)Tλ(0, y)Π−(y, λ), x ≥ 0.

Proof. ConcerningM1 andM2 it is sufficient to determineM2 Ξ+ and then define

M1 = Π+ + ( I + M2 ) Ξ+, M2 = M2 Ξ+.

But M2(λ) Ξ+(0, λ) is fully determined by M2(λ)W
m
+ (0, λ), m ∈ {1, . . . , N}, which

must be looked for in

RΞ−(0, λ) = Span{W1
−(0, λ), . . . ,W

N
− (0, λ)}.

Introducing coefficients βn,m(λ) such that

M2(λ)W
m
+ (0, λ) =

∑
1≤n≤N

βn,m(λ)W
n
−(0, λ)
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and requiring that ( I + M2(λ) )W
m
+ (0, λ) belong to

RΠ+(0, λ) = Span{Y1
+(0, λ), . . . ,Y

N
+ (0, λ)}⊥,

we easily find that the matrix β(λ) = (βn,m(λ))n,m must be equal to −B(λ)−1,
where B(λ) is nothing but the matrix defining the Evans function in (3.58). We recall
that, thanks to Remark 4.3, B(λ) is really invertible in Ω\Cr. Hence, with the same
abuse of notation as in (3.56), we obtain

M2(λ)=M1(λ)− I=
∑

1≤n,m≤N

βn,m(λ)W
n
−(0, λ)Y

m
+ (0, λ), β(λ) :=−B(λ)−1.(4.16)

To find the Green’s function Gλ, the procedure is rather standard. We look
for bounded solutions of the nonhomogeneous problem (4.13) through Duhamel-like
formulas. Once it is under the form (4.12), it suffices to read the kernel Gλ.

Because of (3.57),

W+(x, λ) :=

∫ x

0

Tλ(x, y)Π+(y, λ)F(y) dy −
∫ +∞

x

Tλ(x, y)Ξ+(y, λ)F(y) dy ∀x ∈ R
+

belongs to L2(R+, H1), is bounded, and is a mild solution of (4.13). Consequently, if
W is a bounded mild solution of (4.13), W − W+ is a bounded mild solution of the
homogeneous system (3.40). Using again the existence of the exponential dichotomy
on R

+ given by (3.57), we see that (W − W+)(0) =: Φ+ ∈ RΠ+(0, λ); hence

W(x, λ) = Tλ(x, 0)Φ+ + W+(x, λ)

for x ≥ 0. In other words,

W(x, λ) = Tλ(x, 0) · Φ+ +

∫ x

0

Tλ(x, y)Π+(y, λ)F(y) dy

−
∫ +∞

x

Tλ(x, y) Ξ+(y, λ)F(y) dy ∀x ∈ R
+.

(4.17)

Similarly, using the exponential dichotomy on R−, we find that every bounded
solution of (4.13) on R

− is of the form

W(x, λ) = Tλ(x, 0)Φ− +

∫ x

0

Tλ(x, y) Ξ−(y, λ)F(y) dy

+

∫ x

−∞
Tλ(x, y)Π−(y, λ)F(y)dy ∀x ∈ R

−,

(4.18)

where Φ− ∈ RΞ−(0, λ).
For a bounded solution on R, the two expressions (4.17) and (4.18) must agree

at x = 0. Hence we get

Φ+ − Φ− =

∫ +∞

0

Tλ(0, y) Ξ+(y, λ)F(y) dy +

∫ 0

−∞
Tλ(0, y)Π−(y, λ)F(y) dy.

By definition of Mi(λ), this yields

Φ+ =M1(λ)

(∫ +∞

0

Tλ(0, y)Ξ+(y, λ)F(y) dy +

∫ 0

−∞
Tλ(0, y)Π−(y, λ)F(y) dy

)
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and

Φ− =M2(λ)

(∫ +∞

0

Tλ(0, y)Ξ+(y, λ)F(y) dy +

∫ 0

−∞
Tλ(0, y)Π−(y, λ)F(y) dy

)
.

Substituting these two expressions into (4.17) and (4.18) and interpreting the result
in the various cases, we complete the proof of the decomposition of Gλ.

Remark 4.5. We have not used the well-posedness of the Cauchy problem for the
operator Lλ. The crucial point is the existence of exponential dichotomies on R

±. So
this result could extend to more general shemes satisfying (H1)–(H3). Indeed, for λ
in Ω\Cr, Lλ is asymptotically hyperbolic, and the result of [10] ensures the existence
of exponential dichotomies on both half-lines.

Estimating each term of Gλ separately, by means of (3.57), we easily show the
following.

Corollary 4.6. For all R > 0, there exists α > 0 such that for every λ ∈ Ω\Cr,
Reλ ≤ R, we have the estimate

|Gλ(x, y)| ≤ C(r,R)e−α|x−y| ∀x, y ∈ R,(4.19)

and thus, thanks to (4.11),

|Gλ(x, y)| ≤ C(r,R)e−α|x−y| ∀x, y ∈ R.(4.20)

We have adopted here the simple notation | · | for both the norm in L(CN ) and
in L(H0).

The next step is more delicate; it consists of showing that the Green’s function
Gλ has an analytic continuation to a whole vicinity of the origin, namely Cr. The
precise description of this continuation is the crucial part of the analysis, since bounds
on Gλ for small λ will determine the large time behavior of Gj0

j (t, t0).
Theorem 4.7. Assuming (H5)–(H6), Gλ extends to Cr as follows. If y ≥ 0,

Gλ(x, y) = Tλ(x, y)P+(y, λ) +
∑

N+k+1≤l≤2N

W
l
+(x, λ)Y

l
+(y, λ)(4.21)

+
∑

1≤n,m≤N

βn,m(λ)Tλ(x, 0)P+(0, λ)W
n
−(0, λ)Y

m
+ (y, λ)

+
∑

1≤m≤N

∑
N+k+1≤l≤2N

γl,m(λ)W
l
+(x, λ)Y

m
+ (y, λ), x > y,

Gλ(x, y) = −
∑

1≤m≤N

W
m
+ (x, λ)Y

m
+ (y, λ)(4.22)

+
∑

1≤n ,m≤N

βn,m(λ)Tλ(x, 0)P+(0, λ)W
n
−(0, λ)Y

m
+ (y, λ)

+
∑

1≤m≤N

∑
N+k+1≤l≤2N

γl,m(λ)W
l
+(x, λ)Y

m
+ (y, λ), 0 ≤ x < y,

Gλ(x, y) =
∑

1≤n ,m≤N

βn,m(λ)W
n
−(x, λ)Y

m
+ (y, λ), x ≤ 0,(4.23)
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where the coefficients βn,m(λ) are defined as in (4.16) by

(βn,m(λ)) = β(λ) = −B(λ)−1,

B(λ)n,m = 〈Y
n
+(0, λ) , W

m
− (0, λ) 〉 , 1 ≤ n , m ≤ N,

(4.24)

and the coefficients γl,m(λ) by

(γl,m(λ)) = γ(λ) = C(λ)β(λ),

C(λ)l,m = 〈Y
l
+(0, λ) , W

m
− (0, λ) 〉, N + k + 1 ≤ l ≤ 2N, 1 ≤ m ≤ N.

(4.25)

In Cr, the coefficients βn,m(λ) are holomorphic for n �= k and meromorphic with
a single pole of order at most one at zero if n = k. The coefficients γl,m(λ) are
holomorphic.

For y ≤ 0 we have left similar expressions to the reader.
Proof. The expressions obtained in Proposition 4.4 can be extended to Cr by

means of Lemma 3.13. Recalling the definition of P+,

P+(y, λ) = I −
N∑

m= 1

W
m
+ (y, λ)Y

m
+ (y, λ) −

2N∑
l=N+k+1

W
l
+(y, λ)Y

l
+(y, λ),(4.26)

and the definition of Π+(y, λ) (see (3.56)), we can write

Π+(y, λ) =
∑

N+k+1≤l≤2N

W
l
+(y, λ)Y

l
+(y, λ) + P+(y, λ).(4.27)

Consequently, we easily get that

Tλ(x, y)Π+(y, λ) = Tλ(x, y)P+(y, λ) +
∑

N+k+1≤l≤2N

W
l
+(x, λ)Y

l
+(y, λ).(4.28)

This is the first piece of Gλ for x > y given in Proposition 4.4. We also need an
expansion of Tλ(x, 0)M1(λ)Tλ(0, y) Ξ+(y, λ). By definition of Ξ+(y, λ) (see (3.56)),
we have

Tλ(0, y) Ξ+(y, λ) =
∑

1≤m≤N

W
m
+ (0, λ)Y

m
+ (y, λ).

Hence, using (4.16), we find that

Tλ(x, 0)M1(λ)Tλ(0, y) Ξ+(y, λ) =
∑

1≤m≤N

W
m
+ (x, λ)Y

m
+ (y, λ)

+Tλ(x, 0)M2(λ)Tλ(0, y) Ξ+(y, λ),

(4.29)

Tλ(x, 0)M2(λ)Tλ(0, y) Ξ+(y, λ) =
∑

1≤n,m≤N

βn,m(λ)Tλ(x, 0)W
n
−(0, λ)Y

m
+ (y, λ).(4.30)

This formula is not sufficient to get estimates of Gλ, because of the terms
Tλ(x, 0)W

n
−(0, λ) = W

n
−(x, λ), for which Lemma 3.13 gives the behavior for x ≤ 0
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only. We are going to rewrite (4.30) in a more suitable way. By definition of P+(0, λ)
(see (4.26)), we have

W
n
−(0, λ) =

∑
l∈M+

〈Y
l
+(0, λ) , W

n
−(0, λ) 〉W

l
+(0, λ) + P+(0, λ)W

n
−(0, λ),

where M+ = {1, . . . , N} ∪ {N + k + 1, . . . , 2N} as before. Therefore, the right-hand
side in (4.30) equivalently reads∑

1≤n ,m≤N

βn,m(λ)Tλ(x, 0)W
n
−(0, λ)Y

m
+ (y, λ)

=
∑

1≤n ,m≤N

βn,m(λ)Tλ(x, 0)P+(0, λ)W
n
−(0, λ)Y

m
+ (y, λ) + Σ1 + Σ2,

where

Σ1 =
∑

1≤n ,m , l≤N

Bl,n(λ)βn,m(λ)Tλ(x, 0)W
n
+(0, λ)Y

m
+ (y, λ)

= −
∑

1≤m≤N

Tλ(x, 0)W
m
+ (0, λ)Y

m
+ (y, λ)

because of (4.24), and

Σ2 =
∑

1≤n ,m≤N

2N∑
l=N+k+1

Cl,n(λ)βn,m(λ)Tλ(x, 0)W
n
+(0, λ)Y

m
+ (y, λ)

=
∑

1≤m≤N

2N∑
l=N+k+1

γl,m(λ)Tλ(x, 0)W
l
+(0, λ)Y

m
+ (y, λ)

in view of the definition (4.25) of γ(λ). This implies in particular that the first sum
in the right-hand side of (4.29) cancels out. Eventually, we get

Tλ(x, 0)M1(λ)Tλ(0, y) Ξ+(y, λ) =
∑

1≤n,m≤N

βn,mTλ(x, 0)P+(0, λ)W
n
−(0, λ)(4.31)

+
∑

1≤m≤N

2N∑
l=N+k+1

γl,m(λ)W
l
+(x, λ)Y

m
+ (y, λ).

Collecting (4.28), (4.30), and (4.31), we get (4.21), (4.22), and (4.23) from the corre-
sponding expressions in Proposition 4.4.

It remains to prove the statements about the analyticity of the coefficients. Re-
garding βn,m(λ), we have by (4.24) and Cramer’s rule

βn,m(λ) = − det(B1(λ), . . . , Bn−1(λ), em, Bn+1(λ), . . . , BN (λ))

detB(λ)
,(4.32)

where, for all m ∈ {1, . . . , N}, Bm denotes the mth column of B and em denotes the
mth vector of the canonical basis in C

N . As already noted above, we may assume
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that one of the W
m coincides with IU ′ = U

′ at λ = 0. This is a usual simplification
in the study of the Evans function in the vicinity of λ = 0. For reasons that were
explained in [2], we assume that the concerned index is k, i.e.,

W
k
−(x, 0) = U

′(x).(4.33)

Consequently, W
k
−(x, 0) is also decreasing when x tends to +∞, and since Y

+
n (x, 0) is

bounded when x tends to +∞ for n ∈ M+, we deduce that

〈Y
n
+(x, 0) , W

k
−(x, 0)〉 ≡ 0 ∀n ∈ M+.(4.34)

This means that Bk(0) = 0. Consequently, (4.32) and our assumption (H6) imply
that βn,m is analytic in Cr, provided that n �= k and that βkm has a simple pole at
λ = 0. Furthermore, the pole of βkm is compensated by the cancellation of Clk(λ) =
〈Y

l
+(x, λ) , W

k
−(x, λ) 〉 at λ = 0. Therefore, all terms in the sum defining γl,m (see

(4.25)) are analytic in Cr.
At this stage, we did not really use the nature of the shock, that is, the dimension

of Ker P±. If we were to use the expansions of Theorem 4.7 to estimate the Green’s
function Gj0

j (t, t0) of the evolution problem, we should get estimates similar to the
ones obtained in [24] for viscous shocks, which have been pointed out in [23] as not
being optimal for Lax shocks. This is why we now turn to refined expansions of the
Green’s function, inspired from [18] and [23].

4.3. Refined decomposition of the Green’s function. In this section, we
show the final refined decomposition of the Green’s function. We define the “trun-
cated” eigenvalues νm± by

νm± (λ) = − λ

λm±
+

am±
2(λm± )3

λ2,(4.35)

where λm± := am± − σ, in such a way that (3.48) merely reads

µm± (λ) = νm± (λ) +O(λ3).(4.36)

Theorem 4.8. Assuming (H4)–(H6), we have for some constants independent of

λ, c+m, β̃+
n,m, γ̃+

l,m the following expansion of the Green’s function Gλ in Cr:

Gλ = Eλ + Sλ + Rλ,

where for y > 0,

Eλ(x, y) =

k∑
m=1

c+m
λ
e−νm+ (λ)yU ′(x) �m+ ,(4.37)

Sλ(x, y) =

2N∑
l=N+k+1

eν
l
+(x−y) rl+ �l+ + +

k∑
m=1

2N∑
l=N+k+1

γ̃+
l,m eν

l
+x e−νm+ y rl+ �m+(4.38)

if x > y,

Sλ(x, y) = −
k∑

m=1

eν
m
+ (x−y) rm+ �m+ +

k∑
m=1

2N∑
l=N+k+1

γ̃+
l,m eν

l
+x e−νm+ y rl+ �m+(4.39)

if 0 < x < y,

Sλ(x, y) =

k−1∑
n=1

k∑
m=1

β̃n,m eν
n
−x e−νm+ y rn− �m+(4.40)

if x < 0,
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and

Rλ = RE
λ +RS

λ ,

where

∂αyR
E
λ = O(e−ω|x−y|)

+
k∑

m=1

e−νm+ yO
(
λα−1(eO(λ3)y − 1) + λα−1(eO(λ3)x − 1) +O(λα)

)
e−ω|x|,

(4.41)

∂αyR
S
λ = O(e−ω|x−y|)(4.42)

+
∑

N+k+1≤l≤2N

eν
l
+(x−y)O

(
λαe−ωx + λα(eO(λ3)x − 1) + λα(eO(λ3)y − 1) + λα+1

)

+
∑

m≤k,N+k+1≤l≤2N

Oeν
l
+x−νm+ y

(
λα(eO(λ3)x − 1)+ λα(eO(λ3)y − 1) + λαe−ω|x| + λα+1

)
if x > y,

∂αyR
S
λ = O(e−ω|x−y|)(4.43)

+
∑
m≤k

eν
m
+ (x−y)O

(
λαe−ωx + λα(eO(λ3)x − 1) + λα(eO(λ3)y − 1) + λα+1

)

+
∑

m≤k,N+k+1≤l≤2N

eν
l
+x−νm+ yO

(
λαe−ωx+ λα(eO(λ3)x − 1) + λα(eO(λ3)y− 1) + λα+1

)
if 0 < x < y,

∂αyR
S
λ(4.44)

=
∑

n≤k,m≤k

eν
n
−x−νm+ yO

(
λαeωx+ λα(eO(λ3)x − 1) + λα(e−O(λ3)y − 1)+ λαe−ω|x|+ λα+1

)
if x < 0.

All these estimates are uniform in λ, x, y. Symmetric expansions hold for y ≤ 0.
Similar expansions were found in [23, 18], thanks to a careful study of the slow

modes of the adjoint system, that is to say, the Y
m
+ , m ∈ {1, . . . , k} ∪ {N + k +

1, . . . , 2N} (associated with the µm+ (λ) tending to zero when λ tends to zero), in order
to get additional cancellations in the coefficients βn,m(λ), γl,m(λ). These results
were based on the properties of the standard (see [4]) Evans function for viscous and
relaxation shock profiles, respectively. Here the proof will follow the same outlines,
adapted to our mixed Evans function (see again [4] and [2]) in infinite dimensions.
The generic assumption (H4) is needed to do precise computations at λ = 0, similarly
as in [2, 4].
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We make the choice (4.33). Furthermore, the constants are obviously in the kernel
of the advanced differential operator

L∗ : Y �→ L∗ Y ; L∗ Y (x) = −σ − σ Y ′(x) + (Y (x+ 1) − Y (x) )A(x).

So, similarly as in [18, 2], we may choose the slow modes of the adjoint dynamical
system in such a way that

Y
n
+(x, 0) = J �n+ =

(− �n+ Ax−1, σ�
n
+

)
,

n ∈ {1, . . . , k} ∪ {N + k + 1, . . . , 2N}.

(4.45)

In particular, these slow modes Y
n
+(x, 0) are well defined and bounded on the whole

real line.
Thanks to (4.33) and (4.45), we can get more information on the coefficients

βn,m(λ) and γl,m(λ) at λ = 0.
Lemma 4.9. Assuming (H4)–(H6), we have the following additional properties:
• for all m ∈ {k + 1, . . . , N}, βk,m is analytic in Cr;
• for all m ∈ {k + 1, . . . , N} and l ∈ {N +K + 1, . . . , 2N}, γl,m(λ) = O(λ) in
Cr.

Proof of Lemma 4.9. We take benefit from (H4) in the same way as in [4, 2].
There exist independent row vectors h1, . . . , hk such that

hn ∈ Span {�1+, . . . , �k+}, n ∈ {1, . . . , k},(4.46)

hk ∈ Span{�k−, . . . , �N−}.(4.47)

The isomorphism M , defined on (RN )∗ by

M �n+ = hn, n ≤ k, M �n+ = �n+, n ≥ k + 1,(4.48)

induces an isomorphism on H∗
0 , defined by

M : Ψ = (ψ, b) �→ (Mψ,Mb),

which leaves unchanged Y
n
+(x, 0) for n ≥ k + 1. For simplicity, we denote

Y
n(x, λ) := M Y

n
+(x, λ)

for all n ∈ M+. We thus have

D(λ) = det(〈Y
n
+(0, λ),W

m
− (0, λ) 〉) = detM−1 det(〈Y

n(0, λ),Wm
− (0, λ) 〉),

and, in view of (3.54) and (4.32),

βk,m(λ) =
detB̌m(λ)

detB̃(λ)
,

where

B̃n,l(λ) = 〈Y
n(0, λ),Wl

−(0, λ) 〉 ∀n, l ∈ {1, . . . , N},
B̌m
n,l(λ) = B̃n,l(λ), l �= k,

B̌m
n,k(λ) = 〈Y

n(0, λ),Wm
+ (0, λ) 〉 ∀n ∈ {1, . . . , N}.
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Using (3.52), (4.45), and (4.48), for all n ≤ k − 1 we have

〈Y
k(0, 0),Wn

−(0, 0) 〉 = lim
x→−∞〈Y

k(x, 0),Wn
−(x, 0) 〉 =

〈
(hkA−, hk),

(
rn−
rn−

)〉
= 0

because of (4.47). Furthermore, thanks to (4.45) and (4.46),

Y
k(x, 0) ∈ Span {Y1

+(x, 0), . . . ,Y
k
+(x, 0)}

is bounded on the whole real line, and for k ≤ n ≤ N , W
n
−(−∞, 0) = 0. So we also

have

〈Y
k(0, 0),Wn

−(0, 0) 〉 = 0.

This means that the kth row of B̃(λ) vanishes at λ = 0. This shows once more that

D vanishes at λ = 0. And (H6) says that detB̃(λ)−1 has a simple pole at that point.
But the kth row of B̌m(λ) also vanishes at λ = 0 for m ≥ k + 1, since Y

k(x, 0) is
bounded on the whole real line and W

m
+ (+∞, λ) = 0 for m ≥ k + 1. So the pole due

to the denominator is compensated by the cancellation of the numerator detB̌m(λ)
at λ = 0. Therefore, βk,m is analytic on Cr for m ≥ k + 1.

We now turn to the study of the coefficients γl,m(λ) for m ≥ k + 1. We recall
from (4.25) that

γl,m =

N∑
n=1

βn,m(λ) 〈Y
l
+(x, λ) , W

n
−(x, λ) 〉.

• By Theorem 4.7 and the previous argument, βn,m(λ) is analytic on Cr for
all n ∈ {k, ·, N} and m ∈ {k + 1, . . . , N}. And 〈Y

l
+(0, 0),W

n
−(0, 0) 〉 = 0

for N + k + 1 ≤ l ≤ 2N since Y
l
+(x, 0) is bounded and W

n
−(−∞, 0) = 0.

Consequently, we have

βn,m(λ)〈Y
l
+(0, λ),W

n
−(0, λ) 〉 = O(λ), n ∈ {k, . . . , N}.(4.49)

• For n ≤ k−1, we have to study more carefully the coefficients βn,m(λ) to get
additional cancellation. Denoting

E(λ) = det(B1(λ), . . . , Bn−1(λ), em, Bn+1(λ), . . . , BN (λ),

we have E(0) = 0 because Bk(0) = 0 (as already noted in the proof of
Theorem 4.7). Furthermore,

E′(0) = det(B1(0), . . . , Bn−1(0), em, Bn+1(0), . . . , B
′
k(0), . . . , BN (0)).

And

〈Y
p
+(0, 0),W

l
−(0, 0) 〉 = 0, p ≤ k, k ≤ l ≤ N,

since Y
p
+(x, 0) is bounded and W

l
−(−∞, 0) = 0. This means that the first k

components of Bl(0) are null for l ≥ k. This is also the case for the vector em
(m ≥ k + 1). Hence the N × N determinant involved in E′(0) has at least
a k × (N − k + 1) null block. So this determinant must be equal to 0, i.e.,
E′(0) = 0. By (4.32) and (H6), this shows that

βn,m(λ) = O(λ), n ∈ {1, ·, k − 1}, ∈ {k + 1, . . . , N}.(4.50)

Collecting (4.49) and (4.50), we complete the proof of Lemma 4.9.
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For notational convenience, we set

Ln
+(x) = Y

n
+(x, 0) = J �n+ and Rm

+ = I rm+ =

(
rm+
rm+

)
= Φm

+ (0).

We observe that

Ln
+(x)Υ = �n+,(4.51)

where we have made again an abuse of notation; i.e., we mean that

〈Ln
+(x) , Υ · c 〉 = �n+ · c ∀c ∈ C

N,

and Γ · Rm
+ = rm+ . Hence, because of (4.11), the undifferentiated expansions of Gλ

(i.e., with α = 0) of Theorem 4.8 follow from similar expansions of Gλ, with rn+ and
�n+ replaced by Rn

+ and Ln
+. The improved differentiated bounds for the residual term

∂αyRλ will also follow from the expansion of Gλ.
The next step in the proof of Theorem 4.8 is to describe as precisely as in Lemma

5.6 of [18] the slow modes Y
n for the adjoint dynamical system.

Lemma 4.10. We have

Y
n

+(y, λ) = e−µn+(λ)yLn
+(y) + λΘn

+(y, λ), n ∈ {1, . . . , k} ∪ {N + k + 1, . . . , 2N},
(4.52)

where Θn
+ verifies

|Θn
+(y, λ)| ≤ C |e−µn+(λ)y| ∀y ≥ 0,(4.53)

|∂yΘn
+(y, λ)| ≤ C |e−µn+(λ)y|

(
|λ| + e−ωy

)
∀y ≥ 0.(4.54)

Proof of Lemma 4.10. The same analysis as in [18, Lemma 5.6] can be done, since
the gap lemma is still valid in our framework (see [2]). The idea is to apply the gap
lemma in the augmented unknown

Ỹ
n =

(
Yn

∂yYn

)
,

where we omit writing the index ± for simplicity. As usual, we set

Ỹ
n = e−µn(λ)y

Ṽ
n(y, λ), Ṽ

n(y, λ) =
(

V
n

−µn(λ)Vn + ∂yV
n

)
.

Using the gap lemma, we get the estimate

∂λṼ
n(y, λ) = ∂λΨ̃

n(λ) +O(e−α|y|)(4.55)

for some α > 0, where Ψ̃n(λ) =
(

Ψn(λ)
µn(λ)Ψn(λ)

)
. Using the Taylor formula, we get

Ỹ
n(y, λ) = e−µn(λ)y

(
Ṽ
n(y, 0) + λ

∂

∂λ
Ṽ
n(y, 0) +

λ2

2

∫ 1

0

∂2
λṼ(y, sλ) ds

)
,
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and it suffices to take the first component of this equation to get the first estimate in
(4.53). To get the second one, we use the second component. On the one hand, this
yields

∂yYn(y, λ) = e−µn(λ)y
(
−µn(0)V(y, 0) + ∂λV

n(y, 0)

+ λ∂λ(−µn(0)Vn(y, 0) + ∂yV
n(y, 0)) +O(λ2)

)
.

(4.56)

On the other hand, we have

∂y(e
−µn(λ)yLn(y)) = e−µn(λ)y

(
−µn(λ)Ln(y) + ∂yL

n(y)
)

(4.57)

= e−µn(λ)y
(
−µn(0)Ln(y)− λ∂λµ

n(0)Ln(y) + ∂yL
n(y)

+O(λ2)
)
.

Finally, since µn(0) = 0, Ln(y) = V
n(y, 0), and |∂λyV

n(y, 0)| = O)(e−α|y|), we can
substract (4.56) and (4.57) to get

∂yΘ
n = O(e−µn(λ)y(λ+ e−ωy)).

Because of (4.51), equation (4.52) implies that

Y
n

+(y, λ)Υ = e−µn+(λ)y �n+ + λΘn
+(y, λ)Υ.(4.58)

As pointed out in [18], the main interest of this lemma is that, since �n+ is a constant
and µn+(λ) = O(λ) for n ∈ {1, . . . , k} ∪ {N + k + 1, . . . , 2N}, we get from (4.58) the
estimate

| ∂y(Yn
+(y, λ)Υ ) | = O(λ e−µn+(λ)y), n ∈ {1, . . . , k} ∪ {N + k + 1, . . . , 2N},

(4.59)

which is better than the basic estimate given by (3.53),

| ∂y(Yn
+(y, λ)Υ ) | = O(e−µn+(λ)y).

As it is well explained in [23, 18], this is a crucial part in the analysis. It yields
additional cancellations in the expansion of ∂yGλ at λ = 0, which in turn will improve

the time asymptotic behavior of the “discrete derivative” Gj0
j (t, t0)−Gj0−1

j (t, t0), in
a way that is necessary to close the fixed point argument in the nonlinear stability
analysis. Note that the improved estimate (4.59) is not true for ∂yY

+
n itself, since the

first component of Ln
+(y) does depend on y.

Proof of Theorem 4.8. We use the expansions given by Theorem 4.7 and Lemmas
4.9 and 4.10. This is a tedious but not difficult job. For example, let us consider the
case x > y and look for a refined expansion of (4.21).

• Thanks to (3.55), Tλ(x, y)P+(y, λ) is fastly decreasing; hence it is a part of
the residual term Rλ.

• Next, we have to study W
l
+(x, λ)Y

l
+(y, λ) for N + k + 1 ≤ l ≤ 2N . Using

(3.52) and (4.52) from Lemma 4.10, we have

W
l
+(x, λ)Y

l
+(y, λ) = eµ

l
+x

(
Rl

+ + O(e−ωx )
)(

e−µl+y Ll
+ + λΘl

+(y, λ)
)
.

(4.60)
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Hence the leading term

eν
l
+(x−y)Rl

+L
l
+

is part of the scattering term Sλ, and an easy computation shows that the
remaining terms are part of RS

λ , thanks to the estimate (4.53). We get an
additional power of λ in the estimate of ∂yGλ using (4.11), (4.58) and that
µl+(λ) = O(λ).

• Next, we look at

gn,mλ (x, y) := βn,m(λ)Tλ(x, 0)P+(0, λ)W
n
−(0, λ)Y

m
+ (y, λ)

for 1 ≤ n,m ≤ N . If n �= k, βn,m is analytic, as proved in Theorem 4.7, and
thanks to (3.53), (3.55), we get the estimate7

| gn,mλ (x, y) | � e−ωx
∣∣∣ e−µm+ y

∣∣∣ � e−(ω/2)x
∣∣∣ eµm+ (x−y)

∣∣∣ .(4.61)

This is a part of the residual term Rλ. The additional power of λ in the
y-derivative also comes from Lemma 4.10. If n = k and m ≥ k+1, then βn,m
by Lemma 4.9; hence using again (3.55), (3.53), we have an estimate similar
to (4.61), and this term is a part of the residual term. The critical case is
n = k, m ≤ k, when βn,m has a pole of order 1 at λ = 0 and Y

m

+ is a slow
mode. We can write

βk,m(λ) =
cm
λ

+ gm(λ),

where gm is analytic in Cr. Then, thanks to Lemma 4.10, we have

gk,mλ (x, y) =
(cm
λ

+ gm(λ)
)(

U
′(x) + λO(e−ωx)

)(
e−µm+ yLm

+ + λΘ+
m(y, λ)

)
.

The leading term λ−1 cm U
′(x) e−νm+ y Lm

+ is a part of the excited term Eλ.
We easily show, thanks to Lemma 4.10, that the remaining part verifies the
estimates of RE

λ .
• We finally turn to the terms

gl,mλ (x, y) := γji(λ)W
j
+(x, λ)Y

i
+(y, λ)

for 1 ≤ m ≤ N , N + k + 1 ≤ l ≤ 2N . As stated in Theorem 4.7, γl,m is
analytic. Consequently, for m ≤ k, using (3.52) and Lemma 4.10, we have

gl,mλ (x, y) =
(
γ̃l,m + O(λ)

)
eµ
l
+(λ)x

(
Rl

+ + O(e−ωx)
)

×
(
e−µm+ (λ)yLm

+ + λΘ+
m(y, λ)

)
.

As previously, the leading term

γ̃l,me
νl+(λ)x−νm+ (λ)yRl

+L
m
+

7Here and below, the notation � stands for ≤ up a to a harmless multiplicative constant.
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is a part of the scattering term Sλ, and the remaining terms are part of RS
λ .

For m ≥ k + 1, thanks to Lemma 4.9, we have γl,m(λ) = O(λ), and thus,
thanks to (3.52), (3.53), we get

|gl,mλ (x, y)| � |λ|
∣∣∣ eµl+(λ)x

∣∣∣ e−ωy � |λ|
∣∣∣ eµl+(λ)(x−y)

∣∣∣ e−(ω/2)y.

Hence this term is part of RS
λ . Note that the additional |λ| in this term due

to Lemma 4.9 is crucial.

4.4. Pointwise estimates on the Green’s function. We now come to our
main theorem, which describes very precisely the behavior of the Green’s function for
the LDS.

Theorem 4.11. Assuming (H4)–(H6), the Green’s function Gj0
j (t, t0) can be

decomposed into

Gj0
j (t, t0) = E(τ, x, y) + S(τ, x, y) + R(τ, x, y),(4.62)

where we have set x = j − st, y = j0 − st0 , τ = t− t0. For y ≥ 0 (j0 ≥ st0) we have
the expansions

E(τ, x, y) =
∑
λm+<0

c+m

(
errfnc

(
y + |λm+ |τ√

4dm+ τ

)
− errfnc

(
y − |λm+ |τ√

4dm+ τ

))
U ′(x)�m+ ,(4.63)

where

errfnc(X) := −π− 1
2

∫ +∞

X

e−z2

dz,(4.64)

S(τ, x, y) = χτ≥1

∑
λm+>0

|λm+ |√
4πdm+ τ

e
− (x−y−λm+ τ)2

4dm+ τ rm+ �m+(4.65)

+ χτ≥1χx≥0

∑
λm+<0

|λm+ |√
4πdm+ τ

e
− (x−y−λm+ τ)2

4dm+ τ rm+ �m+

+ χτ≥1χx≥0

∑
λm+<0, λn+>0

γ̃+
n,m

1√
4πdn,m+ τ

e
− (x−zn,m+ )2

4d
n,m
+ τ

+ χτ≥1χx≤0

∑
λm+<0, λn−<0

γ̃+
n,m

1√
4πdn,m− τ

e
− (x−zn,m− )2

4d
n,m
− τ

and

R = R1 +Rexp,

where

Rexp(τ, x, y) = O(e−ω(τ+|x−y|))(4.66)



NONLINEAR STABILITY OF SEMIDISCRETE SHOCK WAVES 695

and for α ≤ 1, there exists M > 0 such that

∂αyR1 = O



N∑
m=1

e−
(x−y−λm+ τ)2

Mτ

(1 + τ)
α+1

2

(
e−ω|x| +

1

(1 + τ)
1
2

)
(4.67)

+
∑

λm+<0, λn+>0

e−
(x−zn,m+ )2

Mτ

(1 + τ)
α+1

2

(
e−ω|x| +

1

(1 + τ)
1
2

)

+
∑

λm+<0, λn−<0

e−
(x−zn,m− )2

Mτ

(1 + τ)
α+1

2

(
e−ω|x| +

1

(1 + τ)
1
2

) 
 ,

all these estimates being uniform in j, j0, t, t0, t ≥ t0. The characteristics zn,m± and
the diffusion coefficients dm+ , dn,m± are defined by

zn,m± = λn±

(
τ − |y|

|λm+ |
)
, dm+ =

am+
2
, and dn,m± =

an± |x|
2|λl±|τ

+
am+ |λn±|2 |y|
2|λm+ |3τ .

Symmetric estimates hold for y ≤ 0.
Remark 4.12. We see that the scattering term S involves some heat kernels

propagating along the characteristic paths (x = y+λm+ τ) of the underlying continuous

system of conservation laws (2.4). Unsurprisingly, the diffusion coefficients dm+ =
am+
2

of these heat kernels correspond to the viscosity of the upwind scheme. As a matter
of fact, it is well known that the semidiscrete system (2.1) is equivalent to the viscous
system of conservation laws

∂tu + ∂x(f(u)) = ∂x(B(u) ∂xu ), where B(u) = ∆x
2 df(u),(4.68)

up to higher order terms in ∆x. The decomposition of the Green’s function obtained
in Theorem 4.11 is actually very similar to the one obtained in [23] (for viscous shocks)
and [18] (for relaxation shocks; in this case, there are additional terms due to a singular
short time behavior). This theorem confirms a posteriori that the qualitative behavior
of the solutions of the semidiscrete scheme (2.1) is analogous to the behavior of the
solutions of the viscous system of conservation laws (4.68), regardless of the order of
magnitude of ∆x.

Despite its apparent technicality, this theorem sheds light on several important
phenomena. It means that an elementary signal originated at (j0, t0), j0 > st0, be-
haves, up to a neglectible term, as moving heat kernels along characteristic paths.
Additionally, there are interaction terms involving both incoming and outgoing waves
(with respect to the shock) in the scattering (and remainder) terms. When an incom-

ing wave hits the shock (which happens after a time τ = |y|
|λm+ | ), there is an excited

part described by the term E, due to accumulation of mass in the shock layer and
reemission of signals on both sides of the shock, which propagate along the paths zn,m±
at an averaged diffusion rate dn,m± .

Proof. Our short frequency estimates given by Theorem 4.8 are completely similar
to the estimates of Proposition 5.2 in [18]. Thanks to (4.3) we can use the same paths

as in [18] to get the estimates in Theorem 4.11 in the long time regime |x−y|
τ � 1. The

short time regime will come from (4.3) and the crucial property (4.5), which allows
us to use Cauchy’s formula. For clarity, we explain below the method on various
significant examples.
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−η 0

Γ̃Γ γ̃

r

ir

−ir

Re λ

Imλ

Γ1

Γ2

Fig. 4.1. Examples of contours.

We first use as a basic path Γ = Γ1 ∪ Γ̃ ∪ Γ2, where

Γ1 = [−η − iπσ,−η − ir], Γ2 = [−η + ir,−η + iπσ],

Γ̃ = [−η − ir, r − ir] ∪ [r − ir, r + ir] ∪ [r + ir,−η + ir].

Note that all our contours will have the same shape, the main difference being the
point where they cross the real axis. Some examples are given in Figure 4.1.

By the analyticity of Gλ (see Proposition 4.4), property (4.5), and Cauchy’s
theorem we have

Gj0
j (t, t0) = I + Ĩ ,

where

I =
1

2iπσ

∫
Γ1∪Γ2

eλτGλ(x, y), dλ, Ĩ =
1

2iπσ

∫
Γ̃

eλτGλ(x, y)dλ.

The integral I is very easy to handle. By (4.20) (see Corollary 4.6), we have

I � e−ητ e−α|x−y| ,

which contributes only to the fastly decreasing residual term Rexp.
The most difficult part is to estimate the integral Ĩ. We must distinguish between

several space-time regimes.
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• Case |x−y|
τ / 1.

If |x − y| ≥ V τ , every term in the expansion (4.62) is bounded by e−c|x−y|,
and hence by

e−
c
2 |x−y| e−

c
2 V τ

for some c > 0. We just have to show that Ĩ enjoys a similar estimate. Using
again (4.20), we have

Ĩ � erτ e−ω|x−y| ≤ e−
ω
2 |x−y| e(r−V ω

2 ) τ .

Choosing V so large that r−V ω/4 < 0, we have the requested estimate with
c = ω/2.

• Case |x−y|
τ ≤ V . This is the more difficult one. We need the expansion of Gλ

given by Theorem 4.8, which yields

Ĩ = J1 + J2 + J3,

where

J1 =
1

2iπσ

∫
Γ̃

eλτEλ dλ, J2 =
1

2iπσ

∫
Γ̃

eλτSλ dλ, J3 =
1

2iπσ

∫
Γ̃

eλτRλ dλ.

We are going to estimate each term separately. Since there are many cases,
we concentrate on the case x > y, the other ones being left to the reader
(they can be handled by similar techniques).

Estimate of J2. This term will appear to contribute to S and R. Using again
Theorem 4.8 (case x > y), we have two types of terms to deal with, namely

αl =
1

2iπσ

∫
Γ̃

eλτeν
l
+(λ)(x−y) dλ, n+ k + 1 ≤ l ≤ 2N

and

αl,m =
1

2iπσ

∫
Γ̃

eλτeν
l
+(λ)xe−νm+ (λ)(y) dλ, m ≤ k, N + k + 1 ≤ l ≤ 2N.

* Estimate of αl. A preliminary remark concerns the case

|x− y|
τ

0 1.

Using again Cauchy’s formula, we can change the path Γ̃ into Γ := [−η −
ir,−η + ir] and thus show that

|αl| � e−ητeC|x−y| ≤ e−(η−Cε)τ

for |x − y| ≤ ετ . Hence choosing ε so small that η − Cε/2 > 0 we have the
bound

|αl| � e−
Cε
2 τ ≤ e−

Cε
4 τe−

C
4 |x−y|.(4.69)

Therefore, αl can be absorbed by the residual term Rexp. Since the excited
term E and the scattering term S are also bounded by the right-hand side of
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(4.69) this estimate agrees with (4.62) when |x − y| ≤ ετ . Consequently, we
can restrict our study to

ε ≤ |x− y|
τ

≤ V.(4.70)

We use once more Cauchy’s formula to change Γ̃ into γ = γ1 ∪ γ̃ ∪ γ2, where

γ1 = [−η − ir,−ir], γ2 = [ir,−η + ir], γ̃ = [−ir, ir].
We easily show that the integrals on γ1 and γ2 are bounded by residual terms
similarly as in (4.69), since on these paths we have

Re νl+(λ) ≤ −β(4.71)

for some β > 0 (thanks to (3.49) and (4.35)). It remains to estimate

α̃l :=
1

2iπσ

∫
γ̃

eλτeν
l
+(λ)(x−y) dλ =

1

2π

∫
R

eiξτeν
l
+(iξ)(x−y) dξ

− 1

2π

∫ r

−∞
eiξτeν

l
+(iξ)(x−y) dξ − 1

2π

∫ +∞

r

eiξτeν
l
+(iξ)(x−y) dξ.

We easily show that the last two integrals hereabove can be bounded by
(4.69), and hence are part of the residual term Rexp. Indeed, using (4.71), we
have∣∣∣∣

∫ +∞

r

eiξτeν
l
+(iξ)(x−y) dξ

∣∣∣∣ �
∫ +∞

r

e−βξ2(x−y) dξ ≤
∫ +∞

r

ξ

r
e−βξ2(x−y) dξ

≤ e−βr2(x−y)

2rβ(x− y)
� 1

τ
e−

εβr2

2 τ e−
βr2

2 (x−y)

because of (4.70). So the estimate of α̃l amounts to computing

αl :=
1

2πσ

∫
R

eiξτeν
m
+ (iξ)(x−y) dξ,

which can be done by Fourier transform. As a matter of fact, using (4.35),
αl is just the Fourier transform of a Gaussian. This yields

αl =
λl+√

4π
al+(x−y)

2(λl+)

exp


− (x− y − λl+τ)

2

4
al+
2λl+

(x− y)


 = λl+k

(
X,

x− y

λm+

)
,

where X = x− y − λl+τ and

k(X, z) =
1√

4πdl+z
e
− X2

4dl+z , dl+ =
al+
2

> 0

is the heat kernel. (Recall that by convention al = al−N .) To get the final
form of the expansion (4.62), we write

k

(
X,

x− y

λl+

)
= k(X, τ) + k

(
X,

x− y

λl+

)
− k(X, τ).(4.72)



NONLINEAR STABILITY OF SEMIDISCRETE SHOCK WAVES 699

The first term k(X, τ) is precisely a part of the scattering term S in (4.62).
Recalling that X = x− y−λl+τ and using (4.70), we have by the mean value
theorem ∣∣∣∣k

(
X,

x− y

λl+

)
− k(X, τ)

∣∣∣∣ � X

τ
3
2

e−
X2

Mτ � 1

τ
e−

X2

Mτ

for some positive M and∣∣∣∣∂y
(
k

(
X,

x− y

λm+

)
− k(X, τ)

)∣∣∣∣ � 1

τ
3
2

e
−X2

Mτ .

We have used hereabove the obvious estimate

|u|e−u2 � e−u2/2.

This will be done repeatedly, without explicit mention. Consequently, the
terms αl contribute only to the residual term R in (4.62).

* Estimate of αl,m, m ≤ k, N + k + 1 ≤ l ≤ 2N . Using the same technique
as previously, we see that, up to a residual decreasing term like in (4.69), we
can restrict the study to

ε ≤ x+ y

τ
≤ V.(4.73)

Furthermore, using the same change of paths, we see that αl,m = αl,m+ h.o.t ,
where

αl,m =
1

2πσ

∫
R

eiξτeν
l
+(iξ)xe−νm+ (iξ)y dξ.

Using (4.35), we can still compute explicitly this Fourier transform. We find

αl,m =
1√

4πdl,m+

exp


−

(
x− λl+

(
τ − y

|λm+ |
))2

4dl,m+


 ,

where the diffusion coefficient dl,m+ is

dl,m+ =
al+
2λl+

|x|+ am+
2(λm+ )

3
(λl+)

2|y|.

This ends the expansion of J2. Note that we do not find all the terms in the
expansion of S as they are given in Theorem 4.11; we find only the terms
corresponding to λm+ > 0 and λl+ < 0, λm+ > 0. Nevertheless, the formula of
Theorem 4.11 is true, since the other terms in S are exponentially decreasing
as in (4.69), and hence can be considered as a part of Rexp.

Estimate of J1. Using (4.37) in Theorem 4.11 we have to estimate terms like

bm(t, y) =
1

2iπσ

∫
Γ̃

eλτ

λ
e−νm+ (λ)y dλ, m ≤ k.

Using the residues theorem, we change the path of integration γ̃ into [−η− ir,−η+ ir]
and obtain

bm(τ, y) = 1 + b̃m(τ, y), b̃m(τ, y) =
1

2iπ

∫
[−η−ir,−η+ir]

eλτ

λ
e−νm+ (λ)y dλ.
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For fixed y,

|̃bm(τ, y)| ≤ C(y)e−ητ → 0 when t → +∞;(4.74)

hence

b̃m(τ, y) = −
∫ +∞

τ

∂τ b̃m(θ, y) ds.(4.75)

Since

∂τ b̃m(θ, y) =
1

2iπσ

∫
[−η−ir,−η+ir]

eλθe−νm+ (λ)y dλ

this term is very similar to α̃l. The same computation yields

∂τ b̃m(θ, y) =
1√

4π
am+ y

2|λm+ |
exp


− (y − |λm+ |θ)2

4
am+

2|λm+ |y


+O(e−ω(θ+y))

for some ω > 0. Thanks to (4.74), (4.75), we get

bm(τ, y) = errfnc


y − |λm+ |τ

4
am+

2|λm+ |y


+O(e−ω(θ+y)),

where the errfnc function is defined as in (4.64). Finally, using the same trick as in
(4.72), we write

bm(τ, y) = errfnc

(
y − |λm+ |τ
4
am+
2 τ

)
+ br(τ, y) +O(e−ω(θ+y)),

br(τ, y) = errfnc


y − |λm+ |τ

4
am+

2|λm+ |y


− errfnc

(
y − |λm+ |τ
4
am+
2 τ

)
.

The first term is a part of the excited term E in (4.62) and, since we easily find that

|∂pybr(τ, y)| ≤ C
1

τ1+p/2
e−

(y−|λm+ τ)2

Mτ , p ≥ 1,

for some M > 0, the other term is a part of the residual term R in the expansion
(4.62). Note that in the final expansion (4.62) these terms are multiplied by U ′, which
is bounded by some e−ωx.

Estimate of J3. Using (4.41), (4.42), ∂
α
y J3 is given by a sum of many terms which

can be handled by similar techniques. We shall just give an example, concerning the
term

Km :=

∫
Γ̃

eλτe−νm+ (λ)ye−ωxO
(
λα−1(eO(λ3)y − 1) + λα−1(eO(λ3)x − 1 + λα

)
dλ

for 1 ≤ m ≤ k, x > 0, and y > 0, which can be rewritten as

Km =

∫
Γ̃

eϕ(λ;τ,x,y) O
(
|λ|α+2yeO(λ3)y + |λ|α+2xeO(λ3)x + |λ|α

)
dλ,
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where the phase ϕ is defined by

ϕ(λ; τ, x, y) = λτ − νm+ (λ)y − ωx = λτ − λ

|λm+ |y +
am+y

2|λm+ |3λ
2 − ωx.

(Recall that λm+ = am+ − σ < 0 for m ≤ k.) As in [24, 18], we may use the stationary
phase method, or more precisely the method of steepest descent, to estimate Km.
The idea is to change the path Γ̃ into another one that passes through the stationary
point of the phase and still lies in the part of Cr where the estimates are valid. The
stationary point of the phase is given by

λ = λs =
y − |λm+ |τ

am+y
|λm+ |2.

When |λs| ≤ ε, ε > 0 sufficiently small, we change Γ̃ into Γs = Ss ∪ γs, where

Ss = [−η − ir, λs − ir] ∪ [λs + ir,−η + ir], γs = [λs − ir, λs + ir].

We have Re (−νm+ ) ≤ −β for some β > 0 on Ss. And |λs| ≤ ε implies that

|λm+ | τ
1 + ε/εm

≤ y ≤ |λm+ | τ
1 − ε/εm

,(4.76)

where εm := |λm+ |2/am+ . Therefore, the phase ϕ enjoys the estimate

Reϕ(λ; τ, x, y) ≤ λsτ − βy − ωx ≤ −(β − ε (1 + ε/εm)/|λm+ | ) y − ωx,

which yields an estimate of the integral∣∣∣∣
∫
Ss

eϕ O
(
. . .

)
dλ

∣∣∣∣ � e−ωx/2e−βy/2

for ε small enough. Thus this part of Km contributes to Rexp only. The main
contribution of Km comes from the integral on γs. After some computations, we get∣∣∣∣

∫
γs

eϕ O
(
. . .

)
dλ

∣∣∣∣ � e−ωxe−
(y−|λm+ |τ)2

My

∫ r

−r

e−
ξ2y
M

(
|λs|α+2y + |λs|α + |ξ|α

)
dξ

for some M > 0 sufficiently large, which yields∣∣∣∣
∫
γs

eϕ O
(
. . .

)
dλ

∣∣∣∣ � 1√
yα+1 e

−ωxe−
(y−|λm+ |τ)2

My .

Moreover, because of (4.76), we can replace y by τ . This part of Km thus contributes
to the residual term ∂αyR1.

It remains to study the case |λs| ≥ ε. We consider Γ±ε = S±ε ∪ γ±ε, where

S±ε = [−η − ir,±ε− ir] ∪ [±ε+ ir,−η + ir], γ±ε = [±ε− ir,±ε+ ir],

and take as an approximate optimal path Γε if λs ≥ ε and Γ−ε if λs ≤ −ε.
We just briefly explain how to handle the case λs ≥ ε. As previously, the integrals

on Sε are part of R
exp. To estimate the integral on γε, we notice that when Reλ = ε,
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Reϕ(λ, τ, x, y) = ϕ(ε, τ, x, y)− am+y

2|λm+ |3 (Imλ)2

= ε

(
τ − y

|λm+ |
)
− am+y

2|λm+ |3 (Imλ)2 − ωx.

Consequently, using that λs ≥ ε, we get

Reϕ(λ, τ, x, y) ≤ − ε2y

εm|λm+ | − am+y

2|λm+ |3 (Imλ)2 − ωx,

where εm = |λm+ |2/am+ as before. But λs ≥ ε implies that

y ≥ |λm+ | τ
1 − ε/εm

.

Hence

Reϕ(λ, τ, x, y) ≤ −ε2

2
y − ε2

2(εm − ε)
τ − ωx

on γε and therefore∣∣∣∣
∫
γε

eϕ O
(
. . .

)
dλ

∣∣∣∣ � e−ε2y/4 e−ε2τ/(4εm) e−ωx/2

falls into Rexp.

5. Nonlinear stability of semidiscrete shocks. We now have all the ingredi-
ents to show the nonlinear stability of a semidiscrete shock profile uj(t) = U(j − st),
solution of the upwind scheme

dvj
dt

+ f(vj)− f(vj−1) = 0.(5.1)

Of course, there is a one-dimensional manifold of profiles, since for all δ ∈ R, uδj(t) =
uj(t+δ) is another semidiscrete shock profile. So we cannot expect genuine asymptotic
stability. Similarly as for other kinds of shock profiles [24, 18], the relevant notion is
orbital stability.

Theorem 5.1. Assuming (H5)–(H6), there exist δ > 0 and C > 0 such that
any solution of (5.1) with initial data vj(0) = uj(0) + w0

j , where w0 ∈ L1(Z) and

||w0||1 ≤ δ, verifies

||v(t)− u(t+ p̃(t))||Lα ≤ Cδ

(1 + t)
1
2 (1− 1

α )
∀t ≥ 0, ∀α ≥ 1,(5.2)

where p̃(t), the perturbation of the shock position, verifies

|p̃(t)| ≤ Cδ ∀t ≥ 0,(5.3)

|p̃′(t)| ≤ Cδ

(1 + t)
1
2

∀t ≥ 0.(5.4)
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Proof. The proof is close to the proof of stability of viscous and relaxation shock
profiles of [23, 18]. It uses the Green’s function bounds obtained in the previous
section. By an obvious interpolation argument, it suffices to prove the theorem in L1

and L∞. Also note that in our discrete setting we have the embedding L1 ⊂ L∞.
Let us consider the solution of (5.1) with initial data u(0) + w0. We set

w(t) = v(t+ p(t))− u(t),(5.5)

where p(t) is such that p(0) = 0. Using that both u and v are solutions of (5.1), we
can rewrite the system satisfied by w as

dwj

dt
+Aj(t)wj(t)−Aj−1(t)wj−1(t) = Sj(t, w),(5.6)

where Aj(t) = df(uj(t)),

S(t, w) = (I−T )Q(w)− p′(t) (I−T )f(u+w), Q(w) = − f(u+w) + f(u) + df(u)w.

Another way of writing the source term in (5.6) uses that

(I − T )f(u+ w) = (I − T ) f(u) + (I − T )N(w) = −du

dt
+ (I − T )N(w),

where N(w) = f(u+ w) − f(u), and thus

S(t, w) = (I − T ) (Q(w) − p′(t)N(w) ) + p′(t)
du

dt
.(5.7)

Using the Green’s function Gj0
j (t, t0) and (5.7), the solution of (5.6) is given by

wj(t) = Gj(t, 0) ∗ w(0) +
∫ t

0

Gj(t, t0) ∗
(
(I − T )(Q(w)− p′N(w))(t0)

)
dt0

+

∫ t

0

Gj(t, t0) ∗ du

dt
(t0)p

′(t0) dt0,

where we have used the standard notation

Gj(t, t0) ∗ h =
∑
j0∈Z

Gj0
j (t, t0)hj0 ∀h = (hj)j∈Z ∈ L1.

Note that, differentiating (5.1), we have

d

dt

duj
dt

+Aj(t)
duj
dt

−Aj−1(t)
duj−1

dt
= 0

and therefore∫ t

0

Gj(t, t0) ∗ du

dt
(t0) p

′(t0) dt0 =
∫ t

0

duj
dt

(t) p′(t0) dt0 =
duj
dt

(t) p(t).

Consequently, after a “discrete integration by part,” we can write w under the form

wj(t) = Gj(t, 0) ∗ w0 +

∫ t

0

(I − T −1)Gj(t, t0) ∗ (Q(w)− p′N(w))(t0) dt0

+
duj
dt

(t) p(t).

(5.8)
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Using the decomposition of the Green’s function given by Theorem 4.11, we set

G̃(τ, x, y) = S(τ, x, y) +R(τ, x, y)

and

E(τ, x, y) = U ′(x)e(τ, y).(5.9)

Since

duj
dt

(t) = − sU ′(j − st),

we split the problem of finding (w, p) into

s p(t) = e(t, ·) ∗ w0 +

∫ t

0

(I − T −1)e(t− t0, · − st0) ∗ (Q(w)− p′N(w))(t0) dt0,

(5.10)

which describes the nonlinear evolution of the shock position, and

wj(t) = G̃(t, j − st, · − st0) ∗ w0(5.11)

+

∫ t

0

(I − T −1)G̃(t− t0, j − st, · − st0) ∗ (Q(w)− p′N(w))(t0) dt0.

To prove Theorem 5.1, it suffices to prove the existence of solutions of the fixed
point problem (5.11), (5.10) in the Banach space X, where

X =
{
(w, p) ∈ C0([0,+∞),L1)× C1([0,+∞),R)

||(w, p)||X = sup
t≥0

(
(1 + t)||w(t)||∞ + ||w(t)||1 + |p(t)|+ (1 + t)

1
2 |p′(t)|

)
≤ δR

}

for some R > 0 to be chosen. Let us define on X × {w0 ∈ L1(Z), ||w0||1 ≤ δ}

N (w, p, w0) =
( W (w, p, w0)

1
sP (w, p, w

0)

)
,

where W is equal to the right member of (5.11) and P is equal to the right member of
(5.10). We want to use the classical Banach fixed point theorem to solveN (w, p, w0) =
(p, w).

The proof will rely on Lα estimates of the Green’s function coming from the
expansions of Theorem 4.11. Thanks to classical comparisons between series and
integrals we get for all j0 ∈ Z and for all t, t0, t > t0,

||G̃(t− t0, · − st, j0 − st0)||Lα ≤ C

(t− t0)
1
2 (1− 1

α )
,(5.12)

||(I − T −1)G̃(t− t0, · − st, j0 − st0)||Lα ≤ C

(t− t0)
1
2 (2− 1

α )
.(5.13)

Note that our definition of e is similar to the one in [18, 23]; hence we can use the
following key lemma from [23] (also see [18]).
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Lemma 5.2 (see [23]). Let E be defined as in Theorem 4.11 and e as in (5.9);
then

||∂ye(τ, ·)||Lα(R) + ||∂τe(τ, ·)||Lα(R) ≤ C

τ
1
2 (1− 1

α )
,(5.14)

||∂τye(τ, ·)||Lα(R) ≤ C

τ
1
2 (2− 1

α )
.(5.15)

Moreover,

lim
τ→0

||e(τ, ·)||L1 = 0.(5.16)

Note that using elementary comparisons between series and integrals, (5.14),
(5.15), (5.16) are still true if we consider the discrete norm in Lα(Z). Moreover,
(5.14), (5.15) also implies that

||(I − T −1)e(t− t0, · − st0)||Lα ≤ C

(t− t0)
1
2 (1− 1

α )
,(5.17)

||∂τ (I − T −1)e(t− t0, · − st0)||m ≤ C

(t− t0)
1
2 (2− 1

α )
.(5.18)

Using (5.16) as in [23, 18], we can take the derivative of (5.10) to get

s
d

dt
P (w, p, w0)(t) = ∂τe(t− t0, · − st0) ∗ w0

+

∫ t

0

(I − T −1)∂τe(t− t0, · − st0) ∗ (Q(w)− p′N(w))(t0) dt0.(5.19)

The most difficult step is to show that

N : X × {w0 ∈ L1(Z), ||w0||1 ≤ δ} → X.(5.20)

Note that for (w, p) ∈ X, the “quadratic term” verifies the estimates

||Q(w)(t0)||1 + |p′(t)| ||N(w)||1 ≤ C

(1 + t0)
1
2

R2δ2,(5.21)

||Q(w)(t0)||∞ + |p′(t)| ||N(w)||∞ ≤ C

(1 + t0)
R2δ2.(5.22)

Using (5.11), basic convolution estimates, and (5.12), (5.13), (5.21), (5.22) we get

||W (w, p, w0)(t)||∞ ≤ Cδ√
t

+

∫ t
2

0

sup
l

||(I − T −1)G̃(t− t0, · − st, l − st0)||∞||(Q(w)− p′N(w))(t0)||1 dt0

+

∫ t

t
2

sup
l

||(I − T −1)G̃(t− t0, · − st, l − st0)||1||(Q(w)− p′N(w))(t0)||∞ dt0

≤ Cδ√
t
+ CR2δ2

∫ t
2

0

1

t− t0

1√
t0 + 1

dt0 + CR2δ2

∫ t

t
2

1√
t− t0

1

t0
dt0

≤ C(δ +R2δ2)√
t

(5.23)
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and

||W (w, p, w0)(t)||1 ≤ Cδ

+

∫ t

0

sup
l

||(I − T −1)G̃(t− t0, · − st, l − st0)||1||(Q(w)− p′N(w))(t0)||1 dt0

≤ Cδ + CR2δ2

∫ t

0

1√
t− t0

1√
t0 + 1

dt0

≤ C(δ +R2δ2).(5.24)

The same kind of computations with, moreover, the use of (5.17), (5.18) yields

|P (w, p, w0)(t)| ≤ C(δ +R2δ2),(5.25) ∣∣∣ d
dt
P (w, p, w0)(t)

∣∣∣ ≤ C(δ +R2δ2)√
t

.(5.26)

Consequently, we get (5.20) by collecting (5.24), (5.23), (5.25), (5.26) and by choosing
δ sufficiently small and R sufficiently large such that

C(δ + δ2R2) ≤ δR.

A little variation in the previous computations gives

||N (w1, p1, w
0)−N (w2, p2, w

0)||X ≤ CRδ||(w1, p1)− (w2, p2)||X .

Hence it suffices to choose δ, R such that CδR < 1 to get the existence of a fixed
point in X for N . Consequently, we have shown (5.3), (5.4) and coming back to (5.5)
we also have

||v(t+ p(t))− u(t)||Lα ≤ Cδ

(1 + t)
1
2 (1− 1

α )
∀t ≥ 0, ∀m ≥ 1.(5.27)

To get the final form (5.2) in Theorem 5.1, we notice that t �→ θ = t + p(t) is a
diffeomorphism from R+ to R+, thanks to the choice CδR < 1 since |p′(t)| ≤ CRδ
and p(0) = 0. Consequently, let us define

p̃(θ) = t(θ)− θ;

we get

|θ − t| ≤ CRδ,

|p̃(θ)| ≤ CRδ, |p̃′(θ)| ≤ CRδ

(1− CRδ)
3
2

√
1 + t

∀θ ≥ 0,

and

||v(θ)− u(θ + p̃(θ))||Lα ≤ C̃δ

(1 + θ)
1
2 (1− 1

α )
∀θ ≥ 0, ∀α ≥ 1.(5.28)

This ends the proof of Theorem 5.1.
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Abstract. We study nonlinear n-term approximation in Lp(R2) (0 < p ≤ ∞) from hierarchical
sequences of stable local bases consisting of differentiable (i.e., Cr with r ≥ 1) piecewise polynomials
(splines). We construct such sequences of bases over multilevel nested triangulations of R

2, which
allow arbitrarily sharp angles. To quantize nonlinear n-term spline approximation, we introduce and
explore a collection of smoothness spaces (B-spaces). We utilize the B-spaces to prove companion
Jackson and Bernstein estimates and then characterize the rates of approximation by interpolation.
Even when applied on uniform triangulations with well-known families of basis functions such as
box splines, these results give a more complete characterization of the approximation rates than
the existing ones involving Besov spaces. Our results can easily be extended to properly defined
multilevel triangulations in R

d, d > 2.

Key words. nonlinear approximation, Jackson and Bernstein estimates, multivariate splines,
multilevel nested triangulations, multilevel bases, stable local spline bases
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1. Introduction. Nonlinear approximation of functions in dimensions d > 1 is
a challenging area, especially if one moves away from tensor product-type approaches
in order to more adequately approximate functions with singularities along curves and
with other anisotropies. One of the most natural tools for approximation is piecewise
polynomials over triangulations, and a fundamental problem is to characterize the rate
of nonlinear approximation in Lp (0 < p ≤ ∞) in terms of properly defined global
smoothness conditions. This problem is disheartening if one allows the nonlinear
approximation to be from any piecewise polynomial over an arbitrary triangulation.
The difficulty stems from the highly nonlinear nature of piecewise polynomials in
dimensions d > 1. For instance, if s1 and s2 are two piecewise polynomials over n
triangles in R

2 each, then s1+s2 is in general a piecewise polynomial over many more
than n (even > n2) pieces. Therefore, the well-known recipe of proving Jackson and
Bernstein estimates and then applying interpolation is useless.

The problem becomes even harder when differentiable piecewise polynomials are
needed, which, for instance, is the case for numerous practical applications of sur-
face modeling and for the conforming finite element methods for higher order PDEs.
Moreover, there is an intrinsic demand for differentiability of the approximating tools
from the point of view of the nonlinear approximation theory itself. Indeed, this
property, together with local reproduction of higher degree polynomials, is crucial for
the ability to represent higher order smoothness spaces, such as classical Sobolev or
Besov spaces in regular settings (see Theorem 2.15). The desirable differentiability
of the approximating piecewise polynomials, however, leads to additional difficulties
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because of the complicated structure of spaces of multivariate splines. For example,
the dimension is not known and stable local bases are impossible in general already
for the space of all piecewise polynomials of degree < k and smoothness r ≥ 1 with
respect to a finite triangulation of a polygonal domain in R

2 if k ≤ 3r + 2 [10].
A reasonable alternative to “spline approximation with free triangulations” is to

consider nonlinear n-term approximation from hierarchical sequences of spline bases
over multilevel nested triangulations of R

d. (For the sake of simplicity, we shall restrict
ourselves in this article to the case d = 2.) To explain this concept more precisely,
consider a sequence (Tm)m∈Z of partitions of R

2 into triangles with disjoint interiors
such that each level Tm is a refinement of the previous one Tm−1. Let T :=

⋃
m∈Z

Tm.
We impose certain mild (and natural) conditions on the triangulations which prevent
them from deterioration but still allow the triangles to change in size, shape, and
orientation quickly when moving around at a given level or through the levels. In
particular, triangles with arbitrarily sharp angles may occur at any location. We
denote by Sk,r(Tm) the set of all r-times differentiable piecewise polynomials with
respect to Tm of degree < k. Given a ladder of spaces

· · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · , Sm ⊂ Sk,r(Tm),(1.1)

and bases Φm of Sm, m ∈ Z, we set Φ := ΦT :=
⋃
m∈Z

Φm. Using the standard
wavelet terminology, we can describe such a nested sequence of spaces with bases as
“spline multiresolution” (or “multiresolution analysis”).

Consider now the problem for nonlinear (n-term) approximation from the set
Σn of all piecewise polynomials of the form s =

∑n
j=1 cjϕj , where ϕj ∈ Φ may

come from different levels and locations. Once a particular multilevel triangulation
has been selected, the variety of piecewise polynomial approximations significantly
reduces. However, a great deal of flexibility is retained, and the problem remains
highly nonlinear. For instance, thin and elongated basis functions are allowed. On
the other hand, the advantages of multilevel approximation methods can be exploited
in full.

Our program consists of the following basic steps:
1. We construct hierarchical sequences of bases (Φm)m∈Z on multilevel trian-

gulations satisfying certain requirements of local regularity allowing anisotropically
shaped triangles.

2. To quantify the approximation process, we introduce and develop a family
(library) of smoothness spaces Bατ (ΦT ) depending on ΦT and as a consequence on the
triangulation T . We call them B-spaces since they have some resemblance to Besov
spaces. So, the idea is to measure the smoothness of the functions using a family of
space scales Bατ (ΦT ) (which vary with ΦT ) instead of a single scale of smoothness
spaces like the scale of Besov spaces.

3. We develop a coherent theory of nonlinear n-term approximation from ΦT
based on the idea of proving Jackson and Bernstein estimates and interpolation.

4. We utilize this theory in the development of algorithms for nonlinear piece-
wise polynomial (spline) approximation which capture the rate of the best approxi-
mation.

The logic of the resulting approximation scheme is the following: Suppose {ΦT }T
is a collection of multilevel sequences of (spline) bases as above.

(i) For a given function f , find the “right” triangulation T := Tf such that f
exhibits the most smoothness (sparsity of its representation) when measured via the
scale Bα(ΦT ).



710 OLEG DAVYDOV AND PENCHO PETRUSHEV

(ii) Find an optimal or near optimal representation of f using ΦT . (Note that
ΦT is redundant, i.e., linearly dependent.)

(iii) Using this representation, run an algorithm for n-term Lp-approximation
which achieves the rate of the best n-term approximation.

Naturally, the first step presents the most challenging problem in this scheme. We
do not have a completely satisfactory algorithm for this step. (Note that this problem
has a complete and efficient solution in the simpler case of nonlinear approximation
from piecewise polynomials over dyadic partitions; see [54].) As it will be shown in
this article, the other steps are now well understood and have complete solutions.

The above program has been suggested in [38] and implemented in [38, 39] in
the cases of approximation from discontinuous piecewise polynomials and continuous
piecewise linear functions (r = −1, k ≥ 1, and r = 0, k = 2, where r = −1 corresponds
to the discontinuous case). The simplest example of a hierarchical family of continuous
basis functions is the set of all Courant elements generated by a multilevel nested
triangulation T , that is, the set of all piecewise linear and continuous functions ΦT =
{ϕθ} supported on the cells {θ} (each θ is the union of all triangles of a particular
level Tm attached to a vertex); see [38].

In the present article, we develop the theory of nonlinear n-term approximation
for basis families consisting of differentiable piecewise polynomials (r ≥ 1). The con-
struction of such basis functions suitable for application is hampered by the fact that
both the classical differentiable finite elements [14] and the earlier polynomial spline
basis constructions on arbitrary triangulations [1, 8, 16, 17, 18, 35, 36, 44, 48, 57] are
difficult to use for our purposes; see Remark 4.12 and the discussion in section 5.3. The
stable local spline bases of [27] can in principle be used in two variables. However, all
other arguments of our article are basically “dimension independent,” and we refrain
here from treating the case d > 2 only for the sake of simplicity and clarity. Therefore,
we build upon the nodal spline bases of [22], which is the only known approach that
produces stable local bases for nested spline spaces on general triangulations in all
dimensions.

However, these bases are stable only for triangulations satisfying (in R
2) the

minimal angle condition. We extend the construction of [22] to a wider class of strong
locally regular triangulations; see section 2 for a definition. Note that the new basis
functions are invariant under affine transforms (see Remark 4.9). In the case r = 0
our construction reduces to the classical continuous Lagrange finite elements and is
valid for any locally regular triangulation; see Remark 4.13.

A focal point of our development is the characterization of nonlinear n-term ap-
proximation from families of differentiable spline basis functions, including the devel-
opment of B-spaces, proof of Jackson and Bernstein estimates, and characterization of
the approximation spaces by interpolation (see sections 2–3). In [39], there are three
algorithms developed for nonlinear n-term approximation in Lp (0 < p ≤ ∞) from
Courant elements. These can be immediately implemented for n-term approximation
from differentiable spline bases, and it can be shown similarly as in [39] that they
achieve the rate of the best approximation. We do not pursue this goal here.

The B-spaces from the present article can be viewed as a generalization of the
“approximation spaces” from section 3.4 of [51] (see also the references therein). More
precisely, in the specific setting of “quasi-uniform partitions” and the basis functions
used in [51], our B-spaces coincide with the approximation spaces of [51].

The theory of nonlinear n-term approximation from box splines (on uniform tri-
angulations) has been developed in [29] (p < ∞) and [30] (p = ∞) (for nonlinear
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spline approximation in dimension d = 1, see [53]). In these articles, direct, inverse,
and characterization theorems have been proved utilizing certain Besov spaces. Even
in this case, our results, which utilize B-spaces (in place of Besov spaces), are more
complete since they characterize nonlinear n-term box spline approximation for all
rates of approximation, while in the above-mentioned articles the rate is restricted by
the Besov smoothness of the box splines.

There is an apparent connection between our developments here and multilevel
finite element methods for PDEs; see, e.g., [51]. Therefore, it seems an interesting
task to develop finite element algorithms for solving PDEs which achieve the rate of
the best n-term approximation of the solution.

The outline of the article is the following. In section 2, we introduce and de-
velop the B-spaces needed for the characterization of nonlinear approximation for any
family of basis functions with certain properties. In section 3, we develop the gen-
eral theory of nonlinear n-term approximation from piecewise polynomials, where the
global smoothness of functions is measured by means of our B-spaces. In section 4, we
construct hierarchical sequences of bases consisting of differentiable piecewise polyno-
mials. In section 5, we review a number of alternative constructions fitting into our
scheme, based on box splines and some other spline bases on special triangulations.
The final section A is an appendix containing some of the proofs.

Throughout the article, we use the following notation: Lloc∞ (R2) := C(R2) and
L∞(R2) := C0(R

2) := {f ∈ C(R2) : limx→∞ f(x) = 0}, Llocq := Llocq (R2), 0 <
q ≤ ∞, C := C(R2), ‖ · ‖q := ‖ · ‖Lq(R2), 0 < q ≤ ∞; Πk denotes the set of all
algebraic polynomials in two variables of total degree < k. For any Ω ⊂ R

2, 11Ω
denotes the characteristic function of Ω and |Ω| denotes the Lebesgue measure of
Ω. Positive constants are denoted by c, c1, . . . (they may vary at every occurrence),
α ≈ β means c1α ≤ β ≤ c2α, and α := β or β =: α stands for “α is by definition
equal to β.”

2. B-spaces generated by spline multiresolution. In the present section,
we introduce and explore the smoothness spaces we need for the characterization of
nonlinear n-term spline approximation generated by families of differentiable basis
functions over multilevel nested triangulations.

2.1. Triangulations. In our development, we utilize three types of multilevel
nested triangulations. We shall call each of them simply a triangulation, although such
a triangulation does not form a single partition of R

2 but rather an infinite nested
family of partitions (each of them is a triangulation of R

2 in the more commonly used
sense).

Let T =
⋃
m∈Z

Tm be a set of closed triangles in R
2 with levels Tm, m ∈ Z. Denote

by Vm the set of all vertices (nodal points) of triangles from Tm and set V :=
⋃
m∈Z

Vm.
We say that T is a triangulation of R

2 if the following conditions are fulfilled:
(a) Every level Tm is a set of triangles with disjoint interiors which cover R

2:
R
2 =

⋃
�∈Tm �.

(b) The levels (Tm)m∈Z of T are nested ; i.e., Tm+1 is a refinement of Tm obtained
by splitting each � ∈ Tm into subtriangles with disjoint interiors called children of
�.

(c) Each triangle � ∈ Tm has at least two and at most M0 children in Tm+1,
where M0 ≥ 2 is a constant independent of m.

(d) No hanging vertices condition: No vertex of any triangle � ∈ Tm lies in the
interior of an edge of another triangle from Tm.
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(e) The valence Nv of each vertex v ∈ Vm (the number of triangles � ∈ Tm
which share v as a vertex) is ≤ N0, where N0 is a constant.

(f) For any compact K ⊂ R
2 and any fixed m ∈ Z, there is a finite collection

of triangles from Tm which cover K.
Note that any two triangles in T either have disjoint interiors or one of them

contains the other. In particular, �′ ∈ Tm+1 is a child of � ∈ Tm (m ∈ Z) if and
only if �′ ⊂ �. If � and �′ are two different triangles in T and �′ ⊂ �, then we
say that � is an ancestor of �′, while �′ is a descendant of �.

Locally regular triangulations. We call a triangulation T =
⋃
m∈Z

Tm a locally
regular triangulation of R

2, or briefly an LR-triangulation, if T satisfies the following
additional conditions:

(g) There exists a constant 1/2 ≤ ρ < 1 such that for each � ∈ T and any child
�′ ∈ T of �,

(1− ρ)|�| ≤ |�′| ≤ ρ|�|.(2.1)

(h1) There exists a constant 0 < δ1 ≤ 1 independent of m such that for any
�′,�′′ ∈ Tm (m ∈ Z) with a common edge,

δ1 ≤ |�′|/|�′′| ≤ δ−1
1 .(2.2)

By (e), it follows that for any �′,�′′ ∈ Tm with at least one common vertex,

(2.2) holds with δ1 replaced by δ
N0/2
1 .

Strong locally regular triangulations. We call a triangulation T =
⋃
m∈Z

Tm
a strong locally regular triangulation of R

2, or briefly an SLR-triangulation, if T sat-
isfies (2.1) and the following condition that replaces (2.2):

(h2) There exists a constant 0 < δ2 ≤ 1/2 such that for any �′,�′′ ∈ Tm (m ∈ Z)
sharing an edge,

|conv (�′ ∪ �′′)|/|�′| ≤ δ−1
2 ,(2.3)

where conv (G) denotes the convex hull of G ⊂ R
2.

Obviously, (2.3) implies (2.2) with δ1 = δ2. Therefore, each SLR-triangulation is
an LR-triangulation.

Regular triangulations. By definition, a triangulation T =
⋃
m∈Z

Tm is called
a regular triangulation if T satisfies the following condition:

(h3) There exists a constant β = β(T ) > 0 such that the minimal angle of each
triangle � ∈ T is ≥ β.

Next, we make a few remarks which will help understand better the nature of the
triangulations that we utilize.

(i) For each of the three types of triangulations there is a number of constants
that are assumed fixed. In what follows we refer to them as parameters. Thus the
parameters of an SLR-triangulation are M0, N0, ρ, and δ2. Notice that because of
(2.1), we can setM0 := 1/(1−ρ) and removeM0 from the list of parameters. However,
this would tend to obscure the actual role of ρ and M0.

(ii) It is a key observation that the collection of all SLR-triangulations with
given (fixed) parameters is invariant under affine transforms. The same is true for
LR-triangulations.

(iii) It is easy to see that (2.3) is equivalent to the following condition introduced
in [38]. Affine transform angle condition: There exists a constant β = β(T ), 0 < β ≤
π/3, such that if �0 ∈ Tm, m ∈ Z, and A : R

2 → R
2 is an affine transform that maps
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�0 one-to-one onto an equilateral reference triangle, then for every � ∈ Tm which
has at least one common vertex with �0, we have

min angle (A(�)) ≥ β,(2.4)

where A(�) is the image of � by the affine transform A. (The equivalence of the two
conditions follows easily from the obvious but important fact that both conditions are
invariant under affine transforms. Note that we prefer to use (2.3) rather than (2.4)
in the definition of SLR-triangulations in this article since the constant δ2 appears
naturally when estimating norms of the basis functions constructed in section 4 (see
(4.8)) and also (2.3) is easier to verify in practical situations.)

(iv) As we have already mentioned, every SLR-triangulation is an LR-triangula-
tion, but the converse statement is not true. Also, every regular triangulation is an
SLR-triangulation but not the other way around. Counterexamples are given in [38].

(v) The maximal angle (MA) condition

π −max angle (�) ≥ β > 0, � ∈ T ,(2.5)

known from the finite element method [2] is totally different from our conditions of
regularity. It is easy to see that there are SLR-triangulations that do not satisfy MA,
and there are triangulations that satisfy the MA and fail to be locally regular. As we
shall see below (Example 4.7), our construction of stable differentiable basis functions
does not extend to triangulations satisfying the MA condition but failing to be SLR.

(vi) The rate of change of the size of the elements (|�|, min angle (�), and
diam(�)) of a triangle � ∈ T as � moves away from a fixed triangle �
 ∈ T for
different types of triangulations T is explored in [38]. We shall briefly discuss this
issue for SLR-triangulations, which are the most important type of triangulations
for the present article. An SLR-triangulation T may have an equilateral (or close
to such) triangle �
 at any level Tm with descendants �1 ⊃ �2 ⊃ · · · such that
min angle (�j) → 0 as j → ∞, and also a sequence (�′

j)
∞
j=0 ⊂ Tm with �′

0 = �
and �′

j ∩ �′
j+1 �= ∅ (j = 0, 1, . . .) such that min angle (�′

j) → 0. Conditions (2.1)
and (2.3) suggest geometric rates of change of |�|, min angle (�), and diam(�) as
� ∈ Tm moves away from a fixed �
 ∈ Tm. In fact, the rate of change is a power of
the minimal number of edges connecting � and �
; see [38].

(vii) We shall need to know what happens with the levels Tm of a triangulation
T as m→ −∞. By Lemma 2.1 from [38], for each LR-triangulation T there exists a
finite cover T−∞ of R

2 such that either T−∞ = {R
2} or T−∞ = (�j

∞)N∞
j=1, N∞ ≤ N0,

where each �j
∞ is an infinite triangle, i.e., the set of all points on and between two rays

which are not collinear and have a common beginning. Moreover, in the second case,
the infinite triangles (�j

∞)N∞
j=1 have a single common vertex and disjoint interiors, and

also each triangle � ∈ T and all its ancestors are contained in an infinite triangle
�j

∞ ∈ T−∞.
For more details about multilevel triangulations, see [38].
Some additional notation and preliminaries. We denote by [v1, v2] the

interval (straight line segment) with endpoints v1, v2 and by |e| the length of e =
[v1, v2]. Furthermore, we let [v1, v2, v3] denote the triangle with vertices v1, v2, v3, and
let |�| denote the area of � = [v1, v2, v3]. Throughout the article, we assume that
the vertices v1, v2, v3 of any triangle [v1, v2, v3] are ordered counterclockwise.

For a triangle � ∈ Tm (m ∈ Z), we define level(�) := m.
For any vertex v ∈ Vm, we let star (v) = star 1(v) denote the star of v, i.e., the

union of all triangles � ∈ Tm attached to v. Moreover, for each $ ≥ 2, we denote
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by star �(v) the union of star �−1(v) and the stars of the vertices of star �−1(v). (Note
that star �(v) depends also on the level m, but we do not indicate this in the notation
since it is always clear from the context what level is meant.) We also set

Ω�� := ∪{star �(v) : v ∈ Vm, � ⊂ star �(v)}, � ∈ Tm.(2.6)

It is easy to check that Ω�� := ∪{star 2�−1(v) : v is a vertex of �}, � ∈ Tm.
It is readily seen that there exists a constant c� = c�(N0, $) ≤ N �

0 such that

#{� ∈ Tm : � ⊂ star �(v)} ≤ c�, v ∈ Vm,(2.7)

and hence there exists a constant c�� = c��(N0, $) ≤ 3c�(N0, 2$ − 1) − 5 ≤ 3N2�−1
0

such that

#{� ∈ Tm : � ⊂ Ω��′} ≤ c��, �′ ∈ Tm.(2.8)

We denote by Em the set of all edges of triangles of Tm and set E :=
⋃
m∈Z

Em.
We let star(e) denote the union of the two triangles attached to e ∈ Em.

For future use, we state the following inequality:

∑
�∈T ,�⊃�′

(|�′|/|�|)γ ≤
∞∑
j=0

ρjγ = c(ρ, γ) <∞, �′ ∈ T , γ > 0,(2.9)

which is immediate from the properties of LR-triangulations (|�′| ≤ ρ|�| if �′ is a
child of �).

2.2. Basis functions: The general setting. Let T =
⋃
m∈Z

Tm be a locally
regular (or better) triangulation. For m ∈ Z, r ≥ 0, and k ≥ 1, we denote by
Sk,rm = Sk,r(Tm) the set of all r times differentiable piecewise polynomial functions of
degree < k over Tm; i.e., s ∈ Sk,rm if and only if s ∈ Cr(R2) and s =

∑
�∈Tm 11� · P�

with P� ∈ Πk. Naturally, Sk,−1
m will denote the set of all piecewise polynomials of

degree < k over Tm which are, in general, discontinuous across the edges from Em.
We assume that for each m ∈ Z there is a subspace Sm of Sk,rm (r ≥ 0, k ≥ 2)

and a family Φm = {ϕθ : θ ∈ Θm} ⊂ Sm of basis functions satisfying the following
conditions:

1. Πk̃ ⊂ Sm for some 1 ≤ k̃ ≤ k (k̃ independent of m).
2. Sm ⊂ Sm+1 (m ∈ Z).
3. For any s ∈ Sm there exists a unique sequence of real coefficients a(s) =

(aθ(s))θ∈Θm such that

s =
∑
θ∈Θm

aθ(s)ϕθ.

(Thus, Φm is a basis for Sm and (aθ(·))θ∈Θm are the dual functionals.)
4. For each θ ∈ Θm there is a vertex v = vθ ∈ Vm such that

suppϕθ ⊂ star �(v) =: Eθ,(2.10)

‖ϕθ‖L∞(R2) = ‖ϕθ‖L∞(Eθ) ≤M1,(2.11)

|aθ(s)| ≤M2‖s‖L∞(Eθ), s ∈ Sm,(2.12)

where $ ≥ 1 and M1,M2 are positive constants, all independent of θ and m.
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Let

Φ :=
⋃
m∈Z

Φm and Θ :=
⋃
m∈Z

Θm.

We shall refer to r, k, k̃, $, M1, and M2 as parameters of Φ.
A simple example of a family of basis functions satisfying the above conditions is

the set of well-known Courant elements (continuous piecewise linear basis functions,
r = 0, k = 2) associated with T (see [38]). Concrete constructions of differentiable
basis functions (r ≥ 1) will be discussed below in sections 4–5.

Although Θ and Θm (m ∈ Z) are simply index sets, in the case of Courant
elements, Θ can be identified as the set of all cells (supports of basis functions). As
we shall see in sections 4–5, in general, several basis functions of Φm may have the
same support. However, the supports of only ≤ constant of them may overlap.

Lemma 2.1. There is a constant L depending only on k, $, and N0 such that for
any � ∈ Tm (m ∈ Z),

#{θ ∈ Θm : Eθ ⊃ �} ≤ L,(2.13)

where Eθ is defined in (2.10).
Proof. We have by (2.10) and (2.8)

#{θ ∈ Θm : � ⊂ Eθ} ≤ dimSk,rm |Ω�� ≤ dimSk,−1(Tm)|Ω��
=

(
k + 1

2

)
#{�′ ∈ Tm : �′ ⊂ Ω��}

≤
(
k + 1

2

)
c��.

We shall frequently use the equivalence of different norms of polynomials as stated
in the following lemma (see also [38]).

Lemma 2.2. Let P ∈ Πk, k ≥ 1, and 0 < p, q ≤ ∞.
(a) For any triangle � ⊂ R

2, ‖P‖Lp(�) ≈ |�|1/p−1/q‖P‖Lq(�) with constants of
equivalence depending only on p, q, and k.

(b) If � and �′ are two triangles such that �′ ⊂ � and |�| ≤ c1|�′|, then
‖P‖Lp(�) ≤ c‖P‖Lp(�′) with c = c(p, k, c1).

(c) If �′ and � are two triangles such that �′ ⊂ � and |�′| ≤ c2|�| with
0 < c2 < 1, then ‖P‖Lp(�) ≤ c‖P‖Lp(�\�′) ≈ |�|1/p−1/q‖P‖Lq(�\�′) with constants
depending only on p, q, k, and c2.

By (2.2) and (2.7), |Eθ| ≈ |�| if � ⊂ Eθ, � ∈ Tm, and θ ∈ Θm. Using this and
Lemma 2.2, we obtain that, for 0 < p, q ≤ ∞,

‖s‖Lp(Eθ) ≈ |Eθ|1/p−1/q‖s‖Lq(Eθ), s ∈ Sm, θ ∈ Θm,(2.14)

where the constants of equivalence depend on p, q, k, and δ1. In particular, we shall
need (2.14) with s = ϕθ, when it takes the form ‖ϕθ‖p ≈ |Eθ|1/p−1/q‖ϕθ‖q, in view
of (2.10).

Lemma 2.3. The bases Φm are Lq-stable for all 0 < q ≤ ∞. That is, if g :=∑
θ∈Θm bθϕθ, where (bθ)θ∈Θm is an arbitrary sequence of real numbers, then

‖g‖q ≈
( ∑
θ∈Θm

‖bθϕθ‖qq
)1/q

.
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Moreover, for any γ ∈ R and 0 < τ ≤ ∞,

( ∑
�∈Tm

(|�|γ‖g‖Lq(�))
τ

)1/τ

≈
( ∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)τ
)1/τ

,(2.15)

where the constants of equivalence are independent of m and g. In the case q = ∞
(or τ = ∞) the $q-norm ($τ -norm) above is replaced by the sup-norm as usual.

Proof. We have to prove only (2.15), since the first statement of the lemma then
follows with γ = 0 and τ = q. For each � ∈ Tm, we have by (2.10)

‖g‖Lq(�) = ‖
∑

θ∈Θm, Eθ⊃�
bθϕθ‖q ≤ c

∑
θ∈Θm, Eθ⊃�

‖bθϕθ‖q.

Therefore, by Lemma 2.1 and (2.7),∑
�∈Tm

(|�|γ‖g‖Lq(�))
τ ≤ c

∑
�∈Tm

∑
θ∈Θm, Eθ⊃�

(|Eθ|γ‖bθϕθ‖q)τ

≤ c
∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)τ .

In the other direction, since Φ is a basis of Sm and g ∈ Sm, we have bθ = aθ(g),
θ ∈ Θm, and hence, by (2.12), (2.14), and (2.11),

‖bθϕθ‖q = ‖aθ(g)ϕθ‖q ≤ c‖g‖L∞(Eθ)‖ϕθ‖q ≤ c‖g‖L∞(Eθ)|Eθ|1/q

≤ c‖g‖Lq(Eθ) ≤ c
∑

�∈Tm,�⊂Eθ
‖g‖Lq(�).

Since |Eθ| ≈ |�| if � ∈ Tm and � ⊂ Eθ, we have, by (2.7) and Lemma 2.1,∑
θ∈Θm

(|Eθ|γ‖bθϕθ‖q)τ ≤ c
∑
θ∈Θm

∑
�∈Tm,�⊂Eθ

(|�|γ‖g‖Lq(�))
τ

≤ c
∑

�∈Tm
(|�|γ‖g‖Lq(�))

τ .

Local polynomial approximation is an important tool in spline approximation.
For a function f ∈ Lq(G), G ⊂ R

2, we denote by Ek(f,G)q the error of the best
Lq-approximation to f on G from Πk and by ωk(f,G)q the kth local modulus of
smoothness of f on G:

Ek(f,G)q := inf
P∈Πk

‖f − P‖Lq(G), ωk(f,G)q := sup
h∈R2

‖∆kh(f, ·)‖Lq(G).

Whitney’s theorem gives an important relation between these two quantities: If f ∈
Lq(G), 0 < q ≤ ∞, where G = � is an arbitrary triangle or G = Ω� with � ∈ T , T
is an SLR-triangulation, then

Ek(f,G)q ≤ cωk(f,G)q,(2.16)

where c = c(q, k) if G = � and c = c(q, k, δ2) if G = Ω� (δ2 is from (2.3)). For a
proof of this estimate, see, e.g., the appendix of [38]. Note that this estimate holds



NONLINEAR SPLINE APPROXIMATION 717

for much more general regions G, but then the constant c = c(G) may become hard
to control.

For 0 < q ≤ ∞ and a triangle �, we let P�,q : Lq(�) → Πk be a projector such
that

‖f − P�,q(f)‖Lq(�) ≤ cEk(f,�)q for f ∈ Lq(�).(2.17)

Note that P�,q can be realized as a linear projector if q ≥ 1. For instance, one can
utilize the averaged Taylor polynomial. Namely, suppose�0 is an equilateral reference
triangle and A is an affine transform mapping � onto �0. Let now P (g) ∈ Πk be
the averaged Taylor polynomial of the function g := f ◦ A−1 (the composition of f
with A−1) over the disc B inscribed in �0 (see, e.g., section 4.1 of [12]). Clearly,
P : Lq(B) → Πk is a linear operator, ‖P (g)‖Lq(B) ≤ c‖g‖Lq(B) (q ≥ 1), and P is a
projector, i.e., P (Q) = Q for Q ∈ Πk. From these properties of P , it follows that for
an arbitrary Q ∈ Πk,

‖g − P (g)‖Lq(�0) ≤ ‖g −Q‖Lq(�0) + ‖Q− P (g)‖Lq(�0)

≤ ‖g −Q‖Lq(�0) + c‖P (g −Q)‖Lq(B) ≤ c‖g −Q‖Lq(�0),

which implies ‖g − P (g)‖Lq(�0) ≤ cEk(g,�0)q. Substituting back, one easily obtains
‖f − (P ◦ A)(f)‖Lq(�) ≤ cEk(f,�)q. Finally, we set P�,q := P ◦ A, which is the
desired linear projector of Lq(�) into Πk.

Note that P�,q cannot be realized as a linear operator if 0 < q < 1 (otherwise,
we would be able to construct a nonzero bounded linear functional on Lq).

We define a linear operator Qm : Sk,−1(Tm) → Sm as follows. For each θ ∈ Θm,
let λθ : Sk,−1(Tm)|Eθ → R be a linear functional such that

λθ(s|Eθ ) = aθ(s), s ∈ Sm, and

|λθ(f)| ≤M2‖f‖L∞(Eθ), f ∈ Sk,−1(Tm)|Eθ .
Such linear functional always exists by the Hahn–Banach theorem. We set

Qm(s) :=
∑
θ∈Θm

λθ(s|Eθ )ϕθ, s ∈ Sk,−1(Tm).(2.18)

Clearly, Qm(s) = s if s ∈ Sm, and thus Qm is a linear projector of Sk,−1(Tm) into
Sm.

Lemma 2.4. For any s ∈ Sk,−1(Tm), 0 < q ≤ ∞, and � ∈ Tm,

‖Qm(s)‖Lq(�) ≤ c‖s‖Lq(Ω��),(2.19)

with a constant c independent of m, �, and s.
Proof. By Lemma 2.2 and (2.14), we have

‖ϕθ‖Lq(�) ≤ c1|�|1/q‖ϕθ‖L∞(�) ≤ c1M1|�|1/q,
‖s‖L∞(Eθ) ≤ c2|�|−1/q‖s‖Lq(Eθ),

where c1 and c2 depend only on q and k. Therefore,

‖Qm(s)‖Lq(�) =
∥∥∥ ∑
θ∈Θm
�⊂Eθ

λθ(s|Eθ )ϕθ
∥∥∥
Lq(�)

≤ c
∑
θ∈Θm
�⊂Eθ

|λθ(s|Eθ )| ‖ϕθ‖Lq(�)

≤ c
∑
θ∈Θm
�⊂Eθ

‖s‖L∞(Eθ)|�|1/q ≤ c
∑
θ∈Θm
�⊂Eθ

‖s‖Lq(Eθ) ≤ c‖s‖Lq(Ω��).



718 OLEG DAVYDOV AND PENCHO PETRUSHEV

We now extend Qm to Llocq (R2), 0 < q ≤ ∞. Let P�,q : Lq(�) → Πk be a
projector satisfying (2.17) (linear if q ≥ 1). We define

pm,q(f) :=
∑

�∈Tm
11� · P�,q(f) for f ∈ Llocq ,(2.20)

which is a projector of Llocq into Sk,−1
m .

We put

Qm,q(f) := Qm(pm,q(f)) for f ∈ Llocq ,(2.21)

which is evidently a projector of Llocq into Sm (linear if q ≥ 1 and all P�,q are linear).
We next show that Qm,q provides a good local Lq-approximation from Sm. We

let S�(f)q denote the error of Lq(Ω
�
�)-approximation from Sm, i.e.,

S�(f)q := inf
s∈Sm

‖f − s‖Lq(Ω��), � ∈ Tm.(2.22)

Thus, S�(f)q is the error of approximation to f from restrictions to Ω�� of functions
from Sm, which is not necessarily the same as the approximation by all r times
differentiable piecewise polynomials of degree < k defined only on Ω��, even if Sm
coincides with Sk,rm . However, since Πk̃ ⊂ Sm, S�(f)q does not exceed the error of

Lq(Ω
�
�)-approximation to f from polynomials of degree < k̃.

Lemma 2.5. If f ∈ Llocq (R2), 0 < q ≤ ∞ (f ∈ C if q = ∞), then

‖f −Qm,q(f)‖Lq(�) ≤ cS�(f)q, � ∈ Tm (m ∈ Z),

with c independent of f , m, and �.
Proof. Let s� ∈ Sm be such that ‖f−s�‖Lq(Ω��) ≤ cS�(f)q. Using the properties

of Qm (see Lemma 2.4), we find

‖f −Qm,q(f)‖Lq(�) = ‖f −Qm(pm,q(f))‖Lq(�)

≤ c‖f − s�‖Lq(�) + c‖s� −Qm(pm,q(f))‖Lq(�)

≤ cS�(f)q + c‖Qm(s� − pm,q(f))‖Lq(�)

≤ cS�(f)q + c‖s� − pm,q(f)‖Lq(Ω��)

≤ cS�(f)q + c‖f − s�‖Lq(Ω��) + c‖f − pm,q(f)‖Lq(Ω��)

≤ cS�(f)q.

Lemma 2.6. (a) If f ∈ Llocq (R2), 0 < q ≤ ∞, then for every compact K ⊂ R
2,

‖f −Qm,q(f)‖Lq(K) → 0 as m→ ∞.(2.23)

(b) If f ∈ Lq(R2), 0 < q ≤ ∞, then

‖f −Qm,q(f)‖Lq(R2) → 0 as m→ ∞.(2.24)

For the proof of this lemma, we need the following result.
Lemma 2.7. If T is an LR-triangulation, then for each triangle �
 ∈ T

max{diam(�) : � ∈ Tm,� ⊂ �
} → 0 as m→ ∞.(2.25)
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Proof. Let m0 := level(�
). We set dm := max{diam(�) : � ∈ Tm,� ⊂ �
}.
Since (dm)

∞
m=m0

is nonincreasing, it suffices to show the existence of a subsequence
tending to zero. Let e be an edge of a triangle � ∈ Tm, � ⊂ �
. If it is also an edge
of a child of �, then the valence of at least one of the two endpoints of e will increase
by one at level m + 1. (Recall that there are always at least two children, so that a
child and a parent cannot be the same triangle.) Therefore, e will be subdivided at
least once after at most S := 2(N0 − 3) + 1 steps of refinement. By (2.1), it readily
follows that any edge e′ obtained by subdividing e satisfies |e′| ≤ ρ|e| ≤ ρdm.

We call an edge of a descendant of �
 a cutting edge for �
 if one of its endpoints
is a vertex of �
 and the other lies in the interior of the opposite edge of �
. Since
all cutting edges must emanate from the same vertex of �
, there are totally no more
than M := N0 − 3 such edges for �
. Therefore, no new cutting edges for �
 will be
created at levels m > m0+M . (It is easy to see that as soon as no new cutting edges
are created at a level m, they cannot be created on any further level.) Using this
and the above observation, we conclude that there will be no cutting edges at levels
m > m0 +M + S since they all will be subdivided. Therefore, each edge e inside �


at these levels is either a proper part of an edge of �
 or has both of its endpoints
in the interiors of two different edges of �
, or else it has at least one endpoint in
the interior of �
. In all cases, condition (2.1) ensures that |e| ≤ ρdm0 , which implies
dm1 ≤ ρdm0 , where m1 = m0 +M + S + 1. It is clear now that there is an increasing
sequence {mk}∞k=1 such that

dmk ≤ ρkdm0
→ 0 as k → ∞,

which completes the proof.
Proof of Lemma 2.6. (a) By condition (f) on triangulations, it suffices to prove

the lemma for K = �
, an arbitrary triangle from T . By Lemma 2.7,

max{diam(Ω��) : � ∈ Tm,� ⊂ Ω���} → 0 as m→ ∞.(2.26)

Case 1. q < ∞. Fix ε > 0. In view of (2.26), there exists a piecewise constant
function Sε of the form

Sε =
∑

�∈Tmε ,�⊂Ω���

c�11�, mε ≥ level(�
),

such that

‖f − Sε‖Lq(Ω��� ) < ε(2.27)

(choose first g ∈ C(Ω���) so that ‖f − g‖Lq(Ω��� ) < ε/2 and then choose Sε so that

‖g − Sε‖L∞(Ω��� ) <
ε
2 |Ω��� |−1/q). Then Qm,q(Sε) = Qm(Sε).

We have, for m ≥ mε,

‖f −Qm,q(f)‖Lq(��) ≤ c‖f − Sε‖Lq(��) + c‖Sε −Qm,q(Sε)‖Lq(��)

+ c‖Qm(Sε − pm,q(f))‖Lq(��).(2.28)

For the third term above, we have

‖Qm(Sε − pm,q(f))‖Lq(��) ≤ c‖Sε − pm,q(f)‖Lq(Ω��� )

≤ c‖f − Sε‖Lq(Ω��� ) + c‖f − pm,q(f)‖Lq(Ω��� )(2.29)

≤ c‖f − Sε‖Lq(Ω��� ) ≤ cε,
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where we used Lemma 2.4 and that ‖f − pm,q(f)‖Lq(Ω��� ) ≤ c‖f − Sε‖Lq(Ω��� ) (m ≥
mε), by (2.17).

It remains to show that ‖Sε − Qm,q(Sε)‖Lq(��) ≤ cε for sufficiently large m.
Denote by G the union of the edges of all triangles � ∈ Tmε such that � ⊂ �
 and
by Gδ := {x ∈ R

2 : dist(x,G) ≤ δ} the δ-neighborhood of G. Clearly, there exists
δ > 0 such that ‖Sε‖Lq(Gδ) < ε.

By (2.26), there exists m1 ≥ mε such that diam(Ω��) < δ for all triangles � ∈ Tm
(m ≥ m1) such that � ⊂ �
 and Ω�� ∩G �= ∅. Since Π1 ⊂ Sm, Qm(Sε)|� = Sε|� if
Sε|Ω�� = constant. Using this, we obtain by Lemma 2.5

‖Sε −Qm,q(Sε)‖Lq(��) ≤ c

( ∑
�∈Tm,Ω��∩G �=∅

S�(Sε)
q
q

)1/q

≤ c‖Sε‖Lq(Gδ) ≤ cε.

We substitute this estimate together with (2.27) and (2.29) in (2.28) to obtain

‖f −Qm,q(f)‖Lq(��) ≤ cε for m ≥ m1.

This implies (2.23) if q <∞.
Case 2. q = ∞. We have, by Lemma 2.5 and the fact that Π1 ⊂ Sm,

‖f −Qm,q(f)‖L∞(��) ≤ c max
�∈Tm,�⊂��

inf
C∈Π1

‖f − C‖L∞(Ω��).

Now the result follows, using (2.26) and the fact that f is uniformly continuous on
Ω��� .

Part (b) of the lemma is immediate from part (a).
We denote S−∞ :=

⋂
m∈Z

Sm. As we already mentioned, there are only two

possibilities for T−∞: T−∞ = {R
2} or T−∞ = (�j

∞)N∞
j=1, N∞ ≤ N0, where {�j

∞}
are infinite triangles with disjoint interiors and a common vertex which cover R

2. If
T−∞ = {R

2}, then obviously R
2 is the union of a sequence of nested triangles, and

hence each s ∈ S−∞ is a polynomial of degree < k on R
2. Therefore, if T−∞ = {R

2},
then S−∞ a subspace of Πk.

Suppose T−∞ = (�j
∞)N∞

j=1 and s ∈ S−∞. Then each triangle �j
∞ can be repre-

sented as the union of a sequence of nested triangles, and hence s is a polynomial
of degree < k on �j

∞. Therefore, in this case, s ∈ S−∞ implies s ∈ Cr(R2) and
s|�j

∞
= Pj |�j

∞
for some Pj ∈ Πk, j = 1, . . . , N∞.

Furthermore, if s ∈ S−∞ and |{x ∈ R
2 : |s(x)| > t}| < ∞ for some t > 0, then

s = const. In particular, if s ∈ S−∞ ∩ Lp (p <∞), then s ≡ 0.

2.3. Definition of B-spaces. Equivalent norms. Interpolation. Suppose
T is an LR(or better)-triangulation and Φ = ΦT is a family of differentiable piecewise
polynomial basis functions over T as described in sections 2.1–2.2. For the character-
ization of nonlinear n-term Lp-approximation from Φ, we need the B-spaces Bατ (Φ)
which we shall introduce and explore in this subsection. In fact, the spaces Bατ (Φ)
depend only on the underlying ladder of spaces · · · ⊂ S−1 ⊂ S0 ⊂ S1 ⊂ · · · associated
with the bases (Φm)m∈Z, but as it will be shown below these spaces have atomic
representations using Φ, which justifies our notation.

We shall need the B-spaces Bατ (Φ) in two cases: (a) 0 < p < ∞ and α > 0, or
(b) p = ∞ and α ≥ 1 (see Remark 2.14). In both cases, we define τ from the identity
1/τ = α+ 1/p (1/∞ := 0).
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Definition of Bα
τ (Φ) via local approximation. We define the B-space Bατ (Φ)

as the set of all functions f ∈ Lτ (R2) such that

‖f‖Bατ (Φ) :=
( ∑

�∈T
(|�|−αS�(f)τ )

τ

)1/τ

<∞,(2.30)

where S�(f)τ is the error of Lτ -approximation of f on Ω�� from Sm if � ∈ Tm (see
(2.22)).

It is readily seen that Bατ (Φ) is a linear space, ‖cf‖Bατ = |c|‖f‖Bατ , and ‖f +
g‖λBατ ≤ ‖f‖λBατ + ‖g‖λBατ , with λ := min{τ, 1}. Clearly, see Theorem 2.8, if ‖f‖Bατ = 0,

then f = 0 a.e. Therefore, ‖ · ‖Bατ is a norm if τ ≥ 1 and a quasi norm if τ < 1.
We next define other equivalent norms in Bατ (Φ). We define

NΦ,S,η(f) :=

( ∑
�∈T

(|�|1/p−1/η
S�(f)η)

τ

)1/τ

,(2.31)

where we have taken into account that 1/τ := α+ 1/p. Thus, NΦ,S,τ (f) = ‖f‖Bατ (Φ).
Moreover, we shall show that NΦ,S,η(f) ≈ ‖f‖Bατ (Φ) if 0 < η < p (see Theorem 2.10).

Definition of norms in Bα
τ (Φ) via basis functions (atomic decomposi-

tion). For f ∈ Lτ (R2), we define

NΦ(f) := inf
f=
∑

θ∈Θ
cθϕθ

(∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )τ
)1/τ

,(2.32)

where the infimum is over all representations of f in the form f =
∑
θ∈Θ cθϕθ in

Lτ . (Note that the existence of such representations for each f ∈ Lτ follows by
Lemma 2.6.) By Theorem 2.9,∑

θ∈Θ
(|Eθ|−α‖cθϕθ‖τ )τ <∞ implies

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
<∞,

and hence
∑
θ∈Θ cθϕθ(x) converges absolutely a.e. Therefore, the specific type of

convergence that we use in the definition of NΦ(f) above is not essential. Using
(2.14), we have

NΦ(f) ≈ inf
f=
∑

θ∈Θ
cθϕθ

(∑
θ∈Θ

(|Eθ|1/p−1/η‖cθϕθ‖η)τ
)1/τ

≈ inf
f=
∑

θ∈Θ
cθϕθ

(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

.(2.33)

Definition of norms in Bα
τ (Φ) via projections. For f ∈ Llocη , we set

qm,η(f) := Qm,η(f)−Qm−1,η(f) ∈ Sm,(2.34)

where Qm,η is from (2.21), and let (bθ,η(f))θ∈Θm be defined by the identity

qm,η(f) =
∑
θ∈Θm

bθ,η(f)ϕθ, i.e., bθ,η(f) := aθ(qm,η(f)), θ ∈ Θm.(2.35)
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We define

NΦ,Q,τ (f) :=

(∑
θ∈Θ

(|Eθ|−α‖bθ,τ (f)ϕθ‖τ )τ
)1/τ

(2.36)

and, more generally (see (2.31)),

NΦ,Q,η(f) :=

(∑
θ∈Θ

(|Eθ|1/p−1/η‖bθ,η(f)ϕθ‖η)τ
)1/τ

, 0 < η < p.(2.37)

By Lemmas 2.2–2.3, it follows that

NΦ,Q,η(f) ≈
(∑
m∈Z

∑
�∈Tm

(|�|1/p−1/η‖qm,η(f)‖Lη(�))
τ

)1/τ

(2.38)

and, for 0 < µ ≤ ∞,

(2.39)

NΦ,Q,η(f) ≈
(∑
θ∈Θ

(|Eθ|1/p−1/µ‖bθ,η(f)ϕθ‖µ)τ
)1/τ

≈
(∑
θ∈Θ

‖bθ,η(f)ϕθ‖τp
)1/τ

.

We shall show (see Theorem 2.10) that all of the above norms are equivalent. To
this end, we need the following embedding theorem.

Theorem 2.8. If f ∈ Lτ (R2) and NΦ,Q,η(f) <∞, 0 < η < p, then

f =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ,(2.40)

with the series converging absolutely a.e. and in Lp, and

‖f‖p ≤ c
∥∥∥ ∑
m∈Z

|qm,η(f)(·)|
∥∥∥
p
≤ c
∥∥∥∑
θ∈Θ

|bθ,η(f)ϕθ(·)|
∥∥∥
p
≤ cNΦ,Q,η(f),(2.41)

with c independent of f .
The proof of Theorem 2.8 hinges on the following more general embedding theo-

rem, which is a special case of Theorem 2.5 from [54].
Theorem 2.9. If 0 < τ < p < ∞, or p = ∞, and 0 < τ ≤ 1, then for any

sequence of real numbers (cθ)θ∈Θ we have

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
≤ c

(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

,(2.42)

with c independent of (cθ)θ∈Θ.
For completeness, we give the simple proof of this theorem in the appendix.
Proof of Theorem 2.8. We introduce the following abbreviated notation: Qm :=

Qm,η(f), qm := qm,η(f), bθ := bθ,η(f), and N(f) := NΦ,Q,η(f). By (2.35), (2.39), and
Theorem 2.9, we have∥∥∥ ∑

m∈Z

|qm(·)|
∥∥∥
p
≤ c
∥∥∥∑
θ∈Θ

|bθϕθ(·)|
∥∥∥
p
≤ cN(f) <∞,(2.43)
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and hence
∑
m∈Z

|qm(x)| < ∞ a.e. On the other hand, by Lemma 2.6, we have
‖f −Qm‖Lη(�) → 0 as m→ ∞ for each � ∈ T . The above two facts imply

f −Q0 =

∞∑
m=1

qm absolutely a.e. on R
2.(2.44)

We use Lemmas 2.1 and 2.2 to obtain, for � ∈ Tm (m ∈ Z),

‖qm‖L∞(�) ≤ c|�|− 1
p ‖qm‖Lp(�) ≤ c|�|− 1

p

∑
θ∈Θm, Eθ⊃�

‖bθϕθ‖p ≤ c|�|− 1
pN(f).

Therefore, for a fixed �′ ∈ Tν (ν ∈ Z),

ν∑
m=−∞

‖qm‖L∞(�′) ≤ cN(f)
∑

�∈T ,�⊃�′
|�|−1/p

= cN(f)|�′|−1/p
∑

�∈T ,�⊃�′
(|�′|/|�|)1/p(2.45)

≤ c|�′|−1/pN(f) <∞,

where we used (2.9). We set

s∞ := Q0 −
0∑

m=−∞
qm pointwise in R

2.(2.46)

From (2.45), it follows that s∞ is well defined and the series in (2.46) converges
uniformly on every compact in R

2. Evidently, (2.46) yields s∞ = Qν −∑ν
m=−∞ qm

for each ν ∈ Z.
Fix n ∈ Z. Using Theorem 2.9, we obtain, for ν ≤ n,

inf
s∈Sn

‖s∞ − s‖p ≤ ‖s∞ −Qν‖p =
∥∥∥ ν∑
m=−∞

qm

∥∥∥
p

≤ c

( ∑
θ∈
⋃ν

m=−∞ Θm

‖bθϕθ‖τp
)1/τ

→ 0 as ν → −∞,

where we used that (
∑
θ∈Θ ‖bθϕθ‖τp)1/τ ≈ N(f) < ∞. Therefore, s∞ ∈ Sn for every

n ∈ Z, and hence s∞ ∈ ⋂n∈Z
Sn = S−∞.

Identities (2.44) and (2.46) yield

f − s∞ =
∑
m∈Z

qm,η(f) =
∑
θ∈Θ

bθ,η(f)ϕθ absolutely a.e.,(2.47)

and hence, using (2.43),

‖f − s∞‖p ≤ c
∥∥∥ ∑
m∈Z

|qm,η(f)(·)|
∥∥∥
p

≤ c
∥∥∥∑
θ∈Θ

|bθ,η(f)ϕθ(·)|
∥∥∥
p
≤ cNΦ,Q,η(f) <∞.(2.48)
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Since f ∈ Lτ and f − s∞ ∈ Lp, it readily follows that, for t > 0,

|{x : |s∞(x)| > t}| ≤ |{x : |f(x)| > t/2}|+ |{x : |f(x)− s∞(x)| > t/2}|
≤ (t/2)−τ‖f‖ττ + (t/2)−p‖f − s∞‖pp <∞,

which implies s∞ ≡ 0 (see the end of section 2.2). From this, (2.47), and (2.48), we
infer (2.40) and (2.41). The proof is complete.

Theorem 2.10. The norms ‖ · ‖Bατ (Φ), NΦ,S,η(·) (0 < η < p), NΦ(·), and
NΦ,Q,η(·) (0 < η < p), defined in (2.30)–(2.32) and (2.37), are equivalent with con-
stants of equivalence depending only on p, α, η, and the parameters of T and Φ.

Proof. Theorem 2.8 readily implies

NΦ(f) ≤ NΦ,Q,η(f), 0 < η < p,(2.49)

if NΦ,Q,η(f) <∞.
Suppose NΦ,S,η(f) < ∞. For each � ∈ Tm (m ∈ Z), we have, by (2.34) and

Lemma 2.5,

‖qm,η(f)‖Lη(�) ≤ c‖f −Qm,η‖Lη(�) + c‖f −Qm−1,η‖Lη(�) ≤ cS�(f)η + cS��(f)η,

where �
 ⊃ �, �
 ∈ Tm−1, is the only parent of �. These estimates readily imply

NΦ,Q,η(f) ≤ NΦ,S,η(f), 0 < η < p.(2.50)

It remains to prove that

NΦ,S,η(f) ≤ NΦ(f), 0 < η < p,(2.51)

provided NΦ(f) < ∞. Evidently, (2.49)–(2.51) imply the desired equivalence of
norms.

Notice first that, by Hölder’s inequality, NΦ,S,µ(f) ≤ NΦ,S,η(f) if 0 < µ ≤ η, and
hence it suffices to prove (2.51) only for τ < η < p.

Suppose f ∈ Lτ and 0 < NΦ(f) <∞. Then it follows by the definition of NΦ(f)
that there exists a sequence (cθ)θ∈Θ such that

f =
∑
θ∈Θ

cθϕθ in Lτ(2.52)

and (
∑
θ∈Θ(|Eθ|−α‖cθϕθ‖τ )τ )1/τ ≤ 2NΦ(f). Theorem 2.9 implies that in (2.52) we

have absolute convergence a.e. We next estimate

NΦ,S,η(f) :=

( ∑
�∈T

[|�|1/p−1/η
S�(f)η]

τ

)1/τ

,(2.53)

using that S�(g)η = 0 if g ∈ Sm and � ∈ Tm, and S�(g)η ≤ ‖g‖Lη(Ω��), in general.

We denote fj :=
∑
θ∈Θj cθϕθ. Fix �′ ∈ T and assume that �′ ∈ Tm (m ∈ Z). We

have, using Theorem 2.9 (τ < η <∞) and (2.14),

S�′(f)τη = S�′

( ∞∑
j=m+1

fj

)τ
η

≤
∥∥∥ ∞∑
j=m+1

fj

∥∥∥τ
Lη(Ω��′ )

≤
∥∥∥ ∞∑
j=m+1

∑
θ∈Θj , Eθ⊂Ω2�

�′

cθϕθ

∥∥∥τ
Lη(Ω��′ )

≤ c
∑

θ∈Θ, Eθ⊂Ω2�
�′

‖cθϕθ‖τη

≤ c
∑

θ∈Θ, Eθ⊂Ω2�
�′

|Eθ|τ(1/η−1/τ)‖cθϕθ‖ττ .
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Substituting this in (2.53), we obtain

NΦ,S,η(f)
τ ≤ c

∑
�′∈T

|�′|τ(1/p−1/η)
∑

θ∈Θ, Eθ⊂Ω2�
�′

|Eθ|τ(1/η−1/τ)‖cθϕθ‖ττ

= c
∑

�′∈T

∑
θ∈Θ, Eθ⊂Ω2�

�′

(|Eθ|/|�′|)τ(1/η−1/p)(|Eθ|−α‖cθϕθ‖τ )τ

≤ c
∑
θ∈Θ

(|Eθ|−α‖cθϕθ‖τ )τ
∑

�′∈T ,Ω2�
�′⊃Eθ

(|Eθ|/|�′|)τ(1/η−1/p),

where we once switched the order of summation. By (2.1)–(2.2),

#{�′ ∈ Tν : Ω2�
�′ ⊃ Eθ} ≤ c(N0, $), ν ∈ Z, θ ∈ Θ,

and |Eθ| ≤ cρj |�′| if Eθ ⊂ Ω2�
�′ with �′ ∈ Tm and θ ∈ Θm+j (m ∈ Z, j ≥ 0). Using

these, we obtain

∑
�′∈T ,Ω2�

�′⊃Eθ
(|Eθ|/|�′|)τ(1/η−1/p) ≤ c

∞∑
j=0

ρjτ(1/η−1/p) ≤ c <∞.

Therefore, NΦ,S,η(f)
τ ≤ c

∑
θ∈Θ(|Eθ|−α‖cθϕθ‖τ )τ ≤ cNΦ(f)

τ which yields
(2.51).

The following embedding result is quite obvious.
Theorem 2.11. For 0 < α0 < α1 and τj := (αj + 1/p)−1, j = 0, 1, we have the

continuous embedding

Bα1
τ1 (Φ) ⊂ Bα0

τ0 (Φ);(2.54)

i.e., if f ∈ Bα1
τ1 (Φ), then f ∈ Bα0

τ0 (Φ) and ‖f‖Bα0
τ0

(Φ) ≤ c‖f‖Bα1
τ1

(Φ).

Proof. By Theorem 2.8, if f ∈ Bα1
τ1 (Φ), then f ∈ Lτ1 ∩ Lp ⊂ Lτ0 . Fix 0 < η < p.

Then by (2.39), we have

‖f‖
B
αj
τj

(Φ)
≈
(∑
θ∈Θ

‖bθ,η(f)ϕθ‖τjp
)1/τj

, j = 0, 1,

and the theorem follows since τ1 < τ0.
Interpolation of B-spaces. We first recall some basic definitions from the

real interpolation method. We refer the reader to [3] and [4] as general references
for interpolation theory. For a pair of quasi-normed spaces X0, X1, embedded in a
Hausdorff space, the space X0+X1 is defined as the collection of all functions f that
can be represented as f0 + f1 with f0 ∈ X0 and f1 ∈ X1. The quasi norm in X0 +X1

is defined by

‖f‖X0+X1 := inf
f=f0+f1

‖f0‖X0
+ ‖f1‖X1

.

Peetre’s K-functional is defined for each f ∈ X0 +X1 and t > 0 by

K(f, t) := K(f, t;X0, X1) := inf
f=f0+f1

‖f0‖X0
+ t‖f1‖X1

.(2.55)
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The real interpolation space (X0, X1)λ,q with 0 < λ < 1 and 0 < q ≤ ∞ is defined as
the set of all f ∈ X0 +X1 such that

‖f‖(X0,X1)λ,q := ‖f‖X0+X1
+

(∫ ∞

0

(t−λK(f, t))q
dt

t

)1/q

<∞

with the Lq-norm replaced by the sup-norm if q = ∞.
It is easily seen that if X1 ⊂ X0 (X1 continuously embedded in X0), then

K(f, t) ≈ ‖f‖X0 for f ∈ X0 and t ≥ 1 and, consequently,

‖f‖(X0,X1)λ,q ≈ ‖f‖X0 +

( ∞∑
ν=0

[2νλK(f, 2−ν)]q
)1/q

.(2.56)

Theorem 2.12. Suppose 0 < p <∞ and α0, α1 > 0, or p = ∞ and α0, α1 ≥ 1.
Let τj := (αj + 1/p)−1, j = 0, 1. Then

(Bα0
τ0 (Φ), B

α1
τ1 (Φ))λ,τ = Bατ (Φ)(2.57)

with equivalent norms, provided α = (1 − λ)α0 + λα1 with 0 < λ < 1 and τ :=
(α+ 1/p)−1.

Proof. We shall use some ideas from [32]. We may assume that α0 < α1. We
denote briefly Bα := Bατ (Φ) and Bαj := B

αj
τj (Φ), j = 0, 1. Furthermore, we denote

by $q the space of all sequences a = (aθ)θ∈Θ of real numbers such that

‖a‖�q :=
(∑
θ∈Θ

|aθ|q
)1/q

<∞.

We shall utilize the following well-known interpolation result (see, e.g., [3]):

($τ0 , $τ1)λ,τ = $τ , where 1
τ = 1−λ

τ0
+ λ
τ1

with 0 < λ < 1.(2.58)

We fix 0 < η < p. Then we normalize the basis functions from Φ in Lp, that is,
‖ϕθ‖p = 1 (we use the same notation for the normalized basis functions). We also
renormalize the dual functionals λθ in the definition of Qm in (2.18) accordingly.

We denote by b(f) = (bθ(f))θ∈Θ the sequence of numbers defined by (see (2.34)–
(2.35))

qm,η(f) =:
∑
θ∈Θm

bθ(f)ϕθ, m ∈ Z (‖ϕθ‖p = 1).

By Theorem 2.8, Theorem 2.10, and (2.39), if f ∈ Bαj (j = 0, 1), then

f
Lp
=
∑
θ∈Θ

bθ(f)ϕθ and ‖f‖Bαj ≈ ‖b(f)‖�τj ,(2.59)

and similarly for f ∈ Bα.
The theorem will follow by (2.58) and the following lemma.
Lemma 2.13. For f ∈ Bα0 +Bα1 = Bα0 (α0 < α1), we have

K(f, t;Bα0 , Bα1) ≈ K(b(f), t; $τ0 , $τ1), t > 0.(2.60)
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Proof. We first prove that

K(f, t;Bα0 , Bα1) ≤ cK(b(f), t; $τ0 , $τ1), t > 0.(2.61)

Indeed, let a = (aθ)θ∈Θ ∈ $τ1 . Then a ∈ $τ0 (τ0 > τ1) and since b(f) ∈ $τ0 (f ∈ Bα0),

we have b(f)− a ∈ $τ0 . We define g
Lp
:=
∑
θ∈Θ aθϕθ. Then by Theorem 2.9, g is well

defined, and hence

f − g Lp=
∑
θ∈Θ

(bθ(f)− aθ)ϕθ.

By (2.33) and Theorem 2.10, we infer

‖g‖Bα1 ≤ c‖a‖�τ1 and ‖f − g‖Bα0 ≤ c‖b(f)− a‖�τ0 .
Since a ∈ $τ1 is arbitrary, the last two estimates give (2.61).

We next prove that

K(b(f), t; $τ0 , $τ1) ≤ cK(f, t;Bα0 , Bα1), t > 0.(2.62)

Suppose g ∈ Bα1 ; then by Theorem 2.11, g ∈ Bα0 (α0 < α1), and hence f − g ∈ Bα0 .
We shall show that there exists a sequence b(g) = (bθ(g))θ∈Θ ∈ $τ1 such that

g
Lp
=
∑
θ∈Θ

bθ(g)ϕθ with ‖g‖Bα1 ≈ ‖b(f)‖�τ1(2.63)

and

f − g Lp=
∑
θ∈Θ

(bθ(f)− bθ(g))ϕθ with ‖f − g‖Bα0 ≈ ‖b(f)− b(g)‖�τ0 .(2.64)

Clearly, estimate (2.62) follows by (2.63)–(2.64).
Notice that if η ≥ 1, then b(·) can be realized as a linear operator, and hence

b(f − g) = b(f) − b(g). Therefore, (2.63)–(2.64) are immediate from g ∈ Bα1 and
f − g ∈ Bα0 .

Suppose η < 1. For � ∈ T , we let P�(f) := P�,η(f) ∈ Πk be the polynomial
from the definition of pm,η(f) in (2.20) (P�(f) is not unique). Thus P�(f) ∈ Πk is
such that

‖f − P�(f)‖Lη(�) ≤ cEk(f,�)η.(2.65)

We shall next show that for each � ∈ T there exists a polynomial P�(g) ∈ Πk such
that

‖g − P�(g)‖Lη(�) ≤ cEk(g,�)η(2.66)

and

‖f − g − (P�(f)− P�(g))‖Lη(�) ≤ cEk(f − g,�)η.(2.67)

We consider two cases.
Case 1. E(f − g) ≤ E(g), where E(·) := Ek(·,�)η. Let R ∈ Πk be such that

‖f − g −R‖ = E(f − g), where ‖ · ‖ := ‖ · ‖Lη(�).(2.68)
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We define P�(g) := P�(f) − R ∈ Πk. Then (2.67) holds, by (2.68). We use (2.65)
and (2.68) to obtain

‖g − P�(g)‖ ≤ c‖f − P�(f)‖+ c‖f − g −R‖ ≤ cE(f) + cE(f − g)
≤ cE(f − g) + cE(g) + cE(f − g) ≤ cE(g),

which gives (2.66).
Case 2. E(g) < E(f−g). This time we choose P�(g) ∈ Πk so that ‖g−P�(g)‖ =

E(g). Similarly as above, one can show that

‖f − g − (P�(f)− P�(g))‖ ≤ cE(f − g).

Thus the existence of P�(g) ∈ Πk satisfying (2.66) and (2.67) is established.
Using the polynomials P�(g) from above, we define, for m ∈ Z,

pm,η(g) :=
∑

�∈Tm
11� · P�(g) and pm,η(f − g) :=

∑
�∈Tm

11� · (P�(f)− P�(g)).

Furthermore, as in (2.21) and (2.34), we define

Qm,η(g) := Qm(pm,η(g)) and qm,η(g) := Qm,η(g)−Qm−1,η(g).

We define Qm,η(f − g) and qm,η(f − g) in the same way. Finally, we define b(g) =
(bθ(g))θ∈Θ and b(f − g) = (bθ(f − g))θ∈Θ from

qm,η(g) =:
∑
θ∈Θm

bθ(g)ϕθ and qm,η(f − g) =:
∑
θ∈Θm

bθ(f − g)ϕθ, m ∈ Z.

Evidently, pm,η(f − g) = pm,η(f) − pm,η(g) and since Qm is a linear operator, it
follows that b(f − g) = b(f) − b(g). From this and the fact that P�(g) satisfies
(2.66) and (2.67), using Theorem 2.8, Theorem 2.10, and (2.39), we obtain that b(g)
satisfies (2.63) and (2.64), and hence (2.62) holds. This completes the proof of the
lemma.

By Lemma 2.13, (2.58), and (2.59) (with αj replaced by α), we obtain

‖f‖(Bα0 ,Bα1 )λ,τ ≈ ‖b(f)‖(�τ0 ,�τ1 )λ,τ ≈ ‖b(f)‖�τ ≈ ‖f‖Bα .

Thus the proof of Theorem 2.12 is complete.



NONLINEAR SPLINE APPROXIMATION 729

Several remarks are in order.
Remark 2.14. (a) If p = ∞, then the B-space Bατ (Φ) (τ := 1/α) is useful for our

goals only if α ≥ 1. The reason for this is that Bατ (Φ) is not embedded in C if α < 1.
Indeed, consider the function f :=

∑∞
j=1 j

−1ϕθj , where θj ∈ Θmj ,m1 < m2 < · · ·, and
{ϕθj} are Courant (or other) elements which overlap so that ‖f‖∞ ≈∑∞

j=1 j
−1 = ∞.

On the other hand (see (2.33)), |f |Bατ (Φ) ≤ c(
∑∞
j=1 j

−τ )1/τ <∞, since τ := 1/α > 1.
(b) We introduced the B-norms NΦ,S,η(·) and NΦ,Q,η(·) with 0 < η < p (see (2.31)

and (2.37)) for the following reason. As we shall see in section 3, normally α > 1, and
hence τ < 1, which compels us to work in Lτ with τ < 1, which is not a very friendly
space. At the same time, if p > 1 we can choose 1 ≤ η < p and work in Lη instead.

(c) We also want to explain why we introduce the B-spaces over locally regular
(or better) triangulations but not over more general ones. The reason is that if we
relax the main conditions (2.1)–(2.2) in the definition of LR-triangulations, then we
can hardly work with the B-spaces. In particular, the equivalence of the norms (see
Theorem 2.10) fails to exist, which makes it impossible to prove all the results from
section 3.

General B-spaces. Given an LR(or better)-triangulation T and a family of
basis functions Φ = ΦT over T as in section 2.2, we define the more general B-space
Bαpq(Φ) = B

α
pq(S), α > 0, 0 < p, q ≤ ∞, as the set of all f ∈ Lp(R2) such that

‖f‖Bαpq(Φ) := ‖f‖p +
(∑
m∈Z

[
2mα

( ∑
�∈T , 2−m≤|�|<2−m+1

S�(f)pp

)1/p]q)1/q

<∞,

with the $q-norm replaced by the sup-norm if q = ∞, where S�(f)p is as above
(see (2.22)). Evidently, Bαp (Φ) = Bαpp(Φ). In going further, the norms in Bατ (Φ)
from (2.31), (2.32), and (2.37) can be generalized accordingly. In the present article,
we do not explore the B-spaces in such generality because the space scale Bατ (Φ) is
sufficient for our goal of characterizing the approximation rates of nonlinear n-term
approximation from differentiable piecewise polynomials.

Fat B-spaces: The link to Besov spaces. Suppose T is an arbitrary SLR-
triangulation of R

2. The fat B-space B
αk
τ (T ) with k ≥ 1 and α, τ as in the definition

of Bατ (T ) (section 2.3) is defined (see [38]) as the set of all functions f ∈ Lτ (R2) such
that

‖f‖Bαkτ (T ) :=

( ∑
�∈T

[|�|−αEk(f,Ω�)τ ]
τ

)1/τ

≈
( ∑

�∈T
[|�|−αωk(f,Ω�)τ ]

τ

)1/τ

<∞,

where Ek(f,Ω�)τ is the error of Lτ -approximation to f on Ω� := Ω1
� from Πk

and ωk(f,Ω�)τ is the local Lτ -modulus of smoothness of f on Ω�. (Recall that
Ek(f,Ω�)τ ≈ ωk(f,Ω�)τ by Whitney’s theorem (2.16), since T is an SLR-triangula-
tion.) Furthermore, other equivalent norms in B

αk
τ (T ) as well as more general fat

B-spaces B
αk
pq (T ) can be defined as in [38].

Suppose that Φ = ΦT is a hierarchical family of basis functions over T as described
in section 2.2. Assuming Πk ⊂ Sm ⊂ Sk,rm (T ) for all m ∈ Z (that is, k̃ = k in the
notation of section 2.2), we have for f ∈ Lτ and � ∈ Tm,

Ek(f,Ω
�
�)τ ≤ c

∑
�′∈Tm,�′⊂Ω��

Ek(f,Ω�′)τ ,
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which implies ‖f‖Bατ (ΦT ) ≤ c‖f‖Bαkτ (T ). Therefore, the space B
αk
τ (T ) is a good can-

didate to replace Bατ (Φ) in nonlinear spline approximation, but this is only possible
if 0 < α < α0 for some α0 < ∞, which we do not compute here. The problem with
the space B

αk
τ (T ) is that ‖ϕθ‖Bαkτ (T ) < ∞ only for 0 < α < α0. (See Theorem 2.15

in the case of regular triangulations.) Therefore, the basic norm equivalence results
(Theorem 2.10) hold only for a restricted range of α. Thus, B

αk
τ (T ) is simply not the

“right” space for the specific problem at hand if α ≥ α0. It is too “fat.” However, the
spaces B

αk
τ (T ) are still noteworthy since they are less sensitive to small perturbations

of the triangulation T and are technically easier. We believe that a situation will
present itself when they will be the “right” spaces.

Comparison between regular B-spaces and Besov spaces. We begin by
recalling the definition of the classical Besov space by moduli of smoothness. So, the
space Bsq(Lp) := B

s
q(Lp(R

2)), s > 0, 1 ≤ p, q ≤ ∞, is defined as the set of all functions
f ∈ Lp(R2) such that

‖f‖Bsq(Lp) :=
(∫ ∞

0

(t−sωk(f, t)p)q
dt

t

)1/q

<∞(2.69)

(‖f‖p is usually added to the right-hand side above), where k := [s]+1 and ωk(f, t)p is
the kth modulus of smoothness of f in Lp(R

2), i.e., ωk(f, t)p := sup|h|≤t ‖∆kh(f, ·)‖p.
It is well known that whenever 1 ≤ p ≤ ∞, if in (2.69) k is replaced by any other
k > s, then the resulting space would be the same with an equivalent norm. However,
the situation is totally different when p < 1, and this is a reason for introducing k as
a parameter of the Besov spaces in the following.

As elsewhere, let us assume that 0 < p <∞ and α > 0, or p = ∞ and α ≥ 1, and
in both cases 1/τ := α+1/p. Let k ≥ 1. We define the space B2α,k

τ (Lτ ) as the Besov
space B2α

τ (Lτ ) (see (2.69)), where k and α are independent of each other. These are
the spaces that naturally occur in nonlinear spline approximation (see [53]).

Suppose that T ∗ is a regular triangulation of R
2 (see section 2.1). Then as shown

in [38], B
αk
τ (T ∗) = B2α,k

τ (Lτ ) with equivalent norms. (Notice that the smoothness
parameters of B-spaces and Besov spaces are normalized differently and α corresponds
to 2α.)

Let us now assume that ΦT ∗ = {ϕθ} is a family of basis functions over T ∗ as
in section 2.2 such that Πk ⊂ Sm ⊂ Sk,rm (m ∈ Z), where r ≥ 0 and k > r. As we
mentioned above, the fat B-space B

αk
τ (T ∗), and hence the Besov space B2α,k

τ (Lτ ), is
a good candidate to replace the B-space Bατ (ΦT ∗) in nonlinear n-term approximation
from ΦT ∗ . We next spell out the exact conditions for equivalence of the corresponding
norms.

Theorem 2.15. Under the above assumptions, if 0 < α < r + 1 + 1/p, then

B2α,k
τ (Lτ ) = B

α
τ (ΦT ∗)(2.70)

with equivalent norms. Furthermore, if a single basis function ϕθ ∈ ΦT ∗ does not
belong to Cr+1, then the equivalence is no longer true when α ≥ r + 1 + 1/p. More
precisely, for such ϕθ and α, ‖ϕθ‖B2α,k

τ (Lτ )
= ∞, while ‖ϕθ‖Bατ (ΦT ∗ ) ≈ ‖ϕθ‖p.

Proof. As we mentioned before, ‖f‖Bατ (ΦT ∗ ) ≤ c‖f‖Bαkτ (T ∗) for f ∈ B
αk
τ (T ∗),

and also we have ‖f‖Bαkτ (T ∗) ≈ ‖f‖B2α,k
τ (Lτ )

, exactly as in Theorem 2.25 from [38].

Therefore,

‖f‖Bατ (ΦT ∗ ) ≤ c‖f‖B2α,k
τ (Lτ )

for f ∈ B2α,k
τ (Lτ ).
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The proof of the reverse estimate follows in the footsteps of the proof of Theo-
rem 2.28 from [38], and we shall indicate only the differences. Using the conditions
on ΦT ∗ and the fact that T ∗ is regular, one can show by straightforward calculations
that, for each θ ∈ Θ(T ∗),

ωk(ϕθ, t)
τ
τ ≤

{
c|Eθ| 12 (1−(r+1)τ) · t1+(r+1)τ if 0 < t < |Eθ|1/2,
c|Eθ| if t ≥ |Eθ|1/2.(2.71)

Moreover, both sides of (2.71) are equivalent if ϕθ does not belong to Cr+1. In going
further, one uses (2.71) exactly as in [38] to complete the proof of the theorem.

Remark 2.16. An interesting situation occurs when p = ∞ and r = 0. Then there
is no α for which (2.70) holds. This is the case when ΦT ∗ is the set of all Courant
elements generated by T ∗ (a regular triangulation).

Comparison between different B-spaces and Besov spaces. Suppose ΦT
is a family of basis functions associated with an SLR-triangulation T which allows
arbitrarily sharp angles. Then some extremely “skinny” basis functions ϕθ ∈ ΦT
(with elongated level curves) will occur. It is easily seen that such functions have
huge Besov norms (see [38]) compared to their Lp-norms as well as their B(ΦT )-
norms (see Theorem 3.2 below) for any smoothness α > 0. Therefore, the B-spaces
for such a triangulation are essentially different from Besov spaces. The situation is
quite similar when comparing two B-spaces over different triangulations. Therefore,
the B-spaces change substantially with the triangulations, thus making the search for
the “right” triangulation mentioned in the introduction a meaningful task. In contrast
to this, the standard Besov spaces can be used only to characterize the approximation
power of piecewise polynomials over regular triangulations.

B-spaces over compact domains. B-spaces can be introduced on an arbitrary
compact polygonal domain E ⊂ R

2. A substantial difference would be in assuming
that each triangulation T of E is of the form T =

⋃∞
m=0 Tm, where T0 is an initial level

(triangulation of E) and T1, T2, . . . are consecutive refinements of T0. This approach
is important for the applications (see [39]).

B-spaces in dimensions d > 2. Multilevel triangulations and B-spaces can
be introduced in much the same way in dimensions d > 2. Of course, then the
triangles should be replaced by simplices, thus making some geometric argumentation
of this section essentially more involved. In particular, the property (e) of a multilevel
triangulation should be extended to all faces of the simplices in Tm, thus saying that
there are at most N0 simplices in Tm attached to a particular face. The “no hanging
vertices” condition (d) should be replaced by the condition that each facet of a simplex
in Tm is a common facet of exactly two simplices in Tm. The minimal angle condition
appearing in the definition of regular triangulations and in (2.4) should be replaced
by the shape regularity condition that postulates the existence of an upper bound on
the ratio of the diameter of a simplex and the diameter of the inscribed sphere. In
conditions (2.1)–(2.3) the area should be replaced by the d-dimensional volume.

B-spaces in dimension d = 1. B-spaces can be introduced in the univariate
case, but none will give anything new, and hence they are not needed. The key fact
is that, in the univariate case, the Bernstein inequality involving Besov spaces holds
with no restrictions on the smoothness parameter α <∞ (see [53]).

In a nutshell, the essence of the spaces we considered in this section is the fol-
lowing. The Besov spaces are based on local polynomial approximation over regular
multilevel triangulations, which is explicitly shown in [38]. When the regular tri-
angulations are replaced by SLR-triangulations, then the Besov spaces become fat
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B-spaces, which further evolve to B-spaces when the local polynomial approximation
is replaced by local spline approximation.

The B-spaces are closely related to certain anisotropic maximal functions, non-
classical differentiability, and other problems, which are beyond the scope of this
article.

3. Nonlinear n-term spline approximation. In this section, we assume that
T is a locally regular (or better) triangulation of R

2. Also, we assume that Φ = ΦT
is a hierarchical family of basis functions over T (see section 2.2). Notice that Φ is
not a basis; Φ is redundant. We consider nonlinear n-term approximation from Φ in
Lp(R

2) (0 < p ≤ ∞), where we identify L∞(R2) as C0(R
2). We let Σn(Φ) denote the

nonlinear set consisting of all splines s of the form

s =
∑
θ∈M

aθϕθ,

where M ⊂ Θ(T ), #M ≤ n, and M may vary with s. We denote by σn(f,Φ)p the
error of Lp-approximation to f ∈ Lp(R2) from Σn(Φ):

σn(f,Φ)p := inf
s∈Σn(Φ)

‖f − s‖p.

Our goal is to characterize the approximation spaces generated by nonlinear n-term
approximation from Φ. To this end we next prove a pair of companion Jackson and
Bernstein estimates. We shall utilize the B-spaces Bατ (Φ) introduced in section 2. We
assume that 0 < p <∞ and α > 0, or p = ∞ and α ≥ 1. In both cases, 1/τ := α+1/p
(1/∞ := 0).

Theorem 3.1 (Jackson estimate). If f ∈ Bατ (Φ), then

σn(f,Φ)p ≤ cn−α‖f‖Bατ (Φ),(3.1)

with c independent of f and n.
In the case 0 < p <∞, this theorem follows by the general Theorem 3.4 from [38],

in view of the results of section 2. For completeness, we shall give its short proof in
the appendix. The proof when p = ∞ can be carried out as the proof of Theorem 4.1
from [39] but is a little longer, and so we shall skip it.

Theorem 3.2 (Bernstein estimate). If s ∈ Σn(Φ), then

‖s‖Bατ (Φ) ≤ cnα‖s‖p,(3.2)

with c independent of s and n.
The proof of this (vital for our development) theorem utilizes the ideas of the

proofs of Theorem 3.6 from [38] (0 < p <∞) and Theorem 4.2 from [39] (p = ∞) but
is not identical to them. We shall give the proof in the appendix.

For a fixed T and Φ := ΦT , we set K(f, t) := K(f, t;Lp, B
α
τ (Φ)) (Lp := C0 if

p = ∞); see (2.55). The Jackson and Bernstein estimates from Theorems 3.1 and 3.2
imply in a standard way (see, e.g., [55]) the following direct and inverse estimates:
For any α > 0, if f ∈ Lp, then

σn(f,Φ)p ≤ cK(f, n−α)(3.3)

and

K(f, n−α) ≤ cn−α
(
‖f‖p +

[
n∑
ν=1

1

ν
(νασν(f,Φ)p)

µ

]1/µ)
,(3.4)

where µ := min{p, 1} and c is independent of f and n.
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An immediate consequence of (3.3) and (3.4) is that σn(f,Φ)p = O(n
−γ), 0 < γ <

α, if and only if K(f, n−α) = O(n−γ). More generally, these estimates enable us to
characterize the approximation spaces generated by nonlinear n-term approximation
from Φ. We define the approximation space Aγq := Aγq (Φ, Lp), α > 0, 0 < q ≤ ∞, as
the set of all functions f ∈ Lp such that

‖f‖Aγq := ‖f‖p +
( ∞∑
n=1

(nγσn(f,Φ)p)
q 1

n

)1/q

<∞

with the $q-norm replaced by the sup-norm if q = ∞ as usual.
The direct and inverse estimates (3.3)–(3.4) readily imply (see, e.g., [55]) the

following characterization of the approximation spaces.
Theorem 3.3. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (Φ, Lp) = (Lp, B
α
τ (Φ)) γα ,q

with equivalent norms.
In one specific case the interpolation spaces can be identified as B-spaces.
Theorem 3.4. Suppose 0 < p < ∞ and α > 0, or p = ∞ and α > 1, and let

τ := (α+ 1/p)−1. Then

Aατ (Φ, Lp) = B
α
τ (Φ)(3.5)

with equivalent norms.
The following interpolation result is immediate from Theorems 3.3 and 3.4.
Corollary 3.5. Suppose p, α, and τ =: τ(α) are as in the hypothesis of Theo-

rem 3.4, and let β > α and τ(β) := (β + 1/p)−1. Then

(Lp, B
β
τ(β)(Φ))αβ ,τ(α) = B

α
τ(α)(Φ)(3.6)

with equivalent norms.
Proof of Theorem 3.4. We shall employ the idea of the proof of Theorem 3.3 in

[30]. We shall use abbreviated notation: Aαq := Aαq (Φ, Lp), B
α
τ := Bατ (Φ), and the

like. For any β > 0, we denote τ(β) := (β + 1/p)−1.
We first prove the following continuous embedding:

Aβµ ⊂ Bβτ(β) with µ := min{τ(β), 1}.(3.7)

Indeed, suppose f ∈ Aβµ, and let sm ∈ Σm be such that

‖f − sm‖p ≤ 2σm(f)p.(3.8)

Since σm(f)p → 0, we have f = s1 +
∑∞
ν=1(s2ν − s2ν−1) in Lp (uniformly if p = ∞),

and hence (µ ≤ 1)

‖f‖µ
Bβ
τ(β)

≤ ‖s1‖µ
Bβ
τ(β)

+

∞∑
ν=1

‖s2ν − s2ν−1‖µ
Bβ
τ(β)

.(3.9)

We apply the Bernstein estimate from Theorem 3.2 to s2ν − s2ν−1 ∈ Σ2ν+1 and use
(3.8) to obtain

‖s2ν − s2ν−1‖Bβ
τ(β)

≤ c2νβ‖s2ν − s2ν−1‖p ≤ c2νβ(σ2ν (f)p + σ2ν−1(f)p),
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and similarly ‖s1‖Bβ
τ(β)

≤ c(‖f‖p + σ1(f)p). Using these in (3.9) implies

‖f‖µ
Bβ
τ(β)

≤ c‖f‖µp + c
∞∑
ν=1

(2νβσ2ν (f)p)
µ ≤ c‖f‖µ

Aβµ
,

which is (3.7).
Second, the Jackson estimate from Theorem 3.1 gives the continuous embedding

Bβτ(β) ⊂ Aβ∞.(3.10)

A third important ingredient in this proof is the fact that the approximation
spaces Aαq are invariant under interpolation (see [31, 52]): If α0, α1 > 0 and 0 <
q1, q2, q ≤ ∞, then

(Aα0
q0 , A

α1
q1 )λ,q = A

α
q , where α = (1− λ)α0 + λα1 with 0 < λ < 1.(3.11)

Now we choose α0 and α1 so that 0 < α0 < α < α1 (α0 := 1 if p = ∞). Also, we
select 0 < λ < 1 so that α = (1−λ)α0+λα1. Furthermore, we set τj := (αj +1/p)−1

and µj := min{τj , 1}, j = 0, 1. By Theorem 2.12, we have

(Bα0
τ0 , B

α1
τ1 )λ,τ = Bατ .

We use this, (3.7), (3.10), and (3.11) to obtain the following continuous embeddings:

Aατ = (Aα0
µ0
, Aα1

µ1
)λ,τ ⊂ Bατ = (Bα0

τ0 , B
α1
τ1 )λ,τ ⊂ (Aα0∞ , A

α1∞ )λ,τ = Aατ ,

which give (3.5).
Algorithms. In [39], there are three algorithms developed for n-term Courant

element approximation in Lp (0 < p ≤ ∞). These algorithms can be immediately
adapted to nonlinear n-term approximation from any family of differentiable spline
basis functions ΦT on a compact polygonal domain E ⊂ R

2. It is an integral part of
our program that using the machinery of the B-spaces, Jackson and Bernstein esti-
mates, interpolation, etc. developed in this article, we can prove that these algorithms
achieve the rate of the best n-term approximation. This aspect of our theory will not
be elaborated on here (see [39]).

Approximation from the libraries {ΦT }T . An important element of our con-
cept for nonlinear spline approximation is the introduction of another level of nonlin-
earity by allowing the triangulation T to vary. For a given SRL(or LR)-triangulation
T , let ΦT be a family of spline basis functions like the ones considered in section 2.2.
Now, without changing the nature of the basis elements from ΦT , we let T vary and
obtain a collection (library) of basis families {ΦT }T . We denote

σn(f)p := inf
T
σn(f,ΦT )p,

where the infimum is taken over all SLR-triangulations T with fixed parameters,
and we also assume that the parameters of ΦT are fixed. The following theorem is
immediate from the Jackson estimate in Theorem 3.1. We shall assume again that
0 < p <∞ and α > 0, or p = ∞ and α ≥ 1, and in both cases, 1/τ := α+ 1/p.

Theorem 3.6. If infT ‖f‖Bατ (ΦT ) <∞, then

σn(f)p ≤ cn−α inf
T

‖f‖Bατ (ΦT )

with c depending only on p, α, and the parameters of T and ΦT .
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The ultimate open problem here is to characterize the approximation spaces gen-
erated by {σn(f)p} for a given library of basis functions {ΦT }T .

Global smoothness of functions: How to measure it? Here we come to
one of the fundamental questions in approximation theory (and not only there) of
how the global smoothness of the functions should be measured.

In the case of nonlinear n-term Lp-approximation from a single basis family ΦT ,
a function f should be considered of smoothness α > 0 if ‖f‖Bατ (ΦT ) <∞. Then the
rate of n-term Lp-approximation of f from ΦT is O(n−α) (roughly). If we consider
nonlinear n-term approximation from a given library of basis families {ΦT }T (T is
allowed to vary), then a function f should naturally be considered of smoothness
α > 0 if infT ‖f‖Bατ (ΦT ) <∞, which means that there exists a triangulation T := Tf
such that ‖f‖Bατ (ΦT ) <∞. Then the rate of n-term Lp-approximation of f from the
library {ΦT }T is O(n−α). It is crystal clear to us that no single (super) space can
do the job in this case. It is an open problem to develop an algorithm for finding, for
a given function f , an optimal (or near optimal) triangulation, i.e., a triangulation
Tf for which f exhibits maximal (near maximal) smoothness, using the space scale
Bατ (ΦTf ). It is also an open problem whether, for a given function f ∈ Lp, there exists
a single triangulation Tf such that, for all n ≥ 1, the n-term Lp-approximation of
f from the library {ΦT }T can be realized by n-term approximation from ΦTf and,
consequently, characterized by the B-spaces Bατ (ΦTf ) via interpolation.

Another important related issue for discussion is the smoothness of the approxi-
mating tool ΦT := {ϕθ} (T fixed). Clearly, in nonlinear approximation, there is no
saturation, which means that the corresponding approximation spaces Aγq are non-
trivial for all 0 < γ < ∞. Therefore, the smoothness spaces to be used should
naturally be designed so that the functions {ϕθ} are infinitely smooth with respect
to these spaces. This has been one of the guiding principles to us in constructing the
B-spaces. Thus each basis function ϕθ ∈ Φ is infinitely smooth with respect to the
scale of B-spaces Bατ (Φ), which is reflected in the fact that ‖ϕθ‖Bατ (Φ) ≤ c‖ϕθ‖p for
0 < α < ∞ (see Theorem 3.2). This makes it possible that in our direct, inverse,
and characterization theorems we impose no restrictions on the rate of approximation
α < ∞ (see Theorems 3.1–3.4). Also, this explains the complete success of Besov
spaces in univariate nonlinear spline approximation (see [53]) and why Besov spaces
are not quite suitable in dimensions d > 1. The latter remark needs a few words of
explanation: First, by allowing triangulations with arbitrarily sharp angles, we allow
very “skinny” basis functions with huge Besov norms compared to their Lp-norms (see
[38]), which precludes the use of Besov spaces in such situations. Second, even when
working on regular triangulations, the use of Besov spaces is restricted by the Besov
smoothness (regularity) of the basis functions (see Theorem 2.15), while B-spaces
impose no restrictions on the rates of approximation.

Spline wavelets (prewavelets) and frames. In the case of uniform trian-
gulations, spline wavelets play an essential role in practical algorithms. It would be
desirable to have compactly supported wavelet (prewavelet) bases or frames gener-
ated by (differentiable) spline basis families ΦT over LR- or SLR-triangulations T .
To our knowledge there are no constructions of this type available, as for now. More-
over, there is some evidence that such constructions would be too complicated and
impractical for general triangulations. However, continuous spline prewavelets on reg-
ular triangulations with uniform dyadic refinements are available from [21, 34, 58].
(See also [47].) Evidently, nonlinear n-term approximation from compactly supported
spline wavelets or frames, generated by Courant elements or a smoother spline basis
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family ΦT , cannot give a better rate of convergence than nonlinear n-term approxi-
mation from ΦT . We hope that efficient algorithms for n-term approximation from
such families may provide a substitute for wavelet methods in situations where the
latter are difficult to apply and, in particular, for approximation in L∞.

Adaptive tree approximation. This is a method for nonlinear approximation
from piecewise polynomials on (single level) triangular partitions, which has been
developed recently in [5, 7]. In [5], algorithms are developed which achieve the rate
of the best adaptive tree approximation, while in [7] the rates of approximation are
related to the smoothness of the functions in terms of Besov spaces. There are sub-
stantial distinctions between this approach and the one in the present article. Namely,
the approximation schemes from [5, 7] use “single level” piecewise polynomials on tri-
angulations which satisfy the minimal angle condition, while here we use multilevel
(multiscale) piecewise polynomial bases over triangulations which allow arbitrarily
sharp angles. Therefore, the notion of “best approximation” in [5, 7] is quite different
from the one used here. Substantial progress has been made in [6] in applying the
adaptive tree approximation method for numerical (finite element) solution of PDEs.

4. Construction of differentiable basis functions. In this section, we give,
for any SLR-triangulation, a construction of differentiable spline basis in Sk,rm , r ≥ 1,
k > 4r+1, satisfying the conditions from section 2.2. In general, we follow the scheme
of [22]; however, appropriate modifications in the construction and in the proofs have
to be made since we do not assume that the triangulation is regular. In particular, we
replace the standard normal derivatives to the edges by derivatives in affine invariant
directions; see the definition ofDµ(e,�) below. Since our construction is also applicable
to nonnested triangulations (see Remark 4.8), we formulate the results here for a fixed
level Tm assuming only conditions (a), (d)–(f), and (2.3) of section 2.1 and making
sure that the constants in (2.11) and (2.12) depend only on k, r,N0, and δ2.

4.1. Nodal functionals. As before, let Vm and Em be the sets of all vertices and
all edges of Tm, respectively. We shall describe the basis functions for Sm = Sk,r(Tm),
k > 4r+1, with the aid of the so-called nodal functionals defined on Sk,r(Tm). These
are certain linear functionals involving the values of the splines and their derivatives
at specific points in R

2. The functional corresponding to the simple evaluation of the
splines at ξ ∈ R

2 will be denoted by δξ.
Of particular interest as evaluation points are the vertices v ∈ Vm, where we also

need the derivative evaluation functionals of type δvD
α
e with e being any edge in Em

emanating from v, and δvD
α
e1D

β
e2 , where e1, e2 are adjacent edges emanating from v.

Here Dα[v,ṽ]s denotes the derivative of s of order α in the direction of the interval [v, ṽ],

weighted with the length of [v, ṽ], namely,

Dα[v,ṽ]s :=
(
(ṽx − vx)Dx + (ṽy − vy)Dy

)α
s,

v = (vx, vy), ṽ = (ṽx, ṽy).

Note that, due to this weighting, the corresponding Markov inequality reads as follows:

‖Dα[v,ṽ]p‖L∞[v,ṽ] ≤ c‖p‖L∞[v,ṽ], p ∈ Πk,(4.1)

where c depends only on k and α.
Let �1,�2 ∈ Tm share an edge e. Since every s ∈ Sk,r(Tm) is continuous, the

two polynomial patches s|�1 and s|�2 coincide along e. Therefore, δvD
α
e s may be

computed for any α = 0, 1, . . . as either δvD
α
e (s|�1) or δvD

α
e (s|�2) with the same
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result. Similarly, let e1, e2 ∈ Em be two edges of a triangle � ∈ Tm with a common
vertex v. Then δvD

α
e1D

β
e2s denotes the mixed derivative of s at v in the directions of

e1 and e2 away from v. If α+ β ≤ r, this derivative is uniquely defined. If α+ β > r,
the result may depend on the choice of the polynomial patch of s attached to v. We
follow the convention to always take δvD

α
e1D

β
e2s := δvD

α
e1D

β
e2(s|�), where � is the

above triangle formed by e1, e2.
We shall also need functionals evaluating at some points on any edge e the deriva-

tives of the spline in an affine invariant direction not parallel to e. Let e = [v1, v2] ∈
Em, and let �e = [v1, v2, v3] ∈ Tm be a triangle attached to e. Denote by µ(e,�) the
median of � connecting the middle point (v1 + v2)/2 of e with the third vertex v3
of �. For any point ξ ∈ e, δξDµ(e,�) will denote the derivative at ξ in the direction
pointing into the half-plane containing � parallel to µ(e,�), weighted with the length
of µ(e,�). For each edge e ∈ Em, we choose one of the two triangles attached to e
and denote it by �e. (Note that this selection of �e is not unique, but as will be seen
it will cause no problems for the basis construction.)

Remark 4.1. For later references, we note here that any nodal functional η :
Sk,r(Tm) → R of the above type can be extended to a linear functional η̃ : Sk,−1(Tm) →
R such that η̃(s) = η(s) as long as s ∈ Sk,r(Tm). Indeed, if the definition of η involves
δξ for some point ξ ∈ ∪e∈Eme, then we choose one of the triangles � ∈ Tm containing
ξ and use the corresponding value of s|� or its derivatives at ξ to define η̃(s) for any
s ∈ Sk,−1(Tm). The only restriction on the choice of � is that it must be consistent
with the above rules for δvD

α
e , δvD

α
e1D

β
e2 , and δξDµ(e,�). Clearly, the extension of this

type is not unique. Moreover, convex combinations of evaluations of the restrictions
of s to different triangles can also be used.

4.2. Characterization of differentiability. Let L be a straight line dividing
R
2 into two half-planes H, H̃. Given p, p̃ ∈ Πk, we define a piecewise polynomial

function s by setting s|H = p, s|H̃ = p̃. To check whether s is differentiable across L,

we choose two points u, v on L, as well as two points w, w̃ in the interiors of H and H̃,
respectively. We set � := [u, v, w], �̃ := [u, v, w̃], e := [u, v], µ := [u,w], µ̃ := [u, w̃],
θ := ∠eµ, θ̃ := ∠µ̃e. The proof of the following lemma can be found in [17, 25].

Lemma 4.2. Let 0 ≤ r < k. Then s ∈ Cr(R2) if and only if

δuD
α
µ̃D

q−α
e p̃ =

α∑
β=0

(−1)β
(
α
β

)( sin(θ+θ̃)
|e|

)α−β(
sin θ̃
|µ|
)β(

sin θ
|µ̃|
)−α

δuD
β
µD

q−β
e p(4.2)

for all α = 0, . . . , r and q = α, . . . , k − 1.
It is readily seen that (4.2) can be reformulated as follows:

δuD
α
µ̃D

q−α
e p̃ =

α∑
β=0

(−1)β
(
α
β

)(
σ|�∗|

)α−β |�̃|β
|�|α δuD

β
µD

q−β
e p,(4.3)

where σ := sgn sin(θ + θ̃) and �∗ := [u,w, w̃]. (This identity simplifies in an obvious
way when |�∗| = 0.)

See [22] for a discussion of the relationship between these nodal conditions of
differentiability and the well-known Bernstein–Bézier conditions.

4.3. Construction of basis splines. Consider the following set Nm of nodal
functionals on Sk,r(Tm),

Nm :=

( ⋃
v∈Vm

N v
m

)
∪
( ⋃
e∈Em

N e
m

)
∪
( ⋃

�∈Tm
N�
m

)
,(4.4)
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where for each � = [v1, v2, v3] ∈ Tm,
N�
m := {η�ξ := δξ : ξ ∈ Ξ�},

Ξ� :=

{
i1v1 + i2v2 + i3v3

k − 1
: i1 + i2 + i3 = k − 1, i1, i2, i3 > r

}
⊂ �,

for each edge e = [v1, v2] ∈ Em,
N e
m := {ηeq,ξ := δξDqµ(e,�e)

: q = 0, . . . , r, ξ ∈ Ξe,q},

Ξe,q :=

{
i1v1 + i2v2
k − q − 1

: i1 + i2 = k − q − 1, i1, i2 > 2r − q
}

⊂ e,

and for each vertex v ∈ Vm,

N v
m :=

2r⋃
q=0

N v,q
m ,

with N v,q
m , q = 0, . . . , 2r, being defined as follows. Let �[i] = [v, vi, vi+1], i =

1, . . . , Nv, be the triangles in Tm attached to v in counterclockwise order, vNv+� = v�,
and let ei = [v, vi]. We set

N v,0
m := {ηv,0 := δv},

N v,q
m := {ηv,qi,α := δvD

q−α
ei Dαei+1

: i = 1, . . . , Nv, α = 0, . . . , q − 1}, q ≥ 1.

Note that N�
m or N e

m might be empty for some combinations of r, k, e.g., N�
m =

N e
m = ∅ if r = 0, k = 2, or N�

m = ∅ if r = 1, k = 6. This, however, does not cause any
problem for the construction below.

In view of (4.2), the functionals in N v,q
m are not linearly independent on Sk,r(Tm)

if q ≥ 1. Namely, the following conditions hold for all s ∈ Sk,r(Tm), v ∈ Vm, q =
1, . . . , 2r:

ηv,qi,α(s) =

α∑
β=0

(−1)β
(
α
β

)( sin(θi−1+θi)
|ei|

)α−β(
sin θi
|ei−1|

)β(
sin θi−1

|ei+1|
)−α

ηv,qi−1,q−β(s),

α = 1, . . . ,min{r, q}, i = 1, . . . , Nv,

(4.5)

where θi := ∠eiei+1, η
v,q
i,q := ηv,qi+1,0.

The following key lemma is instrumental in constructing the basis functions.
Lemma 4.3. There is a unique spline s ∈ Sk,r(Tm) such that



η�ξ (s) = a�ξ , ξ ∈ Ξ�, � ∈ Tm,
ηeq,ξ(s) = a

e
q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ∈ Em,

ηv,0(s) = av,0, v ∈ Vm,
ηv,qi,α(s) = a

v,q
i,α, i = 1, . . . , Nv, α = 0, . . . , q − 1, q = 1, . . . , 2r, v ∈ Vm,

(4.6)

for any given a�ξ , a
e
q,ξ, a

v,0 ∈ R and any av,qi,α ∈ R satisfying

av,qi,α =

α∑
β=0

(−1)β
(
α
β

)( sin(θi−1+θi)
|ei|

)α−β(
sin θi
|ei−1|

)β(
sin θi−1

|ei+1|
)−α

av,qi−1,q−β ,

α = 1, . . . ,min{r, q}, i = 1, . . . , Nv.

(4.7)
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Moreover, for each � ∈ Tm,

‖s|�‖L∞(�) ≤ c δ−2r
2 max

η∈Nm(�)
|η(s)|,(4.8)

where c is a constant depending only on k, and

Nm(�) :=

( ⋃
v∈Vm∩�

N v
m

)
∪
( ⋃

e∈Em
e⊂�

N e
m

)
∪ N�

m .

Proof. We first determine s|e for each e = [v1, v2] ∈ Em using the fact that s|e,
as a univariate function on the interval e, is a polynomial se,0 of degree at most
k−1. Therefore, se,0 is uniquely determined by the following k Hermite interpolation
conditions: 


δv1se,0 = av1,0, δv2se,0 = av2,0,

δv1D
γ
e se,0 = av1,γi,0 , δv2D

γ
e se,0 = av2,γj,0 , γ = 1, . . . , 2r,

δξse,0 = ae0,ξ, ξ ∈ Ξe,0,

(4.9)

where we assume that e is the ith edge emanating from v1 and the jth edge emanating
from v2.

We next determine se,q := (Dqµ(e,�e)
s)|e, q = 1, . . . , r. Let �e = [v1, v2, v3]. Then

Dqµ(e,�e)
= (D[v1,v3] − 1

2D[v1,v2])
q. Therefore, for γ = 0, . . . , 2r − q,

δv1D
γ
e se,q =

q∑
�=0

(−1)�2−�δv1D
γ+�
ei Dq−�ei+1

s =

q∑
�=0

(−1)�2−�ηv1,q+γi,q−� (s).

Similarly, since Dqµ(e,�e)
= (D[v2,v3] − 1

2D[v2,v1])
q, we have for γ = 0, . . . , 2r − q,

δv2D
γ
e se,q =

q∑
�=0

(−1)�2−�δv2D
γ+�
ej Dq−�ej−1

s

=

q−1∑
�=0

(−1)�2−�ηv2,q+γj−1,γ+�(s) + (−1)q2−qηv2,q+γj,0 (s).

In addition, we have for each ξ ∈ Ξe,q,

δξse,q = δξD
q
µ(e,�e)

s = ηeq,ξ(s).

Thus, for each q = 1, . . . , r, the univariate polynomial se,q of degree k − 1 − q is
uniquely determined by the k − q Hermite interpolation conditions



δv1D
γ
e se,q =

q∑
�=0

(−1)�2−�av1,q+γi,q−� , γ = 0, . . . , 2r − q,

δv2D
γ
e se,q =

q−1∑
�=0

(−1)�2−�av2,q+γj−1,γ+� + (−1)q2−qav2,q+γj,0 , γ = 0, . . . , 2r − q,
δξse,q = a

e
q,ξ, ξ ∈ Ξe,q.

(4.10)
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Let �̃ = [v1, v2, ṽ3] ∈ Tm be the second triangle attached to e. We set

ãe0,ξ := a
e
0,ξ, ξ ∈ Ξe,0,

ãeq,ξ :=

q∑
�=0

(−1)�
(
q

$

)
(2σ|�∗|)q−�|�̃|�|�e|−q δξDq−�e se,�,

ξ ∈ Ξe,q, q = 1, . . . , r,

where �∗ := [v̄, v3, ṽ3], v̄ = (v1 + v2)/2, and σ := sgn sin(v̂3v̄v2 + ̂̃v3v̄v2), where
ûvw denotes the angle determined by u, v, w with vertex at v. (It may happen that
|�∗| = 0.) Since �∗ ⊂ conv (�e ∪ �̃), we have

|�∗|q−�|�̃|�|�e|−q ≤ δ−q+�2 |�̃|q|�e|−q ≤ δ−2q+�
2 .(4.11)

We now construct each polynomial patch s|�, � ∈ Tm, of the spline s as the unique
solution of the following interpolation problem:



δξ(s|�) = a�ξ , ξ ∈ Ξ�,

δξD
q
µ(e,�)(s|�) = aeq,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ⊂ � if �e = �,

δξD
q
µ(e,�)(s|�) = ãeq,ξ, ξ ∈ Ξe,q, q = 0, . . . , r, e ⊂ � if �e �= �,

δv(s|�) = av,0, v ∈ �,
δvD

q−α
ei Dαei+1

(s|�) = av,qi,α, α = 0, . . . , q, q = 1, . . . , 2r, v ∈ �,
(i is such that ei, ei+1 ⊂ �).

(4.12)

Since (4.12) is a standard finite element interpolation scheme for bivariate polynomials
of degree k − 1 (see, e.g., [57] or Lemma 3.7 in [25]), the polynomial s|� is uniquely
determined.

We now show that the piecewise polynomial s constructed in this way lies in
the space Sk,r(Tm); i.e., it is r times differentiable. To this end we consider any edge
e = [v1, v2] ∈ Em. As before, let �e = [v1, v2, v3], and let �̃ = [v2, v1, ṽ3] be the second
triangle attached to e, and we again assume that e is the ith edge e1,i emanating from
v1 and at the same time the jth edge e2,j emanating from v2. Then we have

e1,i−1 = [v1, ṽ3], e1,i = [v1, v2], e1,i+1 = [v1, v3],

e2,j−1 = [v2, v3], e2,j = [v2, v1], e2,j+1 = [v2, ṽ3].

Obviously, for each q = 0, . . . , r, Dqµ(e,�e)
(s|�e)|e = se,q satisfies the interpolation

conditions (4.9) if q = 0 or (4.10) if q > 0. We set

ŝe,q := D
q

µ(e,�̃)
(s|�e)|e.

The desired differentiability of s will follow if we show that

ŝe,q = s̃e,q := D
q

µ(e,�̃)
(s|�̃)|e, q = 0, . . . , r.(4.13)

By (4.12) we have

δv1(s|�e) = δv1(s|�̃) = av1,0,

δv1D
q−α
e1,i D

α
e1,i+1

(s|�e
) = av1,qi,α , α = 0, . . . , q − 1, q = 1, . . . , 2r,

δv1D
q−α
e1,i−1

Dαe1,i(s|�̃) = av1,qi−1,α, α = 0, . . . , q − 1, q = 1, . . . , 2r,
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which in view of (4.7) imply

δv1D
q−α
e1,i D

α
e1,i+1

(s|�e) = δv1D
q−α
e1,i D

α
e1,i+1

(s|�̃),

α = 0, . . . ,min{r, q}, q = 0, . . . , 2r,

and hence

δv1D
γ
e (ŝe,q − s̃e,q) = 0, γ = 0, . . . , 2r − q, q = 0, . . . , r.

Similarly, we get

δv2D
γ
e (ŝe,q − s̃e,q) = 0, γ = 0, . . . , 2r − q, q = 0, . . . , r.

In addition, a simple calculation relying on (4.3) shows that

δξ ŝe,q = ã
e
q,ξ, ξ ∈ Ξe,q, q = 0, . . . , r,

so that by (4.12),

δξ(ŝe,q − s̃e,q) = 0, ξ ∈ Ξe,q, q = 0, . . . , r.

Since ŝe,q−s̃e,q satisfies homogeneous interpolation conditions of a well-posed Hermite
scheme, (4.13) follows.

The uniqueness of s is clear from the above proof, since s = 0 if the numbers in
the right-hand side of (4.6) are all zeros.

It remains to prove (4.8). Since se,q satisfies the interpolation conditions (4.9) if
q = 0 or (4.10) if q > 0,

‖se,q‖L∞(e) ≤ cmax{η(s) : η ∈ N v1
m ∪ N v2

m ∪ N e
m}, q = 0, . . . , r,

where c depends only on k. In view of (4.11) and Markov inequality (4.1), we have

|ãeq,ξ| ≤ c δ−2q
2 ‖se,q‖L∞(e), q = 0, . . . , r,

and (4.8) follows by the properties of the interpolation problem (4.12); see Lemma 3.9
in [25].

For each v ∈ Vm and q = 1, . . . , 2r, we denote by Rv,qm the (min{r, q}Nv × qNv)-
matrix of differentiability conditions (4.5). Let the vectors

av,q,j , j = 1, . . . , ρv,q := qNv − rank(Rv,qm ),

form an orthonormal basis for the null space of Rv,qm ,

null(Rv,qm ) := {a ∈ R
qNv : Rv,qm a = 0}.

For convenience, we shall use the double indices introduced in the definition of N v,q
m

also for the components of av,q,j :

av,q,ji,α , i = 1, . . . , Nv, α = 0, . . . , q − 1.(4.14)
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We set

ηv,q,j :=

Nv∑
i=1

q−1∑
α=0

av,q,ji,α ηv,qi,α , j = 1, . . . , ρv,q,(4.15)

Ñ v,q
m := {ηv,q,j : j = 1, . . . , ρv,q}, q = 1, . . . , 2r,

Ñ v
m := N v,0

m ∪
2r⋃
q=1

Ñ v,q
m , v ∈ Vm,

Ñm :=

( ⋃
v∈Vm

Ñ v
m

)
∪
( ⋃
e∈Em

N e
m

)
∪
( ⋃

�∈Tm
N�
m

)
,

and define the set

Φm = {ϕη : η ∈ Ñm}

of the basis functions for Sk,r(Tm) by the duality condition,

µ(ϕη) =

{
1 if µ = η,

0 if µ ∈ Ñm \ {η}.(4.16)

To see that the above definition is correct we have to check that for each η ∈ Ñm
there exists a unique ϕη satisfying (4.16). This follows by Lemma 4.3. Indeed, since
the vectors av,q,j are orthonormal, we have

ηv,qi,α =

ρv,q∑
j=1

av,q,ji,α ηv,q,j , i = 1, . . . , Nv, α = 0, . . . , q − 1.

Therefore, for a fixed η, the numbers

av,qi,α := ηv,qi,α(ϕη), i = 1, . . . , Nv, α = 0, . . . , q − 1,

satisfy (4.7), which ensures the applicability of Lemma 4.3.

4.4. Properties of basis splines. It follows by Lemma 4.3 that every spline
s ∈ Sk,r(Tm) is uniquely determined by the sequence (η(s))η∈Ñm ; i.e., s has a unique
representation

s =
∑
η∈Ñm

aηϕη, aη = η(s) ∈ R.

Furthermore, (4.8) immediately implies

suppϕη ⊆



star(v) if η ∈ Ñ v

m for a vertex v ∈ Vm,
star(e) if η ∈ N e

m for an edge e ∈ Em,
� if η ∈ N�

m for a triangle � ∈ Tm,
(4.17)

‖ϕη‖L∞(R2) ≤ c δ−2r
2 .(4.18)



NONLINEAR SPLINE APPROXIMATION 743

By using Markov inequality it is easy to show that

|η(s)| ≤ c̃




‖s‖L∞(star (v)) if η ∈ Ñ v
m for a vertex v ∈ Vm,

‖s‖L∞(star (e)) if η ∈ N e
m for an edge e ∈ Em,

‖s‖L∞(�) if η ∈ N�
m for a triangle � ∈ Tm,

(4.19)

with c̃ a constant depending only on k, r and N0.
Thus, we showed that the basis Φm = {ϕη : η ∈ Ñm} satisfies all requirements

of section 2.2 with Sm = Sk,r(Tm) and k̃ = k. (Obviously, Πk ⊂ Sm and Sk,r(Tm) ⊂
Sk,r(Tm+1) if Tm+1 is a refinement of Tm.) More precisely, we have the following
result.

Theorem 4.4. Let r ≥ 0, k > 4r+1. Suppose that Tm satisfies (a), (d)–(f), and
(2.3) of section 2.1. Then the basis functions ϕη ∈ Sk,r(Tm) (η ∈ Ñm) constructed
above have the following properties:

(a) For any s ∈ Sk,r(Tm) there exists a unique sequence of real coefficients
(aη)η∈Ñm such that

s =
∑
η∈Ñm

aηϕη,

with aη = η(s), η ∈ Ñm.

(b) For each η ∈ Ñm there is a vertex v = vη ∈ Vm such that

suppϕη ⊂ star (v) =: Eη,

‖ϕη‖L∞(R2) = ‖ϕη‖L∞(Eη) ≤M1,

|η(s)| ≤M2‖s‖L∞(Eη), s ∈ Sk,r(Tm),
where M1,M2 are positive constants depending only on k, r, δ2, and N0.

In particular, by the proof of Lemma 2.3, we have the following stability property
of Φm.

Theorem 4.5. The basis Φm is Lp-stable for all 0 < p ≤ ∞; i.e., for any sequence
(aη)η∈Ñm ,

∥∥∥ ∑
η∈Ñm

aηϕη

∥∥∥
Lp(R2)

≈
( ∑
η∈Ñm

‖aηϕη‖pLp(R2)

)1/p

,

where the constants of equivalence depend only on p, k, r, δ2, and N0. In the case
p = ∞ the $p-norm in the right-hand side is replaced by the sup-norm.

The linear functionals λη : Sk,−1(Tm) ∩ L∞(Eη) → R, η ∈ Ñm, with properties

λη(s|Eη ) = η(s), s ∈ Sk,r(Tm),

|λη(f)| ≤M2‖f‖L∞(Eη), f ∈ Sk,−1(Tm)|Eη ∩ L∞(Eη),

needed in the definition of the projector Qm (see (2.18)) can now be defined in a
constructive manner. Indeed, we first extend each functional η ∈ Nm to a functional
η̃ defined on Sk,−1(Tm), according to Remark 4.1, and then set

λη := η̃ if η ∈
( ⋃
e∈Em

N e
m

)
∪
( ⋃

�∈Tm
N�
m

)
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and

λη :=

Nv∑
i=1

q−1∑
α=0

av,q,ji,α η̃v,qi,α if ηv,q,j =

Nv∑
i=1

q−1∑
α=0

av,q,ji,α ηv,qi,α ∈
⋃
v∈Vm

Ñ v
m.

By (2.22), Qm can be extended to the operator Qm,p : Llocp → Sk,r(Tm) whose
local approximation power is described in the following theorem (see Lemma 2.5).

Theorem 4.6. Suppose f ∈ Llocp , 0 < p ≤ ∞ (f ∈ C if p = ∞). Then

‖f −Qm,p(f)‖Lp(�) ≤ cS�(f)p ≤ cEk(f,Ω�)p, � ∈ Tm,
where Ω� := Ω1

� is the union of all triangles in Tm that have a common vertex with
�, and the constant c depends only on p, k, r, δ2, and N0.

To show that the assumption that the triangulations Tm satisfy (2.3) cannot be
omitted, we consider the following example.

Example 4.7. Suppose Tm has an edge e = [v, u] with two triangles � = �e =
[v, u, w] and �̃ = [v, u, w̃] attached to e such that u = v + (2−Mα, 0), w = v +
(−α, α), w̃ = v+(−α,−α), where the positive numbersM,α depend onm. Evidently,
|conv (�e∪�̃)|/|�e| = 2(2M +1), and (2.3) will be violated ifM grows unboundedly
with m, while the maximal angle of the two triangles is 3π/4, thus allowing the
maximal angle condition (2.5) to hold. Note that such configurations of triangles
are possible for a sequence of levels of an LR-triangulation T with the corresponding
M ’s tending to infinity; see section 2.1 of [38]. Choosing k = 6 and r = 1, we
consider the basis functions ϕη ∈ S6,1(Tm), η ∈ Ñm, constructed according to the

above algorithm. We next show that the basis Φm = {ϕη : η ∈ Ñm} is instable;
i.e., Theorem 4.5 does not hold for it. (Therefore, neither Φm nor a renorming of it
satisfies the requirements of section 2.2.) More precisely, we show that the constant
function 11R2(x) ≡ 1, x ∈ R

2, does not have an L∞-stable expansion with respect to
Φm. We have

‖11R2‖L∞(R2) = 1, 11R2 =
∑
η∈Ñm

η(11R2)ϕη.

Now choose η = ηv,0 = δv ∈ N v,0
m . Since η(11R2) = 1, the instability of Φm will follow

if we show that ‖ϕη‖L∞(R2) is unbounded as M → ∞. By (4.12),

δξD
1
µ(e,�̃)

(ϕη|�̃) = ãe1,ξ

= −2 |�∗|
|�e| δξD

1
ese,0 − |�̃|

|�e|δξse,1,

where ξ = (v + u)/2, �∗ = [ξ, w, w̃], se,0 = ϕη|e, se,1 = (D1
µ(e,�e)

ϕη)|e. Obviously,

|�̃|/|�e| = 1, and

|�∗|/|�e| =
(
|conv (�e ∪ �̃)| − |�e|+|�̃|

2

)
/|�e| = 2M+1 + 1.

The univariate polynomial se,0 of degree 5 is determined by the Hermite interpolation
conditions (4.9) that take in our case the form

δvse,0 = 1, δuse,0 = δuD
1
ese,0 = δuD

2
ese,0 = δvD

1
ese,0 = δvD

2
ese,0 = 0.

An elementary computation shows that δξD
1
ese,0 = −15/8. By (4.10), we immediately

get δξse,1 = ae1,ξ = η
e
1,ξ(ϕη) = 0. Thus,

δξD
1
µ(e,�̃)

(ϕη|�̃) =
15

4
(2M+1 + 1) → ∞ as M → ∞.
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In view of Markov inequality, ‖ϕη‖L∞(R2) ≥ c|δξD1
µ(e,�̃)

(ϕη|�̃)|, and we get the de-

sired unboundedness of ‖ϕη‖L∞(R2) for sufficiently large M .
Remark 4.8. It is clear that Theorems 4.4–4.6 are valid for any sequence of levels

Tm satisfying the hypotheses of Theorem 4.4; i.e., nestedness and other additional
assumptions on {Tm} stated in section 2.1 are not needed for these results.

Remark 4.9. It is an important property of the basis functions ϕη constructed
above that they are invariant under affine transforms. More precisely, let Tm satisfy
the hypotheses of Theorem 4.4, and let A : R

2 → R
2 be an affine transform. We

set A(Tm) = {A(�) : � ∈ Tm}, and Aη(s) := δA(v)D
α
A(e1)

DβA(e2)s, for each nodal

functional η of the form η(s) = δvD
α
e1D

β
e2s and extend the operator A linearly to

the linear combinations of the nodal functionals such as those occurring in (4.15).
Then, clearly, the sets of nodal functionals Nm and NA

m defined by (4.4) for Tm and
A(Tm), respectively, satisfy NA

m = {Aη : η ∈ Nm}. (We used here, in particular,
the fact that µ(A(e), A(�e)) = A(µ(e,�e)).) Moreover, since the matrices Rv,qm
of the differentiability conditions (4.5) are affine invariant (see (4.3)), we also have
ÑA
m = {Aη : η ∈ Ñm} for the appropriate sets Ñm, ÑA

m defined as in the construction
above, provided we choose the same orthonormal vectors (4.14) in both cases. Let now
Φm = {ϕη : η ∈ Ñm} ⊂ Sk,r(Tm) and ΦAm = {ϕAη : η ∈ Ñm} ⊂ Sk,r(A(Tm)) be

the spline bases dual to Ñm and ÑA
m , respectively. Since ϕη(A·), η ∈ Ñm, obviously

satisfy the same duality relations, we conclude that ϕAη = ϕη(A·), η ∈ Ñm, which is
the desired affine invariance.

Remark 4.10. Our construction is extendable to the spaces Sk,r(Tm), k > r2d+1,
in dimensions d > 2. To this end the algorithm given in [22] should be extended to
SLR-triangulations in R

d. In particular, the orthogonal directions of derivatives used
in [22] should be replaced by appropriate affine invariant directions.

Remark 4.11. If the triangulation covers only a compact domain E, then usual
modifications of basis functions corresponding to boundary edges or vertices (see
[22, 23]) lead to the desired stable local bases.

Remark 4.12. In this section, we extended to the setting of SLR-triangulations
the bivariate version of nodal stable local basis construction of [22, 23], which was
originally designed for regular triangulations. The scheme from [27] can be used as
an alternative means of constructing stable local bases for Sk,r(Tm), k > 3r + 2, in
dimension d = 2. Such a development would take advantage of the affine invariance
of the Bernstein–Bézier representation of piecewise polynomials. We elected to utilize
the scheme from [22] instead, since it is available for any number of variables and allows
an effective numerical implementation as shown (for r = 1, 2, d = 2) in [23]. Also, we
want to pay heed to two more spline basis constructions (for regular triangulations
in dimension d = 2) that allow the same kind of extension to SLR-triangulations:
(a) stable local bases for Sk,1(Tm), k > 5, constructed in [26]; (b) locally stable
bases on nested triangulations (k > 4r + 1) [24]. Note that the stable local bases for
superspline subspaces of Sk,r(Tm) [16, 17, 44, 57] cannot be used since these spaces are
not nested for nested triangulations, while the earlier local spline bases for Sk,r(Tm)
[1, 8, 18, 35, 36, 48] are known to be unstable for certain triangulations.

Remark 4.13. It is easy to see that, in the case r = 0, the above basis reduces to
the classical Lagrange finite element basis for Sk,0(Tm), k > 1. Since δ2 disappears
from (4.8) when r = 0, Theorems 4.4–4.6 hold for locally regular triangulations;
i.e., the SLR assumption (2.3) is not needed in this case. (Note that δ2 and N0

completely disappear from Theorem 4.4, and δ2 is replaced by δ1 in Theorems 4.5–
4.6.) For r = 0, k = 2, we get the Courant elements, and the only essential difference
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to the construction from [38] is that we rely here on the extensions of linear functionals
described in Remark 4.1 rather than on the explicit quasi interpolant for continuous
piecewise linear functions adopted in [38]. Both approaches obviously lead to the
same B-spaces.

5. Spline bases on special triangulations. There are several constructions
of differentiable spline bases fitting into our scheme that are only available for specific
multilevel triangulations. Since these triangulations have a special structure or even
are uniform, the corresponding libraries {ΦT } of bases are not as rich as the one
of the previous section associated with arbitrary SLR-triangulations. Moreover, the
necessity to maintain the structure of the triangulation highly reduces the variety of
refinement methods that can be used (whereas, e.g., local refinement by bisection can
be used with bases on arbitrary triangulations). On the other hand, bases on special
triangulations usually allow a smaller degree of piecewise polynomials for a given order
of differentiability as well as a simpler and more efficient practical implementation.

In this section, we review some known constructions of this type. (Note that only
box splines are available for more than two variables.)

5.1. Box splines. As usual, we consider only splines of two variables. Let
Ξ = [ξ1 · · · ξn] be a full rank 2 × n matrix with columns ξi in Z

2 \ 0. The box spline
MΞ : R

2 → R
2 associated with Ξ is defined by its Fourier transform

M̂Ξ(u) =

n∏
ν=1

1− e−iξνu
iξνu

, u ∈ R
2,

where ξνu denotes the inner product of the two vectors.
We now review the basic properties of box splines (see [9]), in order to verify the

requirements of section 2.2. It is well known that MΞ has a compact support,

suppMΞ =

{
n∑
ν=1

tνξν : 0 ≤ tν ≤ 1

}
.(5.1)

The box spline basis functions at the mth level are defined by

ϕm,j =MΞ(2
m · −j), j ∈ Z

2.

We set

Φm = {ϕm,j : j ∈ Z
2}, m ∈ Z,

and

Sm =

{∑
j∈Z2

am,jϕm,j : am,j ∈ R

}
, m ∈ Z,

where the series converges everywhere since for every x ∈ R
2 and m ∈ Z only a

finite number of ϕm,j(x) (j ∈ Z
2) are nonzero. Clearly, any affine change of variables

Q : R
2 → R

2 gives rise to basis functions ϕm,j(Qx) that satisfy the conditions of
section 2.2 if and only if the ϕm,j do. Therefore, we do not distinguish between
constructions that can be transformed into each other by such a method.
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Since

M̂Ξ(2u)

M̂Ξ(u)
=

n∏
ν=1

1 + e−iξνu

2
,

MΞ is a finite linear combination of MΞ(2 · −j), j ∈ Z
2, which implies that

Sm ⊂ Sm+1, m ∈ Z.

Let

r(Ξ) := max{r : any 2× (n− r) submatrix of Ξ has rank 2} − 1

and

k(Ξ) := n− 1.

The elements of Sm are r(Ξ) times differentiable piecewise polynomials of degree
k(Ξ)−1 with respect to the rectilinear partition T Ξ

m of R
2 determined by the straight

lines

Hν + 2−mj, j ∈ Z
2, ν = 1, . . . , n,

where

Hν := {tξν : t ∈ R}.

Thus,

Sm ⊂ Sk(Ξ),r(Ξ)(T Ξ
m ).

Moreover,

Πk̃(Ξ) ⊂ Sm, m ∈ Z,

and Πk̃(Ξ)+1 �⊂ Sm, where

k̃(Ξ) = r(Ξ) + 2.

It is well known that the translates of a box spline are not always linearly in-
dependent. In fact, Φm is a basis for Sm (m ∈ Z) if and only if the matrix Ξ is
unimodular ; i.e., each nonsingular 2 × 2 submatrix of Ξ has determinant ±1. This
condition implies substantial restrictions on Ξ. Namely, up to an affine change of
variables, Ξ must have the form

Ξ = [e1 · · · e1︸ ︷︷ ︸
n1

e2 · · · e2︸ ︷︷ ︸
n2

e3 · · · e3︸ ︷︷ ︸
n3

],

where e1 = [ 10 ], e2 = [ 01 ], e3 = [ 11 ], n1, n2 ≥ 1, n3 ≥ 0, and n1 + n2 + n3 = n. It is
easy to see that

r(Ξ) = n−max{n1, n2, n3} − 2
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and that T Ξ
m is either a tensor product mesh if n3 = 0 or a three-directional mesh T (1)

m

defined by the straight lines x1 = 2−mj, x2 = 2−mj, x1−x2 = 2−mj (j ∈ Z
2) in R

2 if
n3 ≥ 1. Since only the latter case leads to a multilevel triangulation, we assume that
n3 ≥ 1.

It remains to verify (2.10)–(2.12). By (5.1), the support of MΞ is the hexagon
with vertices (0, 0), (n1, 0), (0, n2), (n1+n3, n3), (n3, n2+n3), (n1+n3, n2+n3), which
implies (2.10) with $ ≤  n/2!. Obviously, (2.11) is valid withM1 = ‖MΞ‖L∞ . Finally,
it is easy to show (2.12) by using the constructions of dual functionals λj : S0 → R

(j ∈ Z
2), with λj(ϕ0,k) = δj,k, given, e.g., in [19, 37, 41].

Let us mention the following two cases that are perhaps most relevant in appli-
cations:

(a) n1 = n2 = 2, n3 = 1, Sm ⊂ S4,1(T (1)
m ), k̃ = 3,

(b) n1 = n2 = n3 = 2, Sm ⊂ S5,2(T (1)
m ), k̃ = 4.

5.2. Other spline bases on uniform triangulations. There are some other

spline basis constructions for the three-directional mesh T (1)
m ; see, e.g., [15, 56]. How-

ever, to our knowledge, none of them simultaneously satisfies the requirements of
nestedness of the spaces, stability, and locality of the basis functions. The situa-

tion is better for the four-directional mesh T (2)
m obtained from T (1)

m by adding the

straight lines x1 + x2 = 2−mj (j ∈ Z
2). Since T (2)

m is a special case of a so-called

FVS-triangulation (see section 5.3), finite element bases for S4,1(T (2)
m ) are available

and satisfy the conditions of section 2.2. Some recent alternative constructions of

stable local bases for S4,1(T (2)
m ) can be found in [13, 28, 42, 49]. Moreover, a stable

local basis for S7,2(T (2)
m ) is also constructed in [28]. Finally, we want to mention the

stable local basis from [33] for C1 quadratic splines with respect to a sequence of
triangulation levels that can be called the six-directional meshes.

5.3. Refinable composite finite elements. Multilevel and hierarchical bases
play an important role in the modern theory and practice of numerical methods for
PDEs; see, e.g., [51]. Classical smooth finite elements [14] give rise to stable local
spline bases on triangulations satisfying the minimal angle condition. (Note that it
should be possible to replace this condition of regularity with SLR.) However, there
are difficulties in using them to build nested spline spaces on multilevel triangulations;
see [11, 20]. Although the “polynomial” finite elements (e.g., the Argyris element)
are available for arbitrary triangulations, they lead to superspline spaces [57] that lack
nestedness for nested triangulations (levels in the terminology of our section 2). In
contrast to them, “composite” finite elements require a special structure of the levels
Tm, e.g., a Clough–Tocher or Powell–Sabin split, which is not always compatible with
nested refinements with other desirable properties like boundedness of the valence of
the vertices. In fact, we are aware of only two cases when composite finite elements are
refinable, i.e., provide stable local bases for certain multilevel triangulations. First,
this is true for the triangulations obtained by the Powell–Sabin 12-split ; see [50] for the
relevant construction of stable local bases for C1 quadratics and cubics. The other case
is that of FVS-triangulations obtained from arbitrary strictly convex quadrangulations
by adding two diagonals of each quadrilateral; see, e.g., [20, 43]. Here, a well-known
composite finite element due to Fraeijs de Veubeke and Sander gives rise to a stable
local basis for C1 cubics, while for higher orders of differentiability only nonnested
superspline-type constructions are known [40, 45, 46].
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Appendix A.
Proof of Theorem 2.9. Denote briefly N := (

∑
θ∈Θ ‖cθϕθ‖τp)1/τ .

Case 1. 0 < p ≤ 1. Since τ < p ≤ 1, we have

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
≤
(∑
θ∈Θ

‖cθϕθ‖pp
)1/p

≤
(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

.

Case 2. p = ∞. Since τ = 1/α ≤ 1, then (2.42) is obvious.
Case 3. 1 < p <∞. We need the following lemma.
Lemma A.1. Let g :=

∑
θ∈M |cθϕθ|, where #M < ∞ and ‖cθϕθ‖p ≤ L for

θ ∈ M. Then

‖g‖p ≤ cL(#M)1/p,

with c independent of M and (cθ)θ∈M.
Proof. Using the properties of Φ, we have (recall that suppϕθ ⊂ Eθ := star �(vθ)

and ‖ϕθ‖∞ ≈ |Eθ|−1/p‖ϕθ‖p by (2.14))

‖g‖p ≤
∥∥∥ ∑
θ∈M

‖cθϕθ‖∞ · 11Eθ (·)
∥∥∥
p
≤ cL

∥∥∥ ∑
θ∈M

|Eθ|−1/p · 11Eθ (·)
∥∥∥
p
.

We define E :=
⋃
θ∈MEθ and E(x) := min{|Eθ| : θ ∈ M and Eθ " x} for x ∈ E. By

the properties of the LR-triangulations, it follows that

∑
θ∈M

|Eθ|−1/p · 11Eθ (x) ≤ cE(x)−1/p11E(x), x ∈ R
2.

On the other hand,

E(x)−1 = max
θ∈M, Eθ�x

|Eθ|−1 ≤
∑
θ∈M

|Eθ|−111Eθ (x).

Therefore,

‖g‖p ≤ cL‖E(·)−1/p‖Lp = cL

(∫
E

E(x)−1 dx

)1/p

≤ cL

( ∑
θ∈M

|Eθ|−1

∫
R2

11Eθ (x) dx

)1/p

= cL(#M)1/p.

We define

Fµ := {θ : 2−µN ≤ ‖cθϕθ‖p < 2−µ+1N},

where N := (
∑
θ∈Θ ‖cθϕθ‖τp)1/τ . Then

⋃
ν≤µ

Fν = {θ : ‖cθϕθ‖p ≥ 2−µN},
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and hence

#Fµ ≤
∑
ν≤µ

#Fν = #

( ⋃
ν≤µ

Fν
)

≤ 2µτ .(A.1)

We set Fµ :=
∑
θ∈Fµ |cθϕθ|. Using Lemma A.1 and (A.1), we obtain

∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥
p
≤
∥∥∥ ∞∑
µ=0

Fµ(·)
∥∥∥
p
≤

∞∑
µ=0

‖Fµ‖p ≤ c

∞∑
µ=0

2−µN(#Fµ)1/p

≤ cN

∞∑
µ=0

2−µ(1−τ/p) ≤ cN

∞∑
µ=0

2−µτα ≤ cN.

This completes the proof of Theorem 2.9.
Proof of Theorem 3.1 (the case 0 < p < ∞). Suppose f ∈ Bατ (Φ), where α > 0,

1/τ = α + 1/p, 0 < p < ∞. By (2.40), f can be represented in the form f =∑
θ∈Θ bθϕθ with the series converging absolutely a.e. in R

2 and in Lp. We denote

briefly N(f) := NΦ,Q,τ (f) := (
∑
θ∈Θ ‖bθϕθ‖τp)1/τ ≈ ‖f‖Bατ (Φ).

Suppose that (bθjϕθj )
∞
j=1 is a rearrangement of the sequence (bθϕθ)θ∈Θ such that

‖bθ1ϕθ1‖p ≥ ‖bθ2ϕθ2‖p ≥ · · ·. Set sn :=
∑n
j=1 bθjϕθj , sn ∈ Σn(Φ).

Case 1. 0 < p ≤ 1. To estimate ‖f − sn‖p we shall use the following simple
inequality [38]: If x1 ≥ x2 ≥ · · · ≥ 0 and 0 < τ < p, then

( ∞∑
j=n+1

xpj

)1/p

≤ n1/p−1/τ

( ∞∑
j=1

xτj

)1/τ

.(A.2)

We use Theorem 2.9 and apply (A.2) with xj := ‖bθjϕθj‖p to obtain

‖f − sn‖p ≤
∥∥∥ ∞∑
j=n+1

|bθjϕθj |
∥∥∥
p
≤
( ∞∑
j=n+1

‖bθjϕθj‖pp
)1/p

≤ n1/p−1/τ

( ∞∑
j=1

‖bθjϕθj‖τp
)1/τ

= n−αN(f),

which proves Theorem 3.1 in Case 1.
Case 2. 1 < p < ∞. We proceed quite similarly as in the proof of Theorem 2.9.

We set Fµ := {θ : 2−µN(f) ≤ ‖bθϕθ‖p < 2−µ+1N(f)} and Fµ :=
∑
θ∈Fµ |bθϕθ|.

Fix m ≥ 1 and set M := $2mτ%. As in the proof of Theorem 2.9 (see (A.1)),
#Fm ≤∑ν≤m#Fν ≤ 2mτ ≤M. Using Lemma A.1, we obtain

‖f − sM‖p ≤
∥∥∥ ∞∑
µ=m+1

Fµ

∥∥∥
p
≤

∞∑
µ=m+1

‖Fµ‖p

≤ c

∞∑
µ=m+1

2−µN(f)(#Fµ)1/p ≤ cN(f)

∞∑
µ=m+1

2−µ(1−τ/p)

≤ cN(f)2−m(1−τ/p) ≤ cM−1/τ+1/pN(f) = cM−αN(f).

This estimate readily implies (3.1).
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Proof of Theorem 3.2. Step 1. With this step we lay some groundwork that
is needed for the proof of the Bernstein inequality. Let T be an arbitrary LR-
triangulation and suppose Λ is a finite subset of T . The set Λ generates a certain tree
structure that we want to bring up in what follows.

We say that � ∈ T is a branching triangle if at least two children of �
have descendants in Λ. Let Λ̃ denote the extension of Λ obtained by adding all
branching triangles and all children of branching triangles if they are not already
in Λ. By considering the tree of the ancestors of all triangles in Λ, it is not diffi-
cult to see that the total number of branching triangles does not exceed #Λ − 1.
Since the number of children of a triangle is bounded by M0, we conclude that
#Λ̃ ≤ c#Λ.

Furthermore, for a later use in Step 3, we call � ∈ T \ Λ̃ a chain triangle if
at least one of its descendants belongs to Λ. The set of all chain triangles will be
denoted by Γ. By construction, for each � ∈ Γ there is a unique largest triangle
�̃ ∈ Λ̃ contained in �. We set K� := � \ �̃ and µ� := m − m̃, where � ∈ Tm
and �̃ ∈ Tm̃. We denote by Γ̃ the set of all � ∈ Γ for which there is a �′ ∈ Λ̃
containing �. It is easy to see that Γ̃ is the disjoint union of finite chains, i.e., sets
λ of the form λ = {�1, . . . ,�ν} ⊂ Γ̃ (ν ≥ 1), where �′′

λ ⊃ �1 ⊃ · · · ⊃ �ν ⊃ �′
λ

for some �′
λ,�′′

λ ∈ Λ̃, and �1 is a child of �′′
λ, �j is a child of �j−1, ν = 2, . . . , ν,

and �′
λ is a child of �ν . Similarly, Γ \ Γ̃ is the disjoint union of infinite chains

λ = {. . . ,�−2,�−1} ⊂ Γ, where · · · ⊃ �−2 ⊃ �−1 ⊃ �′
λ for some �′

λ ∈ Λ̃, and
�j is a child of �j−1, ν = −1,−2, . . ., and �′

λ is a child of �−1. We let L and L∞

denote the sets of all finite, respectively, infinite chains in Γ. Clearly, #L ≤ #Λ̃ and
#L∞ ≤ #Λ̃.

Step 2. For the proof of the theorem in the case 0 < p <∞, we need the following
lemma.

Lemma A.2. Suppose s =
∑

�∈Λ 11� · P�, where P� ∈ Πk (k ≥ 1), Λ ⊂ T with
T an LR-triangulation, and #Λ <∞. Then

( ∑
�∈Λ

|�|−ατ‖s‖τLτ (�)

)1/τ

≤ c(#Λ)α‖s‖p,

with c independent of s and Λ.
Proof. We adopt all necessary notation from Step 1 above with Λ from the

hypotheses of the lemma. Since #Λ̃ ≤ c#Λ and s =
∑

�∈Λ̃ 11� · P�, where P� = 0

for � ∈ Λ̃\Λ, we may assume without loss of generality that Λ̃ = Λ; i.e., the branching
triangles and their children are contained in Λ.

Let �1, . . . ,�m be all nonbranching triangles in Λ. It is not difficult to see that
for each of them there are only two possibilities: either �i does not contain any other
� ∈ Λ (in which case we call �i a final triangle) or there is a unique largest triangle
�̃i ∈ Λ strictly contained in �i. We define the rings Ki := �i \ �̃i, i = 1, . . . ,m,
where �̃i := ∅ for a final triangle �i. Obviously, Ki have pairwise disjoint interiors,
and s|Ki = Pi|Ki , for some Pi ∈ Πk, i = 1, . . . ,m. Since all children of branching
triangles are in Λ, we have for each � ∈ Λ,

� =

m⋃
i=1

�i⊂�

Ki and s|� =

m∑
i=1

�i⊂�

11Ki · Pi.
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Therefore,

∑
�∈Λ

|�|−ατ‖s‖τLτ (�) =
∑
�∈Λ

|�|−ατ
m∑
i=1

�i⊂�

‖s‖τLτ (Ki)

=

m∑
i=1

‖s‖τLτ (Ki)
∑

�∈Λ,�⊃�i

|�|−ατ

=

m∑
i=1

‖s‖τLτ (Ki)|�i|−ατ
∑

�∈Λ,�⊃�i

(|�i|/|�|)ατ

≤ c

m∑
i=1

‖s‖τLτ (Ki)|�i|−ατ ,

where we once switched the order of summation and used (2.9). Since |�̃i| ≤ ρ|�i|,
we have by Lemma 2.2,

‖Pi‖Lτ (Ki) ≈ |Ki|1/τ−1/p‖Pi‖Lp(Ki) ≈ |�i|α‖Pi‖Lp(Ki),
which implies ‖s‖τLτ (Ki)|�i|−ατ ≈ ‖s‖τLp(Ki), i = 1, . . . ,m. Now by Hölder’s inequal-
ity,

m∑
i=1

‖s‖τLp(Ki) ≤
(

m∑
i=1

‖s‖pLp(Ki)
)τ/p

m1−τ/p ≤ (#Λ)ατ‖s‖τp ,

and the proof is complete.
Step 3. Let s ∈ Σn(Φ) and suppose that s =:

∑
θ∈M cθϕθ, where M ⊂ Θ(T )

and #M ≤ n. Let Λ be the set of all triangles � ∈ T which are involved in all
Eθ := suppϕθ, θ ∈ M. Then s =

∑
�∈Λ s�, where s� =: 11� · P�, P� ∈ Πk.

Evidently, by (2.7), #Λ ≤ c�(N0, $)#M ≤ cn.
We first extend Λ to Λ̃ as in Step 1 above and introduce some auxiliary sets of

triangles needed for the forthcoming arguments. We set

Λ̃∗
m := {� ∈ Tm : Ω�� ⊃ �′ for some �′ ∈ Λ̃ ∩ Tm},

Λ̃∗∗
m := {� ∈ Tm : Ω2�

� ⊃ �′ for some �′ ∈ Λ̃ ∩ Tm}, m ∈ Z,

and also

Λ̃∗ :=
⋃
m∈Z

Λ̃∗
m, Λ̃∗∗ :=

⋃
m∈Z

Λ̃∗∗
m .

Note that �,�′ ∈ Tm and �′ ⊂ Ω�� imply � ⊂ Ω��′ , and hence

Λ̃∗
m = {� ∈ Tm : � ⊂ Ω��′ for some �′ ∈ Λ̃ ∩ Tm}.

Therefore, by (2.8), #Λ̃∗
m ≤ c��(N0, $)#(Λ̃ ∩ Tm), and it follows that #Λ̃∗ ≤ cn.

Similarly, #Λ̃∗∗ ≤ c��(N0, 2$)(#Λ̃) ≤ cn. It is clear that Λ̃ ⊂ Λ̃∗ ⊂ Λ̃∗∗.
We now proceed to estimate |s|τBατ (T ) :=

∑
�∈T |�|−ατS�(s)ττ . Let

sm :=
∑
µ≤m

∑
θ∈M∩Θµ

cθϕθ, m ∈ Z.
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Then sm ∈ Sm, and hence S�(s)τ = S�(s − sm)τ if � ∈ Tm. For each � ∈ T , we
shall use one of the following two obvious bounds for S�(s)τ :

S�(s)τ ≤ ‖s‖Lτ (Ω��),(A.3)

S�(s)τ ≤ ‖s− sm‖Lτ (Ω��), � ∈ Tm.(A.4)

Namely, (A.3) will be applied to the triangles � in the set Λ̃∗ ⊂ T defined above,
while (A.4) will be used for all remaining triangles in T .

For the next estimates, we shall consider separately the cases 0 < p < ∞ and
p = ∞.

Case 1. 0 < p < ∞. We consider two possibilities for each � ∈ T : � ∈ Λ̃∗ or
� ∈ T \ Λ̃∗.

(a) If � ∈ Λ̃∗
m, then for each �′ ∈ Tm such that �′ ⊂ Ω��, we have �′ ∈ Λ̃∗∗

m

and, in view of (2.2), |�′| ≤ c|�|. Hence, by (A.3),

∑
�∈Λ̃∗

m

|�|−ατS�(s)ττ ≤
∑

�∈Λ̃∗
m

|�|−ατ
∑

�′∈Λ̃∗∗
m ,�′⊂Ω��

‖s‖τLτ (�′)

≤ c
∑

�∈Λ̃∗
m

∑
�′∈Λ̃∗∗

m ,�′⊂Ω��

|�′|−ατ‖s‖τLτ (�′)

= c
∑

�′∈Λ̃∗∗
m

∑
�∈Λ̃∗

m,Ω
�
�⊃�′

|�′|−ατ‖s‖τLτ (�′)

≤ c
∑

�′∈Λ̃∗∗
m

|�′|−ατ‖s‖τLτ (�′),

where we have switched the order of summation and taken into account the fact that
#{� ∈ Λ̃∗

m : Ω�� ⊃ �′} = #{� ∈ Λ̃∗
m : � ⊂ Ω��′} ≤ c��(N0, $), by (2.8). It follows

that ∑
�∈Λ̃∗

|�|−ατS�(s)ττ ≤ c
∑

�∈Λ̃∗∗

|�|−ατ‖s‖τLτ (�)

≤ c(#Λ̃∗∗)ατ‖s‖τp ≤ cnατ‖s‖τp ,(A.5)

where we applied Lemma A.2 to s with Λ replaced by Λ̃∗∗, which is obviously legiti-
mate since Λ̃∗∗ ⊃ Λ.

(b) Now suppose � ∈ Tm \ Λ̃∗
m. Then Ω�� =

⋃n�
j=1 �j for some �j ∈ Tm \ Λ̃,

j = 1, . . . , n�, with n� ≤ c�� ≤ 3N2�−1
0 (see (2.8)). We have, using (A.4),

S�(s)ττ = S�(s− sm)ττ ≤
n�∑
j=1

‖s− sm‖τLτ (�j)
.(A.6)

If �j /∈ Γ, then it has no descendants in Λ, and hence s|�j
= sm|�j

, and

‖s− sm‖Lτ (�j) = 0, �j /∈ Γ.(A.7)

Suppose �j ∈ Γ; i.e., it is a chain triangle. Let �̃j be the unique largest triangle

of Λ̃ contained in �j , and letK�j
= �j\�̃j and µ�j

= m−m̃ be defined as in Step 1.
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It is clear that in this case s|K�j = sm|K�j = 11K�j · P�j
and sm|�j

= 11�j
· P�j

for

some P�j ∈ Πk. Therefore,

‖s− sm‖τLτ (�j)
= ‖s− sm‖τ

Lτ (�̃j)
≤ c‖s‖τ

Lτ (�̃j)
+ c‖P�j

‖τ
Lτ (�̃j)

.

If �j ∈ Γ \ Γ̃, then clearly sm|�j
= 0, and we have

‖s− sm‖Lτ (�j) = ‖s‖Lτ (�̃j)
, �j ∈ Γ \ Γ̃.(A.8)

Assume that �j ∈ Γ̃. By Lemma 2.2,

‖P�j‖τLτ (�̃j)
≤ |�̃j |‖P�j

‖τL∞(�j)
≤ c|�̃j |‖P�j

‖τL∞(K�j )

≤ c|�̃j ||K�j |−τ/p‖P�j‖τLp(K�j )
≤ c|�̃j ||�j |ατ−1‖s‖τLp(K�j )

.

By (2.1), |�̃j | ≤ ρµ�j |�j |, and we arrive at the inequality

‖s− sm‖τLτ (�j)
≤ c‖s‖τ

Lτ (�̃j)
+ cρµ�j |�j |ατ‖s‖τLp(K�j )

, �j ∈ Γ̃.(A.9)

From (A.6)–(A.9) and (2.2), we obtain∑
�∈T \Λ̃∗

|�|−ατS�(s)ττ =
∑
m∈Z

∑
�∈Tm\Λ̃∗

m

|�|−ατS�(s)ττ

≤ c
∑
�∈Γ

|�|−ατ‖s‖τ
Lτ (�̃)

+ c
∑
�∈Γ̃

ρµ�‖s‖τLp(K�)

=: Σ1 +Σ2.

Trivially,

‖s‖Lτ (�̃) ≤
∑

�′∈Λ̃,�′⊂�
‖s‖Lτ (�′), � ∈ Γ.

Switching the order of summation, we find

Σ1 ≤ c
∑
�′∈Λ̃

‖s‖τLτ (�′)

∑
�∈Γ,�⊃�′

|�|−ατ

≤ c
∑
�′∈Λ̃

‖s‖τLτ (�′)|�′|−ατ
∑

�∈Γ,�⊃�′
(|�′|/|�|)ατ(A.10)

≤ c
∑
�′∈Λ̃

|�′|−ατ‖s‖τLτ (�′) ≤ c(#Λ̃)ατ‖s‖τp ,

where we also used (2.9) and applied Lemma A.2 to s with Λ replaced by Λ̃.
To estimate Σ2 we shall use the representation of Γ̃ as a disjoint union of chains:

Γ̃ =
⋃
λ∈L λ. Let λ ∈ L and suppose λ = {�1, . . . ,�ν}, where �′′

λ ⊃ �1 ⊃ · · · ⊃
�ν ⊃ �′

λ with �′
λ,�′′

λ ∈ Λ̃. Then µ�i
≥ ν − i+ 1. Therefore,

∑
�∈λ

ρµ�‖s‖τLp(K�) ≤ ‖s‖τLp(�′′
λ
\�′

λ
)

ν∑
j=1

ρν−j+1 ≤ c‖s‖τLp(Kλ),
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where Kλ := �′′
λ \�′

λ. It is easy to see that the sets Kλ, λ ∈ L, have pairwise disjoint
interiors. Summing over all λ ∈ L, we obtain by Hölder’s inequality

Σ2 ≤ c
∑
λ∈L

‖s‖τLp(Kλ) ≤ c

(∑
λ∈L

‖s‖pLp(Kλ)
)τ/p

(#L)1−τ/p ≤ c(#Λ̃)ατ‖s‖τp .

From this estimate and (A.10), we find∑
�∈T \Λ̃∗

|�|−ατS�(s)ττ ≤ c(#Λ̃)ατ‖s‖τp ≤ cnατ‖s‖τp .

Combining this with (A.5) gives ‖s‖τBατ (Φ) ≤ cnατ‖s‖τp ; i.e., (3.2) holds.
Case 2. p = ∞. The proof in this case is easier. We consider as before two

possibilities for each � ∈ T : � ∈ Λ̃∗ or � ∈ T \ Λ̃∗.
(a) For � ∈ Λ̃∗, we obtain by (2.2)

|�|−1
S�(s)ττ ≤ |�|−1‖s‖τLτ (Ω��) ≤ |�|−1|Ω��|‖s‖τ∞ ≤ c‖s‖τ∞.

Therefore, ∑
�∈Λ̃∗

|�|−1
S�(s)ττ ≤ c‖s‖τ∞(#Λ̃∗) ≤ cn‖s‖τ∞.(A.11)

(b) Let � ∈ Tm \ Λ̃∗
m. Then Ω�� =:

⋃n�
j=1 �j for some �j ∈ Tm \ Λ̃, j = 1, . . . , n�,

with n� ≤ c�� < 3N2�−1
0 (see (2.8)). We have (see (A.4))

S�(s)ττ = S�(s− sm)ττ ≤
n�∑
j=1

‖s− sm‖τLτ (�j)
.

As in Case 1, if �j /∈ Γ, then ‖s − sm‖Lτ (�j) = 0, and if �j ∈ Γ, then s|K�j =

sm|K�j = 11K�j · P�j and sm|�j = 11�j · P�j for some P�j ∈ Πk. Therefore,

‖s− sm‖τLτ (�j)
= ‖s− sm‖τ

Lτ (�̃j)

≤ c|�̃j |(‖s‖τ∞ + ‖P�j‖τL∞(�̃j)
) ≤ c|�̃j |‖s‖τ∞,

where we used the inequalities ‖P�j‖L∞(�̃j)
≤ ‖P�j‖L∞(�j) ≤ c‖P�j‖L∞(K�j)

≤
c‖s‖∞ (see Lemma 2.2). From the above, we infer by (2.2)

|�|−1
S�(s)ττ ≤ c‖s‖τ∞

∑
1≤j≤n�,�j∈Γ∩Tm

|�̃j |/|�j |,

and hence, using (2.2) and the fact that each �′ ∈ Γ ∩ Tm can belong to ≤ c�� sets
Ω��, we obtain

∑
�∈Tm\Λ̃∗

m

|�|−1
S�(s)ττ ≤ c‖s‖τ∞

∑
�∈Γ∩Tm

|�̃|/|�|

≤ c‖s‖τ∞
∑

�∈Γ∩Tm
ρµ� .
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Summing over m ∈ Z, we find

∑
�∈T \Λ̃∗

|�|−1
S�(s)ττ ≤ c‖s‖τ∞

∑
�∈Γ

ρµ� ≤ c‖s‖τ∞ (#L+#L∞) ≤ cn‖s‖τ∞.

We couple this with (A.11) to obtain ‖s‖τBατ (T ) ≤ cn‖s‖τ∞, which is (3.2).
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[9] C. de Boor, K. Höllig, and S. D. Riemenschneider, Box Splines, Springer-Verlag, New
York, 1993.

[10] C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth
bivariate pp functions, J. Approx. Theory, 72 (1993), pp. 24–33.

[11] J. Bramble and X. Zhang, Multigrid methods for the biharmonic problem discretized by con-
forming C1 finite elements on nonnested meshes, Numer. Funct. Anal. Optim., 1 (1995),
pp. 835–846.

[12] S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts
Appl. Math. 15, Springer-Verlag, New York, 1994.

[13] M. D. Buhmann, O. Davydov, and T. N. T. Goodman, Cubic spline prewavelets on the
four-directional mesh, Found. Comp. Math., 3 (2003), pp. 113–133.

[14] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[15] C. K. Chui, Multivariate Splines, CBMS-NSF Regional Conf. Ser. in Appl. Math. 54, SIAM,
Philadelphia, 1988.

[16] C. K. Chui, D. Hong, and R.-Q. Jia, Stability of optimal order approximation by bivariate
splines over arbitrary triangulations, Trans. Amer. Math. Soc., 347 (1995), pp. 3301–3318.

[17] C. K. Chui and M.-J. Lai, Multivariate vertex splines and finite elements, J. Approx. Theory,
60 (1990), pp. 245–343.

[18] C. K. Chui and M.-J. Lai, On bivariate super vertex splines, Constr. Approx., 6 (1990),
pp. 399–419.

[19] W. Dahmen and C. A. Micchelli, On the local linear independence of translates of a box
spline, Studia Math., 82 (1985), pp. 243–262.

[20] W. Dahmen, P. Oswald, and X.-Q. Shi, C1-hierarchical bases, J. Comput. Appl. Math., 51
(1994), pp. 37–56.

[21] W. Dahmen and R. Stevenson, Element-by-element construction of wavelets satisfying sta-
bility and moment conditions, SIAM J. Numer. Anal., 37 (1999), pp. 319–352.

[22] O. Davydov, Stable local bases for multivariate spline spaces, J. Approx. Theory, 111 (2001),
pp. 267–297.

[23] O. Davydov, On the computation of stable local bases for bivariate polynomial splines, in
Trends in Approximation Theory, K. Kopotun, T. Lyche, and M. Neamtu, eds., Vanderbilt
University Press, Nashville, TN, 2001, pp. 85–94.



NONLINEAR SPLINE APPROXIMATION 757

[24] O. Davydov, Locally stable spline bases on nested triangulations, in Approximation Theory X:
Wavelets, Splines, and Applications, C. K. Chui, L. L. Schumaker, and J. Stöckler, eds.,
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1. Introduction. Many models in the fields of fracture mechanics and computer
vision lead to free-discontinuity problems, that is, to the minimization of functionals
defined in spaces of discontinuous functions (namely, BV and SBV ) involving energies
with a bulk part and a surface part concentrated along the (free-)discontinuity zone.
This paper is concerned with the variational approximation in the sense of De Giorgi’s
Γ-convergence of such energies by smooth functionals defined in Sobolev spaces. The
issue of finding a smooth approximation of free-discontinuity problems is important
for two main reasons:

(a) the numerical treatment for regular functionals defined in Sobolev spaces is
much easier;

(b) the existence of such an approximation allows for the definition of a parabolic
evolution model as a limit of the gradient flows of the approximating func-
tionals.

For a general survey on free-discontinuity problems and their approximation we refer
to [10] and [6].

When the volume part of the energy is given by
∫
Ω
|∇u|2 dx, heuristic considera-

tions suggest using, as approximating functionals, energies of the form

1

ε

∫
Ω

f(
√
ε|∇u|) dx,

where f : [0,+∞) → [0,+∞) is quadratic near the origin and with finite limit at
infinity. However, an easy convexity argument shows that energies of this kind Γ-
converge to the zero functional. Various methods have been developed to bypass this
convexity constraint, and most of them exploit De Giorgi’s suggestion of using suitable
nonlocal versions of the functionals above (see [13], [21], [17]). The approach we
consider here is based on singular perturbations and consists in adding a “small” term
depending on second derivatives: the idea is to control the oscillations of minimizing
sequences by penalizing abrupt changes of the gradient. So we are led to consider
energies of the form

1

ε

∫
Ω

f(
√
ε|∇u|) dx+ r(ε)

∫
Ω

‖∇2u‖2 dx,(1.1)

where r(ε) is a function which vanishes as ε → 0+.
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The first step in this direction was taken by Alicandro, Braides, and Gelli in [2]:
they showed that the one-dimensional functionals

1

ε

∫ 1

0

f(
√
ε|u′|) dx+ ε3

∫ 1

0

|u′′|2 dx,

with f(t) := αt2 ∧ β, Γ-converge to a functional of the form

α

∫ 1

0

|u′|2 dx+ c(β)
∑
Su

√
u+ − u−;

later, Alicandro and Gelli treated the N -dimensional case (see [3]). We intend to
extend the results above to general functionals of the form (1.1), where f is still
quadratic near the origin but possibly unbounded. In fact we set the problem in a
much more general framework and investigate the asymptotic behavior of the sequence

Fε(u) :=

∫
Ω

fε(|∇u|) dx+ (r(ε))3
∫

Ω

‖∇2u‖2 dx,(1.2)

where (fε) is any family of positive nondecreasing functions with a convex or convex–
concave shape (i.e., there exists xε > 0 such that fε is convex in [0, xε] and concave
in [xε,+∞)); let us remark that such a structural assumption is quite natural for this
kind of problem (see, for example, [14], [15], [22]). In the main theorem of the paper
(Theorem 3.2) we prove that the Γ-limits of (1.2) are related to the pointwise limits
of fε(t) and of r(ε)fε(t/r(ε)): if for an infinitesimal subsequence (εn) we have

(a) fεn → g pointwise,
(b) r(εn)fεn(·/r(εn)) → b pointwise,

then (Fεn) Γ-converges to a functional F defined on BV (Ω) and of the form

F (u) =

∫
Ω

f(|∇u|) dx+
∫
Su

ϕ(u+ − u−) + C|Dcu|,(1.3)

where C (possibly equal to +∞), f , and ϕ are defined in terms of g and b.
The presence of the second derivatives in the approximating functionals deter-

mines a restriction on the regularity and on the growth of the jump-functions ϕ that
can possibly appear in the limit. For instance, it turns out that ϕ always satisfies the
growth condition

C1(
√
z − 1) ≤ ϕ(z) ≤ C2(z + 1) ∀z ≥ 0

for suitable C1, C2 > 0; in particular, the Mumford–Shah functional is not reachable
by our procedure. However, since for any positive, convex, and superlinear function g
and for any positive and concave function b with limt→0+ b(t)/t = +∞, it is possible
to construct a family (fε) and a rescaling function r(ε) such that conditions (a) and
(b) above are fulfilled, we see that a wide class of free-discontinuity functionals with
ϕ satisfying (3.57) can be approximated.

In section 4 we apply our theorem to prove that if f is quadratic near the origin,
sublinear, and concave at infinity, then there exists a rescaling function r(ε) (explic-
itly given in terms of f) such that the family (1.1) Γ-converges, up to passing to
a subsequence, to a free-discontinuity functional of the form (1.3). All the possible
Γ-limits generated by a family of functionals as in (1.1) are classified. The rescaling
r(ε) is unique up to asymptotic equivalence.
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In a recent paper [9] Bouchitté, Dubs, and Seppecher considered the one-dimensional
functionals

Fε(u) :=

∫
I

|u′|2
1 + (ε|u′|)p dx+ ε

3p
p−1∨4

∫
I

|u′′|2 dx

defined in W 2,2(I) and proved that the Γ-limit is given by

F (u) :=

∫
I

|u′|2 dx+ kp
∑
x∈Su

(u+ − u−)
4−p
2+p∨0.

When p ≤ 2, their result is a particular case of ours (but it is proved with different
methods); on the contrary, the case p > 2 is not included in our treatment since the
potential f(t) becomes decreasing and degenerates at infinity; note that the use of a
degenerate potential allows for the approximation of the Mumford–Shah functional
(the case p > 4).

Let us also point out that our theorem can be used in particular to handle the
so-called Perona–Malik functional

1

ε

∫
Ω

log(1 + ε|∇u|2) dx;

we will show that in this case the right rescaling function is given by r(ε) = ε
log 1

ε

and

that the family

1

ε

∫
Ω

log(1 + ε|∇u|2) dx+
(

ε

log 1
ε

)3 ∫
Ω

‖∇2u‖2 dx

Γ-converges to ∫
Ω

|∇u|2 dx+ c

∫
Su

√
u+ − u− dHN−1,

with c > 0 explicitly computable (see Example 4.8). The Perona–Malik functional
was introduced in the context of image processing. Let us briefly recall the problem:
if g is the input gray level function representing the original image, the simplest way
to smooth and denoise it is by applying a Gaussian convolution kernel; this procedure
turns out to be equivalent to considering as a processed image the solution u(x, t) of
the heat diffusion equation

∂

∂t
u = ∆u, u(x, 0) = g(x),(1.4)

computed at time t (“t” can be seen as a scale parameter: the greater t, the smaller
the scale at which the smoothing occurs).

The main drawback of this approach is that it produces an unconditional smooth-
ing which cannot distinguish between objects and contours, since edges also begin soon
to diffuse! To overcome these difficulties Perona and Malik proposed in [26] a model of
selective smoothing where the contours are preserved as much as possible: it consists
in replacing (1.4) by the nonlinear equation

∂

∂t
u = div

( ∇u
1 + |∇u|2

)
, u(x, 0) = g(x),(1.5)
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which is the gradient flow of the (Perona–Malik) functional
∫
Ω
log(1+ |∇u|2) dx. The

underlying idea is the following: where |∇u| is large, in particular near the edges, the
diffusion is low and the contour is “kept,” while far from the edges, where the gradient
is smaller, u diffuses as in the heat equation. Note that the simultaneous smoothing
and edge-detection effects of the equation strongly depend on the particular structure
of the function log(1 + t2): the quadratic behavior near the origin is responsible for
the denoising process, while the concave behavior at infinity is responsible for the
edge-detection. Our Γ-convergence result says that there is an alternative procedure,
based on minimizing the (rescaled) energy instead of considering its gradient flow,
which exploits the structure of log(1 + t2) to produce again a smoothing and edge-
detection effect.

Actually the same considerations apply to all functions f satisfying our structure
assumptions, and we can think of the functionals

∫
f(|∇u|) dx as “generalized Perona–

Malik energies” giving rise to “generalized Perona–Malik equations” of the form

∂

∂t
u = div (g(|∇u|)∇u) , u(x, 0) = g(x),

with g bounded and decreasing to 0 when |∇u| is large.
We want to mention, as a further application of our main result, the study of the

asymptotic behavior of the family

1

ε

∫
Ω

f(ε|∇u|) dx+ ε3
∫

Ω

‖∇2u‖2 dx,

where f is nondecreasing, differentiable at the origin, with nonzero derivative, and
concave at infinity: the Γ-limit turns out to be a functional defined in BV (Ω) and of
the form

f ′(0)
∫

Ω

|∇u| dx+
∫
Su

ϕ(u+ − u−) dHN−1 + f ′(0)|Dcu|,(1.6)

with ϕ explicitly characterized in terms of f . Again, as f varies among all the admis-
sible potentials, a wide class of jump-functions ϕ can be generated (see Theorem 4.11
and Example 4.12).

Some final remarks are in order. All the convergence results we mentioned above
are completely proved in the one-dimensional case; in N dimensions one can prove
the following. Let (Fn) be a sequence of one-dimensional functionals converging to F
and denote by (FN

n ) and FN their respective N -dimensional versions; then we show
that Γ-limn F

N
n (u) = FN (u) if u satisfies

∃uk → u such that (s.t.) HN−1(Suk) < +∞ and FN (uk) → FN (u).

The class of such functions coincides with the whole space when the bulk part of
FN is linear (as in (1.6)); we believe that the same occurs when FN is defined in
SBV , but at the moment such a technical result is not available, and, in fact, the
complete representation of the Γ-limit holds for functions, with discontinuity set of
finite HN−1-measure. Let us finally remark that these difficulties arise in the proof
of the Γ-lim sup inequality, while the Γ-lim inf inequality is completely proved as
well as the equicoerciveness of the approximating functionals, which guarantees the
convergence of minimizers.
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2. Preliminary results.

2.1. Definitions and general properties of BV functions. In this subsec-
tion we fix notation and briefly recall basic definitions and properties from the theory
of BV functions: for a general treatment we refer to [6]. The Lebesgue measure and
the (N − 1)-dimensional Hausdorff measure of a set B ⊂ R

N are denoted by LN (B)
and HN−1(B), respectively. We will often write |B| instead of LN (B). Given a mea-
sure µ we denote its total variation by |µ|; moreover µ�B denotes the restriction of
the measure µ to the set B given by (µ�B)(A) = µ(B ∩A).

Let Ω ⊂ R
N be an open set, let u : Ω → R be a measurable function, and let

x ∈ Ω. We denote by u+(x) and u−(x), respectively, the upper and lower limits of u
at x, defined by

u+(x) := inf

{
t ∈ R : lim

ρ→0+

|{y ∈ Ω : |x− y| < ρ, u(y) > t}|
ρN

= 0

}
,

u−(x) := sup

{
t ∈ R : lim

ρ→0+

|{y ∈ Ω : |x− y| < ρ, u(y) < t}|
ρN

= 0

}
.

If u+(x) = u−(x) ∈ R, then the common value of u+(x) and u−(x) is called the
approximate limit of u at the point x and is denoted by ap -limy→x u(y).

We say that u is a function of bounded variation in Ω and we write u ∈ BV (Ω) if
u ∈ L1(Ω) and its distributional derivative is a vector-valued measure Du with finite
total variation |Du|(Ω). Given u ∈ BV (Ω), we denote by Ju the set where u+ > u−

and by Su the essential discontinuity set of u made up of those points x which are
not Lebesgue points. It turns out that Ju ⊆ Su and HN−1(Su \ Ju) = 0. For every
x �∈ Su we denote by ũ(x) the approximate limit of u at x.

The complete graph of a function u ∈ BV (Ω) is the set

Γu := {(x, z) ∈ Ω× R : u−(x) ≤ z ≤ u+(x)}.
If u ∈ BV (Ω), then it can be proved that Su is countably (HN−1, N−1) rectifiable,

i.e.,

Su = N ∪
⋃
i∈N

Ki,

where HN−1(N) = 0, and each Ki is a compact set contained in a C1 hypersurface;
as a consequence we have that for HN−1-a.e. x ∈ Su it is possible to define an
approximate tangent plane Tx(Su) and therefore an approximate normal unit vector
νu(x) which can be chosen in such a way that

lim
ρ→0+

∫
B
νu(x)
ρ (x)

|u(y)− u+(x)| dy = 0,

where B
νu(x)
ρ (x) := {y ∈ Bρ(x) : (y−x)·νu(x) > 0} (here and in what follows, given x

and y in R
N , we denote the scalar product of x and y by x ·y). For every u ∈ BV (Ω),

by the Radon–Nikodým theorem we can write Du = Dau + Dsu, where Dau is
absolutely continuous and Dsu is singular with respect to the Lebesgue measure. We
denote the density of Dau with respect to the Lebesgue measure by ∇u. Moreover,
we denote the restriction of Dsu to Su by Dju, and the restriction of Dsu to Ω\Su

by Dcu. It turns out that Dju = (u+ − u−)νuHN−1�Su, so that in particular

|Dsu| = |Dcu|+ (u+ − u−)HN−1�Su.
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We will say that a set E is of finite perimeter in Ω if χE (i.e., the characteristic
function of E) is of bounded variation in Ω. We define ∂∗E ∩Ω := SχE ∩Ω to be the
reduced boundary of E in Ω. Let us recall now the Fleming–Rishel coarea formula.
Let u be a Lipschitz function and let v belong to BV (Ω). Then for almost every t ∈ R

we have that {x ∈ Ω : u > t} is a set of finite perimeter in Ω and

∫
Ω

v|∇u| dx =

∫ +∞

−∞

(∫
∂∗{u>t}∩Ω

ṽ dHN−1

)
dt.(2.1)

We say that u is a special function of bounded variation, and we write u ∈ SBV (Ω)
if u ∈ BV (Ω) and Dcu = 0. For each p ≥ 1 the space of all functions u ∈ SBV (Ω)
such that

∇u ∈ Lp(Ω) and HN−1(Su) < +∞
is denoted by SBV p(Ω). We consider also the larger space GBV (Ω), which is com-
posed of all measurable functions u : Ω → R whose truncations uk = (u ∧ k) ∨ (−k)
belong to BV (Ω) for every k > 0; finally we set

GSBV := {u ∈ GBV (Ω) : |Dcuk| = 0 ∀k > 0} = {u ∈ L1(Ω) : uk ∈ SBV (Ω) ∀k > 0}
and

GSBV p(Ω) := {u ∈ L1(Ω) : uk ∈ SBV p(Ω) ∀k > 0}.
Every u ∈ GBV (Ω) ∩ L1

loc(Ω) has a countably (HN−1, N − 1) rectifiable discon-
tinuity set Su.

We conclude this subsection by recalling a “slicing” result due to Ambrosio (see
[5]) and an L1-precompactness criterion by slicing proved in [1]. First we introduce
some notation. Let ξ ∈ SN−1 and let Πξ := {y ∈ R

N : y · ξ = 0} be the linear
hyperplane orthogonal to ξ. Given E ⊂ R

N we denote by Eξ ⊆ Πξ the orthogonal
projection of E on Πξ, and for y ∈ Πξ we set Ey

ξ := {t ∈ R : y + tξ ∈ E}. Finally for

u : E → R we define uyξ : Ey
ξ → R by uyξ(t) := u(y + tξ).

Theorem 2.1.
(a) Let u ∈ BV (Ω). Then for all ξ ∈ SN−1 the function uyξ belongs to BV (Ω

y
ξ)

for HN−1-a.e. y ∈ Πξ. For such y we have

(uyξ)
′(t) = ∇(y + tξ) · ξ for a.e. t ∈ Ωy

ξ ,

Suyξ
= (Su)

y
ξ ,

uyξ(t±) = u±(y + tξ) or uyξ(t±) = u∓(y + tξ),

according to the case νu ·ξ > 0 or νu ·ξ < 0 (the case νu ·ξ = 0 being negligible).
Moreover we have∫

Πξ

|Dcuyξ |(Ay
ξ) dHN−1(y) = |Dcu · ξ|(A)

for all open subsets A ⊆ Ω, and for all Borel functions g∫
Πξ

∑
t∈Suy

ξ

g(t) dHN−1(y) =

∫
Su

g(x)|νu · ξ| dHN−1.
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(b) Conversely, if u ∈ L1(Ω) and for all ξ ∈ {e1, . . . , eN} and for a.e. y ∈ Πξ

uyξ ∈ BV (Ωy
ξ) (SBV (Ω

y
ξ)) and∫

Πξ

|Duyξ | dHN−1(y) < +∞,

then u ∈ BV (Ω) (SBV (Ω)).
Given a family F of functions, for every ξ ∈ SN−1 and y ∈ Πξ we set Fy

ξ :=

{uyξ : u ∈ F}; moreover we say that a family F ′ is δ-close to F if F ′ is contained in
a δ-neighborhood of F .

Lemma 2.2. Let F be a family of equi-integrable functions belonging to L1(A)
and assume that there exists a basis of unit vectors {ξ1, . . . , ξN} with the property that
for every i = 1, . . . , N , for every δ > 0, there exists a family Fδ δ-close to F such
that (Fδ)

y
ξi
is precompact in L1(Ay

ξi
) for HN−1-a.e y ∈ Aξi . Then F is precompact in

L1(A).

2.2. Semicontinuity and relaxation in BV and SBV . Let f : R → [0,+∞]
be convex. Then we define the recession function f∞ of f by

f∞(z) = lim
t→+∞

f(tz)

t
.

Let θ : R → [0,+∞] be lower semicontinuous and such that there exists limt→0+ θ(t)/t.
Then we can define the recession function θ0 of θ by

θ0(z) = lim
t→0+

θ(tz)

t
.

The functions f∞ and θ0 turn out to be 1-homogeneous. For every g, h : R → [0,+∞],
we define the inf-convolution of g and h as the function g�h given by

(g�h)(z) = inf{g(x) + h(z − x) : x ∈ R}.

Finally we recall that given a function F : X → R ∪ +∞, where X is a topological
space, we denote by F the relaxed functional of F , i.e., the greatest lower semicontin-
uous (with respect to the X-topology) functional which is less than F .

The following relaxation result is proved in [8].
Theorem 2.3 (relaxation in BV ). Let f : [0,+∞) → [0,+∞) be a nondecreasing

convex function and let ϕ : [0,+∞) → [0,+∞) be a concave function. Let F :
BV (Ω) → [0,+∞] be defined by

F (u) :=



∫

Ω

f(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1 if u ∈ SBV 2(Ω) ∩ L∞(Ω),

+∞ otherwise.

(2.2)

Then the relaxed functional of F with respect to the L1-metric is given on BV by

F (u) :=

∫
Ω

f1(|∇u|) dx+
∫
Su

ϕ1(u
+ − u−) dHN−1 +

(
f∞(1) ∧ ϕ0(1)

) |Dcu|,

where f1 := f�ϕ0 and ϕ1 := ϕ�f∞.
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It is possible to prove that f�ϕ0 = [f ∧ (ϕ0 + f(0))]∗∗, where h∗∗ denotes the con-
vexification of h, i.e., the greatest convex and lower semicontinuous function which is
smaller than h and, analogously, ϕ�f∞ = sub [ϕ∧ (f∞+ϕ(0))], where subh denotes
the subadditive envelope, i.e., the greatest lower semicontinuous and subadditive func-
tion which is smaller than h. Given two Borel functions ϕ : ]0,+∞[ → [0,+∞) and
f : [0,+∞] → [0,+∞), we consider the functional F defined by

F (u) =



∫

Ω

f(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1 if u ∈ GSBV (Ω),

+∞ otherwise.
(2.3)

In [5] the following semicontinuity result is proved.
Theorem 2.4 (Ambrosio’s semicontinuity theorem). Let Ω ⊂ R

N be an open
bounded set. Let f : [0,+∞) → [0,+∞) be a nondecreasing convex function such that
f∞(1) = +∞ and let ϕ : ]0,+∞] → [0,+∞) be a nondecreasing subadditive function
such that b0(1) = ∞. Then the functional F defined in (2.3) is lower semicontinuous
with respect to the L1-convergence.

2.3. A density result in SBV . In analogy with the strong density results
of smooth functions in W 1,p(Ω), functions in SBV p(Ω) can be approximated in a
“strong sense” by functions which have a “regular” jump set and are smooth outside.
This can be formally expressed as follows.

Let Ω be an open bounded subset in R
N with Lipschitz boundary, and denote by

W(Ω) the space of all functions w ∈ SBV (Ω) enjoying the following properties:
(i) HN−1(Sw \ Sw) = 0;
(ii) Sw is the intersection of Ω with the union of a finite number of pairwise

disjoint (N − 1)-simplexes;
(iii) w ∈ W k,∞(Ω \ Sw) for every k ∈ N.

Cortesani and Toader proved in [18] the following density result.
Theorem 2.5. Let u ∈ SBV p(Ω) ∩ L∞(Ω). Then there exists a sequence (wj)j

in W(Ω) such that wj → u strongly in L1(Ω), ∇wj → ∇u strongly in Lp(Ω,RN ),
limj ‖wj‖∞ = ‖u‖∞, and

lim sup
j→∞

∫
Swj

φ(w+
j , w

−
j , νwj ) dHN−1 ≤

∫
Su

φ(u+, u−, νu) dHN−1

for every upper semicontinuous function φ : R × R × SN−1 → [0,+∞) such that
φ(a, b, ν) = φ(b, a,−ν) for every a, b ∈ R and for every ν ∈ SN−1.

2.4. Γ-convergence. We recall here the definition and the main properties of
Γ-convergence: for the general theory we refer to [19] (see also the forthcoming [11]).

Definition 2.6. Let (X, d) be a metric space and let Fh : X → R ∪ {+∞} be a
sequence of functions. We set

Γ- lim inf
h→∞

Fh(x) := inf

{
lim inf
h→∞

Fh(xh) : xh → x

}

and

Γ- lim sup
h→∞

Fh(x) := inf

{
lim sup
h→∞

Fh(xh) : xh → x

}
.
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We say that the sequence (Fh)h∈N Γ-converges if

Γ- lim inf
h→∞

Fh(x) = Γ- lim sup
h→∞

Fh(x) ∀x ∈ X.

The common value is called the Γ-limit and is denoted by Γ- limh→∞ Fh.
Definition 2.7. We say that the maps Fh : X → R ∪ {+∞} are equicoercive if

for every t ∈ R there exists a compact subset Kt ⊆ X such that

{x ∈ X : Fh(x) ≤ t} ⊆ Kt ∀h ∈ N.

The following theorem explains the variational meaning of this kind of conver-
gence.

Theorem 2.8. Let (Fh)h be a sequence of equicoercive maps which Γ-converges
to F . Then if (xh)h is a sequence such that

lim
h→∞

Fh(xh) = lim
h→∞

inf
X
Fh,

xh is precompact and any cluster point is a minimizer of F .
We finally recall that given F : X → R ∪ {+∞}, the relaxed functional F can be

characterized as the Γ-limit of the constant sequence Fn = F for every n ∈ N.

3. The main convergence result in the one-dimensional case. Let fn :
[0,+∞) → [0,+∞) be a family of continuous nondecreasing functions and let rn be an
infinitesimal sequence of positive real numbers. For any open bounded subset I ⊂ R

we define

Fn(u) :=



∫
I

fn(|u′|) dx+ (rn)
3

∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I).
(3.1)

Moreover, given two functions b, g : [0,+∞) → [0,+∞), we set

Fb,g(u) :=



∫
I

g(|u′|) dx+
∑
Su

ϕ(u+ − u−) if u ∈ SBV (I),

+∞ otherwise in L1(I),

(3.2)

where

(3.3) ϕ(z) := inf
η>0

inf

{∫ η

0

b(|u′|) dx+
∫ η

0

|u′′|2 dx : u ∈ W 2,2(0, η),

u(0) = 0, u(η) = z, u′(0) = u′(η) = 0

}
.

We denote by Fb,g the L1-relaxation of Fb,g. If g is convex and b is convex, concave,
or convex–concave, then we can finally define

Fb,g(u) :=



∫
I

g1(|u′|) dx+
∑
Su

ϕ1(u
+ − u−) + (g∞(1) ∧ b0(1))|Dcu| if u ∈ BV (I),

+∞ otherwise in L1(I),

(3.4)



768 MASSIMILIANO MORINI

where g1 := g�b0 = [g ∧ (b0 + g(0))]∗∗ and ϕ1 := ϕ�g∞ = sub (ϕ ∧ g∞) (g∞ and b0

are the recession functions of g and b, respectively, defined in subsection 2.2).
Remark 3.1. Note that if g∞(1) = b0(1) = +∞, then Fb,g = Fb,g(u).
Our main result is stated in the following theorem.
Theorem 3.2. Let fn and rn be as above, and suppose in addition that the

following hold:
(i) there exists a nondecreasing function g : [0,+∞) → [0,+∞) such that

fn(t) → g(t) ∀t ∈ [0,+∞);(3.5)

(ii) there exists a nondecreasing and continuous function b : (0,+∞) → (0,+∞)
such that

rnfn

(
t

rn

)
→ b(t) ∀t > 0.(3.6)

Then

Γ- lim sup
n→∞

Fn ≤ Fb,g(u),

with respect to the L1(I)-convergence. If in addition we assume
(iii) one of the two following structural conditions holds true:

(st1) fn is convex for every n ∈ N;
(st2) there exists a sequence (xn) ⊂ (0,+∞) such that xn → +∞ and fn is

convex in [0, xn] and concave in [xn,+∞);
then

Γ- lim
n→∞Fn = Fb,g = Fb,g.

Finally, every sequence un such that supn(Fn(un)+‖un‖1) < +∞ is strongly precom-
pact in Lp for every p ≥ 1.

Remark 3.3. If (iii) holds, then g is convex; assumption (st1) implies that b is
in turn convex, while (st2) implies that b is either concave or convex–concave. In
all these cases the recession function b0 is well defined. We finally point out that
the equality Fg,b = Fb,g stated in the last part of the theorem is a consequence of
Theorem 2.3 and of the equality ϕ0 = b0, which will be proved in what follows (see
Lemma 3.6).

Remark 3.4. If (st2) holds with lim supn→∞ xnrn = c > 0, then

b(t) ≥ g∞(1)t = g∞(t) ∀t ∈ [0, c],(3.7)

so that, in particular, b0(1) ≥ g∞(1). To see this we can suppose that limn xnrn = c;
since the functions fn converge to g and become convex in larger and larger intervals,
we have

g′(t−) ≤ lim inf
n→∞ f ′

n(t−) ≤ lim sup
n→∞

f ′
n(t+) ≤ g′(t+)(3.8)

for every t > 0. Suppose that g∞(1) �= 0 (otherwise the statement is trivial) and let
yk be a divergent sequence such that g′(yk) → g∞(1). For a fixed k and δ ∈ (0, 1)
there exists nk,δ such that xn ≥ yk, fn(t) ≥ g(yk)/2, and f ′

n(t) ≥ (1 − δ)g′(yk) for
every n ≥ nk,δ, so that, by convexity,

fn(t) ≥ g(yk)

2
+ (1− δ)g′(yk)(t− yk) ∀t ∈ [yk, xn] ∀n ≥ nk,δ.(3.9)
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Fix t < c; then, by (3.9),

rnfn

(
t

rn

)
≥ rn

g(yk)

2
+ rn(1− δ)g′(yk)

(
t

rn
− yk

)

for every n ≥ n, where n ≥ nk,δ is such that yk ≤ t/rn ≤ xn for every n ≥ n. Passing
to the limit in n in the above inequality and taking into account (3.6), we obtain
b(t) ≥ (1 − δ)g′(yk)t, from which (3.7) follows letting k → ∞ and δ → 0. With the
same proof we see that (st1) implies that b(t) ≥ g∞(t) for every t ≥ 0.

Before giving the proof of the theorem we need to state and prove some prepara-
tory lemmas.

Lemma 3.5. Suppose that b(t) = Mt for some M > 0 and let ϕ be the function
defined in (3.3). Then ϕ(z) =Mz for every z > 0.

Proof. Fix z > 0 and let (v, η) be an admissible pair for problem (3.3). Then∫ η

0

M |v′| dt+
∫ η

0

|v′′|2 dt ≥
∫ η

0

M |v′| dt ≥ Mz,

and therefore ϕ(z) ≥ Mz. Let us prove now the reverse inequality. To this end we
construct a sequence of admissible pairs (vn, ηn) by setting ηn := nz and

vn(t) :=




φ(t)
n if t ∈ [0, 1),

1
n + 1

n (t− 1) if t ∈ [1, nz − 1),

z − φ(nz−t)
n if t ∈ [nz − 1, nz],

where φ is a function belonging to C2([0, 1]) and satisfying φ(0) = φ′(0) = 0, φ(1) =
φ′(1) = 1. We can now estimate

ϕ(z) ≤
∫ ηn

0

M |v′n| dt+
∫ ηn

0

|v′′n|2 dt = 2
M

n

∫ 1

0

|φ′| dt+M
nz − 2

n
+ 2

1

n

∫ 1

0

|φ′′|2 dt

=Mz +O

(
1

n

)
,

and therefore, letting n → ∞, we obtain ϕ(z) ≤ Mz.
Lemma 3.6. Let b be as in Remark 3.3. Then the function ϕ : [0,+∞) → [0,+∞)

defined in (3.3) is continuous, nondecreasing, and subadditive, and ϕ0(1) = b0(1).
Proof. The first three properties are easy; let us prove only the last one. We

begin with the case

b0(1) = +∞.(3.10)

Claim. For every ε > 0 there exists δ > 0 with the following property: if z < δ
and if (η, u) is an admissible pair for problem (3.3) satisfying∫ η

0

b(|u′|) dx+
∫ η

0

|u′′|2 dx < (1 + ε)ϕ(z),(3.11)

then |u′| ≤ ε in (0, η).
Suppose by contradiction the existence of ε > 0 and of a sequence δn ↓ 0 such

that, for every n ∈ N, there exist zn < δn and (ηn, un), which satisfies∫ ηn

0

b(|u′n|) dx+
∫ ηn

0

|u′′n|2 dx < (1 + ε)ϕ(zn)(3.12)
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and

‖u′n‖L∞(0,ηn) > ε.(3.13)

Note that we can suppose ηn > 1 for every n (un can be extended outside the original
interval as the constant function zn); using Hölder’s inequality we can estimate for
every x, y ∈ (0, ηn)

|u′n(x)− u′n(y)| ≤
∫ y

x

|u′′n| dt ≤
√
|x− y|

(∫ ηn

0

|u′′n|2 dt
) 1

2

≤ C
√
|x− y|,

where C > 0 is independent of n; by the above estimate and by (3.13) we can deduce
the existence of an interval In ⊆ (0, ηn) such that |In| ≥ C ′, with C ′ independent of
n, and |u′n| ≥ ε/2 in In. As a consequence we deduce∫ η

0

b(|u′n|) dx+
∫ η

0

|u′′n|2 dx ≥
∫
In

b(|u′n|) dx ≥ b
(ε
2

)
C ′,

which is in contradiction to (3.12) since ϕ(zn), by continuity, tends to 0. The claim
is proved. Given M > 0, thanks to (3.10) we can choose ε such that b(t)/t ≥ M for
every t ∈ (0, ε]; if δ > 0 is as in the claim above, then for 0 ≤ z < δ we can estimate

(1 + ε)ϕ(z) ≥
∫ η

0

b(|u′|) dx+
∫ η

0

|u′′|2 dx

≥
∫ η

0

b(|u′|)
|u′| |u′| dx ≥ M

∫ η

0

|u′| dx ≥ Mz,

where (η, u) is an admissible pair satisfying (3.11); this concludes the proof when
(3.10) holds. Let us suppose now that

b0(1) = C < +∞.(3.14)

Fix σ > 0 and choose εσ > 0 such that b(t) < (C + σ)t for any t ∈ (0, εσ). Consider
the sequence of admissible pairs (ηn, vn) constructed in the previous lemma; for n
large enough we have ‖v′n‖∞ ≤ εσ and therefore

ϕ(z) ≤
∫ ηn

0

b(|v′n|) dt+
∫ ηn

0

|v′′n|2 dt ≤ (C + σ)

∫ ηn

0

|v′n| dt+
∫ ηn

0

|v′′n|2 dt

= (C + σ)z +O

(
1

n

)
.

Letting n → ∞ and σ → 0 we obtain

ϕ(z) ≤ Cz ∀z > 0.(3.15)

Finally, arguing exactly as for the other case, we easily obtain lim infz→0+ ϕ(z)/z ≥ C,
which concludes the proof of the lemma.

Lemma 3.7. Let (un)n∈N be a sequence of functions such that supn Fn(un) < +∞
and consider the sets Dn := {x ∈ I : |u′n(x)| > c/rn}, where c > 0 is a fixed constant.
Then there exists n ∈ N, depending on c, such that

|Dn| ≤
(
2 supn Fn(un)

b(c)

)
rn

for every integer n ≥ n.
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Proof. If n is large enough, thanks to (3.6) we have

Fn(un) ≥
∫
Dn

fn(|u′n|) dx ≥ rn
rn
fn

(
c

rn

)
|Dn| ≥ 1

2rn
b(c)|Dn|.

Lemma 3.8. Suppose also that (iii) of Theorem 3.2 holds true and let (un) be
such that

sup
n
Fn(un) < +∞.

Then

rn‖u′n‖∞ ≤ 2 sup
n
Fn(un) + 1(3.16)

for n large enough. Moreover, if g �≡ 0, there exists a positive constant C depending
only on |I|, g, and b such that

Varun ≤ C

(
sup
n
Fn(un) + 1

)2

(3.17)

for n large enough.
Proof. Take c = 1 and consider the sets Dn defined in the previous lemma; since

they are open, we can writeDn =
⋃∞

k=1(a
k
n, b

k
n). Let y be a point ofDn; therefore there

exists k ∈ N such that y ∈ (akn, b
k
n). By Lemma (3.7) and using Hölder’s inequality,

we have

|u′n(y)| ≤ |u′n(akn)|+
∫ y

akn

|u′′n(t)| dt

≤ 1

rn
+

|Dn| 12
(rn)

3
2

(
(rn)

3

∫ bkn

akn

|u′′n|2 dt
) 1

2

≤ 1

rn
+ 2

(rn)
1
2

(rn)
3
2

sup
n
Fn(un) =

(
2 sup

n
Fn(un) + 1

)
1

rn

so that (3.16) is proved. Concerning the second part of the lemma, we first observe
that by a translation argument we can suppose that fn(0) = g(0) = 0 for every n ∈ N.
Let x0 be the last point such that g(x0) = 0 and define

g̃(x) :=

{
0 if x ∈ [0, x0],

g(x− x0) if x ≥ x0;

it is easy to see that g̃ is still convex and g̃∞ = g∞. Moreover, taking into account
the fact that fn → g uniformly on compact subsets of [0,+∞) (the uniformity follows
from the pointwise convergence and from the monotonicity of fn), we have

∀δ ∈ (0, 1), ∀K > 0, ∃n s.t. fn ≥ (1− δ)g̃ in [0,K] ∀n ≥ n.(3.18)

Fix y > 0 such that g̃′(y) > g∞(1)/2; set k := 2 supn Fn(un) + 1 and let x be the
first point such that g̃′(x+)/2 ≥ min{g∞(1)/3, b(1)/(3k)}. Since either x = 0 or

g̃′(x−)
2

≤ min

{
g∞(1)

3
,
b(1)

3k

}
≤ g̃′(x+)

2
,(3.19)
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it is clear that x < y. So, by virtue of (3.18), (3.19), (3.8), and (3.6), we can find n
such that

(a) fn ≥ g̃(x)/2 in [0, x+ 1],
(b) f ′

n((x+ 1)+) ≥ min{g∞(1)/3, b(1)/(3k)},
(c) fn(k/rn)/(k/rn) ≥ b(k)/(3k)

for every n ≥ n; we define a(t) := g̃(x)/2+min{g∞(1)/3, b(1)/(3k)}(t−x). From the
convexity of g̃ and by (3.19) and (a), we observe that

a(t) ≤ g̃(x)

2
≤ fn(t) in [0, x+ 1].(3.20)

If (st1) holds, then, taking into account (b) and (3.20), we also have

a(t) ≤ fn(x+ 1) + f ′
n

(
(x+ 1) +

)
(t− x− 1) ≤ fn(t) ∀t ≥ x+ 1.

Suppose now that (st2) holds; by replacing fn with

f̃n(t) :=

{
fn(t) + (rnt)

2 if t ≤ xn,

fn(t) + (rnxn)
2 if t > xn,

if needed, we can assume that fn is strictly convex in [0, xn] (recall that xn is the
point appearing in condition (st2)). Arguing as above, we obtain

a(t) ≤ fn(t) ∀t ∈ [x+ 1, xn ∧ k/rn].(3.21)

We denote by yn the first strictly positive point such that fn(yn) = [fn(k/rn)/(k/rn)]yn;
by the strict convexity assumption we have that 0 < yn ≤ k/rn. If xn < yn < k/rn,
we can first observe that by concavity

f ′
n(t±) ≥ f ′

n(yn−) ≥
rn
k
fn

(
k

rn

)
∀t ∈ (xn, yn),(3.22)

where the last inequality is a consequence of the following one:

fn(t) ≥ fn(yn) +
rn
k
fn

(
k

rn

)
(t− yn) =

rn
k
fn

(
k

rn

)
t in [yn, k/rn]

(again the concavity of fn in (xn, yn) is taken into account). Using (3.22) and (c) we
then have

a(t) ≤ fn(xn) + min

{
g∞(1)

3
,
b(1)

3k

}
(t− xn) ≤ fn(t) in [xn, yn](3.23)

and therefore

a(t) ≤ fn(yn) +
rn
k
fn

(
k

rn

)
(t− yn) ≤ fn(t) in [yn, k/rn].

If xn < yn = k/rn, then either

fn(t) >
rn
k
fn

(
k

rn

)
t ≥ b(k)

3k
t in [0, k/rn]

or

fn(t) <
rn
k
fn

(
k

rn

)
t.
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In the first case (3.17) follows immediately; in the second case we observe that (3.22)
and therefore (3.23) are still true. Summarizing, we have proved that if xn < yn, then

a(t) ≤ fn(t) in [0, k/rn];(3.24)

arguing in a similar way we obtain the same estimate also if yn ≤ xn. Using the
definition of a(t) and the fact that x < y, from (3.24) we easily obtain

min

{
g∞(1)

3
,
b(1)

3

}
t ≤ kfn(t) +

kg∞(1)

3
y ∀t ∈ [0, k/rn],

from which, recalling the definition of k and (3.16), inequality (3.17) follows with

C := (6 + 2g∞(1)y|I|)(min{g∞(1)/3, b(1)/3})−1.

Remark 3.9. Let us remark that if un → u in L1 and supn Fn(un) < +∞,
then un → u in Lp for every p ≥ 1: indeed from (3.17) it easily follows that un is
equibounded in L∞. As a consequence we have that in one dimension the functionals
Fn Γ-converge with respect to the L1-norm if and only if they Γ-converge with respect
to the Lp-norm for every p ≥ 1.

Lemma 3.10. Assume also that condition (iii) of Theorem 3.2 holds and let
(un)n∈N ⊂ SBV (I) be such that rn‖u′n‖∞ → 0 as n → ∞. Then there exists an
increasing sequence (ψi)i∈N of positive convex functions with the following properties:

(i) ψi(t) ↑ g1(t) for every t > 0 as i → ∞ (we recall that g1 is the function
appearing in (3.4));

(ii) ψ∞
i (1) = g∞1 (1) = b0(1) ∧ g∞(1) for every i;

(iii) passing to a subsequence, still denoted by (un)n, we have that for every i there
exists ni such that

fn(|u′n|) ≥ ψi(|u′n|)
for every n ≥ ni.

Proof. We can assume that min{g∞(1), b0(1)} �= 0; otherwise the statement is
trivial. We will distinguish two cases.

Case 1. g∞(1) > b0(1).
In this case, by Remark 3.4, we have that (st2) holds true with limn xnrn = 0.

We can suppose without loss of generality that fn(0) = g(0) = 0 for every n ∈ N. We
begin by assuming

g′(0+) < b0(1);(3.25)

let x be the last point such that g′(x−) ≤ b0(1) ≤ g′(x+) and set y := sup{y ≥ 0 :
g(t) ≤ b0(1)t ∀t ∈ [0, y]}; then x < y. We also make the following assumption:

∀δ ∈ (0, 1), ∀K > 0, ∃nδ,K s.t. fn(t) ≥ (1− δ)g(t) ∀t ∈ [0,K] and ∀n ≥ nδ,K .
(3.26)

It is clear that we can find δ0 ∈ (0, 1) such that for every 0 < δ ≤ δ0 we have
(1−δ)g∞(1) > b0(1) and xδ < y, where xδ is the last point satisfying (1−δ)g′(xδ−) ≤
b0(1) ≤ (1 − δ)g′(xδ+). In particular for every δ ≤ δ0 there exists xδ ∈ [xδ, y) such
that

(1− δ)g′(xδ) ≥ b0(1).(3.27)
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Let us choose now a sequence dn increasing to +∞ with the following properties:
(a) dn > ‖u′n‖∞ and dn > xn for every n ∈ N, where xn is the point appearing

in assumption (st2);
(b) dnrn → 0 so slowly that rnfn(dn)/b(dnrn) → 1 (this is possible thanks to

(3.6)).
Setting s̃n := fn(dn)/dn, it follows from (b) that limn→∞ s̃n = b0(1); we can now pass
to a subsequence such that sn := s̃n ∧ b0(1) increases to b0(1). Finally, denoting by
yn the first strictly positive point such that fn(yn) = snyn, we have yn → y. Taking
into account all of these facts and recalling (3.8), it is now evident that we can find
nδ > 0 such that

(*) fn(t) ≥ (1− δ)g(t) for every t ∈ [0, xδ];
(**) f ′

n(xδ−) > b0(1) ≥ sn and xδ < yn for every n ≥ nδ.
At this point, for k > nδ we define the function ψ

k
δ by induction in the following way:

ψk
δ = [(1−δ)g∧skt]∗∗ in [0, dk] and ψk

δ = ψk
δ (dj)+sj+1(t−dj) in [dj , dj+1] for j ≥ k.

Since sn ↑ b0(1) the function ψk
δ is convex with (ψk

δ )
∞(1) = b0(1) and ψk

δ ↑ [(1− δ)g∧
b0(1)t]∗∗ as k tends to infinity. Defining

f̃n(t) :=

{
fn(t) if t ∈ [0, xδ],

fn(xδ) + sn(t− xδ) otherwise,

by (*) and (**), we have

ψk
δ (t) ≤ f̃n(t) in [0, dn].(3.28)

Moreover it turns out that

f̃n(t) ≤ fn(t) in [0, yn].(3.29)

The last inequality actually holds in [0, xn] by (**) and by convexity (since xn → +∞
we have that xn > yn, provided n is large enough). Exploiting the concave or convex–
concave structure of fn in [yn, dn] it is also easy to prove (see Figure 1 and the proof
of Lemma 3.10 for the details of the argument) that

f̃n(t) ≤ snt ≤ fn(t) in [yn, dn].(3.30)

Combining (3.28), (3.29), and (3.30) we obtain that ψk
δ ≤ fn in [0, dn] for every n > k

and so, in particular, fn(|u′n|) ≥ ψk
δ (|u′n|) for n > k. Finally, choosing a sequence

δn ↓ 0, we can extract by diagonalization from the family (ψk
δn
)k,n a subfamily (ψi)i

having all the required properties. If g does not satisfy (3.26), then we can proceed
in the following way: let x0 be the last point where g vanishes and define

gk(x) :=

{
0 if x ∈ [0, x0],

g
(
x− 1

k

)
if x ≥ x0.

It turns out that g∞k (1) = g∞(1), gk ↑ g as k → ∞, and gk satisfies (3.26). Hence we
can repeat the construction above for every gk and conclude by diagonalization. If g
does not satisfy (3.25), then in particular g(t) ≥ b0(1)t for every t > 0 and therefore
g1 = b0(1)t; moreover there exists n ∈ N such that f ′

n(0+) > (1 − δ)b0(1) for every
n ≥ n. If (dn) and (sn) are as above, then for k > n we define

ψk
δ (t) = (1− δ)skt in [0, dk]
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y dk dk+1

snt

f
n

b0(1)t

(1−δ)g

ψ
δ
k

f
n
~

xδ dnn

Fig. 1. The construction of ψk
δ in the case g∞(1) > b0(1).

and

ψk
δ (t) = ψk

δ (dk+j) +

(
1− δ

j + 1

)
sk+j+1(t− dk+j) in [dk+j , dk+j+1] for j ≥ 0,

and we argue as above.
Case 2. b0(1) ≥ g∞(1). Note that in this case g1 = g. As above it is not restrictive

to suppose that g(0) = fn(0) = 0 for every n ∈ N and that g satisfies (3.26). At first
we choose a sequence δn ↓ 0 and a diverging sequence dn such that ‖u′n‖∞ ≤ dn and

lim
n→∞

fn(dn)

dn
= b0(1) ≥ g∞(1).

Recalling (3.8) we can define for every i ∈ N

n0,i := inf

{
j ∈ N : j > i, fn(t) ≥ (1− δi)g(t) in [0, di], f

′
n(di−) > (1− δi)g

′(di−),

and
fn(dn)

dn
≥ (1− δi)g

′(di−) ∀n ≥ j

}
,

and, for h ≥ 1,

nh,i := inf

{
j > nh−1,i : fn(t) ≥ (1 − δi+h)g(t) in [0, di+h], f ′

n(di+h−) > (1 − δi+h)g′(di+h−),

and
fn(dn)

dn
≥ (1 − δi+h)g′(di+h−) ∀n ≥ j

}
.

We define the function ψi by induction on h:

ψi(t) :=

{
(1− δi)g(t) if t ∈ [0, di],

(1− δi)[g(di) + g′(di−)(t− di)] if t ∈ (di, dn1,i ]
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and

ψi(t) := ψk(dnh,i) + (1− δi+h)g
′(di+h−)(t− dnh,i) in (dnh,i , dnh+1,i

].

Clearly ψ∞
i = g∞(1) for every i and ψi ↑ g as i → ∞. Set for every h ≥ 0

φi+h(t) :=

{
(1− δi+h)g(t) if t ∈ [0, di+h],

(1− δi+h)[g(di+h) + g′(di+h−)(t− di+h)] if t > di+h.

First of all, taking into account the definition of nh,i and exploiting the structure
assumption on fn exactly as we did before, one can prove that

φi+h ≤ fn ∀n ≥ nh,i;(3.31)

moreover we have

ψi ≤ φi+h in [0, dnh+1,i
].(3.32)

The last inequality is an immediate consequence of

ψi ≤ (1− δi+h)g in [0, di+h],

which can be proved easily by induction on h.
Take n ≥ n0,i and let h be such that nh,i ≤ n ≤ nh+1,i; combining (3.31) and

(3.32) we finally obtain that ψi ≤ fn in [0, dn].
Lemma 3.11. Suppose that (3.10) and condition (iii) of Theorem 3.2 hold and

let (un)n∈N ⊂ W 2,2(I) be such that supn Fn(un) < +∞. Then for every δ > 0 there
exists a sequence (vn)n∈N ⊆ SBV (I) such that ‖un − vn‖1 → 0, rn‖v′n‖∞ → 0 as
n → ∞, |v′n| ≤ |u′n| everywhere, and

Fn(un) ≥ (1− δ)
∑

x∈Svn

ϕ(v+
n (x)− v−n (x))

for n sufficiently large.
Proof. By Lemma 3.8 there exists K > 0 such that

rn‖u′n‖∞ ≤ K.(3.33)

For every 0 < s ≤ K we define

ωn(s) := sup
t∈[s,K]

∣∣∣∣rnfn
(
t

rn

)
− b(t)

∣∣∣∣ .(3.34)

Recalling that the functions rnfn (·/rn) are monotone, by (3.6) we have that ωn →
0 pointwise. As a first step we choose a sequence (cn)n of positive real numbers
converging to 0 so slowly that

(a) rn

(cn)
5
2
→ 0 as n → ∞;

(b) limn→∞
ωn(cn)
b(cn) = 0.

We set Dn := {x ∈ I : |u′n| > cn/rn} =
⋃∞

k=1 I
k
n, where (Ikn) is the collection of the

connected components of Dn; we also denote Ikn = (akn, b
k
n). Arguing as in Lemma 3.8

and taking into account condition (b), we obtain

|Dn| ≤
(
2 supn Fn(un)

b(cn)

)
rn(3.35)
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for n large enough. For every n ∈ N we define

ṽn(x) :=

{
un(x) if x ∈ I \Dn,

un(a
k
n) if x ∈ (akn, b

k
n),

and we set wn := un − ṽn. Clearly ṽn ∈ L1(I) ∩ SBV (I), and since w′
n = u′n and

w′′
n = u′′n on Dn we have

Fn(un, I
k
n) =

∫
Ikn

fn(|w′
n|) dx+ (rn)

3

∫
Ikn

|w′′
n|2 dx.

Summing over k and setting z̃n(x) := wn(rnx), we therefore obtain

Fn(un, Dn) =
∑
k

(∫
Ikn

fn(|w′
n|) dx+ (rn)

3

∫
Ikn

|w′′
n|2 dx

)

=
∑
k

(∫
Ikn

fn

(
1

rn

∣∣∣∣z̃′n
(
x

rn

)∣∣∣∣
)
dx+

1

rn

∫
Ikn

∣∣∣∣z̃′′n
(
x

rn

)∣∣∣∣
2

dx

)

=
∑
k

(
rn

∫
Ikn
rn

fn

(
1

rn
|z̃′n|
)
dy +

∫
Ikn
rn

|z̃′′n|2 dy
)
.(3.36)

By (3.33) we have

cn ≤ |z̃′n| ≤ K in Dn/rn;(3.37)

moreover for every δ > 0 there exists n such that rnfn(
t
rn
) ≥ (1 − δ)b(t) for every

t ∈ [cn,K] and for every n ≥ n, and thus, by (3.37),

rnfn

( |z̃′n|
rn

)
≥ (1− δ)b (|z̃′n|) in Dn/rn.(3.38)

Indeed, by condition (b), for every δ > 0 we can find n such that ωn(cn) ≤ δb(cn) for
every n ≥ n, so that

rnfn

(
t

rn

)
≥ b(t)− ωn(cn) ≥ b(t)− δb(cn) ≥ (1− δ)b(t) ∀t ∈ [cn,K].

Let us define the functions zn as

zn(x) :=

{
z̃n(x) if x ∈ (I \Dn)/rn,

z̃n(x)− z̃′n
(

ank
rn

)(
x− ank

rn

)
in Ikn/rn.

By (3.36) and (3.38), and by using the fact that |z′n| ≤ |z̃′n|, we have

Fn(un, Dn) ≥ (1− δ)
∑
k

(∫
Ikn
rn

b (|z̃′n|) dy +
∫
Ikn
rn

|z̃′′n|2 dy
)

≥ (1− δ)
∑
k

(∫
Ikn
rn

b (|z′n|) dy +
∫
Ikn
rn

|z′′n|2 dy
)

≥ (1− δ)
∑
k

ϕ

(∣∣∣∣zn
(
bkn
rn

)∣∣∣∣
)
= (1− δ)

∑
k

ϕ(v+
n (b

k
n)− v−n (b

k
n)) = (∗∗),(3.39)



778 MASSIMILIANO MORINI

where vn(x) := un(x)− zn(x/rn). Using the definition of zn, it is easy to check that

vn(x) =

{
un(x) if x ∈ I \Dn,

un(a
k
n) + u′n(a

k
n)(x− akn) if x ∈ (akn, b

k
n)

and (∗∗) = (1 − δ)
∑

x∈Svn
ϕ(v+

n (x) − v−n (x)). This together with (3.39) gives the
thesis of the lemma once we have shown that

‖vn − un‖1 → 0 as n → ∞.(3.40)

If t ∈ Ikn, by Hölder’s inequality, we have

|vn(t)− un(t)| ≤
∫ t

akn

|v′n(s)− u′n(s)| ds ≤
∫ t

akn

∫ s

akn

|u′′n(z)| dz

≤
(∫

Ikn

|u′′n|2 dz
) 1

2 ∫ t

akn

(s− akn)
1
2 ds

=
2

3

(∫
Ikn

|u′′n|2 dz
) 1

2

(t− akn)
3
2 ,

and therefore ∫
Ikn

|vn(t)− un(t)| dt ≤ 4

15

(∫
Ikn

|u′′n|2 dz
) 1

2

|Ikn|
5
2 .

Using (3.35), we can conclude

‖un − vn‖1 ≤ 4

15

∑
k∈N

(∫
Ikn

|u′′n|2 dz
) 1

2

|Ikn|
5
2

≤ 4

15(rn)
3
2

(
(rn)

3

∫
Dn

|u′′n|2 dz
) 1

2

(∑
k∈N

|Ikn|5
) 1

2

≤ 4(supn Fn(un))
1
2

15(rn)
3
2

|Dn| 52 ≤ 4(
√
2)5(supn Fn(un))

3

15

rn

(b(cn))
5
2

,

which gives (3.40) thanks to condition (a) and (3.10).
Lemma 3.12. Let g : [0,∞) → [0,∞) be a convex superlinear function and let

u ∈ SBV (I) be such that
∫
I
g(|u′|) dx+H0(Su) < +∞. Then there exists a sequence

(un) ∈ SBV (I) such that Sun ⊆ Su, un ∈ W 2,2(I \ Su), u
′
n(t±) = 0 on Su, un → u

in L∞(I), u±n (t) → u±(t) on Su, and
∫
I
g(|u′n|) dx → ∫

I
g(|u′|) dx.

Proof. Let I = (a, b) and Su = {x1, . . . , xN} with xi < xi+1 and set x0 = a and
xN+1 = b. We can construct a family (gk) of strictly convex and superlinear functions
of class C2 such that

g′k(0) = 0, gk ↓ g, and lim
t→+∞

gk(t)

g(t)
= 1.

For every k ∈ N and for every i ∈ {0, . . . , N} let uki,j be the solution of the minimum
problem

min

{∫
I

gk(|v′|) dx+ j

∫
I

|v − u|2 dx : v ∈ W 1,1(xi, xi+1)

}
.
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Note that the existence of such a solution is guaranteed by the convexity and the super-
linearity of gk; moreover uki,j is a classical solution to the Euler equation h′′k(w

′)w′′ =
j(w − u) with the Neumann conditions w′(xi) = w′(xi+1) = 0, where hk is the
function in C2(R) obtained by reflection of gk. Therefore uki,j ∈ C2([xi, xi+1]) so

that, denoting by ukj the function in SBV (I) which coincides with uki,j on (xi, xi+1),

we clearly have that the family (ukj )j satisfies all the required conditions except for

the last one. By construction, we have
∫
I
gk(|(ukj )′|) dx

j→ ∫
I
gk(|u′|) dx, and since∫

I
gk(|u′|) dx k→ ∫

I
g(|u′|) dx the final approximating sequence can be obtained by

diagonalization.
We finally state a lemma which will be useful in what follows.
Lemma 3.13. Denote by A(Ω) the family of all open subsets of Ω and let ν :

A(Ω) → [0,+∞) be a superadditive set-function. Let λ be a positive measure on Ω
and let (ψi)i be a family of positive Borel functions such that ν(A) ≥

∫
A
ψi dλ for all

A ∈ A(Ω) and for all i ∈ N. Then ν(A) ≥ ∫
A
supi ψi dλ for all A ∈ A(Ω).

Proof. See Proposition 1.16 of [10].
Proof of Theorem 3.2: the case b0(1) = +∞.
(1) Γ-lim sup inequality.
Let us set F ′′ := Γ-lim supn Fn. We first remark that it is enough to show that

F ′′(u) ≤ ∫
I
g(|u′|) dx +∑Su

ϕ(u+ − u−) for every u ∈ SBV (I) with H0(Su) < +∞;

indeed the thesis would follow from the semicontinuity of F ′′ and the fact that Fb,g

coincides with the relaxed functional of

H(u) :=




∫
I

g(|u′|) dx+
∑
Su

ϕ(u+ − u−) if u ∈ SBV (I) and H0(Su) < +∞,

+∞ otherwise.

Claim 1. Let u ∈ SBV (I) such that H0(Su) < +∞, u ∈ W 2,2(I \ Su), F (u) <
+∞, and u′(t±) = 0 for every t ∈ Su. Then

F ′′(u) ≤
∫
I

g(|u′|) dx+
∑
Su

ϕ(u+ − u−).

Since the construction is local we may assume that Su = {t} and u(t±) = u±(t).
Fix δ > 0 and choose an admissible pair (η, v) for problem (3.3) (with z =

u+(t)− u−(t)) satisfying

∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx < ϕ(u+(t)− u−(t)) + δ.

We define the recovery sequence in the following way:

un(x) :=




u(x) if x ≤ t,

v

(
x− t

rn

)
+ u−(t) if x ∈ (t, t+ rnη),

u(x− rnη) + u+(t) if x ≥ t+ rnη.
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Clearly un → u in L1. We can now compute

Fn(un) = Fn(un, I \ (t, t+ rnη)) +

∫ t+rnη

t

fn

(
1

rn

∣∣∣∣v′
(
x− t

rn

)∣∣∣∣
)
dx

+ (rn)
3

∫ t+rnη

t

1

(rn)4

∣∣∣∣v′′
(
x− t

rn

)∣∣∣∣
2

dx

= Fn(un, I \ (t, t+ rnη)) +

∫ η

0

rnfn

( |v′|
rn

)
dy +

∫ η

0

|v′′|2 dy︸ ︷︷ ︸
||

(∗)n

.(3.41)

Since

rnfn

( |v′|
rn

)
→ b(|v′|) in {x ∈ I : |v′(x)| �= 0},

rnfn

( |v′|
rn

)
≤ rnfn

(‖v′‖∞
rn

)
→ b(‖v′‖∞),

by the dominated convergence theorem and the fact that

lim
n→∞

∫
{x∈I: |v′(x)|�=0}

rnfn

( |v′|
rn

)
dx = lim

n→∞ |{x ∈ I : |v′(x)| �= 0}|rnfn(0) = 0,

we have

lim sup
n→∞

(∗)n ≤
∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx as n → ∞;

moreover, again by the dominated convergence theorem, we easily see that

lim
n→∞Fn(un, I \ (t, t+ rnη)) =

∫
I

g(|u′|) dx.

From (3.41) we therefore obtain

lim sup
n→∞

Fn(un) ≤
∫
I

g(|u′|) dx+
∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx

≤
∫
I

g(|u′|) dx+ ϕ(u+(t)− u−(t)) + δ.

By the arbitrariness of δ, Claim 1 is proved. By a standard density argument based
on the use of Lemma 3.12 we get the same inequality for every u ∈ SBV (I) with
H0(Su) < +∞, and this concludes the proof of the Γ-lim sup inequality, as we re-
marked above.

(2) Γ-lim inf inequality.
By assumption, g is convex and b is convex, concave, or convex–concave; the

functional Fb,g is then well defined and coincides with Fb,g, thanks to Theorem 2.3.
We distinguish two cases.

Case 1. g∞(1) = +∞; i.e., g is superlinear.
Note that in this case Fb,g(u) is finite only if u ∈ SBV (I) and

Fb,g(u) =

∫
I

g(|u′|) dx+
∑
Su

ϕ(u+ − u−).
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Let un → u in L1 be such that supn Fn(un) < +∞; let (vn)n be the sequence con-
structed in Lemma 3.11 and (ψi)i the approximating family of convex superlinear
functions provided by Lemma 3.10. For δ and µ ∈ (0, 1), and for every open subset
J ⊆ I, by Lemmas 3.11 and 3.10, we have

Fn(un, J) = (1− δ)

∫
J

fn(|u′n|) dx+ δ

[∫
J

fn(|u′n|) dx+ ((1/
3
√
δ)rn)

3

∫
J

|u′′n|2 dx
]

≥ (1− δ)

∫
J

ψi(|v′n|) dx+ δ(1− µ)
∑
x∈Su

ϕ(v+
n − v−n )(3.42)

for n sufficiently large. Therefore, by the Ambrosio semicontinuity theorem (recall
also Lemma 3.6), we obtain that u ∈ SBV (I) and

lim inf
n→∞ Fn(un, J) ≥ (1− δ)

∫
J

ψi(|u′|) dx+ δ(1− µ)
∑
x∈Su

ϕ(u+ − u−) ∀i;

letting i ↑ ∞ and µ ↓ 0, we obtain

(Γ- lim inf
n→∞ Fn)(u, J) ≥ (1− δ)

∫
J

g(|u′|) dx+ δ
∑
x∈Su

ϕ(u+ − u−)

=

∫
J

hδ(x) dλ ∀ open J ⊆ I, ∀δ ∈ (0, 1),(3.43)

where we have set λ := g(|u′|)L1 +ϕ(u+ −u−)H0 and hδ := (1− δ) (1− χSu)+ δχSu .
Let δn be a dense sequence in (0, 1); since supi h

δi = 1, from (3.43) we finally deduce
that

(Γ- lim inf
n→∞ Fn)(u) ≥

∫
I

sup
i
hδi dλ =

∫
I

g(|u′|) dx+
∑
x∈Su

ϕ(u+ − u−),

where we applied Lemma 3.13 (with ν := (Γ- lim infn→∞ Fn)(u, ·)).
Case 2. g∞(1) < +∞. Let vn be as above. According to Lemma 3.10, let (ψi)i

be a family of convex functions such that ψ∞
i (1) = g∞(1) for every i ∈ N, ψi ↑ g as

i → ∞, and ψi(|v′n|) ≤ fn(|v′n|) for every i and for n sufficiently large. Therefore, by
using Lemma 3.11, we can write

Fn(un, I) = Fn(un, Dn) + Fn(un, I \Dn)

≥ (1− δ)


∫

I

ψi(|v′n|) dx+
∑

x∈Svn

ϕ(v+
n − v−n )


−

∫
Dn

ψi(|v′n|) dx.(3.44)

Using the inequality ψi(t) ≤ g(0) + g∞(1)t and recalling (3.35) and the fact that
limn b(cn)/cn = +∞, we can estimate∫

Dn

ψi(|v′n|) dx = ψi

(
cn
rn

)
|Dn| ≤

(
g(0) + g∞(1)

cn
rn

)(
2 supn Fn(un)

b(cn)

)
rn = O(1).

Invoking the relaxation theorem, Theorem 2.3, from (3.44) we obtain

lim inf
n→∞ Fn(un) ≥ (1− δ)

(∫
I

ψi(|u′|) dx+
∑
Su

(ϕ�g∞)(u+ − u−) + g∞(1)|Dcu|
)
.

Letting i ↑ +∞ and δ ↓ 0 we complete the proof of the Γ-lim inf inequality.
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Concerning the last part of the theorem, we first observe that, thanks to (3.17),
the approximating functionals are equicoercive; the conclusion then follows from Re-
mark 3.9.

In order to treat the case

b0(1) = lim
t→0+

b(t)

t
< +∞,

we first need the following lemma.
Lemma 3.14. Suppose that b satisfies (3.14), and for every δ > 0 let ϕδ : (0,∞) →

(0,∞) be the function defined by

ϕδ(z) := inf
η>0

inf

{∫ η

0

b(|u′|) dx+
∫ η

0

|u′′|2 dx : u ∈ W 2,2(0, η),

u(0) = 0, u(η) = z, u′(0) = u′(η) = δ

}
.

Then the following properties hold true:
(i) limδ→0+ ϕδ(z) = ϕ(z) uniformly in [k,+∞) for every k > 0;
(ii) for every ε ∈ (0, 1) there exists δ such that ϕδ(z) ≥ (1 − ε)ϕ(z) for every

δ ≤ δ and for every z > 0.
Proof. Fix k > 0, let φ ∈ C2([0, 1]) be such that φ(0) = φ′(0) = 0 and φ(1) =

φ′(1) = 1, and choose 0 < δ < k/2 such that∫ 1

0

b(δ|φ′|) dx+ δ2
∫ 1

0

|φ′′|2 dx ≤ ε

4
(3.45)

for every δ ≤ δ. Now fix δ ∈ (0, δ), z ≥ k, and set z′ := z − 2δ. Pick an admissible
pair (v, η) for the minimum problem defining ϕ(z′) in such a way that∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx ≤ ϕ(z′) +
ε

2
≤ ϕ(z) +

ε

2
.(3.46)

We now define η̃ := η + 2 and ṽ ∈ W 2,2(0, η̃) by

ṽ(t) :=



δ − δφ(1− t) if t ∈ [0, 1),

v(t− 1) + δ if t ∈ [1, η + 1),

z − δ + δφ(t− η − 1) if t ∈ [η + 1, η̃].

It is clear that (ṽ, η̃) is an admissible pair for the minimum problem defining ϕδ(z) so
that we have

ϕδ(z) ≤
∫ η̃

0

b(|ṽ′|) dx+
∫ η̃

0

|ṽ′′|2 dx

= 2

(∫ 1

0

b(δ|φ′|) dx+ δ2
∫ 1

0

|φ′′|2 dx
)
+

∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx
≤ ϕ(z) + ε,(3.47)

where the last inequality follows from (3.45) and (3.46). Now let (v, η) be an admissible
pair for ϕδ(z) satisfying∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx ≤ ϕδ(z) +
ε

2
.(3.48)
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Define η̃ := η + 2 and ṽ by

ṽ(t) :=



δφ(t) if t ∈ [0, 1),

v(t− 1) + δ if t ∈ [1, η + 1),

z + 2δ − δφ(η̃ − t) if t ∈ [η + 1, η̃].

As above, we have

ϕ(z) ≤ ϕ(z + 2δ) ≤
∫ η̃

0

b(|ṽ′|) dx+
∫ η̃

0

|ṽ′′|2 dx

= 2

(∫ 1

0

b(δ|φ′|) dx+ δ2
∫ 1

0

|φ′′|2 dx
)
+

∫ η

0

b(|v′|) dx+
∫ η

0

|v′′|2 dx

≤ ϕδ(z) + ε,

thanks to (3.45) and (3.48); recalling (3.47), (i) is proved.
For the last part we suppose by contradiction that there exist ε ∈ (0, 1), a sequence

δn ↓ 0, and a sequence xn such that

ϕδn(xn) < (1− ε)ϕ(xn)(3.49)

for every n ∈ N. Testing with the pair (v(t) := δt, z/δ), we easily obtain

ϕδ(z) ≤ b(δ)

δ
z ≤ C ′z ∀δ < 1.(3.50)

Taking into account (i) we see that (3.49) and (3.50) imply

xn → 0 and ϕδn(xn) → 0.(3.51)

Let (vn, ηn) be an admissible pair for the minimum problem defining ϕδn(xn) such
that ∫ ηn

0

b(|v′n|) dx+
∫ ηn

0

|v′′n|2 dx ≤ ϕδn(xn) + (ϕδn(xn))
2;(3.52)

arguing as in the proof of Lemma 3.6 we deduce that ‖v′n‖∞ → 0. Choose σ > 0 such
that

b(t) ≥
(
1− ε

2

)
Ct ∀t ≤ σ(3.53)

and let n be such that ‖v′n‖∞ ≤ σ for every n ≥ n. Then, using (3.52), (3.53), (3.50),
and (3.51) and recalling that ϕ(z) ≤ Cz for every z > 0 (see (3.15)), we estimate

ϕδn(xn) ≥
∫ ηn

0

b(|v′n|) dx− (ϕδn(xn))
2 ≥

(
1− ε

2

)
Cxn − (C ′xn)2

≥
(
1− 3

4
ε

)
Cxn ≥

(
1− 3

4
ε

)
ϕ(xn)

for n large enough, in contradiction to (3.49).
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We are now in a position to conclude the proof of Theorem 3.2.
Proof of Theorem 3.2: the case b0(1) < +∞.
The Γ-lim sup inequality can be proved as in the other case. We may suppose

that g �≡ 0; otherwise the Γ-lim inf inequality is trivial. Let εn → 0 and uεn → u in
L1 and such that ∃ limn→∞ Fεn(uεn) < +∞. Choose now an infinitesimal sequence
cn with the same properties as those in the proof of Lemma 3.11. Set

Dn :=

{
x ∈ I : |u′εn | >

cn
r(εn)

}
=

∞⋃
k=1

(akn, b
k
n) =

∞⋃
k=1

Ikn

and define

vεn(x) :=

{
uεn(x) if x ∈ I \Dn,

uεn(a
k
n) if x ∈ (akn, b

k
n).

Finally set wεn := uεn − vεn and zεn(x) := wεn(r(εn)x). For δ ∈ (0, 1) the same
arguments used in Lemma 3.11 yield

Fεn(uεn , Dn) ≥ (1− δ)
∑
k

(∫
Ikn/(r(εn))

b(|z′εn |) dx+
∫
Ikn/(r(εn))

|z′′εn |2 dx
)

≥ (1− δ)
∑
k

inf
η>0

inf

{∫ η

0

b(|z′|) dx+
∫ η

0

|z′′|2 dx : z ∈ W 2,2(0, η),

z(0) = 0, z(η) = |wεn(b
k
n)|, z′(0) = z′(η) = cn

}

= (1− δ)
∑
k

ϕcn(|wεn(b
k
n)|) = (1− δ)

∑
Svεn

ϕcn(v+
εn − v−εn)(3.54)

for n large enough (ϕcn is the function defined in Lemma 3.14 with δ = cn). Using
(ii) of Lemma 3.14, from (3.54) we deduce

Fεn(uεn , Dn) ≥ (1− δ)2
∑
Svεn

ϕ(v+
εn − v−εn)

for n large enough. Combining the estimate above with Lemma 3.10, we therefore
obtain (passing to a subsequence, if needed)

Fεn(uεn) ≥ (1− δ)2


∫

I\Dn
ψi(|v′εn |) dx+

∑
Svεn

ϕ(v+
εn − v−εn)




= (1− δ)2


∫

I

ψi(|v′εn |) dx+
∑
Svεn

ϕ(v+
εn − v−εn)


 ,(3.55)

where ψi is the sequence constructed in Lemma 3.10. Since, by Lemma 3.8, supnVar vεn
≤ supnVaruεn < +∞, Rellich’s theorem implies that vεn is precompact in L1, and
since vεn → u in measure (recall that |Dn| → 0), we deduce vεn → u in L1. Applying
Theorem 2.3 (recall that b0(1) = ϕ0(1)), from (3.55) we deduce

lim inf
n→∞ Fεn(uεn) ≥ (1−δ)2

(∫
I

ψi(|u′|) dx+
∑
Su

ϕ1(u
+ − u−) + (g∞(1) ∧ b0(1))|Dcu|

)
;

letting i ↑ +∞ and δ ↓ 0 we finally obtain the desired Γ-lim inf inequality.
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Remark 3.15. The structure assumption (iii) of Theorem 3.2 can be slightly
weakened without changing the result; more precisely it is sufficient to suppose that
there exists a family (gkn)n,k of positive continuous nondecreasing functions with the
following properties:

(i) fn ≥ gkn for every n, k ∈ N;
(ii) for every k ∈ N the family (gkn)n satisfies either (st1) or (st2);
(iii) gkn(t) → gk(t) for every t ≥ 0 and rng

k
n(t/rn) → bk(t) for every t > 0, with gk

and bk satisfying

gk ↑ g and (bk)0(1) ↑ b0(1) as k → ∞.

Indeed if Gk
n is the functional associated with gkn, then for every k ∈ N we have

Γ- lim inf
n→∞ Fn ≥ Γ- lim

n→∞Gk
n = Fbk,gk ,

where Fbk,gk ↑ Fb,g as k → ∞.
We want now to show that if g : [0,+∞) → [0,+∞) is any superlinear nonde-

creasing convex function and b : [0,+∞) → [0,+∞) is an arbitrary concave function
with b0(1) = +∞, then Fb,g can be reached by functionals of the form (3.1).

Theorem 3.16. Let g : [0,+∞) → [0,+∞) be nondecreasing, convex, and super-
linear (g∞(1) = +∞) and let b : [0,+∞) → [0,+∞) be nondecreasing and concave
with b(0) = 0 and b0(1) = +∞. Then there exists a family (fε) of positive, continuous,
and nondecreasing functions such that the functionals

Fε :=



∫
I

fε(|u′|) dx+ ε3
∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I)

Γ-converge with respect to the L1-metric to Fb,g as ε → 0+.
The theorem is an immediate consequence of Theorem 3.2 and of the following

proposition, which is proved in [22] (see Lemmas 6.6 and 6.7 of that work).
Proposition 3.17. Let g and b be as in the previous theorem. Then the functions

fε defined by

fε(t) := min

{
g(s) +

1

ε
b(ε(t− s)) : s ∈ [0, t]

}

are continuous, nondecreasing, and satisfy the following properties:
(i) fε(t) → g(t) for every t ≥ 0;
(ii) εf(t/ε) → b(t) for every t > 0;
(iii) setting xε := sup{x ≥ 0 : fε(x) = g(x)}, there holds that fε = g in [0, xε] and

fε is concave in [xε,+∞); moreover xε → +∞ as ε → 0+.
We conclude this subsection with some considerations about the asymptotic be-

havior of the function ϕ defined in (3.3).
Proposition 3.18.
(i) Let b(t) = ctp with c > 0 and p ∈ [0, 1). Then ϕ(z) = m(p)c

3
4−p z

2+p
4−p , where

(3.56)

m(p) := min



[(

3

1− p

) 1−p
4−p

+

(
1− p

3

) 3
4−p
](∫ 1

0

|v′′|2 dt
) 1−p

4−p (∫ 1

0

|v′|p dt
) 3

4−p
:

v ∈ W 2,2(0, 1), v(0) = 0, v(1) = 1, v′(0) = v′(1) = 0


 .
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(ii) Let b : [0,+∞) → [0,+∞) be a concave function with b0(1) �= 0. Then the
function ϕ defined in (3.3) satisfies the growth condition

C1(
√
z − 1) ≤ ϕ(z) ≤ C2(z + 1) ∀z ≥ 0,(3.57)

for suitable C1, C2 > 0.
(iii) For every γ ∈ [1/2, 1) there exists a concave function b satisfying the hypothe-

ses of Theorem 3.16 such that the associated function ϕ satisfies

lim
z→+∞

ϕ(z)

zγ
= +∞ and lim

z→+∞
ϕ(z)

zγ+ε
= 0 ∀ε > 0.(3.58)

Proof. (i) Let us set

Sη,z := {u ∈ W 2,2(0, η) : u(0) = 0, u(η) = z, u′(0) = u′(η) = 0}.
Noting that for every v ∈ Sη,z we can write v(·) = w(·/η) with w ∈ S1,z, we can use
the definition of ϕ to compute

ϕ(z) = inf
η

inf
v∈Sη,z

(
c

∫ η

0
|v′|p dt+

∫ η

0
|v′′|2 dt

)

= inf
w∈S1,z

inf
η

(
c

∫ η

0

1

ηp

∣∣∣∣w′
(
t

η

)∣∣∣∣p dt+
∫ η

0

1

η4

∣∣∣∣w′′
(
t

η

)∣∣∣∣2 dt
)

= inf
w∈S1,z

inf
η

(
cη1−p

∫ 1

0
|w′|p ds+ 1

η3

∫ 1

0
|w′′|2 ds

)

= inf
w∈S1,z



[(

3

1− p

) 1−p
4−p

+

(
1− p

3

) 3
4−p

]
c

3
4−p

(∫ 1

0
|w′′|2 ds

) 1−p
4−p (∫ 1

0
|w′|p ds

) 3
4−p




= inf
w∈S1,1



[(

3

1− p

) 1−p
4−p

+

(
1− p

3

) 3
4−p

](∫ 1

0
|w′′|2 ds

) 1−p
4−p (∫ 1

0
|w′|p ds

) 3
4−p


 c 3

4−p z
2+p
4−p

= m(p)c
3

4−p z
2+p
4−p .

It is clear from the computations above that if v is a solution of problem (3.56), then
the pair (η, w) defined by

η :=

[
3

cp(1− p)

] 1
4−p
(∫ 1

0
|v′′|2 ds∫ 1

0
|v′|p ds

) 1
4−p

z
2+p
4−p and w(t) := zv

(
t

η

)
(3.59)

is optimal.
(ii) Under our assumptions there exists C > 0 such that b(t) ≤ C(1+ t) for every

t ≥ 0. Take (η, v) such that v ∈ Sη,z, v is nondecreasing, and

Cη +

∫ η

0

|v′′|2 dx = m(0)C3/4
√
z.

Then

ϕ(z) ≤ C

∫ η

0

|v′| dx+ Cη +

∫ η

0

|v′′|2 dx = Cz +m(0)C3/4
√
z ≤ C ′(1 + z).

Concerning the reverse inequality, since, under our hypotheses, there exist α, β > 0
such that b(t) ≥ αt ∧ β, it will be enough to prove the following claim.
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Claim. Let b(t) = αt ∧ β with α, β > 0. Then

lim
z→+∞

ϕ(z)

m(0)β3/4
√
z
= 1.

First of all since b(t) ≤ β we immediately obtain by the previous point that

ϕ(z) ≤ m(0)β3/4
√
z.(3.60)

Let zn ↑ +∞ and let (ηn, zn) be an admissible pair for ϕ(zn) such that vn is nonde-
creasing and ∫ ηn

0

(α|v′n| ∧ β) dx+

∫ ηn

0

|vn′′|2 dx < ϕ(zn) + 1.(3.61)

Let σn ∈ (0, 1) be such that
∫
{x∈I: |v′

n|≤β/α} |v′n| dx = σnzn; since, by (3.60) and (3.61),

m(0)β3/4√zn + 1 ≥
∫ ηn

0

(α|v′n| ∧ β) dx ≥
∫
{x∈I: |v′

n|≤β/α}
α|v′n| dx = ασnzn,

it follows that σn → 0. Consider the sets Dn := {x ∈ I : |v′n| > β/α} = ∪∞
k=1I

k
n,

where (Ikn)k is the collection of the connected components of Dn. We denote also
Ikn := (akn, b

k
n). Let Φ ∈ C2([0, 1]) be such that Φ(0) = Φ′(0) = 0, Φ(1) = 1, and

Φ′(1) = β/α and, for every t ∈ [1, 1 + |Dn|], set

in(t) := min


k :

k∑
j=1

|Ijn| ≥ t− 1


 , τn(t) := t− 1−

in(t)−1∑
j=1

|Ijn|.

We can now define the new sequence of admissible pairs (η̃n, ṽn) by η̃n := |Dn| + 2

and ṽn(t) =
∫ t

0
ṽ′n(s) ds, where

ṽ′n :=



Φ′(s) if s ∈ [0, 1],

v′n(a
in(s)
n + τn(s)) if s ∈ [1, η̃n − 1],

Φ′(η̃n − s) if s ∈ [η̃n − 1, η̃n].

Note that ṽn is constructed by gluing together the pieces of vn defined by the sets
Ikn; since v

′
n(a

k
n) = v′(bkn) = β/α for every k, we have ṽn ∈ W 2,2(0, η̃n). Therefore

ṽn ∈ Sη̃n,z̃n with z̃n := (1− σn)zn + 2. Since by construction

∫
Dn

(α|v′n|∧β) dx+
∫
Dn

|vn′′|2 dx = βη̃n+

∫ η̃n

0

|ṽ′′n|2 dx−2
(∫ 1

0

|Φ′| dx+
∫ 1

0

|Φ′′|2 dx
)
,

recalling (3.61) and (i) we can estimate

ϕ(zn) + 1 ≥ βη̃n +

∫ η̃n

0

|ṽ′′n|2 dx− 2

(∫ 1

0

|Φ′| dx+
∫ 1

0

|Φ′′|2 dx
)

≥ inf
η>0

inf
Sη,z̃n

(
βη +

∫ η

0

|ṽ′′|2 dx
)
− 2

(∫ 1

0

|Φ′| dx+
∫ 1

0

|Φ′′|2 dx
)

= m(0)β3/4
√
(1− σn)zn + 2− 2

(∫ 1

0

|Φ′| dx+
∫ 1

0

|Φ′′|2 dx
)
,
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whence, taking into account that σn → 0,

lim inf
z→+∞

ϕ(z)

m(0)β3/4
√
z
≥ 1.

The claim is proved.
(iii) For simplicity we treat in detail only the case γ = 1/2. We take b(t) :=

1+ log(1+ t) for t > 0 and b(0) = 0. Fix p ∈ (0, 1) and take (η, w) with w ∈ Sη,z such
that ∫ η

0

|w′|p dx+
∫ η

0

|w′′|2 dx = m(p)z
2−p
4−p and η ≤ c(p)z

2−p
4−p .

This is possible thanks to (i) (see (3.59)). Then since b(t) ≤ 1 + tp we have

ϕ(z) ≤ (m(p) + c(p))z
2−p
4−p ;(3.62)

since as p varies in (0, 1) the exponent (2 − p)/(4 − p) varies in (1/2, 1), from (3.62)
we deduce that

lim
z→+∞

ϕ(z)

z(1/2)+ε
= 0 ∀ε > 0.

Now take two positive sequences (αn) and (βn) with βn → +∞ such that b(t) ≥
bn(t) := αnt ∧ βn for every t ≥ 0 and for every n ∈ N. Denoting by ϕn the function
associated with bn, the previous claim yields

lim inf
z→+∞

ϕ(z)√
z

≥ lim
z→+∞

ϕn(z)√
z

= m(0)β3/4
n

for every n ∈ N; letting n → ∞ we eventually complete the proof of (3.58). If γ is
any number in (1/2, 1), take b(t) = tp log(1+ t), where p satisfies γ = (2− p)/(4− p),
and argue as above.

4. Some applications. Given a positive function p(ε) such that limε→0+ p(ε) =
0, we consider the functionals

Fε(u) =



1

ε

∫
I

f(ε1/q|u′|) dx+ (p(ε))3
∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I).
(4.1)

Our purpose is to classify all the possible Γ-limits generated by the family (Fε) de-
pending on the asymptotic behavior of the “rescaling” function p. Let us begin by
considering the case q > 1. Let f : [0,+∞) → [0,+∞) be a nondecreasing continuous
function satisfying the following properties:

(H1) f is concave in (x1,+∞) for some x1 > 0;

(H2) limx→0+
f(x)
xq = α > 0, with q > 1;

(H3) limx→+∞
f(x)
x = 0.

We will show that there exists a unique (up to asymptotic equivalence) rescaling
function r(ε) such that the corresponding Γ-limit is a nontrivial “free-discontinuity”
functional. Setting h(x) := f(x)/x, such a rescaling function is defined as

r(ε) :=
ε1/q

h−1
(
ε1/q′

) ,(4.2)
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where q is the exponent appearing in (H2) and q′ denotes its Lebesgue conjugate
exponent (i.e., 1/q + 1/q′ = 1).

Remark 4.1. Since h is decreasing for x large enough (this is a consequence of
the concavity of f), the function r is well defined for ε small enough. Moreover the
sublinearity of f yields

lim
n→∞

ε
1/q
n

r(εn)
= lim

n→∞h−1(ε1/q
′

n ) = +∞

since h ↓ 0 as x → +∞.
The main result of this section is stated in the following theorem.
Theorem 4.2. Let I ⊂ R be a bounded interval and let f and p(ε) be as before.

Finally let (εn)n∈N be an infinitesimal sequence such that

lim
n→∞

p(εn)

r(εn)
= a > 0 and ∃ lim

n→+∞

f
(
t εn

1/q

r(εn)

)
f
(

εn1/q

r(εn)

) =: b(t) ∀t > 0.(4.3)

If b0(1) = +∞, then the functionals Fεn (defined in (4.1)) Γ-converge with respect to
the L1-metric to

F (u) :=



α

∫
I

|u′|q dx+
∑
x∈Su

ϕ(a)(u+(x)− u−(x)) if u ∈ SBV (I),

+∞ otherwise in L1(I),

(4.4)

where ϕ(a) is defined by (3.3) with b(a)(t) := ab(t/a) instead of b(t).
If b0(1) = C < +∞, then Γ-limn→∞ Fεn = F with F given by

F (u) :=




∫
I

g(|u′|) dx+
∑
x∈Su

ϕ(a)(u+(x)− u−(x)) + C|Dcu| if u ∈ BV (I),

+∞ if x ∈ L1(I) \BV (I),

(4.5)

where g := (αxq ∧ Cx)∗∗. Moreover, in both cases, every sequence un such that
supn(Fn(un) + ‖un‖1) < +∞ is strongly precompact in Lp for every p ≥ 1.

An easy consequence of the theorem is the fact that, up to asymptotic equivalence,
the function r defined in (4.2) is the unique nontrivial rescaling function; this is made
precise by the following corollary, whose easy proof is left to the reader (see [2]).

Corollary 4.3. Let I, f , and r be as in Theorem 3.2. Let (εn)n∈N and (an)n∈N

be two sequences converging to 0 and set

Fn(u) =




1

εn

∫
I

f(εn
1/q|u′|) dx+ (an)

3

∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I).

If limn→∞ an/r(εn) = 0, then Γ-limn→∞ Fn = 0 with respect to the L1-metric; if
limn→∞ an/r(εn) = +∞, then the functionals Fn Γ-converge to

F (u) :=


α
∫
I

|u′|q dx if u ∈ W 1,q(I),

+∞ otherwise in L1(I).
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Remark 4.4. Since f is concave for x large, it follows that b(·) is in turn concave.
Moreover, taking into account also the sublinear growth of f , we deduce the existence
of x2 ≥ x1 such that

f(a+ b) ≤ f(a) + f(b) ∀a, b > x2;(4.6)

if f is unbounded, then we have

b(t) ≤ lim sup
x→+∞

f(tx)

f(x)
≤ lim sup

x→+∞
f(([t] + 1)x)

f(x)

≤ lim sup
x→+∞

([t] + 1)f(x)

f(x)
= [t] + 1,(4.7)

where [t] denotes the integer part of t; if f is bounded, we get trivially b(t) ≡ 1.
Finally note that b(t) > 0 for any t > 0.

Proof of Theorem 4.2. Setting rn := p(εn) and fn(t) := 1
εn
f(ε

1/q
n t), by (H2)

we get immediately that fn(t) → αtq for every t ≥ 0; moreover, using the identity

f(
ε1/qn

r(εn) ) =
r(εn)
εn

, which follows easily from the definition of r (see (4.2)), for t > 0 we

have

rnfn

(
t

rn

)
=
p(εn)

r(εn)

r(εn)

εn
f

(
ε
1/q
n

r(εn)

r(εn)

p(εn)
t

)
(4.8)

=
p(εn)

r(εn)

f
(

εn
1/q

r(εn)
r(εn)
p(εn) t

)
f
(

εn1/q

r(εn)

) n→∞−→ ab

(
t

a

)
= b(a)(t),

where we used (4.3). By the first part of Theorem 3.2 we therefore obtain the Γ-
lim sup inequality. By Theorem 3.2 and Remark 3.15, the Γ-lim inf inequality will be
proved if for every δ > 0 we construct a family of functions (fδ

n) such that fn ≥ fδ
n,

fδ
n satisfies the structure condition (st2), and finally

fδ
n(t) → (1− δ)αtq ∀t ≥ 0, rnf

δ
n

(
t

rn

)
→ b(a)(t) ∀t > 0.(4.9)

It is also clear that if fδ verifies
(a) f ≥ fδ,

(b) limt→0+
fδ(t)
tq = (1− δ)α,

(c) limt→+∞
fδ(t)
f(t) = 1,

(d) there exists x such that fδ is convex in [0, x] and concave in [x,+∞),

then the family fδ
n(t) :=

1
εn
fδ(ε

1/q
n t) meets all the required conditions. Therefore we

are left only with the construction of such an fδ. By assumption we know that there
exist x′ < x′′ such that f(t) ≥ (1 − δ)αtq for every t ∈ [0, x′] and f is concave in
[x′′,+∞). Define a(t) := (1− δ)α(x′q/x′′)t, g := [min{(1− δ)αtq, a(t)}]∗∗, and finally

fδ(t) :=

{
g(t) if t ≤ x′′,
f(t) + g(x′′)− f(x′′) if t ≥ x′′;

it is easy to see that fδ satisfies all conditions (a), . . . , (d) (see Figure 2). Finally the
equicoerciveness of the family (Fεn) follows again from Theorem 3.2.
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x
qα(1−δ)

f δ

x’

f

a(t)

x"

Fig. 2. The construction of fδ.

An easy consequence of Theorem 4.2 is the following compactness result.
Theorem 4.5. Let I, f , and r be as above and consider the family of functionals

Fε defined in (4.1) with p(ε) satisfying 0 < lim infε→0+
p(ε)
r(ε) ≤ lim supε→0+

p(ε)
r(ε) < +∞.

Then for every infinitesimal sequence (εn)n there exist a subsequence, still denoted
by (εn)n, and a concave nondecreasing function b such that (Fεn) Γ-converges to a
functional F which is either as in (4.4) or as in (4.5).

Proof. It is sufficient to extract a subsequence such that (4.3) holds and then
apply Theorem 4.2. The existence of such a subsequence is an easy consequence of
Helly’s theorem.

Proposition 4.6. Let f be a function satisfying (H1), (H2), and (H3) and let
us suppose in addition that

∃ lim
x→+∞

f(tx)

f(x)
=: b(t) ∀t > 0.(4.10)

Let Fε be the functional defined in (4.1), with p satisfying limε→0+
p(ε)
r(ε) = a > 0 (r is

the rescaling function defined in (4.2)). If b0(1) = +∞, then the family Fε Γ-converges
to

F (u) :=



∫
I

|u′|q dx+m(γ)a
3(1−γ)
4−γ

∑
x∈Su

(u+ − u−)
2+γ
4−γ if u ∈ SBV (I),

+∞ in L1(I) \ SBV (I),
where γ = log b(e) and m(γ) is the constant defined in (3.56). If b0(1) < +∞, the
family (Fε) Γ-converges to

F (u) :=



∫
I

gα(|u′|) dx+ |Dsu| if u ∈ BV (I),

+∞ in L1(I) \BV (I),
where gα = (αxq ∧ x)∗∗.
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Proof. From Theorem 4.2 it is clear that Γ- limε→0+ Fε = F , where F is the
functional defined either in (4.4) or in (4.5). It remains only to prove that if (4.3)
holds, then

ϕ(a)(z) = m(γ)a
3(1−γ)
4−γ z

2+γ
4−γ ∀z > 0,(4.11)

and

ϕ(a)(z) = z ∀z > 0(4.12)

otherwise. First of all note that from (4.10) it follows immediately that b(st) = b(s)b(t)
for t, s > 0 and therefore b(t) = tγ for t > 0, with γ = log b(e); by Remark 4.4 (and
in particular by (4.7)), we have that γ ∈ [0, 1]. If γ < 1, then (4.11) follows from
Proposition 3.18 since b(a)(t) = ab(t/a) = a1−γtγ . If γ = 1, then by Lemma 3.5 we
get (4.12).

Let us now look at some examples. We will use the following notation: given two
functions r1 and r2 we will write r1 % r2 if limε→0+ r1(ε)/r2(ε) = 1.

Example 4.7. Let γ belong to [0, 1) and set f(x) := αx2/(1 + x2−γ); using the

definitions (see (4.2) and (4.3)), it is easy to see that r(ε) % ε
2−γ
2−2γ and b(t) = tγ .

Therefore, setting

Fε(u) :=



∫
I

α|u′|2
1 + ε

2−γ
2 |u′|2−γ

dx+ a3ε
6−3γ
2−2γ

∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I),

we have that the functionals Fε Γ-converge to

F γ(u) :=



α

∫
I

|u′|2 dx+m(γ)a
3(1−γ)
4−γ

∑
x∈Su

(u+ − u−)
2+γ
4−γ if u ∈ SBV (I),

+∞ in L1(I) \ SBV (I).

(4.13)

We recover in this way the result by Bouchitté, Dubs, and Seppecher (see [9]). Note
that as γ varies in [0, 1) the exponent 2+γ

4−γ varies in
[
1
2 , 1
)
.

Example 4.8. Let f(x) := (1 + xγ) log(1 + αx2) with γ ∈ [0, 1). We claim that

r(ε) % (1− γ)
1

1−γ
ε

2−γ
2−2γ(

log 1
ε

) 1
1−γ

.(4.14)

Indeed, with the same notation as that of Theorem 3.2, we have

lim
ε→0+

r(ε)

(
log 1

ε

) 1
1−γ

ε
2−γ
2−2γ

= lim
ε→0+

√
ε

h−1(
√
ε)

(
log 1

ε

) 1
1−γ

ε
2−γ
2−2γ

= lim
y→+∞

(
log 1

h2

) 1
1−γ

yh
1

1−γ
= (1− γ)

1
1−γ ,

where we used the change of variable y = h−1(
√
ε).

We finally observe that b(t) = limx→+∞ f(tx)/f(x) = tγ for all t > 0; therefore,
setting

F γ
ε (u) :=




1

ε

∫
I

(1 + ε
γ
2 |u′|γ) log(1 + εα|u′|2) dx

+

(
a1−γ(1− γ)

ε
2−γ

2

log 1
ε

) 3
1−γ ∫

I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I),
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we obtain that the sequence F γ
ε Γ-converges to the functional F γ defined in (4.13).

In particular, taking γ = 0, we see that the family of singular perturbations of the
rescaled Perona–Malik energy given by

Fε(u) :=



1

ε

∫
I

log(1 + εα|u′|2) dx+
(

aε

log 1
ε

)3 ∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I)

Γ-converge to F 0, as stated in the introduction.
Remark 4.9. Let f1 and f2 be two functions satisfying the hypotheses of The-

orem 3.2 and let r1 and r2 be the rescaling functions associated with f1 and f2,
respectively, according to (4.2). For ε > 0 and i = 1, 2 set

Fi,ε(u) :=



1

ε

∫
I

fi(
√
ε|u′|) dx+ (ri(ε))

3

∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I).

Suppose in addition that

lim
x→+∞

f1(x) log
γ(x)

f2(x)
= 1.(4.15)

Then for any infinitesimal sequence (εn)n Γ- limn→∞ F1,εn = F ⇐⇒ Γ- limn→∞ F2,εn

= F ; in other words, functions which differ asymptotically by a logarithmic factor
generate the same Γ-limits. To prove this fact we pass to a subsequence such that

∃ lim
n→+∞

f1

(
t

√
εn

r1(εn)

)
f1

( √
εn

r1(εn)

) =: b1(t) ∀t > 0

and

∃ lim
n→+∞

f2

(
t

√
εn

r2(εn)

)
f2

( √
εn

r2(εn)

) =: b2(t) ∀t > 0,

and we observe that (4.15) yields b1 ≡ b2; we conclude by applying Theorem 4.2.
Note that the results of Example 4.8 can be derived from those of Example 4.7 by
using the present remark.

Remark 4.10. The hypothesis (H3) is in some sense necessary; indeed, suppose

that f is an increasing function satisfying (H1), (H2), and limx→+∞
f(x)
x = C > 0.

Then it is easy to see that the functionals

Gε(u) :=



1

ε

∫
I

f(
√
ε|u′|) dx if u ∈ C1(I),

+∞ otherwise in L1(I)

Γ-converge to the functional G given by

G(u) :=


α
∫
I

|u′|qdx if u ∈ W 1,q(I),

+∞ otherwise in L1(I).

We leave the details to the reader.
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Let us treat the case where the function f in (4.1) has a finite strictly positive
derivative at the origin so that q = 1.

Theorem 4.11. Let f : [0,+∞) → [0,+∞) be continuous, nondecreasing, dif-
ferentiable in 0 with f ′(0) > 0, and concave in (x1,+∞) for a suitable x1 > 0. Then
the family

Fε :=



1

ε

∫
I

f(ε|u′|) dx+ ε3
∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise in L1(I)

Γ-converges to the functional

F (u) :=



f ′(0)

∫
I

|u′| dx+
∑
Su

ϕ(u+ − u−) + f ′(0)|Dcu| if u ∈ BV (I),

+∞ otherwise in L1(I),

where ϕ is the function defined in (3.3) with b = f . Moreover, every sequence uε such
that supε(Fε(uε) + ‖uε‖1) < +∞ is strongly precompact in Lp for every p ≥ 1.

Proof. Take an infinitesimal sequence (εn) and consider the family of func-
tions fn := (1/εn)f(εn·): we clearly have that fn(t) → f ′(0)t for every t > 0 and
εnfn(t/εn) = f(t) for every t ≥ 0 and every n ∈ N, so that (fn) verifies (3.5) and
(3.6) with g = f ′(0)t and b = f . Now construct a sequence of functions (fk) such
that f ≥ fk for every k, (fk)′(0) ↑ f ′(0) as k → ∞, and fk is linear in [0, yk] and
concave in [yk,+∞) for a suitable yk > 0 (it is clear that under our assumptions such
a construction is possible); then, setting fk

n(t) := (1/εn)f
k(εnt), we have that the

family (fk
n)n,k satisfies the weaker structure assumption introduced in Remark 3.15.

At this point we can conclude by applying Theorem 3.2.
The following example is in the spirit of Proposition 3.17.
Example 4.12. Given a convex nondecreasing positive function g and a concave

positive function b satisfying b0(1) = g∞(1) = C ∈ (0,+∞), we have that the family

Fε :=



∫
I

[
g(|u′|) ∧

(
1

ε
b(ε|u′|) + g(0)

)]
dx+ ε3

∫
I

|u′′|2 dx if u ∈ W 2,2(I),

+∞ otherwise

Γ-converges to the functional Fb,g defined in (3.4), i.e., to∫
I

g(|u′|) dx+
∑
Su

ϕ(u+ − u−) + C|Dcu| u ∈ BV (I),

where ϕ is the function associated with b according to (3.3). It is enough to apply
Theorem 3.2 to the family fε := g(t) ∧ ( 1

ε b(εt) + g(0)
)
after noting that

fε(t) → g(t) ∧ (b0(t) + g(0)) = g(t) and εfε

(
t

ε

)
→ b(t) ∧ g∞(t) = b(t).

5. The N-dimensional case. In this section we seek to extend the results of
the previous sections to the N -dimensional case. Let us fix first some notation: for
u ∈ W 2,2(Ω) we denote its hessian matrix by ∇2u and, given a matrix A, we consider
the norm defined by

‖A‖ := sup
|ξ|=1

Aξ · ξ .

It is convenient to introduce the following definition.
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Definition 5.1. Given X ⊆ L1(Ω) we say that the sequence of functionals
Fn : X → R ∪ {+∞} steadily Γ-converges in X to F : X → R ∪ {+∞} (and
we will write Γs-limn→∞ Fn = F or Fn

Γs→ F ) if, for every p ≥ 1, Fn|X∩Lp(Ω) Γ-
converges to F |X∩Lp(Ω) with respect to the L

p-convergence. Equivalently we have that
Γs-limn→∞ Fn = F if and only if the two following conditions are satisfied:

(i) for every (un)n ⊂ X such that un → u ∈ X in L1 there holds

lim inf
n→∞ Fn(un) ≥ F (u);

(ii) for every u ∈ X ∩Lp(Ω) there exists a sequence (un)n ⊂ X ∩Lp(Ω) such that

un → u in Lp and lim sup
n→∞

Fn(un) ≤ F (u).

We will also say that G is the steady relaxed functional of F if G is the Γs-limit of
the constant sequence Fn = F .

The main result of this section is the following theorem.
Theorem 5.2. Let Ω ⊂ R

N be an open bounded set with Lipschitz boundary
and let fn, rn satisfy hypotheses (i), (ii), and (iii) of Theorem 3.2. For every n ∈ N

consider the following functional Fn:

FN
n (u) =



∫

Ω

fn(|∇u|) dx+ (rn)
3

∫
Ω

‖∇2u‖2 dx if u ∈ W 2,2(Ω),

+∞ otherwise in L1(Ω).
(5.1)

Then

Γ- lim inf
n→∞ FN

n ≥ FN
b,g,(5.2)

with respect to the L1-convergence, where FN
b,g is the N -dimensional version of Fb,g

(see (3.4)) given by

FN
b,g(u) :=




∫
Ω

g1(|∇u|) dx+
∫
Su

ϕ1(u
+(x)− u−(x)) dHN−1

+ (g∞(1) ∧ b0(1))|Dcu| if u ∈ GBV (Ω),

+∞ otherwise.

Suppose now that fn satisfies the following additional growth conditions:
(gr1) there exist C1, C0 > 0 and q ≥ 1 such that fn(t) ≤ C1(1 + tq) and C0t

q ≤
g(t) ≤ C1(1 + tq) for every t ≥ 0;

(gr2) for every α > 0 there exists c(α) > 0 such that fn(αt) ≤ c(α)fn(t) for every
t ≥ 0,

where C1, C0, q, and c(α) are independent of n. Then the sequence (F
N
n ) Γs-converges

in GSBV q to FN
b,g. Moreover, if g

∞(1)∧ b0(1) < +∞, then Γs-limn→∞ FN
n = FN

b,g in

the whole space L1(Ω).
Remark 5.3. Note that if g satisfies both (gr1) and (gr2), then also the family

(fε) constructed in Proposition 3.17 verifies the same growth conditions.
Proof. Let us prove (5.2). The inequality will be proved by means of the so-called

slicing method, which relies on the use of Theorem 2.1.
Let us suppose for simplicity that g∞(1) ∧ b0(1) = +∞; the other case can be

treated in an analogous way. First of all we observe that for ξ ∈ Sn−1, for u ∈ W 2,2(Ω),
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and for A ∈ A(Ω) we have

FN
n (u,A) =

∫
Πξ

∫
Ayξ

(
fn(|∇u(y + tξ)|) + (rn)

3‖∇2u(y + tξ)‖2
)
dt dHN−1(y)

≥
∫

Πξ

∫
Ayξ

(
fn(|(uyξ)′|) + (rn)

3|(uyξ)′′|2
)
dt dHN−1(y)

=

∫
Πξ

Fn(u
y
ξ , A

y
ξ) dHN−1(y),

where Πξ is the hyperplane orthogonal to ξ, while A
y
ξ and uyξ are the one-dimensional

sections defined in subsection 2.1. Let un → u in L1(A) be such that supn F
N
n < +∞,

and note that for every ξ ∈ Sn−1 and for almost every y ∈ Ay
ξ the one-dimensional

sections (un)
y
ξ belong to W 2,2(Ay

ξ) and (un)
y
ξ → (u)yξ in L1(Ay

ξ). Hence, by using the
results of the previous sections and Fatou’s lemma, we have

lim inf
n→∞ FN

n (un, A) ≥
∫

Πξ

lim inf
n→∞ Fn((un)

y
ξ , A

y
ξ) dHN−1(y)

≥
∫

Πξ


∫

Ayξ

g(|(uyξ)′|) +
∑

(Su)yξ∩Ayξ

ϕ((uyξ)
+ − (uyξ)

−)


 HN−1(y).(5.3)

From (5.3), by virtue of Theorem 2.1, we deduce u ∈ GSBV (Ω) and

Γ- lim inf
n→∞ FN

n (u,A) ≥ α

∫
A

g(|∇u · ξ|) dx+
∫
Su∩A

ϕ(u+ − u−)|νu · ξ| dHN−1(5.4)

=

∫
A

ψξ(x)λ,

where we set

λ := LN + ϕ(u+ − u−)HN−1�Su

and

ψξ := g(|∇u · ξ|)(1− χSu) + |νu · ξ|χSu ;

since (5.4) holds true for every ξ and for every A ∈ A(Ω), we can choose a dense
sequence (ξi)i∈N in Sn−1 and apply Lemma 3.13 (with ν(·) := Γ- lim infn→∞ FN

n (u, ·))
to finally obtain

Γ- lim inf
n→∞ FN

n (u) ≥
∫

Ω

sup
i
ψξi dλ =

∫
Ω

g(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1,

as desired.
Concerning the Γ-lim sup inequality, we adapt the proof given in [3]. In what

follows we will assume that (gr1) and (gr2) hold true. For every p ≥ 1 we denote

Gp : L
p(Ω)×A(Ω) → [0,+∞],

Gp(u,A) := inf

{
lim sup
n→∞

FN
n (un, A) : un → u in Lp(A)

}
;
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our thesis is then equivalent to proving that Gp(u,Ω) ≤ FN
b,g(u,Ω) for every u ∈

GSBV q(Ω) ∩ Lp(Ω). It is clear that

Gp1(u,A) ≤ Gp2(u,A)(5.5)

for 1 ≤ p1 < p2.
Step 1. Let Π be an affine hyperplane, let Π+ and Π− denote the two open half-

spaces whose union gives R
N \ Π, and let ν be the unit normal vector to Π which

points toward Π+. Then, for every A ∈ A(Ω) and for every z ∈ R, we have

Gp(zχΠ+ , A) ≤ ϕ(|z|)HN−1(Π ∩A) = FN
b,g(zχΠ+ , A) ∀p ≥ 1.

First of all, since

lim
t→0

HN−1({x ∈ A : d(x) = t}) = HN−1(Π ∩A)

for δ ∈ (0, 1) we can choose η > 0 such that

sup
t∈(−η,η)

HN−1({x ∈ A : d(x) = t}) ≤ (1 + δ)HN−1(Π ∩A).(5.6)

Let un → zχ(0,+∞) be the one-dimensional recovery sequence constructed before and
satisfying ‖un‖∞ ≤ |z|, un ≡ zχ(0,+∞) in R \ (−η, η), and

lim
n→∞Fn(un, (−η, η)) = Fb,g(zχ(0,+∞), (−η, η)) = ϕ(|z|);(5.7)

we recall also that

rn‖u′n‖∞ ≤ K(5.8)

for a suitable K > 0. For every x ∈ Ω we define vn(x) := un(d(x)), where d is
the signed distance function from Π, positive in Π+ and negative in Π−. Clearly
vn ∈ W 2,2(Ω) and vn → zχΠ+ in Lp(Ω) for every p ≥ 1. Moreover, using the coarea
formula (see (2.1)), (5.6), and (5.8), we can estimate

FN
n (vn, A) =

∫
A∩(Π)η

fn(|u′(d)|) dx+ (rn)
3

∫
A∩(Π)η

‖u′′n(d)∇d⊗∇d+ u′n(d)∇2d‖2 dx

≤
∫ η

−η

∫
{x∈A: d(x)=t}

fn(|u′n(t)|) dHN−1 dt

+

∫ η

−η

(rn)
3

∫
{x∈A: d(x)=t}

((1 + ε)|u′′n(t)|2 + cε|u′n(t)|2‖∇2d‖) dHN−1 dt

≤
∫ η

−η

Fn(un, (−η, η))HN−1({x ∈ A : d(x) = t}) dt

+ cεKrn‖∇2d‖∞
∫ η

−η

HN−1({x ∈ A : d(x) = t}) dt

≤ (1 + ε)(1 + δ)HN−1(Π ∩A)Fn(un, (−η, η))

+ cε(1 + δ)HN−1(Π ∩A)2Kηrn‖∇2d‖∞,

where (Π)η denotes the η-neighborhood of Π. From the last inequality, taking into
account (5.7), we deduce

lim sup
n→∞

FN
n (vn, A) ≤ (1 + ε)(1 + δ)HN−1(Π ∩A)ϕ(|z|);

since δ and ε are arbitrary, Step 1 is proved.
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Step 2. Let u =
∑k

i=1 ziχEi with Ei closed polyhedra such that
◦
Ei ∩

◦
Ej= ∅ for

i �= j. Then

Gp(u,A) ≤ FN
b,g(u,A)

for all A ∈ A(Ω) and for every p ≥ 1.
The proof combines Step 1 with a standard partition of unity argument; we refer

to Proposition 2.6 of [3] for the details.
Step 3. Let A′, A, B ∈ A(I) such that A′ ⊂⊂ A and let φ be a cut-off function

between A′ and A. Then there exists a positive constant C > 0 such that, for every
u, v ∈ W 2,2(Ω) ∩ Lq(Ω), we have

(5.9) FN
n (φu+ (1− φ)v,A′ ∪B) ≤ FN

n (u,A) + FN
n (v,B)

+ C(FN
n (u, S) + FN

n (v, S)) + C‖∇φ‖q∞‖u− v‖qLq(S) + CLN (S)

+ C(rn)
3(‖∇φ‖2

∞‖∇u−∇v‖2
L2(S) + ‖∇2φ‖2

∞‖u− v‖2
L2(S)),

where S := (A \A′) ∩B.
Using the monotonicity of f , we can estimate

FN
n (φu+ (1− φ)v,A′ ∪B)

≤ FN
n (u,A) + FN

n (v,B) +

∫
S

fn(|(u− v)∇φ|+ φ|∇u|+ (1− φ)|∇v|) dx

+ C1(rn)
3

∫
S

(|∇φ|2|∇u−∇v|2 + |u− v|2‖∇2φ‖2 + ‖∇2u−∇2v‖2) dx

≤ FN
n (u,A) + FN

n (v,B) +

∫
S

(fn(3|(u− v)∇φ|) + fn(3φ|∇u|) + fn(3(1− φ)|∇v|)) dx

+ C1(rn)
3

∫
S

(|∇φ|2|∇u−∇v|2 + |u− v|2‖∇2φ‖2 + ‖∇2u‖2 + ‖∇2v‖2) dx =: (∗).

Using (gr2) we can continue our estimate:

(∗) ≤ FN
n (u,A) + FN

n (v,B) + (C1 + c(3))(FN
n (u, S) + FN

n (v, S))

+

∫
S

fn(3|(u− v)∇φ|) dx

+ C1(rn)
3

∫
S

(|∇φ|2|∇u−∇v|2 + |u− v|2‖∇2φ‖2) dx.

Recalling (gr1), from the last inequality we easily get (5.9).
Step 4. Let A′, A, B, and S be as in Step 3 and p ≥ q. Then for every u,

v ∈ Lp(Ω) and for every K ∈ N there exists a cut-off function φK between A and A′

such that

Gp(φKu+ (1− φK)v,A′ ∪B) ≤
(
1 +

C

K

)
(Gp(u,A) +Gp(v,B))(5.10)

+ C
Kq−1

dq
‖u− v‖qLq(S) +

C

K
LN (S),

where d := dist(A′,Ω \A).
First of all choose un, vn ∈ W 2,2(Ω) such that un → u, vn → v in Lp(Ω) and

Gp(u,A) = lim
n→∞FN

n (un, A) and Gp(u,B) = lim
n→∞FN

n (vn, B).
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For j ∈ {0, 1, . . . ,K} we consider the set

AK
j =

{
x ∈ A : dist(x,A′) < j

d

K

}
.

For any j ∈ {0, 1, . . . ,K − 1} we choose a cut-off function φK
j between AK

j and AK
j+1

such that

‖∇φK
j ‖∞ ≤ 2

K

d
;(5.11)

finally we set SK
j :=

(
AK

j+1 \A
K

j

) ∩B. By using (5.9) and (5.11), we get

FN
n (φK

j un + (1− φK
j )vn, A

′ ∪B)

≤ FN
n (un, A) + FN

n (vn, B) + C(FN
n (un, S

K
j ) + FN

n (vn, S
K
j )) + C

Kq

dq
‖u− v‖q

Lq(SKj )

+ C(rn)
3(‖∇φK

j ‖2
∞‖∇un −∇vn‖2

L2(SKj ) + ‖∇2φK
j ‖2

∞‖un − vn‖2
L2(SKj )).

Passing to a subsequence if needed, it follows that there exists jK ∈ {0, 1, . . . ,K − 1}
such that

FN
n (φK

jKun + (1− φK
jK )vn, A

′ ∪B) ≤ 1

K

K−1∑
j=0

FN
n (φK

j un + (1− φK
j )vn, A

′ ∪B)

≤
(
1 +

C

K

)
(FN

n (un, A) + FN
n (vn, B)) + C

Kq−1

dq
‖un − vn‖qLq(S)

+
C

K
LN (S) + C(K)(rn)

3(‖∇un −∇vn‖2
L2(S) + ‖un − vn‖2

L2(S))(5.12)

for every n ∈ N. Recall that by the Nirenberg inequality (see [25]) there exists M > 0
such that

‖∇u‖L2(S) ≤ M(‖∇2u‖1/2
L2(S)‖u‖1/2

L2(S) + ‖u‖L2(S))

for all u ∈ W 2,2(S). Hence, from the equiboundedness of

(‖un − vn‖L2(S) + (rn)
3‖∇2un −∇2vn‖2

L2(S))n,

we get

(rn)
3‖∇un −∇vn‖2

L2(S) → 0 as n → ∞.

Thus (5.10) follows letting n tend to +∞ in (5.12).
Step 5. For every u ∈ GSBV q(Ω) ∩ L∞(Ω) we have

Gp(u,Ω) ≤
∫

Ω

g(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1 ∀p ≥ 1.(5.13)

We start with u ∈ W(Ω) (see subsection 2.3) and, for every h ∈ N, we consider the
sets

Bh := (Su)1/h ∩ Ω =

{
x ∈ Ω : dist(x, Su) <

1

h

}
;
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by the regularity assumptions on Su we have that LN (Bh) = O(1/h), and therefore,
setting

ρh := h−
1
2

(∫
Bh

|∇u|2
) 1

4

,

we have

lim
h→∞

1

ρh

∫
Bh

|∇u| dx = 0.(5.14)

By a standard argument based on the use of the coarea formula (2.1) (see, for example,
[12]) it is possible to find a sequence uh satisfying the hypotheses of Step 2 such that

‖u− uh‖L∞(Bh) ≤ ρh, HN−1((Suh ∩Bh) \ Su) ≤ 1

ρh

∫
Bh

|∇u| dx+O(1).(5.15)

We apply Step 4 with A = Bh, A
′ = B2h, B = Ω \ B3h to obtain the existence of a

cut-off function φh
K such that

Gp(φ
h
Kuh + (1− φh

K)u,Ω)

≤
(
1 +

C

K

)
(Gp(u,Ω \ Su) +Gp(uh, Bh)) + C

Kq−1

dq
‖u− uh‖qLq(S) +

C

K
LN (Bh)

≤
(
1 +

C

K

)
(Gp(u,Ω \ Su) +Gp(uh, Bh)) +

(
CKq−1hqρqh +

C

K

)
LN (Bh),

(5.16)

where p ≥ q. By Step 2 we have

Gp(uh, Bh) ≤
∫
Suh∩Bh

ϕ(u+
h − u−h ) dHN−1

≤
∫
Su

ϕ(u+ − u−) dHN−1 + ϕ(2‖u‖∞)HN−1((Suh ∩Bh) \ Su)

+

∫
Su

(ϕ(u+
h − u−h )− ϕ(u+ − u−)) dHN−1;

using (5.15) and (5.14) and noting that, by the dominated convergence theorem,

lim
h→∞

∫
Su

(ϕ(u+
h − u−h )− ϕ(u+ − u−) dHN−1 = 0,

we therefore obtain

lim sup
h→∞

Gp(uh, Bh) ≤
∫
Su

ϕ(u+ − u−) dHN−1.(5.17)

Moreover, taking as approximating sequence un = u for every n ∈ N, we discover that

Gp(u,Ω \ Su) ≤
∫

Ω

g(|∇u|) dx.(5.18)

Combining (5.17) and (5.18), letting h → +∞ in (5.16), and taking into account the
lower semicontinuity of Gp, we finally get (5.13) for p ≥ q and therefore for every
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p ≥ 1, by virtue of (5.5). For a general u ∈ GSBV q(Ω)∩L∞(Ω) we conclude by using
a standard density argument based on Theorem 2.5.

We are now in a position to complete the proof of Theorem 5.2. Take u ∈
GSBV q(Ω) ∩ Lp(Ω) and set uk := (−k ∨ u) ∧ k. Then, by (5.13) and the monotone
convergence theorem, we have

Gp(u,Ω) ≤ lim inf
k→∞

Gp(uk,Ω)

≤ lim
k→∞

∫
Ω

g(|∇uk|) dx+
∫
Su

ϕ(u+
k − u−k ) dHN−1

=

∫
Ω

g(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1.

If g∞(1) ∧ b0(1) = +∞, then we are done; if that is not the case, then the conclusion
follows from the fact that, thanks to Theorem 2.3 and an easy truncation argument,
FN
b,g coincides with the steady relaxed functional (see Definition 5.1) of

H(u) :=



∫

Ω

g(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1 if u ∈ GSBV q(Ω),

+∞ if u ∈ L1(Ω) \GSBV q(Ω).

The following two corollaries are an immediate consequence of Theorems 5.2, 4.2,
and 4.11.

Corollary 5.4. Let Ω ⊂ R
N be an open bounded set with Lipschitz boundary

and let f , r, p be as in Theorem 4.2. Let (εn)n be an infinitesimal sequence such that
(4.3) holds. If b0(1) = +∞, then the functionals

FN
n (u) =




1

εn

∫
Ω

f(
√
εn|∇u|) dx+ (p(εn))

3

∫
Ω

‖∇2u‖2 dx if u ∈ W 2,2(Ω),

+∞ otherwise in L1(Ω)

Γs-converge in GSBV q(Ω) to

FN (u) :=


α
∫

Ω

|∇u|q dx+
∫
Su

ϕ(a)(u+(x)− u−(x)) dHN−1 if u ∈ GSBV (Ω),

+∞ otherwise in L1(Ω),

where ϕ(a) is as in Theorem 4.2. If b0(1) = C, then the sequence (FN
n ) Γs-converges

in L1(Ω) to

FN (u) :=



∫
Ω
g(|∇u|) dx+

∫
Su

ϕ(a)(u+(x)− u−(x)) dHN−1 + C|Dcu| if u ∈ GBV (Ω),

+∞ if u ∈ L1(Ω) \GBV (Ω),

with ϕ(a) still given by (3.3) and g = (αxq ∧ Cx)∗∗.
Corollary 5.5. Let Ω ⊂ R

N be an open bounded set with Lipschitz boundary
and let f be as in Theorem 4.11. Then the family

FN
ε :=



1

ε

∫
Ω

f(ε|∇u|) dx+ ε3
∫

Ω

‖∇2u‖2 dx if u ∈ W 2,2(Ω),

+∞ otherwise in L1(Ω)
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Γs-converges in L1(Ω) to the functional

FN (u) :=


f

′(0)
∫

Ω

|∇u| dx+
∫
Su

ϕ(u+ − u−) dHN−1 + f ′(0)|Dcu| if u ∈ BV (Ω),

+∞ otherwise in L1(Ω),

where ϕ is the function defined in (3.3) with b = f .
To conclude the N -dimensional analysis, it remains to prove the equicoerciveness

of the approximating functionals: this is done in the following proposition.
Proposition 5.6. Under the same hypotheses as Theorem 5.2, let (un)n ⊂ L1(Ω)

be equi-integrable and such that

sup
n
FN
n (un) < M < +∞.

Then (un)n is strongly precompact in L
1(Ω). Suppose in addition that FN

n
Γs→ G in

L1(Ω). Then for every g ∈ Lp(Ω) (p > 1) and β > 0 the solutions un of

min

{
FN
n (v) + β

∫
Ω

|v − g|p dx : v ∈ W 2,2(Ω)

}

converge, up to a subsequence, in the Lp(Ω)-norm to a solution of

min

{
G(v) + β

∫
Ω

|v − g|p dx : v ∈ L1(Ω)

}
.

Proof. As at the beginning of the proof of Theorem 5.2, we fix ξ ∈ Sn−1 and get

M ≥ FN
n (un) ≥

∫
Ωξ

gn(y) dHN−1(y),(5.19)

where gn(y) := Fn((un)
y
ξ ,Ω

y
ξ). Using the equi-integrability assumption, for δ > 0 we

find σδ > 0 such that

LN (B) ≤ σδ ⇒
∫
B

|un| dx < δ ∀n ∈ N.(5.20)

Choose k > 0 such that

Mdiam(Ω)

k
≤ σδ;(5.21)

set An,k := {y ∈ Ωξ : gn(y) > k} and denote by Pξ the orthogonal projection on Πξ.
We now define the new sequence vn in the following way:

vn(x) :=

{
un(x) if Pξ(x) ∈ Ωξ \An,k,

0 otherwise.

Note that ‖un−vn‖L1(Ω) =
∫
{x∈Ω:Pξ(x)∈An,k} |un| dx; since by Chebyshev’s inequality,

(5.19), and (5.21) we have

LN ({x ∈ Ω : Pξ(x) ∈ An,k}) ≤ HN−1(An,k)diam(Ω)

≤ ‖gn‖L1(Ωξ)

k
diam(Ω) ≤ M

k
diam(Ω) ≤ σδ,

recalling (5.20), we obtain ‖un − vn‖L1(Ω) ≤ δ.
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Moreover, Fn((vn)
y
ξ ,Ω

y
ξ) ≤ gn(y)(1 − χAn,k(y)) ≤ k, and therefore, by the one-

dimensional results, (vn)
y
ξ is precompact in L1(Ωy

ξ) for every y ∈ Ωξ. Since the

construction can be repeated for every δ > 0 and for every ξ ∈ Sn−1, the thesis
follows by applying Lemma 2.2.

Concerning the second part, we first observe that

sup
n

(
FN
n (un) + β

∫
Ω

|un − g|p dx
)

≤ sup
n
fn(0)|Ω|+ β

∫
Ω

|g|p dx < +∞,(5.22)

and therefore, by the first part of the theorem, there exist u ∈ L1(Ω) and a subse-
quence, still denoted by un, such that un → u in L1. Note that by (5.22) supn ‖un‖Lp <
+∞, which implies that un ⇀ u weakly in Lp. Since FN

n
Γs→ G, there exists vn → v

in Lp such that FN
n (vn) → G(u), and therefore, by the minimality of un,

G(u) + β

∫
Ω

|u− g|p dx ≤ lim inf
n→∞

(
FN
n (un) + β

∫
Ω

|un − g|p dx
)

≤ lim sup
n→∞

(
FN
n (un) + β

∫
Ω

|un − g|p dx
)

≤ lim
n→∞

(
FN
n (vn) + β

∫
Ω

|vn − g|p dx
)
= G(u) + β

∫
Ω

|u− g|p dx,

whence

G(u) + β

∫
Ω

|u− g|p dx = lim
n→∞

(
FN
n (un) + β

∫
Ω

|un − g|p dx
)

≥ G(u) + lim sup
n→∞

β

∫
Ω

|un − g|p dx

≥ G(u) + lim inf
n→∞ β

∫
Ω

|un − g|p dx ≥ G(u) + β

∫
Ω

|u− g|p dx.

We deduce that
∫
Ω
|un − g|p dx → ∫

Ω
|u − g|p dx, and since un − g ⇀ u − g weakly

in Lp we conclude that un → u in Lp. The minimality of u follows now from the
properties of Γ-convergence.

We conclude this section by remarking that all the examples contained in section 4
can be generalized to the N -dimensional case by means of Theorem 5.2. In particular
let us highlight the following ones.

Example 5.7 (Perona–Malik energy). By Example 4.8 and Theorem 5.2 the
functionals

FN
ε (u) :=



1

ε

∫
Ω

log(1 + εα|∇u|2) dx+
(

aε

log 1
ε

)3 ∫
Ω

‖∇2u‖2 dx if u ∈ W 2,2(Ω),

+∞ otherwise in L1(Ω)

Γs-converge in GSBV 2(Ω) to

FN (u) :=


α
∫

Ω

|∇u|2 dx+m(0)a
3
4

∫
Su

√
u+ − u− dHN−1 if u ∈ GSBV (Ω),

+∞ in L1(Ω) \GSBV (Ω).



804 MASSIMILIANO MORINI

Example 5.8. Let b and g be as in Example 4.12 (and suppose for simplicity
g(0) = 0); then the family

FN
ε :=



∫

Ω

(
g(|∇u|) ∧ 1

ε
b(ε|∇u|)

)
dx+ ε3

∫
Ω

‖∇2u‖2 dx if u ∈ W 2,2(Ω),

+∞ otherwise

Γs-converges in L1(Ω) to the functional

∫

Ω

g(|∇u|) dx+
∫
Su

ϕ(u+ − u−) dHN−1 + C|Dcu| if u ∈ GBV (Ω),

+∞ otherwise,

where ϕ is the function defined in (3.3).
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Abstract. In this paper we consider a two-species competition model described by a reaction-
diffusion system with nonlocal delays. In the case of a general domain, we study the stability of the
equilibria of the system by using the energy function method. When the domain is one-dimensional
and infinite, by employing linear chain techniques and geometric singular perturbation theory, we
investigate the existence of travelling front solutions of the system.

Key words. competition-diffusion, equilibrium, stability, travelling front, energy function, ge-
ometric singular perturbation
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1. Introduction. Let R = (−∞,∞), and let Ω be some open bounded region
in RN , N ≤ 3, with a smooth boundary ∂Ω. Let ∂/∂n denote the outward normal
derivative on ∂Ω and let ∆ be the Laplacian operator. For 1 ≤ p ≤ ∞, let Lp(Ω)
denote the Banach space of measurable functions u on Ω satisfying

‖u‖p =


(∫

Ω
|u(x)|p dx

)1/p

< ∞ if 1 ≤ p < ∞,

ess supx∈Ω|u(x)| < ∞ if p =∞.

In particular, if p = 2, L2(Ω) becomes a Hilbert space with the usual inner product
〈·, ·〉 and ‖ · ‖2

2 = 〈·, ·〉. Also, let ||| · |||2 denote the norm in L2((0, T );L2(Ω;R)), i.e.,

|||u|||2 =
(∫ T

0

‖u(s)‖2
2 ds

)1/2

.

Let u1(t, x) and u2(t, x) denote the population densities of two competitors at
time t and location x, and let the diffusivities of the two competitors be d1 and d2,
respectively. This paper is concerned with the following two-species Lotka–Volterra
competition-diffusion model with distributed delays:

∂u1

∂t
= d1∆u1 + u1

(
r1 − a1u1 − b1

∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)
,

∂u2

∂t
= d2∆u2 + u2

(
r2 − b2

∫
Ω

∫ t

−∞
K2(x, y, t− s)u1(s, y) ds dy − a2u2

)(1.1)
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for t > 0, x ∈ Ω, under the homogeneous Neumann boundary conditions
∂u1

∂n
=

∂u2

∂n
= 0, x ∈ ∂Ω,(1.2)

and initial conditions

u1(θ, x) = φ1(θ, x) ≥ 0, u2(θ, x) = φ2(θ, x) ≥ 0, (θ, x) ∈ (−∞, 0]× Ω,(1.3)

where φ1 and φ2 are continuous functions. The parameters ri, ai, and bi, i = 1, 2, are
all positive constants.

The kernelsKi(x, y, σ), i = 1, 2, are nonnegative functions which are continuous in
(x, y) ∈ Ω̄× Ω̄ for each σ ∈ [0,∞) and measurable in σ ∈ [0,∞) for each pair (x, y) ∈
Ω̄ × Ω̄. We assume that the kernels depend on both the spatial and the temporal
variables. The delays in this type of model formulation are called spatiotemporal
delays or nonlocal delays. This is a formulation that aims to account for the fact that,
at previous times, individuals have not necessarily been at the same point in space.
See Gourley and Britton [8] for a detailed discussion of this modelling issue on an
infinite spatial domain and Gourley and So [9], who more recently have treated the
finite domain case, explaining in detail why it leads to the type of delay term we are
using in (1.1). See also Yamada [16] and the references cited therein. Gourley and
So [9] concentrated on the one-dimensional domain [0, π] and showed that on this
domain a delayed variable u(t, x), representing a population with diffusivity d, should
be modelled in the equations by using a term of the form∫ π

0

∫ t

−∞
G(x, y, t− s)k(t− s)u(s, y) ds dy,

where k(t) is the weight given to the population t time units ago and, in the homo-
geneous Neumann problem,

G(x, y, t) =
1

π
+
2

π

∞∑
n=1

e−dn
2t cosnx cosny.(1.4)

In our formulation we are, for convenience, absorbing the G and k of each delay term
into a single kernel Ki(x, y, t). Regarding these kernels Ki, we shall assume that∫

Ω

Ki(x, y, σ) dx =

∫
Ω

Ki(x, y, σ) dy = ki(σ), σ ≥ 0,(1.5)

and ∫ ∞

0

ki(σ) dσ = 1, σ ki(σ) ∈ L1((0,∞);R).(1.6)

Assumption (1.5), that integration of Ki(x, y, s) with respect to either x or y removes
both the x and the y dependence, is easily seen to be reasonable when we have in
mind that Ki(x, y, t) is a product of the form G(x, y, t)k(t), with G given by (1.4) or
the corresponding expression for whatever domain is under consideration.

The local existence of solutions (u1(t, x), u2(t, x)) to (1.1)–(1.3) follows from the
results in Yamada [17] or Ruan and Wu [11]. The comparison theorem for parabolic
differential equations implies that (u1(t, x), u2(t, x)) exists globally such that

0 ≤ u1(t, x) ≤ max

{
r1

a1
, supθ≤0 ‖φ1(θ, ·)‖C(Ω̄;R)

}
,

0 ≤ u2(t, x) ≤ max

{
r2

a2
, supθ≤0 ‖φ2(θ, ·)‖C(Ω̄;R)

}(1.7)
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for x ∈ Ω̄ and t ∈ R. Also, by the strong maximum principle, if φ1(0, x) �≡ 0 and
φ2(0, x) �≡ 0, then we have u1(t, x) > 0, u2(t, x) > 0 for all x ∈ Ω̄ and t > 0.

Notice that system (1.1) has a trivial equilibrium E0 = (0, 0), two semitrivial
spatially homogeneous equilibria

E1 =

(
r1

a1
, 0

)
, E2 =

(
0,

r2

a2

)
,

and a positive spatially homogeneous equilibrium

E∗ =
(
r1a2 − r2b1
a1a2 − b1b2

,
r2a1 − r1b2
a1a2 − b1b2

)
,(1.8)

provided that a1a2 �= b1b2 and either (i) r2b1 < r1a2 and r1b2 < r2a1 or (ii) r2b1 >
r1a2 and r1b2 > r2a1. The trivial equilibrium E0 is of no interest here. The stabil-
ity of the semitrivial equilibrium Ei means that the ith competitor (i = 1, 2) wins
the competition. These semitrivial equilibria are of considerable interest ecologically
because of the possibility of a transition between the two. In fact we shall prove in
this paper that, when the coexistence equilibrium E∗ is absent, a transition can occur
between E1 and E2 in the form of a travelling wave-front solution.

Various special cases of system (1.1) have been studied by many researchers.
When the delay kernels are independent of the spatial variable (i.e., when the de-
lays are local), Ruan and Wu [11] studied the stability of the equilibria. See also
Ruan and Zhao [12] for competition models with finite delays and Schiaffino and Te-
sei [13] for a nonlinear competition system. When there are no delays, the stability
of the competition-diffusion model was investigated by Zhou and Pao [18]. Delayed
competition models without diffusion have been studied by Cushing [2] and by Gopal-
samy [6], and the monograph by Wu [15] provides a very comprehensive description
of current research into delay-diffusion equations. When the domain Ω = (−∞,∞)
and there are no delays, Conley and Gardner [1], Gardner [4], Kan-on [10], and Tang
and Fife [14] have shown that the competition-diffusion model has travelling front
solutions connecting the boundary equilibria(

r1

a1
, 0

)
and

(
0,

r2

a2

)
.(1.9)

The existence of such solutions even for the nondelay problem is a highly nontriv-
ial matter because one is seeking a heteroclinic connection between equilibria in a
four-dimensional phase space. The introduction of delays increases the dimension to
eight (for the particular delays we consider). However, when the delays are small,
considerable progress can be achieved by the use of geometric singular perturbation
theory.

In this paper we shall first discuss the stability of the equilibria E1, E2, and E∗

by using the energy function method (see Yamada [16, 17]). Then, for the case when
Ω = (−∞,∞), we will study the existence of travelling front solutions of system (1.1)
connecting the two boundary equilibria E1 and E2.

2. Convergence. The main result of this section is a theorem on the global
stability of each of the equilibria. First, we shall derive an inequality that will be
needed in the proof of the main theorem. The hypotheses of this lemma are not
restricted to this application (see, in particular, Gourley and So [9]).
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Lemma 2.1. Let K(x, y, t) = G(x, y, t)k(t), x, y ∈ Ω ⊂ RN , where k(t) ≥ 0 and
G(x, y, t) is the solution of

∂G

∂t
= d∇2G,

∂G

∂n
= 0 on ∂Ω, G(x, y, 0) = δ(x− y).(2.1)

Then ∥∥∥∥
∫

Ω

∫ t

−∞
K(x, y, t− s)u(s, y) ds dy

∥∥∥∥
2

≤
∫ t

−∞
k(t− s)‖u(s)‖2 ds

for any function u(t, x) such that ∂u/∂n = 0 on ∂Ω.
Remark 2.2. Before we prove this lemma let us stress that x and y are both

vectors in RN here. For the purposes of computing G, ∇2 is calculated with respect
to either of these vectors (say x for definiteness) with the other one, y, held fixed. In
the case considered in detail in [9], Ω is one-dimensional, ∇2 = ∂2/∂x2, and G(x, y, t)
is given by (1.4).

Proof of Lemma 2.1. We have∥∥∥∥
∫

Ω

∫ t

−∞
K(x, y, t− s)u(s, y) ds dy

∥∥∥∥
2

=

∥∥∥∥
∫ t

−∞

∫
Ω

K(x, y, t− s)u(s, y) dy ds

∥∥∥∥
2

≤
∫ t

−∞

∥∥∥∥
∫

Ω

K(x, y, t− s)u(s, y) dy

∥∥∥∥
2

ds

=

∫ t

−∞
k(t− s)

∥∥∥∥
∫

Ω

G(x, y, t− s)u(s, y) dy

∥∥∥∥
2

ds.

Therefore, we want to show that∥∥∥∥
∫

Ω

G(x, y, t− s)u(s, y) dy

∥∥∥∥
2

≤ ‖u(s)‖2

for s ≤ t. Let λk, k = 0, 1, 2, . . ., be the eigenvalues of −d∇2 under homogeneous
Neumann boundary conditions, with corresponding normalized (in L2) eigenfunctions
φk(x) so that

−d∇2φk = λkφk,
∂φk
∂n

= 0 on ∂Ω.

Then λ0 = 0 with φ0 = constant, and λk > 0 for all other k. The solution G(x, y, t)
of (2.1) will be given by a Fourier series expansion in terms of these functions φ(x)
with coefficients depending on y. In fact,

G(x, y, t) =

∞∑
n=0

e−λntφn(x)φn(y).

Also, u(t, x) satisfies the boundary conditions and therefore can be expanded in terms
of the φn:

u(t, x) =

∞∑
n=0

an(t)φn(x).
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Therefore, since the φk are orthonormal,∫
Ω

G(x, y, t− s)u(s, y) dy =

∞∑
n=0

an(s)e
−λn(t−s)φn(x),

and hence, by Parseval’s identity,

∥∥∥∥
∫

Ω

G(x, y, t− s)u(s, y) dy

∥∥∥∥
2

=

( ∞∑
n=0

a2
n(s)e

−2λn(t−s)
)1/2

≤
( ∞∑
n=0

a2
n(s)

)1/2

= ‖u(s)‖2

as desired. The proof is complete.
Next, we state our main theorem of this section.
Theorem 2.3. Let (u1(t, x), u2(t, x)) satisfy (1.1) with boundary conditions (1.2)

and initial conditions (1.3), with φ1(0, x) �≡ 0 and φ2(0, x) �≡ 0.
(i) If r1/r2 > a1/b2 > b1/a2, then limt→∞(u1(t, x), u2(t, x)) = (r1/a1, 0) uni-
formly for x ∈ Ω̄.

(ii) If r1/r2 < b1/a2 < a1/b2, then limt→∞(u1(t, x), u2(t, x)) = (0, r2/a2) uni-
formly for x ∈ Ω̄.

(iii) If b1/a2 < r1/r2 < a1/b2, then limt→∞(u1(t, x), u2(t, x)) = (u
∗
1, u

∗
2) uniformly

for x ∈ Ω̄, where u∗
1 and u∗

2 are the components of the equilibrium E∗ given
by (1.8).

Proof. We prove only (i); the proofs of (ii) and (iii) are similar. To study the
stability of the semitrivial equilibrium E1 = (r1/a1, 0), define

E(u1) =

∫
Ω

[
u1 − r1

a1
− r1

a1
log

u1

r1/a1

]
dx, F (u2) =

∫
Ω

u2 dx.(2.2)

Then E(u1) ≥ 0 and F (u2) ≥ 0. For some constant α > 0 to be found later, we have

d

dt
[αE(u1) + F (u2)]

= α

∫
Ω

∂u1

∂t

(
1− r1/a1

u1

)
dx+

∫
Ω

∂u2

∂t
dx

= −αd1
r1

a1

∫
Ω

|∇u1|2
u2

1

dx− αa1

∫
Ω

(
u1 − r1

a1

)2

dx

− αb1

∫
Ω

(∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)(
u1 − r1

a1

)
dx− a2

∫
Ω

u2
2(t, x) dx

+ r2

∫
Ω

u2(t, x) dx− b2

∫
Ω

(∫
Ω

∫ t

−∞
K2(x, y, t− s)u1(s, y) ds dy

)
u2(t, x) dx

= −αd1
r1

a1

∫
Ω

|∇u1|2
u2

1

dx− αa1

∫
Ω

(
u1 − r1

a1

)2

dx

− αb1

∫
Ω

(∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)(
u1 − r1

a1

)
dx− a2

∫
Ω

u2
2(t, x) dx

− b2

∫
Ω

(∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r2

b2

)
ds dy

)
u2(t, x) dx,
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where we have used (1.5) and (1.6). By hypothesis, r2/b2 < r1/a1, so

d

dt
[αE(u1) + F (u2)]

≤ −αd1
r1

a1

∫
Ω

|∇u1|2
u2

1

dx− αa1

∫
Ω

(
u1 − r1

a1

)2

dx

− αb1

∫
Ω

(∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)(
u1 − r1

a1

)
dx− a2

∫
Ω

u2
2(t, x) dx

− b2

∫
Ω

(∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy

)
u2(t, x) dx.

(2.3)

Let 〈·, ·〉 denote the standard inner product on L2(Ω;R), ‖ · ‖2
2 = 〈·, ·〉. Then we have

the following inequality:

d

dt
[αE(u1) + F (u2)] + αd1

r1

a1

∫
Ω

|∇u1|2
u2

1

dx+ αa1

∥∥∥∥u1 − r1

a1

∥∥∥∥
2

2

+ a2‖u2‖2
2

≤ −αb1

〈∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy, u1(t)− r1

a1

〉

−b2

〈∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy, u2(t)

〉
.

(2.4)

By Lemma 2.1, we have∥∥∥∥
∫

Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

∥∥∥∥
2

≤
∫ t

−∞
k1(t− s)‖u2(s)‖2 ds

≤ sups≤0 ‖u2(s)‖2

∫ ∞

t

k1(s) ds+

∫ t

0

k1(t− s)‖u2(s)‖2 ds

(2.5)

and∥∥∥∥
∫

Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy

∥∥∥∥
2

≤
∫ t

−∞
k2(t− s)

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

ds

≤ sup
s≤0

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

∫ ∞

t

k2(s) ds+

∫ t

0

k2(t− s)

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

ds.

(2.6)

Thus, for any T > 0,∣∣∣∣
∫ T

0

〈∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy, u1(t)− r1

a1

〉
dt

∣∣∣∣
≤
∫ T

0

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∥∥∥∥
∫

Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

∥∥∥∥
2

dt

≤ sup
s≤0

‖u2(s)‖2 sup
0≤t≤T

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∫ ∞

0

s k1(s) ds

+

∫ T

0

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∫ t

0

k1(t− s)‖u2(s)‖2 ds dt.
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We now estimate the second term in the above as follows:∫ T

0

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
2

∫ t

0

k1(t− s)‖u2(s)‖2 ds dt

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

(∫ T

0

(∫ t

0

k1(t− s)‖u2(s)‖2 ds

)2

dt

)1/2

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2



∫ T

0



∫ t

0

k1(t− s) ds︸ ︷︷ ︸
≤1



(∫ t

0

k1(t− s)‖u2(s)‖2
2 ds

)
dt




1/2

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

(∫ T

0

∫ t

0

k1(t− s)‖u2(s)‖2
2 ds dt

)1/2

=

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2



∫ T

0

‖u2(s)‖2
2

∫ T

s

k1(t− s) dt︸ ︷︷ ︸
≤1

ds




1/2

≤
∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2,

where ||| · |||2 denotes the norm in L2((0, T );L2(Ω;R)), i.e.,

|||u|||2 =
(∫ T

0

‖u(s)‖2
2 ds

)1/2

.

Therefore, for any T > 0,∣∣∣∣
∫ T

0

〈∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy, u1(t)− r1

a1

〉
dt

∣∣∣∣
≤ sups≤0 ‖u2(s)‖2 sup0≤t≤T ‖u1(t)− r1

a1
‖2

∫ ∞

0

s k1(s) ds+

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2.

In a similar way, we have∣∣∣∣
∫ T

0

〈∫
Ω

∫ t

−∞
K2(x, y, t− s)

(
u1(s, y)− r1

a1

)
ds dy, u2(t)

〉
dt

∣∣∣∣
≤ sup

s≤0

∥∥∥∥u1(s)− r1

a1

∥∥∥∥
2

sup
0≤t≤T

‖u2(t)‖2

∫ ∞

0

s k2(s) ds+

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2.

(2.7)

Integrating (2.4) over [0, T ] and noting that sup0≤t≤T ‖u2(t)‖2 and sup0≤t≤T ‖u1(t)−
r1
a1
‖2 can be bounded independently of T (by (1.7)), we obtain that there exists a

positive constant C independent of T such that

αd1r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

+ αa1

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

+ a2|||u2|||22 ≤ C + (αb1 + b2)

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

|||u2|||2
(2.8)
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or, by using Young’s inequality,

αd1r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

+ αa1

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

+ a2 |||u2|||22

≤ C + (αb1 + b2)

(
1

2
λ

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

+
1

2λ
|||u2|||22

)(2.9)

for any λ > 0. If we choose

λ =
αb1 + b2
2a2

,

then (2.9) reads as

αd1r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

+ αa1

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

≤ C +
(αb1 + b2)

2

4a2

∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

2

.(2.10)

From (2.10) we can conclude that ∣∣∣∣
∣∣∣∣
∣∣∣∣∇u1

u1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C1(2.11)

and ∣∣∣∣
∣∣∣∣
∣∣∣∣u1 − r1

a1

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

≤ C2(2.12)

for some constants C1, C2 independent of T , provided that α > 0 can be chosen such
that

2
√
αa1a2 > αb1 + b2,

which is possible by the assumption a1a2 > b1b2.
Because of (1.7) we may deduce from (2.11) that, for some constant C3 indepen-

dent of T ,

|||∇u1|||2 ≤ C3.(2.13)

Since all this is for any T > 0, (2.13) and (2.12) imply that u1−r1/a1 ∈ L2((0,∞);W 1,2(Ω;R))
and thus

lim
t→∞

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
W 1,2

= 0.(2.14)

Therefore,

lim
t→∞

∥∥∥∥u1(t)− r1

a1

∥∥∥∥
C(Ω̄;R)

= 0.

We deduce limt→∞ ‖u2(t)‖C(Ω̄;R) = 0 in a similar way (for example, λ in (2.9) would
be chosen differently). This completes the proof.

Remark 2.4. Theorem 2.3 indicates that if r1/r2 > a1/b2 > b1/a2, then the
competitor with density u1 wins the competition; if r1/r2 < b1/a2 < a1/b2, then the
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competitor with density u2 overcompetes the one with density u1; and if b1/a2 <
r1/r2 < a1/b2, then the two competing species coexist in the sense of existence and
stability of a positive steady state. Theorem 2.3 extends Propositions 7.5–7.7 in Ruan
andWu [11] on competition-diffusion systems with infinite time delays, Theorem 3.1 in
Zhou and Pao [18] on competition-diffusion systems, and the results in Gopalsamy [6]
on competition systems with finite delays.

Remark 2.5. It is known (see Yamada [16]) that in the case of the single-species
delay equation

∂u

∂t
= ∆u+ u

(
a− bu−

∫ t

−∞
f(t− s)u(x, s) ds

)

on homogeneous Neumann boundary conditions, where a and b are nonnegative con-
stants, bifurcations can occur from the nonzero homogeneous equilibrium state for
certain kernels and for suitable values of the parameters a and b, which include the
requirement that b be sufficiently small. However, in the competition model (1.1),
bifurcations to spatially patterned or to spatiotemporal structures are not expected
to occur from the equilibrium E∗, given by (1.8). Let us explain why this is so. A
standard linearized analysis about the boundary equilibrium (r1/a1, 0) shows that,
regardless of the delay kernels, this equilibrium is unstable to perturbations in which
u2 > 0 if r1/r2 < a1/b2. Similarly, the equilibrium (0, r2/a2) is unstable to perturba-
tions in which u1 > 0 if r1/r2 > b1/a2. Now, if the interior equilibrium E∗ were to
lose stability and bifurcate to a spatial or spatiotemporal structure, we would expect
that both boundary equilibria would remain unstable throughout this process so that
they act as repellers. Yet the conditions for both boundary equilibria to be linearly
unstable can be summarized as

b1
a2

<
r1

r2
<

a1

b2
,

which is precisely the condition for global convergence to E∗ given in (iii) of Theo-
rem 2.3. Hence, bifurcations from E∗ cannot occur if the boundary equilibria are to
remain unstable.

Remark 2.6. If we assume that, in the absence of the other competitor, each
competitor’s growth is governed by a Volterra integrodifferential equation with both
instantaneous and delay self-regulatory terms (see Cushing [2], Schiaffino and Te-
sei [13], and Yamada [17]), then we have a more general model of the following form:

∂u1

∂t
= d1∆u1 + u1

(
r1 − a1u1 − c1

∫
Ω

∫ t

−∞
H1(x, y, t− s)u2(s, y) ds dy

−b1

∫
Ω

∫ t

−∞
K1(x, y, t− s)u2(s, y) ds dy

)
,

∂u2

∂t
= d2∆u2 + u2

(
r2 − b2

∫
Ω

∫ t

−∞
K2(x, y, t− s)u1(s, y) ds dy

−a2u2 − c2

∫
Ω

∫ t

−∞
H2(x, y, t− s)u1(s, y) ds dy

)
,

(2.15)

where ai ≥ 0, bi > 0, ci ≥ 0, i = 1, 2, are constants and the kernels Hi, i = 1, 2,
satisfy similar properties as the Ki of (1.1). Notice that system (1.1) is a special
case of (2.15) with ci = 0. When ai = 0, even when there is no diffusion (i.e., the
ordinary delay competition model), both stability (see Gomatam and MacDonald [5])
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and bifurcation (see Gopalsamy and Aggarwala [7]) are possible. We anticipate that
system (2.15) will exhibit more complex dynamics, such as Hopf bifurcations, and we
leave this for future consideration.

3. Travelling front solutions. In this section we discuss the modifications
necessary to system (1.1) for the case of an infinite one-dimensional domain Ω =
(−∞,∞), and travelling front solutions of the resulting system. The infinite domain
case is in some respects slightly simpler from a modelling point of view since there are
no boundaries for individuals to interact with as they drift from their past to their
present positions. Because of this, in contrast to the finite domain case, the nonlocal
averaging associated with the delay takes the form of a spatial convolution, so that
the model assumes the form

∂u1

∂t
= d1

∂2u1

∂x2
+ u1

(
r1 − a1u1 − b1

∫ ∞

−∞

∫ t

−∞
G1(x− y, t− s)k1(t− s)u2(s, y) ds dy

)
,

∂u2

∂t
= d2

∂2u2

∂x2
+ u2

(
r2 − b2

∫ ∞

−∞

∫ t

−∞
G2(x− y, t− s)k2(t− s)u1(s, y) ds dy − a2u2

)
,

(3.1)

where the ki satisfy
∫∞
0

ki(s) ds = 1, i = 1, 2, and the Gi satisfy diffusion equations
as in Lemma 2.1 but without the boundary conditions. To be more precise, G1 is a
weighting function describing the distribution at past times of the individuals of the
species u2 who are at position x at time t. The u2 individuals diffuse at diffusivity
d2; thus G1 must satisfy

∂G1

∂t
= d2

∂2G1

∂x2
, G1(x, 0) = δ(x),

and similarly, G2 satisfies

∂G2

∂t
= d1

∂2G2

∂x2
, G2(x, 0) = δ(x),

so that G1, G2 are both fundamental solutions of heat equations. With these assump-
tions, system (3.1) still preserves the same equilibria E0, E1, E2, and (possibly) E∗

enumerated earlier.
Our interest in this section is in the possibility of a transition between the bound-

ary equilibria E1 and E2 in the form of a travelling wave-front solution. This is of
ecological interest since it corresponds to a situation where an environment is initially
inhabited only by the weaker of the two competitors at its carrying capacity, and some
of the stronger competitor are introduced and then invade the domain, dominate, and
drive the weaker to extinction so that the end result is that only the stronger species
is present, at its carrying capacity.

In this section the assumptions we shall make on the parameters are those which
ensure that the corresponding system without diffusion and without delay (removal
of delay can be effected by setting each ki(t) = δ(t) in (3.1)) has E1 unstable and
E2 asymptotically stable. Elementary analysis shows that the conditions for this to
happen are

r1b2 < r2a1 and r1a2 < r2b1.(3.2)



816 STEPHEN A. GOURLEY AND SHIGUI RUAN

Note that if (3.2) is satisfied, then the coexistence equilibrium E∗ is absent. In
the two-dimensional (u1, u2) phase plane, the diffusionless undelayed ODEs possess
a heteroclinic connection from E1 to E2. It is known from the papers referred to
in the introduction that under these circumstances the (undelayed) reaction-diffusion
system has travelling-front solutions connecting these equilibria. Our intention now
is to prove, for certain choices of the kernels ki, that these travelling fronts persist
under the introduction of delay, at least for small delays.

We shall consider the situation when the kernels ki are given by

k1(t) =
1

τ1
e−t/τ1 , k2(t) =

1

τ2
e−t/τ2 ,(3.3)

where the delays τ1, τ2 > 0, and we shall prove the following.
Theorem 3.1. Let k1 and k2 be given by (3.3) and assume that (3.2) holds. Then,

for sufficiently small delays τ1, τ2, system (3.1) possesses travelling front solutions
connecting the semitrivial equilibria E1 = (r1/a1, 0) and E2 = (0, r2/a2).

Proof. With the kernels given by (3.3), it is straightforward to see that sys-
tem (3.1) is equivalent to

∂u1

∂t
= d1

∂2u1

∂x2
+ u1(r1 − a1u1 − b1w1),

∂u2

∂t
= d2

∂2u2

∂x2
+ u2(r2 − b2w2 − a2u2),

∂w1

∂t
= d2

∂2w1

∂x2
+
1

τ1
u2 − 1

τ1
w1,

∂w2

∂t
= d1

∂2w2

∂x2
+
1

τ2
u1 − 1

τ2
w2.

(3.4)

Converting to travelling wave form, by writing

u1(t, x) = u1(z), z = x+ ct,

and similarly for the other state variables, gives

cu′
1 = d1u

′′
1 + u1(r1 − a1u1 − b1w1),

cu′
2 = d2u

′′
2 + u2(r2 − b2w2 − a2u2),

cw′
1 = d2w

′′
1 +

1

τ1
u2 − 1

τ1
w1,

cw′
2 = d1w

′′
2 +

1

τ2
u1 − 1

τ2
w2,

where prime denotes differentiation with respect to z. Let us introduce

v1 = d1u
′
1, v2 = d2u

′
2, v3 = d2w

′
1, v4 = d1w

′
2.

Also, we shall replace τ1 and τ2 with ε2τ1 and ε2τ2, respectively, since we are interested
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in the situation when the delays are small. The system becomes

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1w1),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − b2w2 − a2u2),

w′
1 =

1

d2
v3,

ε2v′3 =
ε2c

d2
v3 − 1

τ1
u2 +

1

τ1
w1,

w′
2 =

1

d1
v4,

ε2v′4 =
ε2c

d1
v4 − 1

τ2
u1 +

1

τ2
w2.

(3.5)

If we introduce the new state variables

ũ1 = u1, ṽ1 = v1, ũ2 = u2, ṽ2 = v2, w̃1 = w1, ṽ3 = εv3, w̃2 = w2, ṽ4 = εv4

and then drop the tildes, we have

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1w1),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − b2w2 − a2u2),

εw′
1 =

1

d2
v3,

εv′3 =
εc

d2
v3 − 1

τ1
u2 +

1

τ1
w1,

εw′
2 =

1

d1
v4,

εv′4 =
εc

d1
v4 − 1

τ2
u1 +

1

τ2
w2.

(3.6)

When ε = 0, system (3.6) reduces to the equations satisfied by travelling wave solu-
tions of the undelayed problem studied by previous investigators [1, 4, 10, 14]. In this
degenerate case the system is four-dimensional, but for ε > 0 (i.e., delay is present),
existence of a travelling front solution of (3.1) between E1 and E2 is equivalent to
existence of a heteroclinic connection between the equilibrium points of the eight-
dimensional system (3.6) that correspond to E1 and E2 of (3.1). We shall still denote
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these equilibria by E1 and E2; for system (3.6) they are given by

E1 =

(
r1

a1
, 0, 0, 0, 0, 0,

r1

a1
, 0

)
, E2 =

(
0, 0,

r2

a2
, 0,

r2

a2
, 0, 0, 0

)
.(3.7)

Our intention is to apply the geometric singular perturbation theory described in [3],
in particular, Theorem 9.1 of that paper. System (3.6) above will henceforth be
referred to as the slow system. By introducing a new independent variable η defined
by

z = εη,

system (3.6) transforms into

u̇1 =
ε

d1
v1,

v̇1 = ε

(
c

d1
v1 − u1(r1 − a1u1 − b1w1)

)
,

u̇2 =
ε

d2
v2,

v̇2 = ε

(
c

d2
v2 − u2(r2 − b2w2 − a2u2)

)
,

ẇ1 =
1

d2
v3,

v̇3 =
εc

d2
v3 − 1

τ1
u2 +

1

τ1
w1,

ẇ2 =
1

d1
v4,

v̇4 =
εc

d1
v4 − 1

τ2
u1 +

1

τ2
w2,

(3.8)

where dots denote differentiation with respect to η. System (3.8) is called the fast
system. Geometric singular perturbation theory uses both the slow and the fast
systems. The two are equivalent when ε > 0, but when ε = 0, the slow system (3.6)
does not define a dynamical system in the whole of R8 but rather the dynamics takes
place only on

M0 = {(u1, v1, u2, v2, w1, v3, w2, v4) ∈ R8 : v3 = 0, v4 = 0, w1 = u2, w2 = u1},
(3.9)

which is a four-dimensional submanifold ofR8. Note thatM0 consists of the equilibria
of the fast system when ε = 0. IfM0 is normally hyperbolic then, for sufficiently small
ε > 0, Theorem 9.1 in [3] provides us with a four-dimensional invariant manifold Mε
for the system (3.6). It will be shown that the equilibrium points E1 and E2 lie on
Mε. By studying the system (3.6) reduced to this manifold, the dimensionality is
reduced back to four and the existence of the heteroclinic connection we are seeking
can be established.

To verify normal hyperbolicity it is necessary to use the fast system (3.8). We need
to verify that the linearization of (3.8), restricted to M0, has exactly four (= dimM0)
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eigenvalues on the imaginary axis with the remainder of the spectrum hyperbolic.
The linearization of the fast system, when ε = 0, is given by




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
1

d2
0 0

0 0 − 1

τ1
0

1

τ1
0 0 0

0 0 0 0 0 0 0
1

d1

− 1

τ2
0 0 0 0 0

1

τ2
0




,

which has eigenvalues {0, 0, 0, 0,±1/√τ2d1,±1/
√
τ1d2}. Thus, normal hyperbolicity

is verified and there exists an invariant manifold Mε, close to M0, for the perturbed
system (3.6) for ε > 0 sufficiently small. In fact, Mε can be expressed in the form

Mε =
{
(u1, v1, u2, v2, w1, v3, w2, v4) ∈ R8 : v3 = h1(u1, v1, u2, v2; ε),
v4 = h2(u1, v1, u2, v2; ε), w1 = u2 + h3(u1, v1, u2, v2; ε),

w2 = u1 + h4(u1, v1, u2, v2; ε)}
(3.10)

with hi(u1, v1, u2, v2; 0) = 0 for i = 1, 2, 3, 4. The hi can be computed by substitution
into (3.6).

The slow system (3.6), restricted to Mε, is

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1u2 − b1 h3(u1, v1, u2, v2; ε)),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − a2u2 − b2u1 − b2 h4(u1, v1, u2, v2; ε)).

(3.11)

When ε = 0 (i.e., no delay), system (3.11) again reduces to the system satisfied by
travelling wave solutions of the undelayed equations, which has been studied previ-
ously. What we now claim is that, for ε > 0 sufficiently small, system (3.11) still
possesses as equilibrium points

E1 =

(
r1

a1
, 0, 0, 0

)
, E2 =

(
0, 0,

r2

a2
, 0

)
(3.12)

and that it falls within the class of systems studied by Gardner [4]. Neither is imme-
diately clear. Indeed, Gardner studied competition systems of the form

∂u1/∂t = d1∂
2u1/∂x

2 + u1M(u1, u2),
∂u2/∂t = d2∂

2u2/∂x
2 + u2N(u1, u2),
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which, in travelling wave form, read as

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1M(u1, u2),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2N(u1, u2).

(3.13)

Comparing (3.11) with (3.13) we see that, for Gardner’s results to be applicable, the
functions h3 and h4 in (3.11) would need to involve u1 and u2 only. We shall now
show that this is indeed the case, up to order ε2.

Indeed, straightforward but tedious calculations, utilizing the fact that Mε is an
invariant manifold for (3.6), yield that the hi satisfy

ε

[
1

d2
v2 +

1

d1
v1

∂h3

∂u1
+

∂h3

∂v1

(
c

d1
v1 − u1(r1 − a1u1 − b1u2 − b1h3)

)

+
1

d2
v2

∂h3

∂u2
+

∂h3

∂v2

(
c

d2
v2 − u2(r2 − a2u2 − b2u1 − b2h4)

)]
=
1

d2
h1

together with three other similar equations. Attempting solutions of the equations in
the form

h1(u1, v1, u2, v2; ε) = εh
(1)
1 (u1, v1, u2, v2) + ε2h

(2)
1 (u1, v1, u2, v2) + · · · ,

and similarly for the other hi, yields, after some further algebra, that

h
(1)
1 = v2, h

(1)
2 = v1, h

(1)
3 = 0, h

(1)
4 = 0

and

h
(2)
1 = 0, h

(2)
2 = 0,

h
(2)
3 = −τ1u2(r2 − a2u2 − b2u1),

h
(2)
4 = −τ2u1(r1 − a1u1 − b1u2).

Thus, system (3.11) becomes, to order ε2,

u′
1 =

1

d1
v1,

v′1 =
c

d1
v1 − u1(r1 − a1u1 − b1u2 + ε2b1τ1u2(r2 − a2u2 − b2u1)),

u′
2 =

1

d2
v2,

v′2 =
c

d2
v2 − u2(r2 − a2u2 − b2u1 + ε2b2τ2u1(r1 − a1u1 − b1u2)),

(3.14)

which has the structure of the system (3.13). Also, note that E1 and E2, given
by (3.12), are indeed equilibria of (3.14). Therefore, the results in [4] are applicable,
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yielding a heteroclinic connection between the equilibria E1 and E2 of (3.14). We
have shown that travelling fronts exist for system (3.1) when the kernels k1 and k2

are given by (3.3), so the proof of Theorem 3.1 is complete.
Remark 3.2. Let us briefly discuss the role of the terms of order ε2. If the

system (3.14) is linearized about the equilibrium E2, we find that the eigenvalues λ
of the linearization satisfy an equation that does not involve ε, namely

(d2λ
2 − cλ− r2)(d1a2λ

2 − ca2λ+ r1a2 − r2b1) = 0.(3.15)

About the equilibrium E1, the eigenvalue equation becomes

(d1λ
2 − cλ− r1)(d2a1λ

2 − ca1λ+ r2a1 − r1b2) = 0,(3.16)

which again does not involve ε. These observations suggest that the manner in which
the front approaches the equilibria E1 and E2 as z → −∞ and z → ∞, respectively, is
independent of ε for ε > 0 sufficiently small and therefore that the front’s qualitative
profile is not sensitive to the delays, provided they are both sufficiently small. Of
course, system (3.14) is itself the result of a perturbation analysis for small ε, and
therefore no conclusions can be drawn for larger ε. In conclusion, we may state
that the travelling front solutions of the corresponding undelayed competition model
appear to be very robust, not only in the sense that they persist under the introduction
of delays, but also in that they are not sensitive to small delays in the sense that, if
the delays are small, they look qualitatively the same as they do with no delay at all.
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Abstract. We study the Cauchy problem for Schrödinger equations with repulsive quadratic
potential and powerlike nonlinearity. The local problem is well-posed in the same space as that used
when a confining harmonic potential is involved. For a defocusing nonlinearity, it is globally well-
posed, and a scattering theory is available, with no long range effect for any superlinear nonlinearity.
When the nonlinearity is focusing, we prove that choosing the harmonic potential sufficiently strong
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1. Introduction. Consider the Schrödinger equation

i∂tu +
1

2
∆u = V (x)u + λ|u|2σu, (t, x) ∈ R × R

n,(1.1)

with σ > 0, σ < 2/(n − 2) if n ≥ 3, λ ∈ R, and V being a real-valued potential
V : R

n → R. If V ∈ L∞ + Lp, for some p ≥ 1, p > n/2, then the Cauchy problem
in H1(Rn) associated with (1.1) is known to be locally well-posed; it may also be
globally well-posed or lead to blow-up in finite time (see, e.g., [6]).

If the potential is smooth, V ∈ C∞, nonnegative, and if its derivatives of order at
least two are bounded, then the same holds in the domain of

√−∆ + V (see [18], [6]).
When n = 1 and V is nonnegative with superquadratic growth, then the fundamental
solution for (1.1) with λ = 0 is nowhere C1 [25], but smoothing properties make it
possible to solve the nonlinear problem (1.1) in some cases [26].

If V is nonpositive, then −∆ + V is essentially self-adjoint on C∞
0 (Rn), provided

that there exist some constants a, b such that V (x) ≥ −a|x|2 − b (see [20, p. 199]). If
−V has superquadratic growth, then it is not possible to define e−it(−∆+V ) (see [9,
Chap. 13, Sect. 6, Cor. 22]). In this paper, we study the Cauchy problem

i∂tu +
1

2
∆u = −ω2 |x|2

2
u + λ|u|2σu, (t, x) ∈ R × R

n,

u|t=0 = u0,

(1.2)

with ω, σ > 0, σ < 2/(n− 2) if n ≥ 3, λ ∈ R, and

u0 ∈ Σ :=
{
f ∈ H1(Rn) ; |x|f ∈ L2(Rn)

}
.

The Hilbert space Σ is equipped with the norm

‖f‖Σ = ‖f‖L2 + ‖∇f‖L2 + ‖xf‖L2 .
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824 RÉMI CARLES

Another motivation for studying (1.2) lies in the study of finite-time blow-up for the
Cauchy problem 

i∂tu +
1

2
∆u = λ|u|2σu , (t, x) ∈ R × R

n,

u|t=0 = u0.
(1.3)

It is well known that if u0 ∈ Σ, λ < 0, σ ≥ 2/n, and

E(u0) :=
1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < 0 ,(1.4)

then u blows up in finite time; that is, there exists T > 0 such that

lim
t→T

‖∇xu(t)‖L2 = +∞ .

This is proven by the general approach of Zakharov–Glassey [12], [6]. There exists
numerical evidence suggesting that the introduction of a stochastic white noise in
(1.3) may amplify or prevent blow-up formation (see [8]); in this article, we confine
ourselves to a deterministic framework.

It is shown in [7] that if the initial datum u0 is replaced by u0(x)e−ib|x|
2

with
b > 0 sufficiently large, then the blow-up time is anticipated (and is O(b−1)). On

the other hand, if u0 is replaced by u0(x)eib|x|
2

with b > 0 sufficiently large, then no
blow-up occurs.

Our approach is suggested by the semiclassical régime for the linear Schrödinger
equation with potential. Consider the initial value problem

iε∂tu
ε +

1

2
ε2∆uε = V (x)uε, (t, x) ∈ R × R

n,

uε|t=0 = uε0,

where V ∈ C∞(Rn,R), ε ∈ ]0, 1]. In the semiclassical limit ε → 0, the energy of the
solution uε is carried by bicharacteristics, which are the integral curves associated
with the classical Hamiltonian

p(t, x, τ, ξ) = τ +
|ξ|2
2

+ V (x) .

If the energy tends to concentrate in this case, one can expect that, for (1.1) with
a focusing nonlinearity (λ < 0), blow-up in finite time, which corresponds to the
concentration of the mass, may occur. Bicharacteristic curves solve


ṫ = 1 ,
ẋ = ξ ,
τ̇ = 0 ,

ξ̇ = −∇V (x) .

Rays of geometric optics, which are the projection of bicharacteristic curves on (t, x)
space, are of the form x = x(t), with{

ẍ + ∇V (x) = 0 ,

x(0) = x0 , ẋ(0) = ξ0 .
(1.5)
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1/b

ϕ(x) = −b|x|2/2
−1/b

ϕ ≡ 0 ϕ(x) = b|x|2/2

Fig. 1.1. Geometry of rays: case V ≡ 0.

If the initial datum is of the form uε0(x) = f(x)eiϕ(x)/ε, then ξ0 = ∇ϕ(x0). We give
three examples which are at the origin of this work and which correspond to cases
where (1.5) can easily be solved.

Example 1. Suppose V ≡ 0. Then the solutions of (1.5) are

x(t) = x0 + t∇ϕ(x0) .

If no oscillation is present in the initial datum, the rays are parallel. More interesting
is the case of quadratic oscillations (see also [5]). If ϕ(x) = −b|x|2/2 with b > 0,
then rays are given by x(t) = x0(1 − bt), and meet at the origin at time t = 1/b
(see Figure 1.1). There is focusing, which suggests that in a nonlinear setting such
oscillations may cause wave collapse. If ϕ(x) = b|x|2/2 with b > 0, then rays are
given by x(t) = x0(1 + bt) and meet at the origin at time t = −1/b (in the past). In
particular, they are spread out for positive times, which suggests that in a nonlinear
setting such oscillations may prevent wave collapse. This intuition described about
the last two cases is confirmed by the results of Cazenave and Weissler [7].

Example 2. Suppose V (x) = ω2|x|2/2, with ω > 0. In the case ϕ ≡ 0, rays are
given by x(t) = x0 cos(ωt), and meet at the origin at time t = π/(2ω) (see Figure 1.2).
The first example suggests that blow-up may occur more easily than when V ≡ 0.
This phenomenon is reinforced by the case ϕ(x) = −ω tan(ωt0)|x|2/2, |t0| < π/(2ω),
where

x(t) =
x0

cos(ωt0)
cosω(t + t0) .

Rays meet at the origin at time t = π/(2ω)−t0. If t0 > 0, focusing is anticipated, while
if t0 < 0, it is delayed (but in no case prevented). This geometry can be compared
with the second case of the first example.

Example 3. Suppose V (x) = −ω2|x|2/2 with ω > 0. In the case ϕ ≡ 0, rays
are given by x(t) = x0 cosh(ωt) and are strongly dispersed for positive times (see
Figure 1.2). This geometry is to be compared with the third case of the first ex-
ample; in that case the rays are scattered but go to infinity exponentially fast, in-
stead of algebraically. If ϕ(x) = −ωb|x|2/2 with b > 0, then the rays are given by
x(t) = x0(cosh(ωt) − b sinh(ωt)), and their behavior is far less singular than in the
case V ≡ 0. This is a first hint that such potentials may prevent blow-up.



826 RÉMI CARLES

t

V (x) = 1
2ω

2|x|2 V (x) = −1
2ω

2|x|2

t

π

2ω

x x

Fig. 1.2. Geometry of rays, with ϕ ≡ 0.

Inspired by the second example, we proved in [3] that if u solves
i∂tu +

1

2
∆u = ω2 |x|2

2
u + λ|u|2σu, (t, x) ∈ R × R

n,

u|t=0 = u0,

(1.6)

then under condition (1.4) (as a matter of fact, the value E(u0) = 0 is allowed), u
blows up at time T ≤ π/(2ω); choosing ω large enough, the blow-up time is therefore
anticipated by the action of a confining magnetic field. This is intimately related to
the dynamics of the linear Schrödinger equation with a confining harmonic potential,
whose solution is given by Mehler’s formula (see, e.g., [10]), for |t| < π/(2ω),

u(t, x) = e−in
π
4 sgn t

∣∣∣ ω

2π sinωt

∣∣∣n/2 ∫
Rn

e
iω

sinωt

(
x2+y2

2 cosωt−x·y
)
u0(y)dy .(1.7)

At time t = π/(2ω), the fundamental solution is singular. In the nonlinear case, two
phenomena cumulate: because of the linear dynamics, the solution tends to focus near
the origin as time goes to π/(2ω); when the solution is sufficiently concentrated, the
nonlinear term becomes important and causes wave collapse.

Setting λ = 0 in (1.2), we have the analogue of Mehler’s formula,

u(t, x) = e−in
π
4 sgn t

∣∣∣ ω

2π sinhωt

∣∣∣n/2 ∫
Rn

e
iω

sinhωt

(
x2+y2

2 coshωt−x·y
)
u0(y)dy .(1.8)

Not only does the kernel of Uω(t) := exp{−it/2(−∆ − ω2|x|2)} given by the above
formula have no singularities for t > 0, but the dispersive effects are much stronger
than in the case with no potential (ω = 0). One might think that in the nonlinear
case, the free dynamics can prevent the nonlinear mechanism of blow-up, at least for
large ω. In section 4 we prove that this holds true. These results are summarized in
the following theorem, whose first point is a consequence of [3].

Theorem 1.1. Let u0 ∈ Σ, λ < 0, σ ≥ 2/n and σ < 2/(n− 2) if n ≥ 3.
1. Assume that the solution u to (1.3) has negative energy; that is, (1.4) holds.

Then u blows up in finite time T . Let ω0 = π/(2T ); for any ω ≥ ω0, the solution to
(1.6) blows up before time π/(2ω) and, in particular, before time T .
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2. If the initial datum u0 satisfies

1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < −ω2

2
‖xu0‖2

L2 ,

then the solution to (1.2) blows up in finite time, in the future or in the past.
3. If the initial datum u0 satisfies

1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < −ω2

2
‖xu0‖2

L2 − ω

∣∣∣∣Im
∫

u0x · ∇xu0

∣∣∣∣ ,
then the solution to (1.2) blows up in finite time, in the future and in the past.

4. There exists ω1 > 0 such that for any ω ≥ ω1, (1.2) has a unique global solution
u ∈ C(R,Σ).

In the particular case σ = 2/n, a change of variables relating the solutions of
(1.3) to those of (1.6) or (1.2) shows explicitly how the blow-up for solutions to (1.3)
can be anticipated, delayed, or prevented by the introduction of quadratic potentials.

Theorem 1.2. Let u0 ∈ Σ, λ < 0, σ = 2/n. Assume that the solution to (1.3)
blows up at time T > 0.

• For any ω > 0, the solution to (1.6) blows up at time arctan(ωT )/ω < T .
• If ω < 1/T , then the solution to (1.2) blows up at time arg tanh(ωT )/ω > T .
• If ω ≥ 1/T , then (1.2) has a unique global solution in C(R+,Σ).

Remark 1.3. As we recall in section 2 (see Lemma 2.2), (1.8) provides Strichartz
inequalities that make it possible to study (1.2) with u0 ∈ L2(Rn) if σ < 2/n or with
u0 ∈ L2(Rn) and ‖u0‖L2 small if σ = 2/n. Our goal is precisely to understand the
other cases; that is why we shall always assume u0 ∈ Σ.

Remark 1.4. Replacing ω with ±iω formally turns (1.6) into (1.2) (and vice
versa) and (1.7) into (1.8). All the algebraic manipulations we perform in section 2
can be retrieved using this argument; in particular, (2.3), Lemma 2.3, and the evolu-
tion law (2.10) can be deduced from the formulae established in [3].

When λ > 0, solutions to (1.3) are known to be global, and the classical issue
is to understand their asymptotic behavior as t → ±∞. For σ sufficiently large, the
solutions are asymptotically free, while for σ ≤ 1/n, a long range scattering theory
is needed (see [1], [21], [23], [19], [13], [2]). Notice that, for the initial value problem
(1.2), it is not obvious that the formal conservations of mass and energy imply global
existence in Σ once local existence is known. These conservations read

‖u(t)‖L2 ≡ ‖u0‖L2 ;
1

2
‖∇xu(t)‖2

L2 − ω2

2
‖xu(t)‖2

L2 +
λ

σ + 1
‖u(t)‖2σ+2

L2σ+2 = const .

For (1.6), the analogue of these two conservation laws yields global existence in Σ
when λ > 0, because the energy is the sum of three positive terms. For (1.2), the
energy functional is not always positive, even if λ > 0. We prove in section 2 that a
refined analysis of the conservation of energy, consisting in splitting the energy into
two parts, yields global existence as soon as λ > 0 (and in other cases). Moreover,
the strong dispersive properties of Uω lead to a different scattering theory for (1.2);
the nonlinearity u �→ |u|2σu is always short range.

Theorem 1.5. Let λ, σ > 0, with σ < 2/(n− 2) if n ≥ 3.
1. For every u− ∈ Σ, there exists a unique u0 ∈ Σ such that the maximal solution

u ∈ C(R,Σ) to (1.2) satisfies

‖Uω(−t)u(t) − u−‖Σ −→
t→−∞ 0.
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2. For every u0 ∈ Σ, there exists a unique u+ ∈ Σ such that the maximal solution
u ∈ C(R,Σ) to (1.2) satisfies

‖Uω(−t)u(t) − u+‖Σ −→
t→+∞ 0.

This paper is organized as follows. In section 2, we study the Cauchy problem
for (1.2); we prove that it is locally well-posed in Σ and, in some cases, globally well-
posed. This is the most important part of the paper. In section 3 we analyze the
corresponding scattering theory, and prove Theorem 1.5. Theorem 1.1 is proven in
section 4, and Theorem 1.2 is proven in section 5.

2. Solving the Cauchy problem. To solve the local Cauchy problem, we first
introduce the classical notions of admissible pairs and Strichartz estimates.

Definition 2.1. A pair (q, r) is admissible if 2 ≤ r < 2n
n−2 (resp., 2 ≤ r ≤ ∞ if

n = 1, 2 ≤ r < ∞ if n = 2) and

2

q
= δ(r) := n

(
1

2
− 1

r

)
.

Recall that Uω(t) denotes the semigroup exp(it/2(∆ + ω2|x|2)), which is given
explicitly by (1.8).

Lemma 2.2 (Strichartz estimates for Uω). Let ω > 0.
1. For any admissible pair (q, r), there exists Cr independent of ω > 0 such that

‖Uω(.)ϕ‖Lq(R;Lr) ≤ Cr‖ϕ‖L2(2.1)

for every ϕ ∈ L2(Rn).
2. For any admissible pairs (q1, r1) and (q2, r2) and any interval I, there exists

Cr1,r2 independent of ω > 0 and I such that∥∥∥∥∥
∫
I∩{s≤t}

Uω(t− s)F (s)ds

∥∥∥∥∥
Lq1 (I;Lr1 )

≤ Cr1,r2 ‖F‖
Lq

′
2 (I;Lr

′
2 )

(2.2)

for every F ∈ Lq
′
2(I;Lr

′
2).

Proof. The semigroup Uω is isometric on L2(Rn), and from (1.8) it satisfies, for
any t �= 0 and f ∈ L1(Rn),

‖Uω(t)f‖L∞ ≤ 1

|2πt|n/2 ‖f‖L1 .

It follows from the results of [15] that Uω satisfies such Strichartz estimates as stated
above. One can choose constants independent of ω > 0, because the above dispersion
estimate is independent of ω > 0. One can actually take the same constants as in the
case with no potential, ω = 0.

As mentioned in the introduction, this lemma makes it possible to study (1.2) if
u0 ∈ L2(Rn) and σ < 2/n by just mimicking the proof of the corresponding result for
(1.3). Since our interest is to study (1.2) when σ ≥ 2/n, in order to analyze finite-time
blow-up, we assume u0 ∈ Σ and introduce two operators:

J(t) := ωx sinh(ωt) + i cosh(ωt)∇x, H(t) := x cosh(ωt) + i
sinh(ωt)

ω
∇x .(2.3)
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For f ∈ L2(Rn) and t ∈ R, the property J(t)f,H(t)f ∈ L2(Rn) implies f ∈ Σ, since

i∇x = cosh(ωt)J(t) − ω sinh(ωt)H(t), x = cosh(ωt)H(t) − sinh(ωt)

ω
J(t) .(2.4)

These two operators are the formal analogues of those we used in [3] to study (1.6),
when ω is replaced by ±iω. They have the remarkable property of being both Heisen-
berg observables and conjugate to ∇x by a unitary factor.

Lemma 2.3. The operators J and H satisfy the following properties.
1. They are Heisenberg observables, which read as

J(t) = Uω(t)i∇xUω(−t), H(t) = Uω(t)xUω(−t),(2.5)

and consequently they commute with the linear part of (1.2):[
i∂t +

1

2
∆ + ω2 |x|2

2
, J(t)

]
=

[
i∂t +

1

2
∆ + ω2 |x|2

2
, H(t)

]
= 0 .

2. They can be factored as follows: for t �= 0,

J(t) = i cosh(ωt)eiω
|x|2
2 tanh(ωt)∇x

(
e−iω

|x|2
2 tanh(ωt) ·

)
,

H(t) = i
sinh(ωt)

ω
eiω

|x|2
2 coth(ωt)∇x

(
e−iω

|x|2
2 coth(ωt) ·

)
.

(2.6)

3. They yield modified Gagliardo–Nirenberg inequalities. Recall that if r ≥ 2, with
r < 2n/(n− 2) if n ≥ 3, there exists cr such that for any f ∈ H1(Rn),

‖f‖Lr ≤ cr‖f‖1−δ(r)
L2 ‖∇f‖δ(r)L2 .

Then for every f ∈ Σ,∥∥f∥∥
Lr

≤ cr

(cosh(ωt))
δ(r)

‖f‖1−δ(r)
L2 ‖J(t)f‖δ(r)L2 ∀t ∈ R,

∥∥f∥∥
Lr

≤ cr

(
ω

sinh(ωt)

)δ(r)
‖f‖1−δ(r)

L2 ‖H(t)f‖δ(r)L2 ∀t �= 0.

(2.7)

4. They act like derivatives on the nonlinearities F ∈ C1(C,C) satisfying the
gauge invariance property F (z) = G(|z|2)z ∀z ∈ C; that is,

J(t)F (u) = ∂zF (u)J(t)u− ∂z̄F (u)J(t)u,

H(t)F (u) = ∂zF (u)H(t)v − ∂z̄F (u)H(t)u.

Proof. The first point is easily checked thanks to (1.8). The second assertion is
obvious and implies the last two points.

Remark 2.4. One could argue that we consider only isotropic potentials and not
the general form

V (x) =
1

2

n∑
j=1

δjω
2
jx

2
j ,

with δj ∈ {−1, 0, 1}, ωj > 0, not necessarily equal. Strichartz estimates would still be
available (locally in time only if some δj is positive), and one could construct operators



830 RÉMI CARLES

analogous to J and H that satisfy such properties as those stated in Lemma 2.3.
However, the evolution law (2.10) stated below (on which our study strongly relies)
seems to be bound to isotropic potentials. Finally, the changes of variables we use in
section 5 are also typical of isotropic potentials.

Formally, solutions of (1.2) satisfy the following conservation laws:

Mass: M = ‖u(t)‖L2 = const = ‖u0‖L2 ,

Energy: E =
1

2
‖∇xu(t)‖2

L2 − ω2

2
‖xu(t)‖2

L2 +
λ

σ + 1
‖u(t)‖2σ+2

L2σ+2 = const .
(2.8)

Notice that even if the nonlinearity is repulsive (λ > 0), one cannot deduce a pri-
ori estimates from the conservation of energy. One needs more precise information.
Following [3], split the energy into two parts, which are not conserved in general:

E1(t) :=
1

2
‖J(t)u‖2

L2 +
λ

σ + 1
cosh2(ωt)‖u(t)‖2σ+2

L2σ+2 ,

E2(t) := −ω2

2
‖H(t)u‖2

L2 − λ

σ + 1
sinh2(ωt)‖u(t)‖2σ+2

L2σ+2 .

Let us notice the identity E1(t) + E2(t) ≡ E. For (q, r) an admissible pair, define

Yr,loc(I) :=
{
u ∈ C(I; Σ); A(t)u ∈ Lqloc(I;Lr) ∩ L∞

loc(I;L2) ∀A ∈ {Id, J,H}} ,
Yloc(I) := {u ∈ C(I; Σ); A(t)u ∈ Lqloc(I;Lr) ∀A ∈ {Id, J,H},∀(q, r) admissible} .

When (1.2) is globally well-posed, we will also use

Yr(I) :=
{
u ∈ C(I; Σ); A(t)u ∈ Lq(I;Lr) ∩ L∞(I;L2) ∀A ∈ {Id, J,H}} ,

Y (I) := {u ∈ C(I; Σ); A(t)u ∈ Lq(I;Lr) ∀A ∈ {Id, J,H} ∀(q, r) admissible} .
Proposition 2.5 (local well-posedness for (1.2)). Let λ ∈ R, σ, ω > 0, with

σ < 2/(n− 2) if n ≥ 3.
• For every u0 ∈ Σ, there exist t0 > 0 independent of ω > 0, and a unique solution

u ∈ Y2σ+2,loc(]−2t0, 2t0[) to (1.2). Moreover, it belongs to Yloc(]−2t0, 2t0[) and there
exists C0 depending only on λ, n, σ, and ‖u0‖Σ such that

sup
|t|≤t0

‖u(t)‖L2 + sup
|t|≤t0

‖J(t)u‖L2 + sup
|t|≤t0

‖H(t)u‖L2 ≤ C0 .(2.9)

• Mass and energy are conserved, that is, (2.8) holds. More precisely, E1 and E2

satisfy

dE1

dt
= −dE2

dt
=

ωλ

2σ + 2
(2 − nσ) sinh(2ωt)‖u(t)‖2σ+2

L2σ+2 .(2.10)

• If un0 → u0 in Σ and [t1, t2] ⊂ ]−2t0, 2t0[, then un → u in Y ([t1, t2]), where un

solves (1.2) with initial datum un0 .
Proof. Notice that Duhamel’s principle for (1.2) can be written as

u(t) = Uω(t)u0 − iλ

∫ t

0

Uω(t− s)
(|u|2σu) (s)ds .(2.11)

The point is that we can reproduce the proof of local existence of solutions to (1.3) in
Σ (see, e.g., [11]). Indeed, Duhamel’s principle is similar: we have the same Strichartz
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inequalities (from Lemma 2.2, with constants independent of ω > 0), and operators
J and H satisfy the same properties as those which are used in the proof of local
existence of solutions to (1.3) in Σ. More precisely, the operators used in the case
of (1.3) are ∇x and x + it∇x; they commute with the linear part of (1.3) and act
on such nonlinearities as those we treat like derivatives, and ∇x provides Gagliardo–
Nirenberg inequalities (as does x+it∇x, but this point is not used for local existence).
Lemma 2.3 shows that J and H satisfy those properties, and in particular the first
line of (2.7) provides the same Gagliardo–Nirenberg inequalities as for ∇x; since
cosh(x) ≥ 1 ∀x ∈ R,∥∥f∥∥

Lr
≤ cr

(cosh(ωt))
δ(r)

‖f‖1−δ(r)
L2 ‖J(t)f‖δ(r)L2 ≤ cr‖f‖1−δ(r)

L2 ‖J(t)f‖δ(r)L2 .(2.12)

Moreover, J(0) = i∇x and H(0) = x are independent of ω > 0, so the first point of
the proposition follows.

One can check that the identities stated in the second point hold for smooth so-
lutions. It follows that they hold for the solutions constructed in the first point, by
the same argument as in the case of (1.3) (see, e.g., [6, Thm. 4.2.8 and Prop. 6.4.2]).
Similarly, transposing the proof of [6, Thm. 4.2.8] yields the last point of the propo-
sition.

Remark 2.6. One might think that the above proposition would also hold for
(1.6). In that case, we would have some local existence on a time interval independent
of ω > 0, which contradicts the result of [3], recalled in the first point of Theorem 1.1.
The only difference which makes it impossible to conclude as above is that, in the
analogue of (2.7), hyperbolic functions are replaced by trigonometric functions; that
is, the analogue of (2.7) is∥∥f∥∥

Lr
≤ cr

(cos(ωt))
δ(r)

‖f‖1−δ(r)
L2 ‖J(t)f‖δ(r)L2 ,

∥∥f∥∥
Lr

≤ cr

(
ω

sin(ωt)

)δ(r)
‖f‖1−δ(r)

L2 ‖H(t)f‖δ(r)L2 .

We cannot eliminate the dependence upon ω as we did in (2.12); this prevents the
existence of such a t0 independent of ω.

Corollary 2.7. Let λ ∈ R, σ, ω > 0, with σ < 2/(n− 2) if n ≥ 3.
1. Let u0 ∈ Σ and u ∈ Yloc(I) solve (1.2) for some time interval I containing 0.

For any I � t > 0, the following properties are equivalent:
• ∇xu(s) is uniformly bounded in L2(Rn) for s ∈ [0, t]; ∇xu ∈ L∞([0, t];L2).
• J(s)u or H(s)u is uniformly bounded in L2(Rn) for s ∈ [0, t].
• J(s)u and H(s)u are uniformly bounded in L2(Rn) for s ∈ [0, t].
• u(s, ·) is uniformly bounded in Σ for s ∈ [0, t]; u ∈ L∞([0, t]; Σ).

2. For every u0 ∈ Σ, there exist T ∗(u0), T∗(u0) > 0, and a unique maximal
solution u ∈ Y2σ+2,loc(]−T∗, T ∗[) to (1.2), which actually belongs to Yloc(]−T∗, T ∗[).
It is maximal in the sense that if T ∗(u0) < ∞, then ‖∇xu(t)‖L2 → ∞ as t ↑ T ∗(u0),
and if T∗(u0) < ∞, then ‖∇xu(t)‖L2 → ∞ as t ↓ −T∗(u0).

Proof. First, notice that the equivalence of the last two properties of the first
assertion is a consequence of formulae (2.3) and (2.4) and of the conservation of mass
(2.8).

Assume that ∇xu(s, ·) is uniformly bounded in L2(Rn) for s ∈ [0, t]. Since u ∈
Yloc(I) solves (1.2), its L2-norm is constant; thus u(s, ·) is uniformly bounded in
H1(Rn) for s ∈ [0, t]. From the Sobolev embedding H1(Rn) ⊂ L2σ+2(Rn), u(s, ·) is
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uniformly bounded in L2σ+2(Rn) for s ∈ [0, t], and from the conservation of energy
(2.8), the first moment of u is uniformly bounded in L2(Rn): u ∈ L∞([0, t]; Σ).

We now have only to prove that the second and third properties are equivalent,
that is, that the second implies the third. Assume that J(s)u is uniformly bounded in
L2(Rn) for s ∈ [0, t]. Then from (2.7), u(s, ·) is uniformly bounded in L2σ+2(Rn) for
s ∈ [0, t]; E1(s) is uniformly bounded for s ∈ [0, t]. Since E1(s) + E2(s) ≡ E, E2(s)
is uniformly bounded for s ∈ [0, t], which proves that H(s)u is uniformly bounded in
L2(Rn) for s ∈ [0, t].

Assume that H(s)u is uniformly bounded in L2(Rn) for s ∈ [0, t]. From the first
point of Proposition 2.5, u ∈ L∞([0, t0]; Σ) for some t0 > 0. We thus suppose that
t ≥ t0. From (2.7), u(s, ·) is uniformly bounded in L2σ+2(Rn) for s ∈ [t0, t], and we
can repeat the above argument.

The second assertion follows from the first and Proposition 2.5.
We can now state sufficient conditions for the solution of (1.2) to be global. When

λ < 0, let Q denote the unique spherically symmetric solution of (see [22], [16])
−1

2
∆Q + Q = −λ|Q|4/nQ in R

n,

Q > 0 in R
n.

(2.13)

Corollary 2.8 (global existence). Let λ ∈ R, σ, ω > 0 with σ < 2/(n − 2) if
n ≥ 3, u0 ∈ Σ, and u ∈ Yloc(]−T∗, T ∗[) be the maximal solution given by Corollary 2.7.
We have T∗ = T ∗ = ∞ in the following cases:

• the nonlinearity is repulsive, λ ≥ 0;
• λ < 0 and σ < 2/n;
• λ < 0, σ = 2/n, and ‖u0‖L2 < ‖Q‖L2 ;
• λ < 0, σ > 2/n, and ‖u0‖H1 is sufficiently small.

In addition, if λ ≥ 0, we have u ∈ Y (R), and (1.2) is globally well-posed.
Proof. We shall prove that under our assumptions, T ∗ = ∞; the proof that

T∗ = ∞ is similar. From Corollary 2.7, it suffices to proves that the L2-norm of J(t)u
cannot blow up in finite time.

Assume λ > 0. If σ ≥ 2/n, then (2.10) implies that for any t ≥ 0, E1(t) ≤ E1(0),
which yields an a priori bound for the L2-norm of J(t)u. From Corollary 2.7, this
yields T ∗ = ∞. If σ < 2/n, it follows from (2.10) that for t ≥ 0,

cosh2(ωt)‖u(t)‖2σ+2
L2σ+2 ≤ σ + 1

λ
E1(0) + ω

(
1 − nσ

2

)∫ t

0

sinh(2ωs)‖u(s)‖2σ+2
L2σ+2ds .

The Gronwall lemma applied to the function defined by the left-hand side of the above
inequality yields

‖u(t)‖2σ+2
L2σ+2 ≤ σ + 1

λ
E1(0)

(
cosh(ωt)

)−nσ
.

Plugging this estimate into (2.10), we have

‖J(t)u‖2
L2 � e(2−nσ)ωt.(2.14)

This yields T ∗ = ∞.
Now assume λ < 0. If σ < 2/n, it follows from (2.10) and (2.7) that, for t ≥ 0,

1

2
‖J(t)u‖2

L2 ≤ E1(0) +
|λ|

σ + 1
cosh2(ωt)‖u(t)‖2σ+2

L2σ+2

≤ E1(0) + C
(

cosh(ωt)
)2−nσ‖u0‖(2−n)σ+2

L2 ‖J(t)u‖nσL2 .
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Since σ < 2/n, this means that

sup
t≥0

(cosh(ωt))
−2 ‖J(t)u‖2

L2 < ∞,

and Corollary 2.7 yields global existence in the future.
If σ = 2/n, the same argument as above yields

1

2
‖J(t)u‖2

L2 ≤ E1(0) +
|λ|

σ + 1
c
2+4/n
2+4/n‖u0‖4/n

L2 ‖J(t)u‖2
L2 ,

where c2+4/n is the constant of Gagliardo–Nirenberg inequality mentioned in the third
point of Lemma 2.3. M. Weinstein [24] proved that the best such constant satisfies

|λ|
σ + 1

c
2+4/n
2+4/n‖Q‖4/n

L2 =
1

2
,

where Q is the radial solution of (2.13). Thus if ‖u0‖L2 < ‖Q‖L2 , we obtain an a
priori bound for ‖J(t)u‖L2 , which implies T ∗ = ∞.

Finally, if σ > 2/n, we have

E1(t) ≤ E1(0) + C

∫ t

0

sinh(2ωs)‖u(s)‖2σ+2
L2σ+2ds

≤ C
(‖u0‖H1

)
+ C

(‖u0‖L2

)
sup

0≤s≤t
‖J(s)u‖nσL2

∫ t

0

sinh(ωs)

coshnσ−1(ωs)
ds .

Therefore,

sup
0≤s≤t

‖J(s)u‖2
L2 ≤ C

(‖u0‖H1

)
+ C

(‖u0‖L2

)
sup

0≤s≤t
‖J(s)u‖nσL2

for C
(‖u0‖H1

)
and C

(‖u0‖L2

)
going to zero with their argument. Now we can use

the following lemma, whose easy proof is omitted.
Lemma 2.9 (bootstrap argument). Let M = M(t) be a nonnegative continuous

function on [0, T ] such that, for every t ∈ [0, T ],

M(t) ≤ a + bM(t)θ,

where a, b > 0 and θ > 1 are constants such that

a <

(
1 − 1

θ

)
1

(θb)1/(θ−1)
, M(0) ≤ 1

(θb)1/(θ−1)
·

Then, for every t ∈ [0, T ], we have

M(t) ≤ θ

θ − 1
a ·

Taking ‖u0‖H1 sufficiently small, we can apply the above lemma and obtain an a
priori bound for ‖J(t)u‖L2 .

We now have to prove the last assertion of the corollary; that is, if λ ≥ 0, then

A(t)u ∈ Lq(R;Lr) ∀A ∈ {Id, J,H}, ∀(q, r) admissible.(2.15)
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Let λ ≥ 0 and A ∈ {Id, J,H}. In the first part of the proof, we saw that according
to the case considered (σ ≥ 2/n, or σ < 2/n), either J(t)u ∈ L∞(R;L2) or it satisfies
estimates (2.14). It is easy to check that in either of these two cases, H(t)u satisfies
the same estimate as J(t)u. Since the second estimate is weaker than the first one, it
suffices to prove that it yields (2.15). We will use the following algebraic lemma.

Lemma 2.10. Let r = s = 2σ + 2 and q be such that the pair (q, r) is admissible.
Define k by

k =
2σ(2σ + 2)

2 − (n− 2)σ
·

Then k is finite, and the following algebraic identities hold:


1

r′
=

1

r
+

2σ

s
,

1

q′
=

1

q
+

2σ

k
·

Let q, r, k, and s be as in the above lemma. From (2.14) and the conservation of
mass, (2.7) yields

‖u‖Lk([T,∞[;Ls) ≤ C
∥∥∥e−nσδ(s)t/2∥∥∥

Lk([T,∞[)
≤ Ce−nσδ(s)T/2.(2.16)

To prove that A(t)u ∈ Lq([0,∞[;Lr), write Duhamel’s principle with the time origin
equal to T , to be fixed later, as

u(t) = Uω(t− T )u(T ) − iλ

∫ t

T

Uω(t− s)
(|u|2σu) (s)ds .

Applying operator A yields

A(t)u = Uω(t− T )A(T )u− iλ

∫ t

T

Uω(t− s)A(s)
(|u|2σu) ds ,

and from Strichartz inequalities and Lemma 2.10, for any S > T ,

‖A(t)u‖Lq([T,S];Lr) ≤ Cr‖A(T )u‖L2 + Cr,r
∥∥A(t)

(|u|2σu)∥∥
Lq′ ([T,S];Lr′ )

≤ Cr‖A(T )u‖L2 + C‖u‖2σ
Lk([T,∞[;Ls)‖A(t)‖Lq([T,S];Lr) ,

where C does not depend on T, S. From (2.16), choosing T sufficiently large, the
second term of the right-hand side can be absorbed by the left-hand side, and

‖A(t)u‖Lq([T,S];Lr) ≤ 2Cr‖A(T )u‖L2 .

Since S > T is arbitrary, this implies A(t)u ∈ Lq(R+;Lr). Similarly, A(t)u ∈
Lq(R;Lr); (2.15) is proven for the admissible pair (q, r) such that r = 2σ + 2.
Strichartz inequality (2.2) then yields (2.15) for any admissible pair. Indeed, if (q1, r1)
is admissible,

‖A(t)u‖Lq1 ([0,S];Lr1 ) ≤ Cr1‖u0‖Σ + |λ|Cr,1,r
∥∥A(t)

(|u|2σu)∥∥
Lq′ ([0,S];Lr′ )

≤ C + C‖u‖2σ
Lk(R;Ls)‖A(t)‖Lq(R;Lr) .

This completes the proof of Corollary 2.8.
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3. Scattering theory. In this section, we prove that the influence of the non-
linear term in (1.2) is negligible as time becomes large (at least if λ > 0), without the
usual restriction on the power of the nonlinearity encountered for scattering theory
associated to (1.3). We first prove the existence of wave operators and then their
asymptotic completeness.

Proposition 3.1 (existence of wave operators). In either of the cases considered
in Corollary 2.8, the following holds.

• For every u− ∈ Σ, there exists a unique u0 ∈ Σ such that the maximal solution
u ∈ C(R; Σ) of (1.2) satisfies∥∥Uω(−t)u(t) − u−

∥∥
Σ

−→
t→−∞ 0 .

• For every u+ ∈ Σ, there exists a unique u0 ∈ Σ such that the maximal solution
u ∈ C(R; Σ) of (1.2) satisfies∥∥Uω(−t)u(t) − u+

∥∥
Σ

−→
t→+∞ 0 .

Proof. We prove the first point; the proof of the second is similar. We solve the
following equation by a fixed point argument:

u(t) = Uω(t)u− − iλ

∫ t

−∞
Uω(t− s)

(|u|2σu)(s)ds .(3.1)

Define F (u)(t) as the right-hand side of (3.1), and let R := ‖u−‖Σ. Recall that, as
stated in Lemma 2.10, (q, r) is the admissible pair such that r = 2σ + 2.

We first prove that there exists T > 0 such that the set

XT :=
{
u ∈ Y2σ+2(]−∞,−T ]); ‖A(t)u‖L2 ≤ 2R ∀t ≤ −T, A ∈ {Id, J,H},
‖A(t)u‖Lq(]−∞,−T ];Lr) ≤ 2C2σR ∀A ∈ {Id, J,H}}

is stable under the map F , where C2σ is the constant in Strichartz inequality (2.1).
We then prove that choosing T even larger, F is a contraction on Lq(]−∞,−T ];Lr).

For any pair (a, b), we use the notation

‖f‖LaT (Lb) = ‖f‖La(]−∞,−T ];Lb).

Let u ∈ XT and A ∈ {Id, J,H}. From Lemmas 2.2, 2.3, and 2.10,

‖A(t)F (u)‖L∞
T (L2) ≤ ‖u−‖Σ + C2,2σ+2|λ|

∥∥A(t)
(|u|2σu)∥∥

Lq
′
T (Lr′ )

≤ R + C
∥∥|u|2σA(t)u

∥∥
Lq

′
T (Lr′ )

≤ R + C ‖u‖2σ
LkT (Ls) ‖A(t)u‖LqT (Lr) .

From (2.7) and Lemma 2.10,

‖u‖LkT (Ls) ≤ CkR

∥∥∥∥∥
(

1

cosh(ωt)

)δ(s)∥∥∥∥∥
Lk(]−∞,−T ])

≤ C(ω, σ)Re−ωδ(s)T .

It follows that

‖A(t)F (u)‖L∞
T (L2) ≤ R + CR2σ+1e−2σωδ(s)T .(3.2)
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Use Lemmas 2.2, 2.3, and 2.10 again to obtain

‖A(t)F (u)‖LqT (Lr) ≤ C2σR + C ‖u‖2σ
LkT (Ls) ‖A(t)u‖LqT (Lr)

≤ C2σR + CR2σ+1e−2σωδ(s)T .

It is now clear that if T is sufficiently large, then XT is stable under F .
To complete the proof of the proposition, following the argument used in [14], it

is enough to prove contraction for large T in the weaker metric Lq(]−∞,−T ];Lr).
From Lemmas 2.2, 2.3, and 2.10, we have∥∥F (u2) − F (u1)

∥∥
LqT (Lr)

≤ C
∥∥(|u2|2σu2 − |u1|2σu1

)∥∥
Lq

′
T (Lr′ )

≤ C
(
‖u1‖2σ

LkT (Ls) + ‖u2‖2σ
LkT (Ls)

)
‖u2 − u1‖LqT (Lr) .

(3.3)

As above, we have the estimate

‖u1‖2σ
LkT (Ls) + ‖u2‖2σ

LkT (Ls) ≤ CR2σe−2σωδ(s)T .

Therefore, contraction follows for T sufficiently large.
From Corollary 2.8, the solution u we obtain by this fixed point argument is

defined not only on ]−∞,−T ] for T large but also globally. Proposition 3.1 then
follows from Corollaries 2.7 and 2.8.

Remark 3.2. The fact that we limit ourselves to the cases considered in Corol-
lary 2.8 in the above proposition is needed only to ensure that the solution u we
construct is defined up to time t = 0. To solve (3.1) in the neighborhood of −∞, we
used only the assumptions of Proposition 2.5.

Proposition 3.3 (asymptotic completeness). Let λ ≥ 0, σ > 0, with σ <
2/(n− 2) if n ≥ 3.

• For every u0 ∈ Σ, there exists a unique u− ∈ Σ such that the maximal solution
u ∈ C(R; Σ) of (1.2) satisfies∥∥Uω(−t)u(t) − u−

∥∥
Σ

−→
t→−∞ 0 .

• For every u0 ∈ Σ, there exists a unique u+ ∈ Σ such that the maximal solution
u ∈ C(R; Σ) of (1.2) satisfies∥∥Uω(−t)u(t) − u+

∥∥
Σ

−→
t→+∞ 0 .

Proof. We prove the second point; the proof of the first is similar. Let u0 ∈ Σ.
Since Σ is a Hilbert space, it is enough to prove that the family

(
Uω(−t)u(t)

)
t≥0

is a Cauchy sequence as t goes to +∞. From Duhamel’s principle (2.11), we have

Uω(−t)u(t) = u0 − iλ

∫ t

0

Uω(−s)
(|u|2σu) (s)ds .

Let B ∈ {Id,∇x, x}, and let A ∈ {Id, J,H} be its counterpart given by the commu-
tation property (2.5). We have

B (Uω(−t)u(t)) = Bu0 − iλ

∫ t

0

Uω(−s)A(s)
(|u|2σu) ds .
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Let t2 ≥ t1 > 0. From Strichartz inequality (2.2),∥∥B(Uω(−t2)u(t2) − Uω(−t1)u(t1)
)∥∥

L2

≤ C

∥∥∥∥
∫ t

t1

Uω(−s)A(s)
(|u|2σu) ds∥∥∥∥

L∞([t1,t2];L2)

≤ C
∥∥A(t)

(|u|2σu)∥∥
Lq′ ([t1,t2];Lr

′ ) .

From Lemmas 2.3 and 2.10, this yields∥∥B(Uω(−t2)u(t2) − Uω(−t1)u(t1)
)∥∥

L2 ≤ C‖u‖2σ
Lk([t1,t2];Ls)

‖A(t)u‖Lq([t1,t2];Lr)
≤ C‖u‖2σ

Lk([t1,t2];Ls)
‖A(t)u‖Lq([t1,t2];Lr) .

We saw in the proof of Corollary 2.8 that u ∈ Lk(R;Ls) and A(t)u ∈ Lq(R;Lr),
which implies that

(
B(Uω(−t)u(t))

)
t>0

is a Cauchy sequence in L2, which completes
the proof of the proposition.

Propositions 3.1 and 3.3 imply Theorem 1.5, and even more, since we do not
necessarily assume that the nonlinearity is defocusing.

4. Blow-up in finite time. In Corollary 2.8, we proved that if λ < 0 and
σ ≥ 2/n, the solution of (1.2) is global, provided that the initial datum u0 is small.
When u0 is not small, we show that finite-time blow-up may occur, as in the case of
(1.3). However, the sufficient condition we state below is stronger than its counterpart
(1.4) for (1.3); in some sense, blow-up in finite time is less likely to occur for (1.2)
than for (1.3).

Proposition 4.1. Let u0 ∈ Σ, λ < 0, σ ≥ 2/n, with σ < 2/(n− 2) if n ≥ 3. If
u0 satisfies

1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < −ω2

2
‖xu0‖2

L2 ,

then the solution u to (1.2) blows up in finite time, in the future or in the past. More
precisely,

• if Im
∫
u0x · ∇u0 ≤ 0, then T ∗ < ∞—that is, u blows up in the future;

• if Im
∫
u0x · ∇u0 ≥ 0, then T∗ < ∞—that is, u blows up in the past.

If, moreover,

1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < −ω2

2
‖xu0‖2

L2 − ω

∣∣∣∣Im
∫

u0x · ∇xu0

∣∣∣∣ ,
then u blows up in the past and in the future.

Proof. We follow the Zakharov–Glassey method. Denote y(t) := ‖xu(t)‖2
L2 . We

show that y(t) satisfies a second-order ordinary differential equation, from which the
proposition follows.

Step 1. Formal computations. Differentiating y(t) and using (1.2) yields

ẏ(t) = 2 Im

∫
u(t, x)x · ∇xu(t, x)dx .

Expanding ‖J(t)u‖2
L2 , we have

‖J(t)u‖2
L2 = ω2 sinh2(ωt)y(t) + cosh2(ωt)‖∇xu(t)‖2

L2

− ω sinh(2ωt) Im

∫
u(t, x)x · ∇xu(t, x)dx ,
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and from the conservation of energy (2.8),

E1(t) =
ω2

2
sinh2(ωt)y(t) + cosh2(ωt)

(
E +

ω2

2
y(t)

)

− ω

2
sinh(2ωt) Im

∫
u(t, x)x · ∇xu(t, x)dx .

Using the evolution law (2.10) and the above formula for ẏ(t) yields

d

dt
Im

∫
u(t, x)x · ∇xu(t, x)dx = 2ω2y(t) + 2E − λ

σ + 1
(2 − nσ)‖u(t)‖2σ+2

L2σ+2 .

It follows that

ÿ(t) = 4ω2y(t) + 4E − 2λ

σ + 1
(2 − nσ)‖u(t)‖2σ+2

L2σ+2 .(4.1)

Step 2. Justification. One has to know that y ∈ C1(]−T∗, T ∗[); the rest of the
computations follow from (2.10). The argument is classical (it consists of considering

yε(t) := ‖e−ε|x|2xu(t)‖2
L2 and eventually letting ε go to zero), and we refer to [6,

sect. 6.4] for more details, as we did for the proof of (2.10).
Step 3. Conclusion. From classical ordinary differential equations methods, the

solution of (4.1) is given by the formula

y(t) = y(0) cosh(2ωt) + ẏ(0)
sinh(2ωt)

2ω
+

∫ t

0

sinh(2ω(t− s))

2ω
f(s)ds ,

where f(t) = 4E − 2λ
σ+1 (2 − nσ)‖u(t)‖2σ+2

L2σ+2 . Since λ < 0 and σ ≥ 2/n,

y(t) ≤ y(0) cosh(2ωt) + ẏ(0)
sinh(2ωt)

2ω
+

∫ t

0

sinh(2ω(t− s))

2ω
4Eds

≤ y(0) cosh2(ωt) +
2 sinh2(ωt)

ω2

(
1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2

)

+ ẏ(0)
sinh(2ωt)

2ω
·

Assume ẏ(0) ≤ 0. Then for positive times, the above estimate implies

y(t) ≤ y(0) cosh2(ωt) +
2 sinh2(ωt)

ω2

(
1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2

)

≤ cosh2(ωt)

(
y(0) +

2 tanh2(ωt)

ω2

(
1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2

))
.

Since tanh(R+) = [0, 1[, it follows that if

1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < −ω2

2
‖xu0‖2

L2 ,

then if we suppose T ∗ = ∞, y(t) becomes negative for possibly large t. This is absurd;
therefore T ∗ is finite. Similarly, if ẏ(0) ≥ 0, then T∗ is finite.

Finally, if

1

2
‖∇u0‖2

L2 +
λ

σ + 1
‖u0‖2σ+2

L2σ+2 < −ω2

2
‖xu0‖2

L2 − ω

∣∣∣∣Im
∫

u0x · ∇xu0

∣∣∣∣ ,
then the same argument shows that T∗ and T ∗ are finite.
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We now prove that, indeed, blow-up in finite time is less likely to occur for (1.2)
than for (1.3). For a fixed u0 ∈ Σ, the blow-up sufficient conditions stated in Propo-
sition 4.1 become empty when ω is large. We prove that, for a fixed initial datum u0,
taking ω sufficiently large ensures the global existence of u.

Proposition 4.2. Let u0 ∈ Σ, λ < 0, σ > 2/n, with σ < 2/(n − 2) if n ≥ 3.
There exists ω1 > 0 such that for any ω ≥ ω1, the solution u to (1.2) is global, and
u ∈ Y (R).

Proof. From Proposition 2.5, there exist t0 > 0 and C0 independent of ω > 0
such that (1.2) has a unique solution u ∈ Y (]−2t0, 2t0[), which also satisfies estimate
(2.9), that is,

sup
|t|≤t0

‖u(t)‖L2 + sup
|t|≤t0

‖J(t)u‖L2 + sup
|t|≤t0

‖H(t)u‖L2 ≤ C0.

The idea is to mimic the proof of the fourth case in Corollary 2.8 by replacing the
smallness assumption by the property ω � 1.

Integrate the evolution law (2.10) between time t0 and time t > t0:

E1(t) − E1(t0) =
ωλ

2σ + 2
(2 − nσ)

∫ t

t0

sinh(2ωs)‖u(s)‖2σ+2
L2σ+2ds .

From Proposition 2.5 and the fact that the nonlinearity we consider is focusing, we
have

E1(t0) ≤ 1

2
‖J(t0)u‖2

L2 ≤ 1

2
C2

0 ,

where C0 does not depend on ω.
Using modified Gagliardo–Nirenberg inequalities (2.7), we have

E1(t) ≤ 1

2
C2

0 + C(λ, σ)ω

∫ t

t0

sinh(2ωs)(
cosh(ωs)

)nσ ‖u(s)‖2+(2−n)σ
L2 ‖J(s)u‖nσL2ds

≤ 1

2
C2

0 + C ′(λ, σ)‖u0‖2+(2−n)σ
L2 sup

t0≤s≤t
‖J(s)u‖nσL2

(
cosh(ωt0)

)2−nσ
.

From the definition of E1, this yields

1

2
‖J(t)u‖2

L2 ≤ 1

2
C2

0 + C
(

cosh(ωt)
)2‖u(t)‖2σ+2

L2σ+2

+ C sup
t0≤s≤t

‖J(s)u‖nσL2

(
cosh(ωt0)

)2−nσ
≤ 1

2
C2

0 + C
(

cosh(ωt)
)2−nσ‖J(t)u‖nσL2

+ C sup
t0≤s≤t

‖J(s)u‖nσL2

(
cosh(ωt0)

)2−nσ
≤ 1

2
C2

0 + C
(

cosh(ωt0)
)2−nσ‖J(t)u‖nσL2

+ C sup
t0≤s≤t

‖J(s)u‖nσL2

(
cosh(ωt0)

)2−nσ
,

where the above constants do not depend on ω. We finally obtain

sup
t0≤s≤t

‖J(s)u‖2
L2 ≤ C2

0 + C
(

cosh(ωt0)
)2−nσ

sup
t0≤s≤t

‖J(s)u‖nσL2 ,
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which can also be written

sup
t0≤s≤t

‖J(s)u‖2
L2 ≤ C2

0 + f(ω)

(
sup

t0≤s≤t
‖J(s)u‖2

L2

)nσ/2
,

where C0 does not depend on ω, and f(ω) → 0 as ω → +∞, because nσ > 2.
Lemma 2.9 shows that for ω sufficiently large, J(t)u is uniformly bounded in L2 for
t ≥ 0. Corollary 2.7 then implies u ∈ Yloc(R+), and one can repeat the end of the
proof of Corollary 2.8 to deduce that u ∈ Y (R+).

Proving u ∈ Y (R−) is similar, so we omit that part.
The proof of Theorem 1.1 is not complete yet, since in the above proposition, we

assumed only σ > 2/n, while in Theorem 1.1, we assumed σ ≥ 2/n. The remaining
case, σ = 2/n, is treated in the next section.

5. The particular case σ = 2/n. Let λ ∈ R, u0 ∈ Σ. Let v solve (1.3) with a
critical power, that is,

i∂tv +
1

2
∆v = λ|v|4/nv , (t, x) ∈ R × R

n ,

v|t=0 = u0 .
(5.1)

Let ω > 0. In [4], we noticed that if u+ is defined by

u+(t, x) =
1

(cos(ωt))
n/2

e−i
ω
2 |x|2 tan(ωt)v

(
tan(ωt)

ω
, x

cos(ωt)

)
,(5.2)

then u+ solves (1.6) with σ = 2/n. We also proved that v blows up at time T > 0
if and only if u+ blows up at time arctan(ωT )/ω. The first point of Theorem 1.2 is
therefore a reminder of a result stated in [4].

As noticed in the introduction, replacing ω by ±iω formally turns (1.6) into (1.2).
Following this idea again, define

u−(t, x) =
1

(cosh(ωt))
n/2

ei
ω
2 |x|2 tanh(ωt)v

(
tanh(ωt)

ω
, x

cosh(ωt)

)
.(5.3)

Then from Proposition 2.5, u− is the solution of
i∂tu

− +
1

2
∆u− = −ω2 |x|2

2
u− + λ|u−|4/nu− , (t, x) ∈ R × R

n ,

u−
|t=0 = u0 .

(5.4)

Now assume that λ < 0 and that v blows up at some finite time T > 0.
From the factorization (2.6), it is easy to see that

‖J(t)u−‖L2 =

∥∥∥∥∇xv

(
tanh(ωt)

ω

)∥∥∥∥
L2

.(5.5)

Since tanh(R+) = [0, 1[, if ω ≥ 1/T , then the function of the right-hand side of (5.3)
does not “see” the time T , and from Corollary 2.7, u− does not blow up in finite time.

If ω < 1/T , then (5.5) and Corollary 2.7 show that u− blows up at time

Tω =
arg tanh(ωT )

ω
,

which completes the proof of Theorem 1.2.
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We can go further in the analysis of the influence of the parameter ω.
Proposition 5.1. Let u0 ∈ Σ, λ < 0. For ω ≥ 0, denote uω the solution of the

initial value problem
i∂tu

ω +
1

2
∆uω = −ω2 |x|2

2
uω + λ|uω|4/nuω , (t, x) ∈ R × R

n ,

uω|t=0 = u0 .
(5.6)

Let ω∗ ≥ 0.
• If uω∗ is defined globally, uω∗ ∈ Yloc(R), then for every ω ≥ ω∗, uω is also

defined globally, uω ∈ Yloc(R).
• Suppose that there exists T∗ > 0 such that uω∗ blows up at time T∗. Then

for every 0 ≤ ω < ω∗/ tanh(ω∗T∗), uω blows up in finite time, and for every ω ≥
ω∗/ tanh(ω∗T∗), uω is defined globally, uω ∈ Yloc(R).

Proof. Let v be the solution of (5.1). If v is defined globally in Σ, then so is uω

for any ω ≥ 0. If v blows up in finite time T0 > 0 while uω∗ is defined globally, then
Theorem 1.2 implies ω∗ ≥ 1/T0. Using Theorem 1.2 again, uω is defined globally for
any ω ≥ ω∗ ≥ 1/T0.

Now assume uω∗ blows up at time T∗ > 0. From Theorem 1.2, v blows up at time
T0, with

T0 =
tanh(ω∗T∗)

ω∗
·

The last point of Theorem 1.2 implies that if ω ≥ 1/T0, then uω is defined globally.
Similarly, if 0 ≤ ω < ω∗/ tanh(ω∗T∗), then uω blows up at time

Tω =
1

ω
arg tanh

(
ω tanh(ω∗T∗)

ω∗

)
,

which completes the proof of the proposition.
Assume that λ < 0 and that v blows up in finite time. Theorem 1.2 and Propo-

sition 5.1 show that there is a critical value for the parameter ω, which is the inverse
of the blow-up time for v. What happens for that critical value? We can answer
this question in the case where the mass of the initial datum is critical. We saw in
Corollary 2.8 that if ‖u0‖L2 < ‖Q‖L2 , where Q is the spherically symmetric solution
of (2.13), then the solution to (5.6) is global for any ω ≥ 0. If ‖u0‖L2 = ‖Q‖L2 , then
blow-up in finite time may occur. This phenomenon was studied very precisely by
Merle in the case of (5.1).

Theorem 5.2 (see [17, Thm. 1]). Let λ < 0, u0 ∈ H1(Rn), and assume that the
solution v of (5.1) blows up in finite time T > 0. Moreover, assume that ‖u0‖L2 =
‖Q‖L2 , where Q is defined by (2.13). Then there exist θ ∈ R, δ > 0, x0, x1 ∈ R

n such
that

u0(x) =

(
δ

T

)n/2
eiθ−i|x−x1|2/2T+iδ2/TQ

(
δ

(
x− x1

T
− x0

))
,

and for t < T ,

v(t, x) =

(
δ

T − t

)n/2
eiθ−i|x−x1|2/2(T−t)+iδ2/(T−t)Q

(
δ

(
x− x1

T − t
− x0

))
.
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We use this result only to understand the role of ω in preventing blow-up when the
mass is critical, but other applications are possible (see [4] for the case of a confining
harmonic potential). With the above theorem and the change of variable (5.3), the
following result is straightforward.

Corollary 5.3. Let λ < 0 and T > 0. Assume that u0 is given by

u0(x) =
1

Tn/2
e−i|x|

2/2T+i/TQ
( x
T

)
.

For ω ≥ 0, denote by uω the solution of (5.6).
• If 0 ≤ ω < 1/T , then uω blows up at time arg tanh(ωT )/ω, with the profile Q.
• If ω > 1/T , then uω is defined globally with exponential decay, uω ∈ Y (R).
• If ω = 1/T , then uω is defined globally with only uω ∈ Yloc(R). More precisely,

u1/T (t, x) =
(
ωeωt

)
)n/2Q

(
ωxeωt

)
e−iω|x|

2/2+iω(e2ωt+1)/2

=

(
et/T

T

)n/2
Q

(
xet/T

T

)
e−i|x|

2/2T+i(e2t/T+1)/2T .

The critical value ω = 1/T thus leads to a global solution (we already knew that
from Theorem 1.2), which may have exponential growth (and does in the particular
case ‖u0‖L2 = ‖Q‖L2).
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TWIST CHARACTER OF THE LEAST AMPLITUDE
PERIODIC SOLUTION OF THE FORCED PENDULUM∗
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Abstract. In this paper, we will derive some twist criteria for the periodic solution of a periodic
scalar Newtonian equation using the third order approximation. As an application to the forced
pendulum ẍ + ω2 sinx = p(t), we will find an explicit bound P (ω) for the L1 norm, ‖p‖1, of the
periodic forcing p(t) using the frequency ω as a parameter such that the least amplitude periodic
solution of the forced pendulum is of twist type when ‖p‖1 < P (ω). The bound P (ω) has the order
of O(ω1/2) when ω is bounded away from resonance of orders ≤ 4 and ω → +∞.

Key words. forced pendulum, periodic solution, third order approximation, twist coefficient,
twist character
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1. Introduction. This paper is motivated by studying the twist character of
the least amplitude periodic solution xω(t) of the forced pendulum

ẍ+ ω2 sinx = p(t),(1.1)

where the frequency ω > 0 and the forcing p ∈ C(R/2πZ).
Such a simple model presents very interesting dynamical phenomena and has been

attracting much attention in the literature. See, e.g., the surveys [12, 13]. Before going
to our topic, let us recall some interesting phenomena for (1.1).

The first one is from You [27]. The net flux (or Calabi invariant) of system (1.1)
is given by the mean value of p(t). When this is zero, it is shown in [27] that the
Poincaré map of (1.1) satisfies the hypotheses of the Moser twist theorem [10, 14, 23]
for large enough ẋ, and there are infinitely many invariant circles for ẋ large. When
the net flux is nonzero, there exist solutions such that ẋ are unbounded. These give
a portrait for solutions of (1.1) with very high energy.

The second one is an interesting result which is proved by Wiggins [25] and
proved again by Hastings and McLeod [6] using a different approach. They show that
there are many chaotic solutions of (1.1) in the following sense. For any sequence
of positive integers n1, n2, . . . , n2k−1, n2k, . . . , (1.1) has a solution x(t) such that it
rotates n1 times clockwise and then rotates n2 times counterclockwise, and rotates n3

times clockwise and then rotates n4 times counterclockwise, etc. This phenomenon
happens in the region of phase space with high, but not too high, energy.

The third one is the chaotic phenomenon obtained from the homoclinic orbit of
unforced case. It can be analyzed using the Melnikov method. This deals with the
solutions with a suitable energy.

As for the present paper, we are interested in the stability and twist character
of the periodic solution of (1.1) which is near the stable equilibrium x(t) ≡ 0 of the
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unforced system. Suppose that the forcing p(t) ensures that (1.1) has 2π-periodic
solutions. Then there exists one periodic solution xω(t) such that the L∞ norm
‖xω‖∞ is smallest among all of the 2π-periodic solutions of (1.1). Such a periodic
solution is called the least amplitude periodic solution. This corresponds to the stable
equilibrium x(t) ≡ 0 for the unforced case. A basic problem concerning xω(t), namely,
stability, is the main object of this paper.

More generally, let us consider the scalar Newtonian equation

ẍ+ f(t, x) = 0,(1.2)

where f(t, x) is 2π-periodic in t and is sufficiently smooth in (t, x), e.g., f ∈ C0,4(R/
2πZ×R). Suppose that x = u(t) is a 2π-periodic solution of (1.2). A basic method to
study the stability of u(t) is to consider the third order approximation of (1.2) along
the solution u(t):

ẍ+ a(t)x+ b(t)x2 + c(t)x3 + · · · = 0,(1.3)

where the coefficients a(t), b(t), c(t) ∈ C(R/2πZ) are

a(t) =
∂f

∂x
(t, u(t)), b(t) =

1

2

∂2f

∂x2
(t, u(t)), c(t) =

1

6

∂3f

∂x3
(t, u(t)).

(We have transformed the solution u(t) to x ≡ 0 in the above equation.) The linear
part of (1.3) is the Hill equation:

ẍ+ a(t)x = 0.(1.4)

The stability problem of x ≡ 0 (as a periodic solution of (1.3)) has the nonlocal
character because (1.3) is a perturbation of (1.4) which cannot be integrated explicitly.
Although there are some results for this problem in previous works such as [15, 23]
which are based on the twist theorem [14], a breakthrough is Ortega’s works [19, 20,
21]. In these papers, he has derived the (first) twist coefficient for the Birkhoff normal
form of the Poincaré map of (1.3) when the linearization equation (1.4) is R-elliptic
and is 4-elementary (for definitions, see section 3.2 or [21]). Under an assumption
on (1.4) which implies that it is within the first stability zone [24], he obtained some
interesting twist criteria for nonlinear equation (1.3). The results obtained there
are based on the comparison between the coefficients b(t) and c(t). They have the
characteristic that no small parameters are involved. An interesting application of his
results is on the swing (or the pendulum of variable length)

ẍ+ α(t) sinx = 0,(1.5)

where α(t) (> 0) is a periodic function. It was proved that the periodic solution
x(t) ≡ 0 of (1.5) is of twist type (and consequently, is almost stable) and is “almost”
equivalent to its linear stability; i.e., the corresponding linearization equation

ẍ+ α(t)x = 0(1.6)

is elliptic. This result works when (1.6) is in higher order stability zones. Some further
development in [17] shows that even when (1.6) is (unstable) parabolic, the nonlinear
equation (1.5) may be stable in some cases. See also Liu [9] for a related problem.
Compared to (1.1), problem (1.5) is relatively simple, because the periodic solution of
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(1.5) is known, i.e., x(t) ≡ 0. Another advantage is that the second coefficient b(t) for
(1.5) vanishes everywhere. At this moment, it is worth mentioning a result of Núñez
[16]. He obtained some twist results when b(t) and c(t) in (1.3) can change sign but
with a more restricted assumption on the linear equation (1.4) than that obtained by
Ortega. In particular, Núñez’s results are applicable only to the case that (1.4) is in
the first stability zone.

As for the forced pendulum (1.1), three factors need to be considered: (1) The
least amplitude periodic solution xω(t) is not a priori known, although we can find in
section 2 an upper estimate for ‖xω‖∞ when ‖p‖1 is not too large. (2) When we use
the third order approximation of (1.1) along xω(t), the coefficients are

a(t) = ω2 cosxω(t), b(t) = −ω2

2
sinxω(t), c(t) = −ω2

6
cosxω(t).(1.7)

So the second coefficient b(t) changes sign. (3) A more serious disadvantage is that
if ω is large, then a(t) will be large. So the linearization equation (1.4) will be in
any higher order stability zone in this case. Thus the results in [16, 19, 21] are not
applicable to (1.1). Thus one needs to find new twist criteria in order to study the
twist character of the least amplitude periodic solution xω(t) of (1.1).

The paper is organized as follows. In section 2, we will prove the existence of the
least amplitude periodic solution xω(t) of (1.1) and give the upper bounds for xω(t)
under the assumption on the L1 norm of the forcing p(t). See Theorem 2.1. In section
3, we will derive the formulas for the twist coefficient of (1.3) when the linearization
equation (1.4) is elliptic and is 4-elementary. See (3.23) and (3.24). Then we will
give some new twist criteria; cf. Theorem 3.1 and Theorem 3.2. In doing so, we find
that it is crucial to find the estimates for the growth of the Floquet solutions of (1.4).
This will be realized using several equations derived from the Hill equation (1.4),
including the Ermakov–Pinney equation [22] and the Riccati equation. In section 4,
we apply the results developed in sections 2 and 3 to obtain the twist character of
xω(t) when ω is away from resonance of orders ≤ 4 and satisfies an explicit condition
of the form ‖p‖1 ≤ P (ω). See Theorem 4.1. A remarkable conclusion is that p(t)
may be large in some sense, because P (ω) is of order O(ω1/2) when ω is bounded
from resonance of orders ≤ 4 and ω → ∞. As a result of the Moser twist theorem,
xw(t) is stable in the sense of Lyapunov. Furthermore, (1.1) has, in a neighborhood
of xω(t), infinitely many subharmonics with periods tending to infinity, and infinitely
many quasi-periodic solutions.

Throughout this paper the following notation will be used. Denote by Z
+ =

{0}∪N the set of all nonnegative integers, where N is the set of positive integers. Let

Ω0 := {ω ∈ (0,∞) : ω = p/q for all p, q ∈ N with 1 ≤ q ≤ 4},
Θ0 := {θ ∈ (0,∞) : θ = 2nπ/3 for all n ∈ N}.

For � ∈ [1,∞] and a 2π-periodic function r(t), we use ‖r‖� to denote the L� norm of
r(t) over [0, 2π]. For two functions f(t) and g(t), f � g means that f(t) ≤ g(t) for
all t and f(t) < g(t) holds for t in a subset of positive measure.

2. The least amplitude periodic solution. In this section, we consider the
periodic motion of the forced pendulum equation (1.1). When ω ∈ N and ‖p‖1 is not
too large in some sense, we will prove that (1.1) has a unique 2π-periodic solution
x = xω(t) such that it is near zero and will make the L∞ norm ‖xω‖∞ be smallest
among all of 2π-periodic solutions of (1.1). In this sense, xω(t) is called the least
amplitude periodic solution of (1.1).
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The proof of the following result is elementary.
Lemma 2.1. Let α and γ be positive parameters. Then the cubic equation

αX3 + γ = X

has a positive root if and only if 27αγ2 ≤ 4. In this case, the minimal positive root
is given by

X = X∗(α, γ) = 2(3α)−1/2 cos
ϑ+ π

3
,

(
ϑ = arccos

(
3

2
γ(3α)1/2

)
∈
(
0,

π

2

))
,

(2.1)
which satisfies

X∗(α, γ) ≤ 3

2
γ.(2.2)

Now we give the existence of the least amplitude periodic solution.
Theorem 2.1. Consider the forced pendulum equation (1.1). Assume that ω ∈ N.

Let

α =

∫ ωπ
0

| cos s|ds
6| sinωπ| , γ =

‖p‖1

2ω| sinωπ| .(2.3)

If the condition

27αγ2 ≤ 4(2.4)

is satisfied, then equation (1.1) has a unique 2π-periodic solution x = xω(t) such that
‖xω‖∞ is the smallest among all of 2π-periodic solutions of (1.1). Moreover, xω(t)
satisfies

‖xω‖∞ ≤ X∗(α, γ) ≤ 3‖p‖1

4ω| sinωπ| .(2.5)

Proof. Let G(t, s) be the Green’s function associated with the problem

ẍ+ ω2x = f(t), x(t) is 2π-periodic.

Explicitly,

G(t, s) =

{
cosω(π−t+s)

2ω sinωπ if 0 ≤ s ≤ t ≤ 2π,

cosω(π−s+t)
2ω sinωπ if 0 ≤ t ≤ s ≤ 2π.

Now x is a 2π-periodic solution of (1.1) if and only if x ∈ C(R/2πZ) satisfies

x(t) =

∫ 2π

0

G(t, s)(p(s) + ω2(x(s)− sinx(s)))ds =: (T x)(t).

The operator T is a completely continuous operator from C(R/2πZ) (with the uniform
norm ‖ · ‖∞) to itself. It follows from the basic estimate |y − sin y| ≤ 1

6 |y|3 that we
have, for any x ∈ C(R/2πZ),

|(T x)(t)| ≤ max
(t,s)

|G(t, s)| ‖p‖1 +
ω2

6

(
max
t

∫ 2π

0

|G(t, s)|ds
)
‖x‖3

∞ = γ + α‖x‖3
∞,
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where α and γ are as in (2.3). This yields

‖T x‖∞ ≤ γ + α‖x‖3
∞

for all x ∈ C(R/2πZ).
If α and γ satisfy (2.4), then T maps the closed ball B = {x ∈ C(R/2πZ) :

‖x‖∞ ≤ X∗(α, γ)} into itself. Thus it follows immediately from the Schauder fixed
point theorem that T has a fixed point xω in B, namely, xω is a 2π-periodic solution
of (1.1).

Now we prove the uniqueness. Let x, y ∈ B. Then, using the estimate (2.2), we
have

|(x(s)− sinx(s))− (y(s)− sin y(s))| ≤ 1

2
(X∗(α, γ))2|x(s)− y(s)| ≤ 9

8
γ2|x(s)− y(s)|

and

|(T x)(t)− (T y)(t)| =
∣∣∣∣
∫ 2π

0

G(t, s)ω2((x(s)− sinx(s))− (y(s)− sin y(s)))ds

∣∣∣∣
≤ 9

8
ω2γ2

∫ 2π

0

|G(t, s)| |x(s)− y(s)|ds.

Hence

‖T x− T y‖∞ ≤ 9

8
ω2γ2

(
max
t

∫ 2π

0

|G(t, s)|ds
)
‖x− y‖∞ =

27

4
αγ2‖x− y‖∞

for all x, y ∈ B. Thus, if the strict inequality in condition (2.4) is satisfied, we know
that T : B → B is actually a strict contraction. So T has a unique fixed point xω in
B.

Note that if 27αγ2 = 4, one can also obtain the uniqueness from the proof above,
although T may not be a strict contraction.

By the uniqueness of the 2π-periodic solution of (1.1) in B, we know that ‖xω‖∞
is smaller than other possible 2π-periodic solutions of (1.1).

Remark 2.1. (1) The existence condition (2.4) can be expressed as

‖p‖1 ≤ 4
√
2

3

ω| sinωπ|3/2(∫ πω
0

| cos s|ds)1/2 =: P1(ω).(2.6)

Note that when ω is bounded away from resonance, i.e., when dist (w,Z+) ≥ ε0 > 0,
then

P1(ω) = O(ω1/2) as w → +∞.

It follows now from (2.2), (2.3), (2.5), and (2.6) that

‖xω‖∞ ≤ Q(ω) :=
(2| sinωπ|)1/2(∫ πω
0

| cos s|ds)1/2 = O(ω−1/2) as w → +∞.(2.7)

A more precise upper bound for xω(t) can be derived from (2.1) and (2.5).
(2) The existence of periodic solutions of (1.1) is a central problem in nonlinear

analysis; see [11, 13]. However, when we study the twist character, it is necessary
to give a quantitative estimate to the periodic solution. In previous works such as
[16, 18], this is done using the method of upper and lower solutions [2]. However, this
method is applicable to (1.1) when the frequency ω is small. Although the estimate
in Theorem 2.1 is not optimal, it will yield a satisfactory result in section 4 when we
study the twist character of xω(t).
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3. Twist results basing on the third order approximation. For the forced
pendulum equation (1.1), we will consider the case that ω is bounded away from
the resonance and ω is large. Recall from (1.7) and (2.7) that a(t) = aω(t) =
ω2 cosxω(t) > 0, c(t) = cω(t) = −(ω2/6) cosxω(t) < 0, and b(t) = bω(t) =
−(ω2/2) sinxw(t) changes sign, and all of them will be large in general when ω is
so. In particular, λ = 0 is not within the first stability zone (defined at the end of the
next subsection) of the linearization equation

ẍ+ (λ+ aω(t))x = 0.

We will follow [16, 19, 20, 21] to derive some new twist results for (1.3) which are
applicable to the forced pendulum equation. The results obtained in this section are of
independent interest, because we are mainly concerned with the case of higher order
stability zones for the linearization equations. In doing so, we mostly concentrate
on linearization equation (1.4). Since (1.4) cannot be integrated explicitly, a lot of
theories for the Hill equations and their variants will be engaged in the discussion
below.

3.1. Rotation numbers and Floquet multipliers. We consider the Hill equa-
tion (1.4). Let x = r cosψ and ẋ = −r sinψ in (1.4). Then the equation for ψ(t) is

ψ̇ = sin2 ψ + a(t) cos2 ψ.(3.1)

Since the right-hand side of (3.1) is periodic in both t and ψ, it is well known that
the rotation number of (1.4),

ρ = ρ(a) = lim
t→∞ψ(t)/t,

does exist and is independent of the choice of the solution ψ(t) of (3.1) in defining the
rotation number. See Hartman [5].

Some well-known properties on rotation numbers are listed in the following lemma.
Lemma 3.1.
(1) 0 ≤ ρ(a) < ∞.
(2) ρ(a) is continuous in a(·) with respect to the L1 norm of a’s.
(3) ρ(a) is monotone with respect to a(t). More precisely, if a1 � a2, then

ρ(a1) < ρ(a2).
(4) When a(t) ≡ ω2 is a constant, then ρ(a) = ω.
Some further properties on rotation numbers and their applications can be found

in [28].
Rewrite (1.4) as an equivalent planar, linear system:

ẋ = y, ẏ = −a(t)x.(3.2)

Let M be the Poincaré matrix associated with (3.2). The eigenvalues λ1,2 of M are
called the Floquet multipliers of (1.4). Since detM = 1, λ1 · λ2 = 1. As usual, we
say that (1.4) is elliptic, parabolic, and hyperbolic if λ1,2 ∈ S1\{±1}, λ1,2 = ±1, and
|λ1,2| = 1, respectively.

In the following we are interested only in the elliptic case, which can also be
described using rotation numbers.

Lemma 3.2. Equation (1.4) is elliptic if and only if ρ = ρ(a) ∈ 1
2Z

+. In this
case, the Floquet multipliers of (1.4) are given by λ1,2 = e±iθ, where

θ = 2πρ.(3.3)
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Proof. An elementary proof for this fact is given in [4].
Note that the θ in the expression of the Floquet multipliers is only defined by

modulo 2π. However, we will always take θ as in (3.3) when (1.4) is elliptic.
Let n ∈ N. If θ is contained in the interval ((n− 1)π, nπ), we say that 0 is in

the nth stability zone of (1.4) (see [24]), or simply that a(t) is in the nth stability
zone. This is equivalent to the fact that λ = 0 is in the nth spectrum interval of the
parameterized Hill equation

ẍ+ (λ+ a(t))x = 0.

3.2. Ellipticity and twist coefficients. Let Ψ(t) = φ1(t)+iφ2(t) be the (com-
plex) solution of (1.4) with the initial data Ψ(0) = 1 and Ψ̇(0) = i, where φ1 and φ2

are, respectively, the real and imaginary parts of Ψ. Now the Poincaré matrix of (3.2)
is

M =

(
φ1(2π) φ2(2π)

φ̇1(2π) φ̇2(2π)

)
.

When (1.4) is elliptic, it is easy to see that Ψ(t) = 0 for all t. Thus it can be
written in the form Ψ(t) = r(t)eiϕ(t), where r, ϕ ∈ C2(R), r(t) > 0, and they have
initial data

r(0) = 1, ṙ(0) = 0, ϕ(0) = 0, ϕ̇(0) = 1.(3.4)

We say that an elliptic equation (1.4) is 4-elementary if its multipliers λ = e±iθ

satisfy λq = 1 for 1 ≤ q ≤ 4. This is simply equivalent to

ρ = θ/(2π) ∈ Ω0,(3.5)

where Ω0 is as in the end of section 1.
We say that (1.4) is R-elliptic (with respect to eiθ) if (1.4) is elliptic and

Ψ(t+ 2π) ≡ eiθΨ(t).(3.6)

In this case, the Poincaré matrix M is simply a rigid rotation with the angle θ.
Furthermore, r(t) is 2π-periodic and ϕ(t) is strictly increasing (see (3.20) below) and
satisfies

ϕ(t+ 2π) ≡ ϕ(t) + θ.(3.7)

This gives an expression for θ in the Floquet multipliers using the function ϕ(t). In
particular, ϕ(0) = 0 and ϕ(2π) = θ. Condition (3.6) means also that Ψ(t) is a Floquet
solution with the multiplier eiθ. For another expression of θ, see (3.22) below.

From now on we consider the nonlinear equation (1.3), where a, b, c ∈ C(R/2πZ).
At the moment, we assume that a ∈ C(R/2πZ) is such that (1.4) is R-elliptic. How-
ever, we will not confine ourself to the case that a(·) is in the first stability zone.

Let

F̂ (x0, y0) = (F̂1(x0, y0), F̂2(x0, y0))

be the Poincaré map of (1.3). Write F̂ in the complex form, with z = x0 + iy0,

F (z, z̄) = F̂1 ((z + z̄)/2, (z − z̄)/(2i)) + iF̂2 ((z + z̄)/2, (z − z̄)/(2i)) .
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When λ = eiθ is 4-elementary, it is well known that F (z, z̄) is C∞ conjugate, in
the group of area-preserving diffeomorphisms, to

N(z, z̄) = λ(z + iβ|z|2z + · · ·),

where β ∈ R. Such a form of N(z, z̄) is called the Birkhoff normal form of F . The
coefficient β, which depends only on a, b, c and is invariant under conjugacies of
area-preserving diffeomorphisms, is called the (first) twist coefficient of (1.3). When
β = 0, we say that the solution x = 0 of (1.3) (as a 2π-periodic solution) is of twist
type. In this case, the Moser twist theorem is applicable and will yield the typical
dynamical behavior near 0, as mentioned in the introduction.

Under the assumption that (1.4) is 4-elementary and is R-elliptic (cf. (3.5) and
(3.6)), Ortega [19, 21] uses the expansion of F (z, z̄) at z = 0 to have derived the
formula of the twist coefficient β. See formula (2.6) and Proposition 4.4 of [21]. If
one exploits the notation above β can be written as

β = −3

8

∫
[0,2π]

c(t)r4(t)dt+

∫∫
[0,2π]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

+
3

16
cot

θ

2

∣∣∣∣∣
∫

[0,2π]

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣∣
∫

[0,2π]

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣∣
2

,(3.8)

where

χ1(x) =
1

8
(2 + cos 2x) sinx =

3 sinx− 2 sin3 x

8
, x ∈ [0, θ].(3.9)

Formula (3.8) can be written in a more compact form [29]:

β = −3

8

∫
[0,2π]

c(t)r4(t)dt+

∫∫
[0,2π]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds,(3.10)

where the kernel χ2(·) is

χ2(x) =
3

16

cos(x− θ/2)

sin(θ/2)
+

1

16

cos 3(x− θ/2)

sin(3θ/2)
, x ∈ [0, θ].(3.11)

Roughly speaking, the twist coefficient β is the sum of a linear functional of c(·)
and a quadratic form of b(·). However, the kernels in the functionals are dependent
upon the solutions r(t) and ϕ(t) of the Hill equation (1.4) in a complicated way. The
properties of β are far from being understood completely. For discussions on some
hidden mystery of it, see the recent work [29]. Some applications of Ortega’s works
can be found in [8, 18].

Suppose now that (1.4) is elliptic (not necessarily R-elliptic) and 4-elementary.
Ortega has shown in [19, Proposition 7] that there exist some t0 ∈ R and σ > 0 such
that the change of variables

ξ = x, τ = σ(t− t0)(3.12)

will transform (1.4) into an R-elliptic equation,

d2ξ

dτ2
+ a∗(τ)ξ = 0.(3.13)
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Correspondingly, (3.12) transforms (1.3) into

d2ξ

dτ2
+ a∗(τ)ξ + b∗(τ)ξ2 + c∗(τ)ξ3 + · · · = 0.(3.14)

Here

a∗(τ) = σ−2a(t0 + σ−1τ), b∗(τ) = σ−2b(t0 + σ−1τ), c∗(τ) = σ−2c(t0 + σ−1τ),

and the new period is T ∗ = 2πσ.
Note that the R-ellipticity condition for (3.13) may be with respect to e−iθ. How-

ever, this can be transformed into the R-ellipticity defined as in (3.6) by reversing
time. Thus we always assume that (3.13) is R-elliptic as in (3.6) (with 2π replaced
trivially by the new period T ∗).

If we introduce Ψ∗(τ) = r∗(τ)eiϕ
∗(τ) for the R-elliptic and 4-elementary equation

(3.13) as before, then the first twist coefficient of (3.14) is given by (cf. (3.8))

β∗ = −3

8

∫ T∗

0

c∗(τ)r∗4(τ)dτ+

∫∫
[0,T∗]2

b∗(τ)b∗(ζ)r∗3(τ)r∗3(ζ)χ1(|ϕ∗(τ)− ϕ∗(ζ)|)dτdζ

+
3

16
cot

θ

2

∣∣∣∣∣
∫ T∗

0

b∗(τ)r∗3(τ)e−iϕ
∗(τ)dτ

∣∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣∣
∫ T∗

0

b∗(τ)r∗3(τ)e3iϕ∗(τ)dτ

∣∣∣∣∣
2

.

(3.15)

Note that (3.13) has the same θ as (1.4). A basic relationship between β for (1.3) and
β∗ for (3.14) is

signβ = signβ∗.

Thus we are mainly concerned with the estimates of β∗ in the following.
Let us use the solutions of (1.4), not that of the transformed equation (3.13), to

express the coefficient β∗. Set

r(t) = σ−1/2r∗(σ(t− t0)), ϕ(t) = ϕ∗(σ(t− t0)).(3.16)

Using initial conditions (3.4) for r∗(τ) and ϕ∗(τ), we see that r(t) and ϕ(t) satisfy

r(t0) = σ−1/2, ṙ(t0) = 0, ϕ(t0) = 0, ϕ̇(t0) = σ.(3.17)

Since r∗(τ) is T ∗-periodic, r(t) is 2π-periodic. Another fact is that Ψ(t) := r(t)eiϕ(t) =
σ−1/2Ψ∗(σ(t− t0)) satisfies (1.4). Substituting this into (1.4), we have

0 = Ψ̈(t) + a(t)Ψ(t) = eiϕ
[
(r̈ − rϕ̇2 + a(t)r) + i(2ṙϕ̇+ rϕ̈)

]
.

Thus

2ṙϕ̇+ rϕ̈ = 0, r̈ − rϕ̇2 + a(t)r = 0.(3.18)

From the first equation, we have

ϕ̇ = c/r2



TWIST PERIODIC SOLUTION OF FORCED PENDULUM 853

for some constant c. Using the initial data (3.17), one sees that c = 1. By the second
equation of (3.18), r(t) satisfies the so-called Ermakov–Pinney equation [22]

r̈ + a(t)r =
1

r3
,(3.19)

while ϕ(t) satisfies

ϕ̇ =
1

r2
.(3.20)

In conclusion, the function r(t) in (3.16) is a positive 2π-periodic solution of
(3.19). In Lemma 3.3 below, we will prove that the Ermakov–Pinney equation (3.19)
has a unique positive 2π-periodic solution r(t) when (1.4) is elliptic. As ϕ(t) satisfies
ϕ(t0) = 0 and ϕ(t0 + 2π) = θ and r(t) is 2π-periodic, we obtain from (3.20) that

ϕ(t) =

∫ t

t0

dt

r2(t)
for all t,(3.21)

and ∫ t0+2π

t0

dt

r2(t)
=

∫ 2π

0

dt

r2(t)
= θ.(3.22)

The latter implies that ϕ(t) also satisfies (3.7) for all t.
Exploiting these r(t) and ϕ(t), we make use of the change of variables τ = σ(t−t0)

in (3.15) and obtain the following “explicit” formula for β∗.
Proposition 3.1. The twist coefficient β∗ can be rewritten as

β∗ = σ

[
−3

8

∫ t0+2π

t0

c(t)r4(t)dt+

∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

+
3

16
cot

θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣
2
]
,

(3.23)

where r(t) and ϕ(t) are as above, while the constant σ is related with the critical value
r(t0) (see [19, Proposition 7]) and is not of importance in the estimates below.

Analogously, we obtain from (3.10) another “explicit” formula for β∗.
Proposition 3.2.

β∗ = σ

[
−3

8

∫ t0+2π

t0

c(t)r4(t)dt

+

∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds
]
,(3.24)

where r(t), ϕ(t), and σ are as in Proposition 3.1, and χ2(·) is given by (3.11).
Note from (3.23) and (3.24) that it is important to estimate the growth of r(t),

the (unique) positive 2π-periodic solution of the Ermakov–Pinney equation (3.19), in
estimating β∗. This will be done in subsection 3.5.
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3.3. Discussion on the kernels. In this subsection, we estimate the kernels
χi(·), i = 1, 2, in (3.23) and (3.24).

The estimate for χ1(x) is simple:

max
x∈[0,θ]

|χ1(x)| ≤
√
2/8.

Combining this with the third and fourth terms in formula (3.23), we introduce the
following function of θ:

K1(θ) :=

√
2

8
+ max

{
− 3

16
cot

θ

2
, 0

}
+max

{
− 1

16
cot

3θ

2
, 0

}
.(3.25)

Note that K1(θ) is well defined in θ ∈ Θ0 and is 2π-periodic in θ.
Sometimes, we will use (3.24) to estimate the twist coefficient β∗. We can rewrite

the kernel χ2(x) in another form:

χ2(x) =
2 cos3(x− θ/2) + 3 cos θ cos(x− θ/2)

8 sin(3θ/2)
, x ∈ [0, θ].(3.26)

Let

K2(θ) := max
x∈[0,θ]

|χ2(x)|.

Then K2(θ) is defined in θ ∈ Θ0 and is 2π-periodic in θ. Using the expression (3.26),
we see that

K2(θ) =

{ |2 + 3 cos θ|/(8| sin(3θ/2)|) if θ ∈ (0, 2π/3) ∪ (4π/3, 2π),

| cos θ|√−2 cos θ/(8| sin(3θ/2)|) if θ ∈ (2π/3, 4π/3).

For most of θ, K1(θ) < K2(θ). However, K1(θ) > K2(θ) when θ tends from left
to 2nπ/3, n ∈ N. Define

K(θ) = min{K1(θ), K2(θ)}, θ ∈ Θ0.(3.27)

By (3.26), we have

K(θ) ≤ 5

8| sin(3θ/2)| , θ ∈ Θ0.

Both of the functions K1(θ) and K(θ) are increasing for θ in any interval from Θ0.
In particular, we have

max
θ∈[θ1,θ2]

K1(θ) = K1(θ2) ≤ 5

8| sin(3θ2/2)|(3.28)

when θ1, θ2, with θ1 ≤ θ2, are from the same interval of Θ0. The graph of K(θ) is as
in Figure 1.

3.4. Estimating periodic solutions of the Ermakov–Pinney equation. In
this subsection, we concentrate on estimating the growth of the positive 2π-periodic
solution r(t) of (3.19). This is the crucial estimate to be used in the next subsection
where we estimate the twist coefficients.
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Fig. 1. The graph of K(θ).

Lemma 3.3. Assume that a ∈ C(R/2πZ) such that (1.4) is elliptic with the
Floquet multipliers e±iθ. Then the Ermakov–Pinney equation (3.19) has a unique
positive 2π-periodic solution, denoted by r(t). Moreover, r(t) satisfies (3.22). (This
gives another expression for θ of (1.4) using the function r(t) associated with (1.4).)

Proof. The existence result of a positive periodic solution r(t) of (3.19) has been
explained in subsection 3.2 using Floquet solutions, where the connection between the
Hill equation (1.4) and the Ermakov–Pinney equation (3.19) is used.

Now we prove the uniqueness result. Let r1(t) be another positive 2π-periodic
solution of (3.19). Take t1 as a critical point of r1(t), i.e., ṙ1(t1) = 0. Define ϕ1(t) by

ϕ1(t) =

∫ t

t1

ds

r2
1(s)

;

cf. (3.21). Then (r1(t), ϕ1(t)) satisfies the system (3.19)–(3.20). So Ψ1(t) = r1(t)e
iϕ1(t)

is a solution of (1.4). Moreover, as r1(t) is 2π-periodic, we obtain from the definition
of ϕ1(t) that ϕ1(t+ 2π)− ϕ1(t) is independent of t and equal to

θ1 =

∫ 2π

0

ds

r2
1(s)

.

Thus Ψ1(t) satisfies Ψ1(t+2π) ≡ eiθ1Ψ1(t) and is also a Floquet solution of (1.4) with
the multiplier eiθ1 . By the uniqueness result for Floquet solutions, we have

θ1 = θ + 2mπ, r1(t) = c r(t)

for some m ∈ Z and some c > 0. Since both r(t) and r1(t) satisfy (3.19), we have
necessarily that c = 1. Thus r1(t) ≡ r(t). This proves the uniqueness result and
(3.22) is satisfied.

Since the positive 2π-periodic solution r(t) of (3.19) is uniquely determined by
a(t) when (1.4) is elliptic, we know that the minimum and the maximum of r(t) are
also uniquely determined by a(t). These facts have been generalized in [1, 3, 26]
to Ermakov–Pinney-type equations when they study the nonresonance problem of
equations with singularities.
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Now we give the estimates of the L4 norm ‖r‖4 of r(t). The estimate for lower
bounds of ‖r‖4 is made simple by using the constraint (3.22).

Lemma 3.4. Assume that r(t) is a positive 2π-periodic function satisfying (3.22).
Then, for any � ≥ 2,

‖r‖� ≥ (2π)1/�(2π/θ)1/2.

Proof. Let � ≥ 2. Set the exponents p = (2+�)/2, q = (2+�)/�, and α = 2�/(2+�).
Using the Hölder inequality, we have

2π =

∫ 2π

0

1dt =

∫ 2π

0

rα · r−αdt

≤
(∫

rαpdt

)1/p(∫
r−αqdt

)1/q

=

(∫
r�dt

)1/p(∫
r−2dt

)1/q

= θ1/q

(∫
r�dt

)1/p

.

Thus

‖r‖� ≥ (2π)p/�/θp/(q�),

which is just the inequality described in the lemma.
In order to estimate the upper bounds of ‖r‖4, we need the following comparison

result for Riccati equations.
Lemma 3.5. Assume that aj ∈ C(R). Let ξj(t; zj) be (real) solutions of equations

ẋ = x2 + aj(t), j = 1, 2,

satisfying ξj(0) = zj. If a1(t) ≥ a2(t) and z1 ≥ z2, then

ξ1(t, z1) ≥ ξ2(t, z2) for all t ∈ [0, t∗),

where t∗ is such that ξj(t, z1) < +∞ for t ∈ [0, t∗), j = 1, 2.
In the next lemma, we use 〈a, b〉 to denote the interval [a, b] for a ≤ b or the

interval [b, a] for a ≥ b.
Lemma 3.6. Let M0 = (0, 1

4 ), M
+
n = (n2 ,

n
2 +

1
4 ), and M−

n = (n2 − 1
4 ,

n
2 ) for n ∈ N.

Assume that a ∈ C(R/2πZ) satisfies

σ2
1 ≤ a(t) ≤ σ2

2 for all t,(3.29)

where σ1 and σ2 satisfy one of the following conditions:

σ1, σ2 ∈ M0,(3.30)

σ1, σ2 ∈ M+
n , n ∈ N,(3.31)

σ1, σ2 ∈ M−
n , n ∈ N.(3.32)
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Then we have the following estimates.
(1) Equation (1.4) is elliptic with the Floquet multipliers e±iθ, where θ satisfies

2πσ1 ≤ θ ≤ 2πσ2.(3.33)

(2) The positive 2π-periodic solution r(t) of (3.19) satisfies

r(t) ∈
〈
(σ1σ2 tan 2πσ1 cot 2πσ2)

−1/4, (σ1σ2 cot 2πσ1 tan 2πσ2)
−1/4

〉
for all t,

(3.34)
and ∫ 2π

0

r4(t)dt ∈
〈

2π

σ1σ2

tan 2πσ2

tan 2πσ1
,

2π

σ1σ2

tan 2πσ1

tan 2πσ2

〉
.(3.35)

Proof. Conclusion (1) follows immediately from Lemma 3.1. Conclusion (2) will
be established using the connection between the Hill equation and the Riccati equation
[7]. Let r(t) be as in the lemma. Suppose that t0 is a critical point of r(t). As in the
proof of Lemma 3.3, let ϕ(t) be defined by

ϕ(t) =

∫ t

t0

ds

r2(s)
.

Then Ψ(t) = r(t)eiϕ(t) is a solution of (1.4). Define

w(t) = − Ψ̇(t)

Ψ(t)
= − ṙ

r
− i

r2
,

which is 2π-periodic. It is well known that w(t) is a (complex) solution of the Riccati
equation

ẇ = w2 + a(t).(3.36)

Now the estimates (3.34) are reduced to estimate the critical values r(t0) =: r0 > 0
of r(t). Without loss of generality, we assume here that t0 = 0. Let w(t; z) be the
solution of (3.36) satisfying w(0; z) = z. When the values are considered on the
Riemannian sphere, w(t; z) is well defined for all t ∈ R. See [7, Chapter 4]. Since the
coefficient a(t) is real, it is well known that the Poincaré map of (3.36) is a Möbius
transformation

T (z) = w(2π; z) =
az + b

cz + d
,

where a, b, c, d are real. The fixed points z0 of T correspond to initial values of
2π-periodic solutions of (3.36). In our situation, z0 = −i/r2

0 is a fixed point of T .
Since z0 is purely imaginary, we know that a = d and b/c < 0. Note that if a = d = 0,
then w(2π; 0) = T (0) = ∞, which is impossible in our situation (see (3.37) below).
Let us assume that a = d = 1 for simplicity. In this case, we know that r0 is given by
r0 = (−c/b)1/4. So the estimate for r0 follows from estimating the coefficients b and
c in the Poincaré map T of (3.36).

We will first estimate b = T (0). Then c = −1/T−1(∞) can be obtained in a
similar way. The estimates will be done under the following assumption:

(0 <)
n

2
− 1

4
< σ1 ≤ σ2 <

n

2
+

1

4
.
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It is easy to see that the condition above implies that

(2k − 1)π

2σ2
≤ (2k − 1)π

2σ1
<

(2k + 1)π

2σ2
for all 1 ≤ k ≤ n.

Consider the equations

ẇ1 = w2
1 + σ2

1 ,

ẇ2 = w2
2 + σ2

2 .

Let w1(t) = σ1 tanσ1t and w2(t) = σ2 tanσ2t be solutions of above equations with
initial data wj(0) = 0, respectively.

We will construct intervals of Ik of [0, 2π] such that Lemma 3.5 is applicable on
each Ik and 2π ∈ In. Thus b = w(2π; 0) ∈ [σ1 tan 2πσ1, σ2 tan 2πσ2] by Lemma 3.5.
Denote w(t) = w(t; 0). Then w(t) is real because the initial data w(0; 0) = 0 and the
coefficient a(t) are real. Set

I0 = [0, π/(2σ2)) ,

and for k = 1, . . . , n,

Ik =

(
(2k − 1)π

2σ1
,
(2k + 1)π

2σ2

)
∩ [0, 2π], Jk =

(
(2k − 1)π

2σ2
,
(2k − 1)π

2σ1

)
∩ [0, 2π].

We claim that there exist t∗k ∈ J̄k (the closure of Jk) such that

lim
t→t∗

k
∓0

w(t∗k) = ±∞.

For example, the existence of t∗1 can be explained as below. From Lemma 3.5, it
is easy to see that w1(t) ≤ w(t) ≤ w2(t) for any t ∈ I0. Thus w(t) < +∞, t ∈ I0. If
w(t) < +∞ for any t ∈ J1, then for all t ∈ I0 ∪ J1, we have w(t) > w1(t). On the
other hand, since limt→(π/2σ1)−0 w1(t) = +∞, we have limt→(π/2σ1)−0 w(t) = +∞.
Thus we can always choose a t∗1 ∈ J̄1 such that limt→t∗1−0 w(t∗1) = +∞. Consequently,
limt→t∗1+0 w(t∗1) = −∞. Let L1 := ( π

2σ1
, t∗1) and L2 := (t∗1,

π
2σ2

). Then w(t) ≥ w1(t)
for all t ∈ L1. Since

lim
t→t∗1+0

w(t) = −∞ ≤ lim
t→t∗1+0

w2(t),

we have w(t) ≤ w2(t) for t ∈ L2. Next, by

lim
t→π/2σ1+0

w1(t) = −∞ ≤ w(π/2σ1) ≤ w2(π/2σ2),

we have w1(t) ≤ w(t) ≤ w2(t) for t ∈ I2. The existence of t∗k is similar using this
argument step by step. Thus we have t∗k ∈ J̄k such that limt→t∗

k
∓0 w(t∗k) = ±∞, and

w(t) is finite for t ∈ [0, 2π]\{tk}. Moreover, let

J ′
k =

(
(2k − 1)π

2σ2
, t∗k

)
, J ′′

k =

(
t∗k,

(2k − 1)π

2σ1

)
, k = 1, 2, . . . , n.

Then [0, 2π] is divided into intervals I0, J ′
1, J ′′

1 , I1, J ′
2, J ′′

2 , . . . , In by the points

0 <
π

2σ2
< t∗1 <

π

2σ1
<

3π

2σ2
< t∗2 <

3π

2σ1
< · · · < (2n− 1)π

2σ2
< t∗n <

(2n− 1)π

2σ1
< 2π.
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From the same arguments as above, we have


w1(t) ≤ w(t) ≤ w2(t), t ∈ Ik, k = 0, 1, . . . , n,
w1(t) ≤ w(t), t ∈ J ′

k, k = 1, 2, . . . , n,
w(t) ≤ w2(t), t ∈ J ′′

k , k = 1, 2, . . . , n.

Since 2π ∈ In, we have

−∞ < σ1 tan 2πσ1 = w1(2π) ≤ T (0) = w(2π; 0) ≤ w2(2π) = σ2 tan 2πσ2 < +∞,
(3.37)
which implies that

b = T (0) ∈ [σ1 tan 2πσ1, σ2 tan 2πσ2].

Now we consider the estimates of c. Let τ = −t, u = 1/w. Then u(τ) satisfies

u̇ = a(−τ)u2 + 1.(3.38)

Denote the Poincaré map of (3.38) by T ∗(z). Then T−1(∞) = 1/T ∗(0). Similar to
the arguments as above, we have

σ−1
1 tan 2πσ1 < T ∗(0) < σ−1

2 tan 2πσ2.

Hence

−c = T ∗(0) ∈ [σ−1
1 tan 2πσ1 σ

−1
2 tan 2πσ2].

Suppose now that σ1, σ2 are in I+
n or in I0. Then 0 < tan 2πσ1 ≤ tan 2πσ2. Thus

0 < σ1 tan 2πσ1 ≤ b ≤ σ2 tan 2πσ2, 0 < σ2 cot 2πσ2 ≤ −1/c ≤ σ1 cot 2πσ1,

and

−b/c ∈ [σ1σ2 tan 2πσ1 cot 2πσ2, σ1σ2 cot 2πσ1 tan 2πσ2].

If σ1, σ2 ∈ I−n , then tan 2πσ1 ≤ tan 2πσ2 < 0. So we have

0 < −σ2 tan 2πσ2 ≤ −b ≤ −σ1 tan 2πσ1, 0 < −σ1 cot 2πσ1 ≤ 1/c ≤ −σ2 cot 2πσ2,

and

−b/c ∈ [σ1σ2 cot 2πσ1 tan 2πσ2, σ1σ2 tan 2πσ1 cot 2πσ2].

In both cases, we have

r0 = (−b/c)−1/4 ∈
〈
(σ1σ2 tan 2πσ1 cot 2πσ2)

−1/4, (σ1σ2 cot 2πσ1 tan 2πσ2)
−1/4

〉
.

The statement (3.35) follows from (3.34) directly.
Remark 3.1. The lower bound in (3.35) can be improved as follows. By (3.22)

and (3.33), we obtain from Lemma 3.4 that

‖r‖4 ≥ (2π)1/4(2π/θ)1/2 ≥ (2π)1/4σ
−1/2
2 .
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When σ1, σ2 ∈ M0, (1.4) is in the first stability zone. In this case, a comparison
result for the Hill equations holds within one period. Núnẽz proved in [16, Lemma
4.2] that

σ
−1/2
2 ≤ r(t) ≤ σ

−1/2
1 for all t.(3.39)

This improves (3.34) in this case. It seems to us that the estimates (3.39) do not
hold for higher order stability zones. Thus we will use the upper bound in (3.35) for
general cases. Denote

N(σ1, σ2) = max

{(
2π

σ1σ2

tan 2πσ2

tan 2πσ1

)1/2

,

(
2π

σ1σ2

tan 2πσ1

tan 2πσ2

)1/2
}

.(3.40)

So we have ‖r‖2
4 ≤ N(σ1, σ2).

3.5. Estimating twist coefficients. The following theorem gives a sufficient
condition for the zero solution x = 0 of (1.3) to be of twist type.

Theorem 3.1. Assume a(t) ∈ C(R/2πZ) satisfies (3.29) for some σ1, σ2 in
an interval from Ω0. Then (1.4) is 4-elementary and there exists a constant µ =
µ(σ1, σ2) > 0 such that x = 0 (as a periodic solution of (1.3)) is of twist type provided
that b(t) and c(t) satisfy

max
t∈R

c(t) < −µ‖b‖2
4.(3.41)

Proof. Let σ1, σ2 be in an interval from Ω0. Thus one of the conditions (3.30)–
(3.32) is satisfied for some n ∈ N. So the estimates in Lemma 3.6 hold in this case.
By Lemma 3.2, (1.4) is 4-elementary.

We will prove that β∗ given by (3.23) is positive under (3.41). Note that (r, ϕ)
in (3.23) is a solution of (3.19)+(3.20) and r(t) > 0 is 2π-periodic.

Let C− := mint(−c(t)) > 0. Then

−3

8

∫ t0+2π

t0

c(t)r4(t)dt ≥ 3

8
C−
∫ t0+2π

t0

r4(t)dt =
3

8
C−‖r‖4

4,

where the last equality is due to the 2π-periodicity of r(t).
For the terms in (3.23) containing b(·), we use (3.25) to obtain∫∫

[t0,t0+2π]2
b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dsdt

+
3

16
cot

θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣
2

+
1

16
cot

3θ

2

∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣
2

≥ −K1(θ)

(∫ t0+2π

t0

|b(t)|r3(t)dt

)2

≥ −K1(θ)‖b‖2
4‖r‖6

4,

where the Hölder inequality is used.
Combining these estimates with Lemma 3.6, we have

β∗ ≥
(
3

8
C− −K1(θ)‖r‖2

4‖b‖2
4

)
σ‖r‖4

4 ≥
(
3

8
C− −K1(θ)N(σ1, σ2)‖b‖2

4

)
σ‖r‖4

4,
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where N(σ1, σ2) is defined by (3.40). This implies that β∗ > 0 if

C− >
8

3
K1(θ)N(σ1, σ2)‖b‖2

4.

By Lemma 3.6, we get from (3.28) that the constant µ in (3.41) can take

µ = µ1(σ1, σ2) :=
8

3
K1(2πσ2)N(σ1, σ2).(3.42)

Remark 3.2. If we use (3.24) to estimate β∗, a similar argument shows that µ in
(3.42) can be replaced by

µ =
8

3
K2(2πσ2)N(σ1, σ2).

Consequently, using the function K(·) defined by (3.27), we know that the constant
µ in (3.41) can take

µ = µ2(σ1, σ2) :=
8

3
K(2πσ2)N(σ1, σ2).(3.43)

In the above proof, the most important factor is just the upper bound of ‖r‖4 for
the positive 2π-periodic solution r(t) of (3.19). In fact, if some upper bound for ‖r‖�
for certain � ≥ 4 can be found, one can then obtain a twist condition similar to (3.41).
As for our Theorem 3.1, Lemma 3.6 actually gives an L∞ estimate for r(t), although
it may not be optimal. As mentioned in Lemma 3.1, this can be improved especially
when (1.4) is in the first stability zone. This will done in the next subsection.

3.6. An improvement for the first stability zone. Assume that a(t) ∈
C(R/2πZ) satisfies (3.29) for some σ1, σ2 ∈ M0 = (0, 1/4). In this case θ ∈ (0, π/2)
and a(t) is in the first stability zone.

For a function f(t), let

f+(t) = max{f(t), 0}, f−(t) = max{−f(t), 0}
be the positive and the negative parts of f(t). Note that f = f+ − f−.

Let r(t) be the unique positive 2π-periodic solution of (3.19). Denote

r0 = min{r(t) : t ∈ [0, 2π]}, r∞ = max{r(t) : t ∈ [0, 2π]}.
We estimate the twist coefficient as follows. The term containing c(t) is

−3

8

∫ t0+2π

t0

c(t)r4(t)dt =
3

8

∫ 2π

0

c−(t)r4(t)dt− 3

8

∫ 2π

0

c+(t)r
4(t)dt

≥ 3

8
r4
0‖c−‖1 − 3

8
r4
∞‖c+‖1.(3.44)

Now we use formula (3.24). Note that when 0 < θ < π/2, the kernel χ2(x) > 0
for all x ∈ [0, θ]. Let

χ20(θ) := min
x∈[0,θ]

χ2(x) = χ2(0) =
3 cos(θ/2) + 2 cos(3θ/2)

8 sin(3θ/2)
,

χ2∞(θ) := max
x∈[0,θ]

χ2(x) = χ2(θ/2) =
3 cos θ + 2

8 sin(3θ/2)
.
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Thus the term containing b(·) is∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds

=

∫∫
[t0,t0+2π]2

(b+(t)b+(s) + b−(t)b−(s))r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds

−
∫∫

[t0,t0+2π]2
(b+(t)b−(s) + b−(t)b+(s))r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|)dtds

≥ χ20(θ)r
6
0

∫∫
[t0,t0+2π]2

(b+(t)b+(s) + b−(t)b−(s))dtds

−χ2∞(θ)r6
∞

∫∫
[t0,t0+2π]2

(b+(t)b−(s) + b−(t)b+(s))dtds

= χ20(θ)r
6
0(‖b+‖2

1 + ‖b−‖2
1)− 2χ2∞(θ)r6

∞‖b+‖1‖b−‖1.(3.45)

A very rough result from (3.44) and (3.45) is

β∗ ≥ σ

[
3

8
r4
0‖c−‖1 − 3

8
r4
∞‖c+‖1 − 2χ2∞(θ)r6

∞‖b+‖1‖b−‖1

]
, θ ∈ (0, π/2).(3.46)

When 0 < θ ≤ π/3, which is just the case studied by Núñez [16], we can also use
(3.23) to estimate β∗ as follows. Note that

χ10(θ) := min
x∈[0,θ]

χ1(x) = χ1(0) = 0,

χ1∞(θ) := max
x∈[0,θ]

χ1(x) =

{
(3 sin θ − 2 sin3 θ)/8, 0 < θ ≤ π/4,√
2 /8, π/4 ≤ θ ≤ π/3.

Thus ∫∫
[t0,t0+2π]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

=

∫∫
[t0,t0+2π]2

(b+(t)b+(s) + b−(t)b−(s))r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

−
∫∫

[t0,t0+2π]2
(b+(t)b−(s) + b−(t)b+(s))r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|)dtds

≥ −χ1∞(θ)r6
∞

∫∫
[t0,t0+2π]2

(b+(t)b−(s) + b−(t)b+(s))dtds

= −2χ1∞(θ)r6
∞‖b+‖1‖b−‖1.(3.47)

Since cot(θ/2) ≥ 0 and cot(3θ/2) ≥ 0 for θ ∈ (0, π/3], the other two terms in (3.23)
containing b(t) are nonnegative. Thus we get from (3.44) and (3.47) that

β∗ ≥ σ

[
3

8
r4
0‖c−‖1 − 3

8
r4
∞‖c+‖1 − 2χ1∞(θ)r6

∞‖b+‖1‖b−‖1

]
, θ ∈ (0, π/3].(3.48)

Note that χ1∞(θ) < χ2∞(θ) for all θ ∈ (0, π/3). Thus (3.48) improves (3.46)
when 0 < θ ≤ π/3. We simply use the following estimates:

χ1∞(θ) ≤
√
2 /8, θ ∈ (0, π/3],
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and

χ2∞(θ) ≤ 7/16, θ ∈ (π/3, π/2).

Recalling the estimates (3.39) for r0 and r∞, we conclude from (3.46) and (3.48) the
following result.

Theorem 3.2. Suppose, in Theorem 3.1, that σ1, σ2 ∈ M0 = (0, 1/4). Then for
any b, c ∈ C(R/2πZ) (which may change sign) satisfying

σ3
1‖c−‖1 − σ1σ

2
2‖c+‖1 >

7

3
σ2

2‖b+‖1‖b−‖1,(3.49)

then the zero solution x = 0 of (1.3) is of twist type. When σ2 ≤ 1/6, which implies
that θ ∈ (0, π/3], (3.49) can be improved as

σ3
1‖c−‖1 − σ1σ

2
2‖c+‖1 >

2
√
2

3
σ2

2‖b+‖1‖b−‖1.(3.50)

Note that (3.50) improves the main of result of [16]. Moreover, Theorem 3.2 shows
that the assumption that 0 < θ ≤ π/3 in [16] can be relaxed as 0 < θ < π/2, which is
natural from the 4-elementary condition. See the remark following [16, Theorem 2.2].
As a result, his application to (1.1), which is based on the antimaximum principle [2],
can be improved accordingly.

The proof above shows that, for any 0 < σ1 ≤ σ2 < 1/4, there always exists some
constant ν = ν(σ1, σ2) > 0 such that

σ3
2‖c−‖1 − σ2

1σ2‖c+‖1 > ν(σ1, σ2)‖b+‖1‖b−‖1(3.51)

ensures the twist character of x = 0 of (1.3). An explicit formula for the constant
ν(σ1, σ2) can be obtained by carefully examining the functions χ1∞(θ) and χ2∞(θ)
in (3.46) and (3.48). A twist condition similar to (3.51) can be worked out when the
negative part c−(t) of c(t) is dominated by the positive part c+(t).

As a final remark, we note that

‖b+‖1‖b−‖1 ≤ (‖b‖1)
2 ≤ (2π)3/2‖b‖2

4.

Thus conditions (3.49)–(3.51) improve (3.41) because we can deal with the case where
b(t) and c(t) may change sign.

4. Applications to the forced pendulum. In this section we apply the results
in section 3 to study the twist character of the least amplitude periodic solution xω(t)
of (1.1), where ω > 0 and p(t) ∈ C(R/2πZ) satisfy (2.6). We use the notation from
section 2. By Theorem 2.1, ‖xω‖∞ ≤ X∗(α, γ) ≤ 3γ/2. We always assume that

X∗(α, γ) ≤ 3γ/2 < π/2.(4.1)

Denote

η = cos1/2(3γ/2) ∈ (0, 1].(4.2)

Recall the formulas (1.7) of aω(t), bω(t), cω(t). Then

(ωη)2 ≤ aω(t) = ω2 cosxw(t) ≤ ω2.
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So we can take σ1 = ωη and σ2 = ω. Since bω(t) = −(ω2/2) sinxw(t), we have
‖bω‖2

4 ≤ (2π)1/2(ω4/4)(1− η4). Using cω(t) = −(ω2/6) cosxω(t), one can take C− =
ω2η2/6.

Let In = (an, bn) be an interval from Ω0, i.e., In is one of the following intervals
for some n ∈ N:

I1
n =

(
n− 1, n− 3

4

)
, I2

n =
(
n− 3

4
, n− 2

3

)
, I3

n =
(
n− 2

3
, n− 1

2

)
,

I4
n =

(
n− 1

2
, n− 1

3

)
, I5

n =
(
n− 1

3
, n− 1

4

)
, I6

n =
(
n− 1

4
, n
)
.

In the following, we restrict our discussion to ω ∈ In. If

η > Q1(ω) := an/ω, ω ∈ In = (an, bn),(4.3)

then σ1 = ωη > an and σ1, σ2 ∈ In. So Theorem 3.1 is applicable to this case.
By Theorem 3.1 and (3.43), xω(t) is of twist type when η satisfies

ω2η2

6
>

8

3
K(2πω)N(ωη, ω)(2π)1/2

ω4

4
(1− η4).(4.4)

Let

S(ω, η) = max

{(
tan(2πωη)

tan(2πω)

)1/2

,

(
tan(2πω)

tan(2πωη)

)1/2
}

.

Then

N(ωη, ω) =
(2π)1/2

ωη1/2
S(ω, η).

So (4.4) can be rewritten as

η5/2 > 8πωK(2πω)S(ω, η)(1− η4).(4.5)

Note that both (4.3) and (4.5) are satisfied for η = 1. Thus conditions (4.3) and
(4.5) can be rewritten as a single one like

η > Q2(ω), ω ∈ In.(4.6)

Here the function Q2(ω) can be found numerically and estimated using the facts that
η5/2 > η4 for all η ∈ (0, 1) and S(ω, η) → 1 when η → 1.

Recall (4.1) and (4.2). Let us introduce a function

P2(ω) = min
{
P1(ω), (4ω| sinωπ|/3) arccosQ2

2(ω)
}
, ω ∈ In.(4.7)

If ω ∈ In and p(t) ∈ C(R/2πZ) satisfies

‖p‖1 < P2(ω), ω ∈ In,

then all conditions (2.6), (4.1), (4.3), and (4.4) are satisfied and xω(t) is thus of twist
type. It is not difficult to check that P2(ω) has the order O(ω1/2) when ω is bounded
away from resonance of orders ≤ 4 and tends to ∞.
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Fig. 2. The graphs of P1(ω) and P3(ω).

Theorem 4.1. There exists a nonnegative function P (ω) defined for all ω > 0
such that if p(t) ∈ C(R/2πZ) satisfies

‖p‖1 < P (ω),

then the least amplitude 2π-periodic solution xω(t) of (1.1) is of twist type. Moreover,
P (ω) > 0 for all ω ∈ Ω0 and P (ω) is of order O(ω1/2) when ω is bounded away from
the resonance of orders ≤ 4 and tends to ∞.

Remark 4.1. One can take the function P (ω) in Theorem 4.1 as P2(ω) given by
(4.7). If (4.2) is replaced by a more precise estimate

η = cos1/2 X∗(α, γ),

where X∗(α, γ) is given by (2.1), we find that the upper bounds P (ω) can be improved
as ‖p‖1 < P3(ω), where

P3(ω) =
4ω| sinωπ|
3(3α)1/2

cos

[
3 arccos

(
1

2
(3α)1/2 arccosQ2

2(ω)

)
− π

]

=
4
√
2

3

ω| sinωπ|3/2(∫ ωπ
0

| cos s|ds)1/2 cos


3 arccos


(∫ ωπ0

| cos s|ds
8| sinωπ|

)1/2
arccosQ2

2(ω)


− π


 .

(4.8)

A comparison between P1(ω) and P3(ω), which are given by (2.6) and (4.8),
respectively, is plotted in Figure 2.
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[17] D. Núñez and R. Ortega, Parabolic fixed points and stability criteria for nonlinear Hill’s
equations, Z. Angew. Math. Phys., 51 (2000), pp. 890–911.
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Abstract. In this paper we prove the global dispersion and the Strichartz inequalities for a class
of one-dimensional Schrödinger equations with step-function coefficients having a finite number of
discontinuities. The local and global dispersion and Strichartz inequalities are discussed for certain
Schrödinger equations with low regularity coefficients oscillating at infinity.

Key words. Schrödinger equation, nonsmooth coefficients, dispersion and Strichartz inequali-
ties, Bloch waves

AMS subject classifications. 35J10, 35R05, 35B45, 35C
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1. Introduction. Strichartz estimates [7], [11] are an important tool for the un-
derstanding of nonlinear evolution equations. In the study of the dispersive properties
of the Schrödinger equation with variable coefficients, the absence of the property
of finite speed of propagation raises more difficulties than in the case of the wave
equation. A way to “replace” this property is to impose a nontrapping condition
on the trajectories. There are many results of wellposedness and smoothing effect
for Schrödinger operators with smooth coefficients which are asymptotically flat and
satisfy a nontrapping condition [4], [5], [8]. Staffilani and Tataru [10] proved the
Strichartz estimates under the same conditions, but for lower regularity coefficients,
only of C2-class. However, in order to have wellposedness for nonlinear Schrödinger
equations (NLS), the nontrapping condition can be dropped. In their recent paper
[2], Burq, Gérard, and Tzvetkov have obtained Strichartz estimates with fractional
loss of derivative for metrics on R

d with uniformity assumptions at infinity, without
geometric conditions. These new dispersive estimates imply local and global existence
results for the Cauchy problem.

In this paper we study the dispersion property and the Strichartz inequalities for
the one-dimensional Schrödinger equation{

(i ∂t + ∂xa(x)∂x)u(t, x) = 0 for (t, x) ∈ (0,∞)× R,
u(0, x) = u0(x) ∈ L

2(R)
(S)

for certain rough coefficients a(x) without any geometric nontrapping condition.
In section 2 we prove global dispersion in the case of positive lamina coefficients,

i.e., step functions with a finite number of singularities. Let us note in this situation
the existence of trapped trajectories.

Theorem 1.1. Consider a partition of the real axis

−∞ = x0 < x1 < x2 < · · · < xn−1 < xn =∞
and a step function

a(x) = b−2
i for x ∈ (xi−1, xi),

∗Received by the editors September 24, 2002; accepted for publication (in revised form) Febru-
ary 7, 2003; published electronically October 14, 2003.

http://www.siam.org/journals/sima/35-4/41502.html
†Université de Paris Sud, Mathématiques, Bât. 425, 91405 Orsay Cedex, France (Valeria.Banica@

math.u-psud.fr).
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where bi are positive numbers.
The solution of the Schrödinger equation (S) satisfies the dispersion inequality

‖u(t, ·)‖L∞(R) ≤ Cn√
t
‖u0‖L1(R)

and the Strichartz inequalities

‖u‖Lp(R,Lq(R)) ≤ Cn‖u0‖L2(R)

for every pair (p, q) verifying

2

p
+
1

q
=
1

2
.

The proof consists of writing the solution by using the resolvent of the operator
−∂xa(x)∂x. The resolvent is calculated and expressed in terms of series of exponen-
tials. In order to get global dispersion, we discuss these series within the framework
of the theory of Wiener’s almost periodic functions.

We can also prove a similar result for the operator

i ∂t +
1

ρ(x)
∂xa(x)∂x ,

where ρ(x) is a step function of the same type as a(x).
Moreover, if v(t, x) is the solution of the associated wave system


(
∂2
t − ∂xa(x)∂x

)
v(t, x) = 0 for x ∈ R,

v(0, x) = u0(x) ∈ L
2(R),

∂tv(0, x) = 0,
(O)

the same method gives us the following estimate:

sup
x∈R

∫ ∞

−∞
|v(t, x)|dt ≤ Cn‖u0‖L1(R).

Dispersion is not satisfied if the step function coefficients are periodic. In section 3,
by using the Krönig–Penney model, we show that the local dispersion fails in the case
of 2-valued periodic step function coefficients.

Theorem 1.2. Let x0 ∈ (0, 1) and let b0, b1 be positive numbers satisfying
b0x0 = b1(1− x0). Consider the 1-periodic function

a(x) =

{
b−2
0 for x ∈ [0, x0),
b−2
1 for x ∈ [x0, 1).

The local dispersion estimate fails for the Schrödinger equation (S).
The proof is based on the representation of the solution by its Floquet decompo-

sition.
The fact that the coefficient a is not very oscillating at infinity seems to be

essential for having dispersion. Applying the method used by Avellaneda, Bardos, and
Rauch in [1], we can construct counterexamples for global dispersion and Strichartz’s
inequalities in the case of certain continuous coefficients oscillating at infinity.

Also, as Castro and Zuazua have recently shown in [3], even if the coefficients
are flat at infinity, but rough (C0,α) and locally very oscillating, the local Strichartz
inequalities fail.

All these results suggest the conjecture that the one-dimensional Schrödinger
equations with strictly positive BV (bounded variation) coefficients satisfy the dis-
persion property.
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2. Laminar media.

2.1. Representation of the resolvent of−∂xa(x)∂x. The operator−∂xa(x)∂x,
defined from

{h ∈ H
1(R), a ∂x h ∈ H

1(R)}
to L

2(R), is self-adjoint. For ω ≥ 0 let Rω be its resolvent

Rωg = (−∂xa(x)∂x + ω2I)−1g.

In order to obtain the expression of the resolvent on the intervals where a is constant,
the second-order equations

1

b2i
(Rωg)

′′ = ω2Rωg − g

must be solved. Then, for x ∈ (xi−1, xi), we have

Rωg(x) = c2i−1e
ωbix + c2ie

−ωbix +

∫ ∞

−∞

g(y)

2ω
bie

−ωbi|x−y|dy.

Since Rωg belongs to L
2(R) the coefficients c2 and c2n−1 are zero. The conditions of

continuity of Rωg and of a ∂xRωg at the points xi give a system of 2n− 2 equations
on the ci’s. The matrix Dn of this system is


eωb1x1 −eωb2x1 −e−ωb2x1 0 0 0 0 0

b2e
ωb1x1−b1e

ωb2x1b1e
−ωb2x1 0 0 0 0 0

0 eωb2x2 e−ωb2x2 −eωb3x2 −e−ωb3x2 0 0 0

0 b3e
ωb2x2 −b3e

−ωb2x2−b2e
ωb3x2b2e

−ωb3x20 0 0
: : : : : : : :

0 0 0 0 0 eωbn−1xn−1 e−ωbn−1xn−1 −e−ωbnxn−1

0 0 0 0 0 bne
ωbn−1xn−1−bne

−ωbn−1xn−1bn−1e
−ωbnxn−1



.

The right-hand side of the system is

Tn =


 t1
:
tn−1


 ,

with

ti =

( ∫∞
−∞

g(y)
2ω (−bie−ωbi|xi−y| + bi+1e

−ωbi+1|xi−y|)dy∫∞
−∞

g(y)
2ω bi+1bi(−e−ωbi|xi−y| + e−ωbi+1|xi−y|)sign(xi − y)dy

)
.

Therefore the resolvent on each interval (xi, xi+1) is a finite sum of terms

Rωg(x) =
∑
finite

Ceωβ(x)

∫
I(xi)

g(y)

2ω

e+ωbiy

detDn(ω)
dy +

∫ ∞

−∞

g(y)

2ω
bie

−ωbi|x−y|dy,(1)

where β(x) are real functions depending on {x, xi, bi}, C is a constant depending of

{bi} and bounded by (max b−2
i )n, and I(xi) is either (−∞, xi) or (xi,∞). Let D̃n be

the same matrix as Dn, with the last two terms of the last column replaced by( −eωbnxn−1

−bn−1e
ωbnxn−1

)
.
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The development of the determinants of Dn and D̃n with respect to the last column
gives the following induction relations:



detDn = e
−ωbnxn−1

[
(bn−1 − bn)e−ωbn−1xn−1 det D̃n−1−
−(bn−1 + bn)e

ωbn−1xn−1 detDn−1

]
,

det D̃n = e
ωbnxn−1

[
(bn−1 − bn)eωbn−1xn−1 detDn−1−
−(bn−1 + bn)e

−ωbn−1xn−1 det D̃n−1

]
.

Let us define for n ≥ m ≥ 2

Qm(ω) = e
−2ωbmxm

det D̃m

detDm
.

By denoting

dm−1 =
bm−1 − bm
bm−1 + bm

,

we have for n ≥ 3

detDn(ω) = (b1 + b2)e
−ω(b2−b1)x1

∏
i=2...n−1

(bi + bi+1)e
ω(bi−bi+1)xi(1− diQi(ω)),(2)

and for n = 2

detD2(ω) = (b1 + b2)e
−ω(b2−b1)x1 .(3)

Also, we obtain an induction formula on the Qm’s:

Qm(ω) = e
−2ωbm(xm−xm−1)

−dm−1 +Qm−1(ω)

1− dm−1Qm−1(ω)
.(4)

Note that a Möbius transform on the unit disc occurs in this expression.
Let εn > 0 be such that for every complex ω with

�ω > −εn,
the estimate

|Q2(ω)| = |d1e−2ωb2(x2−x1)| < 1
holds and gives by induction

|Qm(ω)| < 1.
Hence (detDn(ω))

−1 is uniformly bounded and well defined in this region, which
contains the imaginary axis. Therefore ωRωu0(x) can be analytically continued, and
we can use the following spectral theory lemma.

Lemma 2.1. The solution of the Schrödinger equation (S) verifies

u(t, x) =

∫ ∞

−∞
eitτ

2

τRiτu0(x)
dτ

π
.(5)
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2.2. The algebra of Wiener’s almost-periodic functions. Let us recall the
structure of the Banach algebra of Wiener’s almost-periodic functions:

B =

{
h : R �→ C , h(t) =

∑
λ∈R

c(λ)eiλt with ‖h‖B =
∑
λ∈R

|c(λ)| <∞
}
.

We define for h ∈ B

‖h‖∞ = sup
t∈R

|h(t)|

and

ρ(h) = inf{r > 0 | ∃Cr > 0 for all k ∈ N , ‖hk‖B ≤ Crrk}.

The following classical result, which is a consequence of Theorems 6§4 and 2§29 of
[6], will be used.

Theorem 2.2. For all h ∈ B we have

ρ(h) = ‖h‖∞.

Corollary 2.3. Let h ∈ B with ‖h‖∞ < 1 and let α be a complex number on
the open unit disc. Then

g =
h− α
1− αh

also belongs to B and

ρ(g) < 1.

Proof. The function αh belongs to B and

‖αh‖∞ < |α| < 1.

By using Theorem 2.2 we have

‖(αh)k‖B ≤ C|α|k.

Since

h− α
1− αh = (h− α)

∞∑
k=0

(αh)k,

it follows that g belongs to B. Moreover, by the maximum principle,

‖g‖∞ < 1.

By again applying Theorem 2.2, the corollary is proved.
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2.3. The dispersion inequality. The Qm(iτ)’s are series of complex exponen-
tials. In this subsection we will show that they belong to B with respect to the real
variable τ . The estimates of their norm in this algebra will imply the dispersion for
the Schrödinger equation (S).

Let us define

r2 = |d1|, rm =
|dm−1|+ rm−1

1− |dm−1|rm−1
.

Obviously Q2 ∈ B and

‖Q2‖∞ = r2.

Therefore Theorem 2.2 gives us

ρ(Q2) = r2 < 1.

By using Corollary 2.3 and the Möbius transform which occurs in formula (4), one
can show by induction that Qm ∈ B and

ρ(Qm) ≤ rm < 1.

Then formulae (2) and (3) lead us to the estimate

‖(detDn(iτ))
−1‖B < Kn,(6)

where Kn is a constant depending on bi.
In order to prove dispersion, it is sufficient, using (1) and (5), to estimate terms

of the following type:

Ji(t, x) =

∫ ∞

−∞
eitτ

2

Ceiτβ(x)

∫
I(xi)

u0(y)

2iτ

e+iτbiy

detDn(iτ)
dy τ

dτ

2π
.

By performing a change of variable in τ ,

|Ji(t, x)| ≤ C
∫
I(xi)

|u0(y)|
4π

√
t

∣∣∣∣∣
∫ ∞

−∞
eis

2 e
i s√

t
(β(x)±biy)

detDn(i
s√
t
)
ds

∣∣∣∣∣ dy

≤ C ‖uo‖L1(R)√
t

‖(detDn(iξ))
−1‖B .

Then (6) implies that

sup
x

|Ji(t, x)| ≤ Kn

‖u0‖L1(R)√
t

,

so the dispersion inequality for the Schrödinger equation (S) is satisfied.
Remark 2.4. The finite sum in (1) contains n2n terms. Therefore, by estimating

the solution as above, term by term, we cannot obtain the dispersion for equation (S)
if a(x) has an infinite number of steps. Therefore the method is too rough to prove
dispersion for an arbitrary strictly positive BV coefficient a(x).
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Strichartz inequalities follow from the dispersion inequality by the classical duality
argument TT ∗ [12], so the proof of Theorem 1.1 is complete.

Since we can express the solution of the wave equation (O) as

v(t, x) =

∫ ∞

−∞
eitτRiτu0(x)iτ

dτ

2π
,

the property

sup
x∈R

∫ ∞

−∞
|v(t, x)|dt ≤ C‖u0‖L1(R)

follows similarly to the dispersion inequality for the solution of (S).

3. Periodic laminar media.

3.1. General theory of periodic-coefficient equations. Let θ be a number
in [0, 2π] and consider the operator on L

2(S1)

Aθ = −(iθ + ∂x)a(x)(iθ + ∂x).

This operator is self-adjoint with a compact resolvent, hence the eigenvalues form a se-
quence of strictly positive numbers {ω2

θ,n}n∈N. Moreover, the set of the corresponding

eigenfunctions pn(θ, x) is an orthonormal basis of L
2(S1).

Let us provide a way to construct the elements of this basis. Finding the eigen-
function pn(θ, x) is equivalent to finding the function

Ψn(θ, x) = e
iθxpn(θ, x)

that satisfies

−∂xa(x)∂xΨn(θ, x) = ω
2
θ,nΨn(θ, x).(Hθ,n)

Note that this new function has the quasi-periodic property

Ψn(θ, x+ 1) = e
iθΨn(θ, x).

Equation (Hθ,n) is of the type

−∂xa(x)∂xΨ(x) = λ2Ψ(x)(H)

on

{Ψ ∈ H
1
loc(R), a ∂xΨ ∈ H

1
loc(R)}.

This equation can be treated similarly to Hill’s equation [9]. Let T be an operator
acting on the solution space as follows:

T (Ψ)(x) = Ψ(x+ 1).

On the one hand, the eigenvalues of T verify

x2 − xTr(T ) + detT = 0.
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On the other hand, the generalized Wronskian

W = Ψ1a∂xΨ2 −Ψ2a∂xΨ1

associated with (Ψ1,Ψ2), a normalized basis of solutions of (H), i.e.,

Ψ1(0) = (a ∂xΨ2)(0) = 1, (a ∂xΨ1)(0) = Ψ2(0) = 0,

is constant. Therefore

detT =W (1) =W (0) = 1,

and the eigenvalues are eiξ and e−iξ for some complex ξ. If |Tr(T )| is larger than 2,
then ξ is purely imaginary and there exists a basis of solutions of exponential growth.
In this case λ2 belongs to an instability interval of the equation. Otherwise, if |Tr(T )|
is less than or equal to 2, ξ is real and λ2 belongs to a stability interval. Moreover, if
ξ ∈ πZ, periodic solutions exist. If ξ ∈ R\πZ, the existence of a basis of quasi-periodic
solutions is assured.

So, the eigenvalues of Aθ are exactly the values λ
2 for which the operator T

associated with (H) admits eiθ and e−iθ as eigenvalues. If θ ∈ (0, π) ∪ (π, 2π), then
these eigenvalues are simple. Therefore, in order to construct the L

2(S1) basis made
of the eigenfunctions of Aθ, one has to find all λ for which the operator T associated
with (H) verifies

TrT = 2 cos θ.

For such a λ, we consider (Ψ1,Ψ2) a normalized basis of solutions of (H). If Ψ2(1) �= 0,
then

Ψ(x) = Ψ1(x)− Ψ1(1)− eiθ
Ψ2(1)

Ψ2(x)(7)

is a solution of (H) and an eigenfunction of T for the eigenvalue eiθ. Finally,

p(x) = Ψ(x)e−iθx

is an eigenfunction of the operator Aθ, associated with the eigenvalue λ
2.

3.2. Representation of solutions. In order to find the representation of the
solution of (S), we decompose the initial data as follows:

u0(x) =
1

2π

∫ ∞

−∞
eixξ û0(ξ)dξ =

1

2π

∑
k∈Z

∫ 2(k+1)π

2kπ

eixξ û0(ξ)dξ

=
1

2π

∑
k∈Z

∫ 2π

0

ei(2kπ+θ)x û0(2kπ + θ)dθ.

Thus u0 can be written

u0(x) =
1

2π

∫ 2π

0

v(θ, x) dθ,
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with

v(θ, x) =
∑
k∈Z

ei(2kπ+θ)x û0(2kπ + θ).(8)

Moreover,

‖u0‖2
L2(R) =

1

2π
‖û0‖2

L2(R) =
1

2π

∑
k∈Z

∫ 2(k+1)π

2kπ

|û0(x)|2dx =
∑
k∈Z

∫ 2π

0

|û0(2kπ + θ)|2dθ

=

∫ 2π

0

∫ 1

0

|e−iθxv(θ, x)|2dxdθ =
∫ 2π

0

∫ 1

0

|v(θ, x)|2dxdθ.

Since v satisfies the quasi-periodicity property

v(θ, x+ 1) = eiθv(θ, x),

then v(θ, x)e−iθx is 1-periodic. Therefore we can decompose it with respect to the
L

2(S1) basis of eigenfunctions of the operator Aθ introduced in section 3.1. If θ ∈
(0, π) ∪ (π, 2π), the eigenvalues of Aθ are simple and we can write

v(θ, x)e−iθx =
∑
n∈N

cn(θ)pn(θ, x);

that is,

v(θ, x) =
∑
n∈N

cn(θ)Ψn(θ, x).(9)

Finally,

u(t, x) =
1

2π

∫ 2π

0

∑
n∈N

eitω
2
θ,ncn(θ)Ψn(θ, x)dθ(10)

is the solution of the Schrödinger equation (S). Moreover, using the above link between
the L

2 norms of the initial datum u0 and of v,

‖u0‖2
L2(R) =

∑
n∈N

‖cn‖2
L2(0,2π).

Let us now express the solution u in terms of the initial datum u0. By using the
definitions (8) and (9),

cn(θ) = 〈v(θ, ·),Ψn(θ, ·)〉 =
∑
k∈Z

û0(2kπ + θ)〈ei(2kπ+θ) ·,Ψn(θ, ·)〉.

Since e−iθxΨn(θ, x) is 1-periodic, its Fourier decomposition contains only even expo-
nentials:

e−iθxΨn(θ, x) =
∑
k∈Z

dn,k(θ)e
i2πkx.
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Therefore

cn(θ) =
∑
k∈Z

û0(2kπ + θ)dn,k(θ) =

∫ ∞

−∞
u0(y)e

−iyθ
∑
k∈Z

e−i2kπydn,k(θ)dy

=

∫ ∞

−∞
u0(y)Ψn(θ, y)dy.

In conclusion, for any initial datum u0, the solution of the Schrödinger equation
(S) is

u(t, x) =
1

2π

∫ ∞

−∞
u0(y)

∫ 2π

0

∑
n∈N

eitω
2
θ,nΨn(θ, x)Ψn(θ, y)dθdy.

3.3. Explicit solutions for the Krönig–Penney model. Let

a(x) =

{
b−2
0 for x ∈ [0, x0),
b−2
1 for x ∈ [x0, 1)

as defined in the statement of Theorem 1.2. Fix θ ∈ (0, π) ∪ (π, 2π). Following
the approach presented in section 3.1, in this subsection we will explicitly find the
functions Ψn(θ, x).

The basis of normalized solutions associated with the (H) is




Ψ1(x) =

{
1
2e

iλb0x + 1
2e

−iλb0x for x ∈ (0, x0),

a1je
iλb1x + b1je

−iλb1x for x ∈ (x0, 1),

Ψ2(x) =

{
− ib0

2λ e
iλb0x + ib0

2λ e
−iλb0x for x ∈ (0, x0),

a2je
iλb1x + b2je

−iλb1x for x ∈ (x0, 1)

with 


a1j =
1

4b0
[(b0 + b1)e

iλx0(b0−b1) + (b0 − b1)e−iλx0(b0+b1)],

b1j =
1

4b1
[(b0 + b1)e

−iλx0(b0−b1) + (b0 − b1)eiλx0(b0+b1)],

a2j =
i

4λ [−(b0 + b1)eiλx0(b0−b1) + (b0 − b1)e−iλx0(b0+b1)],

b2j =
i

4λ [(b0 + b1)e
−iλx0(b0−b1) − (b0 − b1)eiλx0(b0+b1)].

The trace of the shift operator T is

TrT = Ψ1(1) +
1

b21
∂xΨ2(1).

One can calculate

Tr(T ) = (r + 1) cos[λ(x0b0 + (1− x0)b1)]− (r − 1) cos[λ(x0b0 − (1− x0)b1)],

where

r =
b20 + b

2
1

2b0b1
.
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By setting the conditions

Tr(T ) = 2 cos θ, x0b0 = (1− x0)b1,

it follows that

2 cos θ = (r + 1) cos(λ2x0b0)− (r − 1).
Hence we have

λ ∈
{
2πj + f(θ)

2x0b0
, j ∈ Z

}
,

where f(θ) is the analytic function

f(θ) = arccos
r − 1 + 2 cos θ

r + 1
.

As the solutions Ψ1 and Ψ2 are the same for λ and for −λ, we have to check if
there exist different integers j and k such that

2πj + f(θ) = ±(2πk + f(θ)).
If this is true, it follows that

j + k =
f(θ)

π
.

Since r > 1 gives f(θ) < π and θ �= 0 gives f(θ) �= 0, then j and k must satisfy
0 < |j + k| < 1.

In conclusion, the values ∣∣∣∣2πj + f(θ)2x0b0

∣∣∣∣
are different, so we can consider the eigenvalues of the operator Aθ indexed by j ∈ Z

as follows:

ωθ,j =
2πj + f(θ)

2x0b0
.(11)

Note that since θ has been fixed in (0, π) ∪ (π, 2π),
ωθ,j �= 0 for all j ∈ Z.

By using (7), we obtain a quasi-periodic solution for equation (Hθ,j):

Ψ̃j(θ, x) =

(
1

2
+ hj(θ)

)
eiωθ,jb0x +

(
1

2
− hj(θ)

)
e−iωθ,jb0x for x ∈ (0, x0)(12)

with

hj(θ) = i
(b0 + b1) cos(2ωθ,jb0x0) + (b0 − b1)− eiθ

(b0 + b1) sin(2ωθ,jb0x0)
.
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The definition (11) of ωθ,j gives

hj(θ) = h(θ) = i
(b0 + b1) cos f(θ) + (b0 − b1)− eiθ

(b0 + b1) sin f(θ)
.

Then we can calculate for x ∈ (0, x0)

Ψ̃j(θ, x) = cos(ωθ,j b0x) + 2h(θ) sin(ωθ,j b0x),

and for x ∈ (x0, 1)

Ψ̃j(θ, x) =

(
a1j − a2j h(θ)

2ωθ,j
ib0

)
eiωθ,jb1x +

(
b1j − b2j h(θ)

2ωθ,j
ib0

)
e−iωθ,jb1x

=
b0 + b1
4b0

(1 + 2h(θ))eiωθ,j(x0(b0−b1)+b1x) +
b0 − b1
4b0

(1− 2h(θ))e−iωθ,j(x0(b0+b1)−b1x)

+
b0 + b1
4b0

(1− 2h(θ))e−iωθ,j(x0(b0−b1)+b1x) +
b0 − b1
4b0

(1 + 2h(θ))eiωθ,j(x0(b0+b1)−b1x).

It follows that ∫ 1

0

|Ψ̃j(θ, x)|2dx = αj(θ) = β(θ) + γ(θ)

2πj + f(θ)
,

with β(θ) strictly positive. Let Ψj(θ, x) be the L
2 normalization of Ψ̃j(θ, x):

Ψj(θ, x) =
Ψ̃j(θ, x)√
αj(θ)

.

We are now in the context described in section 3.2.

3.4. The failure of local dispersion. Let X be a 2π-periodic function whose
restriction to (0, 2π) is C∞

0 . One can write

X (ξ) =
∑
k∈Z

ske
ikξ.

Let v0 be the Fourier localization outside 2πZ points of the initial data u0

v̂0(ξ) = û0(ξ)X (ξ).

By applying Plancherel’s theorem one has

v0(x) =

∫ ∞

−∞
eixξû0(ξ)X (ξ) dξ

2π
=
∑
k∈Z

u0(x+ k)sk.

Since X|(0,2π) is in C∞
0 , ∑

k∈Z

|sk| = S <∞,
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so the localization preserves the regularity L
1(R) ∩ L

2(R) with{ ‖v0‖L1(R) ≤ C‖u0‖L1(R),
‖v0‖L2(R) ≤ C‖u0‖L2(R).

For such an initial datum v0, the coefficients cj(θ) defined in section 3.2 are

cj(θ) =
∑
k∈Z

û0(2kπ + θ)X (2kπ + θ)dj,k(θ)

= X (θ)
∫ ∞

−∞
u0(y)e

−iyθ
∑
k∈Z

e−i2kπydj,k(θ)dy = X (θ)
∫ ∞

−∞
u0(y)Ψθ,j(y)dy.

Then, by the representation formula (10), the solution v(t, x) of the equation (S) with
initial datum v0 can be written as

v(t, x) =

∫ ∞

−∞
u0(y)Kt(x, y)dy,

where

Kt(x, y) =
1

2π

∫ 2π

0

∑
j∈Z

eitω
2
θ,jΨθ,j(x)Ψθ,j(y)X (θ)dθ.

Since

‖v0‖L1(R) ≤ C‖u0‖L1(R),

in order to have the dispersion inequality

‖v(t, ·)‖L∞(R) ≤ C√
t
‖v0‖L1(R),

the dispersion kernel must satisfy

‖Kt‖L∞(x,y) ≤ C√
t
.

We will show that there exist times t, arbitrarily small, for whichKt is not an L
∞(x, y)

function.
Let us change t in t

4b2ox
2
0
and x in x

2x0
. By using definition (11) of ωθ,j and formula

(12) for Ψ̃j(θ, x), we have that Kt(x, y) is, for x < x0, equal to

1

4π

∑
j∈Z

∫ 2π

0

eit(2πj+f(θ))2
(
eix(2πj+f(θ))(1 + 2h(θ)) + e−ix(2πj+f(θ))(1− 2h(θ))

)

×
(
e−iy(2πj+f(θ))(1 + 2h(θ)) + eiy(2πj+f(θ))(1− 2h(θ))

) X (θ)
αj(θ)

dθ.

It follows that the kernel is the sum of four terms of the following type:

Jt(x, y) =
1

4π

∑
j∈Z

∫ 2π

0

eit(2πj+f(θ))2ei(x−y)(2πj+f(θ))(1 + 2h(θ))(1 + 2h(θ))
X (θ)
αj(θ)

dθ.
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In view of the forthcoming applications of the stationary phase formula, we can con-
sider that Jt(x, y) is, modulo an L

∞ function, the same sum as above, with α0 replaced
by α1. Since |f(θ)| < π, one can choose a function αξ(θ) which is strictly positive,
bounded, and C∞ with respect to the variable ξ such that

αξ(θ) = β(θ) +
γ(θ)

ξ + f(θ)
for |ξ| > π.

This allows us to apply the Poisson formula, so Jt(x, y) can be written as

1

2

∑
l∈Z

eiξl
∫ ∞

−∞

∫ 2π

0

eit(ξ+f(θ))2ei(x−y)(ξ+f(θ))(1 + 2h(θ))(1 + 2h(θ))
X (θ)
αξ(θ)

dθdξ.

By changing ξ + f(θ) into ζ,

Jt(x, y) =
1

2

∑
l∈Z

∫ 2π

0

e−if(θ)l Il(t, x− y, θ) dθ,

where

Il(t, x− y, θ) = X (θ)(1 + 2h(θ))(1 + 2h(θ))
∫ ∞

−∞
eitζ

2

ei(x−y+l)ζ dζ

αζ−f(θ)(θ)

verifies

|∂θkIl(t, x− y, θ)| ≤ C for all k ∈ N.

The only critical point of f |(0,2π) is π, which is nondegenerate, so we can apply the
stationary phase formula for large l. In view of the definition of αζ(π), Jt(x, y) is,
modulo an L

∞ function,

Jt(x, y) =
∑
l∈Z∗

(
e−if(π)l√|l| Il(t, x− y) 1

2
X (π)(1 + 2h(π))(1 + 2h(π)) +O(|l|− 3

2 )

)

with

Il(t, x− y) =
∫ ∞

−∞
eitζ

2

ei(x−y+l)ζ dζ

β(π) + γ(π)
ζ

.

We have used the known result that the sum of exponentials

F (α) =
∑
l∈Z∗

e−iαl√|l|(13)

blows up as

1√|α|
if α tends to zero, and otherwise the sum is finite. Here f(π) ∈ (0, π).

By changing ζ in x−y+l√
t

and by considering that (x, y) lies in a compact set, we

have

Il(t, x− y) = x− y + l√
t

∫ ∞

−∞
e
i(x−y+l)2(ζ2+ ζ√

t
) dζ

β(π) + γ(π)
√
t

(x−y+l)ζ

.
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The stationary phase formula applied again for ζ = − 1
2
√
t
gives

Il(t, x− y) = 1√
t
e−i

(x−y+l)2
4t

1

β(π)− 2γ(π)t
x−y+l

+
O((x− y + l)−2)√

t
.

Thus, modulo an L
∞ function, we obtain that

Jt(x, y) =
C√
t

∑
l∈Z∗

e−if(π)l√|l| e−i
(x−y+l)2

4t ,

with C �= 0. Let t verify
1

4t
∈ 2πZ.

Note that t can be chosen arbitrary small. Also,

Jt(x, y) =
Ce−i

(x−y)2
4t√
t

∑
l∈Z∗

e−i( x−y2t +f(π))l√|l| .

It follows then that Kt(x, y) is, modulo an L
∞ function,

e−i
(x−y)2

4t√
t

(
C1 F

(
x− y
2t

+ f(π)

)
+ C2 F

(
−x− y

2t
+ f(π)

))

+
e−i

(x+y)2

4t√
t

(
C3 F

(
x+ y

2t
+ f(π)

)
+ C4 F

(
−x+ y

2t
+ f(π)

))
.

Since f(π) �= 0, in view of the behavior of F presented above (see (13)), the kernel
Kt(x, y) is not in L

∞(x, y). Therefore the local dispersion for the Schrödinger equation
(S) fails and Theorem 1.2 is proved.
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Abstract. In contrast to a viscous regularization of a system of n conservation laws, a Dafermos
regularization admits many self-similar solutions of the form u = u(X

T
). In particular, it is known

in many cases that Riemann solutions of a system of conservation laws have nearby self-similar
smooth solutions of an associated Dafermos regularization. We refer to these smooth solutions as
Riemann–Dafermos solutions. In the coordinates x = X

T
, t = lnT , Riemann–Dafermos solutions

become stationary, and their time-asymptotic stability as solutions of the Dafermos regularization can
be studied by linearization. We study the stability of Riemann–Dafermos solutions near Riemann
solutions consisting of n Lax shock waves. We show, by studying the essential spectrum of the
linearized system in a weighted function space, that stability is determined by eigenvalues only. We
then use asymptotic methods to study the eigenvalues and eigenfunctions. We find there are fast
eigenvalues of order 1

ε
and slow eigenvalues of order 1. The fast eigenvalues correspond to eigenvalues

of the viscous profiles for the individual shock waves in the Riemann solution; these have been studied
by other authors using Evans function methods. The slow eigenvalues are related to inviscid stability
conditions that have been obtained by various authors for the underlying Riemann solution.

Key words. conservation law, Riemann problem, Dafermos regularization, stability, spectrum,
singular perturbation
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1. Introduction. Consider a system of viscous conservation laws in one space
dimension, i.e., a partial differential equation of the form

uT + f(u)X = (B(u)uX)X ,(1.1)

where X ∈ R, T ∈ [0,∞), u ∈ R
n, f : R

n → R
n, and B(u) is an n × n matrix for

which all eigenvalues have positive real part. We are interested in the behavior, as
T → ∞, of solutions of (1.1) that satisfy the constant boundary conditions

u(−∞, T ) = u�, u(+∞, T ) = ur, 0 ≤ T < ∞,(1.2)

and some initial condition u(X, 0) = u0(X). Our interest is not in the solution for
any particular initial condition, but in the possible asymptotic behavior of solutions
as T → ∞.

It is believed that as T → ∞, solutions of such initial-boundary-value problems
typically approach Riemann solutions for the system of conservation laws

uT + f(u)X = 0(1.3)

obtained from (1.1) by dropping the viscous term. In numerical simulations, the
convergence is seen when the solution is viewed in the rescaled spatial variable x = X

T ;
the rescaling counteracts the tendency of the solution to spread as time increases. The
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shock waves in the observed Riemann solution satisfy the viscous profile criterion for
the viscosity B(u). Speaking very roughly, Riemann solutions are believed to play
the same role for (1.1)–(1.2) that constant solutions (equilibria) play for ordinary
differential equations (ODEs): they are the simplest asymptotic states. An important
difference, however, is that Riemann solutions are not solutions of (1.1) but only of
the related equation (1.3). We recall that a shock wave is a weak solution with a jump
discontinuity of the system of conservation laws (1.3). The simplest such solutions
are

u(X,T ) =

{
u− for X < sT ,

u+ for X > sT .
(1.4)

For (1.4) to be a weak solution of (1.3), the triple (u−, s, u+) must satisfy the Rankine–
Hugoniot condition

f(u+)− f(u−)− s(u+ − u−) = 0.(1.5)

A shock wave (1.4) satisfies the viscous profile criterion for the viscosity B(u), pro-
vided (1.1) has a traveling wave solution u(X − sT ) that satisfies the boundary con-
ditions

u(−∞) = u−, u(+∞) = u+.(1.6)

A traveling wave solution of (1.1) that satisfies these boundary conditions exists if
and only if the traveling wave ODE

u̇ = B(u)−1(f(u)− f(u−)− s(u− u−))(1.7)

has an equilibrium at u+ (it automatically has one at u−) and a connecting orbit from
u− to u+. The condition that (1.7) have an equilibrium at u+ is just the Rankine–
Hugoniot condition (1.5).

A Riemann problem for the system of conservation laws (1.3) is an initial value
problem of the form

u(X, 0) =

{
u� for X < 0,

ur for X > 0.
(1.8)

Since (1.3), (1.8) is invariant under the transformations (X,T ) → (aX, aT ), to avoid
one-parameter families of solutions, a solution u(X,T ) of (1.3), (1.8) should have the
form u(X,T ) = û(x), x = X

T . Then û(x) satisfies

(Df(u)− xI)ux = 0, −∞ < x < ∞; u(−∞) = u�, u(∞) = ur.(1.9)

Notice that even though a Riemann problem in the form (1.3), (1.8) is an initial value
problem, in the form (1.9) it is a boundary value problem.

Normally one looks for a solution of (1.9) consisting of constant parts, contin-
uously changing parts (rarefaction waves), and jump discontinuities (shock waves).
Shock waves occur when

lim
x→s− û(x) = u− �= u+ = lim

x→s+
û(x).
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We shall require that each such triple (u−, s, u+) satisfy the viscous profile criterion
for a given B(u).

It is known that even with the viscous profile criterion, Riemann problems can
have multiple solutions. This is disconcerting if the Riemann problem is regarded as
an initial value problem. There is no such difficulty, however, when Riemann prob-
lems are regarded as boundary value problems whose solutions represent asymptotic
states of (1.1)–(1.2). Indeed, in this context, multiple solutions of a Riemann problem
represent multiple asymptotic states of (1.1)–(1.2), which are approached for differ-
ent initial conditions u0(X). For a model initial-boundary-value problem (1.1)–(1.2)
whose associated Riemann problem has three solutions, Azevedo et al. [2] have done
careful numerical work that indicates that this is in fact the case. Two of the Riemann
solutions appear to be attractors, while the third appears to attract a codimension-one
set of initial conditions.

The study of the stability of Riemann solutions as asymptotic states of (1.1)–(1.2)
is not easy. If the Riemann solution is a single shock wave, then it corresponds to
a traveling wave solution of (1.1), and one can use a moving coordinate system to
convert the traveling wave solution to a steady state solution. One can then study
stability by studying the spectrum of the linearization at this solution. There is always
a zero eigenvalue, which corresponds to shifts of the traveling wave. An additional
difficulty is that the continuous spectrum touches the imaginary axis. For a single
conservation law, Sattinger [39] dealt with this difficulty by using an exponentially
weighted norm, which shifts the continuous spectrum to the left. For systems, the gap
lemma of Gardner and Zumbrun [14] (see also [19]) allows one to study eigenvalues of
the linearization near the origin despite the continuous spectrum. A series of papers
by Liu, Zumbrun, and Howard justifies the passage from linear to nonlinear stability
[28], [29], [27], [50].

Alternatively, one can study stability of viscous shock waves by energy methods
[34], [15]. A relation between the two approaches is that energy methods can be used
to verify that the spectrum of the linearization is contained in the left half plane.

Riemann solutions other than a single shock wave do not correspond to traveling
wave solutions of (1.1). Thus one cannot determine their stability by finding the
spectrum of a linear operator. In some situations one can construct an approximate
solution of (1.1)–(1.2) near the Riemann solution and show that solutions of (1.1)–
(1.2) that start near the approximate solution approach it. See [26] for Riemann
solutions consisting of weak Lax shock waves and [45] for Riemann solutions consisting
of a single rarefaction.

Riemann solutions are functions of X
T only, and it is in the variables (x, T ) with

x = X
T that the convergence of solutions of (1.1)–(1.2) to Riemann solutions is ob-

served. With this motivation, in (1.1) we make the change of variables

x =
X

T
, t = lnT.(1.10)

(The substitution t = lnT is simply for convenience. Decay that is algebraic in T
becomes exponential in t.) We obtain

ut + (Df(u)− xI)ux = e−t(B(u)ux)x.(1.11)

Thus in the (x, t) variables, which are natural for the study of the large-time behavior
of solutions of (1.1), (1.1) becomes a system that is both spatially dependent and
nonautonomous. In studying nonautonomous systems, it is natural to first freeze
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the time variable and study the resulting autonomous system. In this case one sets
ε = e−t; for large t, ε is small. One obtains

ut + (Df(u)− xI)ux = ε(B(u)ux)x.(1.12)

Returning to (X,T ) variables, (1.12) becomes

uT + f(u)X = εT (B(u)uX)X .(1.13)

Equation (1.13) is the Dafermos regularization of the system of conservation laws (1.3)
associated with the viscosity B(u) ([8]; see also [46], [47]). It is usually regarded as an
artificial, nonphysical equation because of the factor T in the viscous term. As we have
seen, however, if one is interested in the behavior of solutions of (1.1)–(1.2) for large
T and uses the appropriate variables (1.10) for large T , the Dafermos regularization is
actually a natural simplification of the physical equations. Like the Riemann problem,
but unlike (1.1), (1.13) has many solutions of the form u(X,T ) = û(x), x = X

T . (This
is why it was originally introduced.) They satisfy a Dafermos ODE

(Df(u)− xI)ux = ε(B(u)ux)x.(1.14)

Corresponding to the Riemann data (1.8) we have the boundary conditions

u(−∞) = u�, u(+∞) = ur.(1.15)

We shall refer to a solution uε(x) of (1.14)–(1.15) as a Riemann–Dafermos solution
of (1.13) for the boundary data (u�, ur). A Riemann–Dafermos solution of (1.13) is
just a stationary solution of (1.12). The boundary value problem (1.14)–(1.15) is a
viscous regularization of the Riemann boundary value problem (1.9).

Actually, Dafermos always used B(u) ≡ I. For this case, he conjectured that
Riemann–Dafermos solutions of the boundary value problem (1.14)–(1.15) converge
to a corresponding Riemann solution as ε → 0. This conjecture has been proved for ur

close to u� by Tzavaras [48]. His proof relies on showing that the Riemann–Dafermos
solutions are of uniformly bounded variation and oscillation.

Recently, Szmolyan [44] studied the boundary value problem (1.14)–(1.15) with
B(u) ≡ I using geometric singular perturbation theory [18]. The idea is to think
of a Riemann solution, with shock waves that satisfy the viscous profile criterion for
B(u) ≡ I, as a singular solution (ε = 0), and then show by geometric singular pertur-
bation theory that, for small ε > 0, there is a nearby Riemann–Dafermos solution.

A Riemann solution is structurally stable if the number and types of its waves do
not change when the flux function or boundary data are varied slightly [40]. (This
use of the term “structurally stable” is consistent with its use in dynamical systems
theory, but differs from Majda’s use of the term in [32].) For B(u) ≡ I, Szmolyan
proved that, for small ε > 0, structurally stable classical Riemann solutions, which
consist of n rarefactions and Lax shock waves, have Riemann–Dafermos solutions of
(1.14)–(1.15) nearby. There is no requirement that u� and ur be close.

A valuable feature of the Dafermos regularization is that it works equally well for
general B(u). Schecter [41] makes this point explicit and shows that any structurally
stable Riemann solution consisting entirely of shock waves that satisfy the viscous
profile criterion for a given B(u) has, for small ε > 0, a Riemann–Dafermos solution
of (1.14)–(1.15) nearby. Undercompressive shock waves, whose existence and location
are very dependent on B(u), are explicitly allowed.
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It is likely that any structurally stable Riemann solution whose shock waves satisfy
the viscous profile criterion for a given B(u) has Riemann–Dafermos solutions of the
corresponding Dafermos regularization nearby. Some nonstructurally stable Riemann
solutions are treated in [30].

In this paper we shall study the Dafermos system (1.13) in the transformed form
(1.12), with boundary conditions

u(−∞, t) = u�, u(∞, t) = ur, 0 ≤ t < ∞.(1.16)

Our goal is to begin the study of the asymptotic stability of Riemann–Dafermos
solutions (i.e., steady state solutions) of (1.12), (1.16). We will consider (1.12), (1.16)
on the time interval t ≥ 0, which corresponds to considering (1.13) on T ≥ 1.

The possible usefulness of this study for the study of the stability of Riemann
solutions as asymptotic states of (1.1)–(1.2) is as follows. Let

u(x, t) = uε(x) with ε = e−t,

where the uε(x) are Riemann–Dafermos solutions of (1.12) that converge, as ε → 0, to
a Riemann solution û(x) of (1.3), (1.8). Then for large t, u(x, t) is almost a solution
of (1.11) and converges as t → ∞ to û(x). With a good enough understanding of the
stability of the uε(x) as solutions of (1.12), one can perhaps show that near u(x, t) is
a true solution of (1.11) with the same stability that uε(x) has as a solution of (1.12)
for small ε.

Tzavaras [48] gives a different argument for the relevance of the Dafermos regu-
larization to understanding Riemann solutions as asymptotic states of (1.1). We now
preview the remainder of the paper. For simplicity, we shall take B(u) ≡ I. Then
(1.12) becomes

ut + (Df(u)− xI)ux = εuxx.(1.17)

We consider a structurally stable Riemann solution of (1.3) that consists of exactly
n Lax shock waves with speeds s̄1 < s̄2 < · · · < s̄n. We assume that each Lax shock
wave satisfies the viscous profile criterion for B(u) = I. Precise definitions are given
in section 2. We do not assume that u� and ur are close.

We write the Riemann solution as a piecewise constant function u0(x) that is
undefined at x = s̄i, i = 1, . . . , n, where u0(x) has jumps. From [44] or [41], near it
there is, for small ε > 0, a Riemann–Dafermos solution uε(x) of (1.17). It has sharp
transition layers near x = s̄i, i = 1, . . . , n.

In section 3, we construct an asymptotic expansion of uε(x) in powers of ε. In
the regular layer, which is R with s̄i, i = 1, . . . , n, removed, uε(x) has an expansion
of the form

uR
ε (x) =

∞∑
j=0

εjuR
j (x),

in which uR
0 (x) is just the piecewise constant Riemann solution u0(x).

We shall refer to a small neighborhood of s̄i as the ith singular layer and denote
it Si, i = 1, . . . , n. The Riemann–Dafermos solution uε(x) has sharp transition layers
at

xi(ε) =

∞∑
j=0

εjxi
j , i = 1, . . . , n,
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with xi(0) = s̄i. Near xi(ε) we use the stretched variable ξ = x−xi(ε)
ε . In terms of this

variable, the solution has an expansion

ui
ε(ξ) =

∞∑
j=0

εjui
j(ξ) in the singular layer Si.

It turns out that ui
0(ξ) is a traveling wave of (1.1) with speed s̄i.

This description of uε(x) is consistent with its construction by geometric singular
perturbation theory.

Let C(γ,Rx), γ ≥ 0, be the Banach space of uniformly continuous functions U(x)
such that the weighted norm |U |γ := supx |U(x)|eγ|x| < ∞. Let

C2(γ,Rx) := {U : U,U ′, U ′′ ∈ C(γ,Rx)}.
On C2(γ,Rx) we will use the equivalent norms |U |2,γ,ε := |U |γ + ε|U ′|γ + ε2|U ′′|γ ,
where ε > 0 is the small parameter in (1.17). This family of norms was used by Fife

[12]; the ε scales out when the stretched variable ξ = x−xi(ε)
ε is used instead of x. An

advantage of this family of norms is that one can have a family of functions Uε(x) for
which supx |U ′

ε(x)| = O( 1
ε ) and supx |U ′′

ε (x)| = O( 1
ε2 ) but |Uε|2,γ,ε remains bounded

as ε → 0.
Let Xγ denote the affine space of functions u(x) = uε(x) + U(x) with U ∈

C2(γ,Rx). This function space includes the most important perturbations of uε(x).
We shall study (1.17) together with the boundary conditions (1.16) in the space Xγ .
In section 4 we show that for γ ≥ 0, (1.17), (1.16) is well-posed in a neighborhood of
uε(x) in Xγ . The size of the neighborhood is uniform in the norm | · |2,γ,ε as ε → 0.
Thus, for small ε > 0, perturbations with large derivatives are allowed.

An argument like that of Evans [10] shows that linearized stability of uε(x) in
Xγ implies nonlinear stability in Xγ . Therefore we consider the linearized stability of
uε(x) in Xγ .

In section 5 we show that for γ sufficiently large, using the exponentially weighted
norm moves the essential spectrum of the linearization of (1.17) about uε(x) to the
left of the imaginary axis, as in [39], [38]. Thus linearized stability of uε(x) in Xγ is
determined by the eigenvalues.

In sections 6 and 7 we study eigenvalues for γ > 0 using asymptotic expansions
in ε. We assume the eigenvalues have asymptotic expansions of the form

λ =

∞∑
j=−1

εjλj

and the corresponding eigenfunctions have similar expansions. Section 6 is devoted
to eigenvalues with λ−1 �= 0. The corresponding eigenfunctions are local ; i.e., their
expansions are nonzero only in singular layers. These eigenvalues reflect the fast
convergence of the solution to traveling waves in the singular layers. Section 7 is
devoted to eigenvalues with λ−1 = 0, which we discuss in more detail below. The fact
that there are both O( 1

ε ) and O(1) eigenvalues is consistent with the description of
solutions at the beginning of section 6.

The fast eigenvalues λ = λ−1

ε + O(1), with λ−1 �= 0, correspond to the nonzero
eigenvalues λ−1 of the individual traveling waves that are found by Evans function
methods [14], [3]. However, a nondegeneracy condition is needed to ensure that a

zero of the Evans function can be continued to a fast eigenvalue λ = λ−1

ε +O(1); see
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section 6. Thus, roughly speaking, a necessary condition for stability of the Riemann–
Dafermos solution is that the Evans function for each individual viscous shock wave
in the Riemann solution have no zero with positive real part. Slow eigenvalues have
the form λ = λ0 + O(ε). It turns out that λ0 = 0 is never an eigenvalue, while λ0 =
−1 is always among the O(1) eigenvalues. Its multiplicity is n. The corresponding
eigenfunctions are local. To lowest order they are just the derivatives of the individual
traveling waves in the n singular layers and correspond to shifts of the traveling waves.

Other O(1) eigenvalues are nonlocal: The corresponding eigenfunctions asymptot-
ically satisfy a piecewise continuous system of ODEs in x, along with jump conditions
at x = s̄i, i = 1, . . . , n. To lowest order, these O(1) eigenvalues and eigenfunctions can
be interpreted as eigenvalues and eigenfunctions for a system of first-order hyperbolic
equations. This system has been used by many authors to study perturbations of Rie-
mann solutions of the inviscid equation (1.3) that contain only shock waves. There are
two types of treatment of this equation of which we are aware: (1) One can show that
if a nondegeneracy condition (Majda’s stability condition) holds for each shock wave,
the system can be solved by characteristics for all time [32]. (2) Assuming the same
nondegeneracy condition, one can interpret the system as describing the scattering
of incoming small shock waves by the large shock waves that comprise the original
Riemann solution, and one can find sufficient conditions that guarantee that, in some
norm, the total weight of the scattered shocks is smaller than the total weight of the
incoming shocks [42], [4], [5], [49], [22], [21]. A condition of this type can then be used
in Glimm’s scheme to show the existence of solutions of (1.3) for initial data close to
the original Riemann data. For a Riemann solution with n = 2 that consists of two
Lax shocks, this approach yields a simple computable inviscid stability condition.

The system that determines the O(1) eigenvalues to lowest order is also related
to the SLEP system used by Nishiura and Fujii [35] for reaction-diffusion equations
to study the stability of solutions with several sharp layers.

In this paper we study only the possible values of λ0 for slow eigenvalues. The
study of conditions under which λ0 can actually be continued to a slow eigenvalue
λ = λ0 +O(ε) of the Riemann–Dafermos solution uε(x) is deferred to a later paper.

A necessary condition for stability of the Riemann–Dafermos solution is that no
slow eigenvalue have positive real part. For n = 2, we show that to lowest order in ε,
the O(1) eigenvalues, other than −1, of a Riemann–Dafermos solution with two Lax
shock waves all have the same real part. They are evenly spaced along a line in the
complex plane. We compute the real part of these eigenvalues; the condition that it
be negative turns out to be the n = 2 inviscid stability condition mentioned above.
For n > 2, the relationship between the O(1) eigenvalues and the known sufficient
conditions for inviscid stability remains to be determined.

In section 9 we calculate slow eigenvalues other than −1 for Riemann solutions of
the p-system that consist of two Lax shocks. They all have real part −2, independent
of the Riemann solution. The calculation is essentially the same as the calculation of
the inviscid stability criterion for these Riemann solutions in [4].

Thus, for Riemann–Dafermos solutions whose underlying Riemann solution con-
sists of n Lax shock waves, our analysis suggests that they should be asymptotically
stable if (1) each viscous shock wave is linearly stable, a matter that is determined
by the wave’s Evans function, and (2) the Riemann solution is stable in the inviscid
sense, sufficient conditions for which have been determined by studying the scatter-
ing of small shock waves by large ones. The stability analysis of Riemann–Dafermos
solutions thus unites two distinct lines of research. These relationships are explored
in a little more detail in section 8.
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A shortcoming of our analysis is that we do not address the possible existence of
eigenvalues intermediate between fast and slow. This issue is discussed at the end of
section 6. Its resolution may well involve Majda’s stability condition, which is known
to be related to the derivative of the Evans function at the origin [14], [3].

It should not be difficult to extend the results of this paper to more general
diffusion matrices B(u) or to general structurally stable Riemann solutions consisting
entirely of shock waves, including undercompressive shock waves. However, we do
not see how to deal with rarefactions, for which the asymptotic expansions are much
more difficult due to loss of normal hyperbolicity in the underlying geometric singular
perturbation problem [44].

2. Riemann solutions. In this section we define precisely the notion of a struc-
turally stable Riemann solution consisting of Lax shock waves. A Lax i-shock for (1.3)
that satisfies the viscous profile criterion for B(u) ≡ I is a function

u(x) =

{
u− for x < s,

u+ for x > s,
(2.1)

with x = X
T , together with a solution q(ξ) of the traveling wave ODE

u̇ = f(u)− f(u−)− s(u− u−),(2.2)

such that the following hold:
(L1) f(u+)− f(u−)− s(u+ − u−) = 0.
(L2) The eigenvalues ν−

1 < · · · < ν−
n of Df(u−) are real and distinct and satisfy

ν−
i−1 < s < ν−

i .

(L3) The eigenvalues ν+
1 < · · · < ν+

n of Df(u+) are real and distinct and satisfy
ν+

i < s < ν+
i+1.

(L4) q(ξ) approaches u− as ξ → −∞ and u+ as ξ → ∞.
Notice that (L1), (L2), and (L3) imply that for (2.2), u± are hyperbolic equilibria,
the unstable manifold of u− has dimension n − i + 1, and the stable manifold of u+

has dimension i. Assumption (L4) says that these manifolds intersect. Because of the
dimensions of the manifolds, generically, if they intersect, they do so in curves.

Remark 2.1. The function q(ξ) is also a solution of

(Df(u)− sI)uξ = uξξ(2.3)

and satisfies the boundary conditions (1.6).
A solution of the Riemann problem (1.3), (1.8) that consists of n Lax shock waves,

each satisfying the viscous profile criterion for B(u) ≡ I, is a piecewise constant
function

u0(x) =




ū0 for x < s̄1,

ūi for s̄i < x < s̄i+1, i = 1, . . . , n− 1,

ūn for x > s̄n,

(2.4)

with x = X
T , together with R

n-valued functions qi(ξ), i = 1, . . . , n, such that
(R1) ū0 = u� and ūn = ur;
(R2) for each i = 1, . . . , n, the triple (ūi−1, s̄i, ūi), together with the function qi(ξ),

defines a Lax i-shock.
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Define a mapping G : R
n2+2n → R

n2

by

G(u0, s1, u1, . . . , un−1, sn, un)

= (f(u1)− f(u0)− s1(u1 − u0), . . . , f(un)− f(un−1)− sn(un − un−1)).

Notice that

G(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn) = 0.(2.5)

The Riemann solution just defined is structurally stable, provided
(S1) DG(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn), restricted to the n2-dimensional space of vec-

tors (U0, S1, U1, . . . , Un−1, Sn, Un) with U0 = Un = 0, is invertible;
(S2) for each i = 1, . . . , n, the unstable manifold of ūi−1 and the stable manifold

of ūi for the traveling wave ODE u̇ = f(u) − f(ūi−1) − s̄i(u − ūi−1) meet
transversally along qi(ξ).

If (S1) and (S2) are satisfied, then for each set of Riemann data (u0, un) near (ū0, ūn),
there is a Riemann solution near the original one. Condition (S1) can be restated as
follows:
(S1′) If we set (U0, Un) = (0, 0), then the system of linear equations

(Df(ūi)− s̄iI)U i − (Df(ūi−1)− s̄iI)U i−1 −Si(ūi − ūi−1) = 0, i = 1, . . . , n,

has only the trivial solution

(S1, U1, . . . , Un−1, Sn) = (0, 0, . . . , 0, 0).

A condition equivalent to (S2) is the following:
(S2′) For each i = 1, . . . , n, the linear differential equation

(Df(qi(ξ))− s̄iI)Uξ = Uξξ

has, up to scalar multiplication, a unique solution that approaches zero as
ξ → ±∞. It is qi

ξ(ξ).

3. Stationary solutions. Consider the Riemann problem (1.3), (1.8). Assume
that it has a solution (2.4) that consists of n Lax shock waves and is structurally
stable. We shall study (1.17) together with the boundary conditions

u(−∞, t) = u�, u(∞, t) = ur, 0 ≤ t < ∞.(3.1)

Stationary solutions uε(x) of (1.17), (3.1) satisfy

(Df(u)− xI)ux = εuxx(3.2)

and the boundary conditions

u(−∞) = u�, u(∞) = ur.(3.3)

We shall look for uε(x) that lie near the given structurally stable Riemann solution
(2.4). Such stationary solutions are known to exist, and to approach 0 exponentially
as x → ±∞, from the geometric singular perturbation arguments of [44].

In the regular layer, which is R with s̄i, i = 1, . . . , n, removed, uε(x) has an
expansion of the form

uR
ε (x) ∼

∑
εjuR

j (x),(3.4)



STABILITY OF SELF-SIMILAR SOLUTIONS 893

in which uR
0 (x) is just the piecewise constant Riemann solution (2.4). The regular

layer is divided by the points s̄i into n+ 1 connected sublayers

R0 = (−∞, s̄1),

Ri = (s̄i, s̄i+1), i = 1, . . . , n− 1,

Rn = (s̄n,∞).

Each uR
j (x) is defined and piecewise C∞ in the regular layer. At the jump points

s̄i, we assume that each uR
j (x) has one-sided limits uR

j (x
i
0±) := limx→xi0± uR

j (x). We

assume that the same is true for all derivatives of the uR
j (x).

As explained in the introduction, we shall refer to a small neighborhood of s̄i

as the ith singular layer and denote it by Si, i = 1, . . . , n. The Riemann–Dafermos
solution uε(x) has sharp transition layers at

xi(ε) =
∑

εjxi
j , i = 1, . . . , n,(3.5)

with xi(0) = s̄i. Near xi(ε) we use the stretched variable ξ = x−xi(ε)
ε . In terms of this

variable, the solution has an expansion

ui
ε(ξ) =

∑
εjui

j(ξ) in the singular layer Si.(3.6)

The expansions uR
ε (x) and ui

ε(ξ) satisfy, respectively,

(Df(uR)− xI)uR
x = εuR

xx,(3.7)

(Df(ui)− xI)ui
ξ = ui

ξξ, x = xi(ε) + εξ.(3.8)

We first consider the regular layer. We substitute (3.4) into (3.7) and expand in
powers of ε. At order ε0 we obtain

(Df(uR
0 (x))− xI)uR

0x = 0.

We shall set uR
0 (x) equal to the Riemann solution (2.4), which satisfies this equation.

In the regular layer, at order ε1,

(Df(uR
0 (x))− xI)uR

1x = uR
0xx = 0.

Thus uR
1 (x) is constant on each regular sublayer. By induction, we can show that

uR
j (x) is constant on each regular sublayer for all j.

We denote the constant value of uR
j (x) in Ri by ūi

j . Thus

ūi
0 = ūi, i = 0, . . . , n.

From the boundary condition (3.3),

ū0
j = 0 for j = 1, . . . ,∞, ūn

j = 0 for j = 1, . . . ,∞.(3.9)

Next, we consider the ith singular layer Si. We substitute (3.6) and (3.5) into
(3.8) and expand in powers of ε. At order ε0, we obtain

(Df(ui
0)− xi

0I)u
i
0ξ = ui

0ξξ.(3.10)
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To match the solutions at order ε0 in regular and singular layers, we must have

ui
0(−∞) = ūi−1

0 = ūi−1 and ui
0(∞) = ūi

0 = ūi.(3.11)

We set

xi
0 = s̄i, i = 1, . . . , n.

Then by (S2′) in section 2, (3.10), (3.11) has the solution ui
0(ξ) = qi(ξ). As ξ → ±∞,

qi(ξ) approaches the limits exponentially fast. By (S2), the solution qi is locally
unique up to a shift in ξ.

In Si, at order ε1, we have

ui
1ξξ − ((Df(qi)− s̄iI)ui

1)ξ = −(xi
1 + ξ)qi

ξ.(3.12)

We look for ui
1 that satisfies the matching conditions

ui
1(−∞) = ūi−1

1 and ui
1(∞) = ūi

1.(3.13)

By (3.9), ū0
1 = ūn

1 = 0. The other ūi
1 and the xi

1 are to be determined.
Integrating (3.12) from ξ = −∞ to ξ = ∞, we obtain

(3.14) (Df(ūi
0)− s̄iI)ūi

1 − (Df(ūi−1
0 )− s̄iI)ūi−1

1 − xi
1(ū

i
0 − ūi−1

0 )

=

∫ ∞

−∞
ξqi

ξdξ, i = 1, . . . , n.

After making the substitutions ū0
1 = ūn

1 = 0, (3.14) becomes a system of n2 linear
equations in the n2 unknowns xi

1, i = 1, . . . , n, and ūi
1, i = 1, . . . , n−1. By (S1) there

is a unique solution.
The space of bounded solutions of the adjoint system to the homogeneous part of

(3.12), ψξξ+(Df(qi)− s̄iI)ψξ = 0, is n-dimensional and consists of constant solutions.
Therefore, using lemmas from [6], [24], condition (3.14) is necessary and sufficient for
the existence of solutions ui

1(ξ) to (3.12) that satisfy the boundary conditions (3.13).
For completeness, we state this fact as a lemma and present a simpler proof, taking
advantage of the fact that (3.12) is in conservation form.

Lemma 3.1. Consider the system

Uξξ − ((Df(qi(ξ))− s̄iI)U)ξ = g(ξ),(3.15)

where g(ξ) approaches zero exponentially as ξ → ±∞. There is a solution U such
that U(ξ) → U± exponentially as ξ → ±∞ if and only if

(Df(qi(∞))− s̄iI)U+ − (Df(qi(−∞))− s̄iI)U− +

∫ ∞

−∞
g(s)ds = 0.(3.16)

Proof. It is easy to see that the condition is necessary. We prove only that the
condition is sufficient. The system (3.15) is equivalent to the system

Uξ − (Df(qi(ξ))− s̄iI)U(ξ) + (Df(qi(−∞))− s̄iI)U− = G(ξ),(3.17)

where G(ξ) :=
∫ ξ

−∞ g(s)ds is bounded, G(ξ) → 0 exponentially as ξ → −∞, and

G(ξ) → ∫∞
−∞ g(s)ds exponentially as ξ → ∞.
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From the definition of a Lax i-shock, Df(qi(±∞)) − s̄iI is hyperpolic, so sys-
tem (3.17) has exponential dichotomies [7] on R

±. Therefore there exist nonunique
bounded solutions UL(ξ) and UR(ξ) that solve (3.17) on R

− and R
+, respectively.

For the dichotomy on R
−, let Pu(0−) denote projection onto the unstable sub-

space at x = 0, with kernel the stable subspace. Similarly, for the dichotomy on R
+, let

Ps(0+) denote projection onto the stable subspace at x = 0, with kernel the unstable
subspace. Then the definition of a Lax i-shock implies thatRPu(0−)+RPs(0+) = R

n.
Therefore there exists a (nonunique) pair (φu, φs) such that

UL(0−) + φu = UR(0+) + φs,

φu ∈ RPu(0−), φs ∈ RPs(0+).

Let Φ(ξ, ζ) be the principle matrix solution to (3.17). The solution U(ξ), ξ ∈ R,
can be obtained by letting

U(ξ) = UL(ξ) + Φ(ξ, 0)φu, ξ ≤ 0,

U(ξ) = UR(ξ) + Φ(ξ, 0)φs, ξ ≥ 0.

From (3.17) and (3.16), using the limits of G(ξ) as ξ → ±∞, it is easy to show
that U(ξ) → U− as ξ → −∞ and U(ξ) → U+ as ξ → ∞.

Proceeding inductively, we can solve for all xi
j and ūi

j .
Our asymptotic expansions are justified by the fact that uε(x) is known to exist

from the geometric singular perturbation theory arguments of [44]. Alternatively, a
proof of existence of the exact stationary solutions uε(x) can be based on the exis-
tence of the formal asymptotic expansions (3.4)–(3.5). For this approach to singular
perturbation theory, see [25]. The same assumptions (S1) and (S2) are used in both
types of arguments.

We summarize the results about stationary solutions in the following.
Proposition 3.2. In the regular layer, to all orders of ε, uR

ε (x) is piecewise con-
stant with jumps at xi

0(ε), i = 1, . . . , n, only. At lowest order, uR
0 (x) is the Riemann

solution (2.4). In the ith singular layer, at lowest order, ui
0(ξ) = qi(ξ), a heteroclinic

solution connecting the states ūi−1
0 and ūi

0. Higher order terms uR
j (x), ui

j(ξ), and

xi
j can be obtained recursively, using the matching of regular and singular layers and

Lemma 3.1.

4. Well-posedness. To show the well-posedness of initial value problems with
initial conditions near a Riemann–Dafermos solution, it is convenient to use the
stretched variables ξ = x

ε and τ = t
ε . We shall translate the results back to (x, t)

variables at the end of the section.
Using the stretched variables, (1.17) becomes

uτ + (Df(u)− εξI)uξ = uξξ.(4.1)

Let uε(x) be a stationary solution of (1.17), (3.1). Then uε(εξ) is a stationary solution
of (4.1). A solution of (4.1) near uε(εξ) can be expressed as uε(εξ) + U(ξ, τ) with U
satisfying

Uτ + (Df(uε + U)− εξI)Uξ + (Df(uε + U)−Df(uε))uε ξ = Uξξ.(4.2)

For any ρ ≥ 0, let C(ρ,Rξ) be the Banach space of uniformly continuous functions
U(ξ), ξ ∈ R, such that the weighted norm |U |ρ := supξ |U(ξ)|eρ|ξ| < ∞. Let Ck(ρ,Rξ)
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be the space of functions U(ξ) such that U,U ′, . . . , U (k) ∈ C(ρ,Rξ). On Ck(ρ,Rξ)
we use the norm |U |k,ρ := |U |ρ + |U ′|ρ + · · ·+ |U (k)|ρ. One can define C(ρ,R±

ξ ) and

Ck(ρ,R±
ξ ) similarly.

We shall show that for any ρ ≥ 0, (4.2) is well-posed for small initial data in
C2(ρ,Rξ). The intuitive reason is that for the underlying Riemann problem, the
characteristics on the two unbounded regular layers head inward. This keeps a space
of exponentially decaying profiles invariant.

Stronger results can be obtained using fractional powers of Banach spaces or
intermediate spaces [13], [17], [36], [9], [31], [23]. We choose to use C2(ρ,Rξ) for
simplicity.

We rewrite (4.2) as

Uτ + (Df(uε)− εξI)Uξ +D2f(uε)uε ξU + gε(U,Uξ, ξ) = Uξξ,(4.3)

with

(4.4) gε(U,Uξ, ξ)

= (Df(uε + U)−Df(uε))Uξ + (Df(uε + U)−Df(uε)−D2f(uε)U)uε ξ.

Note that because of the dependence on Uξ in (4.4), if U ∈ C2(ρ,Rξ), then gε ∈
C1(ρ,Rξ). Moreover, we have

|gε(U)|1,ρ ≤ C|U |22,ρ,

|gε(U1)− gε(U2)|1,ρ ≤ C max{|U1|2,ρ, |U2|2,ρ}|U1 − U2|2,ρ.
(4.5)

We first consider the inhomogeneous linear system

Uτ + (Df(uε)− εξI)Uξ +D2f(uε)uε ξU + hε(ξ, τ) = Uξξ.(4.6)

The hypotheses on h in the following lemma are motivated by the observations
just made about g.

Proposition 4.1. Let τ0 > 0, ε0 > 0, and ρ ≥ 0. Assume that
(1) for each 0 < ε ≤ ε0, hε(·, τ) is a continuous mapping from 0 ≤ τ ≤ τ0 to

C1(ρ,Rξ);
(2) there is a constant M such that |hε(·, τ)|1,ρ ≤ M on {(τ, ε) : 0 ≤ τ ≤ τ0, 0 <

ε ≤ ε0}.
Let

U(ξ, 0) = φ(ξ),(4.7)

with φ ∈ C2(ρ,Rξ). Then there exists τ1, 0 < τ1 ≤ τ0, such that for each 0 < ε ≤ ε0,
the initial value problem (4.6), (4.7) has a solution U(ξ, τ), 0 ≤ τ ≤ τ1. The mapping
τ → U(·, τ) is continuous from [0, τ1] to C2(ρ,Rξ), and there is a constant C such
that, for each (τ, ε),

|U |2,ρ ≤ C(|φ|ρ + |h|1,ρ).

The numbers τ1 and C depend on ε0 but are independent of ρ and M .
Proof. Let y = eετξ and define v(y, τ) := U(e−ετy, τ). Then

vτ + eετ (Df(uε)vy +D2f(uε)uε yv) + h = e2ετvyy.
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Let s = e2ετ−1
2ε , so that τ = τ(s) = (1 + 2εs)

1
2ετ . Let w(y, s) := v(y, τ(s)). Then

ws +
1√

2εs+ 1
(Df(uε)wy +D2f(uε)uε yw) +

1

2εs+ 1
h = wyy,

w(y, 0) = φ(y).

(4.8)

Moreover, if τ1 is sufficiently small, then for each 0 < ε ≤ ε0, hε defines a continuous

function from 0 ≤ s ≤ s1(ε) to C1(ρ,Rξ), where s1(ε) =
e2ετ1−1

2ε ≈ τ1. In (4.8) the
coefficients of w and wy, and the inhomogeneous term, are bounded on

{(y, s, ε) : y ∈ R, 0 ≤ s ≤ s1(ε), 0 < ε ≤ ε0}.

Let Φ(y, s) := 1
2
√

πs
e−y2/4s be the fundamental solution of the heat equation

ws = wyy. The solution of (4.8) is the fixed point of the integral equation

w̄(y0, s0) =

∫ ∞

−∞
Φ(y0 −y, s0)φ(y)dy−

∫ s

0

∫ ∞

−∞
Φ(y0 −y, s0 − s)

1

2εs+ 1
hε(y, s)dyds

−
∫ s

0

∫ ∞

−∞
Φ(y0 − y, s0 − s)

1√
2εs+ 1

(Df(uε)wy(y, s) +D2f(uε)uε yw(y, s))dyds.

If w(y, s) defines a continuous function from 0 ≤ s ≤ s1(ε) to C2(ρ,Rξ), then it is
easy to show that w̄ defines a continuous function from 0 ≤ s ≤ s1(ε) to C2(ρ,Rξ).
Moreover, if τ1 is sufficiently small, then, independent of ρ, the mapping w → w̄ is
a contraction mapping in the space of continuous functions from 0 ≤ s ≤ s1(ε) to
C2(ρ,Rξ). Therefore, there exists a unique fixed point w(y, s) in C2(ρ,Rξ), which is
the solution of (4.8).

Then

|U(ξ, τ)| = |v(y, τ(s))| = |w(y, s)| ≤ C(|φ|ρ + |h|1,ρ)e
−ρ|y| ≤ C1(|φ|ρ + |h|1,ρ)e

−ρ|ξ|.

Similar estimates for |Uξ| and |Uξξ| can also be obtained from the integral equation for
w. The proof that w : [0, τ1] → C2(ρ,Rξ) is continuous uses a well-known technique
from the theory of evolution equations in abstract Banach spaces [17] and will be
omitted.

Using Proposition 4.1, the estimates (4.5), and the contraction mapping theorem
in C2(ρ,Rξ), we can easily prove the following proposition.

Proposition 4.2. Consider the initial value problem (4.2), (4.7), with φ ∈
C2(ρ,Rξ) and ρ ≥ 0. There exist positive constants τ1, ε1, and δ1, all independent of
ρ, such that if |φ|2,ρ ≤ δ1, then for each 0 < ε ≤ ε1, the initial value problem has a
unique solution U(ξ, τ), 0 ≤ τ ≤ τ1, such that τ → U(·, τ) is a continuous mapping
from [0, τ1] to C2(ρ,Rξ).

We can apply Proposition 4.2 repeatedly until the maximal time interval of exis-
tence is reached.

We recall from the introduction that for a Ck function ψ(x), we define

|ψ|k,γ,ε := |ψ|γ + ε|ψ′|γ + · · ·+ εk|ψ(k)|γ .

Lemma 4.3. Let k be a nonnegative integer. Let ψ ∈ Ck(γ,Rx). Define φ(ξ) =
ψ(εξ). Then φ ∈ Ck(εγ,Rξ), and |φ|k,εγ = |ψ|k,γ,ε.
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Proof. We have

|ψ(x)|eγ|x| = |ψ(εξ)|eγε|ξ| = |φ(ξ)|εγ|ξ|,
ε|ψx(x)|eγ|x| = ε|ψx(εξ)|eγε|ξ| = |φξ(ξ)|eεγ|ξ|,(4.9)

etc. The result follows.
In the original variables x = εξ and t = ετ , (4.2) becomes

Vt + (Df(uε + V )− xI)Vx + (Df(uε + V )−Df(uε))uε x = Vxx,(4.10)

and the initial condition (4.7) becomes

V (x, 0) = ψ(x).(4.11)

Corollary 4.4. Consider the initial value problem (4.10), (4.11), with ψ ∈
C2(γ,Rx) and γ ≥ 0. There exist positive constants τ1, ε1, and δ1, all independent
of γ, such that if |ψ|2,γ,ε ≤ δ1, then for each 0 < ε ≤ ε1, there is a unique solution
V (x, t), 0 ≤ t ≤ ετ1, such that t → V (·, t) is a continuous mapping from [0, ετ1] to
C2(γ,Rx).

Proof. The constants τ1, ε1, and δ1 are those of Proposition 4.2. Suppose
|ψ|2,γ,ε ≤ δ1. Let φ(ξ) = ψ(εξ). By Lemma 4.3, |φ|2,εγ = |ψ|2,γ,ε. By Proposi-
tion 4.2, the initial value problem (4.2), (4.7) has a solution U(ξ, τ), 0 ≤ τ ≤ τ1. Let
V (x, t) = U(x

ε ,
t
ε ).

As noted in the introduction, the condition |ψ|2,γ,ε ≤ δ1 allows, for small ε > 0,
initial perturbations of the Riemann–Dafermos solution uε(x) with very large deriva-
tives.

5. Essential spectrum. In the space of uniformly bounded functions, a travel-
ing wave (viscous shock) solution of (1.1) has an essential spectrum that touches the
imaginary axis. This is the main difficulty in proving stability of the traveling wave.
The same difficulty occurs for a Riemann–Dafermos solution uε of the Dafermos reg-
ularization. Following an idea of Sattinger [39], we use weighted function spaces to
move the essential spectrum to the left.

Let δ̃ > 0 be given. For sufficiently large γ > 0, we shall show that, for small
ε > 0, in the space C2(γ,Rx), the essential spectrum of the linearization of (1.17)
about a Riemann–Dafermos solution uε(x) lies in the region Reλ̃ ≤ −δ̃. Therefore
the stability of the Riemann–Dafermos solution is determined by the eigenvalues.

Let T (ξ, ζ) be the fundamental matrix solution for a first-order system

Wξ = B(ξ)W, ξ ∈ J.(5.1)

Definition 5.1. Let β < α be real numbers. System (5.1) has a pseudoexponen-
tial dichotomy on J with spectral gap β < α if there is a real number C ≥ 0 and
projections P (ξ), ξ ∈ J , such that

(1) T (ξ, ζ)P (ζ) = P (ξ)T (ξ, ζ);
(2) if ws ∈ RP (ζ), and ξ > ζ in J , then

|T (ξ, ζ)ws| ≤ Ceβ(ξ−ζ)|ws|;
(3) if wu ∈ R(I − P (ζ)), and ξ < ζ in J , then

|T (ξ, ζ)wu| ≤ Ceα(ξ−ζ)|wu|;
(4) P (ξ) is continuous with respect to ξ.
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Notice that P (ξ) is not assumed to be uniformly bounded.
The linearization of (1.17) about uε(x) is

Ut + (Df(uε)− xI)Ux +D2f(uε)uε xU = εUxx.(5.2)

The complex number λ̃ is in the resolvent set of (5.2), provided the spectral equation

λ̃U + (Df(uε)− xI)Ux +D2f(uε)uε xU + h̃ = εUxx(5.3)

can be solved for U in terms of h̃, and the mapping h̃ → U is bounded.
In (5.3) let λ = ελ̃, ξ = x

ε , and h = εh̃. Then (5.3) becomes

λU + (Df(uε)− εξI)Uξ +D2f(uε)uε ξU + h = Uξξ.(5.4)

Let δ̃ > 0 be given. We shall show that for ε > 0 sufficiently small and Reλ ≥ −εδ̃,
(5.4) with h = 0 has, for an appropriate a > 0, pseudoexponential dichotomies on
the intervals ξ ≤ −a

ε and ξ ≥ a
ε . Although the projection operators P (λ, ε, ξ) of the

pseudoexponential dichotomies are not uniformly bounded, even for fixed (λ, ε), we
will show that the restriction of P (λ, ε, ξ) to the subspace of R

2n defined by setting
the first n coordinates equal to zero is uniformly bounded. Based on these results we
will show that for ε > 0 sufficiently small, the essential spectrum of (5.3) is in the
region Reλ̃ ≤ −δ̃.

Let W = (U, V ) and let

B̃(λ, ε, x) :=

(
0 I

λ+ εD2f(uε)uε x Df(uε)− xI

)
.(5.5)

Let

B(λ, ε, ξ) := B̃(λ, ε, εξ) =

(
0 I

λ+D2f(uε)uε ξ Df(uε)− εξI

)
.(5.6)

Then (5.4) can be recast as

Wξ = B(λ, ε, ξ)W + (0, h)
.(5.7)

Our proof that Wξ = BW has pseudoexponential dichotomies on the intervals
ξ ≤ −a

ε and ξ ≥ a
ε is motivated by the proof of Coppel’s Proposition 1 [7, p. 50]. This

result says, roughly speaking, that if the matrices B(ξ), ξ ∈ J , are uniformly bounded
and uniformly hyperbolic, and vary slowly with ξ, then (5.1) has an exponential
dichotomy on J . Our case differs in that the matrices B(λ, ε, ξ) are not uniformly
bounded, even for fixed (λ, ε). In addition, they have eigenvalues near 0 for small
ε, so we are interested in pseudoexponential dichotomies rather than exponential
dichotomies.

Let

Ã(λ, x) :=

(
0 I

λ Df(ur)− xI

)
.

Lemma 5.1. For δ > 0 sufficiently small, there are numbers β(δ) < α(δ) < 0 such
that if Reλ ≥ −δ and xn

0 ≤ x, then Ã(λ, x) has n eigenvalues with real parts less than
β(δ) and n eigenvalues with real parts between α(δ) and 0. As δ → 0, β(δ) approaches
a negative limit, and α(δ) is O(δ).
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Proof. Since (1.3) is strictly hyperbolic, the eigenvalues of Df(ur) are real and
distinct. Denote them by ν1 < · · · < νn and denote the corresponding eigenvectors
by r1, . . . , rn.

Let µ be an eigenvalue of Ã(λ, x). It is easily verified that

det(λ+ µ(Df(ur)− (x+ µ)I)) = 0.

Therefore one of the following equations must hold:

µ2 + (x− νj)µ− λ = 0, j = 1, . . . , n.

Thus there are two eigenvalues of Ã(λ, x) for each j,

µ±
j = −−x− νj

2
±
√(

x− νj

2

)2

+ λ,

with corresponding eigenvectors

(rj , µ
±
j rj)


.

For each x with xn
0 ≤ x, we have νn < x. Let p = 1

2 (x
n
0 − νn) > 0. Let δ be such

that 0 < δ < p2. Let

β(δ) = −p−
√

p2 − δ, α(δ) = −p+
√

p2 − δ =
−δ

p+
√

p2 − δ
.

Notice that β(δ) < α(δ) < 0, limδ→0 β(δ) = −2p < 0, and α(δ) is O(δ).
Let 1 ≤ j ≤ n, let Reλ ≥ −δ, and let xn

0 ≤ x. From Corollary 5.6 at the end of
this section, with r = pj =

1
2 (x− νj), µ

±
j must satisfy

Reµ−
j ≤ −pj −

√
p2

j − δ ≤ β(δ)

and

Reµ+
j ≥ −pj +

√
p2

j − δ =
−δ

pj +
√

p2
j − δ

≥ α(δ).(5.8)

We shall refer to the µ−
j , j = 1, . . . , n, as pseudostable eigenvalues and the µ+

j ,
j = 1, . . . , n, as pseudounstable eigenvalues.

We now construct projections associated to the pseudostable and pseudounstable
eigenvalues.

Let R = (r1 . . . rn) and M±(λ, x) = diag(µ±
1 . . . µ±

n ) be n × n matrices. The
eigenvectors of Ã(λ, x) form a 2n× 2n matrix

H(λ, x) :=

(
R 0

0 R

)(
In In

M− M+

)
.

The first n columns of H are eigenvectors (rj , µ
−
j rj)


 for the corresponding µ−
j ,

and the last n columns are eigenvectors (rj , µ
+
j rj)


 for the corresponding µ+
j . Let

D(λ, x) = M+ −M− = diag(µ+
j − µ−

j ). Then

H−1 =

( M+D−1 −D−1

−M−D−1 D−1

)(
R−1 0

0 R−1

)
.
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Let P̃ =
(

In 0
0 0

)
. The projection to the space spanned by the pseudostable

eigenvectors is

P (λ, x) = HP̃H−1 =

(
R 0

0 R

)(M+D−1 −D−1

−λD−1 −M−D−1

)(
R−1 0

0 R−1

)
.

Here we have used M−M+ = −λIn.
Proposition 5.2. Let δ̃ > 0. Let a > maxi=1,...,n |xi

0|. Then for ε > 0 suf-

ficiently small and Reλ ≥ −εδ̃, Wξ = BW has pseudoexponential dichotomies with
n-dimensional pseudostable and pseudounstable spaces on ξ ≤ −a

ε and on ξ ≥ a
ε .

The spectral gaps are 0 < β1ε < α1 for ξ ≤ −a
ε and β2 < α2ε < 0 for ξ ≥ a

ε . The
numbers αj and βj, j = 1, 2, are independent of λ. The constant C in the definition
of pseudoexponential dichotomy is independent of (λ, ε).

Proof. We will consider only the interval ξ ≥ a
ε , since the interval ξ ≤ −a

ε can be
handled similarly.

From section 3, on the interval x ≥ a, uε(x)−ur is 0 to any finite order in ε. Thus
on the interval ξ ≥ a

ε , Wξ = BW is approximately Wξ = AW , with W = (U, V ) and

A(λ, ε, ξ) := Ã(λ, εξ) =

(
0 I
λ Df(ur)− εξI

)
.

Let δ = δ(ε) = εδ̃. Choose ε̃ > 0 such that ε̃δ̃ is small enough that Lemma 5.1
applies. In the following we consider only ε with 0 < ε < ε̃.

Let M(λ, x) := diag(M−,M+). Then Ã = HMH−1. Consider the (λ, x)-
dependent change of variables W = HZ. After making the substitution x = εξ,
Wξ = AW becomes

Zξ = MZ −H−1HξZ.(5.9)

The differential equation (5.9) is a perturbation of the diagonalized system

Zξ = MZ.(5.10)

That is, z′j = µ−
j zj if 1 ≤ j ≤ n and z′j = µ+

j−nzj if n + 1 ≤ j ≤ 2n. For 0 < ε < ε̃,

system (5.10) has a pseudoexponential dichotomy with projection P̃ and spectral gap
β(δ) < α(δ) < 0, with δ = εδ̃.

It is easily verified that there is a constant C, independent of δ for δ sufficiently
small, such that

1 + |µ−
j |+ |µ+

j |
|√(x− νj)2 + 4λ| ≤ C

for all (j, λ, x), with j = 1, . . . , n, Reλ ≥ −δ and xn
0 ≤ x. Therefore |H−1| ≤ C

uniformly with respect to (λ, x). Moreover, using x = εξ, we have

∂µ±
j /∂ξ =

−ε± ε(x− νj)((x− νj)
2 + 4λ)−

1
2

2
= O(ε)

for all (j, λ, x). Therefore H−1Hξ = O(ε). From this, one can show by an argument
similar to the proof of roughness of exponential dichotomies that for sufficiently small
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ε, (5.9) also has a pseudoexponential dichotomy on ξ ≥ a
ε . The projection, which

we denote by Q̃(λ, ε, ξ), is O(ε) close to P̃ . For appropriate negative constants α2

and β2, the spectral gap is β2 < α2ε < 0. The constant C in the definition of
pseudoexponential dichotomy is independent of (λ, ε).

Because the system Wξ = AW is just (5.9) after a linear change of variables, it
also has a pseudoexponential dichotomy on ξ ≥ a

ε with spectral gap β2 < α2ε < 0.
The matrices A and B differ by O(ε) terms that are in the last n rows only.

Existence of a pseudoexponential dichotomy on ξ ≥ a
ε for Wξ = BW then follows by

an argument similar to the proof of roughness of exponential dichotomies.
The pseudoexponential dichotomy forWξ = AW has the projection Q̄ := HQ̃H−1

= H(P̃ +O(ε))H−1 = O(1 + ε|x|+√|λ|), which can be large for large ξ and |λ|.
Lemma 5.3. Let Q(λ, ξ) be the projection for the pseudoexponential dichotomy for

Wξ = BW . Then |Q(λ, ξ)(I − P̃ )| is uniformly bounded for all (λ, ξ) with Reλ ≥ −δ
and |ξ| ≥ a

ε .
Proof. We will show the result for Wξ = AW . The result for Wξ = BW then

follows by an argument similar to the proof of roughness of exponential dichotomies.
Observe that

Q̄(I − P̃ ) = HQ̃H−1(I − P̃ ),

|Q̄(I − P̃ )| ≤ |H||Q̃||H−1(I − P̃ )|.

Using the facts

|H| ≤ C(1 + |M−|+ |M+|),
|Q̃| ≤ C,

|H−1(I − P̃ )| ≤ C|(M+ −M−)−1|,

we obtain that |Q̄(I− P̃ )| is uniformly bounded with respect to (λ, ε, ξ) in the domain
of consideration.

Let γ be a constant such that γ > max{−α2, β1}. We now show that in the
function space C(γ,Rx), the region Reλ̃ ≥ −δ̃ consists of normal points only. Observe
that in the ξ-coordinate, the space is C(εγ,Rξ).

Without loss of generality, assume that x = 0 is between x1
0 and xn

0 . Consider
the nonhomogeneous equation (5.4), where h ∈ C(εγ,Rξ). This is equivalent to the
first-order system

Wξ = BW + (0, h)
.(5.11)

By Proposition 5.2, the associated homogeneous system of (5.11) has pseudoexponen-
tial dichotomies on ξ ≤ −a

ε and ξ ≥ a
ε . These dichotomies can be extended from

(−∞,−a
ε ] to R

− and from [aε ,∞) to R
+. The constants of the extended dichotomies

are ε dependent and may approach ∞ as ε → 0, but the exponents remain the same.
If, for certain λ, the n-dimensional pseudounstable space at ξ = 0− has a nontrivial
intersection with the n-dimensional pseudostable space at ξ = 0+, then λ is obviously
an eigenvalue.

Next assume that for some λ, the n-dimensional pseudounstable space at ξ = 0−
has trivial intersection with the n-dimensional pseudostable space at ξ = 0+, so that

RQ(0+)⊕R(I −Q(0−)) = R
n.(5.12)
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Let ws ∈ RQ(0+) and wu ∈ R(I − Q(0−)). Then the solution of (5.11) can be
expressed as

w(ξ) = T (ξ, 0)ws +

∫ ξ

0

T (ξ, ζ)Q(ζ)(0, h(ζ))
dζ

+

∫ ξ

∞
T (ξ, ζ)(I −Q(ζ))(0, h(ζ))
dζ, ξ > 0,

w(ξ) = T (ξ, 0)wu +

∫ ξ

0

T (ξ, ζ)(I −Q(ζ))(0, h(ζ))
dζ

+

∫ ξ

−∞
T (ξ, ζ)Q(ζ)(0, h(ζ))
dζ, ξ < 0.

(5.13)

Using Lemma 5.3 and the fact that (0, h(ζ))
 = (I− P̃ )(0, h(ζ))
, it is easy to show
that the integrals in (5.13) are convergent and define functions in C(εγ,R+

ξ ) for ξ > 0

and in C(εγ,R−
ξ ) for ξ < 0.

It remains to find ws ∈ RQ(0+) and wu ∈ R(I−Q(0−)) such that w(0−) = w(0+).
From (5.13),

wu − ws =

∫ 0

∞
T (0, ζ)(I −Q(ζ))(0, h(ζ))
dζ −

∫ 0

−∞
T (0, ζ)Q(ζ)(0, h(ζ))
dζ.(5.14)

By (5.12), there exist unique ws ∈ RQ(0+) and wu ∈ R(I −Q(0−)) such that (5.14)
holds.

Thus the spectral equation (5.4) has a unique solution U for each h. From (5.13),
we see that |U |εγ ≤ Cε|h|εγ . This shows that λ is in the resolvent of the linear partial
differential equation (5.4).

We have proved the following.
Theorem 5.4. Let δ̃ be a positive constant. Let γ > max{−α2, β1}. Then for

ε > 0 sufficiently small, system (5.3) on the space C2(γ,Rx) (resp., system (5.4) on
the space C2(εγ,Rξ)) has only normal points in the region Reλ̃ ≥ −δ̃ (resp., in the

region Reλ ≥ −δ := −εδ̃).
We end this section by stating a lemma that will also be used in the next section

and a corollary that was used in the proof of Lemma 5.1.
Lemma 5.5. Let λ = σ+ωi and z = x+yi be complex variables, with σ, ω, x, y ∈ R.

For a given real r �= 0, consider the mapping

z =
√

r2 + λ

and its inverse

λ = z2 − r2.

(1) For any a > 0, the mapping λ = z2 − r2 takes each vertical line Rez = ±a
bijectively onto the parabola

σ = a2 − r2 − ω2

4a2
.

The regions Rez ≥ a and Rez ≤ −a are each mapped bijectively onto the closure of
the region to the right of the parabola, i.e., onto

σ ≥ a2 − r2 − ω2

4a2
.
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Fig. 5.1. The mapping λ = z2 − r2 takes each vertical line Rez = ±a bijectively onto the
parabola C(η).

(2) For any η > −r2, let

C(η) :=
{
(σ, ω) : σ = η − ω2

4(r2 + η)

}
,

a parabola with vertex at (η, 0) that opens to the left. Then the mapping z =
√

r2 + λ

takes C(η) onto the vertical lines Rez = ±a = ±
√

r2 + η. The closure of the region

to the right of C(η), denoted R(η), is mapped onto |z| ≥ a =
√

r2 + η.
(3) If η > 0, then a > |r|; if −r2 < η < 0, then 0 < a < |r|.
See Figure 5.1.
Corollary 5.6. For any 0 < δ < r2, let η = −δ. Then the region Reλ ≥ −η is

in R(−δ) and is mapped by z =
√

r2 + λ into |Rez| ≥
√

r2 + η =
√

r2 − δ.

6. O(1
ε
) Eigenvalues. Let us first consider a time-dependent solution uε(x, t) of

(1.17) with initial data uε(x, 0) = φε(x) near the Riemann–Dafermos solution uε(x).
Thus, φε(x) has n sharp transition layers at x̄i

ε, with x̄i
ε near s̄i. Then we expect

that uε(x, t) has n sharp jumps near curves x̄i
ε(t), with x̄i

ε(0) = x̄i
ε. (If the Riemann–

Dafermos solution is stable, we expect that x̄i
ε(t) → xi(ε) as t → ∞.) Near the curve

x̄i
ε(t) we use the fast spatial variable ξ =

x−x̄iε(t)
ε . Then (1.17) becomes

εut = uξξ −
(
Df(u)− x̄i

ε(t)−
d

dt
x̄i

ε(t)− εξ

)
uξ.

Unless φε is a stationary solution of (1.17), we have ut = O( 1
ε ) near x̄i

ε; i.e., the system
exhibits very fast motion near x̄i

ε. It is common in singular perturbation problems to
have an initial layer in which there is motion with speed of order 1

ε for time of order
ε. Thus we expect the existence of eigenvalues of order 1

ε , with the support of the
eigenfunctions concentrated near the points x̄i

ε.
Assume now that in the singular layers, the solution quickly converges to traveling-

wave-like solutions. Then after the initial time layer, the solution behaves like convec-
tion in the regular layer coupled with traveling waves in singular layers. This motion
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occurs for t > O(ε) and has ut = O(1). Thus we expect to find eigenvalues of order 1
and related eigenfunctions.

We discuss fast eigenvalues of order 1
ε in this section. Slow eigenvalues of order 1

will be studied in the next section.
We recall that the linear variational system at a Riemann–Dafermos solution

uε(x) is

Ut + (Df(uε)− xI)Ux +D2f(uε)uε xU = εUxx.

We shall study this equation in the space C2(γ,Rx), γ > 0.
Eigenvalues λ̃ and corresponding eigenfunctions U(x) satisfy

λ̃U + (Df(uε)− xI)Ux +D2f(uε)uε xU = εUxx.(6.1)

In section 3 we found an expansion for uε(x) in the regular layer. We also found
expansions for the jump positions xi(ε), and for ui

ε(ξ) in singular layers centered

around xi(ε), in the stretched coordinate ξ = x−xi(ε)
ε . We shall use these expansions

in what follows.
We shall look for eigenvalues

λ̃ =

∞∑
j=−1

εjλj .(6.2)

Fast eigenvalues have λ−1 �= 0; slow eigenvalues have λ−1 = 0. We shall look for
corresponding eigenfunctions with expansions

UR
ε (x) =

∞∑
j=0

εjUR
j (x) in the regular layer,(6.3)

U i
ε(ξ) =

∞∑
j=0

εjU i
j(ξ) in the singular layer Si.(6.4)

In this section we look for fast eigenvalues, which have the form (6.2) with λ−1 �= 0.
We shall show that under certain conditions, fast eigenvalues have eigenfunctions

that are localized in a single singular layer. These eigenvalues correspond to zeros of
Evans functions on each singular layer.

We first consider the regular layer. We substitute (3.4), (6.2), and (6.3) into (6.1)
and expand in powers of ε. At order ε−1 (the lowest order) we obtain

λ−1U
R
0 = 0.(6.5)

Since λ−1 �= 0, UR
0 = 0.

At order ε0 we obtain

λ−1U
R
1 = terms involving UR

0 = 0.

Since λ−1 �= 0, UR
1 = 0. Similarly, higher-order expansions of eigenvalues and the

corresponding eigenfunctions are determined by a system of algebraic equations. In
particular, we find that UR

j = 0 for all j.
In the ith singular layer, we rewrite (6.1) as

ε(λ̃+ 1)U + ((Df(uε)− xI)U i)ξ = U i
ξξ, with x = xi(ε) + εξ.(6.6)
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We substitute (3.6), (6.2), and (6.4) into (6.6) and expand in powers of ε. At order
ε0 (the lowest order) we obtain

λ−1U
i
0 + ((Df(qi)− xi

0I)U
i
0)ξ = U i

0ξξ.(6.7)

Since UR
0 = 0, we must have U i

0(ξ) → 0 as ξ → ±∞. We note that (6.7) also arises
in the study of the stability of the traveling wave solution u(X,T ) = qi(X − xi

0T )
of the system of viscous conservation laws (1.1); it determines the eigenvalues and
eigenfunctions of the linearization of (1.1) at the traveling wave. Let us assume the
following:

(H1) For the complex number λ−1 �= 0, there is exactly one i, 1 ≤ i ≤ n, such that
(6.7) has a nontrivial solution U i

0(ξ) that satisfies the boundary conditions
U i

0(ξ) → 0 as ξ → ±∞.
(H2) For that i, λ−1 is a semisimple eigenvalue [20, p. 41] of the linear differential

operator

U i
0ξξ − ((Df(qi)− xi

0I)U
i
0)ξ(6.8)

on the Banach space of uniformly continuous functions that approach 0 as
ξ → ±∞, with the sup norm.

Consider first the index i of assumption (H1). Let λi
−1 := λ−1. Let the multiplic-

ity of λi
−1 as an eigenvalue of (6.8) be mi. Let φi

j(ξ), j = 1, . . . ,mi, be a basis for the

eigenspace. Then to lowest order, an eigenfunction associated to λ̃ =
∑∞

j=−1 λi
jε

j has

the form U i
0(ξ) =

∑mi

j=1 ci
jφ

i
j(ξ) in the ith singular layer for some constants {ci

j}mi
j=1

and is zero in the regular layer and other singular layers.
We now show how to determine the possible values of λi

0 and {ci
j}mi

j=1 using the

expansions to order ε1.
Later, we will show that in certain regions of λ-space, the limiting systems of

(6.7) at ξ = ±∞ have exponential dichotomies with n-dimensional unstable and
stable subspaces. The eigenfunction U i

0 corresponds to a nontrivial intersection of the
unstable subspace at ξ = −∞ and the stable subspace at ξ = ∞.

By [33], the adjoint system to (6.7) must also have an mi-dimensional space of
bounded solutions. Let {ψi

�}mi

�=1 be a basis for this space.
In the ith singular layer, at order ε1, we have

(6.9) (λi
0 + 1)U i

0 + ((D2f(qi)ui
1 − (xi

1 + ξ)I)U i
0)ξ

+ λi
−1U

i
1 + ((Df(qi)− xi

0I)U
i
1)ξ = U i

1ξξ.

The solvability condition of (6.9) can be obtained from Fredholm’s alternative [33]:

〈ψi
�, (λ

i
0 + 1)U i

0 + ((D2f(qi)ui
1 − (xi

1 + ξ)I)U i
0)ξ〉 = 0, C = 1, . . . ,mi.(6.10)

Recall that U i
0 =

∑mi

j=1 ci
jφ

i
j(ξ). Since λi

−1 is semisimple, without loss of generality,

we assume that 〈ψi
�, φ

i
j〉 = δ�

j .

Let Bi = {bi
�,j} be the mi ×mi matrix whose entries are

bi
�,j := 〈ψi

�, ((D
2f(qi)ui

1 − (xi
1 + ξ)I)φi

j)ξ〉.
The solvability condition (6.10) becomes

((λi
0 + 1)I − Bi)ci = 0,(6.11)
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Fig. 6.1. Eigenvalues to the right of C(η) and C(0).

where ci = (ci
1, . . . , c

i
mi

), and I is the mi × mi identity matrix. Therefore λi
0 + 1 is

an eigenvalue of the matrix B and (ci
1, . . . , c

i
mi

) is the corresponding eigenvector. The
algebraic system (6.11) determines the possible values of λi

0 and the corresponding ci.
We assume the following:

(H3) The eigenvalues of the matrix Bi are distinct.
Of course, (H3) holds automatically in the most common case, mi = 1.
From (H3), we have mi distinct eigenvalues λi

0 + 1, each with an eigenvector ci

corresponding to an eigenfunction U i
0 =

∑
ci
jφ

i
j . Thus, for ε > 0, λi

1 splits into mi

distinct eigenvalues.
Assuming (H3), higher-order expansions of eigenvalues and the corresponding

eigenfunctions in singular layers can be obtained by a straightforward formal proce-
dure, which will not be presented here.

Next, we consider i other than the one specified in assumption (H1). It is clear
that U i

0 = 0. From (6.9) we find that U i
1 = 0. Similarly, all U i

j = 0.

We refer to the O( 1
ε ) eigenvalues as local eigenvalues since the asymptotic expan-

sions of their associated eigenfunctions are localized in a single singular layer.
Our next object is to define, for the ith singular layer, an Evans function Ei(λ)

[11] whose zeros are complex numbers λi
−1 for which (6.7) has solutions that approach

0 as ξ → ±∞. For an arbitrary η > 0, we will define a parabola C(η) that opens to
the left and has its vertex at (η, 0), η > 0, in the complex plane. The parabolas C(η)
do not intersect. As η → 0+, they approach a parabola C(0) with vertex at (0, 0).
See Figure 6.1 Let the region to the right of C(η) be R(η). The Evans function Ei(λ)
can be defined on R(0). For each small η > 0, if λi

−1 is a zero of the Evans function

defined in R(η), then (6.7) has a nontrivial solution that satisfies U i
0(ξ) = O(e−η|ξ|).

As in section 5, let xi
0 = s̄i, i = 1, . . . , n. Let N > max{|x1

0|, |xn
0 |}. Thus the

compact interval [−N,N ] contains all the points xi
0, i = 1, . . . , n. Let x0

0 = −N and
xn+1

0 = N . For λ ∈ C and i = 0, . . . , n, define

Ãi(λ, x) =

(
0 I
λI Df(ūi

0)− xI

)
, x ∈ [xi

0, x
i+1
0 ],

where ūi
0 was defined in section 5.
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Lemma 6.1. For each η > 0, there exist β(η) < 0 < α(η) such that, for all
λ ∈ R(η), for all i = 0, . . . , n, and for all x in [xi

0, x
i+1
0 ], Ãi(λ, x) has n eigenvalues

less than β(η) and n eigenvalues greater than α(η). As η → 0, α and β are O(η).
Proof. Fix an index i between 0 and n. Let νi

1 < · · · < νi
n denote the eigenvalues

of Df(ūi
0). Let µ be an eigenvalue of Ãi(λ, x). Then one of the following equations

must hold:

µ2 + (x− νi
j)µ− λ = 0, j = 1, . . . , n.(6.12)

Let pi
j(x) :=

1
2 (x− νi

j), x ∈ [xi
0, x

i+1
0 ]. The solutions of (6.12) are

µi±
j (λ, x) := −pi

j ±
√

pi 2
j + λ.

The main branch of the square root is used.
Define

Ci
j(η) :=

{
(σ, ω) : σ = η − ω2

4(pi 2
j + η)

}
,

Ri
j(η) :=

{
(σ, ω) : σ ≥ η − ω2

4(pi 2
j + η)

}
,

αi
j := −pi

j +
√

pi 2
j + η,

βi
j := −pi

j −
√

pi 2
j + η.

The vertex of the parabola Ci
j(η) is at (σ, ω) = (η, 0). The parabola opens to the left.

Using Lemma 5.5 with p = pi
j , we have that if λ ∈ Ri

j(η), then

Reµi−
j ≤ βi

j < 0 < αi
j ≤ Reµi+

j , j = 1, . . . , n.

Define

p := max |pi
j(x)|, α := minαi

j , β := maxβi
j ,

C(η) := {(σ, ω)|σ = η − ω2

4(p2 + η)
,(6.13)

R(η) := ∩i,jRi
j(η) = {(σ, ω)|σ ≥ η − ω2

4(p2 + η)
.(6.14)

If λ ∈ R(η), then µi−
j < β < 0 < α < µi+

j for all i and j and for all x ∈ [xi
0, x

i+1
0 ].

From their definitions, αi
j = O(η) if pi

j > 0 and βi
j = O(η) if pi

j < 0. Notice that pi
j

can be both positive and negative. It follows that α and β are O(η).
Let x = εξ, and let Ai(λ, ε, ξ) := Ãi(λ, εξ). From the roughness theory of expo-

nential dichotomies [7] and Lemma 6.1, we derive the following proposition.
Proposition 6.2. For each i = 0, . . . , n and for each λ ∈ R(η), the slowly varying

system

Wξ = Ai(λ, ε, ξ)W, ξ ∈
[
−xi

0

ε
,
xi+1

0

ε

]
,
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has an exponential dichotomy with exponents β(η) < 0 < α(η). The unstable subspace
of the exponential dichotomy in each subinterval is n-dimensional. As η → 0, α and
β are O(η).

Using the information from Lemma 6.1, for each internal layer Si and for each
η > 0, we can define an Evans function Ei(λ) for λ ∈ R(η). More precisely, rewrite
(6.7) as

(
Uξ

Vξ

)
= B(λ, ξ)

(
U

V

)
, where B(λ, ξ) :=

(
0 I

λI +D2f(qi(ξ))qi
ξ Df(qi(ξ))− xi

0I

)
.

(6.15)

The coefficient matrix approaches Ã(λ, xi
0±) as ξ → ±∞ exponentially. By Lemma 6.1,

the limiting matrices Ã(λ, xi
0±) have n eigenvalues with real parts less than β(η) < 0

and the other n eigenvalues with real parts greater than α(η) > 0. We conclude
that for the system (6.15), there exist n linearly independent solutions {φ+

j (λ, ξ)}n
j=1

such that each approaches zero as ξ → ∞ and n linearly independent solutions
{φ−

j (λ, ξ)}n
j=1 such that each approaches zero as ξ → −∞.

The Evans function for the internal layer Si is defined as

Ei(λ) := e
−
∫ ξ

0
trB(λ,ζ)dζ

a(λ, ξ) ∧ b(λ, ξ) = a(λ, 0) ∧ b(λ, 0).(6.16)

Here a(λ, ξ) and b(λ, ξ) are n-forms associated to {φ−
j : i = 1, . . . , n} and {φ+

j : i =
1, . . . , n}, respectively [11], [1], [14].

Since formula (6.16) is independent of η, the Evans function is actually defined
on R(0). A zero of the Evans function corresponds to a complex number λi

−1 for
which (6.7) admits a nontrivial solution U i

0 that approaches zero as ξ → ±∞. The
same Evans function arises in the study of the stability of the traveling wave solution
u(X,T ) = qi(X − xi

0T ) of the system of viscous conservation laws (1.1).
According to [14], the Evans function extends analytically to a neighborhood of

the origin. We always have Ei(0) = 0; an eigenfunction is qi
ξ. By analyticity, there

are no other zeros of Ei(λ) near λ = 0. Therefore for any sufficiently small η > 0 and
δ > 0, all zeros of Ei(λ) in {λ : Reλ ≥ −δ} are contained in R(η) ∩ {λ : Reλ ≥ −δ}.

Theorem 6.3. Let η > 0 be given and let λi
−1 be a zero of Ei in the region

R(η) ∩ {λ : Reλ ≥ −δ}. Assume that conditions (H1)–(H3) are satisfied. Then there
exists ε0(η) > 0 such that if 0 < ε < ε0(η), then the root λi

−1 of Ei is associated to a
finite number of curves of fast eigenvalues (6.2).

To all orders in ε, the corresponding eigenfunction is zero in the regular layer
and in singular layers other than the ith. The pair (λi

−1, U
i
0) satisfies (6.7) and

the boundary condition U i
0 → 0 as ξ → ±∞. If the eigenspace of λi

−1 for (6.7) is
mi-dimensional, then U i

0 =
∑mi

j=1 ci
jφ

i
j , where {φi

j}mi
j=1 is a basis for the eigenspace.

The mi possible values of λi
0 and the corresponding vectors ci are determined by the

eigenvalue-eigenvector problem (6.11).
Proof. Sketch of the proof: The procedure for finding the correction terms ∆λ

and ∆U i is similar to that for finding λi
0 and ci, followed by a contraction mapping

argument. The necessary dichotomies in regular sublayers and singular layers come
from Lemma 6.1 and Proposition 6.2.

Remark 6.1. (1) We emphasize that Theorem 6.3 does not apply to λ−1 = 0.
Indeed, by Proposition 6.2, as η decreases, the exponential dichotomy weakens, so
the ε-interval on which the contraction mapping argument is valid shrinks. Thus,
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as η → 0, ε0(η) → 0. Moreover, as we shall see in the next section, there can be an
infinite number of curves of eigenvalues (6.2) whose asymptotic expansion begins with
λ−1 = 0; in the case n = 2, at least, this is typical.

(2) We also emphasize that we have not shown that for a fixed small ε > 0, all
eigenvalues near λ−1 = 0 are given by expansions of the form (6.2) with λ−1 = 0. We
note, however, that E′(0) is the product of two terms, one of which is nonzero if and
only if Majda’s inviscid stability condition holds [14], [3]. We expect that in the case
E′(0) �= 0, all eigenvalues near λ−1 = 0 are in fact given by such expansions.

7. O(1) Eigenvalues. We look for eigenvalues of (6.1) of the form

λ̃ =

∞∑
j=0

εjλj(7.1)

and the corresponding eigenfunctions U(x). We continue to work in the space C2(γ,Rx),
γ > 0. We rewrite (6.1) as

(λ̃+ 1)UR + ((Df(uε)− xI)UR)x = εUR
xx in the regular layer,(7.2)

ε(λ̃+ 1)U i + ((Df(uε)− xi(ε)− εξI)U i)ξ = U i
ξξ in the singular layer Si.(7.3)

Proposition 7.1. To any order of ε, λ̃ = −1 is an eigenvalue of (7.2) and (7.3).
The corresponding eigenfunctions form an n-dimensional eigenspace. The ith basis
vector is a homoclinic solution to 0 that, to lowest order in ε, equals qi

ξ in the ith
singular layer and is zero in other singular layers and in the regular layer.

Proof. We need to find expansions of UR
ε (x) and U i

ε(ξ) to the following system:

((Df(uε)− xI)UR)x = εUR
xx in the regular layer,(7.4)

((Df(uε)− xi(ε)− εξI)U i)ξ = U i
ξξ in the singular layer Si.(7.5)

By Lemma 7.2, proved below, for any j ≥ 0, UR
j (x) = 0 in the regular sublayer R0.

Let 1 ≤ i ≤ n. Assume that for all j ≥ 0, UR
j (x) = 0 in the regular sublayer

Ri−1. We shall show that U i
0(ξ) is a constant multiple of qi

ξ and that for every j ≥ 0,

UR
j (x) = 0 in the regular sublayer Ri. Then, by induction on i, the proposition is

proved.
In the singular layer Si, in order to match the solution in Ri−1, we look for a

bounded solution of (7.5) that approaches 0 as ξ → −∞. Integrating (7.5) from −∞
to ξ, we have

Uξ − (Df(uε)− xi(ε)− εξI)U = 0.(7.6)

By the definition of a Lax i-shock, at order ε0, this system has exponential dichotomies
for ξ ∈ R

±. By the definition of a structurally stable Riemann solution, the unstable
space of the dichotomy on R

− intersects the stable space of the dichotomy on R
+

transversely at ξ = 0. The intersection is a one-dimensional space spanned by qi
ξ. To

have a bounded solution, we must set U i
0(ξ) equal to a constant multiple of qi

ξ. Then

U i
0(ξ) approaches zero exponentially as ξ → ±∞.

At order ε1, (7.6) becomes

U i
1ξ − (Df(ui

0(ξ))− xi
0)U

i
1 = (D2f(ui

0(ξ))u
i
1 − (xi

1 + ξ)I)U i
0.(7.7)
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Since U i
0(ξ) = O(e−α|ξ|), the nonhomogeneous term of (7.7) is O((|ξ| + 1)e−α|ξ|),

which approaches zero as ξ → ±∞. Observe that the homogeneous part of (7.7)
has exponential dichotomies in R

±, and the unstable space of the dichotomy on R
−

intersects the stable space of the dichotomy on R
+ transversely at ξ = 0. Thus, if

we assume that U i
1(0) ⊥ U i

0(0), a unique solution U i
1 = O((|ξ| + 1)e−α|ξ|) can be

constructed using integral equations on R
± and the matching at ξ = 0. See [33], [25].

Proceeding inductively, at order εj , j > 1, we solve a nonhomogeneous system
for U i

j , with a nonhomogeneous term that is O((1 + |ξ|)je−α|ξ|). The solution U i
j =

O((1 + |ξ|)je−α|ξ|) approaches zero as ξ → ±∞.
We now consider the solution in the regular sublayer Ri. By matching, for all

j ≥ 0, UR
j (xi

0+) = U i
j(∞) = 0.

We show inductively that for all j ≥ 0, UR
j (x) = 0 in Ri. At order ε0, from (7.4),

(Df(u0)−xI)UR
0 (x) is constant in Ri. Since it is zero at xi

0+, (Df(u0)−xI)UR
0 (x) = 0

in Ri. Since Df(u0)−xI is nonsingular in each regular sublayer, we see that UR
0 = 0

in Ri.
Next, at order ε1, because UR

0 = 0, we can show similarly (Df(u0)−xI)UR
1 (x) is

constant in Ri, and hence that UR
1 = 0 in this sublayer. Proceeding inductively, we

see that for all j ≥ 0, UR
j = 0 in Ri.

We remark that in the viscous regularization (1.1) of a system of conservation
laws (1.3), traveling wave solutions always have a zero eigenvalue with eigenfunctions
U i

0 = ci
0q

i
ξ. Such an eigenfunction corresponds to a shift of the shock position from

Xi
0 to Xi

0 + ci
0. Using the self-similar variable x = X/T , the shock position is at

(Xi
0 + ci

0)/T , which differs from Xi
0/T by a decay term ci

0/T . Changing to the new
time t = lnT , the deviation of the shock position is ci

0e
−t. This explains why (6.1)

always has an eigenvalue (7.1) with λ0 = −1, and why the eigenspace is as stated in
Proposition 7.1.

To look for other slow eigenvalues, in the regular layer we substitute (3.4), (7.1),
and (6.3) into (6.1) and expand in powers of ε. In singular layers, we substitute (3.6),
(3.5), (7.1), and (6.4) into (6.6) and expand in powers of ε. For a fixed γ > 0, we shall
look for solutions such that

|U(x)| ≤ Ce−γ|x| in the sublayers R0 = (−∞, x1
0) and Rn = (xn

0 ,∞)(7.8)

for some constant C.
At order ε0 (the lowest order) we obtain

(λ0 + 1)UR
0 + ((Df(ūi

0)− xI)UR
0 )x = 0 in the sublayer Ri,(7.9)

((Df(qi)− xi
0I)U

i
0)ξ = U i

0ξξ in the singular layer Si.(7.10)

Lemma 7.2. To all orders of ε, eigenfunctions U(x) that satisfy (7.8) are zero in
the regular sublayers R0 = (−∞, x1

0) and Rn = (xn
0 ,∞).

Proof. First consider the lowest order ε0. UR
0 satisfies (7.9). We consider only R0.

Let νj , j = 1, . . . , n, be the eigenvalues of Df(ū0
0). Notice that for each j = 1, . . . , n,

νj − x > 0 in R0. Let lj , j = 1, . . . , n, be corresponding left eigenvectors. Let
vj(x) = 〈lj , U0(x)〉, x ∈ R0. Equation (7.9) becomes

λ0vj + (νj − x)vjx = 0, j = 1, . . . , n.

The general solution is vj = Cj(νj −x)λ0 . Since vj = O(e−γ|x|), γ > 0, we must have
Cj = 0 for all j. Therefore UR

0 (x) = 0 for all x ∈ R0.
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By an easy induction argument, we can show that UR
j = 0 for all j on

R0 ∪Rn.
In the ith singular layer, we look for a solution U i

0 of (7.10) connecting the adjacent
sublayers. Integration from ξ = −∞ to ξ = ∞, together with matching, yields jump
conditions that must be satisfied by UR

0 :

(Df(ūi
0)− xi

0I)U
R
0 (xi

0+)− (Df(ūi−1
0 )− xi

0I)U
R
0 (xi

0−) = 0, i = 1, . . . , n.(7.11)

By Lemma 7.2, UR
0 (x1

0−) = 0. Then setting i = 1 in (7.11) yields

UR
0 (x1

0+) = 0.(7.12)

Solving the ODE (7.9) on the sublayer R1 with the initial condition (7.12) yields
UR

0 (x) = 0 for all x ∈ R1. By induction, we have the following.
Proposition 7.3. Any solution of (7.9)–(7.10) that satisfies (7.8) has UR

0 (x) = 0
for all x in the regular layer.

Proposition 7.3 implies that U i
0(ξ) approaches 0 as ξ → ±∞ for all i = 1, . . . , n.

Then assumption (S2′) implies the following proposition.
Proposition 7.4. Any solution of (7.9)–(7.10) that satisfies (7.8) has, for i =

1, . . . , n, U i
0(ξ) = ci

0q
i
ξ(ξ), i = 1, . . . , n, for some constants ci

0.

The possible values of λ0, along with the corresponding values of ci
0, are deter-

mined at the ε1-order expansion.
At order ε1, we have

λ0U1 + (Df(ūi
0)− xI)U1x = 0 in the regular layer,(7.13)

UR
1 (x) = 0 for x ∈ R0 ∪Rn,(7.14)

(λ0 + 1)U i
0 + ((D2f(qi)ui

1 − (xi
1 + ξ)I)U i

0)ξ

+ ((Df(qi)− xi
0I)U

i
1)ξ = U i

1ξξ in the singular layer Si.
(7.15)

In (7.15), U i
0(ξ) = ci

0q
i
ξ(ξ), i = 1, . . . , n, for some constants ci

0 by Proposition 7.4.

In order to match with UR
1 (x) in the regular layer, U i

1(ξ) must satisfy the following
boundary conditions: U i

1(ξ) → UR
1 (xi

0−) exponentially as ξ → −∞ and U i
1(ξ) →

UR
1 (xi

0+) exponentially as ξ → ∞. Then, integrating (7.15) from ξ = −∞ to ξ = ∞
and using U i

0 = ci
0q

i
ξ, we have the jump condition

(7.16) (λ0 + 1)ci
0(ū

i
0 − ūi−1

0 ) + (Df(ūi
0)− xi

0I)U
R
1 (xi

0+)

− (Df(ūi−1
0 )− xi

0I)U
R
1 (xi

0−) = 0, i = 1, . . . , n.

By Lemma 3.1, condition (7.16) is sufficient for the existence of a solution U i
1(ξ) of

(7.15) that approaches the desired limits exponentially as ξ → ±∞. Thus if

(λ0, c
1
0, . . . , c

n
0 , U

R
1 (x))(7.17)

satisfies (7.13) with auxiliary conditions (7.14) and (7.16), then there exist U i
1(ξ),

1 ≤ i ≤ n, that satisfy (7.15). More precisely, if we write

U i
1(ξ) = U i⊥

1 (ξ) + ci
1q

i
ξ(ξ),

where U i⊥
1 (0) is orthogonal to qi

ξ(0), then (7.15) uniquely determines U i⊥
1 (ξ), but the

values of ci
1 are determined at the ε2-order expansion. In general, for each j ≥ 1, we
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write U i
j(ξ) = U i⊥

j (ξ) + ci
jq

i
ξ(ξ) with U i⊥

j (0) orthogonal to qi
ξ(0). Then the εj-order

expansion determines

(λj−1, c
1
j−1, . . . , c

n
j−1, U

1⊥
j (ξ), . . . , Un⊥

j (ξ)),

leaving (λj , c
1
j , . . . , c

n
j ) to be determined at the εj+1-order expansion. In order to

continue the expansion past the determination of (7.17), it is necessary to assume
that λ0 +1 is a semisimple eigenvalue of a certain operator. This will be described in
a later paper. See [25], [16] for related work on reaction-diffusion systems.

Proposition 7.5. For λ0 = 0 there is no nontrivial solution of (7.13) with
auxiliary conditions (7.14) and (7.16).

Proof. If λ0 = 0, then from (7.13), UR
1 is constant in each regular sublayer Ri,

i = 1, . . . , n− 1. Then (7.14) and assumption (S1) imply that the only solution of the
system (7.16) is UR

1 (x) ≡ 0 for x ∈ Ri, i = 1, . . . , n− 1, and ci
0 = 0 for all i.

Let V i(x) = (Df(ūi
0) − xI)UR

1 (x), x ∈ Ri for i = 0, . . . , n. Let si := (λ0 + 1)ci
0

and ∆i = ūi
0 − ūi−1

0 for i = 1, . . . , n. Each ∆i is nonzero. Equations (7.13), (7.16),
and (7.14) become

V i
x + (λ0 + 1)(Df(ūi

0)− xI)−1V i = 0, i = 1, . . . , n− 1,(7.18)

V i(xi
0)− V i−1(xi

0) = −si∆i, i = 1, . . . , n,(7.19)

V 0(x) ≡ 0 and V n(x) ≡ 0.(7.20)

Proposition 7.6. For λ0 �= −1, there is a nontrivial solution (7.17) of (7.13),
(7.14), (7.16) if and only if there is a nontrivial solution

(s1, . . . , sn, V 1, . . . , V n−1)

of the system (7.18)–(7.20).
In contrast to the O( 1

ε ) eigenvalues, which reflect the dynamics in a single internal
layer, the O(1) eigenvalues reflect the dynamics of the first-order linear ODE (7.18)
in the regular layer. Equations (7.19) and (7.20) provide boundary and interface
conditions for (7.18).

We remark that the system (7.18)–(7.20) is similar to the SLEP system introduced
by Nishiura and Fujii [35] to study the stability of internal layer solutions of reaction-
diffusion systems. We now derive the analogue of the SLEP matrix of Nishiura and
Fujii.

LetX(x, y, λ0) be the principal matrix solution of (7.18). Although the differential
equation (7.18) has jumps at xi

0, i = 1, . . . , n, the principal matrix solution X(x, y, λ0)
does not have jumps. If, for example, y < xj

0 < xj+1
0 < · · · < xi

0 < x, then

X(x, y, λ0) = X(x, xi
0, λ0) ·X(xi

0, x
i−1
0 , λ0) · · · · ·X(xj

0, y, λ0).

If we integrate (7.18) from x1
0− to xn

0+ and use the jump conditions (7.19) and the
initial and terminal conditions (7.20), we obtain

n∑
j=1

X(xn
0 , x

j
0, λ0)s

j∆j = 0.(7.21)

Let M(λ0) be the n×n matrix whose jth column is the n-vector X(xn
0 , x

j
0, λ0)∆

j , and
let s = (s1, . . . , sn). The matrix M(λ0) is the analogue of the SLEP matrix. Finding
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the lowest order expansion of slow eigenvalues is equivalent to finding solutions of

M(λ0)s = 0.(7.22)

Note that Proposition 7.5 implies that M(0) is nonsingular.
We shall consider the existence of slow eigenvalues λ0 other than −1 and 0 in

more detail only for the case n = 2. In this case system (7.18)–(7.20) becomes

Vx + (λ0 + 1)(Df(ū1
0)− xI)−1V = 0, x1

0 ≤ x ≤ x2
0,(7.23)

V (x1
0) = −s1∆1,(7.24)

V (x2
0) = −s2∆2.(7.25)

Since (7.23) is linear and ∆1 and ∆2 are nonzero, the system (7.23)–(7.25) has a
nontrivial solution if and only if the following boundary value problem has a solution:

Vx + (λ0 + 1)(Df(ū1
0)− xI)−1V = 0, x1

0 ≤ x ≤ x2
0,(7.26)

V (x1
0) = ∆1,(7.27)

V (x2
0) = a nonzero multiple of ∆2.(7.28)

Let the eigenvalues of Df(ū1
0) be ν1 < ν2, with corresponding eigenvectors r1 and

r2. Let

V (x) =
2∑

j=1

aj(x)rj ,

where aj(x) is a scalar function. The function aj(x) satisfies

a′j(x) +
λ0 + 1

νj − x
aj(x) = 0.(7.29)

Therefore the subspaces of R
2 spanned by r1 and r2 are invariant under (7.26).

Proposition 7.7. For n = 2, if ∆1 or ∆2 is a multiple of one of the rj, then
there is no λ0 such that the system (7.26)–(7.28) has a solution.

Proof. Without loss of generality, suppose ∆1 is a multiple of one of the rj . Then
∆2 cannot be a multiple of the same rj , since it is easy to check that in the case
n = 2, the Riemann solution u0(x) satisfies condition (S1) for structural stability if
and only if ∆1 and ∆2 are linearly independent. Therefore, since the subspaces of
R

2 spanned by r1 and r2 are invariant under (7.26), the system (7.26)–(7.28) cannot
have a solution.

The case in which neither ∆1 nor ∆2 is a multiple of one of the rj is covered by
the following result.

Proposition 7.8. For n = 2, let

∆i =

2∑
j=1

di
jrj , i = 1, 2,

with all di
j nonzero. Then there is a countably infinite set of λ0 for which (7.26)–

(7.28) has a solution. All such λ0 have the same real part and have nontrivial UR
1

(hence they are nonlocal). Explicit formulas for λ0 are given in (7.36).
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Proof. The solution of the initial value problem (7.23), (7.24) is

aj(x) =

(
x− νj

x1
0 − νj

)λ0+1

d1
j , j = 1, 2.(7.30)

Notice that x− νj and x1
0 − νj have the same sign in the interval x1

0 ≤ x ≤ x2
0, so the

number being raised to a power is positive. The function tλ0+1 used in (7.30) is in
general multivalued. Since we must have aj(x

1
0) = d1

j , j = 1, 2, the branch used must

be the one for which 1λ0+1 = 1.
The boundary condition (7.28) implies that

det

(
a1(x) d2

1

a2(x) d2
2

)
= 0 when x = x2

0,(7.31)

which reduces to (
(x− ν1)(x

1
0 − ν2)

(x1
0 − ν1)(x− ν2)

)λ0+1

=
d1
2d

2
1

d1
1d

2
2

when x = x2
0.(7.32)

Again, the branch of tλ0+1 used in (7.32) is the one for which 1λ0+1 = 1. In fact, let
us define a change of variables by

t =
(x− ν1)(x

1
0 − ν2)

(x1
0 − ν1)(x− ν2)

, x1
0 ≤ x ≤ x2

0.(7.33)

Then t is an increasing function of x on the interval x1
0 ≤ x ≤ x2

0, and t(x1
0) = 1. Let

b = t(x2
0) =

(x2
0 − ν1)(x

1
0 − ν2)

(x1
0 − ν1)(x2

0 − ν2)
> 1, d =

d1
2d

2
1

d1
1d

2
2

�= 0.(7.34)

Then (7.32) reduces to bλ0+1 = d or

(λ0 + 1) log b = log d.(7.35)

Let the main branch of logarithm for which log 1 = 0 be denoted lnx. We must use
the main branch log b = ln b in order to have 1λ0+1 = 1 for all complex λ0 . However,
in calculating log d, we may use any branch of the natural logarithm.

Since b > 1 is real and d is real and nonzero, there are two cases.
1. d > 0. Then log d = ln d+ 2nπi, n ∈ Z.
2. d < 0. Then log d = ln |c|+ (2n+ 1)πi, n ∈ Z.
Substituting log d into (7.35), we find

Reλ0 = −1 + ln |d|
ln b

for d �= 0,

Imλ0 =

{
2nπ
ln b if d > 0,

(2n+1)π
ln b if d < 0.

(7.36)

Remark 7.1. With n = 2, consider a Riemann solution that consists of two weak
Lax shocks connecting the states ū1

0, ū2
0, and ū3

0. For the corresponding Riemann–
Dafermos solution, Proposition 7.8 implies that the nonlocal slow eigenvalues are
stable. In fact, for i = 1, 2, ūi

0 − ūi−1
0 is approximately parallel to ri. Therefore

|d1
2| << |d1

1| and |d2
1| << |d2

2|, so |d| << 1. Hence Reλ0 < −1.
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8. Slow eigenvalues and inviscid stability conditions. Let us consider the
inviscid system (1.3) and its Riemann solution (2.4). In studying the linearized sta-
bility of (2.4) as a solution of (1.3), one considers the following system [22]:

UT +




Df(ū0)UX = 0 for X < s̄1T ,

Df(ūi)UX = 0 for s̄iT < X < s̄i+1T , i = 1, . . . , n− 1,

Df(ūn)UX = 0 for s̄nT < X,

(8.1)

(8.2) (Df(ūi)− s̄iI)U(s̄iT+, T )− (Df(ūi−1)− s̄iI)U(s̄iT−, T )

− Si(T )(ūi − ūi−1) = 0, i = 1, . . . , n,

where

U(s̄iT+, T ) = lim
X→s̄iT+

U(X,T ), U(s̄iT−, T ) = lim
X→s̄iT−

U(X,T ).(8.3)

In each sector, the matrix Df(ūi) is constant, so solutions (which may include
discontinuities) propagate along straight-line characteristics. Along the linesX = s̄iT ,
data arrive from both sides along incoming characteristics, and one uses (8.2) to solve
for Si and for the continuation of the solution along outgoing characteristics. Majda’s
stability condition—which is that for each i = 1, . . . , n, the eigenvectors for the largest
i − 1 eigenvalues at ūi−1, the eigenvectors for the smallest n − i eigenvalues at ūi,
and the vector ūi − ūi−1 should constitute a basis for R

n—is just the condition upon
which one can do this.

In (8.1) and (8.2), let us make the change of variables x = X
T , t = lnT . We obtain

Ut +



(Df(ū0)− xI)Ux = 0 for x < s̄1,

(Df(ūi)− xI)Ux = 0 for s̄i < x < s̄i+1, i = 1, . . . , n− 1,

(Df(ūn)− xI)Ux = 0 for s̄n < x,

(8.4)

(8.5) (Df(ūi)− s̄iI)U(s̄i+, t)− (Df(ūi−1)− s̄iI)U(s̄i−, t)

− Si(t)(ūi − ūi−1) = 0, i = 1, . . . , n,

where

U(s̄i+, t) = lim
x→s̄i+

U(x, t), U(s̄i−, t) = lim
x→s̄i−

U(x, t).(8.6)

The characteristics are no longer straight lines, but the lines X = s̄iT become x = s̄i,
so it is reasonable to look for eigenvalues and eigenfunctions. A solution of (8.4), (8.5)
of the form U(x, t) = eλtU(x), Si(t) = eλtSi satisfies

λU +



(Df(ū0)− xI)Ux = 0 for x < s̄1,

(Df(ūi)− xI)Ux = 0 for s̄i < x < s̄i+1, i = 1, . . . , n− 1,

(Df(ūn)− xI)Ux = 0 for s̄n < x,

(8.7)

(8.8) (Df(ūi)− s̄iI)U(s̄i+)− (Df(ūi−1)− s̄iI)U(s̄i−)
− Si(ūi − ūi−1) = 0, i = 1, . . . , n,
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where

U(s̄i+) = lim
x→s̄i+

U(x), U(s̄i−) = lim
x→s̄i−

U(x).(8.9)

If we add the conditions U(x) = 0 for x < s̄1 and s̄n < x, then (8.7)–(8.8) is equivalent
to the system (7.13)–(7.14), (7.16) that was studied in section 7.

Assuming Majda’s stability condition, one can interpret (8.1)–(8.2) or (8.4)–(8.5)
as describing the scattering of incoming small shock waves by the large shock waves
that comprise the original Riemann solution. Several authors have found sufficient
conditions that guarantee that, in some norm, the total weight of the scattered shocks
is smaller than the total weight of the incoming shocks [42], [4], [5], [49], [22], [21]. For
the case n = 2, the BV stability condition reads as follows in the notation of section
7 [49], [21]. Recall that xi

0 = s̄i and ūi
0 = ūi. Let

(ν1I −Df(ū1))−1(ū1 − ū0) = a1
1r1 + a1

2r2,(8.10)

(Df(ū1)− ν2I)
−1(ū2 − ū1) = a2

1r1 + a2
2r2.(8.11)

Then ∣∣∣∣a2
1a

1
2

a1
1a

2
2

∣∣∣∣ < 1.(8.12)

As in section 7, for i = 1, 2 let ∆i = ūi − ūi−1 = di
1r1 + di

2r2, and define b and d by
(7.34). Elementary computations show that

a2
1a

1
2

a1
1a

2
2

=
d2
1d

1
2(s̄

1 − ν1)(ν2 − s̄2)

d1
1d

2
2(s̄

1 − ν2)(ν1 − s̄2)
=

d

b
,(8.13)

and, since b > 1,

|d|
b

< 1 if and only if − 1 +
ln |d|
ln b

< 0.(8.14)

Thus the n = 2 BV inviscid stability condition holds if and only if all slow eigenvalues
have negative real part.

9. Two Lax shocks in the p-system: An example. We consider the p-
system

ut − vx = 0,

vt + p(u)x = 0,

with p a smooth function, p′(u) < 0 for all u, and p′′(u) �= 0 for all u.
The p-system has been used as a model for isentropic gas dynamics with p(u) =

ku−γ , k > 0, γ ≥ 1 [37], [43]. The p-system is strictly hyperbolic with eigenvalues
and eigenvectors

ν1(u, v) = −
√
−p′(u) < 0, r1(u, v) = (1,

√
−p′(u)),

ν2(u, v) =
√
−p′(u) > 0, r2(u, v) = (1,−

√
−p′(u)).

Consider a Riemann solution (u0, v0)(x) that consists of two Lax shocks:

(u0, v0)(x) =



(ū0, v̄0) for x < s̄1,

(ū1, v̄1) for s̄1 < x < s̄2,

(ū2, v̄2) for s̄2 < x.
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Theorem 9.1. To lowest order in ε, the corresponding Riemann–Dafermos solu-
tion has exactly the following slow eigenvalues: (1) a local eigenvalue with λ0 = −1;
(2) a family of nonlocal eigenvalues with λ0 = −2 + nω0i, n ∈ Z, ω0 > 0.

Proof. We fix the middle state (ū1, v̄1) and look for (u, v) and s such that the
Rankine–Hugoniot condition

−(v̄1 − v)− s(ū1 − u) = 0, p(ū1)− p(u)− s(v̄1 − v) = 0

is satisfied. The solution set is two curves: Γ1 given by

v = φ(u) = v̄1 − sgn(u− ū1)
√
(u− ū1)(p(ū1)− p(u)),

s = s1(u) = −
√

p(ū1)− p(u)

u− ū1
,

and Γ2 given by

v = ψ(u) = v̄1 + sgn(u− ū1)
√
(u− ū1)(p(ū1)− p(u)),

s = s2(u) =

√
p(ū1)− p(u)

u− ū1
.

Γ1 is a curve of 1-shocks, Γ2 a curve of 2-shocks. Using Lax’s condition for an i-shock,
we easily check the following:

(1) If (u, v, s1) ∈ Γ1, then there is a 1-shock from (u, v) to (ū1, v̄1) with speed s1

if and only if u− ū1 > 0.
(2) If (u, v, s2) ∈ Γ2, then there is a 2-shock from (ū1, v̄1) to (u, v) with speed s2

if and only if u− ū1 > 0.
Therefore we have, in the notation of section 7,

∆1 = (ū1 − ū0, v̄1 − v̄0) = (ū1 − ū0, v̄1 − φ(ū0)), ū0 − ū1 > 0,

∆2 = (ū2 − ū1, v̄2 − v̄1) = (ū2 − ū1, ψ(ū2)− ū1), ū2 − ū1 > 0.

Let

q(u) =

√
(u− ū1)(p(ū1)− p(u))

−p′(ū1)
.

Then

∆i =

2∑
j=1

di
jrj , i = 1, 2,

with

d1
1 =

1

2
(−(ū0 − ū1)− q(ū0)), d1

2 =
1

2
(−(ū0 − ū1) + q(ū0)),

d2
1 =

1

2
(ū2 − ū1 − q(ū2)), d2

2 =
1

2
(ū2 − ū1 + q(ū2)).

Therefore

d =
d1
2d

2
1

d1
1d

2
2

=
(ū0 − ū1 − q(ū0))(ū2 − ū1 − q(ū2))

(ū0 − ū1 + q(ū0))(ū2 − ū1 + q(ū2))
.

By Lemma 9.2 below, the numerator of this fraction is positive. Therefore d > 0.
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Let νi = νi(ū
1, v̄1), i = 1, 2. Then

b =
(s̄2 − ν1)(s̄

1 − ν2)

(s̄1 − ν1)(s̄2 − ν2)
> 1.

An easy computation shows that b = 1
d . The result now follows from Proposi-

tion 7.8.
Lemma 9.2. For u > ū1, the sign of u− ū1 − q(u) is independent of u.
Proof. We shall assume p′′(u) > 0 for all u. The case p′′(u) < 0 for all u is similar.
Let u > ū1. Since p′′ > 0 everywhere,

p′(ū1) <
p(ū1)− p(u)

ū1 − u
.

Therefore

(u− ū1)2 >
(u− ū1)(p(ū1)− p(u))

−p′(ū1)
,

so u− ū1 > q(u).
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Abstract. We prove the existence of weak solutions for the Vlasov–Poisson problem with
time periodic boundary conditions in one dimension. We consider boundary data with finite charge
and current. This analysis is based upon the mild formulation for the regularized Vlasov–Poisson
equations.
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1. Introduction. Many studies in physics and applied physics are modeled by
kinetic equations (Vlasov, Boltzmann, etc.) coupled with the electromagnetic equa-
tions (Poisson, Maxwell). A few application domains are semiconductors, particle
accelerators, and electron guns. Various results were shown for free space systems.
Weak solutions of the Vlasov–Poisson equations were constructed by Arseneev [2],
Illner and Neunzert [16], and Horst and Hunze [15]. The existence of weak solutions
of the Vlasov–Maxwell system was shown by DiPerna and Lions [11].

There are few mathematical works on boundary value problems. For the sta-
tionary case, results have been obtained by Greengard and Raviart [13] for the one
dimensional (1D) Vlasov–Poisson system and by Poupaud [17] for the multidimen-
sional Vlasov–Maxwell system. An asymptotic analysis of the Vlasov–Poisson system
has been performed by Degond and Raviart in [10] in the case of the plane diode.
Weak solutions of the initial-boundary value problem for the Vlasov–Poisson system
are obtained by Abdallah in [1]. The regularity of the solution for the Vlasov–Maxwell
system in a half line has been analyzed by Guo in [14].

The periodic case has been studied as well (see [5], [6], [7]), but existence results
are available only under some restrictive hypothesis concerning the velocity support
of the boundary incoming particle distribution and the potential data. Basically the
above model does not handle charge flows with small incoming velocities. The main
idea was to keep only the particles which are travelling through the domain in finite
time, which makes it possible to get estimates for the charge and current densities.

In this paper we study the existence for the 1D Vlasov–Poisson problem with
time periodic boundary conditions

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈ Rt,

E(t, x) = −∂xU, −∂2
xU = ρ(t, x) :=

∫
Rv

f(t, x, v)dv, (t, x) ∈ Rt×]0, 1[,
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U(t, x = 0) = ϕ0(t), U(t, x = 1) = ϕ1(t), t ∈ Rt.

The function f(t, x, v) denotes the particle distribution depending on time t, position
x, and velocity v. The electric field E(t, x) derives from an electrostatic potential
U satisfying the Poisson equation with charge density ρ. The boundary conditions
g0, g1, ϕ0, ϕ1 are supposed T -periodic in time for some T > 0.

The main goal of this paper is to establish existence in the general case, under a
minimal hypothesis, say, for incoming particle distribution with finite charge (as has
been shown for the stationary case in [13]). In this case we prove that the solution f
belongs to L1. The major difficulty in studying this problem is the lack of a natural
a priori estimate of the solution. In fact, since we are looking for permanent regimes,
initial data are not available, and therefore directly applying conservation laws like∫ 1

0

∫
Rv

f(t, x, v)dxdv ≤
∫ 1

0

∫
Rv

f(t0, x, v)dxdv +

∫ t

t0

∫
v>0

vg0(s, v)dsdv

−
∫ t

t0

∫
v<0

vg1(s, v)dsdv, t > t0,

does not provide any estimate as long we don’t have any information on f(t0). On
the other hand, even if there is t0 ∈ R such that f(t0) ∈ L1, the previous inequality
gives us only an estimate of the charge in terms of the incoming current, whereas the
natural estimate would be in terms of the incoming charge. In fact we can prove that
if the incoming particle distribution has finite current (resp., kinetic energy), then the
solution verifies |v|f ∈ L1 (resp., |v|2f ∈ L1).

This work begins with the study of linear time periodic Vlasov equations (the
electric field is assumed to be known and T -periodic). We introduce the weak and
mild formulations and recall some usual computations for such solutions. We also
introduce a perturbed Vlasov equation. In this section we present a very important
lemma concerning bounds for the velocity change along the characteristics (see Lemma
2.11), which states that along all characteristics associated with a regular field the
following inequality holds:

| V (s1)− V (s2) | ≤ C · ‖E‖1/2
L∞ ∀ s1, s2,

where C is a constant depending only on the diameter of the spatial domain Ω =]0, 1[
here.

In section 3 the Vlasov–Poisson system is analyzed. The existence of a T -periodic
solution will be obtained by application of the Schauder fixed point theorem. The
nonuniqueness of the solution for the Vlasov problem does not allow us to directly
apply the fixed point method. We need to introduce a perturbed problem by adding
an absorption term αf in the Vlasov equation, where α > 0 is a small parameter,
and to regularize the electric field, which allows us to use the mild formulation. The
perturbed problem can be written as

αf(t, x, v) + ∂tf + v · ∂xf + Eε(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0), t ∈ Rt,

Eε(t, x) =

∫
R

ζε(t− s)ds
∫ 1

0

ζε(x− y)E(s, y)dy, (t, x) ∈ Rt×]0, 1[,
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where E is the electric field given by the Poisson equation with source ρ(t, x) =∫
Rv
f(t, x, v)dv,

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,

and ζε(·) = 1
εζ(

·
ε ), ε > 0 is a mollifier sequence. Clearly, the perturbed Vlasov

problem has a unique T -periodic weak solution, and the existence for the nonlinear
perturbed problem follows easily by fixed point argument. Indeed, in this case (α > 0
fixed), we immediately obtain the following estimate for the T -periodic weak solution
of the perturbed Vlasov problem:

∫ 1

0

∫
Rv

f(t, x, v)dxdv

≤
(
1

αT
+ 1

)(∫ T

0

∫
v>0

vg0(t, v)dtdv −
∫ T

0

∫
v<0

vg1(t, v)dtdv

)
, t ∈ Rt,

which allows us to define a fixed point application.
Obviously, the main difficulty consists of finding uniform estimates for the per-

turbed problems with α > 0, ε > 0. In section 4 we obtain estimates for the total
charge and current and the electric field. The main tool is Lemma 2.11 combined
with the mild formulation. In fact the previous lemma allows us to get bounds on the
particle lifetimes, at least for particles with initial velocities v large enough. Indeed,

since along a characteristic we have | V (s) − v | ≤ C · ‖E‖1/2
L∞ , sin ≤ s ≤ sout, we

deduce that |V (s)| is bounded from below |V (s)| ≥ |v| − C · ‖E‖1/2
L∞ and therefore

sout − sin ≤ 1

|v| − C · ‖E‖1/2
L∞

if |v| > C · ‖E‖1/2
L∞ .

These arguments work for bounded spatial domains.
In section 5 we prove the existence of the T -periodic weak solution for the Vlasov–

Poisson system by passing α→ 0. In order to pass to the limit in the nonlinear term
En · ∂vfn, we can combine the strong convergence in L1 of En with the weak �
convergence in L∞ of fn. Some generalizations are analyzed as well. Basically, for
incoming data satisfying |v|pg ∈ L1 for some integer p ≥ 1, we prove that |v|pf ∈ L1.

We end this paper with several remarks and conclusions. We investigate the
Vlasov–Poisson system with several species of particles, as well as the case of attractive
(gravitational) potentials.

2. The Vlasov equation. The equation which governs the transport of charged
particles is called the Vlasov equation, and in one dimension it is given by

∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,(2.1)

where f(t, x, v) is the density of particles under the action of the electric field E(t, x) =
−∂xU and U(t, x) is the potential. Charged particles are injected through the bound-
ary

f(t, x, v) = g(t, x, v), (t, x, v) ∈ Rt × Σ−,(2.2)



PERMANENT REGIMES FOR THE 1D VLASOV–POISSON SYSTEM 925

where Σ− is the subset of the boundary of the phase space ]0, 1[×Rv corresponding
to the incoming velocities,

Σ− = {(0, v) | v > 0} ∪ {(1, v) | v < 0} = Σ−
0 ∪ Σ−

1 .

Similarly we also define Σ+ = {(0, v) | v < 0} ∪ {(1, v) | v > 0} = Σ+
0 ∪ Σ+

1 , which
corresponds to the outgoing velocities and Σ0 = {(0, 0), (1, 0)}. With the notation
g|

Rt×Σ−
0
= g0, g|Rt×Σ−

1
= g1, the previous boundary condition (2.2) can be written as

f(t, x = 0, v > 0) = g0(t, v > 0), f(t, x = 1, v < 0) = g1(t, v < 0).(2.3)

The functions g0, g1 ≥ 0, which describe the emission profiles of the injected charged
particles, are supposed T -periodic in time, T > 0. Now let us briefly recall the
definition of weak and mild solutions for the Vlasov problem (2.1), (2.3).

2.1. Weak solution for the Vlasov problem. We introduce the spaces L−
i ,

L−
i,loc of incoming data with bounded or locally bounded fluxes:

L−
i = {g(t, v) | v · g(t, v) ∈ L1(]0, T [×Σ−

i )},

L−
i,loc = {g(t, v) | v · g(t, v) ∈ L1

loc(]0, T [×Σ−
i )},

where i = 0, 1. We shall use also the following notation:

Gp :=
1

T

∫ T

0

∫
v>0

|v|pg0(t, v)dtdv + 1

T

∫ T

0

∫
v<0

|v|pg1(t, v)dtdv, 0 ≤ p < +∞,

and

G∞ := max{‖g0‖L∞(Rt×Σ−
0 ), ‖g1‖L∞(Rt×Σ−

1 )}

when g0, g1 belong to the corresponding spaces.
Definition 2.1. Assume that E ∈ L∞(Rt×]0, 1[) and g0 ∈ L−

0,loc, g1 ∈ L−
1,loc are

T -periodic functions in time. We say that f ∈ L1
loc(]0, T [×]0, 1[×Rv) is a T -periodic

weak solution for the Vlasov problem (2.1), (2.3) iff

−
∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)(∂tϕ+ v · ∂xϕ+ E(t, x) · ∂vϕ)dtdxdv=
∫ T

0

∫
v>0

vg0(t, v)ϕ(t, 0, v)dtdv

−
∫ T

0

∫
v<0

vg1(t, v)ϕ(t, 1, v)dtdv,

for all test functions ϕ ∈ Tw, where

Tw = {ϕ ∈W 1,∞(Rt×]0, 1[×Rv) | ϕ is T -periodic in time , ϕ|Rt×Σ+ = 0,

∃R > 0 : supp(ϕ) ⊂ Rt × [0, 1]×BR}.

2.2. Mild solution for the Vlasov problem. Throughout this paper we also
need to consider some special solutions for (2.1), (2.3), which are called mild so-
lutions or solutions by characteristics. These solutions require more regularity for
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the electric field, and they are particular cases of weak solutions. Assume that
E ∈ L∞(Rt;W

1,∞(]0, 1[)) is T -periodic, and for (t, x, v) ∈ Rt×]0, 1[×Rv denote by
(X(s; t, x, v), V (s; t, x, v)) the unique solution for the system of ordinary differential
equations

d

ds
X(s; t, x, v) = V (s; t, x, v),

d

ds
V (s; t, x, v) = E(s,X(s; t, x, v))(2.4)

for s ∈ (sin, sout) which verifies the condition
X(s = t; t, x, v) = x, V (s = t; t, x, v) = v.(2.5)

Here sin = sin(t, x, v) (resp., sout = sout(t, x, v)) represents the incoming (resp.,
outgoing) time of the particle in the domain ]0, 1[ defined by

sin(t, x, v) = sup{s ≤ t : (X(s; t, x, v), V (s; t, x, v)) ∈ Σ−} ≥ −∞
and

sout(t, x, v) = inf{s ≥ t : (X(s; t, x, v), V (s; t, x, v)) ∈ Σ+ ∪ Σ0} ≤ +∞.
Using the previous notation, the total travel time through the domain (lifetime) can
be written as τ(t, x, v) = sout(t, x, v)−sin(t, x, v) ≤ +∞. Now we replace in Definition
2.1 the function ∂tϕ+ v · ∂xϕ+E(t, x) · ∂vϕ by ψ, which, after integration along the
characteristics curves gives

ϕ(t, x, v) = −
∫ sout(t,x,v)

t

ψ(s,X(s; t, x, v), V (s; t, x, v)) ds,

and we define the mild solutions as follows.
Definition 2.2. Assume that E ∈ L∞(Rt;W

1,∞(]0, 1[)) and g0 ∈ L−
0,loc, g1 ∈

L−
1,loc are T -periodic functions in time. We say that f ∈ L1

loc(]0, T [×]0, 1[×Rv) is a
T -periodic mild solution for the Vlasov problem (2.1), (2.3) iff∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)ψ(t, x, v)dtdxdv

=

∫ T

0

∫
v>0

vg0(t, v)

∫ sout(t,0,v)

t

ψ(s,X(s; t, 0, v), V (s; t, 0, v))dsdtdv

−
∫ T

0

∫
v<0

vg1(t, v)

∫ sout(t,1,v)

t

ψ(s,X(s; t, 1, v), V (s; t, 1, v))dsdtdv,

for all test functions ψ ∈ Tm, where
Tm = {ψ ∈ L∞(Rt×]0, 1[×Rv) | ψ is T -periodic in time,

∃R > 0 : supp(ψ) ⊂ Rt × [0, 1]×BR}.
We shall sometimes use the notation

(X(s), V (s)) = (X(s; t, x, v), V (s; t, x, v)),

(X0(s), V 0(s)) = (X(s; t, 0, v), V (s; t, 0, v)),

(X1(s), V 1(s)) = (X(s; t, 1, v), V (s; t, 1, v)),
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and

sout = sout(t, x, v), s
0
out = sout(t, 0, v), s

1
out = sout(t, 1, v),

sin = sin(t, x, v), s
0
in = sin(t, 0, v), s

1
in = sin(t, 1, v).

Remark 2.3. In fact the mild solution is given by f(t, x, v)=gi(sin, V (sin; t, x, v))
if sin(t, x, v) > −∞ and X(sin; t, x, v) = i, where i = 0, 1 and f(t, x, v) = 0 other-
wise.

Remark 2.4. Since E is T -periodic, we have X(s+T ; t+T, x, v) = X(s; t, x, v),
V (s+T ; t+T, x, v) = V (s; t, x, v), sin(t+T, x, v) = sin(t, x, v)+T for all (s, t, x, v) ∈
Rs × Rt×]0, 1[×Rv, and thus, by the periodicity of g0, g1, it follows that the mild
solution is T -periodic.

Remark 2.5. There is in general no uniqueness for the weak solution because f
can take arbitrary values on the characteristics such that sin = −∞. However, it is
possible to prove that the mild solution is the unique minimal solution for the transport
equation (see [17] and [4] for definitions and proofs).

2.3. Weak and mild solutions for the perturbed Vlasov problem. We
intend to apply a fixed point procedure on the electric field. For example, let us define
the following map:

E → fE solution of the Vlasov problem → ρE charge density of fE

→ E1 solution of the Poisson problem with source ρE .

Unfortunately the above map is not well defined since we have no uniqueness for the
Vlasov problem. In order to recover the uniqueness property, we need to introduce
an absorption term αf, α > 0 . The perturbed Vlasov equation is now written as

αf(t, x, v) + ∂tf + v · ∂xf + E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv.(2.6)

Obviously, the weak and mild formulations previously introduced for the Vlasov prob-
lem still hold for the perturbed problem with the corresponding modifications due to
the term αf (when α = 0 we recover Definitions 2.1 and 2.2).

Definition 2.6. Under the same hypothesis as in Definition 2.1, we say that f
is a T -periodic weak solution for the perturbed Vlasov problem (2.6), (2.3) iff

−
∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)(−αϕ+ ∂tϕ+ v · ∂xϕ+ E(t, x) · ∂vϕ)dtdxdv

=

∫ T

0

∫
v>0

vg0(t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫
v<0

vg1(t, v)ϕ(t, 1, v)dtdv,

for all test functions ϕ ∈ Tw.
Remark 2.7. After multiplication by f and integration on ]0, T [×]0, 1[×Rv we

can easily check that there is a unique weak solution for the perturbed Vlasov problem
(see [6, p. 657], [3], [12]).
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Definition 2.8. Under the same hypothesis as in Definition 2.2 we say that f
is a T -periodic mild solution for the perturbed Vlasov problem (2.6), (2.3) iff∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)ψ(t, x, v)dtdxdv

=

∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)ψ(s,X(s; t, 0, v), V (s; t, 0, v))ds

−
∫ T

0

∫
v<0

vg1(t, v)dtdv

∫ s1out

t

e−α(s−t)ψ(s,X(s; t, 1, v), V (s; t, 1, v))ds

for all test functions ψ ∈ Tm.
Remark 2.9. We can easily check that, if g0 ∈ L−

0 , g1 ∈ L−
1 , then the mild

solution belongs to L1(]0, T [×]0, 1[×Rv).
Indeed, let us consider χ ∈ C1(R), 0 ≤ χ ≤ 1, supp(χ) ⊂ [−2, 2], χ|[−1,1] = 1. By

taking ψR(t, x, v) = χ(v/R) ∈ Tm, as a test function, we have∫ T

0

∫ 1

0

∫
|v|<R
f(t, x, v)dtdxdv ≤

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)ψR(t, x, v)dtdxdv

=

∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)χ
(
V 0(s)

R

)
ds

−
∫ T

0

∫
v<0

vg1(t, v)dtdv

∫ s1out

t

e−α(s−t)χ
(
V 1(s)

R

)
ds

≤ 1

α

(∫ T

0

∫
v>0

vg0(t, v)dtdv −
∫ T

0

∫
v<0

vg1(t, v)dtdv

)
, R > 0.

Thus, by passing R → +∞, we deduce that f belongs to L1(]0, T [×]0, 1[×Rv) and
that

1

T
‖f‖L1 ≤ G1

α
, α > 0.(2.7)

Remark 2.10. Moreover, under the same hypothesis as in the previous remark,
if ψ ∈ L∞ is T -periodic with unbounded velocity support, then the mild formulation
still holds.

For this let us formulate a lemma concerning bounds for the velocity change along
the characteristics. This result is the key point of our analysis, and it will be used
several times throughout this paper.

Lemma 2.11. Assume that E ∈ L∞(Rt;W
1,∞(]0, 1[)) is a regular electric field.

Then, for all characteristics (X(s), V (s)), sin ≤ s ≤ sout, we have

|V (s1)− V (s2)| ≤ 2
√
2 · ‖E‖1/2

L∞ , sin ≤ s1 ≤ s2 ≤ sout.

Proof. If |V (s1,2)| ≤
√
2 · ‖E‖1/2

L∞ or ‖E‖L∞ = 0, the conclusion follows trivially.

Suppose that ‖E‖L∞ > 0, |V (s1)| >
√
2 · ‖E‖1/2

L∞ ; for the other case, the same
argument applies. By integration along the characteristics curves we find

V (s) ≥ V (s1)− (s− s1)‖E‖L∞ , s ∈ [s1, s2],

V (s1) ≥ V (s)− (s− s1)‖E‖L∞ , s ∈ [s1, s2],
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and also

1 ≥ X(s)−X(s1) ≥ (s− s1)V (s1)− 1

2
(s− s1)2‖E‖L∞ , s ∈ [s1, s2],

1 ≥ X(s1)−X(s) ≥ −(s− s1)V (s1)− 1

2
(s− s1)2‖E‖L∞ , s ∈ [s1, s2].

Therefore F (s) := 1
2 (s− s1)2‖E‖L∞ − |V (s1)|(s− s1) + 1 ≥ 0, s ∈ [s1, s2], and, since

the discriminant ∆ = |V (s1)|2 − 2‖E‖L∞ is positive, it follows that the quadratic
function F has two real roots s1 < r1 < r2 given by

r1,2 = s1 +
|V (s1)| ∓

√|V (s1)|2 − 2‖E‖L∞

‖E‖L∞
.

On the other hand, we have

F (s2) =
‖E‖L∞

2

(
s2 − s1 − |V (s1)|

‖E‖L∞

)2

+ 1− |V (s1)|2
2‖E‖L∞

≥ 0,

and therefore we deduce that∣∣∣∣s2 − s1 − |V (s1)|
‖E‖L∞

∣∣∣∣ >
√
∆

‖E‖L∞
.

If s2 − s1 − |V (s1)|/‖E‖L∞ < −√
∆/‖E‖L∞ , by using the fact that |V (s1)| >

√
2 ·

‖E‖1/2
L∞ we have

|V (s1)− V (s2)| ≤ (s2 − s1)‖E‖L∞ ≤ |V (s1)| −
√
|V (s1)|2 − 2‖E‖L∞ <

√
2 · ‖E‖1/2

L∞ .

Now let us consider the case when s2 − s1 − |V (s1)|/‖E‖L∞ >
√
∆/‖E‖L∞ , which

implies that s2 > s1 + (|V (s1)| +
√
∆)/‖E‖L∞ = r2. Therefore we have s1 < r1 <

r2 < s2, which is in contradiction with F (s) ≥ 0, s ∈ [s1, s2], since F (s) < 0 for
s ∈ (r1, r2) ⊂ [s1, s2].

Now let us consider the mild test function ψR(t, x, v) = ψ(t, x, v) · χ(v/R) ∈ Tm.
In order to simplify the calculation, we treat only the terms of the left boundary
located in x = 0. Exactly the same calculus applies for the right boundary in x = 1.
We have∫ T

0

∫ 1

0

∫
|v|<R
fψdtdxdv +

∫ T

0

∫ 1

0

∫
|v|>R
fψχ

( v
R

)
dtdxdv

=

∫ T

0

∫
0<v<R1

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)ψχ
(
V 0(s)

R

)
ds

+

∫ T

0

∫
v>R1

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)ψχ
(
V 0(s)

R

)
ds+ {right boundary terms}

= I1(R) + I2(R) + I3(R) + I4(R),(2.8)

where R1 = R−2√2 ·‖E‖1/2
L∞ . By the previous lemma, we deduce that for 0 < v < R1

we have |V 0(s)| ≤ 2
√
2·‖E‖1/2

L∞+v ≤ R, and therefore χ(V 0(s)/R) = 1 for s ∈ (t, s0out),
which implies that

lim
R→+∞

I1(R) =

∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)ψ(s,X0(s), V 0(s))ds.



930 M. BOSTAN

On the other hand, since | ∫ s0out
t

e−α(s−t)ψχ(V 0(s)/R)ds| ≤ ‖ψ‖L∞/α and g0 ∈ L−
0 ,

we also have the convergence

I2(R) ≤ 1

α
‖ψ‖L∞

∫ T

0

∫
v>R1

vg0(t, v)dtdv → 0,

when R→ +∞. Since f belongs to L1(]0, T [×]0, 1[×Rv), ψ ∈ L∞, 0 ≤ χ ≤ 1, we can
pass to the limit in (2.8) for R→ +∞ and the mild formulation holds. In particular,
for ψR = 1{|v|>R}, we have∫ T

0

∫ 1

0

∫
|v|>R
f(t, x, v)dtdxdv=

∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)1{|V 0(s)|>R}ds+ {· · · }

=

∫ T

0

∫
v>R1

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)1{|V 0(s)|>R}ds+ {· · · }

≤ 1

α

(∫ T

0

∫
v>R1

vg0(t, v)dtdv −
∫ T

0

∫
v<−R1

vg1(t, v)dtdv

)
.

Remark 2.12. If g0 ∈ L−
0 , g1 ∈ L−

1 , and E ∈ L∞, then all T -periodic weak
solutions to (2.6), (2.3) belong to L1(]0, T [×]0, 1[×Rv) and verify the same estimate
(2.7).

Remark 2.13. If g0 ∈ L−
0 , g1 ∈ L−

1 , and E ∈ L∞, then the weak formulation
also holds for test function ϕ ∈ W 1,∞ with unbounded support in velocity (take as a
test function ϕR = ϕ · χ(v/R) and pass R→ +∞).

3. The Vlasov–Poisson system. The electric field is due to the charge of the
particles (it is a self-consistent field)

∂xE = −∂2
xU = ρ(t, x) :=

∫
Rv

f(t, x, v)dv, (t, x) ∈ Rt×]0, 1[,(3.1)

and to the applied voltage on the boundary,

U(t, x = 0) = ϕ0(t), U(t, x = 1) = ϕ1(t), t ∈ Rt.(3.2)

As above, the electrostatic potentials ϕ0, ϕ1 are supposed T -periodic in time. The
system formed by (2.1) and (3.1) and the boundary conditions (2.3) and (3.2) are
called the Vlasov–Poisson problem (in one dimension). Obviously, in one dimension
the Poisson electric field can be written as

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,

and therefore we can give the following definition.
Definition 3.1. Assume that g0 ∈ L−

0,loc, g1 ∈ L−
1,loc, ϕ1 − ϕ0 ∈ L∞(Rt) are

T -periodic functions. We say that (f,E) ∈ L1(]0, T [×]0, 1[×Rv) × L∞(Rt×]0, 1[) is
a T -periodic weak solution for the Vlasov–Poisson problem iff f is a T -periodic weak
solution for the Vlasov problem (2.1), (2.3) corresponding to the electric field E given
by the Poisson problem

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,

with ρ(t, x) :=
∫

Rv
f(t, x, v)dv, (t, x) ∈ Rt×]0, 1[.
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As was explained in section 2.3, we need to also consider a perturbed system.
Let us introduce the notion of T -periodic mild solution for the perturbed Vlasov–
Poisson problem. For this we have to regularize the electric field; we consider mollifiers
ζε(·) = 1

εζ(
·
ε ), ε > 0, where ζ ∈ C∞

0 (R), ζ ≥ 0, supp(ζ) ⊂ [−1,+1], ∫
R
ζ(u)du = 1.

Definition 3.2. Under the same hypothesis, we say that (f,E) ∈ L1(]0, T [×]0,
1[×Rv)×L∞(Rt×]0, 1[) is a T -periodic mild solution for the perturbed Vlasov–Poisson
problem iff f is the T -periodic mild solution for the perturbed Vlasov problem (2.6),

(2.3) corresponding to the regularized electric field Eε(t, x) =
∫

R
ζε(t− s)ds

∫ 1

0
ζε(x−

y)E(s, y)dy and E is given by the Poisson problem

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[.

3.1. Existence for the perturbed Vlasov–Poisson problem. As a first step
in the study of periodic weak solutions for the Vlasov–Poisson problem, we prove the
existence for the perturbed problem. In this section the parameters α, ε > 0 are fixed,
and we use the Schauder fixed point theorem. For the moment consider that the
electric field is given and let us deduce some bounds for f in the L1 norm.

Proposition 3.3. Assume that E ∈ L∞(Rt×]0, 1[), g0 ∈ L−
0 , g1 ∈ L−

1 are
T -periodic and that f is the T -periodic weak solution for (2.1), (2.3). Then f ∈
L∞(Rt;L

1(]0, 1[×Rv)) and

‖f‖L∞(Rt;L1(]0,1[×Rv)) ≤
(
1

α
+ T

)
G1.

Proof. As we saw in the previous section, f ∈ L1(]0, T [×]0, 1[×Rv) and ‖f‖L1 ≤
T
αG1, α > 0. Thus there is t1 ∈]0, T [ such that

∫ 1

0

∫
Rv

f(t1, x, v)dxdv ≤ G1

α
.

Now by integration of the perturbated Vlasov equation on ]t1, t[×]0, 1[×Rv, where
t1 ≤ t ≤ t1 + T , we find that

‖f(t)‖L1=

∫ 1

0

∫
Rv

f(t, x, v)dxdv ≤
∫ 1

0

∫
Rv

f(t1, x, v)dxdv +

∫ t

t1

∫
v>0

vg0(s, v)dsdv

−
∫ t

t1

∫
v<0

vg1(s, v)dsdv ≤
(
1

α
+ T

)
G1,

and therefore the conclusion follows by periodicity.
Theorem 3.4. Assume that ϕ1 − ϕ0 ∈ L∞(Rt), g0, g1 are T -periodic functions

such that

(H1) G1=
1

T

∫ T

0

∫
v>0

vg0(t, v)dtdv − 1

T

∫ T

0

∫
v<0

vg1(t, v)dtdv < +∞,
(H∞) G∞=max{‖g0‖L∞(Rt×Σ−

0 ), ‖g1‖L∞(Rt×Σ−
1 )} < +∞.

Then, for every α, ε > 0, there is a T -periodic mild solution for the perturbed Vlasov–
Poisson problem.
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Proof. Let us define Rα =
(
T + 1

α

)
G1 + ‖ϕ1 − ϕ0‖L∞ and consider the set

Xα,ε = {E ∈ L∞(Rt×]0, 1[) | E(t, x) = E(t+T, x), (t, x) ∈ Rt×]0, 1[, ‖E‖L∞ ≤ Rα},
which is convex and compact with respect to the weak � topology of L∞. As a fixed
point application, we define Fα(E), E ∈ Xα,ε as follows:

Fα,ε(E)(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[,
(3.3)

where f is the mild T -periodic solution of (2.6), (2.3) corresponding to the regularized

field Eε(t, x) =
∫

R
ζε(t − s)ds

∫ 1

0
ζε(x − y)E(s, y)dy. By Proposition 3.3, we deduce

that ρ belongs to L∞(Rt;L
1(]0, 1[)), and from (3.3) it follows that ‖Fα,ε(E)‖L∞ ≤

Rα, E ∈ Xα,ε. Since Fα,ε(E) is also T -periodic, it follows that Fα,ε(Xα,ε) ⊂ Xα,ε.
Now let us prove the continuity of the application Fα,ε. For this, consider a sequence
(En)n ⊂ Xα,ε such that En ⇀ E, weakly � in L∞(]0, T [×]0, 1[), which implies point-
wise convergence for (t, x) ∈ Rt×]0, 1[:

En,ε(t, x) =

∫
R

ζε(t− s)ds
∫ 1

0

ζε(x− y)En(s, y)dy

→
∫

R

ζε(t− s)ds
∫ 1

0

ζε(x− y)E(s, y)dy = Eε(t, x).

Thus, by the dominated convergence theorem, we obtain that (En,ε)n converges
strongly to Eε in L

2(]0, T [×]0, 1[) when n → +∞. Denote by (fn)n the sequence
of T -periodic mild solutions associated to (En,ε)n. Since ‖fn‖L∞ ≤ ‖g‖L∞ , we have,
at least for a subsequence, that

fn ⇀ f, weak � in L∞(]0, T [×]0, 1[×Rv).

As (fn)n are mild solutions, they are also weak solutions, and therefore we have for
all ϕ ∈ Tw, n

−
∫ T

0

∫ 1

0

∫
Rv

fn(−αϕ+ ∂tϕ+ v · ∂xϕ+ En,ε(t, x) · ∂vϕ)dtdxdv

=

∫ T

0

∫
v>0

vg0(t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫
v<0

vg1(t, v)ϕ(t, 1, v)dtdv.

Obviously the following convergence holds:

lim
n→+∞

∫ T

0

∫ 1

0

∫
Rv

fn(−αϕ+∂tϕ+ v ·∂xϕ)dtdxdv =
∫ T

0

∫ 1

0

∫
Rv

f(−αϕ+∂tϕ+ v ·∂xϕ)dtdxdv.

In order to pass the other term to the limit, we remark that, since (fn)n are uniformly
bounded in L∞ and ϕ has bounded support in velocity, we have that

∫
Rv
fn(t, x, v)∂vϕdv

converges to
∫

Rv
f(t, x, v)∂vϕdv weakly in L

2(]0, T [×]0, 1[). Finally, by combining this
with the strong convergence of (En,ε)n in L

2(]0, T [×]0, 1[) we deduce that

lim
n→+∞

∫ T

0

∫ 1

0

En,ε(t, x)

∫
Rv

fn(t, x, v)∂vϕdvdtdx =

∫ T

0

∫ 1

0

Eε(t, x)

∫
Rv

f(t, x, v)∂vϕdvdtdx,
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and thus f is a T -periodic weak solution for

αf + ∂tf + v · ∂xf + Eε(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv, f |Rt×Σ− = g.

Since, for the perturbed Vlasov problem, we have uniqueness for the T -periodic weak
solution, it follows that f is the T -periodic mild solution corresponding to Eε. Note
that it also follows from uniqueness that the whole sequence (fn)n converges weakly �
in L∞. Let us analyze now the term

∫ x
0
ρn(t, y)dy. We have

∣∣∣∣
∫ x

0

ρn(t, y)dy

∣∣∣∣ ≤
∫ 1

0

∫
Rv

fn(t, x, v)dxdv ≤
(
1

α
+ T

)
G1, (t, x) ∈ Rt×]0, 1[, ∀n,

and thus (
∫ x
0
ρn(t, y)dy)n converges weakly � in L

∞(]0, T [×]0, 1[). In order to identify
the weak � limit, let us calculate for θ ∈ Cc(]0, T [×]0, 1[)
∫ T

0

∫ 1

0

∫ x

0

dy

∫
Rv

fn(t, y, v)θ(t, x)dvdtdx =

∫ T

0

∫ 1

0

∫
Rv

fn(t, x, v)

∫ 1

x

θ(t, y)dydtdxdv

=

∫ T

0

∫ 1

0

∫
|v|<R
fn

∫ 1

x

θ(t, y)dydtdxdv +

∫ T

0

∫ 1

0

∫
|v|>R
fn

∫ 1

x

θ(t, y)dydtdxdv=In1 (R) + In2 (R).

Taking into account Remark 2.10, we deduce that limR→+∞ In2 (R) = 0 uniformly in

respect to n. On the other hand, since
∫ 1

x
θ(t, y)dy · 1{|v|<R} belongs to L1(]0, T [×]0,

1[×Rv), we also have the convergence

lim
n→+∞ In1 (R) = I1(R) =

∫ T

0

∫ 1

0

∫
|v|<R
f(t, x, v)

∫ 1

x

θ(t, y)dydtdxdv.

Finally, by combining the above convergences, one gets that

∫ x

0

ρn(t, y)dy ⇀

∫ x

0

ρ(t, y)dy, weak � in L∞(]0, T [×]0, 1[),

where ρ(t, x) =
∫

Rv
f(t, x, v)dv. In exactly the same manner, we find that

∫ 1

0

(1− y)ρn(t, y)dy ⇀
∫ 1

0

(1− y)ρ(t, y)dy, weak � in L∞(]0, T [),

and therefore

Fα,ε(En) =

∫ x

0

ρn(t, y)dy −
∫ 1

0

(1− y)ρn(t, y)dy − ϕ1(t) + ϕ0(t)

⇀

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t)

=Fα,ε(E), weak � in L
∞(]0, T [×]0, 1[),

which proves the continuity of the application Fα,ε.

By using the Schauder fixed point theorem, we deduce that there is a T -periodic
mild solution for the perturbed Vlasov–Poisson problem.



934 M. BOSTAN

4. Estimates for the perturbed T -periodic mild solutions. In order to
simplify the formulas, in this section we shall systematically skip the indexes α, ε.
Generally (f,E) stands for T -periodic mild solutions of the perturbed Vlasov–Poisson
problem which can be written as

αf(t, x, v) + ∂tf + v · ∂xf +
∼

E(t, x) · ∂vf = 0, (t, x, v) ∈ Rt×]0, 1[×Rv,

f(t, x, v) = g(t, x, v), (t, x, v) ∈ Rt × Σ−,

∼

E(t, x) =

∫
R

ζε(t− s)ds
∫ 1

0

ζε(x− y)E(s, y)dy, (t, x) ∈ Rt×]0, 1[,

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[.

As usual we use the notation

ρ(t, x) =

∫
Rv

f(t, x, v)dv, j(t, x) =

∫
Rv

vf(t, x, v)dv, (t, x) ∈ Rt×]0, 1[.

In this section we are looking for uniform estimates of the charge, current, and electric
field. It is convenient to introduce also

(Mρ,M|j|) := sup
α,ε>0

1

T

∫ T

0

∫ 1

0

∫
Rv

fα,ε(t, x, v)(1, |v|)dtdxdv,

(Cρ, C|j|) := sup
α,ε>0,t∈Rt

∫ 1

0

∫
Rv

fα,ε(t, x, v)(1, |v|)dxdv,

and

CE := sup
α,ε>0

‖Eα,ε‖L∞ ,

with Mρ,M|j|, Cρ, C|j|, CE ∈ [0,+∞].
At the beginning we assume that

(H ′
0) G

′
0 :=

∫
v>0

sup
t∈Rt

{g0(t, v)}dv +
∫
v<0

sup
t∈Rt

{g1(t, v)}dv < +∞,

(H1) G1 :=
1

T

∫ T

0

∫
v>0

vg0(t, v)dtdv − 1

T

∫ T

0

∫
v<0

vg1(t, v)dtdv < +∞,
(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−

0 ), ‖g1‖L∞(Rt×Σ−
1 )} < +∞,

which ensure the existence of the T -periodic mild solutions (see Theorem 3.4), but
later on we shall see that only (H ′

0), (H∞) are sufficient.
Remember that the T -periodic mild solutions satisfy∫ 1

0

∫
Rv

f(t, x, v)dxdv ≤
(
1

α
+ T

)
G1, t ∈ Rt,

and

‖E‖L∞(Rt×]0,1[) ≤
(
1

α
+ T

)
G1 + ‖ϕ1 − ϕ0‖L∞ .
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4.1. Estimate of the total charge. Let us consider as a test function in the

mild formulation ψ(t, x, v) = 1{|v|>R2} with R2 = 6
√
2 · ‖E‖1/2

L∞ . We have

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)dtdxdv=

∫ T

0

∫ 1

0

∫
|v|<R2

f(t, x, v)dtdxdv +

∫ T

0

∫ 1

0

∫
|v|>R2

f(t, x, v)dtdxdv

≤
∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)1{|V 0(s)|>R2}ds

−
∫ T

0

∫
v<0

vg1(t, v)dtdv

∫ s1out

t

e−α(s−t)1{|V 1(s)|>R2}ds+ 2TR2G∞.

Now, by using Lemma 2.11 we deduce that, if R3 = 4
√
2 · ‖E‖1/2

L∞ , we have

∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)1{|V 0(s)|>R2}ds

=

∫ T

0

∫
v>R3

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)1{|V 0(s)|>R2}ds

≤
∫ T

0

∫
v>R3

vg0(t, v)
1

v − 2
√
2 · ‖E‖1/2

L∞
dtdv

≤ 2

∫ T

0

∫
v>0

g0(t, v)dtdv.

Finally one gets that

1

T

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)dtdxdv ≤ 12
√
2 · ‖E‖1/2

L∞G∞ + 2G0 ≤ 12
√
2 · ‖E‖1/2

L∞G∞ + 2G′
0.

We need also to estimate f in L∞(Rt;L
1(]0, 1[×Rv)). First, notice that from the

previous estimate it follows that there is t1 ∈]0, T [ such that
∫ 1

0

∫
Rv

f(t1, x, v)dxdv ≤ 1

T

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)dtdxdv ≤ 12
√
2 · ‖E‖1/2

L∞G∞ + 2G′
0.

On the other hand, by integration of the perturbed Vlasov equation on ]t1, t[×]0,
1[×Rv, t1 ≤ t ≤ t1 + T , we have

eαt
∫ 1

0

∫
Rv

f(t, x, v)dxdv = eαt1
∫ 1

0

∫
Rv

f(t1, x, v)dxdv +

∫ t

t1

eατ
∫

Rv

v(f(τ, 0, v)− f(τ, 1, v))dτdv

≤ eαt1(12
√
2 · ‖E‖1/2

L∞G∞ + 2G′
0) +

∫ t

t1

eατ
∫
|v|>R2

v(f(τ, 0, v)− f(τ, 1, v))dτdv

+

∫ t

t1

eατ
∫

0<v<R2

vg0(τ, v)dτdv −
∫ t

t1

eατ
∫

0>v>−R2

vg1(τ, v)dτdv.(4.1)

We need to estimate the integral I(t1, t2) =
∫ t2
t1
eατ
∫
|v|>R2

v(f(τ, 0, v)− f(τ, 1, v))dτdv
for 0 ≤ t2 − t1 ≤ T . We shall consider the applications

F0 : Rt × [R3,+∞[→ R
2, F0(t, v) = (sout(t, 0, v), V (sout(t, 0, v); t, 0, v)),
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and

F1 : Rt×]−∞,−R3]→ R
2, F1(t, v) = (sout(t, 1, v), V (sout(t, 1, v); t, 1, v)).

By again using Lemma 2.11, it is clear that F0, F1 are well defined, and we have

s0out ≤
1

v − 2
√
2 · ‖E‖1/2

L∞
≤ 1

2
√
2 · ‖E‖1/2

L∞
, v ≥ R3, X(s

0
out; t, 0, v) = 1,

s1out ≤
1

−v − 2
√
2 · ‖E‖1/2

L∞
≤ 1

2
√
2 · ‖E‖1/2

L∞
, v ≤ −R3, X(s

1
out; t, 1, v) = 0.

Moreover F0, F1 are one-to-one maps since ‖
∼

E‖L∞(Rt;W 1,∞(]0,1[)) ≤ ‖E‖L∞(1 +∫
R
|ζ ′(u)|du/ε) and therefore the uniqueness of the characteristics holds. By stan-

dard calculations we get∣∣∣∣ ∂F0

∂(t, v)

∣∣∣∣ = v

V 0(s0out)
∈
[
2

3
, 2

]
, (t, v) ∈ Rt × [R3,+∞[,

∣∣∣∣ ∂F1

∂(t, v)

∣∣∣∣ = −v
V 1(s1out)

∈
[
2

3
, 2

]
, (t, v) ∈ Rt×]−∞,−R3].

We have

I(t1, t2) =
∫ t2

t1

eαt
∫
v>R2

vg0(t, v)dtdv −
∫ t2

t1

eατ
∫
u>R2

uf(τ, 1, u)dτdu

−
∫ t2

t1

eαt
∫
v<−R2

vg1(t, v)dtdv +

∫ t2

t1

eατ
∫
u<−R2

uf(τ, 0, u)dτdu

= I+(t1, t2) + I−(t1, t2).

However, with the change of variables (τ, u) = (sout(t, 0, v), V (sout(t, 0, v); t, 0, v)) =
F0(t, v), we have∫ t2

t1

eατ
∫
u>R2

uf(τ, 1, u)dτdu=

∫ ∫
F−1

0 (]t1,t2[×]R2,+∞[)

eαtvg0(t, v)dtdv.

If we denote R4 = max{8√2 · ‖E‖1/2
L∞ , 2

√
2 · ‖E‖1/2

L∞ +1/(t2 − t1)}, we can easily check
that ∪v≥R4

([t1, t2 − δ(v)]× {v}) ⊂ F−1
0 ([t1, t2]× [R2,+∞[) with δ(v) = 1/(v− 2√2 ·

‖E‖1/2
L∞). Therefore, by taking into account that v · δ(v) ≤ 4/3 for v ≥ R4, we get

I+(t1, t2)≤
∫ t2

t1

eαt
∫
R2<v<R4

vg0(t, v)dtdv +

∫
v>R4

∫ t2

t2−δ(v)
eαtvg0(t, v)dvdt

≤eαt2
(∫ t2

t1

∫
R2<v<R4

vg0(t, v)dtdv +
4

3

∫
v>0

sup
t∈Rt

{g0(t, v)}dv
)
.

On the other hand, since R4 ≤ 8
√
2 · ‖E‖1/2

L∞ + 1/(t2 − t1) = R5 + 1/(t2 − t1), we
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also have

∫ t2

t1

∫
R2<v<R4

vg0(t, v)dtdv=

∫ t2

t1

∫
R2<v<R5

vg0(t, v)dtdv +

∫ t2

t1

∫
R5<v<R5+1/(t2−t1)

vg0(t, v)dtdv

≤R5

∫ T

0

∫
v>0

g0(t, v)dtdv +

(
R5 +

1

t2 − t1

)∫ t2

t1

∫
v>0

g0(t, v)dtdv

≤16
√
2 · ‖E‖1/2

L∞

∫ T

0

∫
v>0

g0(t, v)dtdv +

∫
v>0

sup
t∈Rt

{g0(t, v)}dv.

The right boundary term I−(t1, t2) can be estimated in the same manner, and finally
one gets

I(t1, t2) ≤ eαt2
(
16
√
2 · ‖E‖1/2

L∞TG0 +
7

3
G′

0

)
,

and therefore we deduce from (4.1) that

∫ 1

0

∫
Rv

f(t, x, v)dxdv ≤ (12 ·G∞ + 22 · TG0)
√
2 · ‖E‖1/2

L∞ +
13

3
G′

0, t ∈ Rt.

From the Poisson equation we deduce that

‖E(t)‖L∞(]0,1[) ≤ |ϕ1(t)− ϕ0(t)|+
∫ 1

0

∫
Rv

f(t, x, v)dxdv, t ∈ Rt,

which combined with the previous inequality implies that ‖E‖L∞ ≤ A · ‖E‖1/2
L∞ + B,

with A = 12 · 21/2G∞ + 22 · 21/2TG0, B = ‖ϕ1 − ϕ0‖L∞ + 13
3 G

′
0, and therefore

‖E‖L∞(Rt×]0,1[) ≤ A2 + 2B,

‖ρ‖L∞(Rt;L1(]0,1[)) ≤ A(A+B1/2) +
13

3
G′

0,

1

T
‖f‖L1(]0,T [×]0,1[×Rv) ≤ 12

√
2(A+B1/2)G∞ + 2G′

0,

which can be written

Mρ ≤ 12 · 21/2(A+B1/2)G∞ + 2G′
0, Cρ ≤ A(A+B1/2) +

13

3
G′

0, CE ≤ A2 + 2B.

(4.2)

4.2. Estimate of the rest of charge (
∫

|v|>R
fdv). We shall also need to

estimate integrals like
∫ T
0

∫ 1

0

∫
|v|>R f(t, x, v)dtdxdv or

∫ 1

0

∫
|v|>R f(t, x, v)dxdv, t ∈ Rt.

In fact, since we know that CE < +∞, we have, by taking ψ = 1{|v|>R} as a test
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function in the mild formulation, with R large enough, R6 = R− 2
√
2 · C1/2

E ,

∫ T

0

∫ 1

0

∫
|v|>R
fdtdxdv =

∫ T

0

∫
v>0

vg0(t, v)dtdv

∫ s0out

t

e−α(s−t)1{|V 0(s)|>R}ds

−
∫ T

0

∫
v<0

vg1(t, v)dtdv

∫ s1out

t

e−α(s−t)1{|V 1(s)|>R}ds

≤
∫ T

0

∫
v>R6

vg0(t, v)(sout(t, 0, v)− t)dtdv −
∫ T

0

∫
v<−R6

vg1(t, v)(sout(t, 1, v)− t)dtdv

≤
∫ T

0

∫
v>R6

vg0(t, v)
1

v − 2
√
2 · C1/2

E

dtdv −
∫ T

0

∫
v<−R6

vg1(t, v)
1

−v − 2
√
2 · C1/2

E

dtdv

≤ R− 2
√
2 · C1/2

E

R− 4
√
2 · C1/2

E

(∫ T

0

∫
v>R6

g0(t, v)dtdv −
∫ T

0

∫
v<−R6

g1(t, v)dtdv

)
,(4.3)

and thus

lim
R→+∞

∫ T

0

∫ 1

0

∫
|v|>R
f(t, x, v)dtdxdv = 0,

uniformly in respect to α, ε > 0. Moreover, in order to estimate
∫ 1

0

∫
|v|>R f(t, x, v)dxdv,

let us remark that there is t1 ∈]0, T [ such that∫ 1

0

∫
|v|>R
f(t1, x, v)dxdv ≤ 1

T

∫ T

0

∫ 1

0

∫
|v|>R
f(t, x, v)dtdxdv

≤ R−2
√
2 · C1/2

E

R−4√2 · C1/2
E

· 1
T

(∫ T

0

∫
v>R6

g0(t, v)dtdv−
∫ T

0

∫
v<−R6

g1(t, v)dtdv

)
.(4.4)

After multiplication of the perturbed Vlasov equation by 1−χR(v) = 1−χ(v/R), we
have

∂t(e
αtf(1− χR(v))) + v · ∂x(eαtf(1− χR(v))) +

∼

E(t, x) · ∂v(eαtf(1− χR(v)))
= −eαt

∼

Efχ′(v/R)
1

R
,

and after integration on ]t1, t[×]0, 1[×Rv one gets

eαt
∫ 1

0

∫
|v|>2R

f(t, x, v)dxdv≤eαt1
∫ 1

0

∫
|v|>R
f(t1, x, v)dxdv

+

∫ t

t1

eατ
∫
|v|>R

v(f(τ, 0, v)− f(τ, 1, v))(1− χR(v))dτdv

−
∫ t

t1

eατ
∫ 1

0

∫
R<|v|<2R

∼

Ef(τ, x, v)χ′(v/R)
1

R
dτdxdv, t ∈ [t1, t1+T ].(4.5)

The first term in the right-hand side of the previous inequality can be estimated by
using (4.4). For the third one, we have∣∣∣∣∣

∫ t

t1

eατ
∫ 1

0

∫
R<|v|<2R

∼

Ef(τ, x, v)χ′(v/R)
1

R
dτdxdv

∣∣∣∣∣ ≤ eαtCE‖χ′‖L∞
TMρ

R
→ 0(4.6)



PERMANENT REGIMES FOR THE 1D VLASOV–POISSON SYSTEM 939

when R goes to +∞, uniformly in α, ε > 0. In order to estimate integrals like
IR(t1, t2) =

∫ t2
t1
eατ

∫
|v|>Rv(f(τ, 0, v)−f(τ, 1, v))(1−χR(v))dτdv as before, we remark

that

IR(t1, t2)=
∫ t2

t1

eαt
∫
v>R

vg0(t, v)(1−χR(v))dtdv −
∫ t2

t1

eατ
∫
u>R

uf(τ, 1, u)(1− χR(u))dτdu

−
∫ t2

t1

eαt
∫
v<−R
vg1(t, v)(1−χR(v))dtdv+

∫ t2

t1

eατ
∫
u<−R
uf(τ, 0, u)(1−χR(u))dτdu

= I+
R (t1, t2) + I−

R (t1, t2).

Taking into account that, forR large enough such that δ(R) ≤ t2−t1 and η = CE ·δ(R),
we have

∪
v≥R+η

([t1, t2 − δ(v)]× {v}) ⊂ F−1
0 ([t1, t2]× [R,+∞[),

where δ(v) = 1/(v − 2
√
2 · C1/2

E ); by the same change of variables it follows that

I+
R (t1, t2)≤eαt2

∫ t2

t1

∫
R<v<R+η

vg0(t, v)(1− χR(v))dtdv

+eαt2
∫ t2

t2−δ(v)

∫
v>R+η

vg0(t, v)(χR(V (s
0
out; t, 0, v))− χR(v))dtdv.

However, for R < v < R+ η, we have 1− χR(v) = |χR(R)− χR(v)| ≤ η
R‖χ′‖L∞ . We

also have

|χR(V (s0out; t, 0, v))− χR(v)| ≤
|V 0(s0out)− v|

R
‖χ′‖L∞ ≤ 2‖χ′‖L∞

√
2 · C1/2

E

R
,

and thus

I+
R (t1, t2) ≤ eαt2

η(R+ η)

R
‖χ′‖L∞

∫ t2

t1

∫
v>R

g0(t, v)dtdv

+
eαt2

R

∫
v>R

vδ(v)sup
t∈Rt

{g0(t, v)}‖χ′‖L∞2
√
2 · C1/2

E

≤ eαt2‖χ′‖L∞const(CE)δ(R)

(∫ T

0

∫
v>0

g0(t, v)dtdv +

∫
v>0

sup
t∈Rt

{g0(t, v)}dv
)

(4.7)

for R ≥ 2
√
2 · C1/2

E + 1/(t2 − t1). The same arguments apply for the right boundary
term I−

R (t1, t2), and therefore we have

IR(t1, t2) = I+
R (t1, t2) + I−

R (t1, t2) ≤ eαt2‖χ′‖L∞const(CE)δ(R)(TG0 +G
′
0),(4.8)

where R ≥ 2
√
2 · C1/2

E + 1/(t2 − t1), 0 ≤ t2 − t1 ≤ T . Finally, by using (4.5), (4.4),
(4.6), and (4.8), we find that

∫ 1

0

∫
|v|>2R

f(t, x, v)dxdv≤R−2
√
2 · C1/2

E

R−4√2 · C1/2
E

· 1
T

(∫ T

0

∫
v>R6

g0(t, v)dtdv−
∫ T

0

∫
v<−R6

g1(t, v)dtdv

)

+
1

R
CE‖χ′‖L∞TMρ + δ(R)‖χ′‖L∞const(CE)(TG0 +G

′
0),(4.9)
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which implies that
∫ 1

0

∫
|v|>2R

f(t, x, v)dxdv → 0 when R→ +∞, uniformly for α, ε >

0 and |t2 − t1| ≥ β > 0. By periodicity, we deduce that the convergence is uniform for
α, ε > 0, t ∈ Rt. Notice that none of these estimates require any information about
G1. As we shall see, hypothesis (H1) is not necessary for existence. In conclusion we
prove the following proposition.

Proposition 4.1. Assume that g0, g1, ϕ0, ϕ1 are T -periodic functions satisfying
ϕ1 − ϕ0 ∈ L∞(Rt) and hypotheses (H

′
0), (H1), and (H∞). Denote by (fα,ε, Eα,ε) T -

periodic mild solutions of the perturbed Vlasov–Poisson problem with α > 0, ε > 0 (see
Theorem 3.4). Then the following estimates hold uniformly in respect to α > 0, ε > 0:

‖fα,ε‖L1(]0,T [×]0,1[×Rv) ≤ C,

‖fα,ε‖L∞(Rt;L1(]0,1[×Rv)) = ‖ρα,ε‖L∞(Rt;L1(]0,1[)) ≤ C,

‖Eα,ε‖L∞(Rt×]0,1[) ≤ C,
where the constant C depends only on T, ‖ϕ1 − ϕ0‖L∞(Rt), G

′
0, G∞ (and not on G1).

Moreover the following convergences hold:

lim
R→+∞

∫ T

0

∫ 1

0

∫
|v|>R

fα,ε(t, x, v)dtdxdv=0, uniformly with respect to α>0, ε>0, G1,

lim
R→+∞

∫ 1

0

∫
|v|>R

fα,ε(t, x, v)dxdv=0, uniformly with respect to α>0, ε > 0, t∈Rt, G1.

5. Existence for the Vlasov–Poisson problem. Now we can prove the fol-
lowing existence result.

Theorem 5.1. Assume that ϕ1−ϕ0 ∈ L∞(Rt) and g0, g1 are T -periodic functions
such that

(H ′
0) G

′
0 :=

∫
v>0

sup
t∈Rt

{g0(t, v)}dv +
∫
v<0

sup
t∈Rt

{g1(t, v)}dv < +∞,

(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−
0 ), ‖g1‖L∞(Rt×Σ−

1 )} < +∞.
Then there is a T -periodic weak solution (f,E) for the Vlasov–Poisson problem such
that

f ∈ L1(]0, T [×]0, 1[×Rv), ρ ∈ L∞(Rt;L
1(]0, 1[)), E ∈ L∞(Rt×]0, 1[).

Proof. For α > 0 we consider the perturbed boundary data defined by

gα0 (t, v) =
g0(t, v)

1 + αv
, t ∈ Rt, v > 0,

and

gα1 (t, v) =
g1(t, v)

1− αv , t ∈ Rt, v < 0.

We have for α > 0

Gα0
′ :=

∫
v>0

sup
t∈Rt

{gα0 (t, v)}dv +
∫
v<0

sup
t∈Rt

{gα1 (t, v)}dv ≤ G′
0 < +∞,

Gα1 :=
1

T

∫ T

0

∫
v>0

vgα0 (t, v)dtdv −
1

T

∫ T

0

∫
v<0

vgα1 (t, v)dtdv ≤
1

α
G0 ≤ 1

α
G′

0 < +∞,
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and

Gα∞ := max{‖gα0 ‖L∞(Rt×Σ−
0 ), ‖gα1 ‖L∞(Rt×Σ−

1 )} ≤ G∞,

and therefore there is a T -periodic mild solution for the perturbed Vlasov–Poisson
problem with α = ε > 0. Moreover, since Gα0

′ ≤ G′
0, G

α
∞ ≤ G∞, we have the

following estimates for α > 0:

1

T
‖fα‖L1(]0,T [×]0,1[×Rv) =

1

T

∫ T

0

∫ 1

0

∫
Rv

fα(t, x, v)dtdxdv ≤Mρ,

‖ρα‖L∞(Rt;L1(]0,1[)) = sup
t∈Rt

∫ 1

0

∫
Rv

fα(t, x, v)dxdv ≤ Cρ,

‖fα‖L∞ ≤ G∞, ‖Eα‖L∞(Rt×]0,1[) ≤ CE ,

where Mρ, Cρ, CE verify the inequalities (4.2). Therefore there are f ∈ L∞(Rt×]0,
1[×Rv), E ∈ L∞(Rt×]0, 1[) T -periodic functions such that

fαn ⇀ f, weak � in L∞(Rt×]0, 1[×Rv),

Eαn ⇀ E, weak � in L∞(Rt×]0, 1[),

where αn → 0 when n → +∞. Moreover we can easily check that we also have the

convergence
∼

Eαn ⇀ E weakly � in L∞(Rt×]0, 1[) when n→ +∞. Since fαn are mild
solutions, they are also weak solutions and thus

−
∫ T

0

∫ 1

0

∫
Rv

fαn(t, x, v)(−αnϕ(t, x, v) + ∂tϕ+ v · ∂xϕ+
∼

Eαn(t, x) · ∂vϕ)dtdxdv

=

∫ T

0

∫
v>0

vgαn0 (t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫
v<0

vgαn1 (t, v)ϕ(t, 1, v)dtdv

∀ϕ ∈ Tw. Obviously we have

lim
n→+∞

∫ T

0

∫ 1

0

∫
Rv

fαn(t, x, v)(−αnϕ+ ∂tϕ+ v · ∂xϕ)dtdxdv

=

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)(∂tϕ+ v · ∂xϕ)dtdxdv.

On the other hand, since ϕ has bounded support in velocity, by the dominated con-
vergence theorem, we deduce that

lim
n→+∞

∫ T

0

∫
v>0

vgαn0 (t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫
v<0

vgαn1 (t, v)ϕ(t, 1, v)dtdv

=

∫ T

0

∫
v>0

vg0(t, v)ϕ(t, 0, v)dtdv −
∫ T

0

∫
v<0

vg1(t, v)ϕ(t, 1, v)dtdv.

In order to pass the other term to the limit, we shall prove that (Eαn(t))n is relatively
compact in L1(]0, 1[), t ∈ Rt (see [9, p. 73] for compactness results in L

1). Indeed,
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first, (Eαn(t))n is bounded in L
∞(]0, 1[) and thus in L1(]0, 1[). Moreover it is clear

that ∀ε > 0 there is ω open set such that ω ⊂]0, 1[ and ∫
]0,1[−ω |Eαn(t, x)|dx < ε ∀n.

Let us consider now ε > 0, ω =]x1, x2[⊂]0, 1[, and |h| < min{x1, 1− x2}. We have∫ x2

x1

|Eαn(t, x+ h)− Eαn(t, x)|dx≤
∫ x2

x1

∣∣∣∣∣
∫ x+h

x

ραn(t, y)dy

∣∣∣∣∣ dx
≤|h|

∫ 1

0

ραn(t, x)dx

≤Cρ|h| → 0, h→ 0,

which implies that (Eαn(t))n is relatively compact in L
1(]0, 1[). Since Eαn(t)⇀ E(t)

weakly � in L∞(]0, 1[), we deduce that all of the sequence (Eαn(t))n converges to
E(t) in L1(]0, 1[), t ∈ Rt, and by the dominated convergence theorem it follows that
Eαn → E strongly in L1(]0, T [×]0, 1[). Now, since ϕ has bounded support in velocity,
we can write∣∣∣∣∣

∫ T

0

∫ 1

0

Eαn(t, x)

∫
Rv

fαn(t, x, v)∂vϕdvdtdx−
∫ T

0

∫ 1

0

E(t, x)

∫
Rv

f(t, x, v)∂vϕdvdtdx

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

∫ 1

0

(Eαn − E)
∫

Rv

fαn(t, x, v)∂vϕdvdtdx

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫ 1

0

∫
Rv

(fαn(t, x, v)− f(t, x, v))E∂vϕdtdxdv
∣∣∣∣∣→ 0,

and thus f is a T -periodic weak solution for the Vlasov problem corresponding to
the field E. Moreover, since fαn ⇀ f weakly � in L∞(Rt×]0, 1[×Rv), we have that
fαn ⇀ f weakly in L1(]0, T [×]0, 1[×BR), R > 0, and therefore

1

T

∫ T

0

∫ 1

0

∫
|v|<R
f(t, x, v)dtdxdv≤ 1

T
lim inf
n→+∞

∫ T

0

∫ 1

0

∫
|v|<R
fαn(t, x, v)dtdxdv

≤ 1

T
lim inf
n→+∞

∫ T

0

∫ 1

0

∫
Rv

fαndtdxdv ≤Mρ, R > 0,

which implies that f ∈ L1(]0, T [×]0, 1[×Rv) and
1
T

∫ T
0

∫ 1

0

∫
Rv
f(t, x, v)dtdxdv ≤Mρ. We

can prove that fαn ⇀ f weakly in L1(]0, T [×]0, 1[×Rv). Indeed, for θ ∈ L∞(]0, T [×]0,
1[×Rv), we can write∣∣∣∣∣
∫ T

0

∫ 1

0

∫
Rv

(fαn − f)θ(t, x, v)dtdxdv
∣∣∣∣∣≤
∣∣∣∣∣
∫ T

0

∫ 1

0

∫
|v|<R
(fαn − f)θ(t, x, v)dtdxdv

∣∣∣∣∣
+‖θ‖L∞

(∫ T

0

∫ 1

0

∫
|v|>R
fαndtdxdv +

∫ T

0

∫ 1

0

∫
|v|>R
fdtdxdv

)
.

From (4.3) it follows that we can take R = R(ε) large enough such that∫ T

0

∫ 1

0

∫
|v|>R
fαn(t, x, v)dtdxdv ≤

ε

4‖θ‖L∞
, n > 0,

∫ T

0

∫ 1

0

∫
|v|>R
f(t, x, v)dtdxdv ≤ ε

4‖θ‖L∞
,
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and, since fαn ⇀ f weakly � in L∞(]0, T [×]0, 1[×Rv), we also have∣∣∣∣∣
∫ T

0

∫ 1

0

∫
|v|<R
(fαn − f)θ(t, x, v)dtdxdv

∣∣∣∣∣ < ε2 , n ≥ nε,

which ensures the weak convergence of (fαn) in L
1. In particular ραn ⇀ ρ weakly

in L1(]0, T [×]0, 1[). Now, for all t ∈ Rt, we also have the convergence fαn(t) ⇀
f(t) weakly � in L∞(]0, 1[×Rv). In particular we have fαn(t) ⇀ f(t) weakly in
L1(]0, 1[×BR), R > 0, and therefore∫ 1

0

∫
|v|<R
f(t, x, v)dxdv ≤ lim inf

n→+∞

∫ 1

0

∫
|v|<R
fαn(t, x, v)dxdv

≤ lim inf
n→+∞

∫ 1

0

∫
Rv

fαn(t, x, v)dxdv ≤ Cρ, t ∈ Rt,

which implies that f(t) ∈ L1(]0, 1[×Rv) and ‖f‖L∞(Rt;L1(]0,1[×Rv))=‖ρ‖L∞(Rt;L1(]0,1[))

≤ Cρ. By using (4.9), we can prove that fαn(t)⇀ f(t) weakly in L1(]0, 1[×Rv), t ∈ Rt.
We also have the convergence ραn(t) ⇀ ρ(t) weakly in L1(]0, 1[) for all t ∈ Rt and
therefore ∫ x

0

ραn(t, y)dy →
∫ x

0

ρ(t, y)dy, (t, x) ∈ Rt × [0, 1],

and ∫ 1

0

(1− y)ραn(t, y)dy →
∫ 1

0

(1− y)ρ(t, y)dy, t ∈ Rt.

Now, by using the Poisson equation, we deduce that there is E1 such that

E1(t, x)= lim
n→+∞Eαn(t, x)

= lim
n→+∞

(∫ x

0

ραn(t, y)dy −
∫ 1

0

(1− y)ραn(t, y)dy − ϕ1(t) + ϕ0(t)

)

=

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt × [0, 1],

with ‖E1‖L∞ ≤ CE , which also implies that Eαn → E1 in L1(]0, T [×]0, 1[), and
therefore the field E = E1 also verifies the Poisson equation:

E(t, x) =

∫ x

0

ρ(t, y)dy −
∫ 1

0

(1− y)ρ(t, y)dy − ϕ1(t) + ϕ0(t), (t, x) ∈ Rt×]0, 1[.

Let us now state another existence result. This time we suppose that (H1) and
(H∞) hold, but not (H ′

0); and we shall prove that the solution has more regularity.
Theorem 5.2. Assume that ϕ1−ϕ0 ∈ L∞(Rt) and g0, g1 are T -periodic functions

such that

(H1) G1 :=
1

T

∫ T

0

∫
v>0

vg0(t, v)dtdv − 1

T

∫ T

0

∫
v<0

vg1(t, v)dtdv < +∞,
(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−

0 ), ‖g1‖L∞(Rt×Σ−
1 )} < +∞.
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Then there is a T -periodic weak solution (f,E) for the Vlasov–Poisson problem which
verifies

f ∈ L1(]0, T [×]0, 1[×Rv), ρ ∈ L∞(Rt;L
1(]0, 1[)),

|v|f ∈ L1(]0, T [×]0, 1[×Rv), E ∈ L∞(Rt×]0, 1[).

Moreover, if (H ′
1) holds,

(H ′
1) G

′
1 :=

∫
v>0

v · sup
t∈Rt

{g0(t, v)}dv −
∫
v<0

v · sup
t∈Rt

{g1(t, v)}dv < +∞,

then |v|f belongs to L∞(Rt;L
1(]0, 1[×Rv)); in particular j =

∫
Rv
vf(t, x, v)dv ∈

L∞(Rt;L
1(]0, 1[)).

The proof is quite similar to the previous one. We do not go into detail, but we
sketch the different arguments below. This time, since (H1), (H∞) are verified, we
can apply Theorem 3.4 with α = ε > 0 for the boundary data g0, g1. Exactly as in
section 4.1, we have

1

T

∫ T

0

∫ 1

0

∫
Rv

fαn(t, x, v)dtdxdv ≤ 12
√
2 · ‖Eαn‖1/2

L∞G∞ + 2G0,

and there is t1 = t
α
1 ∈]0, T [ such that

∫ 1

0

∫
Rv

fαn(t1, x, v)dxdv ≤ 12
√
2 · ‖Eαn‖1/2

L∞G∞ + 2G0.

By integration of the perturbed Vlasov equation on ]t1, t[×]0, 1[×Rv, t ∈ [t1, t1 + T ],
we have∫ 1

0

∫
Rv

fαn(t, x, v)dxdv≤
∫ 1

0

∫
Rv

fαn(t1, x, v)dxdv

+

∫ t

t1

∫
v>0

vg0(τ, v)dτdv −
∫ t

t1

∫
v<0

vg1(τ, v)dτdv

≤12
√
2 · ‖Eαn‖1/2

L∞G∞ + 2G0 + TG1.

From the Poisson equation, we have

‖Eαn‖L∞ ≤ ‖ϕ1 − ϕ0‖L∞ + ‖ραn‖L∞(Rt;L1(]0,1[)),

and therefore we obtain that

‖Eαn‖L∞ ≤ C · ‖Eαn‖L∞ +D, α > 0,

with C = 12 · 21/2G∞ , D = ‖ϕ1 − ϕ0‖L∞ + 2G0 + TG1. Finally, one gets for α > 0

‖Eαn‖L∞ ≤CE ≤ C2 + 2D,

‖ραn‖L∞(Rt;L1(]0,1[))≤Cρ ≤ C(C +D1/2) + 2G0 + TG1,

1

T
‖f‖L1(]0,T [×]0,1[×Rv)≤Mρ ≤ C(C +D1/2) + 2G0.
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In order to estimate the charge outside a ball BR in Rv, this time it is easy to calculate
integrals like IR(t1, t2) with

IR(t1, t2)=
∫ t2

t1

eαt
∫
|v|>R

v(f(t, 0, v)− f(t, 1, v))(1− χR(v))dtdv

≤eαt2
(∫ t2

t1

∫
v>R

vg0(t, v)dtdv −
∫ t2

t1

∫
v<−R
vg1(t, v)dtdv

)

≤eαt2
(∫ T

0

∫
v>R

vg0(t, v)dtdv −
∫ T

0

∫
v<−R
vg1(t, v)dtdv

)
, 0 ≤ t2 − t1 ≤ T,

and the proof follows exactly as before.

Now, in order to prove that |v|fαn ∈ L1(]0, T [×]0, 1[×Rv), let us multiply the
perturbed Vlasov equation by |v|:

α(|v|fαn) + ∂t(|v|fαn) + v · ∂x(|v|fαn) +
∼

Eαn(t, x) · ∂v(|v|fαn)
=

∼

Eαn
v

|v|fαn , (t, x, v) ∈ Rt×]0, 1[×Rv.

The mild formulation can be written this time as

∫ T

0

∫ 1

0

∫
Rv

|v|fαnψdtdxdv=
∫ T

0

∫ 1

0

∫
Rv

∼

Eαn
v

|v|fαn
∫ sout

t

e−α(s−t)ψ(s,X(s), V (s))dsdtdxdv

+

∫ T

0

∫
v>0

|v|2g0(t, v)
∫ s0out

t

e−α(s−t)ψ(s,X0(s), V 0(s))dsdtdv

+

∫ T

0

∫
v<0

|v|2g1(t, v)
∫ s1out

t

e−α(s−t)ψ(s,X1(s), V 1(s))dsdtdv

for all ψ ∈ Tm, and thus, for ψ = 1{|v|>R} (in fact take ψ = χR′ − χR ∈ Tm with

R′ > 2R and pass R′ → +∞) and R large enough such that R1 = R−2√2 ·C1/2
E > 0,

we get

∫ T

0

∫ 1

0

∫
|v|>R

|v|fαndtdxdv ≤ CE
∫ T

0

∫ 1

0

∫
|v|>R1

fαn(t, x, v)
1

|v| − 2
√
2 · C1/2

E

dtdxdv

+

∫ T

0

∫
v>R1

vg0(t, v)
v

v − 2
√
2 · C1/2

E

dtdv +

∫ T

0

∫
v<−R1

vg1(t, v)
v

−v − 2
√
2 · C1/2

E

dtdv → 0,

when R→ +∞, uniformly in respect to α > 0. By taking for example R = 6
√
2 ·C1/2

E ,
one gets

1

T

∫ T

0

∫ 1

0

∫
Rv

|v|fαndtdxdv=
1

T

∫ T

0

∫ 1

0

∫
|v|<R

|v|fαndtdxdv +
1

T

∫ T

0

∫ 1

0

∫
|v|>R

|v|fαndtdxdv

≤M|j| ≤
(
6 · 21/2 + 1

2 · 21/2
)
· C1/2

E Mρ + 2G1,

and thus |v|fαn∈L1(]0, T [×]0, 1[×Rv). Now, if fαn⇀f weakly � in L
∞(]0, T [×]0, 1[×Rv)
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we also have that |v|fαn ⇀ |v|f weakly in L1(]0, T [×]0, 1[×BR), R > 0, and thus
1

T

∫ T

0

∫ 1

0

∫
|v|<R

|v|f(t, x, v)dtdxdv≤ 1

T
lim inf
n→+∞

∫ T

0

∫ 1

0

∫
|v|<R

|v|fαn(t, x, v)dtdxdv

≤ 1

T
lim inf
n→+∞

∫ T

0

∫ 1

0

∫
Rv

|v|fαn(t, x, v)dtdxdv ≤M|j|, R > 0.

It follows that |v|f ∈ L1(]0, T [×]0, 1[×Rv) and
1
T

∫ T
0

∫ 1

0

∫
Rv

|v|f(t, x, v)dtdxdv ≤M|j|.
In fact we can prove that |v|fαn ⇀ |v|f weakly in L1(]0, T [×]0, 1[×Rv) and jαn ⇀ j
weakly in L1(]0, T [×]0, 1[). Assume now that (H ′

1) holds. In order to estimate jαn
and j in L∞(Rt;L

1(]0, 1[)), we can apply the same arguments as for the estimates of
ραn , ρ in L

∞(Rt;L
1(]0, 1[)). This time we have an extra term which can be written

as∣∣∣∣
∫ t2

t1

eαt
∫ 1

0

∫
Rv

∼

Eαn
v

|v|fαndtdxdv
∣∣∣∣≤eαt2‖Eαn‖L∞

∫ T

0

∫ 1

0

∫
Rv

fαn(t, x, v)dtdxdv, 0≤ t2−t1≤T.

In order to estimate the rest of the current, we remark that we have∣∣∣∣∣
∫ t2

t1

eαt
∫ 1

0

∫
|v|>R

∼

Eαn
v

|v|fαn(1−χR(v))dtdxdv
∣∣∣∣∣≤eαt2‖Eαn‖L∞

∫ T

0

∫ 1

0

∫
|v|>R
fαn(t, x, v)dtdxdv

for 0 ≤ t2 − t1 ≤ T , and therefore ∫ 1

0

∫
|v|>R |v|fαn(t, x, v)dxdv → 0 when R → +∞,

uniformly for α > 0, t ∈ Rt. Finally, we prove that there is C|j| < +∞ (which
depends on G′

1) such that∫ 1

0

∫
Rv

|v|fαn(t, x, v)dxdv≤C|j|, t ∈ Rt, α > 0,∫ 1

0

∫
Rv

|v|f(t, x, v)dxdv≤C|j|, t ∈ Rt,

|v|fαn(t)⇀ |v|f(t),weak in L1(]0, 1[×Rv),

jαn(t)⇀ j(t),weak in L1(]0, 1[).

Obviously this result can be generalized as follows.
Theorem 5.3. Assume that ϕ1 − ϕ0 ∈ L∞(Rt), g0, g1 are T -periodic functions

such that

(Hp) Gp :=
1

T

∫ T

0

∫
v>0

|v|pg0(t, v)dtdv + 1

T

∫ T

0

∫
v<0

|v|pg1(t, v)dtdv < +∞,
(H∞) G∞ := max{‖g0‖L∞(Rt×Σ−

0 ), ‖g1‖L∞(Rt×Σ−
1 )} < +∞

for some integer p ≥ 1. Then there is a T -periodic weak solution (f,E) for the
Vlasov–Poisson problem which verifies

|v|pf ∈ L1(]0, T [×]0, 1[×Rv), |v|p−1f ∈ L∞(Rt;L
1(]0, 1[×Rv)), E ∈ L∞(Rt×]0, 1[).

Moreover, if (H ′
p) holds,

(H ′
p) G

′
p :=

∫
v>0

|v|p sup
t∈Rt

{g0(t, v)}dv +
∫
v<0

|v|p sup
t∈Rt

{g1(t, v)}dv < +∞,

then |v|pf belongs to L∞(Rt;L
1(]0, 1[×Rv)).
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6. Remarks. First, notice that the estimates of f on the outgoing boundary
follow immediately. For example, under the hypothesis of the last theorem, after
multiplication by |v|p−1, p ≥ 1 ( in fact |v|p−1χR(v), with R→ +∞), and integration
of the Vlasov equation, we deduce that

1

T

∫ T

0

∫
v>0

|v|pf(t, 1, v)dtdv + 1

T

∫ T

0

∫
v<0

|v|pf(t, 0, v)dtdv

≤ Gp + 1

T

∫ T

0

∫ 1

0

∫
Rv

|E|f(p− 1)|v|p−2dtdxdv

≤ Gp + (p− 1) · ‖E‖L∞
1

T

∫ T

0

∫ 1

0

∫
Rv

f(t, x, v)|v|p−2dtdxdv.

On the other hand, it is possible to pass the nonlinear term Eαn · ∂vfαn in
the perturbed Vlasov equation to the limit by using the average velocity lemma of
Diperna and Lions (see [11]). In fact once we have proved that (fαn)n, (Eαn)n are
uniformly bounded in L1(]0, T [×]0, 1[×Rv) and L

∞(Rt×]0, 1[), respectively, we de-
duce that ∂tfαn + v · ∂xfαn = −αnfαn −

∼

Eαn(t, x) · ∂vfαn are uniformly bounded
in L2(]0, T [×]0, 1[×H−1(Rv)). This implies that (

∫
Rv
fαn(t, x, v)∂vϕdv)n is uniformly

bounded in H1/4(]0, T [×]0, 1[) and therefore converges to ∫
Rv
f(t, x, v)∂vϕdv strongly

in L2(]0, T [×]0, 1[). The conclusion follows by combining this with the weak conver-
gence of (Eαn)n.

All these results can be easily adapted to the Vlasov–Poisson problem (in one
dimension) involving several densities fe, fi, where, for example, fe represents the
density of electrons and fi the density of ions.

Let us remark that changing the sign of the right-hand side of the Poisson equation
−∂2U/∂x2 = −ρ(t, x), which corresponds to an attractive (gravitational) potential
obviously does not affect any argument, so all the previous results still hold in this
case.

It would be interesting to see if the same kind of arguments apply for studying the
multidimensional case. This analysis will be the topic of future related works [8]. We
point out that Lemma 2.11 can be easily generalized for a bounded domain Ω ⊂ R

N .
Indeed, if (X(s), V (s)), sin ≤ s ≤ sout is an arbitrary characteristic associated to a
regular field and u ∈ R

N with ‖u‖ = 1, then we have

d

ds
x(s) = v(s),

d

ds
v(s) = e(s), sin ≤ s ≤ sout,

where x(s) = (X(s), u), v(s) = (V (s), u), e(s) = (E(s,X(s)), u) for sin ≤ s ≤ sout.
Obviously, x(s) belongs to a bounded interval ω ⊂ R of length diam(ω) ≤ diam(Ω)
and ‖e‖L∞ ≤ ‖E‖L∞ . After performing the same computations as in section 2, we
get

| v(s1)− v(s2) | ≤ 2 · (2 · diam(ω))1/2 · ‖e‖1/2
L∞ , sin ≤ s1 ≤ s2 ≤ sout,

which can also be written as

|(V (s1)−V (s2), u)| ≤ 2·(2·diam(Ω))1/2·‖E‖1/2
L∞ , sin≤s1≤s2≤sout,∀ u ∈ R

N , ‖u‖=1,

and the conclusion follows.
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A MULTICLASS HOMOGENIZED HYPERBOLIC MODEL
OF TRAFFIC FLOW∗
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Abstract. We introduce a new homogenized hyperbolic (multiclass) traffic flow model, which
allows us to take into account the behaviors of different type of vehicles (cars, trucks, buses, etc.) and
drivers. We discretize the starting Lagrangian system introduced below with a Godunov scheme, and
we let the mesh size h in (x, t) go to 0: the typical length (of a vehicle) and time vanish. Therefore,
the variables—here (w, a)—which describe the heterogeneity of the reactions of the different car-
driver pairs in the traffic, develop large oscillations when h→ 0. These (known) oscillations in (w, a)
persist in time, and we describe the homogenized relations between velocity and density. We show
that the velocity is the unique solution “à la Kružkov” of a scalar conservation law, with variable
coefficients, discontinuous in x. Finally, we prove that the same macroscopic homogenized model is
also the hydrodynamic limit of the corresponding multiclass Follow-the-Leader model.

Key words. hyperbolic systems of conservation laws, traffic flow, multiclass models, homoge-
nization, discontinuous flux, uniqueness, hydrodynamic limit
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1. Introduction. In [1], Aw and Rascle developed a new macroscopic model of
traffic flow which allows us to avoid some inconsistencies of the models inspired by
the gas dynamic system. In [2], a connection is established between the microscopic
“Follow-the-Leader model,” and (a semidiscretization of) the macroscopic model in-
troduced in [1], which is its hydrodynamic limit.

In this paper, we introduce, still for a single lane traffic, a new macroscopic
homogenized hyperbolic model for multiclass traffic flow, described by a nonlinear
hyperbolic system of three conservation laws. For references regarding multiclass (or
multipopulation) models see, e.g., [6, 13, 17, 48]; see also [43] for inhomogeneous road
conditions and uniqueness results.

The starting system, written in Lagrangian mass coordinates, is the following:



∂tτ − ∂xv = 0,

∂tw = 0,

∂ta = 0,

(τ, w, a)(x, 0) = (τ0, w0, a0)(x),

(1.1)

where τ = 1/ρ is the specific volume, i.e., the inverse of the density of vehicles (i.e.,
of the fraction of space occupied by the cars), v is the velocity, and a ∈ [0, 1] is
a dimensionless coefficient, which allows us to take into account the behaviors of
different types of vehicles and/or of drivers. Here, w describes the difference (up to a
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06108 Nice Cedex 2, France (rascle@math.unice.fr).

949



950 P. BAGNERINI AND M. RASCLE

constant) between the velocity and some equilibrium velocity

w = v − V (τ, a),(1.2)

where (up to a constant) V (τ, a) is an “equilibrium” velocity for a given τ and for a
given class a. For simplicity, all the results are stated with w = v−V (τ, a) := v+aP (τ),
but they remain valid in the more general case described below.

The last two equations express the fact that w and a are characteristic of each
vehicle and therefore do not depend on time in Lagrangian coordinates.

In some sense, the model introduced in [1] was already multiclass, with each class
being described by its distance from the same equilibrium curve v = V (τ). Here we
add (at least) a second parameter a to let each equilibrium curve v = V (τ, a) depend
on each class. Of course, we could add more parameters, with the same results. We
could also take into account the length of cars by considering a nonuniform mesh in x.

We discretize the model (1.1) with the Godunov scheme: let Uh(·, ·) be the ap-
proximate solution for a discretization (∆x,∆t) and initial piecewise-constant data
U0
h . On the one hand, h is the step-size of the discretization, but, on the other hand,

h can be viewed as a scaling parameter (x, t) → (x′, t′) = (hx, ht). Assuming typically
that in each cell there is a unique vehicle, we thus consider a large number of vehicles
on a long stretch of the road, and the length of the vehicles vanishes as h → 0.

Practically, the distribution of the different types of car-driver pairs can be highly
oscillatory. We are thus led to studying a homogenized system: we consider a sequence
of initial data (v0

h, w
0
h, a

0
h, τ

0
h), with w0

h = v0
h − V (τ0

h , a
0
h), and h → 0. We assume

that the sequence (v0
h) converges boundedly almost everywhere to some v∗0 , whereas

(w0
h, a

0
h) and therefore τ0

h only converge weakly to (w∗
0 , a

∗
0) and τ∗0 .

Let us also emphasize the fact that this model, like the Follow-the-Leader mod-
els, is in principle a single lane model: no car can pass another car, and therefore the
velocities cannot be wildly oscillating, although some differences and even disconti-
nuities (braking, etc.) are permitted. Therefore it is natural to assume that v0 is a
function BV, i.e., with finite total variation.

By contrast, w0 and a0 can definitely oscillate: for instance, in rescaled coordi-
nates (x′, t′), a good prototype would be w0

h(x
′) := W0(x

′, x
′
h ) for some given function

W0 (or A0) of (x′, θ) oscillating (but not necessarily periodic) in θ. In what follows
we will drop the primes and write (x, t) instead of (x′, t′).

We then study the weak-star limit (v∗, w∗, a∗, τ∗) of the solution (vh, wh, ah, τh)
of the discretization of system (1.1)–(1.2) as h → 0. Using the notion a Young
measure [41] and compensated compactness theory, we study the propagation of these
initial oscillations: we show that the Young measure νx,t associated with the variables
(v, w, a) is a.e. a tensor product

νx,t = δ(v − v∗(x, t))⊗ µx(w, a),

where δ is the Dirac mass at the origin and µx(w, a) a probability measure defined
a.e. in Rx.

We prove that the approximate solutions Uh constructed by the Godunov scheme
satisfy a discrete Lax entropy inequality for any entropy convex with respect to τ , and,
under the CFL condition, converge as h = (∆t,∆x) → 0 to an entropy solution of the
homogenized system described below, in fact to some measure-valued solution [18].
The existence of such an mv-solution is thus trivial.

In the case where the above-mentioned functions W0 and A0 are periodic in the
second variable (and more regular in x) we recover the results on the homogenization
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of the corresponding Hamilton–Jacobi equation; see, e.g., [29], [32], [21] and the ref-
erences cited therein. Still in the periodic case, see also [19] for the construction of
corrector terms to the next order.

We then study the uniqueness of the solution. The main difficulty is that wh and
ah only converge weakly as h → 0, so that the Young measure νx,t is not a δ-function
in (w, a). Due to its special form, the system can be rewritten as the two trivial
equations ∂tw

∗ = ∂ta
∗ = 0, coupled with a scalar equation where the flux explicitly

depends on x, with a low regularity in x, so that we cannot use directly the uniqueness
result of Kružkov.

However, since the flux is strictly increasing in τ , we can exchange the roles of
x and t (and τ and v), so as to obtain an entropy inequality in conservative form,
without any additional term involving the x-derivative of the flux. Therefore, we do
not need stronger assumptions on the regularity of the flux with respect to x, and
we show uniqueness by a variant of the Kružkov “doubling of variables” argument, in
which we first “let y tend to x”, and then “let s tend to t”, as in [4].

Finally, last but not least, we consider the corresponding microscopic multiclass
“Follow-the-Leader model”:


τ̇j =

vj+1−vj
∆x ,

ẇj = v̇j − ∂V
∂τj

(τj , aj) = 0, ȧj = 0,

τj(0) = τ0
j , wj(0) = w0

j , aj(0) = a0
j ,

(1.3)

where vj is the speed of the vehicles at time t, ∆x the length of the vehicle, τj = 1/ρj
the local “specific volume around vehicle j,” and ρj the local density, whereas aj is a
coefficient which depends on the type of vehicle.

The function V is the same as in (1.2) and w has the same meaning. The last two
equations are due to the assumption that the coefficients (wj , aj) characterize each
vehicle and therefore do not change in time.

We can easily see, at least formally, that system (1.3) is a semidiscretization in
the space of the continuum model (1.1) in Lagrangian coordinates. In fact (see also
[2]), we establish rigorously in section 6 that the solution of (1.3) converges as ∆x → 0
to the unique entropy solution of the homogenized macroscopic model.

The outline of the paper is as follows. In section 2, we describe the model and the
Riemann problem. We also describe the scaling, and show in Remark 2.1 a prototype
of measure µx for “practical” applications. In section 3, we study the Godunov scheme
and the corresponding a priori estimates. In section 4, we first show in Theorem 4.2—
at least for a subsequence—the convergence to a (variant of) measure-valued solution
when (∆x,∆t) → (0, 0), with a fixed ratio and the CFL condition. In Theorem 4.3,
we then reformulate the limit system. The homogenized relation between τ and v is
now given by (4.6). The limit v is a solution “à la Kružkov” of the first equation of the
limit system, i.e., of the scalar equation (4.14) (with variable nonsmooth coefficients)
combined with (4.6) and the two trivial equations (4.5) for w and a. Finally, in section
5 we prove the uniqueness of this solution and in section 6 we show that we recover
(1.3) when ∆t → 0 and ∆x is fixed, and then we show that the solution of (1.3)
converges to the unique solution of the same homogenized model (4.14), (4.5), (4.6),
which is therefore the hydrodynamic limit of (1.3).

2. Description of the model. In this section, we describe the properties of
system (1.1), which we first write in Eulerian coordinates. We then study the Rie-
mann problem, before describing more precisely in section 3 the approximate solutions
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constructed by the Godunov scheme and the corresponding a priori estimates for all
h. We recall that h is a scaling parameter which tends to 0 (see section 2.4 below) so
the sequence (w0

h, a
0
h, τ

0
h) only converges weak-star in the L∞ space when h → 0.

2.1. The macroscopic model. Aw and Rascle [1] have introduced a macro-
scopic model of traffic flow which allows us to avoid the severe inconsistencies of
the so-called “second order” models, whose prototype is the Payne–Whitham model
[33, 47]. Then, in [2] (see also [23]) a rigorous connection is established between the
microscopic “Follow-the-Leader model” and a semidiscretization of the macroscopic
model introduced in [1] (see also [49]): namely, the macroscopic system can be viewed
as the limit of the microscopic Follow-the-Leader (ODE) system (resp. of its explicit
first order Euler (time) discretization) when ∆x → 0 (resp. when (∆x,∆t) → 0 with
a fixed ratio ∆t/∆x satisfying the CFL condition).

In this section, we extend this macroscopic model to describe a multiclass traffic
flow, in order to take into account the behaviors of different types of vehicles (cars,
trucks, buses, etc.) and drivers (slow, aggressive, etc.). In conservative form, the
model is written in Eulerian coordinates as


∂tρ+ ∂x(vρ) = 0,

∂t(ρw) + ∂x(vρw) = 0,

∂t(ρa) + ∂x(vρa) = 0,

(2.1)

where ρ denotes the (normalized) dimensionless density of vehicles, a ∈ [0, 1] a di-
mensionless coefficient which characterizes each type of vehicle-driver pair, and w is
defined by (1.2) with τ := 1/ρ: in other words, up to some constant, w describes the
difference between the actual velocity and the equilibrium one. In Lagrangian “mass”
coordinates (X,T ) [15], the system (2.1)–(1.2) can be rewritten using the form of
(1.1)–(1.2). We recall that

∂xX = ρ, ∂tX = −ρv, T = t, τ : = 1/ρ,

and that—even for a weak (entropy) solution (see [46])—systems (2.1) and (1.1) are
equivalent.

In our case (see [2]), since ρ is dimensionless, X =
∫ x

ρ(y, t)dy is not a mass, but
it describes the total length occupied by cars up to point x.

Now, when h → 0, system (1.1) is again preserved in the rescaled variables
(X ′, T ′) := (hX, hT ) (see section 2.4 below). We then drop the primes and even
rewrite (x, t) instead of (X ′, T ′).

Finally, in these rescaled Lagrangian variables, we consider system (1.1), with
τ := 1/ρ and w given by (1.2).

We assume that ∀a, V (·, a) is strictly increasing and strictly concave. A good
prototype of function V could be, up to a constant,

V (τ, a) = −[(1− a)P1(τ) + aP2(τ)], 0 ≤ a ≤ 1,

or even, more simply,

V (τ, a) = − aP (τ), 0 < amin ≤ a ≤ amax ≤ 1.(2.2)

Here, P (or P1, P2) satisfies the same assumptions as − V (·, a), i.e.,
P ′(τ) ≤ c1 < 0, P ′′(τ) ≥ c2 > 0.(2.3)
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Again, up to a constant, w describes a distance to equilibrium. Practically, a = amin

(resp. amax) would correspond to the slowest (resp. fastest) car-driver pairs and P1

and P2 to minimum and maximum equilibrium velocities for a given τ . Since V is
invertible in τ , we write

τ := T (v, w, a) := (V (·, a))−1(v − w) = P−1((w − v)/a).(2.4)

As we already said, all results below will be stated in the particular case (2.2), but
they remain valid in the more general situation (1.2). For concreteness, see [2]. A
practical example of function P (τ) is, up to a constant,

P (τ) :=

{
vref
γ

1
τγ , γ > 0,

−vref ln(τ), γ = 0,
(2.5)

where vref is a given reference velocity for all classes of vehicles (for instance 90 km/h).
Here the parameter γ has no physical meaning, but similar power laws appear, e.g.,
in the (strongly related) microscopic models [22, 24]; see section 6.

In the remainder of this article, unless explicitly stated, we work in Lagrangian
coordinates.

2.2. The Riemann problem. In order to introduce the Godunov method, we
first describe the solution of the Riemann problem for (1.1), i.e., of the initial value
problem (IVP), with particular data (τ0, w0, a0)(x) := (τ±, w±, a±) for ±x > 0.

The eigenvalues of the system (1.1) are

λ1 = − ∂V

∂τ
(τ, a) = aP ′(τ) < 0 = λ2 = λ3.

The system is strictly nonhyperbolic: the associated matrix is diagonalizable, and its
diagonal form is 


∂tv + aP ′(τ)∂xv = 0,

∂tw = 0,

∂ta = 0,

(2.6)

where v and (w, a) are the strict Riemann invariants, respectively, associated with
λ1 and λ2 = λ3 = 0. The eigenvalue λ1 is genuinely nonlinear (GNL), i.e., ∀U ,
∇Uλ1 · r1(U) = −a P ′′(τ) < 0, and λ2 = λ3 is linearly degenerate (LD), i.e., ∀U ,
∇Uλk · rk(U) ≡ 0, k = 2, 3.

We show that the solution of the Riemann problem associated to the system
(1.1), consists of two waves: these are a rarefaction or a shock wave associated with
λ1, followed by a contact discontinuity associated with λ2 = λ3 (see Figure 2.1).

The equivalent systems (1.1) and (2.1) are called Temple systems (in the extended
sense) (see [42]): their shock curves and rarefaction curves coincide. Therefore, in the
space of the Riemann invariants v, w, a, the wave curves are straight lines.

Proposition 2.1. We consider the Riemann problem

∂t


τ

w

a


− ∂x


v

0

0


 =


0

0

0


 ,

(τ, w, a)(x, 0) = (τ±, w±, a±) := U± for ± x ≥ 0.

(2.7)

The solution U(x, t) := (τ, w, a)(x, t) is as follows:
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v−, w−, a− v+, w+, a+

x/t = λ1

x/t = λ2 = λ3

v+

w−, a−

x

t

U−

U+

U0 w

a

v contact discontinuity

rarefaction or shock

R

Fig. 2.1. Riemann problem (here in the case of a 1-rarefaction wave) and invariant region.

(i) we connect U− to an intermediate constant state U0 = (τ0, w0, a0) such that
v0 = v+, w0 = w−, a0 = a−, by a 1-rarefaction if v+ > v− or by a 1-shock if
v+ < v−. We then connect U0 through U+ by a 2-3 contact discontinuity of
velocity 0, with v0 = v+.

(ii) Moreover, w and a only take the values (w−, a−) and (w+, a+), and remain
constant in time for each x. Now, v is a monotone function of x/t, with
min(v−, v+) ≤ v(x, t) ≤ max(v−, v+).

(iii) In a 1-wave, the specific volume τ varies in the same direction as v; i.e., it
is a monotone function of x/t. Finally, ∀x, τ is monotone with respect to t,
and ∀t ≥ 0,

min(τ−, τ0) ≤ τ(x, t) ≤ max(τ0, τ+).

(iv) Therefore, U(x, t) and v(x, t) remain in an invariant bounded region R, away
from the vacuum:

R := {(τ, w, a); (v, w, a) ∈ [vmin, vmax]× [wmin, wmax]× [amin, amax]},
(2.8)

with vmin (e.g. vmin = 0), vmax, wmin, wmax, amin, amax ≥ 0 some constants
and max{τ, (τ, w, a) ∈ R} < ∞ (in the case (2.2) we assume amin, amax > 0).

Proof. The proof is classical. The monotonicity of v is due to the fact that v only
takes the values v−, v+ and the wave curves are straight lines in the (v, w, a) space.
Finally, since (w, a) is constant in a 1-wave and P is monotone, τ = P−1((w − v)/a)
varies in the same sense as v.

The qualitative properties of the solution are as expected: braking corresponds
to a shock and accelerating to a rarefaction; no information travels faster than the
velocity of cars; the velocity and the density remain nonnegative and bounded, etc.

2.3. Entropies of the system. In what follows, since v = w+ V (τ, a), we will
sometimes denote the entropies,

η(v, w, a) = η(w + V (τ, a), w, a)
e.g.
= η(w − aP (τ), w, a),(2.9)

by η̃(U) = η̃(τ, w, a) or even—incorrectly—by η(τ, w, a), when this notation is not am-
biguous. In such a case ∂τη means ∂τη̃, so that, e.g., ∂τη(τ,w,a)=∂vη(v,w,a)(−aP ′(τ)).
There is no such problem for the entropy fluxes q, which only depend on v (see be-
low). Now we study the entropy-flux pairs (η, q) of the system (1.1). In terms of the
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variables (v, w, a), formally multiplying the left-hand side of (2.6) by (∂vη, ∂wη, ∂aη),
we obtain 


aP ′(τ)∂vη = ∂vq,

0 = ∂wq,

0 = ∂aq.

(2.10)

Therefore, the flux q associated with η only depends on the variable v, i.e., q ≡ q(v),
and all entropy-flux pairs are given by

η(v, w, a) =

∫ v

0

q′(s)
aP ′(τ(s, w, a))

ds+ η0(w, a), q = q(v)(2.11)

for any function η0 = η0(w, a) := η(w, a, 0) and q = q(v). By (2.9) and the first
equation (2.10), we obtain

∂τη(τ, w, a) = ∂vη(v, w, a) ∂τv(τ, w, a) =
1

aP ′(τ)
q′(v)(−aP ′(τ)) = −q′(v).(2.12)

Proposition 2.2. For all entropy η = η(τ, w, a), associated with the flux q ≡
q(v), we have the following:

(i) η is convex with respect to τ if and only if q ≡ q(v) is concave: q′′(v) ≤ 0.
(ii) Let U be the solution to the Riemann Problem (2.7). Then, for all entropy η

satisfying (i), we have

∂tη + ∂xq ≤ 0 in M(R × (0,∞)).(2.13)

Proof. (i) Differentiating η with respect to τ twice (with fixed (w, a)), and using
(2.12), we obtain

∂2
τη(τ, w, a) = ∂τ (−q′(v)) = ∂v(−q′(v)) ∂τv = q′′(v) a P ′(τ).

Therefore, η is convex if and only if q is concave, since a > 0 and P ′ < 0.
(ii) Through a 1-rarefaction wave and a 2-3 contact discontinuity, for x > 0,

(2.13) is an equality. Therefore, through a 1-shock wave, for x < 0, we have (w, a) =
(w−, a−). Using the Rankine–Hugoniot relations between U− and U = U0, the entropy
condition is equivalent to proving that

S(v) := Sv−(v) =
v− − v

τ − τ−
(η(τ, w, a)− η(τ−, w, a))− (q(v)− q(v−)) ≥ 0,

i.e., that S(·) is decreasing, since v < v− in a 1-shock and Sv−(v−) = 0. Since
τ = T (v, w, a) := P−1((w − v)/a), differentiating S with respect to v, we obtain

S′(v) =
−(τ − τ−)− (v− − v)∂T∂v

(τ − τ−)2
(η(τ, w, a)− η(τ−, w, a)) +

v− − v

τ − τ−
∂η

∂τ

∂T
∂v

− q′(v).

Using (2.12) and recombining the terms, we obtain

S′(v)=−η(τ−, w, a)−η(τ, w, a)−(τ− − τ)∂η∂τ
(τ−τ−)2

(
T (v−, w, a)−T (v, w, a)−(v−−v)

∂T
∂v

)
,

which is nonpositive since η is convex with respect to τ and T strictly convex with
respect to v.

We emphasize that we only need the convexity of η in τ , since (w, a) is constant
through a 1-shock, i.e., here for x < 0.
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2.4. Scaling. An example of µx. The macroscopic models are only valid if
we consider a large number of vehicles on a long stretch of the road. Therefore, we
introduce a scaling (zoom) such that the size of the domain and the number of vehicles
is going to infinity, whereas the length of the vehicles tends to 0 (see also [2]). Given
the Lagrangian coordinates x, t, we consider the new rescaled coordinates

x′ := hx, t′ := ht,

where h is a small parameter, which is proportional to the inverse of the maximal
possible number of cars per new unit length. In the new coordinates, x′, t′, the
variables ρ, τ and the Riemann invariants v, w, a are unchanged, whereas the length
of a vehicle becomes ∆x′ = h∆x, which tends to 0 as h → 0: in the new coordinates,
the convergence of the Godunov scheme to the entropy solution of (4.4) can be viewed
as the convergence of the microscopic system to the macroscopic model, when the size
of the road and the number of vehicles are going to infinity.

For instance, assume that the initial units are meters and seconds and the new
units are, 1500 m and 60 seconds, with ∆x = 5m. In the rescaled coordinates,
x′ := x/1500, t′ := t/60, so that a reference velocity of 90 km/h, i.e., 25 m/s, becomes
1 in the new units and the length of the car ∆x′ = 1/300, which is a “reasonable”
step-size.

In particular, a typical sequence of oscillating initial data (wh
0 , a

h
0 )(x) :=

(W0, A0)(x, hx) (and its limit in L∞ weak*) could be in the new coordinates

(w0
h, a

0
h)(x

′) = (W0, A0)

(
x′

h
, x′
)

⇀
h→0

(w∗
0 , a

∗
0)(x

′) = (〈µx, w〉, 〈µx, a〉) L∞ weak*,

where the Young measure µx will be introduced in section 4.1.
Remark 2.1. Typically, given a finite number N of classes ai, associated with

wi = vi − V (τi, ai), a possible choice of µx is given by

µx(w, a) =

N∑
i=1

µi(x)δwi,ai(w, a), with

N∑
i=1

µi(x) ≡ 1,

where the nonnegative coefficients µi(x) are the local proportion (possibly 0) of each
class of car-driver pairs and δ the Dirac measure. When we then compute an approx-
imation of the average velocity v∗ by the Godunov scheme, not only do we know the
average specific volume τ∗(x, t) =

∑N
i=1 µi(x)T (v∗(x, t), wi, ai) introduced in equation

(4.6), but also the specific volume τi (and then the density) of every class ai.

3. The Godunov scheme. Now we discretize system (1.1), which can be writ-
ten in general form as

∂tU + ∂xG(U) = 0,

with the Godunov scheme. We introduce a grid in time and space, with step-size
∆x and ∆t (related to a parameter h as indicated below) and grid point xj−1/2 and
tn. Let Ij be the open interval (xj−1/2, xj+1/2) and, ∀(∆x,∆t), with ∆t/∆x = C,
the sequence Uh := (τh, wh, ah) is the approximation by the Godunov scheme, given
∀n ≥ 0 by {

∂tτh − ∂xvh = 0, in R × (tn, tn+1),

∂twh = 0, ∂tah = 0,
(3.1)



A MULTICLASS HOMOGENIZED MODEL OF TRAFFIC FLOW 957

with vh := wh − ahP (τh) and with piecewise-constant initial data

Uh(x, t
+
n ) := (τh, wh, ah)(x, t

+
n ) :=

∑
j∈Z

(τnj , w
n
j , a

n
j )χj(x),

where χj(y) = 1 on (xj−1/2, xj+1/2) and 0 elsewhere. Let Un
j := (τnj , w

n
j , a

n
j ) denote

the average value of the function Uh(x, t) in the interval Ij , i.e.,

Un
j := (1/∆x)

∫
Ij

Uh(x, t
−
n )dx.

In every cell Ij×]tn, tn+1[, we compute the solution to the local Riemann problems
centered on the grid points xj±1/2, with initial data (Un

j , U
n
j+1). Let Gn

j+1/2 :=

G(Un
j , U

n
j+1) = (−vj+1, 0, 0) be the flux at point xj+1/2. The solution Un+1

j to the
Godunov scheme is given by

Un+1
j := Un

j − ∆t

∆x
(Gn

j+1/2 −Gn
j−1/2) = Un

j +
∆t

∆x
(vnj+1 − vnj , 0, 0).(3.2)

with vnj := wn
j − anj P (τnj ). Now, we assume that (∀h), ∀x ∈ R, Uh(x, 0) = U0

h(x) =

(τ0
h , w

0
h, a

0
h) ∈ R, where R is defined in (2.8), and for simplicity (see (4.1)), we also

assume that the sequence v0
h is bounded in BV (R), i.e.,

∑
j∈Z

|v0
j+1−v0

j | ≤ C0 < +∞.
This assumption is sufficient in practical life (just think of a road where the velocity
of cars is not in BV (R)!), but it is not necessary since λ1 is “GNL.” We do not assume
that the sequences w0

h and a0
h are bounded in BV .

The following theorem shows that the regionR defined in (2.8) is also invariant for
the Godunov scheme and gives estimates on the total variation of some components
of the solution. Under the above assumptions, we have the following.

Theorem 3.1. Let ∆x and ∆t satisfy the CFL condition. Then the following
hold:

(i) The region R remains invariant for the Godunov scheme.
(ii) ∀n ≥ 0, the total variation (in x) of vh(·, t) is nonincreasing in time, and the

total variation in t of ṽh(·, ·) is bounded on R × [0, T ]:

TVx(v
n
h ;R) :=

∑
j∈Z

|vnj − vnj+1| ≤ TV (v0
h;R) ,(3.3)

sup
h

sup
t≥0

TVx(vh(·, t);R) ≤ sup
h

TV (v0
h(·);R) := C0,(3.4)

sup
h

TVt(ṽh(·, ·);R × [0, T ]) ≤ C max(T,∆t) C0 ,(3.5)

where v0
h := vh(·, 0+) is the piecewise-constant approximation of the initial

datum v∗0(·), and

ṽh(x, t) ≡ vnj + (t− tn)(v
n+1
j − vnj )/∆t on Ij × (tn, tn+1),(3.6)

and similarly for τ̃h.
(iii) The total variation (in x) of τh(·, t) on ∪j∈ZIj and the total variation in t of

τ̃h(·, ·) on R × [0,∞[ are bounded, uniformly in h:

sup
h

sup
t≥0

∑
j∈Z

TVx(τh(·, t);∪j∈ZIj) ≤ C ′ C0,(3.7)

∀0 ≤ t ≤ t′, sup
h

TVt(τ̃h(·, ·);R × [t, t′]) ≤ C ′ max(|t′ − t|,∆t) C0.(3.8)

(iv) ∀x ∈ R, (wh, ah)(x, t) ≡ (w0
h, a

0
h)(x).
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Proof. (i) This part of the proof follows easily from the solution of the Riemann
problem in Proposition 2.1.

(ii) Adding and subtracting vnj+1 and recombining the terms in the sum, we obtain

TVx(v
n+1
h ;R) =

∑
j∈Z

|vn+1
j − vn+1

j+1 | ≤
∑
j∈Z

(|vn+1
j − vnj+1|+ |vnj+1 − vn+1

j+1 |)

=
∑
j∈Z

(|vn+1
j − vnj+1|+ |vnj − vn+1

j |).

Now, using the monotonicity property of v in the Riemann problem (see Proposition
2.1), we see that the average value vnj of v(·, tn+1) on Ij in the projection step belongs
to the interval I(vnj , v

n
j+1) (see Figure 2.1), and thus

|vn+1
j − vnj+1|+ |vnj − vn+1

j | = |vnj+1 − vnj |.
Therefore, we obtain

TVx(v
n+1
h ;R) ≤

∑
j∈Z

|vnj+1 − vnj | ≤ · · · ≤
∑
j∈Z

|v0
j+1 − v0

j | = TV (v0
h;R),

and for the same reason we obtain (3.4).
Concerning (3.5), since ṽh is piecewise-linear in time, vn+1

j ∈ I(vnj , v
n
j+1) for

t ∈ [tn, tn+1), with I(a, b) = [min(a, b),max(a, b)]. Therefore,

TVt(ṽh(x, ·); [0, T ]) =
∑
j∈Z

∑
n≤ T

∆t

|vn+1
j − vnj |∆x ≤

∑
j∈Z

∑
n≤ T

∆t

|vnj+1 − vnj |∆x

≤ T

∆t
∆xTV (v0

h;R) ≤ C max(T,∆t) C0,

(3.9)

where C = ∆x/∆t. See an alternate proof below with a uniform constant C.

(iii) Since in each cell Ij , τh(x, t) = T (vh(x, t), wj , aj) = P−1
(

wj−vh(x,t)
aj

)
, with

P−1 Lipschitz-continuous, we have

TVx(τh(·, t),∪j∈ZIj) =
∑
j∈Z

TVx(τh(·, t), Ij) ≤ ‖(P−1)′‖L∞(amin)
−1 C0

and similarly for (3.8).
(iv) This part of the proof is obvious.
Remark 3.1. We first note that, in general, the Godunov approximate solutions

do not satisfy such a BV estimate. The result is true here since in each cell (w, a) is
constant. We also note that the total variation in space of τh on ∪j∈ZIj is bounded,
whereas its total variation on R can be infinite, due to the jumps in x = xj+1/2 ∀j ∈ Z.
Finally, as to the total variation in time, we could proceed differently and use (3.4)
and the first equation in (3.2) to show first (3.8) and then (3.9) with in each case a
constant C independent of ∆x/∆t; see section 6.

Proposition 3.2. On any time interval [tn, tn+1), the solution Uh = (τh, wh, ah)
satisfies the discrete entropy inequality in the sense of Lax: for any entropy η(Uh)
convex with respect to τh and associated to the entropy flux q(Uh), for any n and j,

η(Un+1
j ) ≤ η(Un

j )− (∆t/∆x)(q(Un
j+1)− q(Un

j )).(3.10)
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Proof. Classically, on any time interval [tn, tn+1), Uh is the solution of the Rie-
mann problem (2.7) and satisfies the entropy inequality (2.13) in every cell Ij . The
Jensen inequality allows us to conclude this. We remark that, since (w, a) is constant
in each cell, we only need the convexity of η with respect to τ .

Finally, the sequence (Uh) is a sequence of approximate solutions to (1.1), associ-
ated for each h with the initial data U0

h . More precisely, we have the following.
Proposition 3.3.
(i) ∀h > 0, ∀ϕ ∈ D(Rx × R+) = C∞

0 ((Rx × R+),∫ ∞

0

∫
R

(τh∂tϕ− vh∂xϕ)(x, t)dxdt+

∫
R

τh(x, 0)ϕ(x, 0)dx

= −
∑
n≥1

∑
j∈Z

∫
Ij

(τnj − τh(x, t
−
n ))ϕ(x, tn)dx := 〈Lh, ϕ〉.

(3.11)

(ii) If the support of ϕ is compact in {0 ≤ t ≤ T}, then

|〈Lh, ϕ〉| ≤ (∆x)2‖∂xϕ‖L∞
∑
n≥0

∑
j∈Z

TVx(τh(·, t); Ij),(3.12)

|〈Lh, ϕ〉| ≤ C T ‖ϕ‖L∞ sup
n≤ T

∆t

∑
j

TVx(τh(·, t−n ); Ij).(3.13)

(iii) Therefore, Lh → 0 as h → 0 in D′(R × R) and ∀T > 0, the sequence (Lh) is
bounded in M(R × [0, T ]).

(iv) Concerning the entropy production, ∀η convex with respect to τ , associated
to the flux q, ∀ϕ ∈ D(R × R+), ϕ ≥ 0, we have∫ ∞

0

∫
R

(η(Uh)∂tϕ+ q(Uh)∂xϕ)(x, t)dxdt+

∫
R

η(Uh(x, 0))ϕ(x, 0)dx

≥ −
∑
n≥1

∑
j∈Z

∫
Ij

(η(Un
j )− η(Uh(x, t

−
n ))ϕ(x, tn)dx ≥ 0.

(3.14)

Consequently, ∀C2 the nonnegative entropy η associated with q such that x →
η(U0

h(x)) is integrable on R, ∂tη+∂xq is a bounded measure on R×R+, which
is nonpositive if η is convex with respect to τ .

Proof. The proof of (i), (ii), (iii) uses the classical arguments provided by the BV
estimates in the Theorem 3.1. In particular, the BV property of τh on ∪j∈ZIj (and not
on R) is sufficient for (3.12). On the other hand (3.13) shows that the functional Lh

is a bounded measure. The proof of (iv) classically combines the entropy inequality
for the Riemann problem (Proposition 2.2) and a discrete integration by parts (see
for instance [28]), as well as the obvious remark that any C2 function is the difference
of two C2 convex functions.

We are now ready to pass to the limit as h → 0.

4. The homogenized model: Existence of a solution.

4.1. The Young measure. In order to introduce into the model oscillations
describing the heterogeneity of the reaction of each car-driver pair in the traffic, we
consider a sequence of oscillating initial data (w0

h, a
0
h, τ

0
h) bounded in L∞(R). We

study the evolution in time of these initial oscillations for the approximate solution
(wh, ah, τh) constructed by the Godunov method.
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For a few references in the study of large amplitude oscillations in nonlinear
hyperbolic systems of conservation laws, we refer, e.g., to [18, 40, 35, 38, 10, 14, 34].

Here, we simply consider the measure-valued solution [18] associated with this
sequence of approximate solutions Uh. We consider that there is typically a unique
vehicle in every cell Ij , and we pass to the limit in the system (3.1) as h → 0, in
order to obtain a homogenized model. To describe the limit as h → 0 of τh, which is
a nonlinear function of the three variables vh, wh, ah, we need the concept of Young
measures.

Let us briefly recall the concept of Young measures associated with a sequence
un; see, e.g., [5, 41, 16, 30]. For any sequence un : R

N → R
p of measurable functions,

with values in a fixed compact set K ⊂ R
p, and such that un

∗
⇀ u∗ in L∞(RN )p,

there exists a subsequence of un, still denoted by un, and a family of probability
measures {νx}x∈RN , called Young measures, uniformly supported in K such that for
any f ∈ C(Rp;Rq), and for almost all x in R

N ,

f(un)
∗
⇀ f∗ �= f(u∗) in L∞(RN )q, with f∗(x) =

∫
RN

f(s)dνx(s) = 〈νx(·), f(·)〉.

From now on, we assume that the sequence of initial data, with values in R,
satisfies the following:

The whole sequence (w0
h, a

0
h, τ

0
h) converges in L∞ weak* to a unique limit

(w∗
0 , a

∗
0, τ

∗
0 ) whereas v

0
h → v∗0 boundedly a.e. as h → 0, with sup

h
TV (v0

h) ≤ C0.

(4.1)

Thus, we assume that ∀h, the total variation of the sequence v0
h is bounded from

above. As we already stated, this assumption is not necessary, since λ1 is GNL, but
it is more than sufficient for practical applications.

Here by Theorem 3.1, the sequence (vh, wh, ah) remains in the invariant region R.
Consequently, for any continuous function f , at least for a subsequence, the associated
Young measure νx,t satisfies

f(vh, wh, ah)(x, t)
∗
⇀ f∗ := 〈νx,t(v, w, a), f(v, w, a)〉,

where (v, w, a) are (dummy) integration variables and
∗
⇀ denotes the convergence in

L∞(R × R+) weak*. In particular, since τh = T (vh, wh, ah) = P−1((wh − vh)/ah),

τh
∗
⇀ τ∗(x, t) = 〈νx,t(w, a), T (v, w, a)〉 = 〈νx,t(w, a), P−1((w − v)/a)〉.(4.2)

In the following theorem, we show that νx,t is a tensor product of a Dirac measure
associated with v and a probability measure µx (depending only on x) associated with
(w, a).

Theorem 4.1. Let Uh = (vh, wh, ah) be constructed by the Godunov scheme.
We assume that U0

h is bounded in L∞(R) and (v0
h) bounded in BV (R). Then, by

assumptions (2.3) and (4.1), the following hold:
(i) Under the CFL condition, with ∆t/∆x = constant, as h → 0, there exists a

subsequence, still denoted by Uh, such that

(wh, ah)(x, t) ≡ (w0
h, a

0
h)(x)

∗
⇀ (w∗

0 , a
∗
0), τh(·, ·) ∗

⇀ τ∗(·, ·),
vh(·, ·) → v∗(·, ·) in L1

loc(R × R+) strong and in L∞(R × R+) weak*.
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(ii) In the variables (v, w, a), νx,t is a tensor product. More precisely, since λ1 is
genuinely nonlinear (GNL), even if v were not initially in BV (R), we have

νx,t = γx,t(v)⊗ βx,t(w, a) := δ(v − v∗(x, t))⊗ µx(w, a),(4.3)

where δ is the Dirac measure at 0 and µx does not depend on time.
(iii) In particular,

τh
∗
⇀ τ∗(x, t) = 〈µx(w, a), P

−1((w − v∗(x, t))/a)〉.
Proof. (i) This part of the proof follows directly from the L∞ and BV estimates

on Uh and vh.
Here is a first proof of (ii). The sequence (ṽh) has a uniformly bounded total

variation and is equicontinuous in time in the L1 space. Therefore it is strongly
convergent (at least for a subsequence) to some v∗(x, t), and therefore νx,t satisfies
(4.3).

A second proof, with no BV assumptions, is the following. Using Murat’s lemma
[31] and Proposition 3.3, we apply the div-curl lemma [41] to entropy-flux pairs (η1 =
η1(w, a), q1 ≡ 0) and (η2 =

∫ v
q′(s)/(aP ′(τ(s, w, a)))ds, q2), with arbitrary η1, q2.

Therefore, ∀η1, q2,

〈νx,t, η1(w, a)q2(v)〉 = 〈νx,t, η1(w, a)〉〈νx,t, q2(v)〉.

Therefore νx,t = γx,t(v) ⊗ µx(w, a). The associated measure µx depends only
on x, since w and a do not depend on t. Now, let [v1, v2] be the convex hull of the
support of γx,t, with v1 < v2. We want to prove that γx,t is a Dirac measure, i.e.,
that v1 = v2.

We again apply the div-curl theorem to entropy-flux pairs of “east-west type”
(ηε1, q

ε
1) and (ηε2, q

ε
2) (see [38]): e.g., we choose a smooth qε1 such that its support is

contained in (−∞, v̄1], where v̄1 = v1 + ε(v2 − v1), and such that qε1(v) → −H(v1 − v)
as ε → 0, with H the Heaviside function. Similarly, qε2(v) → H(v − v2).

Let ηε1,η
ε
2 be the associated entropies. Applying the div-curl theorem and passing

to the limit as ε → 0, we obtain〈
µx(w, a),

1

aP ′(T (v1, w, a))

〉
=

〈
µx(w, a),

1

aP ′(T (v2, w, a))

〉
,

which implies v1 = v2, since P ′(T (v, w, a)) is strictly monotone with respect to v.
(iii) This part of the proof is then obvious.

4.2. Existence of a weak entropy solution. In this section, we prove the
convergence of the Godunov scheme to a weak entropy solution to the initial value
problem for the homogenized system introduced below, as (∆t,∆x) → (0, 0) with a
fixed ratio satisfying the CFL condition.

Theorem 4.2.
Under the same assumptions as in Theorem 4.1, the following hold:
(i) At least for a subsequence, in fact for the whole sequence, the sequence (Uh)

constructed by the Godunov scheme converges to a weak solution of the system{
∂tτ

∗ − ∂xv
∗ = 0,

∂tw
∗ = 0, ∂ta

∗ = 0,
(4.4)
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with initial data {
τ∗0 = 〈µx(w, a), T (v∗0(x), w, a)〉,
w∗

0 = 〈µx(w, a), w〉, a∗0 = 〈µx(w, a), a〉,
(4.5)

and

τ∗(x, t) = 〈µx(w, a), T (v∗(x, t), w, a)〉 := T ∗(x, v∗(x, t)),(4.6)

where T is defined by (2.4).
(ii) The family of probability measures νx,t = δ(v − v∗(x, t)) ⊗ µx(w, a) is a

measure-valued (mv) solution in the following sense: for any entropy-flux
pair (η, q), defined by (2.11), with

η(v, w, a) := η̃(τ, w, a)
∣∣
τ=T (v,w,a)

(4.7)

and η̃ convex with respect to τ , i.e., q concave with respect to v (by Proposi-
tion 2.2 (i)); and for any test-function ϕ ≥ 0, we have∫ ∞

0

∫
R

(〈νx,t(v, w, a), η(v, w, a)〉∂tϕ+ 〈νx,t, q(v)〉∂xϕ) dxdt

+

∫
R

〈νx,0(v, w, a), η(v, w, a)〉 ϕ(x, 0) dx ≥ 0.

(4.8)

(iii) Applying (4.8) to arbitrary entropy-flux pairs (η(w, a), 0), we recall that
µx,t(w, a) ≡ µx(w, a) satisfies (4.5). In addition, ∀ϕ ≥ 0, ∀k ∈ R, we have

∫ ∞

0

∫
R

(〈µx(w, a), |T (v∗(x, t), w, a)−T (k,w, a)|〉∂tϕ− |v∗(x, t)− k|∂xϕ)dxdt

+

∫
R

〈µx(w, a), |T (v∗0(x), w, a)− T (k,w, a)|〉ϕ(x, 0)dx ≥ 0.

(4.9)

Proof. We first prove this theorem for a subsequence. The uniqueness Theorem
5.2 will then imply the same results for the whole sequence.

(i) We write the first equation of (4.4) in the weak form as

〈L,ϕ〉 :=
∫ ∞

0

∫
R

(τ∗∂tϕ− v∗∂xϕ)dxdt+
∫

R

τ∗0 (x)ϕ(x, 0)dx = 0.(4.10)

We add and subtract in (4.10) the term 〈Lh, ϕ〉 of (3.11), to obtain

〈L,ϕ〉 =
∫ ∞

0

∫
R

(τ∗ − τh)∂tϕ dxdt−
∫ ∞

0

∫
R

(v∗ − vh)∂tϕ dxdt

+

∫
R

(τ∗(x, 0)− τh(x, 0))ϕ(x, 0)dx+ 〈Lh, ϕ〉.

Of course the first three integrals converge to 0 in L∞(R×R+) weak*, due to Theorem
4.1, and, by (3.12), the term 〈Lh, ϕ〉 tends to 0 as h → 0.

(ii) Inequality (4.8) is obtained by passing to the weak* limit in (3.14), using the
L1 equicontinuity in time of ṽh or τ̃h, see Proposition 5.1.
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(iii) Now, we choose in (4.8) the entropy η(v, w, a) = |τ − P−1((w − k)/a)| =
|T (v, w, a)−T (k,w, a)|, associated with the concave flux (−|v− k|). Using the infor-
mation (4.3) on the structure of νx,t, we obtain (4.9).

The above theorem describes the point of view of measure-valued solutions; see
again [18, 40, 35], etc. We note that the uniqueness results of Di Perna and Szepessy
are not directly applicable here (see Remark 5.2).

Now, the structure of µx,t ≡ µx is obvious, whereas the evolution of δ(v−v∗(x, t))
turns out to be governed by a scalar conservation law, whose flux depends on x in a
nonsmooth way through µx. The striking fact is that, due to the strict monotonicity
of function T (·, w, a), we can do two things:

(i) the map {v∗ → T ∗(x, v∗) := τ∗ = 〈µx, T (v∗, w, a)〉 is strictly increasing, and
(therefore) invertible. We define V(x, τ∗) = v∗.

(ii) On the other hand, in (4.8), we can “take the absolute value out of the integral
with respect to µx.” Therefore (4.8) looks like the Kružkov entropy inequality
for the scalar equation (4.14) below. We consider all the entropy-flux pairs
of the form H(x, v∗) = H̃(x, τ∗), Q(v∗), “conservative” in the sense that, for
any smooth solution of (4.14),

∂tH(x, v∗) + ∂xQ(v∗) = 0,

without any additional term. Moreover, we can show as in section 2.3 that

∂H̃

∂τ
(x, τ∗) =

∂H

∂v
(x, v∗)

1
∂T ∗
∂v (x, v∗)

= −Q′(v∗),(4.11)

and that H̃(x, τ∗) is convex in τ∗ if and only if Q(v∗) is concave. Therefore,
all these entropy-flux pairs are given by

H(x, v∗) = H0(x)−
∫ v∗

0

Q′(s)
∂T ∗

∂v
(x, s)ds = H̃(x, τ∗), Q ≡ Q(v∗),(4.12)

with arbitrary functions Q(v) and H0(x) = H(x, 0).
Theorem 4.3.
(i) The first equation of system (4.4) can be rewritten as a scalar equation with

a flux depending explicitly on x as

∂tτ
∗ + ∂xV(x, τ∗) = 0,(4.13)

or in the more convenient form as

∂tT ∗(x, v∗)− ∂xv
∗ = 0.(4.14)

Therefore, the weak solution of system (4.4) satisfies (4.14), (4.6).
(ii) Using the monotonicity in v∗ of T ∗(x, v∗), v∗ is also a weak solution “à la

Kružkov” of (4.14): ∀k in R, (4.9) is equivalent to∫∫
(|T ∗(x, v∗)− T ∗(x, k)|∂tϕ− |v∗ − k|∂xϕ)dxdt(4.15)

+

∫
R

|T ∗(x, v∗0)− T ∗(x, k)|ϕ(x, 0)dx ≥ 0.
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(iii) For any such entropy H(x, v∗) = H̃(x, τ∗) convex in τ∗, associated to a con-
cave Q(v∗) by (4.12), let η be given by (2.11), with the same q ≡ Q. Then,
for any test-function ϕ ≥ 0, we have

H(x, v∗) = 〈νx,t(v, w, a), η(v, w, a)〉 = 〈µx(w, a), η(v
∗(x, t), w, a)〉,(4.16)

∫ ∞

0

∫
R

(H(x, v∗) ∂tϕ−Q(v∗) ∂xϕ)dxdt+
∫

R

H(x, v∗0)ϕ(x, 0)dx ≥ 0.(4.17)

Proof. (i) This part of the proof is obvious.
(ii) Using the fact that T is increasing in v∗, we see that ∀(w, a),

sign(T (v∗, w, a)− T (k,w, a)) = sign(v∗ − k)

does not depend on (w, a), so that

〈µx(w, a), |T (v∗, w, a)− T (k,w, a)|〉
= sign(v∗ − k)〈µx(w, a), T (v∗, w, a)− T (k,w, a)〉 = |T ∗(x, v∗)− T ∗(x, k)|.

(iii) Let η be defined by (2.11). Using (4.11) and differentiating the integral with
respect to v, one can show that necessarily

H(x, v∗)−H0(x) =

∫ v∗

0

∂H

∂v
(x, s)ds =

∫ v∗

0

−Q′(s)
∂T ∗

∂v
(x, s)ds

=

∫ v∗

0

−Q′(s)
∂

∂v
〈µx(w, a), T (s, w, a)〉 ds =

〈
µx(w, a),

∫ v∗

0

−Q′(s)
∂T
∂v

(s, w, a)ds

〉

= 〈µx(w, a), η(v
∗, w, a)〉.

Substituting the expression of (4.16) into (4.8), we obtain (4.17).
Remark 4.1. Therefore we have proved (4.8) and (4.17), respectively, for any

entropy η(v, w, a) and for the homogenized entropy H(x, v∗) convex in τ . Thus these
two quantities satisfy the corresponding entropy inequalities, but there is a priori no
obvious relation between them, since η(v, w, a) = η̃(τ, w, a) is only convex in τ , with
no convexity assumption in (w, a): (4.16) holds true, but in general

H(x, v∗) = 〈µx(w, a), η(v
∗, w, a)〉 �= η(〈νx,t, (v, w, a)〉) = η(v∗, w∗, a∗).

5. Uniqueness of the solution. We are interested in the homogenized model
(4.4)–(4.6). The existence of an entropy solution of (4.4) follows directly from the
convergence of the Godunov method in Theorem 4.2.

Concerning uniqueness, knowing the measure µx, we have written the first equa-
tion of system (4.4)–(4.6) as the scalar equation (4.13) with a flux depending explicitly
on x. The low regularity in x of the flux does not allow us to directly use the unique-
ness result of Kružkov [27].

For references on the uniqueness of the solution for scalar conservation laws with
a flux discontinuous in x, see, e.g., [4, 26, 25, 44, 37], and concerning Temple systems,
e.g., [12, 3, 11, 8, 9], but these references are not applicable in this homogenized case.
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Since in (4.14) the function T ∗(x, v∗) (explicitly depending on x) appears in the
derivative with respect to t, we have exchanged the roles of x and t so that inequal-
ity (4.15) is in conservative form, even though the flux depends on x. Therefore,
assumptions on the x-regularity of the flux of (4.13) are not required.

The following proposition gives the L1-continuity in time of τ∗, which will be
useful for the uniqueness of the solution.

Proposition 5.1. Let (τ̃h, ṽh) be the approximate solution defined in (3.1), (3.6)
of system (1.1), with τ∗0 ∈ L∞(R) and v∗0 ∈ L∞(R) ∩ BV (R). Then, at least for a
subsequence,

ṽh → v∗ in C0([0, T ];L1
loc(R)),(5.1)

‖τ∗(·, t)− τ∗0 (·)‖L1
loc(R) ≤ Cmax(t,∆t) V Tx(v

∗
0(·);R),(5.2)

and then

‖τ∗(·, t)− τ∗0 (·)‖L1
loc(R) → 0 as t → 0.

Proof. Let X = BV (R) and B = L1
loc(R). The sequence (ṽh) is bounded

in L∞(0, T ;X) by (3.4). On the other hand, ∀ compact subsets K of R, vh ∈
C([0, T ];L1(K)), and by (3.8),

‖ṽh(·, t′)− ṽh(·, t)‖L1(K) ≤
∫
K

∫ t′

t

|∂sṽh(x, s)|dsdx = ‖∂tṽh‖L1(t,t′;L1
loc(R))

= TVt(ṽh(x, ·); [t, t′]) ≤ C ′ max(|t′ − t|,∆t),

(5.3)

where C ′ depends on TV (v∗0(·);R). By a theorem of Simon ([39], Thm. 3), the se-
quence ṽh(·, t) is relatively compact in C([0, T ];L1

loc(R)), which implies (5.1). Passing
to the limit as h → 0 in (5.3), with t′ = 0+, since T (or P−1) is L-Lipschitz continuous
and τ∗(·, 0+) = τ∗0 (·), we obtain

‖τ∗(·, t)− τ∗0 (·)‖L1
loc(R) ≤ L‖v∗(x, t)− v∗0(·)‖L1

loc(R) ≤ L C ′ t → 0 as t → 0.

Theorem 5.2. We consider the scalar equation (4.14), (4.6) (or the equivalent
equation (4.13), (4.6), due to the monotonicity in v∗ of T ∗), with initial data (4.5)
and under the assumption that V , defined by (1.2), is strictly increasing and strictly
concave. We also assume that (τ∗0 , w

∗
0 , a

∗
0) ∈ L∞(R), v∗0 ∈ L∞(R)∩BV (R), and (4.1).

Then, there is a unique weak entropy solution “à la Kružkov” v∗ of problem (4.14),
(4.6), (4.5).

Therefore the whole sequence (τh, wh, ah, vh) converges to the unique limit of the
system described in Theorem 4.2.

In the proof, we will need the following lemma, in which we write v instead of v∗.
Lemma 5.3. Let T ∗(X, v(Y, t)) := 〈µX(w, a), T (v(Y, t), w, a)〉 with T Lipschitz

with respect to v ∈ L1
loc(R × R+). Then we have, for almost all X in R and t in

(0,+∞),

lim
h→0

1

h

∫
|Y |≤h

|T ∗(X ± Y, v(X ± Y, t))− T ∗(X, v(X, t))| dY = 0,
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where the two signs ± can be chosen independently.
Proof. The result would be wrong for a general function of two variables. It holds

true here since, roughly speaking, T ∗(X, v(Y, t)) “looks like” a product f(X)g(Y, t).
Here, we write λ instead of (w, a). For almost all (fixed) t, we first choose the

precise representing function of v(·, t) ([20] p. 46), which is precisely defined at every
Lebesgue point for {y �→ v(y, t)}, and identically equal to 0 on the null set N1 := N1(t)
of points y which are not Lebesgue points for this function. Similarly, (see, e.g., [5]),
we “remove” a null set N2 := N2(t) of points x such that either µx is not a probability
measure or x is not a Lebesgue point for the L1

loc function

{x �→ Fv(x, t) := T ∗(x, v(x, t)) := 〈µx(λ), T (v(x, t), λ)〉},(5.4)

with the same (fixed) t. We see that the set {(x, x), x ∈ N1∪N2} is a (one dimensional)
null set. Therefore, each x /∈ N1(t) ∪ N2(t) is simultaneously a Lebesgue point for
the two functions of one variable (5.4) and {y �→ Gv(x, y, t) := 〈µx(λ), T (v(y, t), λ)〉}.
In particular, ∀x /∈ N1(t) ∪ N2(t), Gv(x, x, t) = Fv(x, t). The same result would be
true if T were only continuous; see, e.g., [7] for the related notion of Caratheodory
functions.

Therefore, we have for instance

lim
h→0

1

h

∫
|Y |≤h

|T ∗(X + Y, v(X − Y, t))− T ∗(X, v(X, t))| dY

= lim
h→0

1

h

∫ |〈µX+Y (λ), T (v(X − Y, t), λ)〉 − 〈µX(λ), T (v(X, t), λ)〉 dY

≤ lim
h→0

1

h

∫ {|〈µX+Y (λ), T (v(X − Y, t), λ)〉 − 〈µX+Y (λ), T (v(X, t), λ)〉|

+|〈µX+Y (λ), T (v(X, t), λ)〉 − 〈µX+Y (λ), T (v(X + Y, t), λ)〉|

+|〈µX+Y (λ), T (v(X + Y, t), λ)〉 − 〈µX(λ), T (v(X, t), λ)〉|} dY

≤ lim
h→0

1

h

∫ {〈µX+Y (λ), L|v(X − Y, t)− v(X, t)|+ L|v(X, t)− v(X + Y, t)|〉

+|〈µX+Y (λ), T (v(X + Y, t), λ)〉 − 〈µX(λ), T (v(X, t), λ)〉|} dY

≤ lim
h→0

1

h

∫ {L|v(X − Y, t)− v(X, t)|+ L|v(X, t)− v(X + Y, t)|

+|〈µX+Y (λ), T (v(X + Y, t), λ)〉 − 〈µX(λ), T (v(X, t), λ)〉|} dY.

(5.5)

Therefore, almost everywhere in t, for any X /∈ N1(t) ∪ N2(t), the integrals in (5.5)
converge to 0 as h → 0.

Remark 5.1. Integrating the result of Lemma 5.3 with respect to X and applying
the Lebesgue theorem, the corresponding double integrals in (X,Y ) converge to 0 as
h tends to 0. This new result does not explicitly involve the above Lebesgue points
and could be also proved [45] as follows: approximate the function {v : y �→ v(y, t)}
by a sequence of smooth functions (vn) for which there is no ambiguity: a.e. in x,
∀n, Fvn(x, t) = Gvn(x, y, t)|y=x. Then, justify the result for each vn, and pass it to
the limit as n → ∞.
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Proof of Theorem 5.2. We consider two weak entropy solutions, σ and τ , of
(4.13) (or two solutions u and v of (4.14)) which satisfy the entropy inequality (4.15).
In this proof, we write σ, τ, u, v, T , . . . instead of σ∗, τ∗, u∗, v∗, T ∗, . . . . We have∫

R

∫ ∞

0

|T (x, u(x, t))− T (x, k)|φt(x, t)− |u(x, t)− k|φx(x, t) dx dt ≥ 0,(5.6) ∫
R

∫ ∞

0

|T (y, v(y, s))− T (y, l)|φs(y, s)− |v(y, s)− l|φy(y, s) dy ds ≥ 0,(5.7)

where φ ≥ 0 is a test-function ∈ C∞
0 (R×(0,+∞)). Following Kružkov [27], we obtain

classically

∫
R

∫ ∞

0

∫
R

∫ ∞

0

{|T (x, u(x, t))− T (x, v(y, s))|φt + |T (y, v(y, s))− T (y, u(x, t))|φs

−|u(x, t)− v(y, s)|(φx + φy)} dx dt dy ds ≥ 0.

(5.8)

We choose

φ(x, t, y, s) = ψ

(
x+ y

2
,
t+ s

2

)
δh

(
x− y

2

)
δk

(
t− s

2

)

for any function ψ and where {δh}h≥0 and {δk}k≥0 are the usual regularizing se-
quences, with bounded support in (−h, h), with 0 ≤ δ1(·) ≤ 1. Denoting by

X =
x+ y

2
, T =

t+ s

2
, Y =

x− y

2
, S =

t− s

2
,(5.9)

we rewrite (5.8) as

1

2

∫
{|T (x, u(x, t))− T (x, v(y, s))|+ |T (y, v(y, s))− T (y, u(x, t))|}ψT δh(Y ) δk(S)

+{|T (x, u(x, t))− T (x, v(y, s))| − |T (y, v(y, s))− T (y, u(x, t))|} ψ δh(Y ) δ′k(S)
−|u(x, t)− v(y, s)| ψX(X,T ) δh(Y ) δk(S) dx dt dy ds := (I1 + I2) + (I3 − I4)−I5 ≥ 0.

We now proceed in the same spirit as [4]: we let h and k tend to 0 separately.

We only show the convergence of (I3 − I4) := (Ik,h3 − Ik,h4 ), for which it is crucial to
first let h tend to 0, since this term involves δ′k(S). The proof for the other terms is
similar. Writing (I3 − I4) in variables (X,Y, t, s), adding and subtracting the term

I6 :=

∫
|T (X,u(X, t))− T (X, v(X, s))|ψ(X, (t+ s)/2)δh(Y )δ′k((t− s)/2)dXdY dtds,

we first obtain

|I3 − I4| ≤ |I3 − I6|+ |I6 − I4|.
Then, using the relation ||a− b|− |c−d|| ≤ |a− b− (c−d)| ≤ |a− c|+ |b−d|, we have

|I3 − I6| ≤ 1

h

∫
|Y |≤h

{|T (X + Y, u(X + Y, t))− T (X,u(X, t))|

+ |T (X + Y, v(X − Y, s))− T (X, v(X, s))|}|ψ(X, (t+s)/2)|δ′k((t−s)/2) dY dX dt ds,

(5.10)
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and similarly,

|I6 − I4| ≤ 1

h

∫
|Y |≤h

{|T (X − Y, v(X − Y, s))− T (X, v(X, s))|

+ |T (X − Y, u(X + Y, t))− T (X,u(X, t))|}|ψ(X, (t+s)/2)|δ′k((t−s)/2) dY dX dt ds.

(5.11)

By Lemma 5.3, for any fixed k > 0, a.e. in (s, t,X), the integrals in Y corre-
sponding to the above integrals tend to 0 as h → 0. Applying then the Lebesgue
dominated convergence theorem, the corresponding integrals in (X,Y ), and finally in
(X,Y, t, s), also tend to 0 as h → 0 for any fixed k. A fortiori,

lim
k→0

(
lim
h→0

(Ik,h3 − Ik,h4 )

)
= lim

k→0
(0) = 0.

Therefore, this singular term (I3 − I4) vanishes at the limit, contrary to the other
terms for which we again apply the Lebesgue theorem when k tends to 0.

Then, we have shown that, for any ψ ≥ 0 (we now write (x, t) instead of (X,T )
and T ∗ instead of T ),

∫
R

∫ ∞

0

|T ∗(x, u(x, t))− T ∗(x, v(x, t)|ψt(x, t)− |u(x, t)− v(x, t)|ψx(x, t) dx dt ≥ 0.

(5.12)

Now, we classically choose the test-function ψ(x, t) in (5.12) as a regularization of the
characteristic function of the set Ω = {(T,X); t1 ≤ T ≤ t2, |X| ≤ R − NT} for any
R > 0. Using the L1-continuity in time of the solution at t = 0 (see Proposition 5.1),
we obtain the L1 contraction property

∫
R

|T ∗(x, u(x, t))− T ∗(x, v(x, t)| dx ≤
∫

R

|T ∗(x, u(x, 0))− T ∗(x, v(x, 0)| dx; i.e.,

∫
R

|σ(x, t)− τ(x, t)| dx ≤
∫

R

|σ(x, 0)− τ(x, 0)| dx,

and therefore we have shown the uniqueness of the solution for a given τ(·, 0).
Remark 5.2.
(i) First, we have established here the L1 contraction for equations (4.14), (4.6),

with only L∞ assumptions in µx and v∗(x, t). We have essentially used the
strict monotonicity of T (·, w, a), which allows us to exchange the role of x
and therefore those of τ and v. After this exchange, the stationary solutions
uζ(x) introduced in [4] to solve the equation

∂tu+ ∂xF (x, u) := ∂tu+ ∂xf(v(x), u) = 0

arise much more naturally: compare (4.15) with formula (60) in [4].
(ii) On the other hand, the uniqueness results on measure-valued solutions of Di

Perna [18] and Szepessy [40] are (at least) not directly applicable here, since we
deal with a system: the Young measure νx,t = δ(·−v∗(x, t))⊗µx(·, ·) involves
several variables, which do not play the same role. Here, we wanted to prove
the uniqueness of v∗ for a given µx. Note that for instance, convolving in
(x, t) such a measure νx,t does not preserve its tensor product structure.
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6. The microscopic model.

6.1. Introduction of the model. Microscopic models of vehicular traffic are
usually based on so-called Follow-the-Leader models [22, 24], which usually consist,
in Eulerian coordinates, of a system of second order ordinary differential equations.
The basic idea is that the acceleration at time t depends on the relative speeds of the
vehicle and its leading vehicle at time t and the distance between the cars.

The system in (1.3) is a Follow-the-Leader type of model in which the function
V also depends on the coefficients aj , characteristic of the different types of vehicles
and their heterogeneous response to their leading vehicle.

At least formally, the system (1.3) is clearly a semidiscretization in space of the
macroscopic model in Lagrangian coordinates (1.1). In the following sections, we will
give a rigorous justification that (1.3) converges to the entropy solution of (4.4)–(4.6)
as ∆x → 0.

6.2. First order Euler time approximation. We consider the infinite system
of ordinary differential equations (1.3), which is written in general form as{

dU(t)
dt = F (U(t)),

U(0) = U0,
(6.1)

where U := (U1, U2, . . . , Uj , . . . ) and F (U) = (F1(U), F2(U), . . . , Fj(U), . . . ), with
Uj := (τj , wj , aj) and

Fj(U) :=

(
vj+1 − vj

∆x
, 0, 0

)
=

(
wj+1 − wj

∆x
− aj+1P (τj+1)− ajP (τj)

∆x
, 0, 0

)
.

We introduce the first order explicit Euler discretization in time:

τn+1
j = τnj + ∆t

∆x (vnj+1 − vnj ),

wn+1
j = wn

j ,

an+1
j = anj .

(6.2)

In the following theorem, we prove that, for any fixed ∆x, the previous discretiza-
tion is stable and consistent and therefore convergent as ∆t → 0 to U∆x(x, t) :=∑

j∈Z
Uj(t)χj(x), where χj is the characteristic function of the interval Ij . We also

show that the microscopic multiclass model (1.3) is the semidiscretization of the La-
grangian system (1.1).

Theorem 6.1. We consider the system (6.2), with initial data U0
j = (τ0

j , w
0
j , a

0
j )

in the invariant region R defined by (2.8), away from vacuum. We assume that the
initial data are constant for x large enough so that there is a “first” vehicle. Then,
the following hold:

(i) The operator F is Lipschitz-continuous in the l∞ space. Therefore the initial
value problem (1.3) has a unique solution U(t), globally defined in time.

(ii) The first order approximation (6.2) is stable and consistent in l∞. There-
fore the sequences Un

j := (τnj , w
n
j , a

n
j ) and vnj converge as ∆t → 0, for any

fixed ∆x. Moreover, their limits U∆x(x, t) and v∆x(x, t) stay in the region R
and satisfy the uniform L∞ and BV estimates inherited from the Godunov
scheme. The microscopic model (1.3) is then the semidiscretization of the
macroscopic system (1.1), (1.2).
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(iii) Uj(t) satisfies a semidiscrete entropy inequality, i.e., for any entropy η convex
with respect to τj, and associated to the entropy flux q and for any j,

dη(Uj(t))

dt
+ (1/∆x)(q(Uj+1(t)))− q(Uj(t)))) ≤ 0.(6.3)

Proof. (i) The proof is obvious, by the Cauchy–Lipschitz theorem.

(ii) Since F is Lipschitz continuous, by adapting classical results, (see, e.g., [36]),
we can show that the Euler approximation (6.2) is stable and consistent and therefore
convergent when ∆t → 0.

On the other hand, since the first order approximation (6.2) coincides with the
Godunov scheme (3.2), Un

j and vnj stay in the same bounded invariant region R and
satisfy the L∞ and BV estimates in x for v (resp. in t for τ and v) as in Theorem 3.1.
In the latter case, we slightly modify the proofs of (3.4) and (3.8) to obtain constants
C independent of the ratio ∆x/∆t, as indicated in Remark 3.1.

(iii) Since for each j the sequence vnj converges as ∆t → 0 to vj(t) for t = n∆t,
q(vnj ) is also convergent. On the other hand, since wj , aj are constant in the cell Ij ,
we have for each j

η(Un
j ) = η(τnj , w

n
j , a

n
j ) = η(T (vnj , w

n
j , a

n
j ), w

n
j , a

n
j ) → η(τj(t), wj(t), aj(t)).

Finally, (iii) is obtained by passing to the limit in the fully discrete entropy inequality
(3.10).

6.3. Hydrodynamic limit of the microscopic multiclass model. We re-
write (6.1) in the form {

dUj(t)
dt +

G(Uj+1(t))−G(Uj(t))
∆x = 0,

Uj(0) = U0
j ,

(6.4)

with G(Uj) := (−vj , 0, 0) = (−(wj − ajP (τj)), 0, 0). We now show that the entropy
solution of the system (4.4) is the limit as ∆x → 0 (i.e., when the number of ve-
hicles goes to infinity) of the solution of the infinite-dimensional system of ordinary
differential equations (6.4).

Theorem 6.2. Under the same assumptions as in of Theorem 6.1, when ∆x →
0, the whole sequence U∆x converges in L∞ weak* (and almost everywhere for the
velocity) to the unique entropy weak solution of the macroscopic system (4.4)–(4.6).

Proof. Multiplying (6.4) by an arbitrary test-function ϕ(x, t) and performing a
discrete integration by parts (see, e.g., [28]), we have

I∆x :=

∫ ∞

0

∑
j

∫
Ij

Uj(t)∂tϕdxdt−
∫ ∞

0

∑
j

G(Uj(t))

(∫
Ij

ϕ(x, t)−ϕ(x−∆x, t)

∆x
dx

)
dt

+
∑
j

∫
Ij

U0
j ϕ(x, 0) dx = 0.

Due to the uniform L∞ estimates (see Theorem 6.1) at least for a subsequence,
U∆x(x, t) converges in L∞(R × R+) weak* to some function U∗∗(x, t) when ∆x → 0.
Moreover, by compactness, G(U∆x(., .)) = (−v∆x(., .), 0, 0) → (−v∗∗, 0, 0) in L1

loc
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strongly when ∆x → 0. Therefore we obtain at the limit

∫ ∞

0

∫
R

U∗∗(x, t)∂tϕ dx dt+

∫ ∞

0

∫
R

G(U∗∗(x, t))∂xϕ dx dt+

∫
R

U∗
0 (x)ϕ(x, 0) dx = 0,

which shows that U∗∗ is a weak solution of (4.4).
Due to the uniform BV estimates on v∆x, the Young measure associated with

the sequence (v∆x, w∆x, a∆x) is still a tensor product γx,t(v) ⊗ βx,t(w, a) = δ(v −
v∗∗(x, t))⊗ βx,t(w, a) as in (4.3), with the same initial data (v∗0 , w

∗
0 , a

∗
0) as in section

4.2, since we have assumed in (4.1) that all the sequence (v0
h, w

0
h, a

0
h) converges to

(v∗0 , 〈µx, w〉, 〈µx, a〉) as h → 0. Therefore βx,t(w, a) ≡ βx(w, a) ≡ µx(w, a). Now
integrate by parts in the semidiscrete entropy inequality (6.3), ∀ϕ ≥ 0:

∫ ∞

0

∑
j

∫
Ij

η(Uj(t))∂tϕ dx dt+

∫ ∞

0

∑
j

q(Uj(t))

(∫
Ij

ϕ(x, t)− ϕ(x−∆x, t)

∆x
dx

)
dt

+
∑
j

∫
Ij

η(U0
j )ϕ(x, 0) dx ≥ 0,

and pass to the limit as ∆x → 0. Note that q(U∆x(·, ·)) → q(U ∗ (·, ·)) strongly,
whereas, as in section 4, η(U∆x(·, ·)) converges weakly to 〈µx, η(T (v ∗ ∗(x, t), w, a)〉.
Finally, as in Proposition 5.1, the L1 equicontinuity in time is preserved for the
sequence η(U∆x) when ∆x tends to 0. Therefore, the limit v∗∗ satisfies (4.8) and
the (Kružkov) entropy condition (4.15). Consequently, by the uniqueness result of
Theorem 5.2, v∗∗ = v∗ almost everywhere in (x, t), which also implies that the whole
sequence converges to the same limit.

In conclusion, starting from the fully discrete system (3.1), we obtain the same
limit (i.e., the macroscopic system (4.4)), either by letting (∆x,∆t) → 0 with a fixed
ratio and the CFL condition, or by first letting ∆t → 0 with a fixed ∆x, and then
letting ∆x → 0. This last limit process says that the homogenized model (4.4) is the
hydrodynamic limit of the microscopic Follow-the-Leader system.
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1992.

[29] P. L. Lions, G. Papanicolaou, and S. R. S. Varadhan, Homogenisation of Hamilton-Jacobi
Equations, manuscript.
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Abstract. We consider a system of two hyperbolic equations for p, q and two elliptic equations
for c, σ, where p, q are the densities of cells within the tumor Ωt in proliferating and quiescent states,
respectively, c is the concentration of nutrients, and σ is the pressure. The pressure is a result of
the transport of cells which proliferate or die. The motion of the free boundary ∂Ωt is given by the
continuity condition, and σ at the free boundary is proportional to the surface tension. We prove
the existence, uniqueness, and regularity of the solution for a small time interval 0 ≤ t ≤ T .
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1. The model. In this paper we consider a free boundary problem for an elliptic-
hyperbolic system which describes the evolution of a tumor. The cells within the
tumor are in one of three states: proliferating, quiescent, or necrotic. We shall denote
the corresponding cell densities by p, q, and n, respectively. Quiescent cells become
proliferating at a rate KP (c), where KP (c) is a positive-valued function of the nutrient
concentration c, and they become necrotic at another rate KD(c); KP (c) is a monotone
increasing function of c and KD(c) is a monotone decreasing function of c, although
these monotonicity properties will not be assumed in this paper. Proliferating cells
become quiescent at a rate KQ(c), and they proliferate at a rate KB(c), where KQ(c)
is monotone decreasing and KB(c) is monotone increasing in c, properties which
again will not be assumed in this paper. Finally, necrotic cells are removed from the
tumor at a constant rate KR. We assume that the nutrient concentration c satisfies
a diffusion equation ∆c− λc = 0, where λ is a positive constant.

Due to proliferation and removal of cells, there is a continuous motion of cells
within the tumor. We shall represent this movement by a velocity field �v. We can
then write the conservation of mass laws for the densities of the proliferating cells
p, the quiescent cells q, and the necrotic cells n within the tumor region Ωt in the
following form:

∂p

∂t
+ div(p�v) = [KB(c)−KQ(c)]p + KP (c)q,

∂q

∂t
+ div(q�v) = KQ(c)p− [KP (c) + KD(c)]q,

∂n

∂t
+ div(n�v) = KD(c)q −KRn.
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We shall make the assumption that the tumor tissue is a porous medium so that,
by Darcey’s law,

�v = −∇σ, σ = pressure.

We also assume that all cells are of the same volume and density and that the total
density of cells is uniform throughout the tumor. Then

p + q + n = const. = B,

and, without loss of generality, we take B = 1. If we add the equations for p, q, and n,
we get div�v = KB(c)p−KRn; this equation can be used to replace the conservation
law for n. If we also substitute n = 1 − p− q in the equation for div�v, we obtain the
system of equations

∆c − λc = 0 in Ωt,(1.1)

∂p

∂t
+ ∇σ · ∇p = f(c, p, q) in Ωt,(1.2)

∂q

∂t
+ ∇σ · ∇q = g(c, p, q) in Ωt,(1.3)

∆σ = −h(c, p, q) in Ωt,(1.4)

where

f(c, p, q) = [KB(c)−KQ(c)]p + KP (c)q + h(c, p, q)p,

g(c, p, q) = KQ(c)p− [KP (c) + KD(c)]q + h(c, p, q)q,(1.5)

h(c, p, q) = −KR + [KB(c) + KR]p + KRq.

We take the boundary conditions to be

c = 1 on Γt,(1.6)

σ = γκ on Γt,(1.7)

∂σ

∂n
= −Vn on Γt,(1.8)

where Γt = ∂Ωt, γ is a positive constant, κ is the mean curvature, ∂
∂n is the derivatives

in the direction �n of the outward normal, and Vn is the velocity of the free boundary
Γt in the direction �n. The condition (1.7) is based on the assumption that the pressure
σ on the surface of the tumor is proportional to the surface tension (see Greenspan
[12]), and the condition (1.8) is a standard kinetic (or continuity) condition.

Finally, we supplement the above system with initial conditions:

p(x, 0) = p0(x), q(x, 0) = q0(x) in Ω0,Γ0 is given,(1.9)

where

p0(x) ≥ 0, q0(x) ≥ 0, p0(x) + q0(x) ≤ 1;(1.10)

here Ω0 is a bounded domain with boundary Γ0.
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The model (1.1)–(1.10) was introduced in [14] in the case where the initial data
and the solution are spherically symmetric. Existence of a global solution, in this case,
was proved by Cui and Friedman [6]; they also established uniform positive bounds
from above and below for the radius R(t) of the tumor.

The special case, where the system consists only of the equation

∆σ = 0

with the boundary conditions (1.7), (1.8), is known as the Hele–Shaw problem, or the
quasi-static Stefan problem. In this case, given any initial domain Ω0, there exists a
unique local (in time) solution. There are several proofs of this result; see Chen [3],
Duchon and Robert [7], and Constantin and Pugh [5] for the two-dimensional case,
and Bazaliy [1], Bazaliy and Friedman [2], Chen, Hong, and Yi [4], and Escher and
Simonett [9, 10] for the N -dimensional case (N ≥ 2). Global existence and asymptotic
stability for nearby spherical initial data were proved in the two-dimensional case by
Chen [3] and for the N -dimensional case (N ≥ 2) by Escher and Simonett [10] and
Friedman and Reitich [11].

In the more general case

−ct + ∆c− λc = 0,(1.11)

∆σ = −h(c)(1.12)

with boundary conditions (1.6)–(1.8), local existence and uniqueness were proved
by Bazaliy and Friedman [2] and subsequently also by Escher [8] (under minimal
regularity assumptions).

In this paper we prove local existence and uniqueness for the system (1.1)–(1.10)
under minimal regularity assumptions. As will be pointed out in Remark 3.2, our
proof extends to the case where (1.1) is replaced by (1.11).

One can easily show, using the special forms of f , g, h, that for any solution of
(1.1)–(1.10) there holds

p ≥ 0, q ≥ 0, p + q ≤ 1,

and clearly also 0 ≤ c ≤ 1. In what follows we shall not use the special forms of f , g,
h and instead assume only that

f, g, h ∈ Cm+1 for some m integer ≥ 0(1.13)

and, without loss of generality, that

f, g, h vanish if |c|+ |p|+ |q| is sufficiently large.(1.14)

Since our results apply equally well in any number of dimensions, we shall take
the domains Ωt to be N -dimensional, N ≥ 2.

The main result of this paper, namely, the existence and regularity of a local
solution to (1.1)–(1.4), (1.6)–(1.9), is stated (Theorem 3.1) and proved in section 3.
The proof depends upon viewing the solution of the system as a fixed point for a non-
linear mapping W . In section 2 we prove that W is regularizing (Theorem 2.3). The
proof depends on (i) extending results for the Hele–Shaw problem to an “inhomoge-
neous” Hele–Shaw problem (Theorem 2.1), and (ii) regularity properties of solutions
of hyperbolic systems (Lemma 2.2).
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2. A bootstrap argument. For any vector β = (β0, β1, . . . , βn), βi integers
≥ 0, set |β| = β0 + β1 + · · ·+ βN and

Dβϕ = Dβ
(x,t)ϕ =

∂|β|ϕ
(∂t)β0(∂x1)β1 . . . (∂xN )βN

.

For any 0 < α1 < 1, 0 < α2 < 1, 0 < α < 1, m integer ≥ 0, define

‖ϕ‖0 = sup |ϕ|, ‖ϕ‖m =
∑

|β|≤m
‖Dβϕ‖0,

[ϕ]α1,α2
= sup

|ϕ(x, t)− ϕ(y, τ)|
|x− y|α1 + |t− τ |α2

,

‖ϕ‖m+α1,m+α2
= ‖ϕ‖0 +

∑
|β|=m

[Dβϕ]α1,α2 ,(2.1)

‖ϕ‖3+α,(3+α)/3 = ‖ϕ‖0 + [D3
xϕ]α,α/3 + [Dtϕ]α,α/3,(2.2)

‖ϕ‖2+α,(2+α)/3 = ‖ϕ‖0, 2+α3
+ [D2

xϕ]α,α/3.(2.3)

We note that the right-hand side of (2.1) dominates ‖ϕ‖m, so that by adding this
norm to the right-hand side of (2.1) we obtain a new norm which is equivalent to
‖ϕ‖m+α1,m+α2 . Similarly, the right-hand side of (2.2) dominates

[D2
xϕ]0, 1+α3

+ [Dxϕ]0, 2+α3

and the right-hand side of (2.3) dominates

[Dxϕ]1+α, 1+α3
.

We say that ϕ ∈ Cm+α1,m+α2 if ‖ϕ‖m+α1,m+α2
< ∞. Similarly we define the

notions ϕ ∈ C3+α,(3+α)/3, ϕ ∈ C2+α,(2+α)/3.
In what follows we assume that

Γ0 ∈ Cm+4+α,(2.4)

where 0 < α < 1 and m is an integer ≥ 0. Denote by s a variable point in Γ0 and by
�n(s) the unit outward normal to Γ0 at s. We shall write Γt in the form

Γt = {s + ρ(s, t)�n(s)}.

Set d = d(x) = d(x,Γ0) = signed distance from x to Γ0. Then, for x near Γ0, we
can write

x = s + d�n(s),

where s is uniquely determined by x.
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In what follows we shall use a local coordinate transformation to flatten the
boundary Γt. The procedure is as follows: Take local coordinates y′ = (y1, . . . , yn−1)
near 0 in R

N−1, about a point s0 in Γ0, so that s = S(y1, . . . , yN−1) for |s− s0| small.
Then, for x near s0,

x = S(y1, . . . , yN−1) + (ρ(s, t) + yN )�n(S(y1, . . . , yN−1)),

where yN = d(x,Γ0)−ρ(s, t). This defines a local mapping y → x from a neighborhood
of the origin in R

N into an R
N -neighborhood of s0 such that x ∈ Γt corresponds to

(y′, 0).
Assume that

c, p, q ∈ Cm+α,m+α/3(RN × [0, T ])(2.5)

and consider the “inhomogeneous” Hele–Shaw problem: Find σ and {Ωt; 0 ≤ t ≤ T}
such that

∆σ = −h(c, p, q) ≡ −h(x, t) in Ωt,(2.6)

σ = γκ,
∂σ

∂n
= Vn on Γt

for 0 ≤ t ≤ T with ρt|t=0 = r0. By (1.14), h(x, t) ∈ Cm+α,m+α/3(RN × [0, T ]).
Theorem 2.1. If T is sufficiently small, then the system (2.6) has a unique

solution for 0 ≤ t ≤ T with

DsD
m
(s,t)ρ ∈ C3+α,(3+α)/3(RN−1 × [0, T ]),(2.7)

D2
xD

m
(x,t)σ ∈ Cα,α/3(RN × [0, T ]).

Note that the case h ≡ 0 is the Hele–Shaw problem mentioned in section 1. The
proof of Theorem 2.1 to be given here is an extension of the proof for the Hele–Shaw
problem of Chen, Hong, and Yi [4].

Proof. The proof of existence and uniqueness of a solution with ρ ∈ C3+α,(3+α)/3

follows by the same arguments as in [4]. Indeed, using the local mapping x → y
described above and the Hanzawa transformation [13], we obtain a model problem
which is the same as in the case h ≡ 0. The same basic Lemma 3.4 of [4] can then
be applied to deduce existence, uniqueness, and Hölder norm estimates for the model
problem and, subsequently, for the linearized problem (as in [4, section 4]). The
completion of the proof with ρ ∈ C3+α,(3+α)/3 then proceeds exactly as in [4].

We shall now establish the regularity assertions of (2.7). Denote by G the funda-
mental solution of the Laplace operator. Since h has a compact support, the convo-
lution G ∗ h is well defined, and D2

x(G ∗ h) ∈ Cm+α,m+α/3(RN × [0, T ]). Set

σ̃ = σ + G ∗ h.

Then

∆σ̃ = 0 in Ωt,

σ̃ = γκ + G ∗ h, Vn =
∂σ̃

∂n
− �n · (∇G ∗ h) on Γt.
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We fix s0 in Γ0 and rewrite (2.6) in terms of the variable y:

N∑
i,j=1

(aρij σ̃yi)yj +

N∑
i=1

aρi σ̃yi = 0 in {yN > 0},

σ̃ =
N−1∑
i,j=1

bρijρyiyj + bρ + G ∗ h on {yN = 0},(2.8)

ρt =

N∑
i=1

,ρi
∂

∂yi
(σ̃ −G ∗ h) on {yN = 0},

where

aρij = aij(Dy′ρ), a
ρ
i = ai(D

2
y′ρ), b

ρ
ij = bij(Dy′ρ),(2.9)

bρ = b(Dy′ρ), ,
ρ
i = ,i(Dy′ρ).

In particular, at ρ = 0, y′ = 0, yN = 0

aij = δij , ai = 0, bij = δij , b = γκ(s0), ,i = δNi.

For β = (β0, β1, . . . , βN ) with |β| ≤ k + 1, k ≤ m′, β0 ≤ k, βN = 0 we formally
have

Σ[aρij(D
β σ̃yi)]yj = div �F1 in {yN > 0},

Dβ σ̃ = Σbρij(D
βρ)yiyj + F2 in {yN = 0},(2.10)

(Dβρ)t + Σ,ρi
∂

∂yi
(Dβ σ̃) + F3 in {yN = 0},

where

�F1 = �F1(DyD
kσ,D2

y′D
kρ), F2 = F2(DxD

kG ∗ h,D2
y′D

kρ),

F3 = F3(D
2
xD

kG ∗ h,D2
y′D

kρ,Dkσ);

here we used abbreviations such as Dkσ = {Dλσ; |λ| ≤ k} to describe the structure

of �F1, Fj .
The system (2.10) is linear in (Dβ σ̃, Dβρ). By the Hölder estimates of the model

problem [4, Lemma 3.4] we deduce that if

Dβρ ∈ C3+α,(3+α)/3, DyD
β σ̃ ∈ Cα,α/3

for all β as above, then

DsD
m′
(s,t)ρ ∈ C3+α,(3+α)/3, D2

xD
m′
(x,t)σ̃ ∈ Cα,α/3.(2.11)

This result allows us to establish (2.11) inductively for all m′ ≤ m (since Γ0 ∈ Cm+4+α

and D2
x(G ∗ h) ∈ Cm+α,m+α/3).
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Consider next the elliptic problem

∆c − λc = 0 in Ωt,(2.12)

c = 1 on Γt.

In terms of the local coordinates y about s0 ∈ Γ0, we can write (2.12) in the form

Σâijcyiyj + Σb̂icyi − λc = 0 in {yN > 0},(2.13)

c = 1 on {yN = 0},
where

âij = âij(Dsρ), b̂i = b̂i(D
2
sρ).(2.14)

Let β = (β0, β1, . . . , βN−1, 0), |β| ≤ m′ + 1, β0 ≤ m′. Then, formally,

Σâij(D
βc)yiyj = F (D3

sD
m′

ρ,D2
yD

m′
c) in {yN > 0},(2.15)

Dβc = 0 on {yN = 0},
where F is a smooth function in its variables.

Using Theorem 2.1 and elliptic theory, we deduce inductively on m′ (m′ =
0, 1, . . . ,m) that the right-hand side F and its first x- and t-derivations are in Cα,α/3

and

DxD
mD2

xc,DxD
mDtc belong to Cα,α/3.(2.16)

We can now extend c into R
N×[0,T] (along normals to Γt, with a cutoff function)

so that

c ∈ Cm+1+α, m+1+α/3(RN × [0, T ]).(2.17)

Remark 2.1. Suppose that instead of (2.12) we consider the parabolic problem

−∂c

∂t
+∆c− λc = 0 in Ωt,(2.18)

c = 1 on Γt,

c (x, 0) = c0(x) in Ω0.

If c0(x) is in Cm+1+α and it satisfies the compatibility conditions (at ∂Ω0) to order
m + 1, then the above procedure leads to (2.16) with Cα,α/3 replaced by C2α/3,α/3,
so that (2.17) is again valid.

From (2.7) it follows that we can extend σ(x, t) into R
N × [0, T ] (along normals

to Γt, with a cutoff function) so that

D2
xD

mσ ∈ Cα,α/3(RN × [0, T ]).(2.19)

We now turn to the hyperbolic system

pt + ∇σ · ∇p = f(c, p, q) in R
N × [0, T ],

qt + ∇σ · ∇q = g(c, p, q) in R
N × [0, T ],(2.20)

p|t=0= p0, q|t=0 = q0 in R
N
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and assume that

p0, q0 ∈ Cm+1+α(RN ).(2.21)

Formally, for β = (β0, β1, . . . , βN ), |β| ≤ m, we have

(Dβp)t +∇σ · ∇(Dβp) = F 1,(2.22)

(Dβq)t +∇σ · ∇(Dβq) = F 2,

where

F 1 = Dβf −
∑
|µ|≥1
µ≤β

(
β

µ

)
∇Dµσ · ∇Dβ−µp,

F 2 = Dβg −
∑
|µ|≥1
µ≤β

(
β

µ

)
∇Dµσ · ∇Dβ−µq.

We shall need the following lemma.
Lemma 2.2. Consider a hyperbolic system of two equations,

�wt + (�b · ∇x)�w = G(x, t, �w) in R
N × [0, T ],(2.23)

�w|t=0= �w0 in R
N ,

where �w = (w1, w2), and assume that

Dx
�b,DxG ∈ Cα1,α2(RN × [0, T ]),

D�wG ∈ L∞(RN × [0, T ]),

Dx �w0 ∈ Cα1(RN ).

Then there exists a unique solution of (2.23) such that

�wt, D�w in Cα1,α2(RN × [0, T ]).

Using (2.19) we can apply Lemma 2.2 inductively to deduce that

Dβpt, D
βDxp,D

βqt, D
βDxq ∈ Cα,α/3

for |β| ≤ m. Hence

p, q ∈ Cm+1+α, m+1+α/3.(2.24)

Proof. We introduce the characteristic curves X = X(ξ, t),

∂X

∂t
= �b(X, t), X(ξ, 0) = ξ,

and the function �U(x, t) = �w(X(x, t), t). Then

d�U

dt
= �G(x, t, �U), �U(x, 0) = �w0(x).
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Denote by ξ = ξ(·, t) the inverse of X = X(·, t), i.e., x = X(ξ(x, t), t). Then

�w(x, t) = �U(ξ(x, t), t).

Since

d

dt

(
∂X

∂ξ

)
= Dx

�b
∂X

∂ξ
, 0 ≤ t ≤ T,

∂X

∂ξ
|t=0 = I,

we have ∥∥∥∥∂X∂ξ
∥∥∥∥
L∞

,

∥∥∥∥ ∂

∂t

∂X

∂ξ

∥∥∥∥
L∞

≤ C.

From the relation

d

dt

((
∂X

∂ξ

)−1
)

= −
(
∂X

∂ξ

)
Dx

�b

we also have ∥∥∥∥ ∂ξ

∂X

∥∥∥∥
L∞

≤ C.

Similarly, ∥∥∥∥∂�U∂ξ
∥∥∥∥
L∞

,

∥∥∥∥ ∂

∂t

∂ �U

∂ξ

∥∥∥∥
L∞

≤ C.

We next establish Hölder estimates. For ξ1 �= ξ2,

d

dt
(Xξ(ξ1, t)−Xξ(ξ2, t)) = Dx

�b(X(ξ1, t))(Xξ(ξ1, t)−Xξ(ξ2, t))

+ (Dx
�b(X(ξ1, t))−Dx

�b(X(ξ2, t)))Xξ(ξ2, t).

Noting that

|Dx
�b(X(ξ2, t))−Dx

�b (X(ξ1, t), t)| ≤ |Dx
�b|α,0|X(ξ2, t)−X(ξ1, t)|

≤ C|ξ2 − ξ1|α1 ,

we deduce that

|Xξ(ξ1, t)−Xξ(ξ2, t)| ≤ C|ξ1 − ξ2|α1 .

Similarly

|Xξ(ξ1, t1)−Xξ(ξ2, t2)| ≤ C|ξ1 − ξ2|α1 + |t1 − t2|α2 .

From the relations

A−1 −B−1 = A−1(B −A)B−1, ξx = X−1
ξ
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we then get

|ξx(x1, t1)− ξx(x2, t2)| ≤ C(|ξ1 − ξ2|α1 + |t1 − t2|α2).

Since

|ξ2 − ξ1| = |ξ(x1, t1)− ξ(x2, t2)| ≤ C(|x1 − x2|+ |t1 − t2|),
we conclude that

|ξx(x1, t1)− ξx(x2, t2)| ≤ C(|x1 − x2|α1 + |t1 − t2|α2).

Similarly one can prove that∣∣∣∣∂�U∂ξ (ξ1, t1)− ∂�U

∂ξ
(ξ2, t2)

∣∣∣∣ ≤ C(|ξ1 − ξ2|α1 + |t1 − t2|α2).

Hence

�wx = �Uξξx ∈ Cα1,α2 , �wt = �G− (�b · ∇x)�w ∈ Cα1,α2 .

We summarize in the following theorem the results obtained in Theorem 2.1 and
(2.17), (2.24).

Theorem 2.3. Given Γ0, p0, q0 as in (2.4), (2.21), there exists a unique solution
{σ,Ωt}0≤t≤T of (2.6) and a unique solution (c, p, q) of (2.12), (2.20) such that (2.7),
(2.17), and (2.24) hold.

3. The main result. We shall henceforth assume that

Γ0 ∈ Cm+1+α, p0 and q0 belong to Cm+1+α(Ω0),(3.1)

where m ≥ 0, 0 < α < 1. We can then extend p0, q0 so that they satisfy (2.21) and
have compact supports.

Theorem 2.3 shows that the mapping

(c, p, q)
W→ (c, p, q)

is regularizing: It maps Cm+α, m+α/3(RN×[0, T ]) into Cm+1+α, m+1+α/3(RN×[0, T ]).
Recall that this mapping was defined by first solving the “inhomogeneous” Hele–Shaw
problem (2.6), thus determining {σ,Ωt; 0 ≤ t ≤ T} as in Theorem 2.1, and then solving
the elliptic and hyperbolic problems for c and (p, q), respectively.

Consider now a set YM of functions (c, p, q) such that

‖(c, p, q)‖m+α, m+α/3, (RN×[0,T ]) ≤ M,

p|t=0 = p0, q|t=0 = q0,

where M is a positive number to be chosen later on.
From the proof of Theorem 2.3 one can see that

‖(c, p, q)‖m+1+α, m+1+α/3, (RN×[0,T ]) ≤ C(M),

where C(M) is a constant depending on M . Writing w(x, t) = w(x, 0) +
∫ t
0
wt(x, t)dt

for w = c, p, q and using the facts that

0 ≤ c ≤ 1 and p|t=0 = p0, q|t=0 = q0,
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we deduce that

‖(c, p, q)‖m+α, m+α/3, (RN×[0,T ]) ≤ B(A + T C(M)),

where

A = 1 + ‖(p0, q0)‖Cm+α(RN )

and B is a universal constant. Choosing M = BA+ 1 we conclude that W maps YM
into a compact subset of itself, provided T is so small that BTC(M) < 1.

We claim that W is also a contraction. To prove this we take two points

(c1, p1, q1), (c2, p2, q2) in YM

and set

hi = h(ci, pi, qi) (i = 1, 2),

ĥ = h1 − h2.

Denote by (σi,Ωi,t, 0 ≤ t ≤ T} the solution of (2.6) corresponding to (ci, pi, qi)
and by (ci, pi, qi) the corresponding solutions of (2.12), (2.20). We shall first estimate
the difference between the corresponding distance functions ρi(s, t), using the same
local coordinates y for i = 1 and i = 2.

Setting

σ̂ ≡ σ̃1 − σ̃2, ρ̂ = ρ1 − ρ2

we have, from (2.10),

Σ(aρ1ij σ̂yi)yi + Σaρ1i σ̂yi = div �f1 + f2 in {yN > 0},

σ̂ = Σ bρ1ij ρ̂yiyj + f3 on {yN = 0},(3.2)

ρ̂t = Σ ,ρ1i
∂

∂yi
σ̂ + f4 on {yN = 0},

where

‖�f1‖α,0 = ‖Dy′ ρ̂ ·Dσ̃2‖α,0 ≤ C‖ρ̂‖1+α,0,

‖f2‖0 = ‖(D2
y′ ρ̂)σ̃2‖0 ≤ C‖ρ̂‖2,0,

‖f3‖1+α,0 ≤ ‖Dy′ ρ̂‖1+α,0 + |G ∗ ĥ‖1+α,0,

≤ C‖ρ̂‖2+α,0 + C‖ĥ‖0,

‖f4‖α,0 ≤ C‖ρ̂‖1+α,0 + C‖ĥ‖0.

All these norms are taken in a small neighborhood of s = s0. Applying Lemma 3.4 of
[4] we deduce that

‖Dsρ̂‖2+α,(2+α)/3 ≤ C‖ρ̂‖2+α,0 + C‖ĥ‖0
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locally, and, by partition of unity and the fact that ρ̂(x, 0) = 0,

‖Dsρ̂‖2+α,(2+α)/3 ≤ C‖ĥ‖0(3.3)

globally, provided T is sufficiently small. We can use this inequality to estimate the
norms of �f1 and f2, f3, f4 above and then, applying elliptic estimates to the solution
σ̂ of (3.2), we obtain the estimates

‖σ̂‖1+α,0 ≤ C‖ĥ‖0, ‖σ̂‖0,(1+α)/3 ≤ C‖h‖0.(3.4)

We next proceed to estimate ĉ ≡ c1 − c2 by flattening the boundaries Γ1,t, Γ2,t

using (3.3); we easily obtain

‖ĉ‖1+α,0 + ‖ĉ‖0,(1+α)/3 ≤ C‖ĥ‖0.(3.5)

Next we estimate p̂ = p1−p2 and q̂ = q1−q2 using (3.4), (3.5), and the arguments
used in Lemma 2.2. We get

‖p̂‖α,α/3 + ‖q̂‖α,α/3 ≤ C‖ĥ‖0.

Combining this estimate with (3.5) we obtain the inequality

‖W (c1, p1, q1)−W (c2, p2, q2)‖α,α/3 ≤ C‖(c1 − c2, p1 − p2, q1 − q2)‖0

and, since c1 − c2 = 0, p1 − p2 = 0, q1 − q2 = 0 at t = 0,

‖W (c1, p1, q1)−W (c2, p2, q2)‖0 ≤ CT β‖(c1 − c2, p1 − p2, q1,−q2)‖0

for some β > 0. It follows that W is a contraction in L∞ provided T is sufficiently
small. This, combined with the fact that W maps YM into a compact subset, implies
that W is a continuous map in YM and hence, by the Schauder fixed point theorem,
W has a fixed point. The uniqueness of the fixed point follows from the fact that W
is a contraction in the L∞ norm.

We have thus completed the proof of the following theorem.
Theorem 3.1. Under the assumptions (3.1), (1.13), (1.14), there exists a unique

solution to (1.1)–(1.4), (1.6)–(1.9) for 0 ≤ t ≤ T with ρ, σ as in (2.7), and

c, p, q in Cm+1+α, m+1+α/3(RN × [0, T ])

for some T > 0.
In particular, in terms of the local coordinates (s, t) of ∪0≤t≤T Γt × {t}, the free

boundary has DsD
m
s,t derivatives which belong to C3+α, (3+α)/3.

Remark 3.1. If Γ0 is only assumed to belong to C3+α, we take a C∞ manifold
M which lies within a small C3+α-neighborhood of Γ0 and parametrize Γt by

Γt = {s + ρ(s, t)�n(s)}, s ∈ M,

where �n(s) is the outward normal to M at s. Assuming that p0, q0 satisfy (2.21)
we can then extend the bootstrap argument and conclude that there exists a unique
solution to (1.1)–(1.4), (1.6)–(1.9) for 0 ≤ t ≤ T with

Dsρ ∈ C3+α, (3+α)/3(RN × [0, T ])
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and

DsD
M
(s,t)ρ ∈ C3+α, (3+α)3(RN × [t0, T ])

for any t0 > 0; cf. [4] for the corresponding result for the problem (2.6).
Remark 3.2. Theorem 3.1 extends to the case where the elliptic equation (1.1) is

replaced by the parabolic equation (1.11), provided the initial values c(x, 0) satisfy the
corresponding smoothness and compatibility conditions as indicated in Remark 2.1.
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Abstract. We consider the mild solutions of the Prandtl equations on the half space. Requiring
analyticity only with respect to the tangential variable, we prove the short time existence and the
uniqueness of the solution in the proper function space. The proof is achieved applying the abstract
Cauchy–Kowalewski theorem to the boundary layer equations once the convection-diffusion operator
is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math.
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1. Introduction. In this paper we shall be concerned with the unsteady Prandtl
equations on the half space. They describe the behavior of an incompressible fluid
close to a physical boundary in the limit of small viscosity [19]. The system we shall
deal with is the following:

(∂t − ∂Y Y )uP + uP∂xu
P + vP∂Y u

P + ∂xp
P = 0 ,(1.1)

∂Y p
P = 0 ,(1.2)

∂xu
P + ∂Y v

P = 0 ,(1.3)

uP (x, Y = 0, t) = vP (x, Y = 0, t) = 0 ,(1.4)

uP (x, Y → ∞, t) −→ U(x, t) ,(1.5)

pP (x, Y → ∞, t) −→ pE(x, y = 0, t) ,(1.6)

uP (x, Y, t = 0) = uPin .(1.7)

In the above equations (uP , vP ) and pP represent the components of the fluid velocity
and the pressure inside the boundary layer. Equation (1.3) is the incompressibility
condition and equations (1.4) are the boundary conditions: uP (x, Y = 0, t) = 0 is the
no-slip condition and vP (x, Y = 0, t) = 0 is the no-influx condition. Equation (1.5)
is the matching condition between the flow inside the boundary layer and the outer
Euler flow; U(x, t) is the tangential component of the Euler flow at the boundary;
x = (x1, x2) is the tangential variable, and Y the normal variable.

The Prandtl equations can be regarded as asymptotic equations of the Navier–
Stokes equations in the limit of vanishing viscosity (ν → 0). In the limit case ν = 0,
the higher derivative term is dropped from the Navier–Stokes system and one gets
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the Euler equations, which rule the behavior of inviscid flows. Since the Euler system
is first order, we have a reduction of the order of the equations, and a corresponding
reduction must be done in the number of the boundary conditions: only the normal
component of the velocity can be imposed at the boundary. Since the Navier–Stokes
equations impose the value of both the velocity components at the boundary, one
must allow a thin layer where there is a rapid variation of the fluid velocity from
zero (imposed by the no-slip condition) to the value prescribed by the inviscid equa-
tions. Hence, in the boundary layer (whose size is O(

√
ν)), vorticity is generated so

that the viscosity term ν∆u is O(1), even as the viscosity goes to zero. The fluid
develops an internal length scale so that one is faced with a singular perturbation
problem. Rescaling the normal variable with the square root of the viscosity, and
writing the solution to the Navier–Stokes equations in the form of an asymptotic se-
ries, one gets the equations which rule the fluid inside the boundary layer, i.e., Prandtl
equations.

The equations were first derived by Prandtl in 1904, and the practical success of
the boundary layer theory was soon overwhelming. Nevertheless, the theoretical foun-
dation of the boundary layer theory was rather unsatisfactory, and many fundamental
questions are still debated. For instance, the problem of establishing a well-founded
mathematical connection to the Navier–Stokes equation has been solved only recently,
and neither existence, uniqueness, nor well-posedness of the boundary layer equation
is proved in the general case.

Regarding the problem of the convergence of the Prandtl equations to the Navier–
Stokes equations, a major complication is given by the fact that no uniqueness theorem
with Sobolev-type initial data for the three-dimensional Navier–Stokes (nor Euler)
equations has been proved, and the time of existence of a regular solution depends
on the data and on the viscosity (see Marsden [13] and the monographs Constantin
and Foias [7] and Temam [21]). In the absence of boundaries the convergence of
viscous planar flow to ideal planar flow was shown by Swann [20] for a time which
is independent of the viscosity and, lately, in the case of concentrated vorticity, by
Constantin and Wu [8].

In the presence of boundaries the problem is harder. Kato [10] proved that a
necessary and sufficient condition for the convergence of uNS to the solution of Euler
equations, uE , in L2(Ω) uniformly in t ∈ [0, T ] is that the energy dissipation for uNS

in a small layer close to the boundary of size O(ν), during the interval [0, T ], tends to
zero. However, such result gives no ultimate solution to the problem because of the
unverified energy estimate on the Navier–Stokes solution. With a similar condition
on the L2-norm of the gradient of the pressure, Temam and Wang [22] proved the
convergence of the Navier–Stokes solution to the solution of the Euler equation in a
strip.

Analogously it is also hard to prove the convergence of the Navier–Stokes solution
to the Prandtl solution under satisfactory hypotheses: the few existence and unique-
ness theorems proved for the unsteady case hold in particular cases. For instance,
Oleinik proved the existence and uniqueness of the Prandtl equations on the half
space requiring prescribed horizontal velocities positive and strictly increasing. See
[14] for a review.

The first results which do not require monotonicity of the initial data were proved
by Sammartino and Caflisch, after the earlier work of Asano [2]. In [17], assuming
analyticity of the initial data with respect to the spatial variables, they proved the
existence and uniqueness of the Prandtl equations on the half space. They achieved the
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result using an abstract formulation of the Cauchy–Kowalewski theorem in the Banach
spaces of analytic functions. In [18] they performed the asymptotic analysis of the
Navier–Stokes equation in the limit of zero viscosity. They constructed the solution
in the form of an asymptotic series in

√
ν, whose zeroth order term is constituted by

the sum of the Euler and the Prandtl solutions. The norm of the first order correction
term is then proved to be bounded in the proper function space. They also proved an
analogous result in the case of a curved boundary (see [5]).

In the linear case it has been possible to prove the convergence of the linearized
Navier–Stokes equations to the corresponding inviscid equations for Sobolev-type ini-
tial data. The asymptotic analysis has been successfully performed for the Stokes
equations on the half space (Sammartino [16]) and on the exterior of a disk (Lom-
bardo, Caflisch, and Sammartino [11]). Similar results were achieved for the Oseen
equations, i.e., the Navier–Stokes equations linearized around a nonzero flow, on a
strip (see Lombardo and Sammartino [12] and Temam and Wang [23]).

Temam and Wang analyzed the linear case for a general 2 −D exterior domain
(see [24] and [25]), but they obtained weaker convergence results. In the nonlinear
case, with blowing and suction boundary conditions [26], they were able to prove that
these boundary conditions stabilize the boundary layer.

In the opposite direction Grenier [9] proved that a solution of the Prandtl equa-
tions is linearly and nonlinearly unstable, and, therefore, it does not converge in H1

to the Navier–Stokes solutions.
A review about the mathematical aspects of the boundary layer theory can be

found in [4].
In this paper we extend the result of [17] to a wider class of initial data, namely,

the functions which are analytic only with respect to the tangential variable and
L2, together with their derivatives, with respect to the normal variable. Through
the explicit expression of the Green’s function, we invert the second order parabolic
operator appearing in the Prandtl equation, including the first order Y -derivative. We
are thus able to obtain a mild form of the system. The existence and the uniqueness of
the solution are then proved using a slightly modified version of the abstract Cauchy–
Kowalewski (ACK) theorem in the Banach spaces.

The results presented in this paper were previously announced in [6].
The paper is organized as follows. In section 2 we define the function spaces

where existence and uniqueness will be proved. In section 3 we state the abstract
Cauchy–Kowalewski theorem in the Banach spaces. In section 4 the parabolic initial-
boundary value problem is explicitly solved and the norm of the corresponding oper-
ators bounded in the proper function spaces. The mild form of the Prandtl equation
is given in section 5. In sections 6 and 7 the source term of the Prandtl equation is
proved to satisfy the hypotheses of the ACK theorem. Finally the main theorem is
stated in section 8. For convenience two appendices are inserted. In Appendix A a
sketch of the proof of the ACK theorem is given. In Appendix B the estimates of the
pseudodifferential operator defined in section 4 are proved.

2. Function spaces. In this section we introduce the function spaces used in
the proof of the existence and uniqueness of the Prandtl equations. We first define
the domain of analyticity with respect to the tangential variable:

D(ρ) = {x ∈ C : �x ∈ (−ρ, ρ)} .

We now introduce the ambient spaces for the Prandtl equations.
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Definition 2.1. The space Kl,ρ is the space of the functions f(x) such that
• f is analytic in D(ρ);
• if �x ∈ (−ρ, ρ) and 0 ≤ j ≤ l, then ∂jxf(�x + i�x) is square integrable in
�x;

• |f |l,ρ ≡
∑l
j=0 sup�x∈(−ρ,ρ) ‖∂jxf(· + i�x)‖L2(�x) < ∞.

Definition 2.2. The space Kl,ρ,µ, with µ > 0, is the space of the functions
f(Y, x) such that

eµY ∂ix∂
j
Y f ∈ L∞(R+,K0,ρ) when i + j ≤ l and j ≤ 2.

The norm in Kl,ρ,µ is defined as

|f |l,ρ,µ ≡
∑
j≤2

∑
i≤l−j

sup
Y ∈R+

eµY |∂jY ∂ixf(Y, ·)|0,ρ.

Definition 2.3. The space Kl,ρ
β,T , with β > 0 and ρ−βT > 0, is the space of the

functions f(x, t) such that

∂it∂
j
xf(x, t) ∈ Kl,ρ−βt ∀0 ≤ t ≤ T, where 0 ≤ i + j ≤ l and 0 ≤ i ≤ 1.

Moreover,

|f |l,ρ,β,T ≡
∑

0≤j≤1

∑
i≤l−j

sup
0≤t≤T

|∂jt ∂ixf(·, t)|0,ρ−βt < ∞ .

Definition 2.4. The space Kl,ρ,µ
β,T , with β > 0, ρ − βT > 0 and µ − βT > 0, is

the space of the functions f(x, Y, t) such that

f ∈ Kl,ρ−βt,µ−βt and ∂t∂
i
xf ∈ K0,ρ−βt,µ−βt ∀0 ≤ t ≤ T, where 0 ≤ i ≤ l − 2.

Moreover,

|f |l,ρ,µ,β,T ≡
∑

0≤j≤2

∑
i≤l−j

sup
0≤t≤T

|∂jY ∂ixf(·, ·, t)|0,ρ−βt,µ−βt

+
∑
i≤l−2

sup
0≤t≤T

|∂t∂ixf(·, ·, t)|0,ρ−βt,µ−βt < ∞ .

3. The abstract Cauchy–Kowalewski theorem. To prove the existence and
the uniqueness of the mild solution to the Prandtl equations, we shall give a slightly
modified version of the abstract Cauchy–Kowalewski (ACK) theorem as given in [15]
or [1] and [3].

For t in [0, T ], consider the equation

u + F (t, u) = 0.(3.1)

Let {Xρ : 0 < ρ ≤ ρ0} be a Banach scale with norms | · |ρ such that Xρ′ ⊂ Xρ′′ and
| · |ρ′′ ≤ | · |ρ′ when ρ′′ ≤ ρ′ ≤ ρ0.

Theorem 3.1 (ACK theorem). Suppose that ∃R > 0, ρ0 > 0, and β0 > 0 such
that if 0 < t ≤ ρ0/β0, the following properties hold:
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(1) ∀ 0 < ρ′ < ρ ≤ ρ0 and ∀u such that {u ∈ Xρ : sup0≤t≤T |u(t)|ρ ≤ R} the map
F (t, u) : [0, T ] �→ Xρ′ is continuous.

(2) ∀ 0 < ρ < ρ0 the function F (t, 0) : [0, ρ0/β0] �→ {u ∈ Xρ : sup0≤t≤T |u(t)|ρ ≤
R} is continuous and

|F (t, 0)|ρ ≤ R0 < R .(3.2)

(3) ∀0 < ρ′ < ρ(s) < ρ0 and ∀ u1 and u2 ∈{u ∈ Xρ : sup0≤t≤T |u(t)|ρ−β0t ≤ R},

|F (t, u1) − F (t, u2)|ρ′ ≤ C

∫ t

0

ds

( |u1 − u2|ρ(s)
ρ(s) − ρ′

+
|u1 − u2|ρ′√

t− s

)
.(3.3)

Then ∃β > β0 such that ∀0 < ρ < ρ0, (3.1) has a unique solution u(t) ∈ Xρ with
t ∈ [0, (ρ0 − ρ)/β]; moreover supρ<ρ0−βt |u(t)|ρ ≤ R.

The proof of the above theorem is given in Appendix A.

4. A parabolic equation. The next section will be devoted to writing Prandtl
equations in the form given by (3.1). The main difficulty in doing this is in the
parabolic nature of the Prandtl equation. We shall solve this difficulty by inverting
the parabolic operator (∂t − ∂Y Y + αY ∂Y ), giving the explicit expression of the
Green’s function.

We introduce the kernels

Fα(x, Y, t) =
1√
4π

1

Ψ(x, t)
exp

(
−Y 2e−2A(x,t)

4(Ψ(x, t))2

)
,(4.1)

Eα(x, Y, t) =

∫ ∞

0

dY ′ [Fα(x, Y − Y ′, t) − Fα(x, Y + Y ′, t)] ,(4.2)

Hα(x, Y, t) = −∂Fα
∂Y

(x, Y, t) + α(x, t)Y Fα(x, Y, t) − 1

2
α(x, t)Eα(x, Y, t),(4.3)

where α is a function of x and t, and A(x, τ) is defined as

A(x, τ) =

∫ τ

0

dθ α(x, θ)(4.4)

and

Ψ(x, t) =

(∫ t

0

dτ e−2A(x,τ)

)1/2

.(4.5)

The operator M0 is the convolution of the kernel Fα with the odd extension to
Y < 0 of the function u0(x, Y ):

M0u0 =

∫ ∞

0

dY ′ [Fα(Y − Y ′, t) − Fα(Y + Y ′, t)] u0(x, Y ′).(4.6)

It solves the following system:

(∂t − ∂Y Y + αY ∂Y )M0u0 = 0,(4.7)

M0u0(x, Y = 0, t) = 0,(4.8)

M0u0(x, Y, t = 0) = u0.(4.9)
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We now introduce the operator M2:

M2f =

∫ t

0

ds

∫ ∞

0

dY ′ [Fα(Y − Y ′, t− s) − Fα(Y + Y ′, t− s)] f(x, Y ′, s).(4.10)

It solves the parabolic equations with zero boundary and initial data:

(∂t − ∂Y Y + αY ∂Y )M2f = f,(4.11)

M2f(x, Y = 0, t) = 0,(4.12)

M2f(x, Y, t = 0) = 0.(4.13)

The operator M1 acts on functions defined on the boundary, namely,

M1g = 2

∫ t

0

ds Hα(Y, t− s) g(x, s),(4.14)

and solves the following system:

(∂t − ∂Y Y + αY ∂Y )M1g = 0,(4.15)

M1g(x, Y = 0, t) = g,(4.16)

M1g(x, Y, t = 0) = 0.(4.17)

Finally we define the operator M3h:

M3h = −
∫ t

0

ds

∫ ∞

0

dY ′ ∂Y [Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)] h(x, Y ′, s).

(4.18)

Notice that if h(x, Y = 0, t) = 0, then, integrating by parts, one gets M3h ≡ M2∂Y h.
We shall now give some estimates on the above operators. We begin with the

estimates on the operator M2.
Proposition 4.1. Let α ∈ Kl,ρ

β,T , f ∈ Kl,ρ,µ
β,T with f |Y=0 = 0. If ρ′ < ρ− βt and

µ′ < µ− βt, then the following estimate holds:

|M2f |l,ρ′,µ′ ≤ c

∫ t

0

ds |f(·, ·, s)|l,ρ′,µ′ ≤ c |f |l,ρ,µ,β,T ,

where the constant c depends on |α|l,ρ,β,T .

Proposition 4.2. Let α ∈ Kl,ρ
β,T , f ∈ Kl,ρ,µ

β,T . Then M2f ∈ Kl,ρ,µ
β,T and the

following estimate holds:

|M2f |l,ρ,µ,β,T ≤ c |f |l,ρ,µ,β,T .

The following estimate of M3h will be crucial in handling the nonlinear term
containing the Y -derivative.

Proposition 4.3. Suppose α ∈ Kl,ρ
β,T , h ∈ Kl,ρ,µ

β,T with h|Y=0 = 0, ∂Y h|Y=0 = 0.

If 0 < µ′ < µ(s) < µ− βs, then M3h ∈ Kl,ρ,µ′
for each 0 < t < T and the following

estimate holds:

|M3h|l,ρ,µ′ ≤ c

∫ t

0

ds

( |h(·, ·, s)|l,ρ,µ′√
t− s

+
|h(·, ·, s)|l,ρ,µ(s)

µ(s) − µ′

)
.
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The proofs of the above propositions are given in Appendix B.
We finally give some bounds on the operators M0 and M1.
Proposition 4.4. Let α ∈ Kl,ρ

β,T and u0(x, Y ) ∈ Kl,ρ,µ. Moreover let the com-

patibility condition u0(x, Y = 0) = 0. Then M0u0 ∈ Kl,ρ,µ
β,T and the following estimate

holds:

|M0u0|l,ρ,µ,β,T ≤ c |u0|l,ρ,µ .

Proposition 4.5. Let α, g ∈ Kl,ρ
β,T and g(x, t = 0) = 0. Then M1g ∈ Kl,ρ,µ

β,T and
the following estimate holds:

|M1g|l,ρ,µ,β,T ≤ c |g|l,ρ,β,T .

We will also need the following lemma.
Lemma 4.6. Let α ∈ Kl,ρ

β,T , w = u+g with u ∈ Kl,ρ,µ, and g ∈ Kl,ρ, i.e., constant
with respect to Y and t. Moreover, let u(x, Y = 0) = −g(x). Then M0(t)w − g ∈
Kl,ρ,µ ∀t and the following estimate holds:

sup
0≤t≤T

|M0(t)w − g | l,ρ,µ ≤ c (|α|l,ρ,β,T + |u|l,ρ,µ + |g|l,ρ) .

5. The mild form of the Prandtl equations. In this section, following the
same procedure used in [17], we shall recast the Prandtl equations in a form suitable
for the application of the ACK theorem.

First, one can get rid of the pressure gradient introducing the new variable u:

u = uP − U .(5.1)

In fact, written in terms of the variable u and using the Euler equation at the
boundary,

∂tU + U∂xU + ∂xp
E |y=0 = 0,(5.2)

equations (1.1)–(1.7) become

(∂t − ∂Y Y + Y ∂xU ∂Y )u + u ∂xu−
(∫ Y

0

dY ′∂xu

)
∂Y u + U ∂xu + u ∂xU = 0,(5.3)

u(x, Y = 0, t) = −U,(5.4)

u(x, Y → ∞, t) = 0,(5.5)

u(t = 0) = uPin − U(t = 0) ≡ u0,(5.6)

where we have also used the incompressibility condition, written as

vP = −
∫ Y

0

∂xu
P dY ′ = −

(∫ Y

0

∂xu dY ′ + Y ∂xU

)
.(5.7)

We can now define the quantities

K1(u, t) = − (2u ∂xu + U ∂xu + u ∂xU) ,(5.8)

K2(u, t) = ∂Y

(
u

∫ Y

0

dY ′ ∂xu,

)
(5.9)
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and the operator F (u, t) as

F (u, t) = M2K1(u, t) + M2K2(u, t) + C,(5.10)

where we have identified the α(x, t) appearing in the kernel Fα with −∂xU(x, t), and
where C is defined by

C = M0(t) (u0 + U(t = 0)) −M1 (U − U(t = 0)) − U(t = 0).(5.11)

Given that (u
∫ Y
0

dY ′ ∂xu) |Y=0 = 0, F (u, t) can be written as

F (u, t) = M2K1(u, t) + M3K3(u, t) + C,(5.12)

where K3(u, t) is defined as

K3(u, t) = u

∫ Y

0

dY ′ ∂xu.(5.13)

Therefore (5.3), together with the boundary and initial condition (5.4)–(5.6), can
finally be written in the form

u = F (u, t).(5.14)

We call (5.14) with F (u, t) defined in (5.12), and with M2,M3,K1,K3 defined in
(4.10), (4.18), (5.8), (5.13), respectively, the mild form of the Prandtl equations. We
are now left to prove that the operator F (u, t), given by (5.12), satisfies the hypotheses
of the ACK theorem.

6. The forcing term. It is obvious that the operator F (u, t) satisfies assump-
tion 1 of the ACK theorem. In this section we shall show that it satisfies assumption 2,
namely, that F (0, t) ∈ Kl,ρ,µ and that ∀t ∈ [0, t]

|F (0, t)|l,ρ,µ ≤ R0.(6.1)

Since

F (0, t) = C,(6.2)

using Lemma 4.6 and Proposition 4.5, one gets the following.
Proposition 6.1. Suppose that u0 ∈ Kl,ρ,µ with u0(·, Y = 0) = −U(t = 0) and

U ∈ Kl,ρ
β,T . Then F (0, t) ∈ Kl,ρ,µ

β,T and the following estimate holds:

|F (0, t)|l,ρ,µ,β,T ≤ c (|U |l,ρ,β,T + |u0|l,ρ,µ) .

This proves that the forcing term can be estimated in terms of the initial con-
dition for Prandtl equations and the outer Euler flow. Notice that the compatibility
condition u0(·, Y = 0) = −U(t = 0) is necessary for the hypotheses of Lemma 4.6 to
be verified.

7. The contractiveness property of the operator F . In this section we
shall prove that the operator F , given by (5.10), satisfies assumption 3 of the ACK
theorem. Namely, we shall prove the following.
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Theorem 7.1. Suppose that u1 and u2 are in Kl,ρ0,µ0

β0,T
. Suppose 0 < ρ′ < ρ(s) <

ρ0s and 0 < µ′ < µ(s) < µ0. Then the following estimate holds:∣∣ F (u1, t) − F (u2, t)
∣∣
l,ρ′,µ′

≤ c

∫ t

0

ds

( |u1 − u2|l,ρ(s),µ
ρ(s) − ρ′

+
|u1 − u2|l,ρ,µ(s)

µ(s) − µ′ +
|u1 − u2|l,ρ′,µ′√

t− s

)
.(7.1)

To prove the above theorem we have to bound the operators M2K1 and M3K3.
The first one contains two different kinds of terms: the nonlinear term, u∂xu, and
two linear terms. They all will be estimated through the Cauchy estimate in the
x-variable. The operator M3K3, which contains the nonlinear term involving the
Y -derivative, will be estimated using the properties of the kernel of the operator M3.

7.1. The operator M2K1. We start with the estimate of the nonlinear term
involving the x-derivative. One has the following Cauchy estimate for the derivative
of an analytic function.

Proposition 7.2. Let f ∈ Kl,ρ′′ . If ρ′ < ρ′′, then

|∂xf |l,ρ′ ≤ |f |l,ρ′′
ρ′′ − ρ′

.(7.2)

Therefore the following proposition can be proved.
Proposition 7.3. Suppose that u1 and u2 are in Kl,ρ0,µ0

β0,T
. Suppose 0 < ρ′ <

ρ(s) < ρ0. Then the following estimate holds:

∣∣ u1∂xu
1 − u2∂xu

2
∣∣
l,ρ′,µ′ ≤ c

|u1 − u2|l,ρ,µ
ρ− ρ′

,(7.3)

where the constant c depends only on |u1|l,ρ0,µ0,β,T and |u2|l,ρ0,µ0,β,T .
The proof of the above proposition can be found in [17].
The estimate of the linear terms is easily achieved using the following lemma.
Lemma 7.4. Let U ∈ Kl,ρ

β,T and let ρ′ < ρ; then ∀ 0 < t ≤ T

sup
x∈D(ρ′)

|∂lxU(·, t)| ≤ c |U |l,ρ,β,T .

The proof of the above lemma is a consequence of the Cauchy estimate for an
analytic function and of the Sobolev inequality.

Finally, using Proposition 4.1 and the above lemmas, we get the following.
Proposition 7.5. Suppose that u1 and u2 are in Kl,ρ,µ

β,T . Suppose 0 < ρ′ <
ρ(s) < ρ . Then the following estimate holds:

∣∣ M2K1(u1, t) −M2K1(u2, t)
∣∣
l,ρ′,µ ≤ c

∫ t

0

ds
|u1 − u2|l,ρ(s),µ

ρ(s) − ρ′
,(7.4)

where the constant c depends only on |u1|l,ρ,µ,β,T and |u2|l,ρ,µ,β,T .

Notice that the difference K1(u1, t) − K1(u2, t) has to be considered only for
functions which satisfy the condition u(x, Y = 0, t) = −U , so that K1(u1, t) −
K1(u2, t) |Y=0 = 0. Therefore the requirement of Proposition 4.1 is fulfilled.
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7.2. The operator M3K3. In this subsection we shall estimate the term con-
taining the Y -derivative using Proposition 4.3. Since it involves also the x-derivative,
one must pay attention to the way the derivatives are distributed. In the estimate of
the term involving the ∂2

Y ∂
l−2
x -derivatives, one has to invoke Proposition 4.3. On the

other hand, in the estimate of the term involving the ∂Y ∂
l−1
x -derivatives, one has to

Cauchy estimate the x-derivative.
The following proposition then holds.
Proposition 7.6. Suppose that u1 and u2 are in Kl,ρ,µ

β,T . Suppose 0 < ρ′ <
ρ(s) < ρ, 0 < µ′ < µ(s) < µ. Then the following estimate holds:

(7.5)
∣∣M3K3(u1, t) −M3K3(u2, t)

∣∣
l,ρ′,µ′

≤ c

∫ t

0

ds

( |u1 − u2|l,ρ(s),µ′

ρ(s) − ρ′
+

|u1 − u2|l,ρ′,µ(s)

µ(s) − µ′ +
|u1 − u2|l,ρ′,µ′√

t− s

)
,

where the constant c depends only on |u1|l,ρ,µ,β,T and |u2|l,ρ,µ,β,T .
We stress the fact that we are allowed to use Proposition 4.3, as both the hypothe-

ses are satisfied. In fact the first hypothesis reads [u1
∫ Y
0

dY ′∂xu1−u2
∫ Y
0

dY ′∂xu2]Y=0

= 0 and the second one[
∂Y

(
u1

∫ Y

0

dY ′∂xu1 − u2

∫ Y

0

dY ′∂xu2

)]
Y=0

=

[
∂Y u

1

∫ Y

0

dY ′∂xu1 − ∂Y u
2

∫ Y

0

dY ′∂xu2

]
Y=0

+
[
u1∂xu

1 − u2∂xu
2
]
Y=0

=
[
(u1 − u2)∂xu

1 + u2∂x(u1 − u2)
]
Y=0

= 0,

where the last equality holds since both u1 and u2 have the same datum at the
boundary.

This concludes the proof of Theorem 7.1.

8. The main result. In the previous sections we have proved that the operator
F satisfies all the hypotheses of the ACK theorem. Hence the following theorem,
which is the main result of this paper, has been proved.

Theorem 8.1. Suppose U ∈ Kl,ρ0
β0,T

and uPin − U ∈ Kl,ρ0,µ0 . Moreover let the
compatibility conditions

uPin(x, Y = 0) = 0,(8.1)

uPin(x, Y → ∞) − U −→ 0(8.2)

hold. Then there exist 0 < ρ1 < ρ0, 0 < µ1 < µ0, β1 > β0 > 0, and 0 < T1 < T such
that (1.1)–(1.7) admit a unique mild solution uP . This solution can be written as

uP (x, Y, t) = u(x, Y, t) + U,(8.3)

where u ∈ Kl,ρ1,µ1

β1,T1
.

9. Concluding remarks. In this paper we have proved short time existence and
uniqueness of the solution of the Prandtl equations. The main hypothesis we have
imposed is the analyticity of the initial data and of the prescribed (Euler) flow with
respect to the tangential variable. This improves the results of [17], where analyticity
with respect to the normal variable was also imposed.
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The main ideas in our proof are the following.
First, we inverted the convection-diffusion (in the normal variable) operator. This

led us to introduce the mild form of the Prandtl equations and allowed us to put the
Prandtl equations in a form (see (5.14)) suitable for the application of the ACK
theorem.

Second, we introduced a modified form of the ACK theorem to deal with a term
which has a mild singularity in time (see (3.3)). The origin of this mild singularity is
in the fact that, due to the lack of analyticity with respect to the normal variable, we
had to use the regularizing properties of the Green’s function of the diffusion operator.
The gain of regularity in the normal space variable was paid with a mild singularity
in time.

Third, the analyticity in the tangential variable was used to deal with the non-
linear convection in the tangential direction. Application of our version of the ACK
theorem gave the existence and uniqueness of the solution.

The result of this paper is more general than the results of [17]. Moreover it
seems a necessary step toward a rigorous mathematical analysis of the boundary layer
theory for curved boundaries. In fact, when the curvature is present, the requirement
of analyticity with respect to the normal variable would not allow the asymptotic
matching between the exterior and the interior solutions. Therefore the problem of
proving the well-posedness of the boundary layer equations when geometries other
than very special ones (e.g., the half space or the exterior of a circular domain)
are involved does not seem to be out of reach. This would open the possibility of
the analysis of the zero viscosity problem for a fluid confined in a general bounded
domain.

Appendix A. Proof of the ACK theorem. The proof of Theorem 3.1 follows
along the same lines as that of [15].

In fact we prove the ACK theorem by proving that F (u, t) is contractive in an
auxiliary Banach space S

γ .
For γ > 0, we consider the weighted Banach space S

γ of continuous functions u(t)
with values in Xρ, where ρ + βt < ρ0. The norm in S

γ is defined as

‖u‖(γ) = sup
ρ+βt<ρ0

(ρ0 − ρ− β0t)
γ |u(t)|ρ.(A.1)

The contractiveness of the F (u) in S
γ can be proved as follows.

Let 0 < ρ′ < ρ(s) < ρ0. We set

ρ(s) = ρ′ +
λ(s)

2
,(A.2)

where

λ(s) = ρ0 − ρ′ − βs.(A.3)

Therefore

ρ0 − ρ(s) − βs =
λ(s)

2
= ρ(s) − ρ′.(A.4)
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We can now make the estimate

|F (t, u1) − F (t, u2)|ρ′ ≤ C

∫ t

0

ds

( |u1 − u2|ρ′√
t− s

+
|u1 − u2|ρ(s)
ρ(s) − ρ′

)

≤ C

∫ t

0

ds

( |u1 − u2|ρ′√
t− s

(ρ0 − ρ′ − βs)γ

(ρ0 − ρ′ − βt)γ
+

|u1 − u2|ρ(s)
ρ(s) − ρ′

(ρ0 − ρ(s) − βs)γ

(ρ0 − ρ(s) − βs)γ

)

≤ C‖u1 − u2‖(γ)

[
2
√
t(ρ0 − ρ′ − βt)−γ +

∫ t

0

ds
2γ+1

(ρ0 − ρ′ − βs)γ+1

]

≤ C
‖u1 − u2‖(γ)

(ρ0 − ρ′ − βt)γ

[
2

√
ρ0

β
+

2γ+1

γβ

]
,(A.5)

where C is the constant appearing in assumption 3. Passing from the second to the
third line, we have used (A.3) and (A.4).

Taking the sup of (A.5) over ρ′ + βt < ρ0, we get

‖F (t, u1) − F (t, u2)‖(γ) ≤ 2

(√
ρ0

β
+

2γ

γβ

)
‖u1 − u2‖(γ).(A.6)

Therefore, to prove that the operator F is contractive in the (γ)-norm, it is enough

to choose β big enough so that
√

ρ0
β + 2γ

γβ < 1
2 .

Appendix B. Proofs of Propositions 4.1, 4.2, 4.3, 4.4, and 4.5. We first
prove some simple lemmas. Set

Ψ(x, t) =

(∫ t

0

dτ e−2A(x,τ)

)1/2

.(B.1)

Lemma B.1.

sup
x∈D(ρ)

∣∣∣∣ e−2A(x,t)

(Ψ(x, t))2

∣∣∣∣ ≤ e4T supx,t |α|

t
.

Proof.

sup
x∈D(ρ)

∣∣∣∣ e−2A(x,t)

(Ψ(x, t))2

∣∣∣∣ ≤ e2T supx,t |α|

inf
x∈D(ρ)

∣∣∣∫ t0 dτ e−2A(x,τ)
∣∣∣ ≤

e2T supx,t |α|∣∣∣∫ t0 dτ e−2 supx∈D(ρ) A(x,τ)
∣∣∣

≤ e2T supx,t |α|∫ t
0
dτ e−2T supx∈D(ρ) |α(x,τ)| ≤

e4T supx,t |α|

t
.

Using the above bound it is straightforward to prove the following lemmas.
Lemma B.2.

sup
x∈D(ρ)

∣∣∂lxFα(·, Y, t)∣∣ ≤ c
exp

(
−Y 2 e−4T supx,t |α|

4t

)
√
t

l∑
i=0

(
Y 2 e4T supx,t |α|

2t

)i
.

Lemma B.3.

sup
x∈D(ρ)

|∂Y Fα(·, Y, t)| ≤ c
Y e4T supx,t |α|

t

exp
(
−Y 2 e−4T supx,t |α|

4t

)
√
t

.
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Lemma B.4.

sup
x∈D(ρ)

∣∣∂Y ∂lxFα(·, Y, t)∣∣

≤ c
exp

(
−Y 2 e−4T supx,t |α|

4t

)
√
t

l∑
i=0



(
Y 2 e4T supx,t |α|

2t

)i
Y e−4T supx,t |α|

2t

+

(
Y 2 e4T supx,t |α|

2t

)i−1
Y e4T supx,t |α|

2t


 .

In the proof of Proposition 4.5 we shall also need the following two lemmas.
Lemma B.5.

sup
x∈D(ρ)

∣∣∣∣∣ exp

(
−Y 2e−2A(·,Y 2/4η2)

4Ψ2(·, Y 2/4η2)

) ∣∣∣∣∣ ≤ c e−η
2

.

Lemma B.6.

sup
x∈D(ρ)

∣∣ Ψn(·, Y 2/4η2)
∣∣ ≥ c

Y n

2nηn
e−nT sup |α|.

We now start with the proof of Proposition 4.3.

Proof of Proposition 4.3. In order to estimate |M3h|l,ρ,µ′ we have to estimate
|∂ixM3h|0,ρ,µ′ with i ≤ l, |∂Y ∂ixM3h|0,ρ,µ′ with i ≤ l−1, |∂t∂ixM3h|0,ρ,µ′ with i ≤ l−1,

and |∂Y Y ∂ixM3h|0,ρ,µ′ with i ≤ l − 2.

We begin with |∂ixM3h|0,ρ,µ′ with i ≤ l.

|∂i
xM3h|0,ρ,µ′

= sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′∂Y

[
Fα(x, Y−Y ′, t− s)−Fα(x, Y+Y ′, t− s)

]
h(x, Y ′, s)

∥∥∥∥
L2

≤ sup
Y ≥0

eµ
′Y
∫ t

0

ds

∫ ∞

0

dY ′
i∑

k=0

sup
x

∣∣∣∂k
x∂Y

[
Fα(·, Y − Y ′, t− s) − Fα(·, Y + Y ′, t− s)

]∣∣∣
× sup

|�x|≤ρ

‖∂i−k
x h(·, Y ′, s)‖L2

≤ c sup
Y ≥0

eµ
′Y
∫ t

0

ds√
t− s

i∑
k=0



∫ ∞

−Y e−2T sup |α|
2
√
t−s

dη e−η2

η2k+1

× sup
|�x|≤ρ

∥∥∥∂i−k
x h(x,Y+ 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

−Y e−2T sup |α|
2
√
t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x h(x, Y+ 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√
t−s

dη e−η2

η2k+1 sup
|�x|≤ρ

∥∥∥∂i−k
x h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√
t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x h(x,−Y+ 2ηe2T sup |α|√t− s, s)

∥∥∥
L2




≤ c

∫ t

0

ds
1√
t− s

|∂i
xh|0,ρ,µ ≤ c

∫ t

0

ds
1√
t− s

|h|l,ρ,µ,
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where, in passing from the third to the fourth line, we have used Lemma B.4 and have

posed η = (Y ′−Y )e−2T sup |α|

2
√
t−s in the first two integrals and η = (Y ′+Y )e−2T sup |α|

2
√
t−s in the

third and fourth integrals.
We now pass to the estimates of |∂Y ∂ixM2∂Y h|0,ρ,µ′ with i ≤ l − 1.

|∂Y ∂i
xM3h|0,ρ,µ′

= sup
Y ≥0

eµ
′Y sup
|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ ∂Y

[
Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)

]
×∂Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ sup
Y ≥0

eµ
′Y
∫ t

0

ds

∫ ∞

0

dY ′
i∑

k=0

sup
x

∣∣∣∂k
x∂Y

[
Fα(·, Y − Y ′, t− s) − Fα(·, Y + Y ′, t− s)

]∣∣∣
× sup

|�x|≤ρ

∥∥∥∂i−k
x ∂Y ′h(·, Y ′, s)

∥∥∥
L2

≤ c sup
Y ≥0

eµ
′Y
∫ t

0

ds√
t− s

i∑
k=0



∫ ∞

−Y e−2T sup |α|
2
√
t−s

dη e−η2

η2k+1

× sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x, Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

−Y e−2T sup |α|
2
√
t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x, Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√
t−s

dη e−η2

η2k+1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√
t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2




≤ c

∫ t

0

ds
1√
t− s

|∂i
x∂Y h|0,ρ,µ ≤ c

∫ t

0

ds
1√
t− s

|h|l,ρ,µ.

The estimate of |∂Y YM2∂Y h|0,ρ,µ′ is easily achieved by transforming the deriva-
tive ∂Y Y acting on the kernel into ∂Y ′∂Y and integrating by parts. It then proceeds
analogously to the one given above, as the appearance of singular boundary terms is
prevented by the condition ∂Y h(x, Y = 0, t) = 0.

Finally we have to bound the term |∂tM3h|0,ρ,µ′ . We notice that ∂tM3h =
∂Y YM3h − αY ∂YM3h; hence we need to estimate |Y ∂Y ∂

i
xM3h|0,ρ,µ′ with i ≤ l − 2

and use the estimate given above.

|Y ∂Y ∂i
xM3h|0,ρ,µ′

= sup
Y ≥0

eµ
′Y Y sup

|�x|≤ρ

∥∥∥∥∂Y ∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ [Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)
]

×∂Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ Y
[
Fα(x, Y − Y ′, t− s) + Fα(x, Y + Y ′, t− s)

]
×∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2
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≤ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ (Y − Y ′) Fα(x, Y − Y ′, t− s) ∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

+ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ (Y + Y ′) Fα(x, Y + Y ′, t− s) ∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

+ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ Y ′ [Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)
]

×∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ c sup
Y ≥0

eµ
′Y
∫ t

0

ds√
t− s




i∑
k=0

∫ ∞

−Y e−2T sup |α|
2
√
t−s

dη e−η2

η2k+1

× sup
|�x|≤ρ

∥∥∥∂i−k
x ∂2Y h(x, Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

i∑
k=0

∫ ∞

Y e−2T sup |α|
2
√
t−s

dη e−η2

η2k+1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂2Y h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2




+ c sup
Y ≥0

sup
|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ e
µ′(Y −Y ′)

µ− µ′
[
Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)

]
× sup

Y ′≥0

eµY ′
∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ c

∫ t

0

ds

(
|∂i

x∂
2
Y h|0,ρ,µ√
t− s

+
|∂i

x∂
2
Y h|0,ρ,µ

µ− µ′

)
,

where, in passing from the second to the third line, we have integrated by parts
and used the condition ∂Y h(x, Y = 0, t) = 0. In the last step, the third integral
was estimated using Lemma B.2 and the boundedness of the integral with respect to
Y ′.

Proofs of Propositions 4.1, 4.2, and 4.4. The proofs of Propositions 4.1, 4.2,
and 4.4 are easily achieved by adopting the same techniques used to prove Proposi-
tion 4.3.

Proof of Proposition 4.5. To prove Proposition 4.5 it is useful to introduce
the following change of variable into the expression (4.14) for the operator M1g:

η =
Y

2Ψ(x, t− s)
,(B.2)

where the function Ψ(x, t−s) has been defined by (B.1). Since Ψ(x, t−s) is a monotone
function of the time variable, one can express t−s as a function of η. Namely, it exits
the function Φ such that

s = t− Φ(Y/2η).
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Therefore the expression (4.14) becomes

(B.3) M1g = 4

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

)
g(x, t− Φ(Y/2η))

×
[
1 +

Y 2

2η2
α(x, Φ(Y/2η)) e2A(x, Φ(Y/2η))

]

−
∫ t

0

dz g(x, t− z) α(x, z)

[∫ ∞

− Y e−2A

2Ψ(x,z)

dη e−η
2 −

∫ ∞

Y e−2A

2Ψ(x,z)

dη e−η
2

]
,

where, in the last integral, we have also posed t− s = z.
To estimate |M1g|l,ρ,µ we have to estimate |∂ixM1g|0,ρ,µ with i ≤ l, |∂t∂ixM1g|0,ρ,µ

with i ≤ l − 1, |∂Y ∂ixM1g|0,ρ,µ with i ≤ l − 1, and |∂Y Y ∂ixM1g|0,ρ,µ with i ≤ l − 2.

The estimate of the term |∂ixM1g|0,ρ,µ with i ≤ l is easily achieved by letting the
operator ∂ix act and by using the same techniques of Proposition 4.3.

Analogously, one can get the estimate of the term |∂t∂ixM1g|0,ρ,µ with i ≤ l − 1,
noticing that, in the expression (B.3), the time derivative commutes with the integral
because g(x, t = 0) = 0.

We now estimate the term |∂Y ∂ixM1g|0,ρ,µ with i ≤ l − 1. Recalling that if
f = f(Φ(Y/2η)), one has

∂Y f =
∂f

∂Φ

∂Φ

∂(Y/2η)

1

2η
= −Y e2A(x, Φ(Y/2η) )

2η2

∂f

∂Φ
,

we obtain the expression for ∂YM1g:

∂Y M1g = 8Y

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

)
g(x, t− Φ(Y/2η))

×
[
1 +

Y 2

2η2
α(x, Φ(Y/2η)) e2A(x, Φ(Y/2η))

]

+ 2

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

) Y e2A(x, Φ(Y/2η))

η2
∂tg(x, t− Φ(Y/2η))

×
[
1 +

Y 2

2η2
α(x, Φ(Y/2η)) e2A(x, Φ(Y/2η))

]

+ 4

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

) Y e2A(x, Φ(Y/2η))

η2
g(x, t− Φ(Y/2η))

×
[
α− Y 2

η
e2A(x, Φ(Y/2η))

(
α− ∂tα

2

)]

−
∫ t

0

g(x, t− z) α(x, z)
exp
(
−Y 2e−2A(x,z)

4Ψ2(x,z)

)
Ψ(x, z)

.

Using the above expression and Lemmas B.5 and B.6, the estimate of the terms
|∂Y ∂ixM1g|0,ρ,µ with i ≤ l− 1 and |Y ∂Y ∂

i
xM1g|0,ρ,µ with i ≤ l− 1 is straightforward.

The proof of Proposition 4.5 is thus achieved.
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Abstract. The behavior of the solutions of the degenerate parabolic equation

vt = v vxx + κ|vx|2, κ ∈ R,

a basic model in the theory of flows in porous media, depends strongly on the parameter κ. We
show here a striking example of that variability in the case of compactly supported solutions having
free boundaries. We consider the initial-value problem with continuous and compactly supported
initial data v(x, 0) = v0(x) ≥ 0. When κ > 0 it is well known that this problem admits a unique
weak solution which is compactly supported and the following free-boundary conditions are satisfied:
v = 0, vt = κ |vx|2. The latter relation is a form of Darcy’s law and determines a unique solution,
hence a unique choice of the interface.

We prove here that for κ ≤ 0 there exist infinitely many solutions v ≥ 0 with the same initial
data and an interface on which Darcy’s law holds. Actually, the interfaces can be chosen as arbitrary
Lipschitz continuous curves as long as the support shrinks. Therefore, Darcy’s law does not play a
selecting role for this free-boundary problem.

Key words. Darcy’s law, fast diffusion, pressure equation, free boundaries, uniqueness, shrink-
ing supports
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DOI. 10.1137/S0036141001396540

1. Introduction. This paper is devoted to showing that the behavior of the
solutions of the degenerate parabolic equation

vt = v vxx + κ|vx|2,(1.1)

called the pressure equation because of its well-known application in modeling the
flow of compressible fluids through porous media [36, 38, 11], depends strongly on the
parameter κ ∈ R. We show here a striking instance of that variability in the case of
compactly supported solutions having free boundaries for (1.1) with continuous and
compactly supported initial data

v(x, 0) = v0(x) ≥ 0, x ∈ R.(1.2)

Case κ > 0. This is the case that appears in gas theory. It also appears in
filtration theory (κ = 1), in lubrication (κ = 1/3), and many other applications; cf.
[3, 8, 37, 44]. It is well known that for all positive κ the initial-value problem posed
in Q = R× (0,∞) admits a unique weak solution which turns out to be continuous in
(x, t) and compactly supported in x for every t. Moreover, the regions {v > 0} and
{v = 0} are separated by locally Lipschitz interfaces (also known as free boundaries)
where the free-boundary conditions are satisfied:

v = 0, vt = κ |vx|2 .(1.3)
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The second relation is a form of writing Darcy’s law on the interface (see below). If
we assume for simplicity that v0(x) > 0 on an interval I = (a, b) and zero outside,
then the following facts are well known:

(i) There are two continuous interfaces x = L(t) and x = R(t), where L(t) is
nonincreasing with L(0) = 0, and R(t) nonincreasing with R(0) = b.

(ii) v > 0 precisely in the set

Ω = {(x, t) : L(t) < x < R(t)},(1.4)

which is noncontracting in time (in fact, strictly expanding after a finite waiting time).
(iii) v is C∞ smooth in the positivity set Ω and on to the lateral boundary after

the waiting time.
(iv) The solution is unique in several other formulations. Thus, it is unique as a

viscosity solution in the sense of [21]. It is also uniquely determined as the solution
of the following classical free-boundary problem.

Problem (P0). Given v0 as above, to find a subset Ω ⊂ Q of the form (1.4) with
continuous L and R, L(0) = a, R(0) = b, and a smooth function v defined and positive
in Ω, continuous at t = 0, and Lipschitz continuous up to the lateral boundary, and
such that (1.1) is satisfied in Ω, the initial data are taken, v is zero on the lateral
boundary (the interfaces), and finally Darcy’s law is true as a limit for all t > 0.

Moreover, the unique solution has a noncontracting support. Let us recall some
facts about Darcy’s law. It is a basic law of fluids through porous media which states
that seepage velocity q is proportional to the gradient of pressure, which is identified
with v (up to a constant). In (1.1), (1.6) it is well known that the law means that
q = −κ∇v. For a problem with free boundaries there can be difficulty in identifying
these quantities at the free boundary because of lack of regularity. For a solution
which is C1 up to a C1 interface, say R(t), we have

R′(t) = −κ vx(R(t), t) .(1.5)

Since v(R(t), t) = 0 so that vt + R′(t) vx = 0 on the interface x = R(t), this implies
vt = κ |vx|2. Indeed, both forms are equivalent if vx �= 0 on the interface. Actually,
in the PME theory it is proved that the last form happens on the moving parts of
the interface [19], and it happens trivially at resting interfaces. The only analyti-
cal difficulty happens at the corner point that may be formed at the waiting time
[5], where the stronger form of the law must be reformulated with side derivatives,
D+
t R(t∗) = −κD−

x v(R(t∗), t∗); see section 4. The same happens for the left interface:
we have L′(t) = −κ vx(L(t), t) and vt = κ |vx|2 on x = L(t).

Equation (1.1) is equivalent to the well-known porous medium equation (PME)

ut = (um−1ux)x(1.6)

through the transformation v = um−1, and then the parameters are related by

m =
κ + 1

κ
, κ =

1

m− 1
,(1.7)

a correspondence that excludes only m = 1 and γ = 0. In the typical gas application
u is the density, so we will refer to (1.6) as the density equation for all exponents m.
For m < 1 it is usually called the fast diffusion equation.

Case κ < 0. A completely different situation appears for κ < 0. It is known,
through the work of Bertsch et al. [13, 14, 15, 16], that in the range κ < 0 there
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exist infinitely many solutions v ≥ 0 with the same initial data, since the bounding
interfaces can be quite arbitrarily chosen as long as the support does not expand. The
solution with stationary support is identified as the maximal solution and also as the
limit of the vanishing viscosity approximation, a result that is extended to completely
arbitrary measurable initial data by Chasseigne and Vázquez in [23].

The problem of identification of the classes of solutions with contracting support
is addressed by Angenent [1], who constructs (local in time) unique solutions which
have a high regularity near the free boundary that allows for a Taylor expansion.
Recent work of Barenblatt et al. [9] points out the use of Darcy’s law to numerically
identify the solutions with shrinking supports. But these authors also point out that
further investigation of the issue is needed.

We will show here that both conditions in (1.3) hold on the interfaces of infinitely
many constructed solutions for any initial data. More precisely, we pose the following
problem, formally similar to Problem (P0).

Problem (P1). Let κ < 0. Given a continuous function v0 which is positive in a
bounded interval I = (a, b) and zero outside, find a subset of Q of the form

Ω = {(x, t) : L(t) < x < R(t), 0 < t < T}(1.8)

with continuous L and R, L(0) = a, R(0) = b, and a smooth function v defined and
positive in Ω, continuous up to the lateral boundaries, and such that the initial data
are taken continuously, v is zero on the lateral boundaries, and (1.1) is satisfied in Ω.

We prove that for every κ < 0 this problem can be solved in infinitely many ways
by prescribing Ω as a nonexpanding domain.

Theorem 1.1. Let us prescribe not only v0 as before but also the monotone curves
x = R(t) and x = L(t) in a (finite or infinite) interval t ∈ [0, T ] with L(t) < R(t)
and L(0) = a, R(0) = b. We also assume that L and R are Lipschitz continuous and
monotone so that Ω is nonexpanding at all times. Then there exists a unique solution
to Problem (P1) in Ω. Moreover, the solution is classical in Ω, and the maximum
principle applies to the solutions of this mixed problem; i.e., the map (v0, L,R) �→ v
preserves order in the obvious way. Finally, there are no solutions of this problem if
the domain Ω fails to be nonexpanding.

Existence of solutions being more or less known from the work of previous au-
thors, uniqueness is one of the main points of this paper. Let us make some useful
comments: the monotonicity of R and L is not necessarily strict; it must be directed
so that Ω is nonexpanding; i.e., R must be monotone nonincreasing and L monotone
nondecreasing. The conditions on v0, L, and R can be weakened, but only to a certain
degree since there is a limitation: certain choices of continuous boundaries produce
discontinuous solutions, a question that is discussed in [48].

The last assertion of the theorem means that positive solutions do not exist when
Ω fails to be nonexpanding. It will be explained in section 3 as follows: when we
apply the process of construction of a maximal solution outlined in that section, then
the limit v vanishes inside Ω near the interface at the points where Ω expands, so
that an actual free boundary appears inside Ω which is monotone as prescribed by
the theorem.

The behavior near the boundary and the relation with Darcy’s law constitute
another main contribution.

Theorem 1.2. If L and R are Lipschitz continuous, then the solution behaves
in a linear way near the free boundary and Darcy’s law is satisfied on the interfaces
for almost all 0 < t < T . If R(t) (resp., L(t)) is C1 in some time interval J , then
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v is C1 up to the boundary in J and conditions (1.3) hold in the classical sense. If
L′(t) �= 0 (resp., R′(t) �= 0), then the solution is linear nondegenerate near the free
boundary.

Darcy’s law is stated at (1.5) for a C1 right-hand side interface. It must be
written with the help of side-derivatives in the general case. This is carefully stated
in Corollary 4.3. Similarly for the left-hand side interface.

In other words, the result implies that imposing the zero value plus Darcy’s law
on the interfaces does not characterize the solution for any initial data, as it did for
Problem (P0) when κ > 0. Identifying physically significant classes of solutions with
shrinking supports is still an open problem. We recall that prescribing a suitable pair
of conditions on the free boundary involving the solution u, its derivatives, ux and ut,
and the speed of the interface is the usual recipe for obtaining a well-posed problem
in free boundary problems related to parabolic equations, such as the Stefan problem
and its many variants, the porous medium problem, or the Hele–Shaw problem; cf.
[28]. It fails in this case when using the seemingly natural choice of conditions.

Notation and outline. For convenience we prefer to write γ = −κ when study-
ing the equation with negative κ. Then the equation reads

vt = v vxx − γ|vx|2,(1.9)

the relation between γ and the porous medium exponent is

m =
γ − 1

γ
, γ =

1

1 −m
,(1.10)

and density is related to pressure by u = v−γ . Our scheme is to obtain maximal
and minimal solutions by approximation and standard comparison (section 3) and
then obtain Darcy’s law at all Lipschitz points of the interfaces (section 4). For the
full proof of uniqueness for data with our generality we need the higher machinery
of nonlocal transformations using the so-called mass variable. In this way we pass
from the original equation into a couple of associated equations (p-Laplacian equa-
tions) for some associated solutions; cf. section 5. Uniqueness is proved in terms
of the second p-Laplacian formulation in section 6. The relation with the theory of
fast diffusion equations is further investigated in section 7, where an improvement of
previous existence and uniqueness results is obtained, Theorem 7.2.

The case γ = 0. The equation under consideration is seemingly “simpler,” vt =
v vxx, but it offers a quite interesting variation of the above line of argument. The
general result of Theorem 1.1 is essentially recovered, but there are a number of
significant modifications in Theorem 1.2. The main one is that Darcy’s law can be
applied but it takes a quite different from. It cannot be derived from the equation for
v as in the case γ > 0, since we lack the term (vx)2. There is, however, a change of
variables π = π(v), given by formula (8.3), that transforms the equation into

πt = v πxx − (πx)2.(1.11)

Then Darcy’s law means R′(t) = πx on the interface, and π ∼ v/ log(1/v) replaces
v in the regularity statement of the main result above. This means that on smooth
strictly contracting interfaces we will have |vx| = ∞, instead of the finite value of
the range γ > 0. Incidentally, we find both quadratic and linear pressure profiles for
stationary interfaces. See the complete technical details (simple but rather beautiful
in the author’s opinion) in section 8.
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Further results. We devote an additional section to the question of limited
regularity: we show existence of self-similar solutions representing a piecewise linear
interface with a corner point in section 9. We end with a section of conclusions,
comments, and open problems.

2. Traveling wave solutions. The simplest explicit solutions are of course the
constants, v = C, C ≥ 0. The simplest family of nonclassical (weak) solutions with
moving free boundaries consists of the traveling waves (TWs) with speed c �= 0, which
exist for γ �= 0 and have the form

Vc(x, t) =

{
c

γ
(x− ct)

}
+

.(2.1)

Then Vc behaves linearly near the interface {x1 = ct} and Darcy’s law is obviously
satisfied. By changing x into −x we find TWs moving to the left with speed c
with interface x = −ct. It can also be obtained by changing the sign of c: V−c =
(−(c/γ)(x+ct))+. Supports expand for γ < 0 (κ > 0) and contract for γ > 0 (κ < 0).
For γ = 0 we have stationary solutions, V (x, t) = (ax)+, a �= 0.

TWs are the model of behavior of all the solutions near a moving interface with
nonzero speed and will be used below in proving that such behavior holds, as explained
in Theorem 1.2. At first sight, there is something to be worried about in the family
of traveling waves, namely, the relative behavior of waves with different speeds.

Lemma 2.1. For γ > 0 the maximum principle does not hold for any initially
ordered pair of TWs with different speeds.

Indeed, if they are ordered at t = 0 they move in the same direction. The reason
the maximum principle breaks down later is that the slope equals the receding speed,
and hence an initially larger solution moves back faster. Note that the maximum
principle holds for TWs as well as for the rest of the solutions if γ < 0.

The linear family does not exhaust the set of TWs. If we try the form v(x, t) =
V (x+ ct), we find the equation cV ′ = V V ′′− γ (V ′)2. In order to integrate it we pass
to the density function U = V −γ and obtain (Um−1U ′)′ = cU ′, hence Um−1U ′ =
K0 + cU , and finally

V ′ = − c

γ
−K V γ , K ∈ R.(2.2)

The case K = 0 is the linear TW seen before: V = −c s/γ for s < 0, and zero
for s ≥ 0. For K > 0 integrate this equation from V (0) = 0 to obtain a solution
V = Vc,K(s) for s < 0. We get a solution which goes to infinity as s decreases. This
happens at a finite distance if γ > 1, at an infinite distance if 0 < γ ≤ 1. The rates are
easily calculated from the asymptotic behavior V ′ ∼ −KV γ . In any case, Vc,K → ∞
as K → ∞ uniformly for s ≤ ε < 0.

On the contrary, when K = −H < 0, if we start with V (0) = 0, we get a bounded
TW which increases as s → −∞ up to the level

V (−∞) = h(c,K) ≡
(

c

γ H

)1/γ

,

so that Vc,−H → 0 uniformly as H → ∞. But we can also obtain increasing profiles
if we start with V (0) = h0 > h(c,K). Then V > h, V ′ > 0 for all s ∈ R and
V (−∞) = h. These profiles have a vertical asymptote at the right-hand end of the
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domain of definition if γ > 1. Keeping h0 and c fixed and letting H → ∞ we get a
limit zero if s < 0, infinity if s > 0.

Remark. Other types of explicit examples of solutions are known in the literature;
cf. [9, 23, 34] and their references. For γ = 0 see more in section 8.

3. Maximal and minimal solution. First uniqueness. We know that for
κ = −γ > 0 the expansive character of the solutions of the Cauchy problem implies
that there is a unique choice of the interfaces compatible with the zero-flux condition.
We now start proving that this fails for γ > 0. We review in this section the exis-
tence question; we point out the existence of both a maximal and a minimal solution
for Problem (P1) with a shrinking prescribed domain; we start the analysis of the
boundary behavior and prove a partial uniqueness result.

Let us then fix γ ≥ 0. We first recall some well-known facts: since the equation
is only degenerate parabolic at the value v = 0, a theory of classical solutions with
bounded initial data such that v0(x) ≥ ε > 0 is standard [35], the problem is well
posed, the solutions are C∞ smooth, the maximum principle applies, and these facts
hold independently of the value of γ.

Such a nice panorama breaks down if the value v = 0 is admitted. Let us review
the approximation procedure for the Cauchy problem in the whole space (x ∈ R)
as done by Bertsch and collaborators [16]. Given a bounded initial function v0 ≥ 0
defined in the whole line, the initial data are approximated by adding ε > 0 into
v0ε(x) = v0(x) + ε, x ∈ R. This method is equivalent to the standard vanishing
viscosity approximation (cf. [16]) and produces in the limit ε → 0 a function v ∈
C(R× [0, T ]) which is the maximal solution with respect to all possible weak solutions
of the Cauchy problem (a different use of the word maximal, as the reader will notice).
The following property is important in what follows: the maximal solutions thus
constructed have constant supports for t > 0. Let us also remark that maximal
solutions with the same initial data depend monotonically on κ because of the form
of the equation and the simple comparison theorem for the approximating problems.

We now address the question of solving the mixed problem (P1).
Proposition 3.1. Let γ ≥ 0 and let v0, L, R be as stated in Theorem 1.1. There

exists a solution to Problem (P1) which is positive everywhere in Ω if the support is
nonexpanding at all times. Indeed, there exist both a maximal and a minimal solution.
The problem cannot be solved if the boundaries have any expanding parts.

Proof. (i) In order to obtain a solution we extend v0(x) to the whole line by
putting its value to zero outside of I0. The results of [16] imply that the maximal
solution of the Cauchy problem also solves our problem in a domain Ω with constant
boundaries R(t) = b, L(t) = a. We will use this solution, V (x, t), which is positive in
(a, b)× (0,∞), as an upper bound for the solutions with all other kinds of boundaries.

(ii) We now exclude expanding boundaries: let u be a possible solution with a
boundary that reaches a point R(t1) > b at some t1 > 0. Let us argue by comparison
with the approximations Vε to the maximal solution of the Cauchy problem, which
is a smooth and positive solution defined in Q = R × (0,∞). From the maximum
principle applied in Ω ∩ {t ≤ t1} we have v(x, t) ≤ Vε in Ω; hence in the limit v ≤ V .
But V (x, t1) vanishes for x ≥ b, hence a contradiction. The same argument excludes
the left boundary less than a. Summing up, L(t) ≥ a and R(t) ≤ b for all solutions
and all times t > 0.

In order to avoid nonmonotone parts of the boundaries at later times, displace
the origin of time at any t0 ∈ (0, T ). It follows that R(t) ≤ R(t0) and L(t) ≥ L(t0)
for t > t0. Summing up, the lateral boundaries must be nonexpanding at all times if
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we want them to be the lateral free boundaries of a solution which is positive inside
domain Ω.

(iii) Maximal solution. We now construct the maximal solution to the mixed
problem with given nonexpanding lateral boundaries. We approximate the problem
in the standard sense by adding ε > 0 to the initial and boundary data and solving in
Ω. By classical theory (cf. [35]) we get a family of solutions vε ≥ ε which are ordered.

In order to obtain an a priori bound from below for any solution v we compare
with the maximal solution of the problem posed in a rectangle R = I1 × (0, τ), where
I1 is a small subinterval of I0 and τ is chosen as large as possible as long as R is
strictly included in Ω. In this way we get an a priori uniform bound from below
w(x, t) > 0 inside Ω independent of the particular solution.

Since this bound applies to all the approximations ve of a given problem, standard
comparison shows that w ≤ vε; we can take the monotone limit as ε → 0 to get a
function v, which is still equal to or larger than w, and hence positive in Ω. Since the
equation is nondegenerate when v > 0, we conclude that v is smooth in Ω. Continuity
up to the boundary is obtained by the method of barriers.

Accepting this result, which we prove next, the construction of the maximal
solution is finished. Indeed, any other solution v2 having the stated properties can
be compared with vε so that v2 ≤ vε, and in the limit v2 ≤ v. This means that v is
maximal for (P1).

Lemma 3.2 (Lipschitz continuity at the boundary). Suppose that R(t) is a non-
increasing and Lipschitz continuous function in an interval [t1, t2], 0 < t1 ≤ t2. Then
v grows at most linearly near the interface x = R(t): there is a constant C1 > 0 such
that for h small enough

0 < v < C1 (R(t) − x)(3.1)

whenever R(t) − h < x < R(t) and t1 ≤ t ≤ t2. Similarly for the left interface L(t).
The constant C1 depends only on the Lipschitz constant of R, t1, t2, and the initial
data.

Proof. Fix any t0 ∈ [t1, t2] and let x0 = R(t0). As an upper bound we consider
a linear TW Vc(x, t) = (c/γ)(d − x − ct)+ and choose c and d so that its straight
interface, x = d − ct, touches the curve x = R(t) for the first time at t = t0, while
d− ct > R(t) for t < t0. We also want v0(x) < Vc(x, 0). Both requirements are easily
satisfied if we first choose c large enough and then let d = ct0 + x0.

Suppose that we happen to know that v is continuous up to the boundary. Then
we compare Vc and v in the domain Ω0 = {(x, t) : L(t) < x < R(t), 0 < t < t0}. We
discover that, locally inside Ω0, both Vc and v are classical solutions of a nondegenerate
parabolic equation and that they are continuous up to the parabolic boundary and
are strictly ordered there. Hence, v cannot touch Vc in any interior point, and we
conclude that v(x, t0) ≤ Vc(x, t0) = (c/γ)(x0−x) for x < R(t). This gives the upper
bound, and C1 = c/γ depends only on the Lipschitz constant K(R) of R(t) and the
initial data. The dependence on v0 can be reduced to R(0) and ‖v0‖∞.

If we do not know if v is continuous, the argument requires a bit more patience.
We compare the approximation vε used in the construction of the solution with a
displaced TW V ∗(x, t) = Vc(x − δ, t) = (c/γ)(d + δ − x − ct). It is easy to see from
the same maximum principle argument used above that for a suitable δ that depends
on ε, and the same c and d, we have v ≤ V ∗ in Ω0 . Passing to the limit ε → 0
and taking into account that δ → 0 as ε → 0, we conclude that v ≤ Vc as before. In
particular, we have established the desired continuity of v near (R(t0), t0).
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(iv) Minimal solution. In order to obtain the minimal solution we construct the
maximal solution in domains Ωδ strictly included in Ω and converging monotonically
to Ω as δ → 0. We have for these solutions the ordering uδ ≤ u, and uδ ≤ uδ′ if
Ωδ ⊂ Ωδ′ . Passing to the monotone limit δ → 0 we obtain a solution which is easily
shown to be continuous and the minimal solution. The previous argument is rather
sketchy, but it uses ideas that can be found in the literature; cf. [22].

First uniqueness results. We will prove in section 6 that the maximal and
minimal solutions coincide, which means uniqueness for the overdetermined version
of Problem (P1) stated in Theorem 1.1. The general proof needs more sophisticated
tools, which we introduce in section 5. However, the result can be obtained very easily
for symmetric data, and we present that proof here. First, we need a comparison
result. We say that two solutions u1 and u2 are strictly ordered if their domains of
definition are strictly included in the sense that R1(t) > R2(t) and L1(t) < L2(t) for
all t ∈ [0, T ], and v1 > v2 in Ω2. In the same way we define strictly ordered data.

Lemma 3.3. If the data of two solutions are strictly ordered, so are the solutions.
The proof is just an application of the classical maximum principle at interior

points of Ω2. Using this result we can get a first uniqueness result.
Proposition 3.4. If v0 has only one maximum point, then the solution is

unique.
Proof. After shifting the x-axis if necessary, we may assume that the maximum

of v0 is taken at x = 0. Given a solution v1 we can use the scaling law

v1,λ(x, t) =
1

λ2
v(λx, t)

with λ = 1 − ε ∈ (0, 1) to produce another solution of (1.9) with strictly larger
data. If v2 is the second solution of the original problem, then by the previous lemma
vλ,1 ≥ v2 in Ω. In the limit λ → 1 we get v1 ≥ v2. Reversing the roles, we conclude
that v1 = v2.

4. Lipschitz continuity near the interfaces and Darcy’s law. Here we
study in greater detail the linear behavior of solutions near moving interfaces. We
make full use of the families of TW solutions studied in section 2 as comparison
functions.

Proposition 4.1. Suppose that R(t) is a Lipschitz continuous function with
derivative bounded above and below away from zero in absolute value in an interval
[t1, t2], 0 < t1 < t2. Then v behaves linearly in a nondegenerate way near the interface
x = R(t): there are constants C1, C2 > 0 such that for h small enough

C2 (R(t) − x) < v < C1 (R(t) − x)(4.1)

whenever R(t) − h < x < R(t) and t1 ≤ t ≤ t2. Besides, vx and vt are uniformly
bounded near the right interface. Similarly for the left interface L(t).

Proof. The upper bound has been established in Lemma 3.2. We proceed in a
similar manner for the lower bound. Now a convenient TW is placed locally below as
follows: we select a small speed c ∼ 0 and set the value of d as before, d − ct0 = x0.
By the assumption on R, if c is small enough, we can obtain separate interfaces for
v and the TW V (x, t) = Vc(x − d + ct) in the interval 0 < t < t0. We also have
V (x, 0) < v0(v) in a small interval d − h ≤ x ≤ d < b = R(0). We then compare v
and V in the region

Sh = {(x, t) : d− h− ct < x < d− ct , 0 < t < t0},
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which is a subset of Ω if h is small enough. In order to apply the maximum principle
we need to check that v(x, t) > V (x, t) = Vc(−h) > 0 on the line H(t) = d − h − ct,
0 < t < t0. This will be true by continuity if c and h are small enough. Note that
the line x = H(t) is contained in the positivity set of v and approaches the zero set
of v only as t → t0, where it stays at a distance not less than h independent of c. We
conclude for c, h small v(x, t) ≥ V (x, t) in S − h so that

v(x, t0) ≥ V (x, t0) = Vc(x− x0)

for x0 − h ≤ x ≤ x0. This establishes the lower bound, and the constant depends on
the data as in Lemma 3.2 and is uniform in the whole interval [t1, t2].

(ii) The estimate on vx and vt comes now from standard rescaling arguments with

vλ(x, t) =
1

λ
v(λ (x− x0), λ (t− t0))(4.2)

and letting λ → 0, as performed by Caffarelli and collaborators for the porous medium
equation; cf. [19, 4].

In what follows we need to make clear the notation for side derivatives. For a
function x = R(t) which is continuous at a point t0 we denote by D+

t (t0) and D−
t (t0)

the limits

D+
t R(t0) = lim

t↘t0

R(t) −R(t0)

t− t0
, D−

t R(t0) = lim
t↗t0

R(t) −R(t0)

t− t0

whenever they exist. They are called lateral derivatives. The notation D+
x v(x0, t0),

D−
x v(x0, t0), D−

t v(x0, t0), D+
x v(x0, t0) for lateral partial derivatives should now be

clear.
Proposition 4.2. Under the above conditions on v and R(t), at every time t0

where D−
t R(t0) exists there also exist at P0 = (R(t0), t0) the limits D−

x v(P0) and
D−
t v(P0), and

D−
x v (P0) = limx↗R(t0) vx(x, t0) =

1

γ
D−
t R(t0) ,

−D−
t v (P0) = − limt↗t0 vt(x0, t) =

1

γ
(D−

t R(t0))2 .
(4.3)

The convergence of vx and vt is uniform on nontangential directions approaching P0

within the support with t < t0 (backward directions). Similarly for the left interface
L(t).

Proof. Let x0 = R(t0). We are assuming that c0 = −D−
t R(t0) is positive and

finite.
(i) In order to prove the inequalities from above in (4.3) for the left derivatives

D−
x v, D−

t v we repeat at t0 the argument of Proposition 4.1 after replacing the
comparison function Vc(s) by a nonlinear TW Vc,K of type (2.2), where c = c0 + ε
and ε > 0 is (arbitrarily) small. The assumption on R at t0 says that by selecting a
small τ > 0 we can have

R(t0) + (c0 − ε)(t0 − t) < R(t) < R(t0) + (c0 + ε)(t0 − t)

for all t ∈ [t0 − τ, t0). If we now shift the origin of times to t1 = t0 − τ and select d
as before, the function V (x, t) = Vc,K(x + ct− d) will have an interface that touches
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x = R(t) at t = t0 and is larger than R(t) in the time interval t0 − τ ≤ t < t0.
Next, we take a large parameter K > 0 to ensure that V (x, t) > v(x, t) at time
t = t1 = t0−τ and for x ≤ R(t). This is where the parameter K is needed. Comparison
as in the previous proposition then gives V (x, t) > v(x, t) for t0 − τ < t < t0 and
x ∈ (L(t), R(t)). In the limit t = t0, recalling that the parameter K does not affect
the boundary behavior of the TW in the first approximation, we get

v(x, t0)

x0 − x
≤ 1

γ
(c + 2ε),

v(x0, t)

t0 − t
≤ 1

γ
((c + 2ε)2)

for every x ∈ (x0 − h, x0), and h depends only on the data and ε.
(ii) For the lower inequality we use the nonlinear TWs Vc,K of (2.2) with c = c0−ε

and H = −K � 1 so that Vc,K ∼ 0 and compare in a strip of the form Sh for small
h and for t0 − τ ≤ t < t0 to get V (x, t0) ≤ v(x, t0) for x ∈ (x0 − h, x0); hence

v(x, t0)

x0 − x
≥ 1

γ
(c− 2ε).

The comparison on the lateral boundary x = R(t) − h is correct if we take H large
enough thanks to the minimal linear growth proved in Proposition 4.1. The error in
the lower bound is then uniform in a strip of width h that depends on the constants
of the data.

(iii) We still need to prove that the slope value at the interface is the limit of
the values of vx at the interior along nontangential directions, and the same for vt.
A proof using the scaling arguments is as follows. By the previous result we get the
linear behavior

v(x, t) =
c

γ
ρ (1 + ε(t, ρ)), ρ = R(t) − x,(4.4)

where ε(t, ρ) → 0 as ρ → 0, t → t0 in a way that depends only on the stated constants.
Translating the origin of coordinates to a point (x0, t0), scaling as in Proposition 4.1,
and passing to the limit λ → 0 we get

vλ(x, t) → Vc0(x, t),(4.5)

uniformly on compact subsets of {(x, t) : t ≤ 0}. By standard parabolic theory we
get vλ,x → −(c/γ), vλ,t → −(c2/γ) on a parabolic neighborhood of the point (−1, 0).
Changing back the scaling we conclude that vx is continuous up to x = R(t), at t = t0
with uniform convergence along sets of the form

Kn,h(x0, t0) = {(x, t) : t ≤ t0, x0 − h ≤ x ≤ x0 + n(t0 − t)}
whenever n < c0. Analogously for vt.

Corollary 4.3. (i) At every point where R(t) is left-differentiable and R′(t0) < 0
we have Darcy’s law in the form

R′(t) = γ D−
x v(R(t), t), D−

t v(R(t), t) = −γ (D−
x v(R(t), t))2 .

(ii) If R(t) is C1 with R′ < 0 in an interval t1 < t < t2, then v is locally uniformly
linear near that part of the interface, vx and vt are continuous up to x ≤ R(t), and

vx(x, t) =
1

γ
R′(t), vt = −γ (vx)2 for x = R(t) and t ∈ (t1, t2).(4.6)

Analogously for the left interface.
Proof. In the latter case the scaling argument holds locally uniformly in t0.
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Extension. In order to cover the results of Theorem 1.2 we need to consider also
the case D−

t R(t0) = 0 and prove that D−
x v(R(t0), t0) = D−

t v(R(t0), t0) = 0. This
result follows easily: we do not need a lower estimate, and the upper one is proved by
approximation and comparison, as an easy modification of Proposition 3.2 shows.

The reader should note that points at which R′(t) = 0 are more difficult to
analyze in detail, because such generality includes stationary points and points where
the boundary function R(t) decreases with a rate that is less than linear. In those
cases the lower part of the linear estimates may be false, and the free-boundary
problem becomes degenerate in the usual free-boundary terminology. For instance,
the solutions with stationary interfaces have a quadratic growth near the stationary
boundaries. This class of solutions has been studied in detail in [23].

5. The mass variable and the conjugate p-Laplacian equations. We still
have to prove the uniqueness of the solutions of Problem (P1) for general data. This
will be done after we perform some radical transformations of the problem. As a
motivation we consider the mass function of the initial distribution u0(x) which is
defined as

Mu(x) =

∫ x

x0

u0(x)dx

and is continuous and increasing. The origin x0 is chosen at will. In probability, and
taking as origin x = −∞, this is called the distribution function for the density u0

(which is then normalized to have integral 1).
In order to construct a function of both x and t with nice properties we argue as

follows: let u(x, t) > 0 be a classical solution of (1.6) in a cylindrical space-time domain
R of the form (1.8) with lateral boundaries given continuous functions x = L(t),
x = R(t). We introduce the space-time mass function

X(x, t) =

∫
Γ

udx + um−1uxdt,(5.1)

where the differential form ω = udx+um−1uxdt is integrated along any curve Γ lying
in the domain of u and joining the points (x0, t0) and (x, t) for some fixed (x0, t0) ∈ R.
Since (1.6) holds, the integrand defining X is an exact differential, and hence X is a
potential that can be calculated equivalently along any path, for instance,

X(x, t) =

∫ x

x0

u(x, t)dx +

∫ t

t0

(um−1ux)|x=0dt,(5.2)

as long as this broken path lies in R (which happens at least locally). The mass
function has interesting properties. Let us consider some of them.

• p-Laplacian equation. Since ∂X/∂x = u and ∂X/∂t = um−1ux, the partial
derivatives of X = X(x, t) are related by equation Xt = (Xx)m−1Xxx. Taking into
account that Xx = u > 0 in R, the equation can be written in the more standard
form

Xt =
1

m
(|X|m−1

x Xx)x,(5.3)

which is the so-called p-Laplacian equation with exponent p = m + 1. (Remark: if
m = 0, the form is Xt = Xxx/Xx = (logXx)x.) We will use these facts as an essential
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tool in the uniqueness proof. But before going into that, we have to understand the
inverse transformation.

• Inversion. Consider the transformation (x, t) �→ (X, t) associated to the positive
smooth solution u of (1.6) defined in the domain R.

Lemma 5.1. The transformation T : (x, t) �→ (X, t) is smooth in R, one-to-one
onto its image, and C1 invertible.

Proof. The Jacobian matrix of the transformation is

J =
∂(X, t)

∂(x, t)
=

(
u Xt

0 1

)
,(5.4)

where Xt = um−1ux. Since det(J)= u �= 0, the transformation is locally invertible.
Moreover, time is conserved and ∂X/∂x = u > 0; this monotonicity implies that we
can define x = w(X, t), and that the function w is also smooth in the domain R′, the
image of R by the direct transformation. Summing up, the transformation is a global
diffeomorphism onto the image, which is also a cylindrical open domain.

In principle, R′ need not have continuous lateral boundary functions, like R. This
would depend on appropriate behavior of u near L(t) and R(t).

• Conjugate equation. Let us look closer at the inverse transformation. Its Jaco-
bian is given by the matrix

J−1 =
∂(x, t)

∂(X, t)
=

(
u−1 wt

0 1

)
,(5.5)

where wt = −um−2ux is the derivative of x = w(X, t) with respect to t for fixed X.
We can then join this result with wX = 1/u in the formula

wt = (wX)−1−mwXX = − 1

m
((wX)−m)X ,(5.6)

which is another p-Laplacian equation, with exponent p′ = 1 − m. We call (5.3)
and (5.6) conjugate equations. They have exponents p′ + p = 2. (Note that when
negative values of the gradient are allowed, the equation takes on the more general
form wX = −(1/m)(|wX |−1−mwX)X , but we do not need this generality here.)

• Differentiated conjugate equations. Bäcklund transform. We have seen that u =
∂X/∂x satisfies a porous medium-type equation (1.6) with exponent m = (γ − 1)/γ.
In a similar way, differentiation with respect to X of the equation for w = w(X, t)
gives the PME equation

Ut = (U−1−mUX)X = − 1

m
(U−m)XX(5.7)

for U = wX(X, t) > 0 (U−m is replaced by log(U) if m = 0). Note that by the rule
of differentiation of the inverse function, we have the relations

U(X, t) =
1

u(x, t)
= v(x, t)γ .(5.8)

The two PME equations with exponents m and m′ = −m are usually obtained from
each other in the literature by means of the so-called Bäcklund transform, which is
essentially equivalent to the approach developed here but is less convenient in our
opinion for the present application. The process of passing from (x, u) to (X,U) can
be done in the reverse way, and both processes are inverses of each other.
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Historical remark. The Bäcklund transform is well known in the case m = −1,
where it linearizes the nonlinear equation into the heat equation ut = uxx; cf. [18].
This does not happen in the rest of the cases. It applies (1.6) onto itself when m = 0.
For uses of the transform in related problems, see [41], where other references are
given. We study in detail these transformations for the general filtration equation in
[49].

• Initial behavior. Let us examine the extension of the transformation to the
initial line t = 0. This is a trace argument that can be done under quite general
circumstances. We give here for the reader’s convenience a simple direct argument
that is not usually found and is suited to our situation.

We assume that v takes the initial data v0 in a continuous way and that v0 is
positive in the initial interval I0. By restricting this interval if needed, we may also
assume that v0 is bounded below, 0 < c < v0 < M in I ′0 is a strict subset of [a, b].
It easily follows from comparison arguments using the theory explained in section 3
that in a small rectangle of the form R1 = I ′0 × [0, τ ] v is bounded below and above
in the form

0 < c1 < v < M1 in R1.

Then the equation is uniformly parabolic in R1. Now we use the formula for X along
a broken path

X(x, t) = X(x0, t0) +

∫ y

x0

u(s, t0)ds +

∫ t

t0

(um−1ux)|x=ydt +

∫ x

y

u(s, t) ds ,

where 0 < t0 ≤ t < τ and y is any intermediate point between x0 and x, points of
I ′0. We assume without loss of generality (w.l.o.g.) that x0 < x. Let us now take a
function φ(y) which is smooth, nonnegative, and supported in (x0, x). Then

(X(x, t) −X(x0, t0))

∫
φ(y) dy =

(∫ y

x0

u(s, t0)ds +

∫ x

y

u(s, t) ds

)
φ(y) dy

+

∫
dy

∫ t

t0

dt (um−1ux)(y, t) .

We now put the normalization
∫
φ(y) dy = 1 to get

|X(x, t) −X(x0, t0)| ≤ A + B ,

where A ≤ ∫ x
x0
M1ds = M1(x− x0), while

B ≤
∣∣∣∣
∫∫

φ(y) (um−1ux)(y, t) dtdy

∣∣∣∣ =

∣∣∣∣ 1

m

∫∫
φx(y)um(y, t) dtdy

∣∣∣∣ .
By taking |x− x0| ≤ δ and |t− t0| ≤ τ small and observing then that |φy| = O(1/δ)
we get

|X(x, t) −X(x0, t0)| ≤ C1δ + C2τ/δ .

Now take τ = O(δ1+ε) and let t0 → 0 to conclude that X can be extended continuously
to (x0, 0). Moreover, X is uniformly Lipschitz continuous in x. It is easily seen that
w(X, t) is also continuous down to t = 0.

• Relation with Darcy’s law. Since ∂X/∂x = u, and ∂X/∂t = um−1ux, we get
along a curve x = x(t) the relation

dX = u dx + um−1u dt = u (dx− γvx dt) ,(5.9)

which shows how the variation of X is related to Darcy’s law.



1018 JUAN L. VÁZQUEZ

Lemma 5.2. Away from the boundary the curves X(t) = constant are precisely
the curves on which Darcy’s law holds: dx = γvx dt.

It has to be noted that the Darcy law on the boundaries x = L(t), x = R(t)
reflects the fact that the lines X = constant approach the boundary when X tends to
its end values. We have seen in section 4 that Darcy’s law holds in more or less weak
form on the boundary depending on its regularity.

6. Uniqueness. We are ready to prove the uniqueness result for Problem (P1)
with specified lateral boundaries.

Theorem 6.1. Let v be a solution of Problem (P1) in a domain Ω with Lip-
schitz continuous lateral curves in the interval 0 ≤ t ≤ T , L(t) < R(t), and as-
sume that it takes continuously initial data v0, a continuous and positive function in
I0 = (L(0), R(0)), with limit zero at both ends. Then v is unique.

Proof. We know that X(x, t) is well defined in Ω and ranges in the interval
(A(t), B(t)) for every t > 0, where the limit values A(t) = X(L(t), t), B(t) =
X(R(t), t) exist by monotonicity. We have seen that x = w(X, t) satisfies the equation

wt =
1

m′ (|wX |m′−1wX)X

(
m′ = −m =

1 − γ

γ

)
,(6.1)

defined in Ω′ = {(X, t) : A(t) < X < B(t)}. Moreover, w is continuous at t = 0,
and the initial data w(X, 0) is given by a continuous increasing function, the inverse
of X(x, 0). The rest of the argument is different for the cases γ ≥ 1 and 0 < γ < 1.

Case γ ≥ 1. It means 0 ≤ m < 1, and hence −1 < m′ ≤ 0. The local analysis
has already shown us that v behaves in a linear way near the interface: v = O(ρ),
ρ = R(t) − x for every t. Hence, u ≥ c ρ−γ for ρ ≈ 0. For γ ≥ 1 we get B(t) =
X(R(t), t) = ∞. Also A(t) = X(L(t), t) = −∞. We get an important preliminary
conclusion for the solutions in that case: the domain Ω′ is the strip R × (0, T ].

Now take two solutions v1 and v2 with the same data and perform the operations
of passing to X1, X2 using (5.1), and then to the conjugate functions w1 and w2, to
obtain two continuous solutions of (6.1) in Ω′ with the same data at t = 0. Moreover,
both functions are strictly monotone in the variable X ∈ R for all t and have the
same finite end-values at X = ±∞, namely, L(t) and R(t).

Now comes the technical point: by adding ε > 0 to w1, (6.1) is not changed,
but the data are now strictly ordered with respect to w2. The strong maximum
principle implies that the solutions w1 + ε and w2 cannot touch for any t > 0. Hence,
w1+ε > w2. Reversing the roles, we get w2+ε > w1. Letting ε → 0, we conclude that
w1(X, t) = w2(X, t). Inverting the transformation, we arrive at X1(x, t) = X2(x, t),
differentiating at u1 = u2, and finally at v1 = v2.

Case 0 < γ < 1. In this case m′ > 0, the boundary behavior analysis shows
that the domain Ω′ may be bounded, and we need a further argument. In fact, the
problem can be formulated as a parabolic variational inequality (obstacle problem);
cf. [27, 28, 33]. It has upper obstacle w = R(t) and lower obstacle w = L(t), and the
function w(X, t) solves

wt =
1

m′ (|w|m
′−1

X wX)X whenever L(t) < w(X, t) < R(t),(6.2)

i.e., in the noncoincidence set which is the set Ω′, and there the solution is smooth.
Note that w and wX = U = 1/u = vγ > 0 are continuous, and

wt = Um
′−1UX = γ vx
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is bounded. The coincidence set is formed by the sets {w = L(t)} and {w = R(t)},
where wX = 0.

The uniqueness argument can now proceed as in the case γ > 1, and it is easily
seen that w1 + ε and w2 cannot touch at a noncoincidence point for both solutions.
Since at a touching point ∂w1/∂X = ∂w2/∂X, if one of them is a coincidence point,
so is the other, which is impossible in view of the obstacle values.

7. Equivalent problems. Fast diffusion with −1 < m′ ≤ 0. The line
of proof of uniqueness followed in section 6 transforms the problem first into the
p-Laplacian problem for X = X(x, t) and then into the study of the conjugate p-
Laplacian equation (5.6) for x = w(X, t). It can be equivalently done in terms of the
differentiated conjugate equation (5.7). In the case γ ≥ 1 we land into the conjugate
equations with exponent m′ ∈ (−1, 0]. Now, this problem had been thoroughly studied
in [26, 39, 40, 41]. The transformations indicate the interesting fact that all these
problems are equivalent when properly formulated. Thus, the results of those papers
give an alternative proof of the existence of solutions of Problem (P1) in the range
γ ≥ 1 after applying backward the aforementioned transformations.

Conversely, the results of previous sections recover and slightly improve the results
of [39]. Thus, according to the theory developed in that paper (and using the present
notation for convenience) we can solve the mixed initial and boundary-value

Ut = (Um
′−1UX)X for − 1 < m′ ≤ 0 ,(7.1)

posed in Q = {(X, t) : X ∈ R , t > 0}, taking initial data

U(x, 0) = U0(x) , X ∈ R.(7.2)

Moreover, for every fixed t > 0 we can impose the flux conditions{
Um

′−1UX → −f(t) as x → ∞ ,

Um
′−1UX → g(t) as x → −∞ .

(7.3)

Theorem 7.1. Let U0 be a nonnegative and integrable function, and let f and g
be a pair of flux functions which are nonnegative and belong to L1(0,∞)∩BVloc(0,∞).
Then there exists one and only one solution u of the mixed problem (7.1)–(7.3), which
is a positive and C∞ smooth function defined in a strip QT = R × (0, T ) for some
T > 0. We have U ∈ C([0, T ] : L1(R)), and the following formula holds:∫

R

U(X, t) dx =

∫
R

U0(x) dx−
∫ t

0

(f + g) dt .(7.4)

The solution with f = g = 0 is the maximal solution and conserves mass. It has
a different behavior as |X| → ∞ than the solutions with nonzero flux. The integral∫
U(X, t) dX = M(t) is the mass of the solution at time t, and (7.4) is then called the

global mass balance, for f = g = 0 it is called conservation of mass. The formula is
valid for all times t > 0 if

∫
R
U0(X) dX is larger than

∫∞
0

(f + g) dt. Otherwise, there
exists a time at which the second member of (1.1) becomes 0. This time is given by

T = sup

{
t > 0 :

∫
U0(X) dX >

∫ t

0

(f + g) dt

}
.(7.5)

If T is finite, our solution vanishes identically as t → T , and the equation ceases to
have a meaning for t ≥ T . Such T is called the extinction time.
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A very interesting property of this mixed problem is the stability property, which
can be stated as follows. Let Ui, i = 1, 2, be two solutions with initial data U0i and
flux functions fi, gi, all of them satisfying the properties stated above. Then∫

R

(U1(t) − U2(t))+ dx ≤
∫

R

(U01 − U02)+ dx +

∫ t

0

{(f2 − f1)+ + (g2 − g1)+} dt(7.6)

as long as both solutions exist. As a consequence, we have the following maximum
principle: If U01 ≤ U02, f2 ≤ f1, and g2 ≤ g1, then T1 ≤ T2 and U1 ≤ U2 in QT1

.

Use of the conjugate equations. If we start from the set of solutions v(x, t) of
Problem (P1) described in preceding sections in the range 0 ≤ m < 0, passing to the
density u(x, t) and then applying the transformations, we obtain solutions U(X, t) of
the fast diffusion equation for −1 < m′ = −m ≤ 0, and U = Xx, where X is the mass
variable associated to u that satisfies a p-Laplace equation with p = m′ + 1. Using
our results we have the following extension of the previous existence result.

Theorem 7.2. The result of Theorem 7.1 holds for all flux functions f and g
which are nonnegative, integrable, and locally bounded. The boundary data are taken
in an integral sense. The stability property holds.

Proof. We start from the pressure equation with initial data

v0(t) = U0(X)1/γ , x =

∫ X

0

U0(s) ds

for (1.9) and interfaces given by R′(t) = −f(t), R(0) =
∫∞
0

U0(s) ds, and L′(t) = g(t),

L(0) =
∫ −∞
0

U0(s) ds. The rest is easy.

8. The case γ = 0. There are many similarities between the range γ > 0
studied in previous sections and the limit case γ = 0, where (1.1) is written

vt = v vxx.(8.1)

Actually, it has been proved some years ago that Problem (P1) can be solved for
different contracting interfaces [43, 25] and that the maximal solutions of the Cauchy
problem have stationary interfaces. However, there are also strong differences with
the case γ > 0 since the absence of the term in (vx)2 implies that the same form
of Darcy’s law cannot hold. There is, however, a natural formulation of Darcy’s law
that we want to present here. But we have to work a bit more and introduce “correct
definitions” of density and pressure.

Indeed, we can pass from (8.1) to a porous-medium-type equation by means of
the transformation v = e−u, u = log(1/v), so that the new “density” u satisfies

ut = (e−uux)x = (−e−u)xx.(8.2)

Observe that the correspondence v �→ u is monotone decreasing (as in the fast diffusion
cases γ < 0, which makes sense in view of the subsequent results). In particular, v = 0
implies u = ∞. It will be convenient to work with positive solutions of (8.2), u > 0.
This means that we have to restrict our attention to solutions of (8.1) with 0 ≤ v < 1.
This is really no loss of generality since given a bounded solution v we can always
consider its scaled version

ṽ(x, t) =
1

λ
v(λx, t) ,

which can be made less than 1 by suitably choosing λ > 1 and is again a solution of
(8.1).
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A natural pressure. We need an argument from physics. When we revise
the model equation for gases in porous media and write it as conservation of mass,
ut + (uV)x = 0, we see that it predicts for the case of (8.2) a particle velocity
V = (e−u/u)ux. Darcy’s law is then written as V = −∇π for a “pressure function”
π which is given in terms of u or v by

π(u) = −
∫ u

∞

e−u

u
du =

∫ v

0

dv

log(1/v)
(8.3)

(up to a constant). We notice that π behaves for v ∼ 0 like

π(v) ∼ v

log(1/v)
,

which is o(v), while π(v) → ∞ as v → 1. This reminds us of our restriction on v.
Going back to our analysis, it can be seen that π(x, t) satisfies

πt = v πxx − (πx)2,(8.4)

which points to the correct form of Darcy’s law as πt = −(πx)2 or, in terms of the
interface, as R′(t) = πx.

Traveling waves. We consider solutions of the form v(x, t) = V (x + ct) and
then V satisfies the equation V V ′′ = cV ′, which upon integration gives

V ′ = c log(V ) −K, K ∈ R.(8.5)

We integrate again from V (0) = 0. For K = 0 we get linear waves for the pressure,
π = c (−s)+. For K �= 0 the behavior near s = 0 is the same, but the behavior for
s < 0 changes monotonically with K exactly as described in section 2. Darcy’s law is
satisfied for these solutions in the modified form just explained.

Existence and regularity. There is no difficulty in redoing the analysis of
section 3 to get maximal and minimal solutions of Problem (P1), nor that of section 4
to describe the behavior near a Lipschitz free boundary. We get the following.

Theorem 8.1. If R(t) and L(t) are Lipschitz continuous monotone curves in the
interval 0 ≤ t ≤ T with L(t) < R(t), there exists a unique solution to Problem (P1) in
the nonexpanding domain Ω. The pressure π behaves in a linear way near the Lipschitz
parts of the free boundary, and moreover the Darcy law is satisfied on the interfaces
for almost all 0 < t < T . If R′ < 0 (resp., L′ > 0) the behavior is nondegenerate. If
R(t) (resp., L(t)) is C1, then π is C1 up to the boundary and Darcy’s law holds in
the classical sense,

R′(t) = πx on x = R(t), L′(t) = πx on x = L(t).(8.6)

The maximum principle applies to the solutions of this mixed problem.

Uniqueness. We still have to prove this part of the theorem, which entails de-
scribing the modifications that have to be performed on the mass variable and the
Bäcklund transform. These are quite interesting parts of the theory. The mass vari-
able associated to u is

X(x, t) =

∫
Γ

udx + e−u uxdt,(8.7)
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integrated along any curve Γ lying in the domain of u and joining the points (0, 0)
and (x, t). Therefore, the function X = W (x, t) satisfies

Wx = u, Wt = e−u ux,

so that a generalization of the p-Laplacian equation (5.3) gives

Wt = exp (−Wx)Wxx.(8.8)

The transformation is invertible and the inverse function x = w(X, t) satisfies

wX = 1/u, wt = −(e−u/u)ux = −e−u uX ,
so that

wt = e−1/wX w−2
X wXX =

(
e−1/wX

)
X
,(8.9)

which is the conjugate equation to (8.8). We remark that the map s �→ −e−1/s is
a monotone increasing function defined for all s ≥ 0, which generalizes the porous
medium equation. Since all its derivatives at zero are zero it has a very slow diffusion
property, and it has been studied as such in a number of papers; cf. [31, 32]. To
end this excursion we list the Bäcklund transform that maps (x, t, u) into (X, t, U)
according to the above formulas, and then U = U(X, t) = wX(X, t) satisfies the
equation

Ut =
(
e−1/U

)
XX

,(8.10)

the Bäcklund conjugate to (8.2).
With all this material the proof of uniqueness performed in section 6 can be copied

with only obvious changes.

9. Local behavior near a corner of the interface. In this section we intro-
duce the study of the regularity of the solutions near a nonsmooth interface with a
typical example. We consider the case of a piecewise linear interface with an angle
point. W.l.o.g. we assume that the angle is located at x = 0, t = 0. For t ≤ 0 we
consider the linear TW v = A(x − c1 t)+, with A > 0 and c1 = γA. In order to
continue such a solution for t > 0 we will prove that there exists a unique self-similar
solution that solves the problem


vt = vvxx − γ|vx|2,
v0(x) = Ax+,
L(t) = ct, R(t) = ∞

(9.1)

for all A and c > 0. Existence is easy after passing to the limit on solutions with
compact initial data and the same interface, which are ordered. Then uniqueness
comes from the mass transformation, and even from the argument at the end of
section 2, replacing scaling by shifting (we leave this exercise to the reader). Self-
similarity comes from invariance, a well-known argument.

We now remark that in the case c = c1 the solution is the same linear wave
already described for t ≤ 0. But for other values of c the interface suddenly bends (it
has a corner at t = 0, x = 0). The profile has the form

v = tf(x/t)
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for a monotone function f = f(s) such that

f(s)f ′′(s) = γ(f ′(s))2 + f(s) − sf ′(s),

with f(c) = 0, f(s) > 0 for s > c, and f ′(∞) = A. We also have f ′(c+) = c/γ. The
existence and uniqueness theory for the PDE problem implies that this ODE problem
can then be solved for all A, c > 0 if γ > 0, whereas it can only be solved for c = −A
if γ < 0. A simple scaling allows us to set A = 1 w.l.o.g., and then c is replaced by
c/A.

Stationary interface. We can put c = 0 in the above formula to get the maximal
solution after the angle, i.e, the one having a fixed (stationary) interface. It is given
by f(s) = s− 1 + e−s, which produces

v(x, t) = x− t + t e−x/t for x > 0,(9.2)

and v = 0 for x ≤ 0, t > 0. We see the typical quadratic form of stationary interfaces
[23]

v(x, t) ∼ x2/(2t0) as (x, t) → (0, t0)

with t0 > 0, x > 0. This means that at t0 > 0 the formula realizes the connection
between the linear profile V1(x, t) = x− t, which is the behavior for x ∼ ∞, and the
quadratic solution V2(x, t) = |x|2/(2t) for x ∼ 0. Note also that v = V1 for t ≤ 0, and
that v agrees with V1 with a C∞ contact at t = 0+ (not analytically, of course). On
the other hand, vx = 1− ex−t and vt are discontinuous at the corner (0, 0); this is the
way the corner of the interface is reflected on the regularity of the solution. Note also
that vxx = ex−t/t is positive in Ω. For a reference to behavior near a corner point
when κ > 0, see [5].

Explicit solution for c �= 0. Betelú [17] pointed out that the case γ = 1 can be
explicitly solved. Indeed, in this case the equation has a first integral to f ′ = s− kf
for an arbitrary constant k, and we arrive at

f(s) = A
(
s−A−B e−s/A

)
+
,

where A = 1/k and B are free constants. Let us put w.l.o.g. A = 1. The value of c
comes from the relation f(c) = 0, which gives for c the relation B = (c− 1)ec so that
f can be written in terms of the moving coordinate y = s− c as

f(s) =
(
y + (c− 1)(1 − e−y)

)
+
.(9.3)

We see that c = 1 is the standard linear TW. We can let c vary over the range
0 < c < ∞ to get all possible moving interfaces. A final observation: it is easily seen
that for x− ct = o(t) we get the estimate

v(x, t) ∼ c(x− ct),

which shows that this solution is a continuous connection between the linear profile
ax+ of a TW and the linear TW profile that corresponds to the interface we have
chosen (as expected).
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10. Conclusions and comments. Here is a list of additional comments on the
theory developed in the article.

• On the dependence with κ. From the point of view of the theory of (1.6) there
are three important critical values: m = 1, which marks the limit of the property of
finite propagation; m = 0, which marks the onset of nonuniqueness of the Cauchy
problem; and m = −1, which marks the limit of the region of nonexistence for small
data. It seems that only m = 1, i.e., γ = 0, is important for the present discussion of
(1.9). A deeper understanding is needed of the case γ = 0, transition from γ > 0 to
γ < 0; cf. the work of Bertsch and collaborators and also [10, 42].

• On the difference of free boundary behavior between κ > 0 and κ < 0. The
free-boundary problem for the case κ = −γ > 0 is uniquely determined in its classical
free-boundary formulation by the weaker conditions on the free boundaries:

v = 0, (v1+κ)x = 0.(10.1)

The latter is easily recognized in the form (um)x = 0, i.e., zero flux for (1.6). Even
weaker is the integral formulation called weak solution. On the other hand, contracting
solutions for κ < 0 have (um)x = (v1+κ)x ∼ uvx → ∞.

• Incorrect problems. There is a very interesting way of comparing the theories
for positive and negative κ. Thus, let us try to solve the overdetermined problem
(1.1)–(1.3) with a preassigned choice of interface, say R(t), on which we want the
full boundary conditions (1.3) to hold. When κ > 0, if the choice is not the precise
free-boundary curve (which is a unique choice as we have said), then the boundary
behavior will be of the form (um)x = (v1+κ)x = −c(t) �= 0 if we commit an error from
below, while we will have v = 0 in a neighborhood of R(t) if we overshoot (i.e., if we
have located the boundary too far). This last situation also happens if we try to solve
the problem for κ < 0 with any expanding support. However, in the fast diffusion
case we can solve all problems with a shrinking interface and full-boundary conditions
(1.3).

• On the class of initial data. We have imposed a certain number of restrictions
on the problem in order to make the presentation easier to read. Thus, there is no
need to have two interfaces; the calculations can be repeated without difficulty if v0

is supposed to be continuous, positive, and bounded on the interval (−∞, 0) and zero
for x > 0. Then we get only one interface.

The case of multiple interfaces offers no special difficulty, but extra attention is
needed in defining the mass variable (or the Bäcklund transform), as happens when
data are not continuous but only integrable.

Moreover, the condition of boundedness on the data is made for convenience, and
there are optimal growth conditions on the data that guarantee the existence.

The fact that the main regularity estimates for these nonlinear equations are local
is well known; cf., for instance, [22, 46].

• More general bounding curves. We have assumed that the lateral curves x =
L(t), x = R(t) are monotone and Lipschitz continuous. There is a natural extension
of our study to the case where these curves are assumed only to be monotone and
continuous. This study can be done and much of the above theory holds. However,
there appears a problem with the regularity of the solutions, namely, that the maximal
solution may cease to be continuous at non-Lipschitz points of the interfaces. This
entails a number of interesting geometrical consequences, like the existence of so-called
needles for the conjugate fast diffusion equation, which deserve a separate study that
will appear soon [48].
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• Nonuniqueness with constant support. Interesting nonuniqueness questions, re-
lated to the way initial traces are defined, may appear even for solutions with constant
support. This happens for more complicated initial data which vanish inside the ini-
tial interval. The subject is discussed in [15, 23]. In [22], joint work with Chasseigne,
the question of expanding singular sets for the fast diffusion equation is addressed
in terms of nontrivial singular measures as second members. Upon translation to
the pressure formulation we thus obtain an alternative explanation for the classes of
solutions with contracting supports.

• Nonshrinking solutions. On the other hand, it must be remarked that solutions
which do not touch the level v = 0 do not necessarily shrink in size or go to zero with
time somewhere. The simplest examples are of course the constant solutions. But we
may also consider the TWs, v = V (x + ct), of the family (2.2) which satisfy

V ′ = − c

γ
+ H V γ , H > 0.

There is always the possibility, mentioned in section 2, of considering solutions with
V (−∞) = (c/γ H)1/γ and V (s) > V (−∞) for s ∈ R. In that case Vt = c V ′ > 0.
For the choice γ = 1 the solution is explicit and has been known for some time. If
H = c = 1, we obtain v(x, t) = 1 + ex+t.

• On well-posedness. It should be noted that when we take initial data of the
forms given by the explicit solutions, which are analytic, there are infinitely many
solutions with high degrees of smoothness depending on the choice of contracting
support. In particular, the solution produced by the vanishing viscosity method is
never the contracting solution.

We conclude that, in the line of references [1] and [9], there is an interest in finding
the conditions that make the problems with contracting supports fully determined
without the actual specification of the future support evolution. Stability questions
can play a role in this analysis; cf. [2, 9, 12, 24].

• On more general nonlinear diffusion equations. The main tools we use in the
proofs, like the relation pressure-density, the mass variable, the p-Laplacian equations
and the conjugate equations, and Bäcklund Transform can be applied to a more
general situation, the so-called filtration equation

ut = Φ(u)xx,(10.2)

where Φ is a continuous nondecreasing function or even a maximal monotone graph.
Much of the above theory translates, but general Φ request some delicate technicali-
ties. We hope to develop the detailed machinery in a forthcoming publication [49].

• On several-dimensional problems. There is no difficulty in generalizing our
problem to the several-dimensional setting by considering the pressure equation

vt = v∆v + κ |∇v|2(10.3)

and the associated PME after the change v = um−1

ut = ∇ · (um−1∇u).(10.4)

However, the magic of the associations with other equations using the mass variable
and the Bäcklund transform has no counterparts for N > 1. The study of the N -
dimensional problem therefore needs new tools. For stationary interfaces, see [23].
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As a manifestation of the wealth of solutions of this problem in several dimensions,
Betelú has examined the existence of TWs with nonplanar fronts and found for γ = 1
the family of explicit solutions

v(x, y, t) = c(x− ct− ar)+, r = ((x− ct)2 + y2)1/2,(10.5)

where c > 0 is the wave speed and a < 1 is a real parameter. For |a| < 1 the domain of
positivity of the wave is the angular region {(x, y) : |y| < d(x−ct)}, d = (1−a2)1/2/a,
which moves with speed c in the direction of the positive x-axis. For a = 0 we recover
the standard plane TW v(x, y, t) = c(x − ct)+. Otherwise, the region is convex if
a > 0, concave if a > 0. The explicit family does not generalize to γ �= 1, but still
interesting solutions exist.
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1. Introduction. We consider a quasi-linear parabolic problem

ut + f(u)x = (D(u)ux)x, u|t=0 = u0(x), x ∈ R,(1.1)

related to three-phase capillary flows in porous media, e.g., the flow of oil, gas, and
water in a reservoir. Here,

u =

(
u1

u2

)
, f =

(
f1

f2

)
, D =

(
D11 D12

D21 D22

)
,

where, say, u1 and u2 are the oil and gas saturations, respectively, while 1− u1 − u2

is the water saturation. The meaning of the flux vector f and the capillary matrix D
is explained below. We study unique global solvability. The main assumptions about
matrix D are

D21 ≡ 0, D22 ≡ D22(u2) > 0, D11(u1, u2) > 0.(1.2)

Global existence for (1.1) in the most general setting is an open problem. Global
well-posedness is proved in [8] if D11 = D22 and D12 = D21 = 0. The restriction
(1.2) is also present in the theory of H. Amann [2], but therein it is also assumed that
f2 = f2(u2). In our case the flux vector f may be rather general.

Since we are interested in the application to the problem of the three-phase flow
where u is a saturation vector, we should impose the restriction

u ∈ ∆ = {u : u ∈ R
2, 0 ≤ ui ≤ 1, u1 + u2 ≤ 1}.(1.3)

We prove a global existence theorem for system (1.1) with the verification of (1.3)
with the use of a slight adaptation of the principle of positively invariant regions of
Chueh, Conley, and Smoller [5] (see also [11]).
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A new feature in the present paper is concerned with the constitutive law of the
capillary pressures P1(u) and P2(u). These functions are defined by

P1 = p1 − p3, P2 = p2 − p3,(1.4)

where pi is the pressure in the ith phase i ∈ {1, 2, 3}. It is shown below how the
functions Pi define the capillarity matrix D.

Very little is known about the functions Pi either theoretically or experimentally.
An approximation of the real three-phase flows by two artificial two-phase flows is
proposed in [13]. In [10], some engineering formulas are given by interpolation into
the triangle ∆ (see (1.3)) of equalities (1.4), which are assumed known at the pieces
of the boundary ∂∆ where u1 = 0, u2 = 0, and u1 + u2 = 1, respectively, which
correspond to two-phase flows. A class of capillary pressures P1 and P2, efficient from
the computational point of view, is considered in [4].

It is proved in section 4 that the equalities in (1.2), when imposed to the con-
stitutive equations for the three-phase flow system, are equivalent to a linear system
of differential equations for P1 and P2 (see (4.9) below), for which we give explicit
solutions in some simple cases taken as examples.

Whatever capillary pressures in (1.4) underlie a three-phase model, the governing
equations (1.1) should preserve the saturation bounds (1.3) as time grows, provided
that the initial saturations obey it. From the analysis in [5], it is known that matrices
∇f(u) and D(u) must satisfy certain conditions in order to yield this invariance
requirement. Below (see (1.6)) we formulate conditions for D(u), which, together with
the properties of f(u) (see (1.5)), guarantee (1.3). As will become clear in section 4,
physical capillarity matrices (together with their perturbations by multiples of the
identity matrix) satisfy the corresponding conditions.

Three-phase flow equations without capillarity effects have been addressed in a
number of papers. It is well known that the corresponding system may fail to be
hyperbolic. Indeed, an example is given in [3] in which the system is elliptic in a
region inside the triangle of saturations and hyperbolic elsewhere in the triangle.
The asymptotic behavior of measure-valued solutions was studied in [6]. Additional
information on the subject, including references, can be found in [1, 14].

We study the Cauchy problem (1.1) in a class of x-periodic functions with period 2:

u(t, x) = u(t, x± 2), x ∈ R.

We denote

Ω = (−1, 1), Q = (0, T )× Ω, R
2
+ = (0,∞)× R.

Motivated by the model for three-phase flow in porous media, we assume that
function f(u) in (1.1) satisfies{

fi(u) = 0 if ui = 0, i = 1, 2,

f1(u) + f2(u) = 1 if u1 + u2 = 1.
(1.5)

We remark that, for the mathematical analysis developed in sections 2 and 3, any
other constants could replace 0 and 1 in the right-hand sides of equations (1.5).

It is also assumed that the Dij are smooth functions over ∆ satisfying relations
(1.2) and{

D12(u) = 0 if u1 = 0, 0 ≤ u2 ≤ 1,

D11(u)−D12(u)−D22(u) = 0 if u1 + u2 = 1, 0 ≤ u1, u2 ≤ 1.
(1.6)
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The above relations are always verified in the model for three-phase capillary flows in
porous media when D21 ≡ 0.

The main result is the following.
Theorem 1.1. Let functions fi(u) and Dij(u) and their first derivatives be

Hölder continuous with the Hölder exponent β ∈ (0, 1). Let hypotheses (1.2), (1.5),
and (1.6) about f and D be satisfied and let u0 ∈ H2+β(R) be periodic with period
2 and assuming values in ∆. Then the Cauchy problem (1.1) has a unique solution

u(t, x) ∈ H2+β,1+ β
2 (R2

+), which is periodic in x with period 2 and taking values in ∆.
At this point we would like to make a remark concerning the restriction to peri-

odic boundary conditions. Dirichlet conditions are a more natural kind of boundary
conditions for applications. The well-posedness of the corresponding problems for
system (1.1) is, in general, harder, as anticipated by the scalar case, since it requires
a regularity analysis up to the boundary. In all cases, the regularity analysis in the
interior is the same as that developed here, so we believe the simplification provided
by the periodic conditions helps to highlight the core of the general method. The
initial boundary value problem with Dirichlet conditions for (1.1) will be addressed
in a forthcoming paper [7].

The remainder of this paper is organized as follows. Sections 2 and 3 are dedicated
to the proof of Theorem 1.1. In section 2 we start the mathematical analysis. We
obtain a priori estimates which allow the solution of the global existence question
through an application of the Leray–Schauder fixed point theorem. In section 3 we
complete the proof of the Theorem 1.1, discussing the final steps for the application
of the above-mentioned fixed point theorem and the uniqueness question. Section 4 is
devoted to a discussion of the model for capillary three-phase flows in porous media,
departing from the mass conservation equations and Darcy’s law. We describe the
basic equations of three-phase flow in porous media, analyze the form of the capillarity
matrix, and give examples. We close the section by providing details about the
construction of the examples given. The reader mainly interested in the discussion
of the model of three-phase capillary flows may jump directly to section 4; we call
special attention to our model for capillary pressures.

2. A priori estimates. In this section we prove some a priori estimates for the
periodic solutions of the Cauchy problem for (1.1) with periodic initial data subjected
to hypotheses (1.2), (4.4), (1.5), and (1.6). We first consider the perturbed problem

ut + f(u)x = (D(u)ux)x + εh(u), u|t=0 = u0(x),(2.1)

for f,D as above and ε > 0 arbitrary. We prove a priori estimates independent of ε
for (2.1), and the same a priori estimates for (1.1) will follow by a simple continuity
argument letting ε → 0. Here u0 is a periodic function with the period 2. From now
on, it is assumed that any x-periodic function has period 2. We denote the solution
of (2.1) also by u without reference to ε until the study of the convergence problem
when ε → 0.

Observe that the triangle ∆ in (1.3) can be defined as an intersection as follows:

∆ = ∩3
1{Gi(u) ≤ 0}, G1 = −u1, G2 = −u2, G3 = u1 + u2 − 1.

Function h is assumed to satisfy the inequalities

∇uGi(u) · h(u) < 0 over ∂∆ ∩ {Gi = 0}, i ∈ {1, 2, 3}.(2.2)

For instance, we may choose h(u) = u∗−u, where u∗ is any point in the interior of ∆.
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Lemma 2.1. Any smooth periodic solution u of problem (2.1) satisfies the inclu-
sion

u(t, x) ∈ ∆ ∀(t, x) ∈ Q = (0, T )× Ω, Ω = {x : −1 < x < 1}.(2.3)

Proof. We apply a slight adaptation of the method of positively invariant regions
[5] (see also [11, 12]). According to that method, inclusion (2.3) results from the
following three conditions.

(i) ∇uGi(u) is an eigenvector of the matrices ∇f(u)� and D� for any u such
that Gi(u) = 0;

(ii) if D�∇uGi(u) = µi(u)∇uGi(u), with µi ≥ 0 and Gi(u) = 0, then

G′′
i (u)(D(u)η, η) ≥ 0

whenever η · ∇uGi(u) = 0;
(iii) h(u) · ∇uGi(u) < 0 for any u ∈ ∂∆ ∩ {Gi = 0}, i ∈ {1, 2, 3}.
Due to the choices of Gi and h, conditions (ii) and (iii) are satisfied. Let us verify

condition (i) for ∇f(u) and D(u). We consider only the case of function G3, since
the other two cases require fewer calculations. Over ∂∆ ∩ {G3(u) = 0}, condition (i)
is equivalent to both equalities

∂f1

∂u1
+

∂f2

∂u1
=

∂f1

∂u2
+

∂f2

∂u2

and

D11(u)−D12(u)−D22(u) = 0.

The latter follows immediately from (1.6). As to the former, since, by (1.5), f1(u) +
f2(u) = 0 when u1 + u2 = 1, it follows immediately by differentiating the equation
f1(u1, 1− u1) + f2(u1, 1− u1) = 0 with respect to u1.

Lemma 2.2. There is a constant c such that

‖u1x‖L2(Q) + ‖u2x‖L2(Q) ≤ c.

Proof. Due to (2.1)2,

1

2

d

dt

∫
Ω

u2
2 dx+

∫
Ω

D22u
2
2x dx =

∫
Ω

f2u2x + εh2u2 dx.

Hence, one can apply Lemma 2.1, the Cauchy inequality, and the condition D22 ≥ ν
to conclude that u2x is bounded in L2(Q). From (2.1)1 we have

1

2

d

dt

∫
Ω

u2
1 dx+

∫
Ω

D11u
2
1x dx =

∫
Ω

f1u1x −D12u1xu2x + εh1u1 dx.

By the same argument we arrive at the estimate of u1x in L2(Q).
Lemma 2.3. There are constants c > 0 and α ∈ (0, 1) such that

‖u2‖Hα,α/2(Q̄) ≤ c.

Proof. Let Ω̃ be a bounded open interval containing Ω̄, the closure of Ω. We take
a test function ζ with values between 0 and 1, which is different from zero only for
x ∈ Kρ, the ball of radius ρ centered at x0 ∈ Ω̃. We multiply (2.1)2 by

ζ2 max{u2 − k, 0} ≡ ζ2u
(k)
2 , k ∈ R,
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and integrate over the cylinder (s, t)×Kρ. We have

1

2

∫
Kρ

ζ2|u(k)
2 |2 dx

∣∣∣∣
t

s

+ ν

∫ t

s

∫
Kρ

ζ2|u(k)
2x |2 dxdt

≤
∫ t

s

∫
Kρ

ζζt|u(k)
2 |2 − 2D22u

(k)
2x u

(k)
2 ζζx + 2f2ζζxu

(k)
2 + f2ζ

2u
(k)
2x + h2u

(k)
2 ζ2 ≡ I.

By the Young inequality

I ≤
∫ t

s

∫
Kρ

ν

2
ζ2|u(k)

2x |2 + |u(k)
2 |2(|ζζt|+ c|ζx|2 + cζ2) + cζ2χAk,ρ(t) dxdτ,

where Ak,ρ(t) is the intersection of the support of u
(k)
2 with Kρ, and χA is the charac-

teristic function of the set A. These two inequalities imply that function u2 belongs
to the class B2(Q,M, γ, r, δ, k) defined in [8], and hence, by Theorem II.7.1 of [8],
u2 ∈ Hα,α/2(Q̄) for some α ∈ (0, 1).

Lemma 2.4. There is a constant c > 0 such that

sup
0≤t≤T

∫
Ω

u2
2x dx+

∫
Q

u2
2xx + u4

2x + u2
2t dxdt ≤ c.

Proof. Let ζ(t, x) be a test function as above. We multiply (2.1)2 by (u2xζ
2)x

and integrate over (0, t)×Kρ to arrive at the inequality

1

2

∫
Kρ

u2
2xζ

2 dx

∣∣∣∣
t

0

+ ν

∫ t

0

∫
Kρ

u2
2xxζ

2 dxdt ≤
∫ t

0

∫
Kρ

u2
2xζζt −

∂

∂u2
D22u

2
2xu2xxζ

2

−2 ∂

∂u2
D22u

3
2xζζx − 2D22u2xxu2xζζx +

∂f2

∂u1
u1xu2xxζ

2 +
∂f2

∂u2
u2xu2xxζ

2

+2
∂f2

∂u1
u1xu2xζζx + 2

∂f2

∂u2
u2

2xζζx + εh2(u2xζ
2)x dxdt ≡ J.

By Lemmas 2.1 and 2.2 and the Young inequality,

J ≤ ν

2

∫ t

0

∫
Kρ

u2
2xxζ

2 + c∗u4
2xζ

2 + c∗ dxdt.

We estimate the last integral, using the inequality (see Lemma II.5.4 of [8])∫
Kρ

v4
xζ

2 dx ≤ 16osc2{v,Kρ}
∫
Kρ

2v2
xxζ

2 + v2
xζ

2
x dx.(2.4)

By Lemma 2.3,

osc2{u2,Kρ} ≤ cρα.

Now the assertion of the lemma follows if we take ρ such that 32c∗ρα < ν/4.
Lemma 2.5. There are constants c > 0 and α ∈ (0, 1) such that ‖u1‖Hα,α/2(Q̄) ≤

c.
Proof. We consider (2.1)1 as a quasi-linear equation with respect to u1:

u1t − a(t, x, u1, u1x)x + b(t, x, u1, u1x) = 0(2.5)
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with

a(t, x, u1, p) = D11(u1, u2(t, x))p,

b(t, x, u1, p) =
∂f1

∂u1
(u1, u2(t, x))p+

∂f1

∂u2
(u1, u2(t, x))u2x(t, x)

−
(
∂D12

∂u1
(u1, u2(t, x))p+

∂D12

∂u2
(u1, u2(t, x))u2x(t, x)

)
u2x(t, x)

−D12(u1, u2(t, x))u2xx(t, x)− εh1(u1, u2(t, x)).

By the above lemmas, we have

ap ≥ νp2, |a| ≤ µp, µ = const > 0,

|b(t, x, u1, p)| ≤ p2 + ϕ(t, x),

(∫ T

0

(∫
Ω

ϕq dx

)r/q
dt

)1/r

≡ ‖ϕ‖q,r,Q ≤ µ

when q = 2, r = 2. Moreover, the constants q = 2 and r = 2 satisfy the restrictions

1

r
+

1

2q
= 1− κ1, q ∈ [1,∞], r ∈

[
1

1− κ1
,

2

1− 2κ1

]
, 0 < κ1 <

1

2
,(2.6)

when κ1 = 1/4. Thus, functions a and b verify the conditions of [8], Chapter 5,
implying the Hölder continuity of u1 which is a solution of the quasi-linear parabolic
equation (2.5).

Lemma 2.6. There is a constant c > 0 such that

sup
0≤t≤T

∫
Ω

u2
1x dx+

∫
Q

u2
1xx + u4

1x + u2
1t dxdt ≤ c.

Proof. By the same argument as in Lemma 2.4,

1

2

∫
Kρ

u2
1xζ

2 dx

∣∣∣∣
t

0

+ ν

∫ t

0

∫
Kρ

u2
1xxζ

2 dxdt

≤
∫ t

0

∫
Kρ

ν

2
u2

1xxζ
2 + c(u2

1x + u2
2x + u4

2x + u4
1xζ

2 + u2
2xx) dxdt.

Applying inequality (2.4) for v = u1, we arrive at the conclusion of the lemma.
Lemma 2.7. There are constants c > 0 and α ∈ (0, 1) such that ‖u2x‖Hα,α/2(Q̄) ≤

c.
Proof. Consider (2.1)2 as an equation for u2 in the domain Q2 = (0, T )× (−2, 2):

u2t − ∂

∂x
a(t, x, u2, u2x) + b(t, x, u2, u2x) = 0,

with

a(t, x, u2, p) = D22(u2)p,

b(t, x, u2, p) =
∂f2

∂u1
(u1(t, x), u2)u1x(t, x) +

∂f2

∂u2
(u1(t, x), u2)p− εh2(u1(t, x), u2).
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By the above lemmas, we have

ν ≤ ap ≤ µ, |a|+ |au| ≤ µ(p+ 1), ax = 0, |b| ≤ µp2 + ϕ(t, x), ‖ϕ‖2q,2r,Q2 ≤ µ

if q = r = 2. Clearly, these constants q and r satisfy the restrictions (3.6) with
κ1 = 1/4. These properties of functions a and b imply the estimate of the lemma for
the subdomain Q ⊆ Q2, according to the theory of quasi-linear parabolic equations
(cf. Theorem V.3.1 of [8]).

Lemma 2.8. There are constants c > 0 and α ∈ (0, 1) such that

‖u1x‖Hα,α/2(Q̄) ≤ c.

Proof. Let ζ(x) be a smooth function such that ζ(x) = 1 if |x| < 1 and ζ(x) = 0
if |x| ≥ 3/2. Then the function w = ζu2 solves the initial boundary-value problem

wt −D22(u1, u2)wxx = F, w||x|=2 = 0, w|t=0 = ζu02,(2.7)

F ≡ −D22ζxx −D22ζxu2x −
(
∂f2

∂u1
u1x +

∂f2

∂u2
u2x

)
ζ +

∂D22

∂u2
u2

2xζ + εh2ζ.

By the above estimates, there exists a constant c such that

‖F‖L4(Q2) ≤ c, Q2 = (0, T )× (−2, 2).
Hence (see, e.g., [8]) u2xx verifies the estimate ‖u2xx‖L4(Q) ≤ c, and function b from
(2.5) satisfies the inequality

|b(t, x, u1, p)| ≤ p2 + ϕ(t, x), ‖ϕ‖4,4,Q ≤ µ.

Now the estimate of the lemma can be obtained by the same argument as in Lem-
ma 2.7.

Following [8], we denote by |v|(α)
Q and |v0|(α)

Ω the norms of v and v0 in Hα,α/2(Q̄)

and Hα(Ω̄), respectively.
Lemma 2.9. If u0 ∈ H2+β(Ω̄), 0 < β < 1, then there exists a constant c such

that for any solution u from H2+β,1+β/2(Q̄) of (2.1) the estimate |u|(2+β)
Q ≤ c holds,

where c > 0 depends on T , |u0|(2+β)
Ω , the norms of the functions f(u) and D(u), and

their first derivatives in C(∆).
Proof. We know from the above lemmas that there are constants c > 0 and α ∈

(0, 1) such that |u1, u1x|(α)
Q ≤ c. If γ = min{α, β}, it follows from linear equation (2.7)

that |u2|(2+γ)Q ≤ c (see, e.g., [8]). Let ζ be as in the proof of Lemma 2.8. The function
z = u1ζ(x) solves the linear problem

zt −D11(u)zxx = G, z||x|=2 = 0, z|t=0 = ζ(x)u0,(2.8)

G = D11(u1ζx)x − ∂f1

∂x
ζ +

∂D11

∂x
u1xζ + (D12u2x)xζ + εh1ζ.

Hence, by the same argument, |u1|(2+γ)Q ≤ c. To increase γ up to β, one should return

to problem (2.7), which now ensures that |u2|(2+β)
Q ≤ c, and then pass to problem

(2.8) to obtain that |u1|(2+β)
Q ≤ c.
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3. Existence and uniqueness. To prove the solvability of problem (4.1), we
apply a fixed point argument in the form of the Leray–Schauder principle as in [8].
Let B be a Banach space of x-periodic vector-functions u(t, x) ∈ R

2 such that

‖u‖B := |u|(β)
Q + |ux|(β)

Q < ∞.

Given a ≡ (a1, a2) ∈ B and λ ∈ [0, 1], we define u = (u, v) to be a solution to the
linear problem

vt + λ

[
∂f2(a)

∂x
− (D22(a2)vx)x − εh2(a)

]
= (1− λ)νvxx,

ut + λ

[
∂f1(a)

∂x
− (D11(a)ux)x − (D12(a)vx)x − εh1(a)

]
= (1− λ)νuxx,

u|t=0 = (u01(x), u02(x)).

Due to uniqueness of the linear Cauchy problem (cf., e.g., [8]), u is an x-periodic
vector-function. Thus, the operator a �→ u ≡ Aλ(a) is well-defined, and its fixed
points are solutions to problem (4.1) when λ = 1. By repeating the arguments of
the above lemmas, one arrives at the a priori estimates for the fixed points uλ of the
operator Aλ:

uλ ∈ ∆, |uλ,uλx|(β)
Q ≤ M, |uλ|(2+β)

Q ≤ M1,(3.1)

where the constants M , M1 are independent of λ. We restrict Aλ to the set

U = {u ∈ B : u ∈ ∆′, |uλ,uλx|(β)
Q ≤ M ′, u|t=0 = u0(x)},

where int∆′ ⊃ ∆̄ and M ′ > M . Clearly, U is a bounded convex set in B, and all the
fixed points uλ of Aλ are strictly inside U .

As in [8], one can prove that the other conditions of the Leray–Schauder theorem
are also verified. Namely, we prove that

(i) the set Aλ(U) is compact in B for each λ ∈ [0, 1];
(ii) the map a �→ Aλ(a), λ ∈ [0, 1], is continuous on U uniformly in (a, λ) ∈

U × [0, 1];
(iii) the map λ �→ Aλ(a), a ∈ U , is continuous on [0, 1] uniformly in a ∈ U ;
(iv) the operator A0 has a unique fixed point inside U , and the mapping a �→

a−A0(a) has an inverse near this fixed point.
Hence, the Cauchy problem (2.1) has at least one x-periodic solution in the Hölder

space H2+β,1+β/2(Q̄). Uniqueness can be established in the same manner as in [8].
Thus, we have proved the following.

Theorem 3.1. Let functions fi(u) and Dij(u), their first derivatives, and func-
tion h(u) be Hölder continuous with the Hölder exponent β ∈ (0, 1). Let hypotheses
(1.2), (1.5), and (1.6) hold, and assume that the x-periodic (with the period 2) initial
datum u0(x) satisfies u0 ∈ H2+β(Ω̄), u0(x) ∈ ∆. Then the Cauchy problem (2.1) has
a unique x-periodic solution u(t, x) ∈ H2+β,1+β/2(Q̄).

Proof of Theorem 1.1. The assertion of Theorem 1.1 about existence follows as
a consequence of Theorem 3.1. Indeed, since the estimate of Lemma 2.9 does not
depend on ε, there is a sequence εk ↓ 0 such that the corresponding sequence uk(t, x)
of solutions of problem (2.1) converges to a function u(t, x) ∈ H2+β,1+β/2(Q̄) in the

| · |(2+γ)Q -norm for any γ < β. Clearly, u solves problem (1.1). Uniqueness can be
proved in a straightforward manner as in Theorem 3.1.
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4. Basic equations of three-phase flow. We recall here some basic facts
about multiphase flow in a porous medium (cf., e.g., [1]). We consider a one-dimensional
horizontal flow of three fluid phases in a porous medium. These phases are oil, gas,
and water with saturations u1, u2, and u3, respectively. The balance of masses is
governed by the mass conservation equations

∂

∂t
(muiρi) +

∂

∂x
(ρivi) = 0,(4.1)

where m denotes the porosity of the porous medium, ρi is the density, and vi is
the seepage velocity of the ith phase. The functions ui satisfy the volume-balance
equation

u1 + u2 + u3 = 1.(4.2)

The theory of multiphase flows in porous media is based on the following form of
Darcy’s law:

vi = −kλipix, λi = λi(u1, u2), i = 1, 2, 3,(4.3)

where k stands for the absolute permeability, λi is the mobility of the ith phase, and
pi is the pressure of the ith phase. The phase mobilities λi(u) are known to satisfy
(see, e.g., [1]) {

λi(u) > 0 if ui > 0, i ∈ {1, 2, 3},
λi|ui=0 = 0, i ∈ {1, 2, 3}.(4.4)

The capillary pressures are defined as the pressure differences (cf., e.g., [9, 1]),
and we assume here that they are functions of the saturations u1, u2, that is,

P1(u1, u2) = p1 − p3, P2(u1, u2) = p2 − p3,(4.5)

with

∂P1

∂u1
≥ 0,

∂P2

∂u2
≥ 0.(4.6)

Denote

λ =

3∑
1

λi, fi =
λi
λ
, i = 1, 2, 3.(4.7)

Assume, for simplicity, k = m = ρi ≡ 1, i = 1, 2, 3. For

v =

3∑
1

vi,

we find from (4.1) and (4.2) that vx = 0, so v depends only on t. Thus, we also
assume for simplicity that v ≡ 1 as well.

Eliminating the pressure derivative p3x, we have from (4.3)

v1 = f1(1 + λ2P2x − (λ2 + λ3)P1x), v2 = f2(1 + λ1P1x − (λ1 + λ3)P2x).
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When we substitute these velocities into the first two equations in (4.1) we obtain a
system like (1.1), where u and f are two-dimensional vectors with components u1, u2

and f1, f2, respectively, and the 2× 2-matrix D is given by

D11 =

λ1(λ2+λ3)
λ

∂P1

∂u1
− λ1λ2

λ
∂P2

∂u1
, D12 = −λ1λ2

λ
∂P2

∂u2
+ λ1(λ2+λ3)

λ
∂P1

∂u2
,

D21 =
λ2(λ1+λ3)

λ
∂P2

∂u1
− λ1λ2

λ
∂P1

∂u1
, D22 = −λ1λ2

λ
∂P1

∂u2
+ λ2(λ1+λ3)

λ
∂P2

∂u2
.

(4.8)

We first observe that the physical capillarity matrix given by (4.8) satisfies (1.6)
and also D11 ≥ 0 and D22 ≥ 0, whenever we have D21 = 0, and (4.6) holds.

Imposing hypotheses (1.2) on the above capillarity matrix D means, in particular,
that we are restricted to the case when the first phase (oil) is not responsible for the
amount of diffusion in the equation for the second phase (gas).

On the other hand, the restrictions D21 = 0 and D22 = D22(u2) also provide a
model to define the capillary pressures P1, P2 inside ∆. In fact, they are equivalent
to the following linear hyperbolic system:

A
∂P1

∂u1
=

∂P2

∂u1
,

∂P2

∂u2
= A

∂P1

∂u2
+

λD22

λ2(λ1 + λ3)
, A =

λ1

λ1 + λ3
.(4.9)

Thus, (4.9) provides a recipe for defining P1, P2 inside ∆, when combined with any
given model for defining the mobilities inside ∆, such as that in [13].

As a first example, we can easily see that equations (4.9) are valid if

λi = kui, P1 = αξ, P2 =
αξ2

2
+

βu2

k
, ξ ≡ u1

1− u2
,(4.10)

where k, α, β are constants. The corresponding capillarity matrix is

D∗

11 = kαξ(1− ξ), D∗
12 = kαξ2(1− ξ)− βu1u2,

D∗
21 = 0, D∗

22 = βu2(1− u2),

(4.11)

so the conditions (1.2) are satisfied inside ∆.
Other examples are provided by

λi = kiui, k1 = k3, P1 = αξ, P2 =
αξ2

2
+

β

2

(
1

k3
− 1

k2

)
u2

2 + β
u2

k2
(4.12)

and

λi = kiui, k1 �= k3, P1 = αξ − βk0

2
u2

2, k0 =
k3 − k1

k1k3
,

(4.13)

P2 =
β

2

(
1

k3
− 1

k2

)
u2

2 +
β

k2
u2 +

αk1ξ

k1 − k3
− αk1k3

(k1 − k3)2
ln ((k1 − k3)ξ + k3).

Observe that the functions Pi given by (4.13) satisfy inequalities (4.6), provided α, β
are chosen properly. In both cases, it is not difficult to check that equations (4.9)
as well as hypotheses (1.2) are satisfied inside ∆, with D21 and D22 obtained from
(4.11).
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Furthermore, a more general class of solutions of (4.9) with mobilities defined as
in (4.13) is provided by

P1 = αξm − βk0
u2

2

2
, P2 = αϕ(ξ; k1, k3,m) +

β

2
u2

2

(
1

k3
− 1

k2

)
+

β

k2
u2,(4.14)

where ξ is defined as above and the function ϕ is defined from the equation

∂ϕ

∂ξ
=

mk1

k1 − k3

(k1 − k3)ξ
m

(k1 − k3)ξ + k3
,

m > 1, k0 =
k3 − k1

k1k3
, α = const, β = const.

The derivation of formulas (4.10), (4.12), (4.13), and (4.14) is given at the end of this
section.

If u ∈ ∆, the variable ξ takes values in the interval [0, 1], and ξ is a smooth function
of u everywhere in ∆ except the point (u1, u2) = (0, 1). From the above examples
and the general formulas (4.8) we see that, in the model for three-phase capillary
flows, equations (1.1) will, in general, constitute a degenerate parabolic system with
bounded coefficients. The set of degeneration coincides with the boundary of ∆.

The well-posedness theory developed in sections 2 and 3, nevertheless, can be
applied to a suitable regularization of these physical systems. For instance, in all the
above examples we may easily regularize the system by replacing matrix D(u) with a
matrix Dν(u) defined as

Dν(u) = ρν(u2)D(u) + νI,(4.15)

where ν > 0 is as small as we wish, I represents the identity matrix, and ρν is a
nonnegative smooth function satisfying{

ρν(u2) = 0 if |u2 − 1| < ν/2,

ρν(u2) = 1 if |u2 − 1| > ν.

We can easily verify that Dν(u) satisfies the hypotheses of Theorem 1.1.
To close this section we give the details of the derivation of formulas (4.10), (4.12),

(4.13), and (4.14). We consider the linear system (4.9) and describe a class of solutions
which includes (4.10), (4.12), (4.13), and (4.14) when

λi = kiui, D22 = βu2(1− u2).

First, we explain how the variable ξ = u1

1−u2
appears. Eliminating function P2 from

(4.9) by cross-differentiation, we get

u1

1− u2

∂P1

∂u1
− ∂P1

∂u2
=

D22(u2)k0

1− u2
.(4.16)

Clearly, this equation has a particular solution P ∗
1 (u2) depending only on the variable

u2. On the other hand, one can verify that any smooth function Φ(ξ) solves the
homogeneous equation (4.16). Thus, the function Φ(ξ) + P ∗

1 (u2) is a solution of
(4.16).
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Now we look for a solution of (4.9) having the form

Pi = qi(ξ) + pi(u2).(4.17)

Since u3 = 1− u1 − u2, we calculate

∂ξ

∂u1
=

1

1− u2
,

∂ξ

∂u2
=

ξ

1− u2
, A =

k1ξ

(k1 − k3)ξ + k3
,

∂P1

∂u1
=

q′1
1− u2

,
∂P1

∂u2
=

ξq′1
1− u2

+ p′1,

∂P2

∂u1
=

q′2
1− u2

,
∂P2

∂u2
=

ξq′2
1− u2

+ p′2,

λD22

λ2(λ1 + λ3)
=

β(1− u2)

k2
+

βu2

(k1 − k3)ξ + k3
.

With these formulas at hand, system (4.9) reads as

A(ξ)q′1(ξ) = q′2(ξ), p′2(u2) =
k1ξp

′
1(u2) + βu2

(k1 − k3)ξ + k3
+

β(1− u2)

k2
.(4.18)

If one chooses

p′1(u2) = −k0βu2,(4.19)

(4.18)2 reads as

p′2(u2) = βu2

(
1

k3
− 1

k2

)
+

β

k2
.(4.20)

Let us take

q1(ξ) = αξm, m ≥ 1.

Then

q′2(ξ) = αmξm−1A(ξ).(4.21)

Now, to obtain a class of solutions of type (4.17), we just integrate equations (4.19),
(4.20), and (4.21).
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Abstract. In this paper we study the large time behavior of two decoupled solitary waves of
the generalized KdV equations ut + (uxx + f(u))x = 0, where f(u) = |u|p−1u/p (3 ≤ p < 5). We
prove that if the speeds of the solitary waves are sufficiently close at the initial time, the leading
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1. Introduction. In the present paper, we study the large time behavior of
solutions of the generalized KdV equation (GKdV){

ut + f(u)x + uxxx = 0 for x ∈ R, t > 0,
u(x, 0) = u0(x) for x ∈ R,

(1.1)

where f(u) = |u|p−1u/p. The equation was derived by Korteweg and de Vries in [26]
as a model for long waves propagating in a canal in the case where f(u) = u2. The
Cauchy problem of (1.1) has been studied by many authors. See [7, 8, 10, 16, 21, 22, 23]
and the references therein.

Let ϕc be a positive solution of{
ϕ′′ − cϕ+ f(ϕ) = 0 for y ∈ R,
limy→±∞ ϕ(y) = 0.

(1.2)

Equation (1.1) has solitary wave solutions with finite energy, which are written as

u(x, t) = ϕc(x− ct− γ),

where c is a positive number and γ is a real number. The positive solution of (1.2)
with its maximum at y = 0 satisfies

ϕc(y) = 2−
2
p−1α(c)

(
sech

(
(p− 1)

√
cy/2

)) 2
p−1

= α(c)e−
√
c|y|(1 +O(e−(p−1)

√
c|y|)),

(1.3)

where α(c) = (2p(p+ 1)c)
1/(p−1)

.
The orbital stability of the solitary wave solutions has been studied by Benjamin

[2]; Bona [3]; Bona, Souganidis, and Strauss [5]; Grillakis, Shatah, and Strauss [17];
and Weinstein [44] (see also Bona and Soyeur [6]). They proved that the solitary wave
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solutions are stable in H1(R) if 1 < p < 5 and unstable if p > 5. That is to say, if
the solution u of (1.1) is initially close to a solitary wave ϕc(x), it remains close to
the set {ϕc(x− ct+ γ) | γ ∈ R} for all the time when 1 < p < 5. Recently Martel and
Merle [29, 31] have proved that solitary wave solutions are unstable if p = 5.

On the other hand, Pego and Weinstein [36] proved the asymptotic stability of
solitary waves in an exponentially weighted space. Mizumachi [33] extended the result
to the algebraically weighted space, which shows that the solitary wave is asymptoti-
cally stable under the presence of small solitary waves which lie far behind the main
wave. Moreover, [33] proved that if 3 < p < 5 and the solution is initially close to a
solitary wave in some weighted space, it decouples into a sum of the solitary wave with
slightly displaced parameters and a small dispersive wave which is asymptotically free
in L2(R).

If f(u) = u2 or f(u) = ±u3, inverse scattering theory is available. Inverse scat-
tering theory informs us that the solution of (1.1) with well-localized initial data
resolves into a train of solitary waves moving to the right, and dispersive radiation,
which moves to the left (see [1, 12, 38] and the references therein). In the integrable
case, Maddocks and Sachs [27] proved the stability of N -soliton solutions in HN (R).
Although inverse scattering theory does not apply to (1.1) with more general p, this
type of asymptotic resolution appears to extend to equations with more general non-
linearities.

Pereleman [34] studied the large time asymptotics of 2-pulse solutions of nonlinear
Schrödinger equations in the case where the two pulses are well separated and move in
opposite directions with large relative velocities. In this case, the interaction of solitary
waves is rather weak. Recently Martel, Merle, and Tsai [32] proved the asymptotic
stability of multipulse solutions of (1.1) in H1, based on energy arguments. They
deal with the case where the solitary waves are well separated and the larger solitary
wave goes ahead of the smaller one.

On the other hand, Ei, Fujii, and Kunihiro [14] formally analyzed the large time
behavior of multisoliton solutions, in the case where p = 2 and the solitons are well
separated and of almost the same speed. In that case, the interaction of solitary waves
is stronger and plays an important role. In fact, it makes solitary waves repulsive.
In the present paper, we rigorously show that, for 3 ≤ p < 5, the motion of solitary
waves is described by a 4-dimensional system of ordinary differential equations which
almost conserves energy, and that the solitary waves are repulsive if they are well
separated, of almost the same speed, and of the same sign.

Before we state our result more precisely, we introduce several notations. We use
the notation ‖ · ‖p for the Lp(R)-norm and ‖ · ‖ = ‖ · ‖2 and ‖ · ‖m,s for the norms
defined by ‖v‖m,s = ‖〈x〉s(1−∂2)m/2v‖2. Let H1

a(R) = {v ∈ H1
loc(R) | eaxv ∈ H1(R)}

be equipped with the norm ‖v‖H1
a
= ‖eaxv‖1,0.

Now we introduce our main results. Since (1.1) has a two-parameter family of
solitary wave solutions {ϕc(· + h) | c > 0, h ∈ R}, the linearized operator around the
solitary wave has an eigenvalue 0 with multiplicity two. In the following theorem, we
assume that the linearized operator has no other eigenvalues (see (2.6) in section 2),
which holds generically for p ∈ (1, 5).

Theorem 1.1. Assume that 3 ≤ p < 5 and that (2.6) holds. Let I be a compact
subset of (0,∞) and let c1,0, c2,0 ∈ I. Let d0 = mini=1,2

√
ci,0, 0 < a1 < a < a2 ≤

d0/100, and let

u0(x) = ϕc1,0(x− x1,0) + ϕc2,0(x− x2,0) + v0(x− x1,0),
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‖v0‖1,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

= ε0,

|c2,0 − c1,0|+ e−
d0
2 (x2,0−x1,0) = ε1,

c2,0 − c1,0 ≥ −ε1/2.

Then there exist positive numbers C and ε̄1 depending on a1 and I such that if ε1 ∈
(0, ε̄1) and ε0 ≤ Cε2

1, there exist c2,∞ > c1,∞ > 0, xi,∞ ∈ R (i = 1, 2), satisfying
c2,∞ − c1,∞ = O(ε1) and

∥∥∥∥∥∥ea(x−c1,∞t−x1,∞)


u(t, ·)−

∑
i=1,2

ϕci,∞(· − ci,∞t− xi,∞)



∥∥∥∥∥∥

1,0

= O(e−C1ε
1−η
1 t),

(1.4)

∥∥∥∥∥∥u(t, ·)−
∑
i=1,2

ϕci,∞(· − ci,∞t− xi,∞)

∥∥∥∥∥∥
∞

= O(t−
1
3 )(1.5)

as t→∞, where C1 and η are positive constants with η = O(ε0). Furthermore if 3 <
p < 5, there exist v∞ ∈ L2(R) and a positive number δ(ε0) satisfying limε0→0 δ(ε0) = 0
and ∥∥∥∥∥∥u(t, ·)−

∑
i=1,2

ϕci,∞(· − ci,∞t− xi,∞)

∥∥∥∥∥∥
1,0

≤ δ(ε0),(1.6)

∥∥∥∥∥∥u(t, ·)−
∑
i=1,2

ϕci,∞(· − ci,∞t− xi,∞)− e−t∂
3
xv∞

∥∥∥∥∥∥ = o(1)(1.7)

as t→∞.
Remark 1.1. Let us decompose the solution of (1.1) into solitary wave parts and

a dispersive wave part: u(x, t) = ϕc1(t)(x− x1(t)) +ϕc2(x− x2(t)) + v. Then we have

∑
i=1,2

(|ci(0)− ci,0|+ |xi(0)− xi,0|) = O(ε0)

(see Lemma 3.1 for details). The repulsive force between solitary waves is approxi-
mately given by

f(
∑
i=1,2 ϕci(t)(x− xi(t)))−

∑
i=1,2 f(ϕci(t)(x− xi(t))) ∼ e−d(t)(x2(t)−x1(t)),

where d(t) = mini=1,2

√
ci(t). We assume c2,0 − c1,0 ≥ −ε1/2 and assume the small-

ness of ε0ε
−1
1 so that the repulsive forces between the solitary waves is sufficiently

strong at the initial time compared with relative velocity. In other words, we assume
that x2,0−x1,0 is sufficiently but not arbitrary large in the case where c1,0 > c2,0. Our
result does not cover the case where c1,0 > c2,0 and x2,0 − x1,0 is extremely large.

To prove the result, we make use of an exponentially weighted space as in [36].
Since the linearized operator around the multipulse satisfies the spectral gap condition
in the exponentially weighted space, we apply a dynamical systems point of view as
in [13]. However, we cannot directly apply local-manifold theory to our problem.
The difficult point of the problem is to show that the dispersive part of the solution
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remains small inH1. Since the orbital stability of multipulse solutions of (1.1) remains
unknown if the equation is nonintegrable and the relative velocity between solitary
waves is small, we use the scattering results to obtain an H1-estimate. This idea was
first used by [9, 41, 42] to show the asymptotic stability of solitary wave solutions
to nonlinear Schrödinger equations. We show that the interaction of the dispersive
part and the solitary waves becomes small as t→∞, and we use the scattering result
(1.1) due to Hayashi and Naumkin [19, 20], which gave the large time asymptotics of
H1,1-small solutions of (1.1) with p ≥ 3, to obtain H1-estimate of the dispersive part
of the solution. For the other results on nonlinear scattering of solutions to (1.1), see
[11, 22, 24, 25, 37, 39, 40] and the references therein.

A similar result is expected to hold for the KdV equation (p = 2). However, we
cannot prove that result, because the dispersive part of the solutions of (1.1) is not
asymptotically free if p ≤ 3 and it cannot be estimated in the same way if p < 3.

Our plan of the present paper is as follows. In section 2, we investigate the
spectrum of the linearized operator and obtain decay properties of the linearized
equation. In section 3, we decompose the solution into solitary wave parts and a
dispersive wave part and obtain the system of ordinary differential equations of phases
and speeds of solitary waves. In section 4, we obtain a priori estimates of the system
obtained in section 3 and prove Theorem 1.1.

Finally, let us introduce some notation, which shall be used later. For an operator
A, we denote by σ(A) the spectrum of A and by ρ(A) the resolvent set of A. For any
Banach spaces X, Y , we denote by L(X,Y ) the space of bounded linear operators
from X to Y . We abbreviate L(X,X) as L(X).

We define Dα as

Dαf ≡ F−1ξαe−iπ
1+α

2 Ff

=
2π

Γ(1− α)

∫ ∞

0

(f(x+ y)− f(x))
dy

yα+1

for α ∈ (0, 1), where

Ff(ξ) = (2π)−
1
2

∫
e−ixξf(x)dx and F−1g(x) = (2π)−

1
2

∫
eixξg(ξ)dξ.

Let 〈f, g〉 = ∫
f(x)g(x)dx and 〈t〉 = √

1 + t2. Various constants will be simply
denoted by C and Ci (i ∈ N) in the course of the calculations.

2. Spectral analysis of the linearized equation.

2.1. Spectral properties of the linearized equation around solitary wave
solutions. Let L = −∂2

y + c− f ′(ϕc). The essential spectrum of the operator ∂yL in
L2(R) consists of iR, and it holds that ∂yL∂yϕc = 0, ∂yL∂cϕc = −∂yϕc. So λ = 0 is
always an eigenvalue of ∂yL imbedded in the essential spectrum. Set

ξ̃1(y, c) = ∂yϕc(y), ξ̃2(y, c) = ∂cϕc(y),(2.1)

η̃1(y, c) = θ1(c)

∫ y
−∞

∂cϕc + θ2(c)ϕc(y), η̃2(y, c) = θ3(c)ϕc(y),(2.2)

where

θ3(c) = −θ1(c) = 2

(
d

dc
‖ϕc‖2

)−1

, θ2(c) = 2

(
d

dc

∫
R

ϕc

)2(
d

dc
‖ϕc‖2

)−2

.
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The functions ξ̃1(y, c), ξ̃2(y, c), and η̃2(y, c) decay exponentially as |y| → ∞. The
function η̃1(y) also decays exponentially as y → −∞ but is merely bounded as y →∞.
Let

Au = eay∂yLe
−ay, ξi(y, c) = eay ξ̃i(y, c), ηi(y, c) = e−ay η̃i(y, c) for i = 1, 2.

The spectrum of ∂yL in L2
a = {v | eayv ∈ L2} is equivalent to the spectrum of A in

L2. Since L∂yϕc = 0 and L∂cϕc = −ϕc,

Aξ1(y, c) = 0, Aξ2(y, c) = −ξ1(y, c),(2.3)

A∗η1(y, c) = −η2(y, c), A∗η2(y, c) = 0.(2.4)

By (2.1), (2.2), and the definitions of ξi(·, c) and ηj(·, c) (i, j = 1, 2),

〈ξi(·, c), ηj(·, c)〉 = δij(2.5)

for i, j = 1, 2. The essential spectrum of A consists of

S(a) :=
{−(iτ − a)3 + c(iτ − a)

∣∣ τ ∈ R
}
.

The complement of S(a) in C consists of two disjoint open components. We denote
by Ω(a) the connected component that includes the right-hand side of S(a). Let us
recall some results due to Pego and Weinstein.

Proposition 2.1 (see [35, 36]).
1. Assume 1 < p < 5 and 0 < a <

√
c/3. Then λ = 0 is an eigenvalue for A

with algebraic multiplicity two. In addition, if ∂yL has no eigenvalue in L2

other than 0, there exists 0 < b < a(c− a2) such that

σ(A) ⊂ {0} ∪ {λ ∈ C |Reλ < −b}.

2. The set of values of p with 1 < p ≤ 5 such that the operator ∂yL has some
nonzero eigenvalues is a finite set which does not include p = 2, 3.

Throughout the paper we assume the following:

The operator ∂yL has no nonzero eigenvalue in L2(R).(2.6)

Thus

Pcu =

2∑
i=1

〈u, ηi(·, c)〉ξi(·, c) and Qcu = (1− Pc)u(2.7)

are spectral projections associated with A.

2.2. Properties of the linearized operator around 2-pulse solutions. Let
τhu = u(· − h) and let

A0(c)u = −(∂y − a)3u+ c(∂y − a)u, R0(λ) = (λ−A0)
−1,

V1u = −(∂y − a)(f ′(ϕc1)u), V2u = −(∂y − a)(f ′(τhϕc2)u),
A1 = A0(c1) + V1(c1), A2 = A0(c2) + V2(c2),

P1(c) = Pc, P2(c) = τhPcτ−h, Qi(c) = 1− Pi(c) for i = 1, 2.
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Let χ be a smooth nonnegative function satisfying 0 ≤ χ ≤ 1, with

χ(y) =

{
0 if y ≥ 2/3,

1 if y ≤ 1/3

and χ1(y, h) = χ(y/h), χ2(y, h) = 1− χ1(y, h). Let c = (c1, c2) and let c1, c2, and h
be positive numbers. We define the operator Ac,h by

Ac,h(a)u = −(∂y − a)3u+
∑
i=1,2

ci(∂y − a)(χiu) +
∑
i=1,2

Viu.

For simplicity, we abbreviate Ac,h(a) as Ac,h if no confusion arises. We investigate
the spectral properties of the operator Ac,h for large h.

Lemma 2.2. Assume (2.6). Let I be a compact subset of (0,∞) and let c1, c2 ∈ I.
Let ε∗ be a sufficiently small number and let h∗ be a sufficiently large number. Then
there exist positive numbers b′ and ρ such that if ε := |c2 − c1| ≤ ε∗ and h ≥ h∗,

{
λ ∈ C |Reλ > −b′, |λ| ≥ ρ

2

}
⊂ ρ(Ac,h).

The number ρ can be chosen as a function of ε and h satisfying limε→0,h→∞ ρ = 0.
Furthermore, the operator Pc,h defined by

Pc,h =
1

2πi

∫
|λ|=ρ

(λ−Ac,h)
−1dλ

is the spectral projection associated with Ac,h, and the range of Pc,h is 4-dimensional.

Proof. First, we remark that there exists b′ > 0 such that

sup
Reλ>−b′

‖Qi(ci)(λ−Ai)
−1‖L(H−3(R),L2(R)) <∞

for i = 1, 2, that

(λ−A1)
−1P1(c1)u =

2∑
j=1

1

λ
〈u, ηj(·, c1)〉ξj(·, c1)− 1

λ2
〈u, η2(·, c1)〉ξ1(·, c1),

(λ−A2)
−1P2(c2)u =

2∑
j=1

1

λ
〈u, τhηj(·, c2)〉τhξj(·, c2)− 1

λ2
〈u, τhη2(·, c2)〉τhξ1(·, c2),

and that

sup
y∈R

‖[Ai, χi]‖L(L2,H−2) = O(1/h).(2.8)

Since [Ai, χi] = 0 for y ≤ h/3 and y ≥ 2h/3, it follows from (1.3) and (2.7) that

‖Pi[Ai, χi]‖L(L2) = O
(
e−

ah
3

)
.
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Combining the above, we have(
(λ−A1)

−1χ1 + (λ−A2)
−1χ2

)
(λ−Ac,h)

= 1 +
∑
i=1,2

(λ−Ai)
−1([Ai, χi]− χiV3−i)

+ (c1 − c2)(λ−A1)
−1χ1(∂y − a)(χ2u) + (c2 − c1)(λ−A2)

−1χ2(∂y − a)(χ1u)

= 1 +
2∑
i=1

(λ−Ai)
−1Pi[Ai, χi] +

2∑
i=1

(λ−Ai)
−1Qi[Ai, χi]

+ (λ−A1)
−1(P1 +Q1) (χ1V2 + (c1 − c2)χ1(∂y − a)(χ2·))

+ (λ−A2)
−1(P2 +Q2) (χ2V1 + (c2 − c1)χ2(∂y − a)(χ1·))

=: 1 + r(λ)

and

‖r(λ)‖L(L2) = O

(
|c2 − c1|+ 1

h
+ (|c2 − c1|+ e−

ah
3 )

(
1

|λ| +
1

|λ|2
))

for λ ∈ {λ ∈ C \ {0} |Reλ > −b′}. Therefore, for any ρ > 0 there exist ε, h∗ > 0 such
that if |c2 − c1| ≤ ε∗, h ≥ h∗, |λ| ≥ ρ/2, and Reλ > −b′, the operator 1 + r(λ) is
invertible and λ ∈ ρ(Ac,h).

Next, we show that the range of the operator Pc,h is 4-dimensional for large h.
By a simple computation,

‖Pc,h − P1(c1)χ1 − P2(c2)χ2‖L(L2)

≤ 1

2π

∥∥∥∥∥
∮
|λ|= b′

2

(
(λ−Ac,h)

−1 − (λ−A1)
−1χ1 − (λ−A2)

−1χ2

)
dλ

∥∥∥∥∥
L(L2)

≤ 1

2π

∥∥∥∥∥
∮
|λ|= b′

2

r(λ)(1 + r(λ))−1
(
(λ−A1)

−1χ1 + (λ−A2)
−1χ2

)
dλ

∥∥∥∥∥
L(L2)

= O
(‖r(λ)‖L(L2)

)
.

(2.9)

Let

ξi(y, c, h, a) =

{
eay ξ̃i(y, c) for i = 1, 2,

eay ξ̃i−2(y − h, c) for i = 3, 4,

ηi(y, c, h, a) =

{
e−ay η̃i(y, c) for i = 1, 2,

e−ay η̃i−2(y − h, c) for i = 3, 4.

We abbreviate ξi(y, c, h, a) and ηi(y, c, h, a) as ξi(y, c, h) and ηi(y, c, h), respectively,
if there is no confusion. Let cij be real numbers such that

P̂ u =
∑

1≤i,j≤4

cij〈u, χ[ i+1
2 ]ηi(·, c[ i+1

2 ], h)〉ξj(·, c[ j+1
2 ], h)

is a projection onto the linear subspace

span
{
ξi(·, c[ i+1

2 ], h)
∣∣ 1 ≤ i ≤ 4

}
.
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Then it follows that cij = δij +O(e−dh/3), where d = mini=1,2
√
ci. Hence we have

‖Pc,h − P̂‖L(L2)

≤ ‖Pc,h − P1(c1)χ1 − P2(c2)χ2‖L(L2) + ‖P1(c1)χ1 + P2(c2)χ2 − P̂‖L(L2)

= O(|c1 − c2|+ 1/h).

Thus the range of P̂ and the range of Pc,h are isomorphic, which yields that the Pc,h

is 4-dimensional.
Next, we investigate (generalized) eigenfunctions of Ac,h around λ = 0. Let

η̄j(·, c, h) = P∗
c,hηj(·, c[ j+1

2 ], h) for 1 ≤ j ≤ 4.

Lemma 2.3. Let I be a compact subset of (0,∞). Then there exist positive
constants ε∗, h∗, and C such that for any h ≥ h∗ and c1, c2 ∈ I with |c1 − c2| ≤ ε∗,
it holds that

‖η̄j(·, c, h)− ηj(·, c1, h)‖H1(R) ≤ Ce−
d+a
3 h for j = 1, 2,

‖η̄j(·, c, h)− ηj(·, c2, h)‖H1(R) ≤ Ce−
d+2a

3 h for j = 3, 4,

‖η̄j‖H3(R) +

∥∥∥∥∂η̄j∂ci

∥∥∥∥
H3(R)

+

∥∥∥∥∂η̄j∂h

∥∥∥∥
H3(R)

≤ C for i = 1, 2 and j = 1, 2,

‖η̄j‖H3(R) +

∥∥∥∥∂η̄j∂ci

∥∥∥∥
H3(R)

+

∥∥∥∥∂η̄j∂h

∥∥∥∥
H3(R)

≤ Ce−ah for i = 1, 2 and j = 3, 4,

where d = mini=1,2
√
ci.

Proof. We give the proof for j = 1:

‖η̄1(·, c, h)− η1(·, c1)‖H1(R)

=

∥∥∥∥ 1

2πi

∮
|λ|= b′

2

(
(λ−A∗

c,h)
−1 − (λ−A∗

1)
−1
)
η1dλ

∥∥∥∥
H1(R)

≤ 1

2π

∮
|λ|= b′

2

∥∥(λ−A∗
c,h)

−1V ∗
2 (λ−A∗

1)
−1η1

∥∥
H1(R)

dλ

+
1

2π

∮
|λ|= b′

2

∥∥(λ−A∗
c,h)

−1(c2 − c1)χ2(∂y + a)(λ−A∗
1)

−1η1

∥∥
H1(R)

dλ

≤C

∮
|λ|= b′

2

(∥∥V ∗
2

(
λ−1η1 − λ−2η2

)∥∥+ ∥∥(c2 − c1)χ2(∂y + a)
(
λ−1η1 − λ−2η2

)∥∥) dλ
≤Ce−

a+d
3 h.

Here we use

(λ−A∗
1)

−1η1(·, c1) = λ−1η1(·, c1)− λ−2η2(·, c1).
The latter part of the lemma can be obtained by differentiating

η̄1(·, c, h) = 1

2πi

∮
|λ|= b′

2

(λ−A∗
c,h)

−1η1(·, c1)dλ

with respect to ci (i = 1, 2) and h and estimating the right-hand side.
Let (Mρf)(x) := eρxf(x). The following lemma shows that η̄i(x, c, h) (1 ≤ i ≤ 4)

decay like ηi as x→ ±∞.
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Lemma 2.4. Let c1, c2, and h satisfy the assumptions in Lemma 2.3, and let ρ
be a number satisfying −mini=1,2

√
ci < ρ < a. Then

‖Mρη̄i(·, c, h)‖H3(R) ≤ C for i = 1, 2,

‖Mρη̄i(·, c, h)‖H3(R) ≤ Ce(ρ−a)h for i = 3, 4,

where C is a positive constant depending only on ρ.
Proof. Since Ac,h(ρ+ a) = MρAc,h(a)M−ρ,

Mρη̄i(·, c, h, a) = 1

2πi

∮
|λ|= b′

2

Mρ(λ−Ac,h(a)
∗)−1ηi(·, c, h, a)dλ

=
1

2πi

∮
|λ|= b′

2

(λ−Ac,h(a− ρ)∗)−1ηi(·, c, h, a− ρ)dλ

= η̄i(·, c, h, a− ρ).

Hence it follows from Lemma 2.3 that

‖Mρη̄i(·, c, h)‖H3(R) ≤
{

C for i = 1, 2,

Ce(ρ−a)h for i = 3, 4,

where −mini=1,2
√
ci < ρ < a.

2.3. Decay properties of the linearized equation. In the case where the
speeds of the solitary waves are almost the same, the properties of the linearized
equation are similar to those of linearized equation around the multibump function. In
this subsection, we investigate the decay properties of solutions of linearized equations
in an exponentially weighted space.

Let ε∗ and h∗ be numbers as in Lemmas 2.2 and 2.3, and let c = (c1, c2) and
c1, c2, and h be positive numbers satisfying |c2 − c1| ≤ ε∗ and h ≥ h∗. Let ξ̄i(·, c, h)
(1 ≤ i ≤ 4) be (generalized) eigenfunctions of Ac,h satisfying〈

ξ̄i(·, c, h), η̄j(·, c, h)
〉
= δij .

We introduce the subspace of L2(R) defined by

X(c, h) =
{
u ∈ L2(R) | 〈u, η̄i(·, c, h)〉 = 0 for 1 ≤ i ≤ 4

}
.

Let c0 = (c1,0, c2,0) and c1,0, c2,0, and h0 be positive number with |c2,0 − c1,0| ≤ ε∗
and h0 ≥ h∗. We define the operator Π(c, h; c0, h0) from X(c0, h0) to X(c, h) by

Π(c, h; c0, h0)u = w(1; c, h; c0, h0),

where w(θ; c, h; c0, h0) is the solution of


dw

dθ
=
∑
i=1,2

∑
1≤j≤4

(ci,0 − ci)

〈
w(θ),

∂η̄j
∂ci

(c(θ), h(θ))

〉
ξ̄j(c(θ), h(θ))

+ (h0 − h)
∑

1≤j≤4

〈
w(θ),

∂η̄j
∂h

(c(θ), h(θ))

〉
ξ̄j(c(θ), h(θ)),

w(0) = u ∈ X(c0, h0),

c(θ) = θc + (1− θ)c0, and h(θ) = θh+ (1− θ)h0.
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Set

K(h0, c0, ρ, δ) =
{
(c1, c2, h)

∣∣ |h− h0| ≤ ρ, |ci − ci,0| ≤ δ for i = 1, 2
}
.

The construction of Π(c, h; c0, h0) yields that Π(c, h; c0, h0) is an isomorphism satis-
fying the following.

Lemma 2.5. There exist positive numbers h∗ and δ such that for every 0 < ρ <
h∗/2 and |c2,0 − c1,0| ≤ δ

sup
h0≥h∗

sup
K(h0,c0,ρ,δ)

(‖Π(c, h; c0, h0)‖L(L2) + ‖Π(c, h; c0, h0)
−1‖L(L2)

)
<∞,

sup
h0≥h∗

sup
K(h0,c0,ρ,δ)


∑
i=1,2

∥∥∥∥∂Π∂ci (c, h; c0, h0)

∥∥∥∥
L(L2)

+

∥∥∥∥∂Π∂h (c, h; c0, h0)

∥∥∥∥
L(L2)


 <∞.

Next, we obtain the local decay estimate of the solutions of the linearized equation.
Let

Ā(t) = Π(c(t), h(t); c0, h0)Ac(t),h(t)Π(c(t), h(t); c0, h0)
−1,

and let U(t, s)f denote the solution of

{
∂tw = Ā(t)w for t ≥ s and y ∈ R,

w(s, ·) = f ∈ X(c0, h0).

Lemma 2.6. Assume (2.6). Let c0, h0, ε, δ, and ρ be positive numbers with
0 < δ < c0, and let 0 < a1 ≤ a2 <

√
c0/6 and a ∈ [a1, a2]. Suppose that ci(t)

(i = 1, 2) and h(t) are C1-functions satisfying

h(t) ∈ [h0, h0 + ρ],

ci(t) ∈ [c0 − δ, c0 + δ],

|c2(t)− c1(t)|+ |ċ1(t)|+ |ċ2(t)|+ |ḣ(t)| ≤ ε

(2.10)

for every t ≥ 0. Then there exists a positive number h∗ satisfying the following.
Suppose h0 ≥ h∗. Then for every ρ there exists ε∗ > 0 such that if 0 < ε ≤ ε∗,

‖U(t, s)f‖ ≤Me−b(t−s)‖f‖,(2.11)

‖U(t, s)f‖1,0 ≤M(t− s)−
1
2 e−b(t−s)‖f‖,(2.12)

‖U(t, s)f‖1,0 ≤Me−b(t−s)‖f‖1,0(2.13)

for any t ≥ s ≥ 0 and f ∈ H1(R). The constants M and b are positive, chosen
uniformly with respect to a ∈ [a1, a2] and h0 ≥ h∗, and depend only on ρ and h∗.

Proof. The proof follows along the lines of [13]. First, we estimate the operator

norm of eĀ(s)t for each s ≥ 0. Let c ∈ [c0− δ, c0 + δ] and let 0 < α < a < (c0− δ/3)
1
2 .

By Lemma 4.3 in [36], there exists a C > 0 such that for λ ∈ Ω(α)

∥∥∂ny (λ−A0,c)
−1
∥∥
L(L2(R))

≤ C|λ|n−2
3 for n = 0, 1.(2.14)



1052 TETSU MIZUMACHI

The constant C can be chosen uniformly with respect to c ∈ [c0 − δ, c0 + δ]. By (2.6)
and (2.14), there exist C0, C1 > 0 such that for λ ∈ Ω(α) with |λ| ≥ C0,

∥∥∂ny (λ−Ac,h)
−1
∥∥
L(L2)

=

∥∥∥∥∥∥∂ny (λ−A0,c)
−1

{
1−

∑
i=1,2

((ci − c)(∂y − a)χi + Vi) (λ−A0,c)
−1

}−1
∥∥∥∥∥∥
L(L2)

≤ C|λ|n−2
3 for n = 0, 1,

(2.15)

where C can be chosen uniformly with respect to ci ∈ [c0 − δ, c0 + δ] and h ≥ h∗.
Let b′ be a positive number as in Lemma 2.2 and let λ ∈ Ω(α) with Reλ = −b̄ >

−b′. We compute (
Q1(λ−A1)

−1χ1 +Q2(λ−A2)
−1χ2

)
(λ−Ac,h)

= Q1χ1 +Q2χ2 + r̃(λ),

where

r̃(λ) =
∑
i=1,2

Qi(λ−Ai)
−1
{
[Ai, χi]− χiV3−i + (−1)i(c2 − c1)(∂y − a)(χ3−i·)

}
.

Let

Qc,h = 1− Pc,h and T (c, h, λ) = Qc,h(Q1χ1 +Q2χ2 + r̃(λ))Qc,h.

By (2.8) and (2.9), we have

lim
h→∞,c2→c1

‖r̃(λ)‖L(L2) = 0, lim
h→∞,c2→c1

‖Qc,h −Q1(c1)χ1 −Q2(c2)χ2‖L(L2) = 0

uniformly with respect to λ and c1. Hence, for sufficiently large h∗ and sufficiently
small ε∗, T (c, h, λ)−1 : X(c, h) → X(c, h) exists and is uniformly bounded with
respect to λ, c1, c2, and h. Since

(λ−Ac,h)
−1
∣∣
Xc,h

= T (c, h, λ)−1Qc,h

∑
i=1,2

Qi(λ−Ai)
−1χiQc,h,

sup
|λ|≤C0,Reλ=−b̄,

ci∈[c0−δ,c0+δ],h≥h∗

∥∥(λ−Ac,h)
−1
∥∥
Xc,h

<∞.(2.16)

Let Γ = {λ ∈ S(α) | |λ| ≥ C0}∪{λ ∈ C |Reλ = −b̄, |λ| ≤ C0}. From (2.15)–(2.16)
and Lemmas 2.3 and 2.5, it follows that

sup
s≥0,λ∈Γ

‖∂ny (λ− Ā(s))−1‖L(X(c,h)) ≤ C|λ|n−2
3 for n = 0, 1.

Now, by using the inversion of the Laplace formula as in [36, pp. 325–328], we have,
for a C > 0,

‖Qc(s),h(s)e
Ā(s)tf‖ ≤ Ce−bt‖f‖,

‖Qc(s),h(s)e
Ā(s)tf‖1,0 ≤ Ce−bt‖f‖1,0,

‖Qc(s),h(s)e
Ā(s)tf‖1,0 ≤ Ct−

1
2 e−bt‖f‖

for every t, s ≥ 0 and f ∈ H1(R).
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By Lemma 2.5 and (2.10), there exists a C > 0 such that

‖Ā(t2)f − Ā(t1)f‖ ≤ Cε|t2 − t1|‖f‖1,0.
Combining the above with the proof of Theorem 7.4.2 in [18], we have an ε∗ > 0

such that (2.11)–(2.12) hold for b with 0 < b < b̄ if ε < ε∗. We see that (2.13) follows
from (2.12) and the fact that U(t, s) is a semigroup on H1.

3. Decomposition of the 2-pulse solutions. To decompose the solution into
solitary wave parts and a dispersive part, set

u(x, t) = ϕc1(t)(x− x1(t)) + ϕc2(t)(x− x2(t)) + v(y, t),

y = x− x1(t), h(t) = x2(t)− x1(t).
(3.1)

Substituting (3.1) into (1.1), we have

∂tv + ∂yLv + l̃ + ∂yÑ = 0,

where

L = ∂2
y − c1 + f ′(ϕc1) + f ′(τhϕc2),

l̃ = (c1 − ẋ1)∂yv + ċ1∂cϕc1 + (c1 − ẋ1)∂yϕc1 + ċ2τh∂cϕc2 + (c2 − ẋ2)τh∂yϕc2 ,

Ñ = Ñ1 + Ñ2 + Ñ3,

Ñ1 = f(ϕc1 + τhϕc2 + v)− f(ϕc1 + τhϕc2)− f ′(ϕc1 + τhϕc2)v,

Ñ2 = f(ϕc1 + τhϕc2)− f(ϕc1)− f(τhϕc2),

Ñ3 = (f ′(ϕc1 + τhϕc2)− f ′(ϕc1)− f ′(τhϕc2)) v.

Let w(y, t) = eayv(y, t). Then

∂tw −Ac(t),h(t)w + l + (∂y − a)N = 0,(3.2)

where l = eay l̃ + (c2 − c1)(∂y − a)(χ2w) and N = eayÑ . To fix the components of
(3.1), we assume the following condition:

w(·, t) ∈ Range
(Qc(t),h(t)

)
.(3.3)

This requirement corresponds to

〈w(·, t), η̄i(·, c(t), h(t))〉 = 0 for i = 1, 2, 3, 4,(3.4)

where c(t) = (c1(t), c2(t)), which can be satisfied locally in time.
Lemma 3.1. Let 1 < p < 5, 0 < a < d0/3, and 0 ≤ t0 ≤ 1. Assume that (2.6)

holds and that u0 ∈ H1
a(R)∩H1(R). Let I be a compact subset of (0,∞). Then there

exist positive numbers ε, δ0, δ1, and h∗ such that if c1,0, c2,0 ∈ I, |c2,0 − c1,0| < ε,
h0 = x2,0 − x1,0 ≥ h∗ and the solution u of (1.1) satisfies

sup
0≤t≤t0

∥∥u(t, ·+ x1,0)− ϕc1,0(· − c1,0t)− ϕc2,0(· − c2,0t− h0)
∥∥
H1
a
< δ0,

there exists a unique function (x1(t), c1(t), x2(t), c2(t)) ∈ C1([0, t0];R
4) satisfying

(3.4) and

sup
0≤t≤t0

∑
i=1,2

(|xi(t)− xi,0 − ci,0t|+ |ci(t)− ci,0|) < δ1.

The number δ0 may be chosen as the decreasing function of t0.
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Proof. Let

Fi[u, x1, c1, x2, c2]

=

∫
R

eay
{
u(t, x)− ϕc1(t)(x− x1(t))− ϕc2(t)(x− x2(t))

}
η̄i(x− x1(t), c, h)dx

be the functional defined on C([0, t0];H
1
a(R)) for 1 ≤ i ≤ 4. Let

Φ0 = (ϕc1,0(· − c1,0t− x1,0) + ϕc2,0(· − c2,0t− x2,0), x1,0 + c1,0t, c1,0, x2,0 + c2,0t, c2,0).

Then it follows that F [Φ0] = 0, and in view of Lemma 2.3, the Fréchet derivatives of
t(F1, F2, F3, F4) at Φ0 with respect to x1, c1, x2, and c2 are given by

∂(F1, F2, F3, F4)

∂(x1, c1, x2, c2)
[Φ0] = −

(〈
ξi(·, c[ i+1

2 ], h), η̄j(·, c, h)
〉)

i=1,2,3,4↓
j=1,2,3,4→

=−
(
〈ξi(·, c1, h), ηj(·, c1, h)〉

)
i=1,2,3,4↓
j=1,2,3,4→

+O(|c2 − c1|+ e−
d−2a

3 h).

By (2.1), (2.2), (2.5), and (1.3),

(〈ξi(c, h), ηj(c, h)〉)i=1,2,3,4→
j=1,2,3,4↓

= B(c) +O(he−
√
ch),(3.5)

where

B(c) =



1 0 0 γ(c)
0 1 0 0
0 0 1 0
0 0 0 1


 , γ(c) =

(
d

dc

∫
R

ϕc

)2

θ1(c).

Applying the implicit function theorem, we can choose xi and ci (i = 1, 2) satisfying
(3.4). We remark that if a value of δ0 works for some t0, it also works for smaller
values of t0 because the functionals Fi (1 ≤ i ≤ 4) depend only on u, ci, and xi
(i = 1, 2). For the details of the proof, we refer the readers to [36].

Remark 3.1. Since

u ∈ C([0,∞);H1(R)) and eaxu ∈ C([0,∞);H1(R))

(see [16, 21]), there exist T > 0 and (x1(t), c1(t), x2(t), c2(t)) ∈ C1([0, T ];R4) satisfy-
ing (3.4) for 0 ≤ t ≤ T .

Remark 3.2. Since H1
a � u �→ (x1, c1, x2, c2) ∈ C([0, t0];R

4) is a C1-mapping, we
have

|x1(0)− x1,0|+ |c1(0)− c1,0| ≤ C‖v0‖H1
a
,(3.6)

|x2(0)− x2,0|+ |c2(0)− c2,0| ≤ Ce−ah0‖v0‖H1
a

(3.7)

in some neighborhood of Φ0. Hence it follows that h(0) = h0 +O(‖v0‖H1
a
),

‖v(0)‖1,0 ≤ ‖v0‖1,0 +
∑
i=1,2

∥∥ϕci,0(· − xi,0)− ϕci(0)(· − xi(0))
∥∥

1,0

≤ ‖v0‖1,0 + C
∑
i=1,2

(|xi,0 − xi(0)|+ |ci,0 − ci(0)|)

≤ ‖v0‖1,0 + C‖v0‖H1
a
,

(3.8)
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and

‖w(0)‖1,0 ≤ ea(x1,0−x1(0))‖v0‖H1
a

+
∑
i=1,2

∥∥∥ea(·−x1(0))ϕci,0(· − xi,0)− ϕci(0)(· − xi(0))
∥∥∥

1,0

≤ C
(‖v0‖H1

a
+ |x1,0 − x1(0)|+ |c1,0 − c1(0)|

)
+ Ceah0 (|x2,0 − x2(0)|+ |c2,0 − c2(0)|)

≤ C‖v0‖H1
a
.

(3.9)

Finally, we derive the system of ordinary differential equations of modulating
speeds and phase of solitary waves. Let α = α(c1), θi = θi(c1) (i = 1, 2, 3). Let a and
b be positive numbers and

M1(a, b) =
〈
f ′(ϕa)e

√
by, ∂cϕa

〉
and M2(a, b) =

〈
f ′(ϕa)e

√
by, ∂yϕa

〉
,

and Mi = Mi(c1, c1) (i = 1, 2). We remark that M2(a, b) < 0 because ∂yϕa is an odd

function and e
√
by is a positive increasing function.

Lemma 3.2. Let 3 ≤ p < 5 and let (2.6) be satisfied. Let I be a compact subset
of (0,∞). There exist positive numbers ε and h∗ such that if ci(t) ∈ I (i = 1, 2),
|c2(t)− c1(t)| < ε, h(t) ≥ h∗, 0 < a < d(t)/3, and (3.4) holds for t ∈ [0, T ],



c1 − ẋ1

ċ1
c2 − ẋ2

ċ2


 = α



(θ1M1 + θ2M2)e

−√
c2h − 2θ2M2e

−√
c1h

θ3M2e
−√
c2h

(θ1M1 − θ2M2)e
−√
c1h

−θ3M2e
−√
c1h


+ ?R+



R1

R2

R3

R4




for 0 ≤ t ≤ T , where R is a vector with | ?R| = O
(
(‖w‖1,0 + |g|+ e−(d−2a)h/3)e−dh

)
and Ri (1 ≤ i ≤ 4) satisfy

|R1|+ |R2| ≤ C(|g|+ e−dh + ‖w‖1,0)‖w‖1,0 + Ce−
4d−2a

3 h,

|R3|+ |R4| ≤ Ce−ah(|g|+ e−dh + ‖w‖1,0)‖w‖1,0 + Ce−
4d−a

3 h,

where d(t) = mini=1,2

√
ci(t).

Proof. To prove the lemma, we translate (3.4) into a system of ordinary differential
equations. Differentiating (3.4), we obtain

d

dt
〈w(·, t), η̄j(·, c(t), h(t))〉 =

∑
i=1,2

ċi 〈w, ∂ci η̄j(·, c(t), h(t))〉

+ ḣ 〈w, ∂hη̄j(·, c(t), h(t))〉+ 〈∂tw, η̄j(·, c(t), h(t))〉
= 0.

(3.10)

By (3.2) and (3.4),

〈∂tw, η̄j(·, c, h)〉 = −〈l, η̄j(·, c, h)〉+ 〈N , (∂y + a)η̄j(·, c, h)〉
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and

〈l, η̄j(·, c, h)〉
= g 〈(∂y − a)χ2w, η̄j(·, c, h)〉
+ (c1 − ẋ1) {〈(∂y − a)w, η̄j(·, c, h)〉+ 〈ξ1, η̄j(·, c, h)〉}
+ ċ1 〈ξ2, η̄j(·, c, h)〉+ (c2 − ẋ2) 〈ξ3, η̄j(·, c, h)〉+ ċ2 〈ξ4, η̄j(·, c, h)〉 ,

(3.11)

where g(t) = c2(t) − c1(t), ξj = ξj(·, c1) for j = 1, 2 and ξj = ξj(·, c2, h) for j = 3, 4.
Combining (3.10) and (3.11) yields

B



c1 − ẋ1

ċ1
c2 − ẋ2

ċ2


 = (〈N2, (∂y + a)ηj〉)j=1,2,3,4↓ +



R̃1

R̃2

R̃3

R̃4


 ,(3.12)

where Ni = eayÑi for i = 1, 2, 3, ηj = ηj(·, c1) for j = 1, 2, ηj = ηj(·, c2, h) for j = 3, 4,
B = (bj1, bj2, bj3, bj4)j=1,2,3,4↓,

bj1 = 〈ξ1, η̄j〉+ 〈(∂ − a)w, η̄j〉 − 〈w, ∂hη̄j〉, bj2 = 〈ξ2, η̄j〉 − 〈w, ∂c1 η̄j〉,
bj3 = 〈ξ3, η̄j〉+ 〈w, ∂hη̄j〉, bj4 = 〈ξ4, η̄j〉 − 〈w, ∂c2 η̄j〉,

(3.13)

and

R̃j =
∑
i=1,3

〈Ni, (∂y + a)η̄j〉+ 〈N2, (∂y + a)(η̄j − ηj)〉+ g〈w,χ2(∂y + a)η̄j + ∂hη̄j〉.

By Lemma 2.3 and (3.5),

bjk = δjk +O(e−
d−2a

3 h + ‖w‖) for j = 1, 2, 1 ≤ k ≤ 4 and (j, k) != (1, 4),

bjk = δjk +O(e−
d−a

3 h + e−ah‖w‖) for j = 3, 4 and 1 ≤ k ≤ 4,

b41 = γ(c1) +O(|g|+ e−
d−2a

3 h + ‖w‖).

Since ϕc(x) = c
1
p−1ϕ1(c

1
2x) and ϕ1 ∈ L∞,

‖N1‖ =
∥∥∥∥
∫ 1

0

(1− θ)f ′′(ϕc1 + τhϕc2 + θv)dθvw

∥∥∥∥(3.14)

≤ C(‖ϕc1‖∞ + ‖ϕc2‖∞ + ‖v‖∞)p−2‖v‖∞‖w‖(3.15)

≤ C(c
1
p−1

1 + c
1
p−1

2 + ‖v‖∞)p−2‖v‖∞‖w‖.(3.16)

By (1.3),

‖eayϕc1τhϕc2‖∞ ≤ C(c1c2)
1
p−1 ‖eaye−

√
c1|y|−√

c2|y−h|‖∞
≤ C(c1c2)

1
p−1 e(a−d)h,

and ‖ϕc1τhϕc2‖∞ ≤ C(c1c2)
1
p−1 e−dh, where C is a constant independent of c1 and c2.
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Hence it follows that

‖N2‖ =
∥∥∥∥eay

∫ 1

0

∫ 1

0

f ′′(θ1ϕc1 + θ2τhϕc2)dθ1dθ2ϕc1τhϕc2

∥∥∥∥
≤ C(‖ϕc1‖p−3

∞ ‖ϕc1‖+ ‖ϕc2‖p−3
∞ ‖ϕc2‖)‖eayϕc1τhϕc2‖∞

≤ C(c1 + c2)
3
4+ 1

p−1 e(a−d)h,

(3.17)

‖N3‖ =
∥∥∥∥
∫ 1

0

∫ 1

0

f ′′′(θ1ϕc1 + θ2τhϕc2)dθ1dθ2ϕc1τhϕc2w

∥∥∥∥
≤ C(‖ϕc1‖∞ + ‖ϕc2‖∞)p−3‖ϕc1τhϕc2‖∞‖w‖
≤ C(c1 + c2)e

−dh‖w‖.

(3.18)

By Lemma 2.4,

|〈N1, (∂y + a)η̄j〉| ≤ ‖eayN1‖‖(∂y + 2a)e−ay η̄j‖
≤ C(c

1
p−1

1 + c
1
p−1

2 + ‖v‖∞)p−2‖w‖21,0 for j = 1, 2,

|〈N1, (∂y + a)η̄j〉| ≤ ‖eayN1‖‖(∂y + 2a)e−ay η̄j‖
≤ Ce−ah(c

1
p−1

1 + c
1
p−1

2 + ‖v‖∞)p−2‖w‖21,0 for j = 3, 4.

(3.19)

Using Lemma 2.3 and (3.17)–(3.19), we have

|R̃1|+ |R̃2| ≤ C(|g|+ e−dh + ‖w‖1,0)‖w‖1,0 + Ce−
4d−2a

3 h,

|R̃3|+ |R̃4| ≤ Ce−ah(|g|+ e−dh + ‖w‖1,0)‖w‖1,0 + Ce−
4d−a

3 h,
(3.20)

where C is a continuous function of c1, c2 ∈ (0,∞) and ‖v‖∞. Hence C is bounded
as long as c1 and c2 remain in some compact interval of (0,∞) and ‖v‖∞ remains
bounded.

For f(u) = |u|p−1u/p (p ≥ 3),

f(a+ b)− f(a)− f(b)− f ′(a)b =
∫ 1

0

{f ′(s1a+ b)− f ′(s1a)}ds1a− f ′(a)b

=

∫ 1

0

∫ 1

0

{f ′′(s1a+ s2b)− f ′′(s1a)}ds1ds2ab

=

∫ 1

0

∫ 1

0

(1− s2)f
′′′(s1a+ s2b)ds1ds2ab

2.

Using the above, we have 〈Ñ2, ∂y η̃i〉 = Ii + 〈r̄i, ∂y η̃i〉 (1 ≤ i ≤ 4), where

I1 = 〈f ′(ϕc1)τhϕc2 , θ1(c1)∂cϕc1 + θ2(c1)∂yϕc1〉 ,
I2 = 〈f ′(ϕc1)τhϕc2 , θ3(c1)∂yϕc1〉 ,
I3 = 〈f ′(τhϕc2)ϕc1 , θ1(c2)τh∂cϕc2 + θ2(c2)τh∂yϕc2〉 ,
I4 = 〈f ′(τhϕc2)ϕc1 , θ3(c2)τh∂yϕc2〉 ,

r̄1 = r̄2 =

∫ 1

0

∫ 1

0

(1− s2)f
′′′(s1ϕc1 + s2τhϕc2)ds1ds2ϕc1(τhϕc2)

2,

r̄3 = r̄4 =

∫ 1

0

∫ 1

0

(1− s1)f
′′′(s1ϕc1 + s2τhϕc2)ds1ds2(ϕc1)

2τhϕc2 ,
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Noting that ∂y η̃i(y, c) ∼ e−
√
c|y| for i = 1, 2 and that ∂y η̃i(y, c, h) ∼ e−

√
c|y−h| for

i = 3, 4, we have |〈r̄i, ∂y η̃i〉| ≤ Che−2dh for 1 ≤ i ≤ 4.

By (1.3),

I1 = α(c2)
〈
f ′(ϕc1)

(
e−

√
c2|y−h| +O(e−(p−1)

√
c2|y−h|)

)
, θ1(c1)∂cϕc1 + θ2(c1)∂yϕc1

〉
= α(c2)

〈
f ′(ϕc1)e

√
c2y, θ1(c1)∂cϕc1 + θ2(c1)∂yϕc1

〉
e−

√
c2h +O

(
e−(p−1)dh

)
= α(c2) (θ1(c1)M1(c1, c2) + θ2(c1)M2(c1, c2)) e

−√
c2h +O

(
e−(p−1)dh

)
,

I2 = α(c2)
〈
f ′(ϕc1)

(
e−

√
c2|y−h| +O(e−(p−1)

√
c2|y−h|)

)
, θ3(c1)∂yϕc1

〉
= α(c2)

〈
f ′(ϕc1)e

√
c2y, θ3(c1)∂yϕc1

〉
e−

√
c2h +O

(
e−(p−1)dh

)
= α(c2)θ3(c1)M2(c1, c2)e

−√
c2h +O

(
e−(p−1)dh

)
.

Noting that ϕc2 and ∂cϕc2 are even functions and ∂yϕc2 is an odd function, we compute

I3 = α(c1)
〈
f ′(τhϕc2)e

−√
c1|y|, θ1(c2)τh∂cϕc2 + θ2(c2)τh∂yϕc2

〉
+O

(
e−(p−1)dh

)
= α(c1)

〈
f ′(ϕc2)e

−√
c1|y−h|, θ1(c2)∂cϕc2 − θ2(c2)∂yϕc2

〉
+O

(
e−(p−1)dh

)
= α(c1) (θ1(c2)M1(c2, c1)− θ2(c2)M2(c2, c1)) e

−√
c1h +O

(
e−(p−1)dh

)
,

I4 = α(c1)
〈
f ′(τhϕc2)e

−√
c1|y|, θ3(c2)τh∂yϕc2

〉
+O

(
e−(p−1)dh

)
= α(c1)

〈
f ′(ϕc2)e

−√
c1|y+h|, θ3(c2)∂yϕc2

〉
+O

(
e−(p−1)dh

)
=− α(c1)

〈
f ′(ϕc2)e

−√
c1|y−h|, θ3(c2)∂yϕc2

〉
+O

(
e−(p−1)dh

)
=− α(c1)θ3(c2)M2(c2, c1)e

−√
c1h +O

(
e−(p−1)dh

)
.

Since Mi(a, b) (i = 1, 2), α(c), and θi(c) (i = 1, 2, 3) are locally Lipschitz continuous,

|Mi(c1, c2)−Mi|+ |Mi(c2, c1)−Mi| ≤ C|g| for i = 1, 2,

|α(c2)− α(c1)| ≤ C|g|, |θi(c2)− θi(c1)| ≤ C|g| for i = 1, 2, 3,

where C can be chosen uniformly with respect to c1, c2 ∈ I with |c2 − c1| ≤ ε.
Combining the above, we have

(
〈Ñ2, ∂y η̃j〉

)
j=1,2,3,4↓

=



α (θ1M1 + θ2M2) e

−√
c2h

αθ3M2e
−√
c2h

α (θ1M1 − θ2M2) e
−√
c1h

−αθ3M2e
−√
c1h


+O(|g|e−dh + he−2dh).

(3.21)
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Now, let B−1 = (βjk) j=1,2,3,4↓
k=1,2,3,4→

. Then by (3.13),

βjj = 1 +O(|g|+ e−
d−2a

3 h + ‖w‖) for 1 ≤ j ≤ 4,

βjk = O(e−
d−2a

3 h + ‖w‖) for j = 1, 2, 1 ≤ k ≤ 4 and (j, k) != (1, 4),

βjk = O(e−
d−2a

3 h + e−ah‖w‖) for j = 3, 4 and 1 ≤ k ≤ 4,

β14 = −γ(c1) +O(|g|+ e−
d−2a

3 h + ‖w‖).

Combining (3.12), (3.13), and (3.21), we have

c1 − ẋ1

ċ1
c2 − ẋ2

ċ2


 = B−1

(
〈Ñ2, ∂y η̃i〉+ R̃j

)
j=1,2,3,4↓

= α



(θ1M1 + θ2M2)e

−√
c2h − 2θ2M2e

−√
c1h

θ3M2e
−√
c2h

(θ1M1 − θ2M2)e
−√
c1h

−θ3M2e
−√
c1h


+ ?R+



R1

R2

R3

R4


 ,

where (Rj)j=1,2,3,4↓ = B−1(R̃j)j=1,2,3,4↓ and

?R =B−1
(
〈Ñ2, ∂y η̃i〉

)
j=1,2,3,4↓

−



1 0 0 −γ
0 1 0 0
0 0 1 0
0 0 0 1





α (θ1M1 + θ2M2) e

−√
c2h

αθ3M2e
−√
c2h

α (θ1M1 − θ2M2) e
−√
c1h

−αθ3M2e
−√
c1h




=O
((
‖w‖1,0 + |g|+ e−

d−2a
3 h

)
e−dh

)
.

Thus we complete the proof.

4. Proof of Theorem 1.1.

4.1. Decay property of w. In this subsection, we will obtain the decay esti-
mate of w. To start with, we investigate the motion of solitary waves assuming the
decay of ‖w(t)‖1,0 and the smallness of ‖v(t)‖∞. For this purpose, we construct an
energy inequality with respect to g(t) = c2(t)− c1(t) and h(t) = x2(t)− x1(t).

Lemma 4.1. Let T > 0, δ ∈ (0, 1), and 0 < a < (2c1(0))
1/2/50. Assume that

c̄ = inf
0≤t≤T

min
i=1,2

ci(t) ≥ 49

50
c1(0)(4.1)

and that there exist positive constants A and ε2 such that

‖v(t)‖∞ ≤ ε2,(4.2)

‖w(t)‖1,0 ≤ A(e−δbt‖v0‖H1
a
+ e(a−d(t))h)(4.3)

for 0 ≤ t ≤ T . Let

E(t) =
1

2
g(t)2 − αθ3M2

(
1√
c1(t)

e−
√
c1(t)h(t) +

1√
c2(t)

e−
√
c2(t)h(t)

)
,
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where α = α(c1(t)), θ3 = θ3(c1(t)) and M2 = M2(c1(t), c1(t)). Then there exists
A1 > 0 such that∣∣∣∣dEdt

∣∣∣∣ ≤ A1(E
7
6+ 2

3γ + Ee−δbt‖v0‖H1
a
+ E

1
2 e−2δbt‖v0‖2H1

a
)(4.4)

for γ = 1− a/
√
c̄ ≥ 34/35.

Remark 4.1. By the definitions of α, θ3, and M2, we have αθ3M2 < 0. The
function E(t) can be interpreted as a sum of kinetic energy g(t)2/2 and potential
energy −αθ3M2(

1√
c1
e−

√
c1h + 1√

c2
e−

√
c2h), where g is the relative velocity and h is

the distance between the centers of two pulses. In the following, we will show that
the energy E(t) is almost conserved for a while and that the pulses are repulsive.

Proof of Lemma 4.1. By Lemma 3.2,

ġ = −αθ3M2(e
−√
c1h + e−

√
c2h) +O(R2),(4.5)

ḣ = g + α(θ1M1 + θ2M2)(e
−√
c2h − e−

√
c1h) +O(R2),(4.6)

where

R2 = | ?R|+
4∑
i=1

|Ri|

= O
(
(|g|+ ‖w‖1,0)(‖w‖1,0 + e−dh) + e−

4d−2a
3 h

)
= O

(
|g|(e−δbt‖v0‖H1

a
+ e(a−d)h) + e−2δbt‖v0‖2H1

a
+ e−

4d−2a
3 h

)
.

(4.7)

Here we use (3.20) and (4.3). Hence by the definition of E(t), we have g = O(E
1
2 )

and

R2 = O(E
2
3 (1+γ) + E

1
2 e−δbt‖v0‖H1

a
+ e−2δbt‖v0‖2H1

a
).(4.8)

Thus Lemma 3.2, (4.5), and (4.6) imply

dE

dt
= gġ + αθ3M2(e

−√
c1h + e−

√
c2h)ḣ+

αθ3M2

2
ċ1e

−√
c1h
(
c
− 3

2
1 + c1

−1h
)

+
αθ3M2

2
ċ2e

−√
c2h
(
c
− 3

2
2 + c2

−1h
)

− d

dt
(αθ3M2)

(
1√
c1

e−
√
c1h +

1√
c2

e−
√
c2h

)
= O((|g|+ he−dh)|R2|+ he−2dh).

Using the Cauchy–Schwarz inequality, we obtain (4.4).
The following lemmas will be used to show the repulsiveness of solitary waves. Let

β =
√

E(0), ai (i = 1, 2), and a be positive numbers with 0 < a1 < a2 ≤
√
2c1(0)/50

and a ∈ [a1, a2]. Set

T0 = sup {τ | (4.2) and (4.3) hold for 0 ≤ t ≤ τ} ,

T1 = sup

{
τ ≤ T0

∣∣ min
i=1,2

ci(t) ≥ 49
50c1(0),max

i=1,2
ci(t) ≤ 51

50c1(0) hold for 0 ≤ t ≤ τ

}
,

T2 = sup
{
τ ≤ T1

∣∣ 8
9E(0) ≤ E(t) ≤ 9

8E(0) holds for 0 ≤ t ≤ τ
}
,
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where ε2, δ, and A are positive constants to be fixed later.
Lemma 4.2. Let a, v0, xi,0, and ci,0 (i = 1, 2) satisfy the assumptions in Theorem

1.1. If ε0 and ε1 are sufficiently small, there exist positive numbers Ci (i = 1, 2, 3)
such that, for t ∈ [0, T2],

g(t) ≤ 2β,(4.9)

h(t) ≥ h(0) +
9

10
βt+ C1ε0 log β − C2,(4.10)

h(t) ≤ h(0) + 3βt+ C3.(4.11)

Proof. The definitions of T2 and E(t) and the fact that αθ3M2 < 0 imply (4.9).
Let g0 = c2,0 − c1,0. By (3.6) and (3.7), we have

|g(0)− g0|+ |h(0)− h0| = O(ε0),

e−d(0)h(0) = e−d0h0(1+O(ε0)) ≥ e−d0h0(1+η), ε
1

1−η
1 ≤ β ≤ ε

1
1+η

1 ,
(4.12)

where η is a nonnegative number with η = O(ε0).
First, we consider the case where g(0) > − 1

2β. If β is sufficiently small, we get

ġ ≥ d̄

(
E(t)− 1

2
g(t)2

)
+O(R2)

≥ d̄

(
8

9
E(0)− 1

2
g(t)2

)
+O(β

4
3 (1+γ) + β‖v0‖H1

a
+ ‖v0‖2H1

a
)

≥ d̄

2
(E(0)− g(t)2),

(4.13)

where d̄ = min0≤t≤T2
d(t).

By (4.13),

g(t) ≥ β

(
1 +

2A2e
−βd̄t

1−A2e−βd̄t

)
,(4.14)

where A2 = g(0)−β
g(0)+β . We remark that −3 ≤ A2 ≤ (

√
2−1)2 because −β2 ≤ g(0) ≤ √

2β.

Let κ be a positive constant such that

min
−3≤a≤(

√
2−1)2

1 + ae−d̄κ

1− ae−d̄κ
> 9/10

and let t∗ = κβ−1.
Suppose 0 ≤ t ≤ t∗. By (4.5) and (4.8),

h(t) = h(0) +

∫ t
0

{(
1 + α(θ1M1 + θ2M2)

e−
√
c2h − e−

√
c1h

c2 − c1

)
g +O(R2)

}
ds

= h(0) +

∫ t
0

(
1 +O(he−dh)

)
gds

+O

(
β

4
3 (1+γ)t+

∫ t
0

(β‖v0‖H1
a
e−δbs + ‖v0‖2H1

a
e−2δbs)ds

)

= h(0) +

∫ t
0

(
1 +O(he−dh)

)
gds+O

(
β

4
3 (1+γ)t∗ + β2

)
.

(4.15)
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By (4.14),

∫ t
0

g(s)ds ≥ βt+
2

d̄
log

(
1−A2e

−βd̄t

1−A2

)
≥ βt− 4

d̄
log 2.(4.16)

Thus if T2 ≤ t∗, combining (4.9), (4.15), and (4.16) yields (4.10) and (4.11) for small β.
Suppose that T2 ≥ t∗. Then by (4.14),

g(t) ≥ 9

10
β for t∗ ≤ t ≤ T2.(4.17)

Let z(t) = e−
√
c1(0)h(t). Since d(t)2 ≥ 49

50c1(0) and a <
√

2
50

√
c1(0), we get

4d− 2a

3
≥ ν1

√
c1(0), d− a ≥ ν2

√
c1(0), d ≥ ν3

√
c1(0),(4.18)

where ν1 = 69
75

√
2 > 1.3, ν2 = 17

25

√
2 > 0.96, and ν3 = 7

10

√
2. Substituting (4.7) and

(4.18) into (4.6), we have

ḣ = g
(
1 +O(e(a−d)h + e−δbt‖v0‖H1

a
)
)

+O(e−
4d−2a

3 h + e−2δbt‖v0‖2H1
a
)

= g(1 +O(e−δbt‖v0‖H1
a
+ zν2)) +O(e−2δbt‖v0‖2H1

a
+ zν1).

(4.19)

If β is sufficiently small, it follows from (4.17) and (4.19) that

ż = −
√

c1(0)ḣz ≤ −
√

c1(0)z

(
4

5
β +O(zν1 + e−2δbt‖v0‖2H1

a
)

)
.

Since (4.10) holds for t = t∗ and C1 = 0, it follows from the above that z(t∗) ≤
Ce−

√
c1(0)h(0) = O(β2) and that z(t) is a monotonically decreasing function satisfying

z(t) ≤ Cβ2e−
3
5

√
c1(0)β(t−t∗) for t ∈ [t∗, T2].(4.20)

By (4.17), (4.19), and (4.20), we obtain

h(t) ≥ h(t∗) +
9

10
βt+O

(∫ t
t∗
(e−δbs‖v0‖H1

a
+ zν1 + βzν2)ds

)

= h(t∗) +
9

10
β +O(β2ν1−1)

and

|h(t∗)− h(0)| ≤
∫ t∗

0

∣∣∣ḣ(s)∣∣∣ ds = O(1).

Thus we have (4.10). Using (4.9), (4.19), and (4.20), we can show (4.11) in the same
way.

Next, we consider the case where g(0) ≤ −β2 . The assumptions of Theorem 1.1
and (4.12) imply that g0 ≥ − ε12 and

g0 = g(0) +O(‖v0‖H1
a
)

≤ −β

2
+O(β2(1−η)) < 0.
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Hence it follows from the above and (4.12) that e−
d0h0

2 ≥ ε1
2 and that e−d(0)h(0) ≥

Cβ
2(1+η)
1−η for a C > 0.
Let x(t) = g(t) +

√
2E(t). Then x(t) ≥ 0 for t ≥ 0, x(0) < (

√
2− 1

2 )β and

x(0) ≥ C
e−d(0)h(0)√
2β − g(0)

≥ A3β
1+3η
1−η(4.21)

for positive numbers C and A3. Let

t̄1 = sup
{
0 ≤ τ ≤ T2

∣∣ x(t) ≥ A3β
1+3η
1−η /2 for 0 ≤ t ≤ τ

}
.

Making use of Lemma 4.1, (4.8), and the definition of T2, we have

ẋ ≥d̄

(
E(t)− 1

2
g(t)2

)
+O(R2)

≥ d̄

2
x

(
8

3
β − x

)
+O(R2)

≥ d̄

2
x

(
5

2
β − x

)(4.22)

for a t ∈ [0, t̄1]. Hence it follows that

x(t) ≥ 5βA4e
5
4 d̄βt

2(1 +A4e
5
4 d̄βt)

,(4.23)

where A4 = 2x(0)
5β−2x(0) and t̄1 = T2. By (4.23) and the definition of T2,

g(t) ≥ x(t)− 3

2
β ≥ β

{
1− 5

2(1 +A4e
5
4 d̄βt)

}
(4.24)

for t ∈ [0, T2]. Let κ be a positive number with 24β
5
4κd̄ = A4 and let t∗ = −κβ−1 log β.

Then (4.24) implies that g(t) ≥ 9
10β for t ≥ t∗. By (4.21) and the definition of A4,

we have κ = O(η) and

|h(t)− h(0)| ≤
∫ t∗

0

|ḣ(s)|ds

≤
∫ t∗

0

(1 +O(he−dh))|g(s)|ds+O(β
4
3 (1+γ)t∗) = O(η log β)

for t ∈ [0, t∗], and z(t∗) ≤ Ce−
√
c1(0)h(t∗) = O(β2−O(η)). Now, we can show (4.10)

and (4.11) in the same manner as in the case where g(0) > −β2 .
Lemma 4.3. Let a, v0, xi,0, and ci,0 (i = 1, 2) satisfy the assumptions in Lemma

4.2. Suppose T0 > t∗. Then it holds that

h(t) ≥ h(t∗) +
3

5
β(t− t∗),(4.25)

h(t) ≤ h(t∗) + 4β(t− t∗),(4.26)

g(t) ∈
[
4

5
β, 3β

]
,(4.27)

49

50
c1(0) ≤ min

i=1,2
ci(t) ≤ max

i=1,2
ci(t) ≤ 51

50c1(0)(4.28)
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for any t∗ ≤ t ≤ T0.
Proof. To begin with, we show that T2 > t∗ for small ε1. Suppose the contrary.

Then by Lemma 3.2, (4.8), the definition of t∗, and the fact that e−
√
cih = O(β2),

|ci(t)− ci(0)| ≤ C

∫ t
0

(e−dh +R2)ds

≤ C

∫ t
0

(β2 + β‖v0‖H1
a
e−δbs + ‖v0‖2H1

a
e−2δbs)ds

≤ C(κβ| log β|+ β‖v0‖H1
a
+ ‖v0‖2H1

a
) = O(β log β)

for 0 ≤ t ≤ T2. Thus we have

|ci(T2)− c1(0)| ≤ |ci(T2)− ci(0)|+ |ci(0)− c1(0)| < 1

50
c1(0)

for small β. By (4.4) and the definition T2,∣∣∣∣dEdt
∣∣∣∣ ≤ C

(
β

4
3γ+

7
3 + β2e−δbt‖v0‖H1

a
+ βe−2δbt‖v0‖2H1

a

)
.

Hence

|E(t)− E(0)| ≤ C

∫ t
0

(β
4
3γ+

7
3 + β2e−δbs‖v0‖H1

a
+ βe−2δbs‖v0‖2H1

a
)ds

≤ C(κβ
4
3 (1+γ)| log β|+ β2‖v0‖H1

a
+ β‖v0‖2H1

a
)

for 0 ≤ t ≤ T2. Thus we have |E(t) − E(0)| < 1
9E(0) for small β, which is a contra-

diction.
Let

T3 = sup{τ ≤ T0 | (4.27) and (4.28) hold for t ∈ [t∗, τ ]}.

From the proof of Lemma 4.2, we see that 9
10β ≤ g(t∗) ≤ 2β and

z(t) ≤ C1β
2−C2ηe−

3
5

√
c1(0)β(t−t∗)

for t ∈ [t∗, T2], where C1 and C2 are positive constants. Using (4.5), (4.7), (4.18), and
(4.20), we have

|g(t)− g(t∗)| ≤ C

(∫ t
t∗
(e−dh +R2)ds

)

≤ Cβ

(∫ t
t∗

(
e−δbs‖v0‖H1

a
+ e(a−d)h

)
ds

)

+ C

(∫ t
t∗

(
e−2δbs‖v0‖2H1

a
+ e−dh

)
ds

)

≤ C(β‖v0‖H1
a
+ ‖v0‖2H1

a
) + C

(
β

∫ t
t∗
z(s)ν2ds+

∫ t
t∗
z(s)ν3ds

)
= O(β2ν3−1−O(η))

(4.29)
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for t∗ ≤ t ≤ T3. Similarly, we have

|ci(t)− ci(0)| = O(β2ν2−1−O(η))

for t∗ ≤ t ≤ T3. Hence it follows from the standard contradiction argument that
T3 = T0 if β is sufficiently small. Now we have (4.25) and (4.26), following the
argument in the proof of Lemma 4.2.

Lemma 4.4. Let a, v0, xi,0 and ci,0 (i = 1, 2) satisfy the assumptions in Lemma
4.2. If T0 ≤ t∗, T0 = T2.

Proof. The proof of this lemma is omitted, since it is similar to that of Lemma
4.3.

Second, we will prove that T0 =∞. To begin with, we find the decay estimate of
w, assuming the smallness of ‖v‖∞. Let

T4 = sup

{
τ | sup

0≤t≤τ
‖v(t)‖∞ ≤ ε2

}
.

Lemma 4.5. Assume (2.6). Let v0, xi,0, and ci,0 (i = 1, 2) satisfy the assumptions
in Theorem 1.1. Then for any 0 < δ < 1, there exist positive constants A and ε̄i
(i = 0, 1, 2) such that if εi ≤ ε̄i for i = 0, 1, 2 and a ∈ [a1, a2],

‖w(t)‖1,0 ≤ A(e−δbt‖v0‖H1
a
+ e(a−d(t))h(t)) for 0 ≤ t ≤ T4.

Proof. To prove the lemma, we will show that T0 = T4 for small ε1. By the
continuity of ‖w(t)‖1,0 (see [16, 21]), we have T0 ≥ 1 for an appropriate A.

Since h(t) grows up as t becomes large, we divide [0, T4] into a series of intervals
[tj−1, tj ] (j = 1, 2, . . . ) to apply Lemma 2.6 as follows. Let t0 = 0 and let ρ and
0 < t1 < t2 < · · · ≤ T4 be positive numbers such that h(tj) = h(0) + jρ and h(t) is
monotonically increasing for every t ≥ t1. We remark that Lemmas 4.2 and 4.3 imply
tk − tk−1 ≥ cρβ−1 (k ∈ N) for some c > 0. Let

Πj(c, h) = Π(c, h, ; c(tj), h(tj)),

Āj(t) = Πj(c(t), h(t))Ac(t),h(t)Πj(c(t), h(t))
−1,

and let Uj(t, s)f be the solution of{
∂tw = Āj(t)w for tj ≤ s ≤ t ≤ tj+1,

w(s, ·) = f ∈ X(c(tj), h(tj)).

Then Lemma 2.5 implies that there exists B1 > 0 such that

sup
j∈N∪{0}

sup
t∈[tj ,tj+1]

(
‖Πj(c(t), h(t))‖L(L2) +

∥∥Πj(c(t), h(t))−1
∥∥
L(L2)

)
≤ B1,

sup
j∈N∪{0}

sup
t∈[tj ,tj+1]


∑
i=1,2

∥∥∥∥∂Πj∂ci
(c(t), h(t))

∥∥∥∥
L(L2)

+

∥∥∥∥∂Πj∂h
(c(t), h(t))

∥∥∥∥
L(L2)


 <∞

(4.30)

for t ∈ [tj , tj+1]. By Lemma 2.6, we see that

‖Uj(t, s)f‖ ≤Me−b(t−s)‖f‖,
‖Uj(t, s)f‖1,0 ≤M(t− s)−

1
2 e−b(t−s)‖f‖,

‖Uj(t, s)f‖1,0 ≤Me−b(t−s)‖f‖1,0
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for any tj−1 ≤ s ≤ t ≤ tj and f ∈ H1(R), where M and b are positive constants
independent of j.

Making use of (3.3), we can rewrite (3.2) as

Qc(t),h(t)∂tw −Ac(t),h(t)w +Qc(t),h(t) (l + (∂y − a)N ) = 0.

Hence we have

∂tw = Ac(t),h(t)w +

(
d

dt
Qc(t),h(t)

)
w −Qc(t),h(t) (l + (∂y − a)N ) .

Let wj(t) = Πj(c(t), h(t))w. Then for j ∈ N ∪ 0,{
∂twj = Āj(t)wj + k1,j + k2,j + k3,j ,

wj(tj) = w(tj),

where

k1,j =
∑
i=1,2

ċi(t)

(
Πj(c(t), h(t))

∂Qc(t),h(t)

∂ci
+

∂Πj
∂ci

(c(t), h(t))

)
Πj(c(t), h(t))

−1wj

+ ḣ

(
Πj(c(t), h(t))

∂Qc(t),h(t)

∂h
+

∂Πj
∂h

(c(t), h(t))

)
Πj(c(t), h(t))

−1wj ,

k2,j =−Πj(c(t), h(t))Qc(t),h(t)l,

k3,j =−Πj(c(t), h(t))Qc(t),h(t)(∂y − a)N .

Using the variation of constants formula, we have

‖wj(t)‖1,0 =

∥∥∥∥∥Uj(t, tj)w(tj) +
∫ t
tj

Uj(t, s)(k1,j(s) + k2,j(s) + k3,j(s))ds

∥∥∥∥∥
1,0

≤ Me−b(t−tj)‖w(tj)‖1,0
+M

∫ t
tj

(t− s)−
1
2 e−b(t−s)(‖k1,j‖+ ‖k2,j‖+ ‖k3,j‖)ds.

(4.31)

Lemmas 4.2–4.4 imply |g(t)| ≤ 3β and supt∈[0,T0] e
−dt ≤ Cβ2ν3 for a C > 0. Hence

by Lemma 3.2,

|ċ1|+ |ẋ1 − c1| ≤ C(e−dh + | ?R|+ |R1|+ |R2|)
≤ C(β + ‖w‖1,0)‖w‖1,0 + Ce−dh,

|ċ2|+ |ẋ2 − c2| ≤ C(e−dh + | ?R|+ |R3|+ |R4|)
≤ Ce−ah(β + ‖w‖1,0)‖w‖1,0 + Ce−dh,

and

|ḣ| ≤ |ẋ1 − c1|+ |ẋ2 − c2|+ |g|.
In view of (4.3) and (4.18), we have

‖w(t)‖1,0 ≤ A(‖v0‖H1
a
+ e(a−d)h) ≤ CAβ for 0 ≤ t ≤ T0.
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Hence it follows that

‖k1,j‖ ≤ C(|ċ1|+ |ċ2|+ |ḣ|)‖wj‖
≤ C (β + (β + ‖w‖1,0)‖w‖1,0) ‖wj‖
≤ C (1 + (1 +A)Aβ)β‖wj‖,

‖k2,j‖ ≤ C
{
(1 + ‖w‖1,0)(|ẋ1 − c1|+ |ċ1|) + eah(|ċ2|+ |ẋ2 − c2|) + |g|‖w‖1,0

}
≤ C(β + ‖w‖1,0)‖w‖1,0 + Ce(a−d)h

≤ C(1 +A)(1 +Aβ)β‖wj‖1,0 + Ce(a−d)h,

‖k3,j‖ ≤ C(‖N1‖1,0 + ‖N2‖1,0 + ‖N3‖1,0)
≤ C

(
(1 + ‖v‖p−2

∞ )‖v‖∞‖w‖1,0 + e(a−d)h + e−dh‖w‖1,0
)

≤ C(ε2 + β)‖wj‖1,0 + Ce(a−d)h

for t ∈ [tj , tj+1]. We remark that C does not depend on j in the above estimates.
Substituting the above into (4.31), we have

‖wj(t)‖1,0 ≤ Me−b(t−tj)‖w(tj)‖1,0 + C̃(ε2, β, A)

∫ t
0

(t− s)−
1
2 e−b(t−s)‖wj(s)‖1,0ds

+ C

∫ t
0

(t− s)−
1
2 e−b(t−s)e(a−d(s))h(s)ds,

where C̃(ε2, β, A) is a positive number satisfying limε2,β→0 C̃ = 0. Now we choose ε2,
β, and δ such that

C̃(ε2, β, A)

∫ ∞

0

s−
1
2 e−(1−δ)sds ≤ 1

2
, 2MB1e

−(1−δ) bcρβ ≤ 1

2
.

Since

eδbse(a−d(s))h(s) ≤ eδbte(a−d(t))h(t) for t ≥ s ≥ 0,(4.32)

eδb(t−tj)‖wj(t)‖1,0 ≤ Me−(1−δ)b(t−tj)‖wj(tj)‖1,0 + Ceδbte(a−d(t))h(t)

+ C̃(ε2, β, A)

∫ t
0

(t− s)−
1
2 e−(1−δ)b(t−s)eδbs‖wj(s)‖1,0ds

≤ Me−(1−δ)b(t−tj)‖wj(tj)‖1,0 + Ceδb(t−tj)e(a−d(t))h(t)

+
1

2
sup
tj≤s≤t

eδb(s−tj)‖wj(s)‖1,0.

Thus we have

‖wj(t)‖1,0 ≤ 2Me−b(t−tj)‖w(tj)‖1,0 +B2e
(a−d(t))h(t)(4.33)

for t ∈ [tj , tj+1], where B2 is a constant which does not depend on j.
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By (4.30), (4.32), and (4.33), we have

‖w(tj)‖1,0
≤ B1‖wj−1(tj)‖1,0
≤ B1(2Me−b(tj−tj−1)‖w(tj−1)‖1,0 +B2e

(a−d(tj))h(tj))

≤ (2MB1)
je−btj‖w(0)‖H1

a
+

j∑
k=1

(2MB1)
j−kB1B2e

−b(tj−tk)e(a−d(tk))h(tk)

≤ (2MB1)
je−btj‖w(0)‖H1

a
+

j∑
k=1

(2MB1)
j−kB1B2e

−(1−δ)b(tj−tk)e(a−d(tj))h(tj)

≤ 2−je−δbtj‖w(0)‖H1
a
+ 2e(a−d(tj))h(tj).

Combining the above with (4.33) and Remark 3.2, we have

‖w(t)‖1,0
≤ B1‖wj(t)‖1,0
≤ B1(2Me−b(t−tj)‖w(tj)‖1,0 +B2e

(a−d(t))h(t))

≤ 2−j+1MB1e
−δbt‖w(0)‖+ 4MB1e

−b(t−tj)e(a−d(tj)h(tj) +B1B2e
(a−d(t))h(t)

≤ 2−j+1C1MB1e
−δbt‖v0‖H1

a
+ (4M +B2)B1e

(a−d(t))h(t).

Letting A = ((C1 + 4)M + B2)B1, we obtain T0 = T4. Thus we have proved the
lemma.

Corollary 4.6. Let 0 < δ < 1 and let v0, xi,0, and ci,0 (i = 1, 2) satisfy the
assumptions in Theorem 1.1. Then if εi (i = 0, 1, 2) are sufficiently small,

‖∂xw(t)‖∞ ≤ C
(
t−

1
4 e−δbt‖v0‖H1

a
+ e(a−d(t))h(t)

)
for 0 ≤ t ≤ T4,

where C is a positive constant.

Proof. Since etA0(c)f = e(a3−ac)te3at∂2
yet(−∂

3
y+(c−3a2)∂y) and

sup
t>0

(
t

1
4 ‖e3at∂2

yf‖∞ + t
3
4 ‖∂ye3at∂2

yf‖∞
)
≤ C‖f‖,

we have

‖etA0(c)f‖∞ ≤ Ct−
1
4 e(a3−ac)t‖f‖,

‖∂yetA0(c)f‖∞ ≤ Ct−
3
4 e(a3−ac)t‖f‖,

(4.34)

where C is positive constants.
Using the variation of constants formula, (3.2) can be rewritten as

w(t) = etA0(c1(0))w(0)−
∫ t

0

e(t−s)A0(c1(0))F (s)ds,

where

F (t) = (c1(0)−c1(t))(∂y−a)w+(∂y−a) {(f ′(ϕc1) + f ′(τhϕc2))w}+eay l̃+(∂y−a)N .
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Then by Lemma 4.5, (3.14)–(3.18), and (4.34)

‖∂yw(t)‖∞ ≤
∥∥∥etA0(c1(0))∂yw(0)

∥∥∥
∞

+

∥∥∥∥
∫ t

0

∂ye
(t−s)A0(c1(0))F (s)ds

∥∥∥∥
∞

≤ Ct−
1
4 e(a3−ac)t‖v0‖H1

a
+ C

∫ t
0

(t− s)−
3
4 e(a3−ac)(t−s) ‖F (s)‖ ds

≤ C
(
t−

1
4 e−δbt‖v0‖H1

a
+ e(a−d)h

)
.

Thus we complete the proof.

4.2. L∞-estimate of v. In this subsection, we show that the L∞-norm of v
remains small for every t ≥ 0 and that the solution tends to two solitary waves plus
a dispersive wave as t→∞.

For this purpose, we use the L∞-estimate obtained by [19] and [20]. Let L, J ,
and I be operators defined by

Lφ = ∂tφ+ ∂3
xφ, Jφ = xφ− 3t∂2

xφ, Iφ = xφ+ 3t

∫ x
−∞

∂tφ(t, x
′)dx′

for φ(t, x) ∈ C∞
0 (R2), and let

M[u](t) := ‖u(·, t)‖1,0 + ‖∂xJu(·, t)‖+ ‖DαJu(·, t)‖ ,
M̃[u](t) :=

(
‖u(·, t)‖1,0 + ‖Ju(·, t)‖1,0

)
〈t〉− 1

6 + ‖FU0(−t)u(t)‖∞ ,

where U0(t) = e−t∂
3
x . We remark that

[L, J ] = 0, [L, I] = 3

∫ x
−∞

Lφdx′, [I, ∂x]φ = [J, ∂x]φ = −φ(4.35)

and that

(I − J)φ = 3t

∫ x
−∞

Lφ(t, x′)dx′.(4.36)

Lemma 4.7 (see [19, 20]). Let T > 0, α ∈ [0, 1/2), and q ∈ (4,∞] be constants.

(i) Suppose that u(t, x) is a function satisfying sup0≤t≤TM[u](t) <∞. Then

‖u‖q ≤ C(1 + t)−
1
3+ 1

3qM[u](t),

‖uux‖∞ ≤ Ct−
2
3 (1 + t)−

1
3M[u]2(t),

where C is a constant which does not depend on u, t, and T .
(ii) Suppose that u(t, x) is a function satisfying sup0≤t≤T M̃[u](t) <∞. Then

‖u‖q ≤ C(1 + t)−
1
3+ 1

3q M̃[u](t),

‖uux‖∞ ≤ Ct−
2
3 (1 + t)−

1
3M̃[u]2(t),

where C is a constant which does not depend on u, t, and T .
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Let zi = x− xi(t) + x1(0) for i = 1, 2 and

ṽ(x, t) = u(x+ x1(0), t)− ϕc1(z1)− ϕc2(z2).(4.37)

Then

Lṽ + ∂xN̄ = G,(4.38)

where

N̄ = f(ϕc1(z1) + ϕc2(z2) + ṽ)− f(ϕc1(z1))− f(ϕc2(z2)),

G =
∑
i=1,2

{(ẋi − ci)∂xϕci(zi)− ċi∂cϕci(zi)} .

To prove Theorem 1.1, we need the following proposition.
Proposition 4.8. Assume (2.6). Let 3 < p < 5 and let v0, ci,0, and xi,0

(i = 1, 2) satisfy the assumptions in Theorem 1.1. Let 0 < α < 1/2− γ with 0 < γ <
(p− 3)/3 if 3 < p ≤ 7/2 and let α = 0 if p > 7/2. Then there exist positive numbers
ε̄1, η, B, and C such that if ε1 ≤ ε̄1 and ε0 ≤ Cε2

1,

sup
t≥0

M[ṽ] ≤ B(ε0 + εη1).

Proposition 4.9. Assume (2.6). Let p = 3 and let v0, ci,0, and xi,0 (i = 1, 2)
satisfy the assumptions in Theorem 1.1. Then there exist positive numbers ε̄1, η, B,
and C such that if ε1 ≤ ε̄1 and ε0 ≤ Cε2

1,

sup
t≥0

M̃[ṽ] ≤ B(ε0 + εη1).

Proof of Propositions 4.8 and 4.9. Let T5 = sup
{
t̄ ∈ [0, T4]

∣∣ M[ṽ](t) ≤ ε
}
and

let ε be a small number such that Lemma 4.7 implies

‖v(t)‖∞ = ‖ṽ‖∞ ≤ Cε ≤ ε2 for t ∈ [0, T5].

By the continuity of v, we have T5 ≥ 1 if ε0 is sufficiently small.
Now, we estimate each term of M[ṽ]. By Lemmas 3.2 and 4.1–4.5, (3.20), (4.18),

and (4.20),

‖v‖H1
ā
≤ C(e−δbt‖v0‖H1

ā
+ e(ā−d)h)

for ā ∈ [a1, a2], and there exists a positive number C1 such that

|ẋi − ci|+ |ċi| ≤ C
(
e−dh +R1 +R2 +R3 +R4

)
≤ C

(
e−δbt‖v0‖H1

ā
+ β2ν̃3e−C1βt

)(4.39)

for i = 1, 2 and

|x2 − ċ2|+ |ċ2| ≤ C
(
e−dh +R3 +R4

) ≤ Ce−āh
(
e−δbt‖v0‖H1

ā
+ β2ν̃2e−C1βt

)
,

(4.40)

where ν̃i = νi − Ciε0 for nonnegative Ci (i = 1, 2). We remark that Lemmas 4.3–4.5
imply d(t) ≥ ν3

√
c1(0) for 0 ≤ t ≤ T4.
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Let

N̄1 = N̄1,1 + N̄1,2,

N̄2 = f(ϕc1(z1) + ϕc2(z2))− f(ϕc1(z1))− f(ϕc2(z2)),

N̄1,1 = f(ϕc1(z1) + ϕc2(z2) + ṽ)− f(ϕc1(z1) + ϕc2(z2))− f(ṽ),

N̄1,2 = f(ṽ).

Note that

N̄1,1 =

∫ 1

0

∫ 1

0

f ′′ (θ1(ϕc1 + ϕc2 + θ2ṽ)) dθ1dθ2(ϕc1 + ϕc2)ṽ.

By Lemma 4.5 and (1.3), we get

‖N̄1,1‖1,0 ≤ C
∑

0≤i+j≤1

‖∂ix(ϕc1(z1) + ϕc2(z2))∂
j
xṽ‖1,0

≤ C
(
e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt

)(4.41)

and

‖N̄2‖2,0 ≤C‖ϕc1(z1)ϕc2(z2)‖2,∞ ≤ Che−dh ≤ Cβ2ν̃3e−C1βt,(4.42)

where C1 is a positive constant. By Lemma 4.5 and Corollary 4.6,∣∣〈∂2
xN̄1,1, ṽx

〉∣∣ ≤ |〈{f ′(ϕc1 + ϕc2 + ṽ)− f ′(ṽ)}ṽxx, ṽx〉|
+ C(1 + ‖w‖1,∞)‖w‖1,0‖ṽx‖

≤ C(1 + t−
1
4 )
(
e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt

) ‖ṽx‖.
(4.43)

By Lemma 4.7,

‖∂xN̄1,2‖ ≤ C‖ṽṽx‖∞‖ṽ‖p−3
∞ ‖ṽ‖ ≤ Ct−

2
3 〈t〉− p−2

3 M[ṽ]p−1‖ṽ‖,(4.44) ∣∣〈∂2
xN̄1,2, ṽx

〉∣∣ ≤ C‖ṽṽx‖∞‖ṽ‖p−3
∞ ‖ṽx‖2 ≤ CM[ṽ]p−1t−

2
3 〈t〉− p−2

3 ‖ṽx‖2.

Multiplying (4.38) by 2ṽ and integrating the resulting equation, we have

d

dt
‖ṽ‖2 = 2

∑
i=1,2

{(ẋi − ci)〈∂xϕci , ṽ〉 − ċi〈∂cϕci , ṽ〉} − 2(∂xN̄ , ṽ)

≤ C
(
e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt

) ‖ṽ‖+ Ct−
2
3 〈t〉− p−2

3 M[ṽ]p−1‖ṽ‖2.

Differentiating (4.38) with respect to x, multiplying by ∂xṽ, and integrating the re-
sulting equation by parts, we have

d

dt
‖ṽx‖2 = 2

∑
i=1,2

{
(ẋi − ci)〈∂2

xϕci , ṽx〉 − ċi〈∂x∂cϕci , ṽx〉
}− 2(∂2

xN̄ , ṽx)

≤ C(1 + t−
1
4 )
(
e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt

) ‖ṽx‖
+ CM[ṽ]p−1t−

2
3 〈t〉− p−2

3 ‖ṽx‖2.
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Hence, it follows that

‖ṽ(t)‖1,0 ≤ ‖ṽ(0)‖1,0 + C
(‖v0‖H1

a
+ β2ν̃2

)
+ C sup

0≤s≤t
M[ṽ]p−1

∫ t
0

s−
2
3 〈s〉− p−2

3 ‖ṽ(s)‖1,0ds.

Thus, by Gronwall’s inequality, we have

‖ṽ(t)‖1,0 ≤ C(‖v0‖1,0 + ‖v0‖H1
a
+ β2ν̃2−1)(4.45)

if p > 3 and

‖ṽ(t)‖1,0 ≤ C(‖v0‖1,0 + ‖v0‖H1
a
+ β2ν̃2−1)〈t〉C′ε2(4.46)

for a C ′ > 0 if p = 3.
Second, we will estimate ‖∂xJṽ‖ and ‖Jṽ‖. Let us start by considering the case

where 7/2 < p < 5, that is, the case where ‖f ′(ṽ)ṽ‖ = ‖ṽ‖p2p = O(〈t〉− p
3 + 1

6 ) ∈
L1(0,∞). By (4.35), (4.36), and (4.38), we have

LJṽ = J(G− ∂xN̄) = JG− I∂xN̄ + 3tLN̄ ,

I∂xṽ = J∂xṽ + 3tLṽ = ∂x(Jṽ − 3tN̄) + 3tG− ṽ.

Let Φ = Jṽ − 3tN̄ . Then Φ satisfies

LΦ = K1 +K2 +K3 +K4 +K5,(4.47)

where

K1 = −f ′(ϕc1 + ϕc2 + ṽ)∂xΦ,

K2 = f ′(ϕc1 + ϕc2 + ṽ)ṽ − 3N̄1,

K3 = {(f ′(ϕc1 + ϕc2)− f ′(ϕc1 + ϕc2 + ṽ)}I∂x(ϕc1 + ϕc2),

K4 = −(I∂x + 3)N̄2,

K5 = (J − 3tf ′(ϕc1 + ϕc2 + ṽ))G.

Multiplying (4.47) by Φ and integrating the resulting equation by parts, we obtain

d

dt
‖Φ‖2 = 2(LΦ,Φ)

≤ 2
∑
i=1,2

|〈Ki,Φ〉|+ 2
∑

3≤i≤5

‖e−az1Ki‖‖eaz1Φ‖.
(4.48)

Using Lemmas 4.7 and 4.5 and Corollary 4.6, we have

|〈K1,Φ〉|
≤
∫

R

|∂xf ′(ϕc1 + ϕc2 + ṽ)|Φ2dx

≤ C(‖(ϕc1 + ϕc2)xΦ
2‖1 + ‖(ϕc1 + ϕc2)ṽxΦ

2‖1 + ‖ṽṽx‖∞‖ṽ‖p−3‖Φ‖2)
≤ C(1 + t−

1
4 )‖eaz1Φ‖2 + CM[ṽ]p−1t−

2
3 〈t〉− p−2

3 ‖Φ‖2

(4.49)
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and

‖K2‖ ≤ C(‖w‖+ ‖ṽ‖p2p)
≤ C(e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt +M[ṽ]p〈t〉− 2p−1

6 ).
(4.50)

Noting that

I∂xϕci(zi) = (x− 3tẋi)∂xϕci(zi) + 3tċi∂cϕci(zi),

we have

‖e−az1K3‖1,0 ≤ C
∑

0≤i+j≤1

‖e−az1(∂ixṽ)∂jxI∂x(ϕc1 + ϕc2)‖

≤ C(〈t〉+ (t+ h)e−ah)‖w‖1,0
≤ C〈t〉 (e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt

)
,

(4.51)

‖e−az1K4‖1,0 ≤ C
∑
i=1,2

∥∥e−az1{f ′(ϕc1 + ϕc2)− f ′(ϕci)}I∂xϕci
∥∥

1,0
+ C‖e−az1ϕc1ϕc2‖1,0

≤ C〈t〉β2ν̃3e−C1βt.

(4.52)

By (4.39) and (4.40),

‖e−az1K5‖1,0 ≤ C〈t〉
∑
i=1,2

(|ẋi − ci|+ |ċi|)

≤ C〈t〉(e−δbt‖v0‖H1
a
+ β2ν̃2e−C1βt)

≤ C〈t〉
(
e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2ν̃2e−C1βt

)
.

(4.53)

Multiplying (4.47) by Φxx and integrating the resulting equation by parts, we have

d

dt
‖Φx‖2 = 2(LΦx,Φx)

≤ 2
∑
i=1,2

|〈∂xKi,Φx〉|+ 2
∑

3≤i≤5

‖e−az1∂xKi‖‖eaz1Φx‖.
(4.54)

Using Lemmas 4.7 and 4.5 and Corollary 4.6, we have

|〈∂xK1,Φx〉| ≤
∫

R

|∂xf ′(ϕc1 + ϕc2 + ṽ)|Φ2
xdx

≤ C(‖(ϕc1 + ϕc2)xΦ
2
x‖1 + ‖(ϕc1 + ϕc2)ṽxΦ

2
x‖1 + ‖ṽṽx‖∞‖ṽ‖p−3‖Φx‖2)

≤ C(1 + t−
1
4 )‖eaz1Φx‖2 + CM[ṽ]p−1t−

2
3 〈t〉− p−2

3 ‖Φx‖2

(4.55)

and

‖∂xK2‖ ≤ C(‖w‖1,0 + ‖ṽ‖p−3
∞ ‖ṽṽx‖∞‖ṽ‖)

≤ C(e−δbt‖v0‖H1
a
+ β2ν̃2e−C1βt +M[ṽ]p−1t−

2
3 〈t〉− p−2

3 ‖ṽ‖).
(4.56)
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Next we will obtain the decay rate of ‖eaz1Φ‖1,0. Let Ψ̃(z1, t) = eaz1Φx. Then by
(4.47),

∂tΨ̃ = Ac(t),h(t)Ψ̃ + (∂y − a)(kΨ̃) + (∂z1 − a)(f ′(ϕc1 + ϕc2 + ṽ)w

+ eaz1∂x(K3 +K4 +K5),
(4.57)

where

k = ẋ− c1 − gχ2 − f ′(ϕc1 + ϕc2 + ṽ) + f ′(ϕc1) + f ′(ϕc2).

We decompose Ψ̃ into two parts. Let Ψ̃ = Ψ̃‖ + Ψ̃⊥ and

∫
R

Ψ̃⊥(t, z1)η̄i(z1, c(t), h(t))dz1 = 0 for t ≥ 0 and 1 ≤ i ≤ 4.

To start with, we will estimate ‖Ψ̃‖‖1,0.

‖Ψ̃‖‖1,0 ≤
∑

1≤i≤4

∣∣〈(xṽ)x − 3t∂3
xṽ, e

az1 η̄i
〉∣∣ ∥∥ξ̄i∥∥1,0

≤ C
∑

1≤i≤4

(|〈eaz1 ṽ, x(∂x + a)η̄i(z1)〉|+ t
∣∣〈eaz1 ṽ, (∂x + a)3η̄i

〉∣∣)

≤ C〈t〉
(
e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2ν̃2e−C1βt

)
.

(4.58)

Next, we will obtain a decay estimate of ‖Ψ̃⊥‖. By a simple computation, we have

‖Ψ̃(0)‖ = ‖eaz1(xṽ(0))x‖ ≤ C(‖v0‖H1
a1

+ ‖v0‖H1
a2
),

‖eaz1K3‖ ≤ C〈t〉‖ea2z1 ṽ‖‖e(a−a2)z1I∂x(ϕc1 + ϕc2)‖∞
≤ C〈t〉

(
e−δbt‖v0‖H1

a2
+ β2ν̃2e−C1βt

)
,

(4.59)

and

‖eaz1K4‖ ≤ C〈t〉eθ(a−d)h ≤ Cβ2θν̃2−1e−C1βt(4.60)

for any θ < 1. By (4.39) and (4.40),

‖eaz1K5‖ ≤ C〈t〉(|ẋ1 − c1|+ |ċ1|) + C(t+ h)eah(|ẋ2 − c2|+ |ċ2|)
≤ C〈t〉(e−δbt‖v0‖H1

a
+ β2ν̃3e−C1βt)

+ C(t+ h)e(a−a2)h(e−δbt‖v0‖H1
a2

+ β2ν̃2e−C1βt)

≤ C
(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2ν̃2−1e−C1βt

)
.

(4.61)

Since

‖k(t)‖∞ ≤ C(|ẋ1 − c1|+ |g|+ |ṽ|∞ + ‖ϕc1(z1)ϕc2(z2)‖∞)

= O(‖v0‖H1
a
+ ε+ β2ν̃3),
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we can use the variation of constants formula and apply Lemma 2.6 as in the proof
of Lemma 4.5 to obtain∥∥∥Ψ̃⊥(t)

∥∥∥ ≤ C
(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)
(4.62)

for any θ ∈ (0, 1) if ‖v0‖H1
a
, ε, and β are sufficiently small.

Let Ψ(z1, t) = eaz1Φ. Then (4.47) is transformed into

∂tΨ− ẋ1(∂z1 − a)Ψ + (∂z1 − a)3Ψ =
∑

1≤i≤5

eaz1Ki.

Making use of the variation of constants formula, we have

‖Ψ(t)‖ ≤
∥∥∥etA0(c1(0))Ψ(0)

∥∥∥+ sup
0≤s≤t

|ẋ1(s)− c1(0)|
∥∥∥∥
∫ t

0

e(t−s)A0(c1(0))(∂z1 − a)Ψds

∥∥∥∥
+

∥∥∥∥
∫ t

0

e(t−s)A0(c1(0))eaz1 (K1 +K2 +K3 +K4 +K5)

∥∥∥∥
≤ Ce−b

′′t‖Ψ(0)‖+ C sup
0≤s≤t

|ẋ1(s)− c1(0)|
∫ t

0

(t− s)−
1
2 e−b

′′(t−s)‖Ψ‖ds

+ C
∑

1≤i≤5

∫ t
0

e−b
′′(t−s)‖eaz1Ki‖ds,

(4.63)

where b′′ = a3 − ac1(0).
By (4.58) and (4.62),

‖eaz1K1‖ ≤ C‖Ψ̃‖ ≤ C
(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)
.(4.64)

By Lemma 4.5,

‖eaz1K2‖ ≤ C‖w‖ ≤ C
(
e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt

)
.(4.65)

Combining (4.58)–(4.65) with ‖Ψ(0)‖ ≤ C(‖v0‖H1
a1

+ ‖v0‖H1
a2
) and taking b > 0

smaller if necessary, we obtain

‖Ψ(t)‖ ≤ C
(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)
(4.66)

for sufficiently small εi (i = 2, 3, 4).
By (4.48)–(4.56), (4.58), (4.62), and (4.66), we obtain

d

dt
‖Φ‖2 ≤ C(εp−1t−

2
3 〈t〉− p−2

3 ‖Φ‖+ εp〈t〉− 2p−1
6 )‖Φ‖

+ C(e−δbt‖v0‖H1
a
+ β2ν̃2e−C1βt)‖Φ‖

+ C(1 + t−
1
4 )
(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)2

and

d

dt
‖Φx‖2 ≤ Ct−

2
3 〈t〉− p−2

3 εp−1(‖Φx‖+ ‖ṽ‖)‖Φx‖
+ C(e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt)‖Φx‖

+ C(1 + t−
1
4 )
(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)2

.
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Using Gronwall’s inequality, we obtain

‖Φ‖ ≤ C(‖v0‖0,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

+ β2θν̃2− 3
2 + εp)(4.67)

if p > 7/2 and

‖Φx‖ ≤ C〈t〉C′ε2(‖v0‖1,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

+ β2θν̃2− 3
2 ),(4.68)

where C ′ = 0 if p > 3 and C ′ is a positive number if p = 3. In the case where p = 3,
we put µ(t) = tλ‖Φ‖2 for some λ ∈ (0, 1/3). Applying Gronwall’s inequality to µ, we
obtain

‖Φ‖ ≤ C〈t〉 1
6 (‖v0‖0,1 + ‖v0‖H1

a1
+ ‖v0‖H1

a2
+ β2θν̃2− 3

2 + ε3).(4.69)

Thus, by Lemma 4.7, (4.41), (4.42), (4.44)–(4.46), and (4.67)–(4.69), we obtain

‖Jṽ‖ ≤ ‖Φ‖+ 3t‖N̄‖
≤ C(‖v0‖0,1 + ‖v0‖H1

a1
+ ‖v0‖H1

a2
+ β2θν̃2− 3

2 + εp)
(4.70)

for 7/2 < p < 5,

‖Jṽ‖ ≤ ‖Φ‖+ 3t‖N̄‖
≤ C〈t〉 1

6 (‖v0‖0,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

+ β2θν̃2− 3
2 + ε3)

(4.71)

for p = 3, and

‖∂xJṽ‖ ≤ ‖∂xΦ‖+ 3t‖∂xN̄‖C〈t〉C′ε2

≤ C〈t〉C′ε2(‖v0‖1,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

+ β2θν̃2− 3
2 ),

(4.72)

where C ′ = 0 if p > 3 and C ′ is a positive constant if p = 3.

By Remark 3.2, we have β ≤ ε1+Cε0
1 for some C ∈ R. Since 2θν2 > 3/2, it follows

from (4.45), (4.70), and (4.72) that there exist positive numbers B and η such that

M[ṽ] ≤ B(ε0 + εη1).

Thus, by the standard continuation argument, we have T4 = T5 =∞.

To deal with the case where 3 < p ≤ 7/2, we will estimate ‖DαJṽ‖ with α =
1/2 − γ and 0 < γ < min{1/2, (p − 3)/3}. Applying Dα to (4.47), multiplying by
DαΦ, and integrating the resulting equation by parts, we have

d

dt
‖DαΦ‖2 = 2〈LDαΦ, DαΦ〉

≤ 2|〈Dαf ′(ṽ)∂xΦ, DαΦ〉|+ 2|〈Dα(f ′(ϕc1 + ϕc2 + ṽ)− f ′(ṽ))∂xΦ, DαΦ〉|
+ 2|〈DαK2, D

αΦ〉|+ 2
∑

3≤i≤5

‖e−az1DαKi‖‖eaz1DαΦ‖.

(4.73)

To estimate first and third terms of the right-hand side, we use the following lemma.
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Lemma 4.10 (see [19]). Let α = 1/2−γ with 0 < γ < min{1/2, (p−3)/3}. Then

‖Dα|u|p−1u‖ ≤ C‖u‖p−1
2(p−1)(‖uux‖

1
2∞ + ‖u‖3γ‖uux‖

1−3γ
2∞ ),

|〈Dα|u|p−1Φx, D
αΦ〉| ≤ C‖DαΦ‖(‖DαΦ‖+ ‖Φx‖)(‖u‖p−3

∞ ‖uux‖∞
+ ‖u‖p−3−2γ

∞ ‖u‖2γ‖uux‖∞ + ‖u‖p−3+2γ
∞ ‖uux‖1−γ∞ ).

By Lemmas 4.7 and 4.10,

|〈Dαf ′(ṽ)∂xΦ, DαΦ〉|
≤ C(‖ṽ‖p−3

∞ ‖ṽṽx‖∞ + ‖ṽ‖p−3−2γ
∞ ‖ṽ‖2γ‖ṽṽx‖∞ + ‖ṽ‖p−3+2γ

∞ ‖ṽṽx‖1−γ∞ )

× ‖DαΦ‖(‖DαΦ‖+ ‖Φx‖)
≤ Cεp−1−2γt−

2
3 〈t〉− p−2−2γ

3 ‖DαΦ‖(‖DαΦ‖+ ‖Φx‖).
By Lemmas 4.10 and 4.5,

‖DαK2‖ ≤ ‖Dαf ′(ṽ)ṽ‖+ ‖Dα{f ′(ϕc1 + ϕc2 + ṽ)− f ′(ṽ)}ṽ‖
≤ C‖ṽ‖p−1

2(p−1)(‖ṽṽx‖
1
2∞ + ‖ṽ‖3γ∞‖ṽṽx‖

1−3γ
2∞ ) + C‖w‖1,0

≤ Cεpt−
1
3 〈t〉− p−1

3 + γ
2 + C(e−δbt‖v0‖H1

a
+ β2ν̃2e−C1βt).

By (4.58) and (4.62),

|〈Dα(f ′(ϕc1 + ϕc2 + ṽ)− f ′(ṽ))∂xΦ, DαΦ〉|
≤ C‖(ϕc1 + ϕc2)∂xΦ‖‖D2αΦ‖
≤ C

(
〈t〉e−δbt(‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)
(‖DαΦ‖+ ‖Φx‖).

Combining the above with

‖eaz1DαΦ‖ ≤ C‖eaz1Φ‖1,0
≤ C

(
〈t〉e−δbt(‖v0‖1,1 + ‖v0‖H1

a1
+ ‖v0‖H1

a2
) + β2θν̃2−1e−C1βt

)
,

‖e−az1DαKi‖ ≤ C‖e−az1Ki‖1,0,
and (4.51)–(4.53), we obtain

‖DαΦ‖ ≤ C(‖v0‖0,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

+ β2θν̃2− 3
2 ).(4.74)

Thus we see that there exist positive constants B and η such that

M[ṽ] ≤ B(ε0 + εη1)

holds for every t ≥ 0 and T4 = T5 =∞.
Finally, we will estimate ‖FU0(−t)ṽ‖∞ to deal with the case where p = 3. Let

φ(t) = FU0(−t)ṽ. Then (4.38) can be transformed into

∂tφ = FU0(−t)(G− ∂xN̄).(4.75)
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Since ‖FU0(−t)f‖∞ ≤ (2π)−
1
2 ‖f‖1 for f ∈ L1(R), it follows from (4.39), (4.41), and

(4.42) that

‖FU0(−t)∂x(N̄1,1 + N̄2)‖∞ + ‖FU0(−t)G‖∞

≤ C

∫ t
0


‖∂xN̄1,1‖1 + ‖∂xN̄2‖1 +

∑
i=1,2

(|ẋi − ci|+ |ċi|)

 ds

≤ C
(
‖v0‖H1

a1
+ ‖v0‖H1

a2
+ β2ν̃2−1

)
.

Hence we can prove that

‖FU0(−t)ṽ‖∞ ≤ C
(
‖v0‖H1

a1
+ ‖v0‖H1

a2
+ β2ν̃2−1 + M̃[ṽ]3

)
,(4.76)

following the arguments of Theorem 1.1 in [20]. By (4.46), (4.71), (4.72), and (4.76),
there exist positive constants B and η such that

M̃[ṽ] ≤ B(‖v0‖1,1 + ‖v0‖H1
a1

+ ‖v0‖H1
a2

+ β2θν̃2− 3
2 )

for every t ≥ 0. Thus we complete the proof.

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.2 and (4.39), there exist

ci,∞ := lim
t→∞ ci(t) and xi,∞ := lim

t→∞(xi(t)− ci,∞t)

satisfying

|ci(t)− ci,∞| ≤
∫ ∞

t

|ċi(s)|ds

= O
(
e−δbt‖v0‖H1

a
+ β2ν̃3−1e−C1βt

)
,

|xi(t)− xi,∞ − ci,∞t| ≤
∫ ∞

t

|ẋi(s)− ci(s)|ds+
∫ ∞

t

∫ ∞

s

|ċi(τ)|dτds

= O
(
e−δbt‖v0‖H1

a
+ β2ν̃3−2e−C1βt

)
for i = 1, 2 and C1 > 0. Combining the above with Lemmas 4.5 and 4.7, Propositions
4.8 and 4.9, and (4.45) yields (1.4)–(1.6).

If 3 < p < 5, it follows from Proposition 4.8, (4.39), (4.41), (4.42), and (4.44)
that

‖U0(−t)ṽ(t)− U0(−s)ṽ(s)‖ ≤
∫ t
s

(‖G‖+ ‖∂xN̄‖)dτ

≤C
(
e−δbs‖v0‖H1

a
+ β2ν̃2−1e−C1βs +M[ṽ]p−1〈s〉− p−3

3

)

for t ≥ s ≥ 0. Thus there exists a unique function v∞ ∈ L2(R) such that (1.7)
holds.



INTERACTION BETWEEN SOLITARY WAVES OF GKdV 1079

Acknowledgments. The author would like to express his gratitude to Professor
Shin-Ichiro Ei for stimulating discussions. The author would also like to express his
gratitude to the referees for their careful reading of this article.

REFERENCES

[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM,
Philadelphia, 1981.

[2] T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A, 328 (1972), pp.
153–183.

[3] J. L. Bona, On the stability of solitary waves, Proc. Roy. Soc. London A, 344 (1975), pp.
363–374.

[4] J. L. Bona, On solitary waves and their role in the evolution of long waves, in Applications of
Nonlinear Analysis in the Physical Sciences, H. Amann, N. Bazley, and K. Kirchgässner,
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Abstract. We investigate the boundedness of weak solutions to the initial boundary-value
problem for the system {

∂u
∂t

− div(K(u)∇u) = σ(u)|∇ϕ|2,
div (σ(u)∇ϕ) = 0
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1. Introduction. In this paper we consider the following problem:

∂u

∂t
− div(K(u)∇u) = σ(u)|∇ϕ|2 in ΩT ≡ Ω× (0, T ),(1.1)

div(σ(u)∇ϕ) = 0 in ΩT ,(1.2)

u(x, t) = u0(x, t) on ∂pΩT ,(1.3)

∂ϕ

∂ν
= 0 on ΣN ≡ ΓN × (0, T ),(1.4)

ϕ(x, t) = ϕ0(x, t) on ΣD ≡ ΓD × (0, T ).(1.5)

Here T > 0, Ω is a bounded domain in RN with smooth boundary ∂Ω, ΓD is a
nonempty open subset of ∂Ω, ΓN = ∂Ω \ ΓD, ∂pΩT is the parabolic boundary of ΩT ,
and u0(x, t), ϕ0(x, t),K(u), σ(u) are known functions of their arguments.

This problem is often called the thermistor problem, and it arises in the study
of the electrical heating of a conductor (see [SSX, AC]). In this situation u is the
temperature of the conductor, and ϕ is the electrical potential. The first equation
describes the diffusion of heat in the presence of the Joule heating, which is the
rate of energy generation associated with electrical current flow, while the second
equation represents the conservation of electrical charges. The boundary conditions
describe how the conductor is connected electrically and thermally to its surroundings.
The function K(u), σ(u) are the thermal conductivity and the electrical conductivity,
respectively. Their precise forms are determined by the particular physical application
one has in mind. See, e.g., [KO, XA] for various forms suggested for K,σ in industrial
applications. In view of these, we assume the following.
(H1) K(u), σ(u) are continuous and positive.
(H2) u0 ∈ W 1,∞(ΩT ), ϕ0 ∈ L∞(0, T ;W 1,∞(Ω)).
Under (H1) and (H2), is there a bounded solution to (1.1)–(1.5) for any T > 0?

If u in the solution does blow up, when and how does it blow up? These questions
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are important in both theory and application. What complicates the matter is the
fact that assumption (H1) leaves open the possibility that K(u), σ(u) → 0 as u →
∞. Later we shall see that the interplay between thermal degeneracy and electrical
degeneracy constitutes the main mathematical difficulty.

In all the previous papers [X1, X4, X5, X6], only the effects of electrical de-
generacy are considered. Under the further assumption that K(u) ≡ 1 and σ(u) is
bounded above, several results concerning the existence of a weak solution, the so-
called capacity solution, partial regularity, and global boundedness of weak solutions,
are established there.

In this paper, we turn our attention to the thermal degeneracy and the interaction
between thermal degeneracy and electrical degeneracy. This is, in part, motivated by
the works of Allegretto and his collaborators [XA], where they suggest the following
form for K(u), σ(u):

K(u) ≈ A

u2
,(1.6)

σ(u) ≈ B

uγ
(1.7)

as u → ∞. Here A > 0, B > 0, 0 < γ � 1. Note that in this example, γ is very close
to 0. Thus we first consider the case where

c1 ≤ σ ≤ c2,(1.8)

0 < K ≤ c3,(1.9)

where ci, i = 1, 2, 3, are positive constants. That is to say, if σ behaves well, how
degenerate can we allow K to be before u blows up? In this direction we obtain the
following result.

Theorem A. Let (H1), (H2), (1.8), and (1.9) be satisfied. Assume

K(s) ≥ c

sβ
on [l,∞) for some l, c > 0, 0 < β < 2/N.(1.10)

Then (1.1)–(1.5) has a bounded solution on ΩT for each T > 0.
For simplicity, we assume that u ≥ 0 throughout this paper. This can easily be

achieved by assuming that u0 ≥ 0.
In view of (1.6), our restriction on β is obviously strong. This seems to suggest

that the blow-up occurs when β is big. If this happens, is there any “life” after
the blow-up? That is, do there exist any solutions in some weak sense after the
temperature becomes unbounded? The following theorem attempts to answer this
question.

Theorem B. Let (H1), (H2) be satisfied. Assume

σ ≤ M for some M > 0,(1.11) ∫ ∞

0

K(s)ds =∞.(1.12)

Then for each T > 0 there is a capacity solution to (1.1)–(1.5).
If
∫∞
0

K(s)ds = a < ∞, then the conclusion of the theorem is still valid if we
impose the additional condition∫ a

0

1√
σ(F−1(s))

ds =∞,

where F (s) =
∫ s
0
K(τ)dτ . This can be obtained easily by a result in [X2].
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To recall the definition of a capacity solution, for v ∈ L2(0, T ;W 1,2(Ω)), set

Xv = {ϕ ∈ L∞(ΩT ) : ρ(v)ϕ ∈ L2(0, T ;W 1,2(Ω)) for each ρ ∈ C1
0 (R)}.

Then by a result in [X2], for each ϕ ∈ Xv, there is a unique function ξ defined on ΩT

such that

ξ = � (ρ(v)ϕ) on {(x, t) : |v(x, t)| ≤ M}
for each M > 0 and each ρ ∈ C1

0 (R) with ρ = 1 on [−M,M ]. If we denote ξ by �ϕ,
we also have the product rule, i.e.,

�(ϕρ(v)) = �ϕρ(v) + ϕρ′(v)∇v(1.13)

for each ρ ∈ C1
0 (R). We can also define traces for ϕ ∈ Xv. We say ϕ = ϕ0 on

∂Ω × (0, T ) for ϕ0 ∈ L2(0, T ;W 1,2(Ω)) if ρ(v)ϕ = ρ(v)ϕ0 on ∂Ω × (0, T ) for all
ρ ∈ C1

0 (R).
Definition. A capacity solution to (1.1)–(1.5) is a couple {u, ϕ} such that
(i) u∈L∞((0, T );L1(Ω)), v ≡ ∫ u

0
K(s)ds∈L2(0, T ;W 1,2(Ω)), ϕ∈Xv,

√
σ(u)∇ϕ

∈ (L2(ΩT )
)N

;

(ii) v = v0 ≡ ∫ u0

0
K(s)ds on ∂Ω× (0, T ), ϕ = ϕ0 on ΣD;

(iii)
∫
ΩT

σ(u)� ϕ� ξ dxdt = 0 for all ξ ∈ L2(0, T ;W 1,2(Ω)) such that ξ = 0 on
ΣD and

−
∫

ΩT

uξt dxdt+

∫
ΩT

K(u)� u� ξdxdt

=

∫
ΩT

σ(u)| � ϕ|2ξ dxdt+

∫
Ω

u0ξ(x, 0) dx

for all ξ ∈ W 1,2(ΩT ) ∩ L∞(ΩT ) with ξ(x, T ) = 0, ξ = 0 on ∂Ω× (0, T ).
The following theorem imposes a condition on the blow-up rate.
Theorem C. Let the assumptions of Theorem B be satisfied. Assume (1.8) holds.

Then we have ∫ t

0

∫ u(x,τ)

0

K(s)dsdτ ∈ L∞(ΩT ).(1.14)

Note that u,
∫ u
0
K(s)ds blow up simultaneously because of (1.12). Thus (1.14)

seems to indicate that if
∫ u
0
K(s)ds does blow up at a finite time T0, one should have

∫ u(x,t)

0

K(s)ds ≤ c

(T0 − t)α
for some α ∈ (0, 1).(1.15)

Next we explore how thermal degeneracy and electrical degeneracy interact. In
this direction, we establish the following theorem.

Theorem D. Let (1.12), (H1), and (H2) be satisfied. Assume
(H3) σ ∈ C1(R), σ′ < 0, and lims→∞ σ(s) = 0;
(H4)

4 (‖ϕ0‖∞,ΩT )
2 ≤ K(s)

−σ′(s)
≤ c

∫ s

0

1
σ(τ)dτ + c on [0,∞) for some c > 0.(1.16)
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Then we have ∫ t

0

∫ u(x,τ)

0

K(s)dsdτ ∈ L∞(0, T ;L∞
loc(Ω)).(1.17)

The second inequality in (1.16) is not essential and can be eliminated if we assume
σ ∈ C2(R) and ∆u0 ∈ L∞(ΩT ). The first inequality in (1.16) roughly says that to
expect u to behave well, K(u) cannot be too degenerate in relation to σ(u). For
example, if K(u) ≈ c/uβ , σ(u) ≈ c/uα, then we should have β−α ≤ 1. The condition
lims→∞ σ(s) = 0 is not surprising. Recall that σ(u) is the electrical conductivity. This
condition says that the rise of temperature leads to a drop in electrical conductivity.
This, in turn, results in the weakening of electrical current, thus slowing down the
rise in temperature. This is one cancellation effect we try to explore here.

Finally, let us make some remarks about the notation. The letter c is used to
denote the generic constant. Furthermore, if r > 0, z = (x, t) ∈ RN × (0,∞), and u, ϕ
are locally integrable, then

Q(z, r) = {(y, τ) : |y − x| < r, t− r2 < τ < t},
uz,r =

∫
−Q(z,r)udydτ,

ϕx,r(τ) =

∫
−B(x,r)ϕ(y, τ)dy,

B(x, r) = {y : |y − x| < r}.
When the notation we use is standard, no explanation is given.

2. Proofs of Theorems A, B, and C. We first construct a capacity solution
to (1.1)–(1.5) under the assumptions (H1), (H2), (1.11), and (1.12). For this purpose,
define, for each k,

Kk(s) =

{
K(k) if s > k,
K(s) if s ≤ k,

σk = σ +
1

k
.

Consider the following approximate problem:

∂

∂t
uk − div (Kk(uk)� uk) = σk(uk)| � ϕk|2 in ΩT ,(2.1)

div (σk(uk)� ϕk) = 0 on ΩT ,(2.2)

ϕk = ϕ0 on ΣD,(2.3)

∂ϕk

∂ν
= 0 on ΣN ,(2.4)

uk = u0 on ∂pΩT .(2.5)

The existence of a classical weak solution to (2.1)–(2.5) in the space

ST ≡ Cα,α/2(ΩT ) ∩ Lp
(
0, T ;W 1,p

loc (Ω)
)
∩ L2(0, T ;W 1,2(Ω))

× L∞
(
0, T ;W 1,p

loc (Ω)
)
∩ L∞(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;Cδ(Ω))

for some α, δ in (0, 1) and for each p > 1
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is established in [X3, X4]. Even though we have Kk(uk) = 1 in [X3, X4], a careful
examination of the proof of Theorem 7 in [X4] reveals that the argument employed
there also works in the situation considered here.

Now we proceed to derive a priori estimates for approximate solutions. Let vk =∫ uk
0

Kk(s)ds. We can easily conclude from [X1] that

max
ΩT

|ϕk| ≤ c,(2.6) ∫
ΩT

σk(uk)| � ϕk|2 dxdt ≤ c,(2.7)

ess sup0≤t≤T

∫
Ω

(uk(x, t)− l)+ dx ≤
∫
uk>l

σk(uk)| � ϕk|2 dxdt,(2.8) ∫
ΩT

| � vk|2 dxdt ≤ c,(2.9)

where l ≥ ‖u0‖∞,ΩT . We may assume, passing to subsequences if necessary, that

ϕk ⇀ ϕ weak∗ in L∞(ΩT ),(2.10)

vk ⇀ v weakly in L2(0, T ;W 1,2(Ω)),(2.11) √
σk(uk)� ϕk ⇀ g weakly in (L2(ΩT ))

N .(2.12)

The remaining proof of the existence theorem is divided into the following several
lemmas.

Lemma 2.1. vk → v a.e. on ΩT .

Proof. First, it is easy to verify from (2.9) that {ρ(uk)} is bounded in L2(0, T ;
W 1,2(Ω)) for each ρ ∈ C1

0 (R). Now pick a θ ∈ C2
0 (R). We can deduce from (2.1) and

(2.9) that the sequence { ∂
∂tθ(uk)} is bounded L1(ΩT )+L2(0, T ;W−1,2(Ω)). This puts

us in a position to invoke a result in [BMR] to conclude that there is a measurable
function u such that

uk → u a.e. on ΩT .(2.13)

This implies the desired result.

Lemma 2.2. For each ρ ∈ C1
0 (R), we have

ρ(vk)ϕk ⇀ ρ(v)ϕ weakly in L2(0, T ;W 1,2(Ω)).(2.14)

Note from (1.12) that the boundedness of {vk} on a set implies the boundedness
of {uk} on the same set. Then (2.14) follows from (2.7) and an argument in [X1].
This lemma asserts that ϕ ∈ Xv.

Lemma 2.3. g =
√

σ(u)� ϕ a.e. on ΩT .

Once again, the proof can be found in [X1].

Lemma 2.4.

√
σk(uk)� ϕk → g strongly in (L2(ΩT ))

N .(2.15)

Proof. We modify slightly the proof in [X2]. Observe from (2.13) and (1.11)
that

√
σk(uk) →

√
σ(u) strongly in Lq(ΩT ) for each q > 1. Using ϕk − ϕ0 as a test
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function in (2.2) yields∫
ΩT

σk(uk)| � ϕk|2 dxdt =

∫
ΩT

σk(uk)� ϕk�ϕ0 dxdt

=

∫
ΩT

√
σk(uk)

√
σk(uk)� ϕk�ϕ0 dxdt

→
∫

ΩT

√
σ(u)g�ϕ0 dxdt.(2.16)

On the other hand, we easily conclude from (2.2) that∫
ΩT

√
σ(u)g � ξ dxdt = 0(2.17)

for all ξ ∈ L2(0, T ;W 1,2(Ω)) with ξ = 0 on ΣD. For each l > 0 choose θl ∈ C1
0 (R) so

that

θl(s) =

{
0 if |s| ≥ 2l,
1 if |s| < l

and

|θl′| ≤ c

l
.

Let ξ = θl(v)(ϕ− ϕ0) in (2.17) and keep in mind (1.13) to get∫
ΩT

√
σ(u)g(�ϕ−�ϕ0)θl(v) dxdt

= −
∫

ΩT

√
σ(u)gθl

′(v)∇v(ϕ− ϕ0) dxdt

→ 0 as l → ∞.(2.18)

This gives ∫
ΩT

(σ(u)| � ϕ|2 − σ(u)� ϕ�ϕ0) dxdt = 0.(2.19)

Combining (2.19), Lemma 2.3, and (2.16), we obtain

lim
k→∞

∫
ΩT

σk(uk)| � ϕk|2 dxdt =

∫
ΩT

σ(u)� ϕ�ϕ0 dxdt =

∫
ΩT

σ(u)| � ϕ|2 dxdt.

(2.20)

Consequently,∫
ΩT

|√σk(uk)� ϕk − g|2 dxdt

=

∫
ΩT

σk(uk)| � ϕk|2 dxdt− 2

∫
ΩT

√
σk(uk)� ϕkg dxdt+

∫
ΩT

|g|2 dxdt

→
∫

ΩT

σ(u)| � ϕ|2 dxdt− 2

∫
ΩT

|g|2 dxdt+

∫
ΩT

|g|2 dxdt

= 0.



EFFECTS OF THERMAL DEGENERACY 1087

Lemma 2.5. uk → u strongly in L1(ΩT ).
This is a consequence of (2.15) and (2.8).
Now we can pass to the limit in (2.1)–(2.5) to conclude our proof of the existence

theorem.
We now turn our attention to Theorem A. First we need to set up some technical

machineries.
Lemma 2.6. Suppose that g(x) is a measurable function on Ω with the property

|{|g| > s}| ≤ A

sq
on (0,∞) for some A > 0, q > 1.(2.21)

Then for each 1 ≤ p < q, we have

(∫
−Ω|g|pdx

)1/p

≤
(

q

q − p

)1/p

A1/q 1

|Ω|1/q .(2.22)

This lemma is well known, and we will not offer a proof here.
In all our subsequent calculations, we assume that (u, ϕ) ∈ ST . This is due to the

fact that a capacity solution to (1.1)–(1.5) can be constructed as a limit of a sequence
of approximate solutions in ST . However, all the positive constants in our estimates
depend only on the known data.

To find out how degenerate we can allow K to be before u blows up, we inves-
tigate Green’s function associated with (1.1)–(1.5). For each z = (x, t) ∈ ΩT define
Γ(y, τ, x, t) to be the solution of the problem

∂Γ

∂τ
+ div(K(u)∇Γ) = 0 in Ωt ≡ Ω× (0, t),(2.23)

Γ = 0 on ∂Ω× (0, t),(2.24)

Γ|τ=t = δ(x),(2.25)

where δ(x) is the Dirac delta function concentrated at x. To construct a solution to
this problem, select a sequence {δn(y)} ⊂ C∞

0 (Ω) with the properties

δn ≥ 0 on Ω,(2.26) ∫
Ω

δn(y)dy = 1,(2.27)

the support of δn ⊂ B(x, 1/n),(2.28) ∫
Ω

δn(y)ξ(y)dy → ξ(x) as n → ∞(2.29)

for each ξ ∈ C∞
0 (Ω). Then it is easy to see that for each n the problem

∂Γn
∂τ

+ div(K(u)∇Γn) = 0 in Ωt ≡ Ω× (0, t),(2.30)

Γn = 0 on ∂Ω× (0, t),(2.31)

Γn|τ=t = δn(y)(2.32)

has a solution Γn in the space Cβ,β/2(Ω) ∩ Lp(0, t;W 1,p(Ω)) for some β ∈ (0, 1) and
all p > 1. Next we collect a few properties of Γ that are critical to the proof of
Theorem A.
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Lemma 2.7. There holds

|{Γ > s}| ≤ c

m

1

s1+2/N
on (0,∞),(2.33)

where c depends only on N and c3 in (1.9) and m = minΩT K(u).

This lemma can be obtained by modifying an argument in [GW, pp. 307–308].

Lemma 2.8. For each r > 0 there is a positive number c such that for every
z0 = (y0, τ0) ∈ Ωt, R > 0, 0 < ρ ≤ t− τ0 there holds

max
Q∞≡B(u0,R/2)×(τ0,τ0+ρ/2)∩Ωt

Γ(2.34)

≤ c

m
N

2(r+1)

(
(1/ρ+ 1/R2)

N+2
2

∫
Q0≡B(y0,R)×(τ0,τ0+ρ)∩Ωt

Γr+1dydτ

) 1
r+1

.

This lemma can be inferred from the proof of Lemma 1 in [M].

Lemma 2.9. Let (1.8) hold. Then there exist two numbers c > 0, 0 < α < 1 such
that ∫

B(x,R)∩Ω

σ(u)|∇ϕ|2dy ≤ cRN−2+2α.(2.35)

Proof. Assumption (1.8) enables us to appeal to the classical regularity theory
for uniformly elliptic equations to conclude

|ϕ(x, t)− ϕ(y, t)| ≤ c|x− y|α, (y, t), (x, t) ∈ ΩT(2.36)

for some c > 0, α ∈ (0, 1). Fix (x, t) ∈ ΩT , R > 0. Then choose ξ ∈ C∞
0 (B(x,R)) so

that

0 ≤ ξ ≤ 1 on B(x,R),(2.37)

|∇ξ| ≤ c

R
on B(x,R),(2.38)

ξ = 1 on B(x,R/2).(2.39)

If ∂B(x,R) ∩ ΓD = ∅, we use ξ2(ϕ(y, t)− ϕ(x, t)) as a test function in (1.2) to get

∫
B(x,R)∩Ω

σ(u)|∇ϕ|2ξ2dy = −
∫
B(x,R)∩Ω

σ(u)∇ϕ(ϕ(y, t)− ϕ(x, t))2ξ∇ξdy(2.40)

≤ 1

2

∫
B(x,R)∩Ω

σ(u)|∇ϕ|2ξ2dy +
1

2

∫
B(x,R)∩Ω

4σ(u)(ϕ(y, t)− ϕ(x, t)2|∇ξ|2dy;

from this it follows that∫
B(x,R/2)∩Ω

σ(u)|∇ϕ|2dy ≤ cRN−2+2α.(2.41)
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If ∂B(x,R) ∩ ΓD �= ∅, we use (ϕ− ϕ0)ξ
2 as a test function in (1.2) to get∫

B(x,R)∩Ω

σ(u)|∇ϕ|2ξ2dy =

∫
B(x,R)∩Ω

σ(u)∇ϕ∇ϕ0ξ
2dy(2.42)

+

∫
B(x,R)∩Ω

σ(u)∇ϕ(ϕ− ϕ0)2ξ∇ξdy

≤ 1

2

∫
B(x,R)∩Ω

σ(u)|∇ϕ|2ξ2dy

+

∫
B(x,R)∩Ω

σ(u)|∇ϕ0|2ξ2dy

+

∫
B(x,R)∩Ω

4|∇ξ|2σ(u)|ϕ− ϕ0|2dy.

Let y0 ∈ ∂B(x,R) ∩ ΓD. In view of the fact that ϕ(y0, t) = ϕ0(y0, t), we have, for
y ∈ B(x,R) ∩ Ω,

|ϕ(y, t)− ϕ0(y, t)| ≤ |ϕ(y, t)− ϕ0(y0, t)|+ |ϕ0(y0, t)− ϕ0(y, t)|(2.43)

≤ c|y − y0|α + c|y − y0|
≤ cRα + cR.

This, along with (2.42) and (H2), implies (2.41).
Lemma 2.10. There holds

u(x, t) ≤ ‖u0‖∞,ΩT +

∫
Ωt

σ(u)|∇ϕ|2Γ(y, τ, x, t)dydτ .(2.44)

Proof. We may write

u = v + w,

where v is the solution of the problem

∂v

∂τ
− div(K(u)∇v) = σ(u)|∇ϕ|2 in ΩT ,(2.45)

v = 0 on ∂pΩT(2.46)

and w solves the problem

∂w

∂τ
− div(K(u)∇w) = 0 in ΩT ,(2.47)

w = u0 on ∂pΩT .(2.48)

Using Γn as a test function in (2.45) yields(
∂v

∂τ
,Γn

)
+

∫
Ω

K(u)∇v∇Γndy =
∫

Ω

σ(u)|∇ϕ|2Γndy,(2.49)

where (·, ·) denotes the duality pairing between W−1,2(Ω) and W 1,2
0 (Ω). By using v

as a test function in (2.30), we obtain(
∂Γn
∂τ

, v

)
−
∫

Ω

K(u)∇Γn∇vdy = 0.(2.50)



1090 XIANGSHENG XU

We deduce, with the aid of the chain rule, that∫ t

0

((
∂v

∂τ
,Γn

)
+

(
∂Γn
∂τ

, v

))
dτ =

∫ t

0

d

dτ

∫
Ω

vΓndydτ(2.51)

=

∫
Ω

v(y, t)δn(y)dy → v(x, t) as n → ∞.

Add (2.50) to (2.49), integrate the resulting equation over (0, t), and thereby obtain

v(x, t) =

∫
Ωt

σ(u)|∇ϕ|2Γ(y, τ, x, t)dydτ .(2.52)

By the maximum principle, we have

|w| ≤ ‖u0‖∞,ΩT .(2.53)

Then the lemma follows.
To complete the proof of Theorem A, for each (y, τ) ∈ Ω× [0, t), set ρ = t− τ >

0, R =
√
ρ. Choose r > 0 so that 1 + r < 1 + 2/N . We estimate, with the aid of

Lemmas 2.6, 2.7, and 2.8, that

Γ(y, τ, x, t) ≤ c

m
N

2(r+1)

(∫
−B(y,R)×(τ,τ+R2)Γ

r+1dydτ

) 1
r+1

(2.54)

≤ c

m
N

2(r+1)+
N
N+2 (t− τ)N/2

.

If |y − x| = R > 0, we infer from the proof of Lemma 2.8 that we can take ρ = R2 in
(2.34). Therefore, we obtain

Γ(y, τ, x, t) ≤ c

m
N

2(r+1)+
N
N+2 |y − x|N

.(2.55)

Let R > 0 be so big that Ωt ⊂ Q(z,R). For each (y, τ) ∈ Q(z, R2i ) \ Q(z, R
2i+1 ) ∩ Ωt,

where i = 0, 1, 2, . . . , we have either |y− x| ≥ R
2i+1 or t− τ ≥ ( R

2i+1

)2
. Thus it follows

from (2.54) and (2.55) that the following always holds:

max
Q(z, R

2i
)\Q(z, R

2i+1 )∩Ωt

Γ(y, τ, x, t) ≤ c

m
N

2(r+1)+
N
N+2

(
2i+1

R

)N

.(2.56)

We easily conclude from Lemma 2.9 that∫
Q(z, R

2i
)

σ(u)|∇ϕ|2dydτ ≤ c

(
R

2i

)N+2α

.(2.57)

Now we are ready to estimate∫
Ωt

σ(u)|∇ϕ|2Γ(y, τ, x, t)dydτ(2.58)

=

∞∑
i=0

∫
Q(z, R

2i
)\Q(z, R

2i+1 )∩Ωt

σ(u)|∇ϕ|2Γ(y, τ, x, t)dydτ

≤
∞∑
i=0

c

m
N

2(r+1)+
N
N+2

(
R

2i+1

)2α

≤ c

m
N

2(r+1)+
N
N+2

.
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In view of (1.10), we have

m ≥ 1

(maxΩT u)β
.(2.59)

Thus by (2.44) and (2.58), we derive

max
ΩT

u ≤ c(max
ΩT

u)β( N
2(r+1)+

N
N+2 ) + ‖u0‖∞,ΩT .(2.60)

Since β < 2/N , we can find r > 0 so that the following two inequalities hold:

1 + r < 1 + 2/N,(2.61)

β

(
N

2(r + 1)
+

N

N + 2

)
< 1.(2.62)

The proof is complete.
Before we prove Theorem C, let us state the following lemma.
Lemma 2.11. Let u ∈ W 1,1

0 (Ω). Then

u(x) =
1

NωN

∫
Ω

x−y
|x−y|N · ∇udy a.e. on Ω.(2.63)

We refer the reader to [GT, p. 161] for proof.

Proof of Theorem C. For ε > 0 define

θε(s) =




1 if s > ε,
s/ε if 0 ≤ s ≤ ε,
0 if s < 0.

Fix l ≥ ‖u0‖∞,ΩT . Remember that x ∈ Ω and u ∈ Lp(0, T ;W 1,p
loc (Ω)) for each p > 1.

Thus θε(u − l) 1
|x−y|N−2 is a legitimate test function for (1.1). Thus use it in (1.1) to

obtain ∫
Ω

∫ u(y,τ)

0

θε(s− l)ds
1

|x− y|N−2
dy(2.64)

+

∫
Ωt

K(u)θ′ε(u− l)|∇u|2 1

|x− y|N−2
dydτ

+(N − 2)

∫
Ωt

K(u)∇uθε(u− l)
x− y

|x− y|N dydτ

=

∫
Ωt

σ(u)|∇ϕ|2θε(u− l)
1

|x− y|N−2
dydτ

≤ c.

The last step is due to (2.35). The third integral on the left-hand side of (2.64) can
be evaluated by using Lemma 2.11 as follows:∫

Ωt

K(u)∇uθε(u− l)
x− y

|x− y|N dydτ(2.65)

=

∫ t

0

∫
Ω

∇
∫ u(y,τ)

0

K(s)θε(s− l)ds
x− y

|x− y|N dydτ

=

∫ t

0

∫ u(x,τ)

0

K(s)θε(s− l)dsdτ.
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By taking ε → 0, we get

∫
Ω

(u− l)+
1

|x− y|N−2
dy +

∫ t

0

(∫ u(x,τ)

l

K(s)ds

)+

≤ c.(2.66)

This implies the desired result.

3. Proof of Theorem D. We first present some preparatory lemmas which
eventually leads to the proof of Theorem D. Once again, we assume that (u, ϕ) ∈ ST
in our calculations.

Lemma 3.1. Let h ∈ L∞
loc(Ω) ∩ L1(Ω), g ∈ L∞

loc(Ω) be such that h, g ≥ 0. Assume
that there holds

h(x) ≤ A

∫
Ω

h(y)
1

|x− y|N−1
dy + g(x) a.e. on Ω.(3.1)

Then there exist two positive numbers c = c(A,N), c1 = c1(A,N) such that

max
B(x0,R/2)

h ≤ 2 max
B(x0,R)

g +
c1

RN−1

∫
Ω

hdy(3.2)

for all x0 ∈ Ω, 0 < R ≤ min{c, d(x0, ∂Ω)}.
Proof. Fix x0 ∈ Ω. Let 0 < r < R ≤ d(x, ∂Ω). Then for x ∈ B(x0, r), we have∫

Ω

h(y)
1

|x− y|N−1
dy(3.3)

=

∫
B(x0,R)

h(y)
1

|x− y|N−1
dy +

∫
Ω\B(x0,R)

h(y)
1

|x− y|N−1
dy

≤ max
B(x0,R)

h

∫
B(x0,R)

1

|x− y|N−1
dy +

1

|R− r|N−1

∫
Ω

hdy

= c(N)R max
B(x0,R)

h+
1

|R− r|N−1

∫
Ω

hdy.

On account of (3.1), we obtain

max
B(x0,r)

h ≤ cR max
B(x0,R)

h+
A

|R− r|N−1

∫
Ω

hdy + max
B(x0,R)

g(3.4)

for all 0 < r < R ≤ d(x, ∂Ω). Now fix such an R. For each i = 0, 1, 2, . . . , set

Ri = R− R

2i+1
.

Let r = Rn, R = Ri+1 in (3.4) to get

Yi ≤ εYi+1 +B(2N−1)i,(3.5)

where

ε = cR,

B = max
B(x0,R)

g +
c1

RN−1

∫
Ω

hdy.

Then the lemma follows from a result in [D, p. 13].
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Lemma 3.2. There holds∫
Ω

|∇ϕ|2 1

|x− y|N−2
dy(3.6)

≤ 2 (‖ϕ0‖∞,ΩT )
2
∫

Ω

(
σ′(u)
σ(u)

)2

|∇u|2 1

|x− y|N−2
dy +

c

(d(x, ∂Ω))
N−1

.

Proof. First we infer from (1.2) that

−∆ϕ =
σ′(u)
σ(u)

∇u∇ϕ.(3.7)

By using (ϕ− ϕ0)
1

|x−y|N−2 as a test function here, we derive

∫
Ω

∇ϕ(∇ϕ−∇ϕ0)
1

|x− y|N−2
dy + (N − 2)

∫
Ω

∇ϕ(ϕ− ϕ0)
x− y

|x− y|N dy(3.8)

=

∫
Ω

σ′(u)
σ(u)

∇u∇ϕ(ϕ− ϕ0)
1

|x− y|N−2
dy

≤ 1/4

∫
Ω

|∇ϕ|2 1

|x− y|N−2
dy +

∫
Ω

(
σ′(u)
σ(u)

)2

(ϕ− ϕ0)
2|∇u|2 1

|x− y|N−2
dy.

To bound the second integral on the left-hand side of (3.8), we see that for each
ρ ∈ (0, d(x, ∂Ω)) there holds

∫
Ω\B(x,ρ)

∇ϕ(ϕ− ϕ0)
x− y

|x− y|N dy =

∫
Ω\B(x,ρ)

∇1

2
(ϕ− ϕ0)

2 x− y

|x− y|N dy(3.9)

+

∫
Ω\B(x,ρ)

∇ϕ0(ϕ− ϕ0)
x− y

|x− y|N dy

=

∫
∂Ω

1

2
(ϕ− ϕ0)

2 x− y

|x− y|N · νdHN−1

+
1

ρN−1

∫
∂B(x,ρ)

1

2
(ϕ− ϕ0)

2dHN−1

+

∫
Ω\B(x,ρ)

∇ϕ0(ϕ− ϕ0)
x− y

|x− y|N dy,

where ν is the unit outward normal to ∂Ω. Consequently, we have

∣∣∣∣
∫

Ω

∇ϕ(ϕ− ϕ0)
x− y

|x− y|N dy

∣∣∣∣ = lim
ρ→0

∣∣∣∣∣
∫

Ω\B(x,ρ)

∇ϕ(ϕ− ϕ0)
x− y

|x− y|N dy

∣∣∣∣∣(3.10)

≤ c

(d(x.∂Ω))N−1
.

Then the lemma follows from (3.10) and (3.8).

Now we are ready to prove Theorem D. Let f ∈ C1(R) be such that

f > 0, f ′ > 0 on R.(3.11)
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Then for each x ∈ Ω, the function (f(u)− f(u0))
1

|x−y|N−2 is a legitimate test function.

Upon using it, we obtain

(
∂u

∂τ
, (f(u)− f(u0))

1

|x− y|N−2

)
+

∫
Ω

K(u)f ′(u)|∇u|2 1

|x− y|N−2
dy

+(N − 2)

∫
Ω

K(u)∇u(f(u)− f(u0))
x− y

|x− y|N dy

=

∫
Ω

K(u)f ′(u0)∇u∇u0
1

|x− y|N−2
dy

+

∫
Ω

(f(u)− f(u0))σ(u)|∇ϕ|2 1

|x− y|N−2
dy.(3.12)

Using a standard approximation argument, we can show

(
∂u

∂τ
, (f(u)− f(u0))

1

|x− y|N−2

)
=

d

dτ

∫
Ω

∫ u(y,τ)

0

f(s)ds
1

|x− y|N−2
dy(3.13)

− d

dτ

∫
Ω

uf(u0)
1

|x− y|N−2
dy +

∫
Ω

uf ′(u0)
∂u0

∂τ

1

|x− y|N−2
dy.

To evaluate the third integral on the right-hand of (3.12), we appeal to Lemma 2.11,
thereby obtaining

∫
Ω

K(u)∇u(f(u)− f(u0))
x− y

|x− y|N dy(3.14)

=

∫
Ω

∇
∫ u(y,τ)

u0(y,τ)

K(s)f(s)ds
x− y

|x− y|N dy −
∫

Ω

f(u0)∇
∫ u(y,τ)

u0(y,τ)

K(s)ds
x− y

|x− y|N dy

= NωN

∫ u(x,τ)

u0(x,τ)

K(s)f(s)ds−
∫

Ω

∇
(
f(u0)

∫ u(y,τ)

u0(y,τ)

K(s)ds

)
x− y

|x− y|N dy

+

∫
Ω

f ′(u0)∇u0

∫ u(y,τ)

u0(y,τ)

K(s)ds
x− y

|x− y|N dy

= Nωn

∫ u(x,τ)

u0(x,τ)

K(s)(f(s)−f(u0))ds+

∫
Ω

f ′(u0)∇u0

∫ u(y,τ)

u0(y,τ)

K(s)ds
x− y

|x− y|N dy.

It is easy to see that

∫
Ω

K(u)f ′(u0)∇u∇u0
1

|x− y|N−2
dy(3.15)

≤ 1

2

∫
Ω

K(u)f ′(u)|∇u|2 1

|x− y|N−2
dy

+
1

2

∫
Ω

K(u)
(f ′(u0))

2

f ′(u)
|∇u0|2 1

|x− y|N−2
dy.

Now use (3.14), (3.13), and (3.15) in (3.12) and integrate the resulting equation with
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respect to τ over (0, t), thereby obtaining

∫
Ω

∫ u(y,t)

0

f(s)ds
1

|x− y|N−2
dy +

1

2

∫
Ωt

K(u)f ′(u)|∇u|2 1

|x− y|N−2
dydτ(3.16)

+ c(N)

∫ t

0

∫ u

u0

K(s)(f(s)− f(u0))dsdτ

≤ 1

2

∫
Ωt

K(u)

f ′(u)
(f ′(u0))

2|∇u0|2 1

|x− y|N−2
dydτ

+

∫
Ωt

f(u)σ(u)|∇ϕ|2 1

|x− y|N−2
dydτ

+

∫
Ω

uf(u0)
1

|x− y|N−2
dy −

∫
Ωt

uf ′(u0)
∂u0

∂τ

1

|x− y|N−2
dydτ

+

∫
Ωt

∫ u

u0

K(s)dsf ′(u0)∇u0
x− y

|x− y|N dydτ

+

∫
Ω

(∫ u0

0

f(s)ds− u0f(u0)

)
1

|x− y|N−2
dy.

Recall that

σ′(s) < 0,(3.17)

and thus we can take f(s) = 1/σ(s) in (3.16) and then apply Lemma 3.2 to get

∫
Ω

∫ u

0

1
σ(s)ds

1

|x− y|N−2
dy +

1

2

∫
Ωt

K(u)(−σ′(u))
σ2(u)

|∇u|2 1

|x− y|N−2
dydτ(3.18)

+ c(N)

∫ t

0

∫ u

u0

K(s)

(
1

σ(s)
− 1

σ(u0)

)
dsdτ

≤ c

∫
Ωt

K(u)

f ′(u)
1

|x− y|N−2
dydτ

+2 (‖ϕ0‖∞,ΩT )
2
∫

Ω

(
σ′(u)
σ(u)

)2

|∇u|2 1

|x− y|N−2
dy +

c

(d(x, ∂Ω))
N−1

+ c

∫
Ω

u
1

|x− y|N−2
dy + c

∫
Ωt

u
1

|x− y|N−2
dydτ

+ c

∫
Ωt

∫ u

u0

K(s)ds
1

|x− y|N−1
dydτ + c.

From (H4) we see that

K(u)(−σ′(u))
σ2(u)

≥ 4 (‖ϕ0‖∞,ΩT )
2

(
σ′(u)
σ(u)

)2

.(3.19)

This enables us to drop both the second integral on the right and the second integral
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on the left in (3.18). Also, since lims→0 σ(s) = 0, we can find l so that

1
σ(s) ≥ max

ΩT

2

σ(u0)
on [l,∞).

Keeping this in mind, we estimate∫ t

0

∫ u(y,τ)

u0(y,τ)

K(s)

(
1

σ(s)
− 1

σ(u0)

)
dsdτ(3.20)

≥
∫
u(y,τ)>l

∫ u(y,τ)

u0(y,τ)

K(s)

(
1

σ(s)
− 1

σ(u0)

)
dsdτ − c

=

∫
u(y,τ)>l

∫ l

u0(y,τ)

K(s)

(
1

σ(s)
− 1

σ(u0)

)
dsdτ

+

∫
u(y,τ)>l

(∫ u(y,τ)

l

K(s)

(
1

σ(s)
− 1

σ(u0)

)
ds

)+

dτ − c

≥ −c.

The fact that lims→∞ σ(s) = 0 also enables us to show that for each ε > 0 there is a
positive number c such that

u ≤ ε

∫ u

0

1

σ(s)
ds+ c on [0,∞).(3.21)

Use this and (3.20) in (3.18) to obtain

∫
Ω

∫ u(x,τ)

0

1

σ(s)
ds

1

|x− y|N−2
dy ≤ c

∫
Ωt

∫ u(y,τ)

0

1

σ(s)

1

|x− y|N−2
dydτ + g(x, t),

(3.22)

where

g(x, t) = c

∫
Ωt

∫ u(y,τ)

0

K(s)ds
1

|x− y|N−1
dydτ +

c

(d(x, ∂Ω))N−1
.(3.23)

An application of Gronwall’s inequality gives∫
Ωt

∫ u(y,τ)

0

1

σ(s)
ds

1

|x− y|N−2
dydτ(3.24)

≤ c

∫ t

0

g(x, τ)dτ

≤ c

∫
Ωt

∫ u(y,τ)

0

K(s)ds
1

|x− y|N−1
dydτ +

c

(d(x, ∂Ω))N−1
.

Plugging this into (3.18) again, we obtain

∫ t

0

∫ u(x,τ)

u0(x,τ)

K(s)

(
1

σ(s)
− 1

σ(u0)

)
dsdτ(3.25)

≤ c

∫
Ωt

∫ u(y,τ)

0

K(s)ds
1

|x− y|N−1
dydτ +

c

(d(x, ∂Ω))N−1
,
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from which it follows that∫ t

0

∫ u(x,τ)

0

K(s)dsdτ(3.26)

≤ c

∫
Ω

∫ t

0

∫ u(y,τ)

0

K(s)dsdτ
1

|x− y|N−1
dy +

c

(d(x, ∂Ω))N−1
.

Recall from (2.9) that
∫ u(x,τ)

0
K(s)ds ∈L2(ΩT ). The theorem follows from Lemma 3.1.

Note that if we assume that f(s) = 1
σ(s) ∈ C2(R) and u0 ∈ W 2,∞(Ω), we can also

evaluate the first integral on the right-hand side of (3.12) as follows:∣∣∣∣
∫

Ω

K(u)f ′(u0)∇u∇u0
1

|x− y|N−2
dy

∣∣∣∣
=

∣∣∣∣∣
∫

Ω

∇
∫ u(y,τ)

u0(y,τ)

K(s)ds∇f(u0)
1

|x− y|N−2
dy +

∫
Ω

|∇f(u0)|2 1

|x− y|N−2
dy

∣∣∣∣∣
≤
∣∣∣∣∣−
∫

Ω

∫ u(y,τ)

u0(y,τ)

K(s)ds∆f(u0)
1

|x− y|N−2
dy

∣∣∣∣∣
+

∣∣∣∣∣(N − 2)

∫
Ω

∫ u(y,τ)

u0(y,τ)

K(s)ds∇f(u0)
x− y

|x− y|N dy

∣∣∣∣∣+ c

≤ c

∫
Ω

∫ u(y,τ)

0

K(s)ds
1

|x− y|N−1
dy + c.

In this case the second inequality in (1.16) can be removed.
The difficulty we are facing here is the lack of a comparison principle of any kind.

In fact, this represents the fundamental difference between systems of equations and
single equations.
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Abstract. Let Ω ⊂ Rn be an open ball, n ≥ 2. Suppose that f, g : Ω → Rn, f = g on ∂Ω,
and that f is injective. In case f and g are continuous, then f(Ω) ⊂ g(Ω). We extend this result to
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injectivity and boundary equality.
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1. Introduction. Let Ω ⊂ Rn be an open ball. It is widely known that if f, g :
Ω→ Rn are continuous injective mappings which agree on ∂Ω, then f(Ω) = g(Ω). In
connection with their work in the theory of nonlinear elasticity, Müller, Spector, and
Tang [11] considered the following related question:

If f ∈ W 1,p(Ω;Rn), d is a continuously differentiable diffeomorphism
on a neighborhood of Ω, and f and d agree on ∂Ω, what conditions
will guarantee that f(x) ∈ d(Ω) for almost all x ∈ Ω?

HereW 1,p(Ω;Rn) is the class of all mappings f : Ω→ Rn whose component functions
fi belong to the usual Sobolev space W 1,p(Ω), and the values of f on ∂Ω are in the
sense of the trace operator; cf. [2, section 4.3].

Mappings in the Sobolev space W 1,p(Ω;Rn), n = 3, are used in nonlinear elastic-
ity to model physical deformations of matter. Regarding f(Ω) as a deformation of an
elastic body Ω (in R3), it is natural that f should satisfy reasonable injectivity condi-
tions. See, for example, the papers [10] and [11] and the references therein. Generally,
such deformations f need not be homeomorphisms since cavities may appear in the
body during the deformation and Ω, f(Ω) may be homologically distinct.

One such condition is that f is injective almost everywhere, which is the case
if there exists a set N ⊂ Ω with |N | = 0 such that f(A \ N) ∩ f(B \ N) = ∅
whenever A and B are disjoint sets in Ω. This corresponds to the physical notion that
matter cannot interpenetrate itself. The question posed above concerns topological
consequences of the injectivity conditions imposed on the mapping f . It seeks to find
conditions which disallow the possibility that a nonnegligible volume of Ω will pass
through the boundary during the deformation, again related to the physical hypothesis
of noninterpenetrability.

Müller, Spector, and Tang [11] proved that if f ∈ W 1,p(Ω;Rn) with p > n − 1,
then in fact f(x) ∈ d(Ω) for almost all x ∈ Ω provided that

1. f(x) = d(x) for H1 almost all x ∈ ∂Ω,
2. there is a set N ⊂ Ω with H1(N) = 0 so that f |Ω\N is injective, and
3. Jf(x) 
= 0 for almost every x ∈ Ω with Jf(x) > 0 on a set of positive measure.
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Hk denotes k-dimensional Hausdorff measure and Jf denotes the Jacobian of f .
The authors [14] showed that the conclusion above remains valid if (2) is replaced

with the weaker condition Hn−1(N) = 0, provided that N may be decomposed as

N = N1 ∪N2, H1(N1) = 0, N2 closed,

and that for (almost) every pair S1, S2 of spheres in Ω, the preimage of f(S2 ∩N) in
S1 has Hn−2 measure zero. Roughly speaking, in the case of disjoint spheres S1 and
S2, this states that f(S1) and f(S2) must have very little overlap.

The key to the argument in [14] is a variant of the Jordan separation theorem,
which states that if S ⊂ Ω is a sphere and f ∈ W 1,p(S;Rn) with p > n − 1 has an
almost everywhere nonvanishing Jacobian, then Rn \ f(S) has precisely two compo-
nents, and the bounded component has finite perimeter provided that there is a closed
set N ⊂ S for which f |S\N is injective and

Hn−2(S ∩ f−1(f(S ∩N))) = 0.

In general one cannot expect to obtain such a result if the exceptional set N has
Hausdorff dimension exceeding n−1. Indeed, an example is given in section 5 of [11],
with B denoting the unit ball in R2, of a mapping f satisfying

f ∈
⋂

1≤p<2

W 1,p(B;R2), f |∂B ≡ Id,

which is injective off a set N ⊂ B with 0 < H1(N) < ∞, which satisfies Jf(x) > 0 for
almost all x ∈ Ω yet nevertheless carries a set of positive measure in B to the exterior
of B.

In contrast to this example, in this paper we derive a result in which the excep-
tional set may have dimension n—that it is possible to assume only that |N | = 0,
provided that additional integrability conditions are added to the derivatives of f . Our
analysis requires that if {fk} is a sequence of regularizers of f , then the Jacobians of
the fk converge locally in L1 to the Jacobian of f . That is,∫

K

|Jfk − Jf | dx → 0

for all compact sets K ⊂ Ω. This is the case if f ∈ W 1,n(Ω;Rn) and, more generally,
if the component functions lie in appropriate (but possibly different) Sobolev spaces.
For p̄ = (p1, p2, . . . , pn) ∈ Rn with each pi ≥ 1 we define

W 1,p̄(Ω;Rn) =
{
f = (f1, f2, . . . , fn) : Ω→ Rn : fi ∈ W 1,pi(Ω)

}
.

Our interest lies in mappings f ∈ W 1,p̄(Ω;Rn), where p̄ belongs to the class B defined
as follows:

B =
{
p̄ = (p1, p2, . . . , pn) : pi > n− 1 for all i and

n∑
i=1

1/pi ≤ 1
}

.

Goffman and Ziemer [6] developed a theory of area for such mappings in which the
area of f is given by the integral of its Jacobian. See Proposition 2.4 below.

We do not require d to be a diffeomorphism and we make no a priori assumption
regarding the positivity of Jf . In the case of continuous mappings f, g : Ω → Rn
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agreeing on ∂Ω, the containment f(Ω) ⊂ g(Ω) is valid, provided only that f is injec-
tive. Our theorem may be regarded as an extension of this fact.

Theorem 1.1. Let Ω ⊂ Rn be an open ball and let f ∈ W 1,p̄(Ω;Rn), where
p̄ ∈ B. If

1. there is a set N ⊂ Ω with |N | = 0 so that f |Ω\N is injective;

2. there is a continuous mapping d : Ω→ Rn belonging to W 1,p̄(Ω;Rn) so that
Trf = d on ∂Ω; and

3. Jf(x) 
= 0 for almost all x ∈ Ω,
then f(x) ∈ d(Ω) for almost all x ∈ Ω.

Remarks.
1. The trace operator Tr maps W 1,p̄(Ω;Rn) continuously to Lp̄(∂Ω;Rn) en-
dowed with the Hausdorff measure Hn−1. Thus Trf = d on ∂Ω is understood
to mean that Trf and d belong to the same Lp̄ equivalence class and in
particular coincide Hn−1 almost everywhere on ∂Ω.

2. Both the hypotheses and conclusion of Theorem 1.1 are independent of any
particular choice of representative of f so it suffices to consider only a particu-
lar representative. In our development we will assume without loss of general-
ity that f is p-quasicontinuous. For a thorough discussion of p-quasicontinuous
representatives, see [1, Chapter 6].

3. If, in addition, |d(∂Ω)| = 0, then in fact f(x) ∈ d(Ω) for almost all x ∈ Ω.
For conditions under which d may satisfy |d(∂Ω)| = 0, see the papers of Malý
[7] and Malý and Martio [8].

4. In section 4 we strengthen the conclusion of Theorem 1.1 and show that in fact
f(x) belongs to the topological image of Ω under d for almost all x ∈ Ω. This
fact is used in section 5 to establish monotonicity of maps in W 1,p̄(Ω;Rn) for
arbitrary open sets Ω.

For the remainder of the paper we consider cubes rather than balls. This is simply
for technical convenience and provides no loss of generality.

2. Preliminaries. Let Q ⊂ Rn be a closed cube and let f : Q → Rn be
continuous. We denote by

deg(f,Q, y)

the topological degree of f at a point y ∈ Rn \ f(∂Q). We recall the following
properties of the degree (cf. [12, II.2], [4, Chapters 1, 2]).

Proposition 2.1. Let f and Q be as above. Then deg(f,Q, ·) is an integer-valued
function satisfying the following:

1. deg(f,Q, y) is defined for all y /∈ f(∂Q) and is constant on the connected
components of Rn \ f(∂Q);

2. y /∈ f(Q) implies deg(f,Q, y) = 0;
3. if g : Q → Rn is continuous, y ∈ Rn, and

sup
z∈∂Q

|f(z)− g(z)| < dist(y, g(∂Q)),

then deg(f,Q, y) = deg(g,Q, y);
4. if {Qj} is a sequence of pairwise disjoint closed cubes contained in the interior

of Q, y ∈ Rn, and f−1(y) is contained in the union of the interiors of the
Qj, then

deg(f,Q, y) =
∑
j

deg(f,Qj , y),
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where at most finitely many terms in the sum are nonzero;
5. if f ∈ C1(Q) and y /∈ f(∂Q)∩ f({x : Jf(x) = 0}), then f−1(y) is a finite set

and

deg(f,Q, y) =
∑

x∈f−1(y)

sgnJf(x).

Property 3 is a real variables counterpart to Rouché’s theorem. In particular it
implies that deg(f,Q, ·) is uniquely determined by f |∂Q, making it possible to define
the degree for continuous maps f : ∂Q → Rn as the degree of any continuous extension
to the whole cube.

Let Ω ⊂ Rn be an open cube. Recall that a mapping f : Ω→ Rn is said to have
an approximate differential L at a point x ∈ Ω if there is a set E with density 1 at x
and a linear function L : Rn → Rn such that

lim
z→x
z∈E

|f(x)− f(z)− L(x− z)|
|x− z| = 0(2.1)

and that L is said to be regular if E may be written as a union of boundaries of
concentric cubes centered at x. The following was obtained by Goffman and Ziemer
[6].

Proposition 2.2. Let f ∈ W 1,p(Ω;Rn), p > n − 1. Then f has a regular
approximate differential coinciding with its distributional differential Df(x) at almost
all points x ∈ Ω and f |∂Q is continuous for almost every closed cube Q ⊂ Ω.

Standard examples show that the condition p > n− 1 is necessary. Of course the
continuity of a mapping is affected by the choice of representative in its Lp class, but
the proposition is valid for any quasicontinuous representative.

The topological multiplicity of a mapping f : Ω→ Rn is defined for y ∈ Rn by

M(f,Ω, y) = sup
Q

∑
Q∈Q

|deg(f,Q, y)|,

where the supremum is taken over all finite families Q of nonoverlapping closed cubes
Q ⊂ Ω for which f |∂Q is continuous and y /∈ f(∂Q). The following proposition
illustrates the relationship between Jf and M(f,Ω, ·).

Proposition 2.3. Let f ∈ W 1,p(Ω;Rn), p > n− 1. Then M(f,Ω, f(x)) ≥ 1 for
almost all x ∈ {Jf 
= 0}.

Proof. Let x be a point where Df(x) is a regular approximate differential of f and
where Jf(x) 
= 0. Almost every x ∈ {Jf 
= 0} has this property. We write Q(x, r)
for the cube of side-length 2r centered at x and define g(z) = f(x)−Df(x) · (x− z).
For every ε > 0, Proposition 2.2 and (2.1) imply that f |∂Q(x,r) is continuous and

sup
z∈∂Q(x,r)

|f(z)− g(z)| = sup
z∈∂Q(x,r)

|f(x)− f(z)−Df(x) · (x− z)| < εr

for infinitely many small r > 0. On the other hand, for arbitrary z ∈ ∂Q(x, r) we
may write

f(x)− g(z) = Df(x) · (x− z);

hence

r ≤ |x− z| = |Df(x)−1 · (f(x)− g(z))| ≤ |Df(x)−1| |f(x)− g(z)|.
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Taking the infimum over all z ∈ ∂Q(x, r), this implies

|Df(x)−1| r ≤ dist(f(x), g(∂Q(x, r))).
With ε = |Df(x)−1|, we conclude that there exists r > 0 so that Q(x, r) ⊂ Ω, f |∂Q(x,r)

is continuous, and

sup
z∈∂Q(x,r)

|f(z)− g(z)| < dist(f(x), g(∂Q(x, r))).

Let Q = Q(x, r). Proposition 2.1(3) implies that deg(f,Q, f(x)) = deg(g,Q, f(x)),
and since g is an injective affine mapping, part 5 of the same proposition implies that

deg(g,Q, f(x)) = ±1.
Therefore |deg(f,Q, f(x))| = 1, implying that M(f,Ω, f(x)) ≥ 1 as desired.

For our purposes, the importance of the topological multiplicity function lies in
the following proposition, in which the area of a mapping f is given by the integral
of its topological multiplicity. See Goffman and Ziemer [6] and Gariepy [5].

Proposition 2.4. Let f ∈ W 1,p̄(Ω;Rn) with p̄ ∈ B. Let {fk} denote a sequence
of regularizers of f . Then

1. limk→∞
∫
Ω
|Jf(x)− Jfk(x)| dx = 0;

2. limk→∞
∫
Rn |M(f,Ω, y)−M(fk,Ω, y)| dy = 0; and

3.
∫
Ω
|Jf(x)| dx = ∫

Rn |M(f,Ω, y)| dy = L(f),

where L(f) is the Lebesgue area of f .

3. Proof of Theorem 1.1. For r > 0 let Ωr denote the open cube with side-
length 2r centered at 0. We may assume without loss of generality that Ω = Ω1. Let
f, d ∈ W 1,p̄(Ω;Rn) and N ⊂ Ω satisfy the hypotheses of the theorem.

Step 1. There exists a sequence {Ek} of disjoint measurable subsets of Ω with the
property that |Ω\∪Ek| = 0 and f |Ek is Lipschitz for all k. For functions f ∈ W 1,1(Ω)
this follows from [3, Theorem 3.1.8] and the fact that f is approximately differentiable
almost everywhere. The extension to mappings f ∈ W 1,1(Ω;Rn) is immediate. Define
E = ∪Ej . Replacing E by E \N we may assume that f |E is injective. By hypothesis
we may assume that Jf(x) 
= 0 for all x ∈ E, and by Proposition 2.3 we may assume
further that M(f,Ω, f(x)) ≥ 1 for every x ∈ E.

Step 2. Let A ⊂ E be measurable. Applying the area formula for Lipschitz
mappings [3, Corollary 3.2.20] we have∫

A∩Ek
|Jf(x)| dx =

∫
Rn

N(f,A ∩ Ek, y) dy = |f(A ∩ Ek)|

for every Ek, where N(f,A ∩ Ek, y) is the crude multiplicity function counting the
number of solutions x ∈ A∩Ek to f(x) = y. Since Lipschitz mappings carry measur-
able sets to measurable sets, the monotone convergence theorem and the injectivity
of f then imply ∫

A

|Jf(x)| dx = |f(A)|.(3.1)

In particular, |f(A)| = 0 if and only if |A| = 0 since |Jf | > 0 on E. Since this holds
for all measurable A ⊂ E, the Radon–Nikodým theorem implies that for every ε > 0
there exists δ > 0 so that

|A| < ε whenever |f(A)| < δ.(3.2)
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Step 3. Extend d ∈ W 1,p̄(Ω;Rn) ∩ C(Ω;Rn) to a mapping (again denoted by
d) in W 1,p̄(Ω;Rn) ∩ C(Ω2;R

n). This extension may be obtained using a reflection
argument as in [9, Theorem 1.63]. Since Tr satisfies

lim
r→0

r−n
∫
B(x,r)∩Ω

|f(y)− Trf(x)| dy = 0

for Hn−1-a.e. x ∈ ∂Ω (see, for instance, Theorem 2 in [2, section 5.3]), the continuity
of d and the fact Trf = d on ∂Ω imply that

lim
r→0

r−n
∫
B(x,r)∩Ω

|f(y)− d(y)| dy = 0(3.3)

for Hn−1-a.e. x ∈ ∂Ω. Now define

h(x) =

{
f(x)− d(x), x ∈ Ω,
0, x ∈ Rn \ Ω.

Clearly every component function of h belongs to BV (Rn) since Ω is a cube; cf. [16,
Lemma 5.10.4]. At all points x ∈ ∂Ω where (3.3) holds we have

lim
r→0

∫
B(x,r)

|h(y)| dy = 0,

implying that each component function of h is approximately continuous at all such x.
It follows from [3, Theorem 4.5.9 (30)] that the component functions are absolutely
continuous on almost all lines in Rn parallel to the coordinate axes, and since these
partial derivatives vanish outside Ω, we conclude that

h ∈ W 1,p̄(Rn;Rn).

Now define

f̃(x) =

{
f(x), x ∈ Ω,
d(x), x ∈ Ω2 \ Ω.

Then f̃ ∈ W 1,p̄(Ω2;R
n) since

f̃ = h+ d on Ω2.

For convenience denote f̃ again by f .
Step 4. Fix 1 < R < 2. We will prove that

|{x ∈ Ω : f(x) /∈ d(ΩR)}| = 0.
Let ε > 0. Choose δ > 0 satisfying (3.2) and choose 1 < r < R sufficiently close to 1
so that ∫

Ωr\Ω
|Jf(x)| dx < δ.(3.4)

Let {fk} be a sequence of regularizers of f . Then

lim
k→∞

∫
Rn

|M(f,Ωr, y)−M(fk,Ωr, y)| dy = 0



WEAKLY DIFFERENTIABLE MAPPING 1105

by Proposition 2.4. Thus there is a subsequence of the fk, again denoted by the full
sequence, with the property that M(fk,Ωr, y) → M(f,Ωr, y) for almost all y ∈ Rn
as k → ∞.

Step 5. Define

X = {y ∈ f(E) :M(f,Ωr, y) ≥ 2}.

Note that M(f,Ωr, y) = 1 for all y ∈ f(E) \ X since M(f,Ωr, f(x)) ≥ 1 whenever
x ∈ E. By Proposition 2.4 we have∫

f(E)

M(f,Ωr, y) dy ≤
∫
Rn

M(f,Ωr, y) dy =

∫
Ωr

|Jf | dx,

where ∫
Ωr

|Jf | dx =
∫
E

|Jf | dx+
∫

Ωr\Ω
|Jf | dx < |f(E)|+ δ

by (3.1) and (3.4). On the other hand,∫
f(E)

M(f,Ωr, y) dy =

∫
f(E)\X

M(f,Ωr, y) dy +

∫
X

M(f,Ωr, y) dy

≥ |f(E) \X|+ 2|X|
= |f(E)|+ |X|,

from which it follows that |X| < δ.
Step 6. For each k ≥ 1 the classical area formula states∫

Rn

N(fk,Ωr, y) dy =

∫
Ωr

|Jfk(x)| dx < ∞,

implying that N(fk,Ωr, y) is finite for almost all y ∈ Rn. In light of Steps 4 and 5
there exists a set G ⊂ f(E) with the property that

1. |f(E) \G| < δ;
2. N(fk,Ωr, y) < ∞ for all y ∈ G and k ≥ 1; and
3. M(fk,Ωr, y)→ 1 as k → ∞ for all y ∈ G.

SinceM is integer valued, note that property 3 states that for fixed y ∈ G,M(fk,Ωr, y)
= 1 for all sufficiently large k.

Now choose y ∈ G and suppose that y /∈ d(Ωr). Since f |∂Ωr is continuous, the
regularizers fk converge uniformly to f on ∂Ωr, and so Proposition 2.1(3) implies

deg(fk,Ωr, y) = deg(f,Ωr, y) = deg(d,Ωr, y) = 0(3.5)

for all sufficiently large k. It is thus possible to fix k (depending on y) so that
M(fk,Ωr, y) = 1 and deg(fk,Ωr, y) = 0. By the definition of M there exists a finite
family Q of closed cubes in Ωr with the property that y /∈ fk(∂Q) for each Q ∈ Q and∑

Q∈Q
|deg(fk, Q, y)| = 1.(3.6)

Since y ∈ G implies that f−1
k (y) is a finite set, and since the sum in (3.6) cannot exceed

1 for any choice of the family Q, we may assume (by adding finitely many additional
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cubes Q to Q if necessary) that f−1
k (y) is contained in the union of the interiors of

the cubes Q ⊂ Q. Since deg is integer valued, this implies that deg(fk,Ωr, y) = ±1
for exactly one cube Q ∈ Q and is zero otherwise. Thus, by Proposition 2.1(4), we
conclude

0 = deg(fk,Ωr, y) =
∑
Q∈Q

deg(fk, Q, y) = ±1,

a contradiction. Therefore y ∈ d(Ωr) ⊂ d(ΩR). We conclude that G ⊂ d(ΩR), and
hence that

|{y ∈ f(E) : y /∈ d(ΩR)}| ≤ |f(E) \G| < δ.

By (3.2) and the choice of δ, this implies

|{x ∈ E : f(x) /∈ d(ΩR)}| < ε,

and since ε > 0 was arbitrary we have

|{x ∈ Ω : f(x) /∈ d(ΩR)}| = 0,
as desired.

Step 7. Now we may complete the argument. Let Rj be a sequence of real
numbers decreasing to 1, and observe that

d(Ω) =

∞⋂
j=1

d(ΩRj ).

To see this, if z belongs to the intersection, then for every j there exists xj ∈ ΩRj
with d(xj) = z. Since {xj} is a bounded sequence there exists a subsequence (denoted
again by the full sequence) so that xj converges to a point x ∈ Ω. The continuity of
d implies that d(x) = z, implying that z ∈ d(Ω). The other containment is obvious.
It follows that

{x ∈ Ω : f(x) /∈ d(Ω)} =
∞⋃
j=1

{x ∈ Ω : f(x) /∈ d(ΩRj )},

so by the result of Step 6 we conclude that

|{x ∈ Ω : f(x) /∈ d(Ω)}| = 0.
This completes the proof.

4. Topological image. Let Q ⊂ Rn be a closed cube and let g : ∂Q → Rn be
continuous. The topological image of Q under g is defined as

imT (g,Q) = g(∂Q) ∪ {y ∈ Rn \ g(∂Q) : deg(g,Q, y) 
= 0} .
If g : Q → Rn is continuous, then imT (g,Q) ⊂ g(Q) and equality holds if g is a home-
omorphism. We will show that the conclusion of Theorem 1.1 may be strengthened
to

f(x) ∈ imT (d,Ω) for almost every x ∈ Ω.
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Observe that (3.5) remains valid under the assumption that

y /∈ imT (d,Ωr)
rather than y /∈ d(Ωr), so the contradiction obtained in Step 6 above allows us to
conclude that G ⊂ imT (d,Ωr). Since this is valid for all sufficiently small r (dependent
on ε and R) we obtain the following corollary to the proof of Theorem 1.1: for every
ε > 0 there exists r0 so that 1 < r < r0 implies

|{x ∈ Ω : f(x) /∈ imT (d,Ωr)}| < ε.(4.1)

We will not make use of ΩR. The set of points x ∈ Ω with the property that f(x) /∈
imT (d,Ω) may be written as

B = {x ∈ Ω : f(x) /∈ d(∂Ω), deg(d,Ω, f(x)) = 0}.
Let us assume for the sake of obtaining a contradiction that |B| > 0, and for every
positive integer k define

Bk = B ∩ {x ∈ Ω : dist(f(x), d(∂Ω)) ≥ k−1}.
Thus there is an index k for which |Bk| > 0.

For each r > 1 denote by ψr the homothetic transformation

ψr(x) = rx

and observe that

deg(ψr,Ω, p) =

{
1, p ∈ Ωr,
0, p /∈ Ωr.

It follows from the multiplication theorem for degree [4, Theorem 2.10] that

deg(d ◦ ψr,Ω, p) = deg(d,Ωr, p)(4.2)

for all p /∈ d(∂Ωr). Define ε = |Bk|/2 and choose r > 1 so that (4.1) holds and that

sup
z∈∂Ω

|d(z)− d ◦ ψr(z)| < 1

2k
.

This is possible due to the uniform continuity of d. Let x ∈ Bk and choose an arbitrary
point z ∈ ∂Ω. Then

1

k
≤ |f(x)− d(z)| ≤ |f(x)− d ◦ ψr(z)|+ |d(z)− d ◦ ψr(z)| < |f(x)− d ◦ ψr(z)|+ 1

2k
,

implying that |f(x)− d ◦ ψr(z)| > 1/(2k) for all z ∈ ∂Ω. It follows that

sup
z∈∂Ω

|d(z)− d ◦ ψr(z)| < dist(f(x), d ◦ ψr(∂Ω)).

Therefore f(x) /∈ d ◦ ψr(∂Ω) = d(∂Ωr), and Proposition 2.1 along with (4.2) above
implies

deg(d,Ωr, f(x)) = deg(d ◦ ψr,Ω, f(x)) = deg(d,Ω, f(x)) = 0

for all x ∈ Bk. Thus

Bk ⊂ {x ∈ Ω : f(x) /∈ imT (d,Ωr)},
but according to (4.1) this implies

0 < |Bk| < ε = |Bk|/2,
which is the desired contradiction. It follows that |Bk| = 0, and hence that |B| = 0.
We conclude that f(x) ∈ imT (d,Ω) for almost all x ∈ Ω, as desired.
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5. Monotonicity. In this section we assume that Ω ⊂ Rn is an arbitrary open
set.

Theorem 5.1. Let f ∈ W 1,p̄(Ω;Rn), p̄ ∈ B, and suppose there is a set N ⊂ Ω
so that f |Ω\N is injective and Jf(x) 
= 0 for all x ∈ Rn \N . Then for almost every
cube Q ⊂ Ω,

f(x) ∈ imT (f,Q)
for almost all x ∈ Q.

Theorem 5.1 was proven for mappings in the class W 1,n(Ω;Rn) by Vodop’yanov
and Gol’dshtein [15], who refer to this property as monotonicity. A closely related
concept is condition (INJ) introduced by Müller and Spector [10]. Their definition
of the topological image is at a slight variance with ours, as it does not include the
image of the boundary of the domain.

To prove the theorem we fix a point a ∈ Ω and let
ra = sup{r > 0 : Q(a, r) ⊂ Ω}.

It suffices to show that for almost all r belonging to the interval (0, ra), the conclusion
holds for the cube Q(a, r). Since each pi > n− 1 we may appeal to [6, Theorem 3.2]
to conclude that for almost all r ∈ (0, ra), the regularizers fk of f converge uniformly
to f on ∂Q(a, r). Fix such an r. Then f |∂Q(a,r) is continuous and may be extended
to a function in W 1,p̄(Q(a, r);Rn) ∩ C(Q(a, r);Rn) as follows. Let δ ∈ C∞(Q(a, r))
satisfy

C1dist(x, ∂Q(x, r)) ≤ δ(x) ≤ C2dist(x, ∂Q(a, r))

for all x ∈ Q(a, r), where C1 and C2 are independent of x and f . Let φ ∈ C∞
0 (B(0, 1))

be a regularizing kernel with the property that

P = φε ∗ P

for every linear polynomial P . Writing

ψz(x) = δ(x)−nφ
(
x− z

δ(x)

)

for x ∈ Ω and z ∈ Rn, define

d(x) =



∫
Rn

ψz(x)f(z) dz, x ∈ Q(a, r)◦,

f(x), x ∈ ∂Q(a, r),

where Q(a, r)◦ denotes the topological interior of Q(a, r). Then

d(x) ∈ W 1,p̄(Q(a, r)◦;Rn) ∩ C(Q(a, r);Rn)

(in fact, d is C∞ on the interior) and satisfies

lim
r→0

r−n
∫
B(x,r)∩Q

|f(y)− d(y)| dy = 0

for all x ∈ ∂Ω. In particular, Trf = d on ∂Ω. See [13], [16, Chapter 3] for details.
Applying the result of the preceding section, we have

f(x) ∈ imT (d,Q(a, r)) = imT (f,Q(a, r))
for almost all x ∈ Q(a, r), completing the proof of Theorem 5.1.
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[8] J. Malý and O. Martio, Lusin’s condition (N) and mappings of the class W 1,n, J. Reine

Angew. Math., 458 (1995), pp. 19–36.
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ON THE COMPRESSIBILITY OF OPERATORS IN
WAVELET COORDINATES∗
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Abstract. In [Found. Comput. Math., 2 (2002), pp. 203–245], Cohen, Dahmen, and DeVore
proposed an adaptive wavelet algorithm for solving operator equations. Assuming that the operator
defines a boundedly invertible mapping between a Hilbert space and its dual, and that a Riesz basis
of wavelet type for this Hilbert space is available, the operator equation can be transformed into an
equivalent well-posed infinite matrix-vector system. This system is solved by an iterative method,
where each application of the infinite stiffness matrix is replaced by an adaptive approximation.
For a certain range of s > 0, determined by the compressibility of the stiffness matrix, i.e., by
how well it can be approximated by sparse matrices, it was proven that if the errors of best linear
combinations from the wavelet bases with N terms are O(N−s), then approximations yielded by
the adaptive method with N terms also have errors of O(N−s), where their computation takes only
O(N) operations. With the available estimates for both differential and singular integral operators,
the compressibility of the stiffness matrix appears to limit the rate of convergence of the adaptive
method, in the sense that for solutions that have a sufficiently high (Besov) regularity, these best
N -term approximations converge with a better rate than can be shown for the approximations
produced by the adaptive method. In this paper, considering piecewise smooth wavelets as spline
or finite element wavelets, and using modified sparse matrix approximations, we derive improved
results concerning compressibility. From these results it will follow that for the full range of s for
which, under appropriate smoothness conditions, convergence of the best N -term approximations of
O(N−s) can be shown, the adaptive method converges with that rate.

Key words. wavelets, matrix compression, differential operators, boundary integral operators,
adaptivity
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1. Introduction. As was first observed in [BCR91], the stiffness matrix result-
ing from a Galerkin discretization of a singular integral operator, which, using stan-
dard single scale bases, is densely populated, turns out to be close to a sparse matrix
when wavelet bases are exploited. Responsible for this phenomenon is the fact that the
kernel of such an operator is increasingly smooth away from the diagonal, and that the
wavelets have vanishing moments. Quantitative analyses in [Sch98, DHS02, vPS97]
show that for wavelets that have a sufficient number of vanishing moments, the stiff-
ness matrix can be compressed to a sparse one, whose application requires only O(n)
operations, with n being the number of unknowns, whereas the order of convergence
is maintained.

Compared to alternative approaches for compression such as panel clustering
[HN89] and multipole expansions [GR87], the wavelet approach has the additional
advantage that properly scaled wavelets generate Riesz bases for a range of Sobolev
spaces. Therefore, in any case for strongly elliptic equations, if the operator defines a
boundedly invertible mapping between a Sobolev space in this range and its dual, then
the stiffness matrices with respect to the wavelet bases are well-conditioned uniformly

∗Received by the editors July 19, 2002; accepted for publication (in revised form) May 23, 2003;
published electronically January 6, 2004. This work was supported by the Netherlands Organization
for Scientific Research and by the EC-IHP project “Breaking Complexity.”

http://www.siam.org/journals/sima/35-5/41152.html
†Department of Mathematics, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, The

Netherlands (stevenso@math.uu.nl).

1110



COMPRESSIBILITY OF OPERATORS IN WAVELET COORDINATES 1111

in their sizes, allowing for a fast iterative solution. In summary, with suitable wavelets
the discretization error accuracy can be realized in O(n) operations.

This Riesz basis property inspired Cohen, Dahmen, and DeVore in [CDD01,
CDD02] to go one step further. Instead of first discretizing the problem, i.e., replacing
the underlying infinite-dimensional space by some fixed finite-dimensional one, and
then solving the resulting finite-dimensional system by some iterative method, they
transformed the original problem into an equivalent well-posed infinite matrix-vector
system. This system can be solved iteratively, where in each iteration the application
of the infinite matrix has to be approximated. The main advantage of their approach
is that in the course of the iteration the spaces in which the approximations are sought,
which are always spanned by a finite linear combination of wavelets, will adapt to the
solution in an optimal way. Because of this adaptivity, the method is attractive for
both integral and differential equations in variational form.

In the following we assume that the problem to be solved has the form

Lu = g,

where for some closed subspace H ⊂ Ht, being a Sobolev space of order t ∈ R, the
linear operator L : H → H′ is boundedly invertible, the right-hand side g ∈ H′, and
thus the unknown solution u ∈ H. With Ψ = {ψλ : λ ∈ Λ} being a Riesz basis for H
of wavelet type, the equivalent infinite matrix-vector problem reads as

Mu = g,(1.1)

where M := 〈Ψ, LΨ〉 : 
2(Λ) → 
2(Λ) is boundedly invertible, g := 〈Ψ, g〉 ∈ 
2(Λ),
with 〈 , 〉 denoting the duality product on H×H′, and u = uTΨ.

In [CDD01, CDD02], the quality of the proposed iterative method is assessed by
comparing the 
2(Λ)-error of the obtained approximation with, say, N coefficients
with that of a best N -term approximation for u, i.e., a vector uN with at most N
nonzero coefficients that has distance to u less than or equal to that of any vector
with a support of that size. Recall that since Ψ is a Riesz basis, the sizes of the error
measured in 
2(Λ)- or H

t-metric differ by at most a constant factor.
In any case for wavelets that are sufficiently smooth, the theory of nonlinear

approximation [DeV98, Coh00] shows that if both

0 < s <
d− t

n
,

where n is the space dimension and d is the order of the wavelets, and u is in the
Besov space Bsn+t

τ (Lτ ) with τ = ( 12 + s)−1, then

sup
N∈N

Ns‖u− uN‖ < ∞.(1.2)

Here with the order of the wavelets we mean the order of the primal multiresolution
analysis or, equivalently, the number of vanishing moments of the dual wavelets.

The attractive feature of these best N -term approximations is the fact that the
condition involving Besov regularity is much milder that the corresponding condition
u ∈ Hsn+t involving Sobolev regularity that would be needed to guarantee the same
rate of convergence with linear approximation in the spaces spanned by N wavelets on
the coarsest scales. Indeed, assuming a sufficiently smooth right-hand side, for several
boundary value problems it has been proven that the solution has a much higher Besov
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regularity than Sobolev regularity [DD97, Dah99]. Note that with wavelets of order d,
the maximum rate that can be expected by only imposing appropriate smoothness
conditions on the solution is d−t

n .
Returning to the adaptive wavelet algorithm from [CDD02], besides a clean-up

step that is applied after every K iterations to remove small coefficients in order to
control the vector length, the other crucial ingredient is the adaptive way in which,
in each iteration, the application of the infinite matrixM to a finitely supported vec-
tor is approximated. Given such a vector, before multiplication each column of M
that corresponds to a nonzero entry in this vector is replaced by a finitely supported
approximation within a tolerance that decreases as a function of the size of this coef-
ficient. To prove results about complexity, information is needed about the number
of entries that is necessary to approximate any column within some given tolerance.
We recall the following definition from [CDD02].

Definition 1.1. M is called s∗-compressible, when for each j ∈ N there exists
an infinite matrix M̃j with at most αj2

j nonzero entries in each row and column with∑
j∈N

αj < ∞ such that for any s < s∗,
∑

j∈N
2js‖M− M̃j‖ < ∞.

An equivalent definition is obtained by requiring that for any s < s∗ and any
N ∈ N, there exists a matrix on distance of order N−s having at most N nonzeros in
each row and column.

The main theorem from [CDD02] now says that if (1.2) is valid for some s andM
is s∗-compressible with s∗ > s, then the number of arithmetic operations and storage
locations used by the adaptive wavelet algorithm for computing an approximation for
u within tolerance ε is of the order ε−1/s. Since in view of (1.2) the same order of
operations is already needed to approximate u within this tolerance using best N -
term approximations, assuming these would be available, this result shows that this
solution method has optimal computational complexity.

It remains to determine the value of s∗. First of all, note that even for a differ-
ential operator, M itself is not sparse. Indeed, any two wavelets ψλ, ψλ′ from the
infinite collection with vol(suppψλ ∩ suppψλ) > 0 give rise to a generally nonzero
entry. Furthermore, in contrast to the nonadaptive setting, here we do not have
the possibility for the matrix-vector multiplication to switch to a single-scale repre-
sentation, which for differential operators would be sparse. On the other hand, it
can be shown that for wavelets that have both vanishing moments and some global
smoothness, the modulus of an entry decreases with increasing distance in scale of the
involved wavelets. Assuming that for some σ > 0, L and its adjoint L′ are bounded
from Ht+σ → H−t+σ, by substituting the estimates [Dah97, eqn. (9.4.5), eqn. (9.4.8)]
into [CDD01, Prop. 6.6.2] we infer that M is s∗-compressible with

s∗ =
min{t+ d̃, σ, γ − t}

n
− 1

2
,(1.3)

where d̃ is the order of the dual wavelets, and γ = sups{Ψ ⊂ Hs} (here we used that
the condition σ < t + γ̃ imposed for [Dah97, eqn. (9.4.8)] can actually be relaxed to
σ ≤ t + d̃). This result holds true for differential operators as well as for singular
integral operators. Note that in contrast to the nonadaptive setting discussed at the
beginning of this introduction, global smoothness of the wavelets is required.

The result (1.3), however, is not satisfactory. Indeed, since γ < d and so s∗ ≤
γ−t
n − 1

2 < d−t
n , on the basis of (1.3) optimal computational complexity of the adap-

tive wavelet method can be concluded only for solutions u that have limited Besov
regularity. Indeed, when u ∈ Bsn+t

τ (Lτ ) with τ = ( 12 + s)−1 and s > s∗, then the
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best N -term approximations converge at a faster rate than can be shown for the
approximations yielded by the adaptive wavelet method.

For the special case of L being the Laplace operator and spline wavelets, in
[BBC+01, DDU02] it was proved that s∗ = γ−t

n , which, however, is still less than
d−t
n .

In this paper we consider piecewise smooth wavelets as spline or finite element
wavelets. For both differential and singular integral operators, and for wavelets that
have a sufficient global smoothness and have cancellation properties of a sufficiently
high order, we will prove thatM = 〈Ψ, LΨ〉 is actually s∗-compressible with s∗ > d−t

n .

This result shows that if for some arbitrary s from the full range (0, d−tn ] the best
N -term approximations convergence with errors of O(N−s), then so do the approxi-
mations yielded by the adaptive method. The key to obtaining this improved result
is that we use slightly different sparse approximations and that on essential places we
estimate directly norms of blocks of the matrixM instead of deriving such estimates
in terms of the sizes of the individual entries via the Schur lemma.

This paper is organized as follows: In section 2 we prove s∗-compressibility with
s∗ > d−t

n for differential operators on a domain.

In section 3 we prove this result for a class of singular integral operators on
a sufficiently regular manifold, which includes operators resulting from applying the
boundary integral method. Since the regularity of the manifold imposes a limit to both
the smoothness of the wavelets and the continuity properties of the singular integral
operators, depending on the other parameters it may restrict the compressibility. In
section 3.3, we give a general proof of a decay estimate for entries corresponding to
wavelets with disjoint supports, which so far was shown only in specific situations. In
section 3.4, relying on techniques developed in [Sch98, DHS02], we prove a new decay
estimate for entries corresponding to wavelets, or, more generally, corresponding to
a linear combination of wavelets and another wavelet, that may have overlapping
supports but for which the support of the linear combination has empty intersection
with the singular support of the other wavelet. In contrast to the bounds from [Sch98,
DHS02], this estimate benefits from global smoothness of the wavelets. Apart from
its use in the analysis of adaptive schemes, this estimate also results in quantitatively
better compression rates when applied in the analysis of nonadaptive schemes.

At the end of this introduction, we fix some notation. We always think of the
space L2 of all measurable square integrable functions on a domain Ω or manifold Γ
as being equipped with the standard scalar product 〈 , 〉 and corresponding norm ‖ ‖,
defined by 〈u, v〉 = ∫

Ω
u(x)v(x)dx or 〈u, v〉 = ∫

Γ
u(x)v(x)dµ(x), with dµ being the

induced Lebesgue measure.

For H a Hilbert space embedded in L2 and any u ∈ L2, the mapping v �→ 〈v, u〉 is
continuous onH. This procedure defines an embedding of L2 intoH

′, or, equivalently,
it fixes an interpretation of a function in L2 as a functional in H ′. Different scalar
products on L2, defining equivalent norms on L2, give rise to different embeddings
of L2 into H ′, which may lead to nonequivalent H ′-norms of L2-functions (cf. [NS03,
sect. 4]). This observation, together with the fact that on a few places in the wavelet
literature nonstandard L2-scalar are applied, is the reason we emphasize here our
choice of the L2-scalar product.

If H is dense in L2, then the above embedding of L2 into H ′ is dense, meaning
that the L2-scalar product restricted to H×L2 has an unique extension to the duality
product on H × H ′. For such an H, without risk of confusion, we may use 〈 , 〉 to
denote either product.

For any countable index set Λ, the notation 〈 , 〉 and ‖ ‖ will also be used to denote
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the standard scalar product and norm, as well as the resulting operator norm, on the
space 
2(Λ) of square summable scalar sequences.

Finally, in order to avoid the repeated use of generic but unspecified constants,
by C <∼ D we mean that C can be bounded by a multiple of D, independently of

parameters which C and D may depend on. Obviously, C >∼ D is defined as D <∼ C,

and C � D as C <∼ D and C >∼ D.

2. Compressibility of differential operators. For some domain Ω ⊂ R
n,

t ∈ N0, and ΓD ⊂ ∂Ω, possibly with ΓD = ∅, let
Ht

0,ΓD (Ω) = closHt(Ω){u ∈ Ht(Ω) ∩ C∞(Ω) : suppu ∩ ΓD = ∅},

and let L : Ht
0,ΓD (Ω)→ (Ht

0,ΓD (Ω))
′ be defined by

〈u, Lv〉 =
∑

|α|,|β|≤t
〈∂αu, aαβ∂βv〉,

where aαβ ∈ L∞(Ω) so that L is bounded. Obviously L has an extension, which we will
also denote by L, as a bounded operator from Ht(Ω) → H−t(Ω). For completeness,
Hs(Ω) for s < 0 denotes the dual of H−s(Ω).

We assume that there exists a σ > 0 such that

L,L′ : Ht+σ(Ω)→ Ht−σ(Ω) are bounded.(2.1)

It is sufficient that for arbitrary ε > 0 and all α, β with min{|α|, |β|} > m − σ, the
following holds:

aαβ ∈
{

W
σ−m+min{|α|,|β|}
∞ (Ω) when σ ∈ N,

Cσ−m+min{|α|,|β|}+ε(Ω) when σ �∈ N.

Let

Ψ = {ψλ : λ ∈ Λ}
be a Riesz basis for Ht

0,ΓD (Ω) of wavelet type. The index λ encodes both the level,

denoted by |λ| ∈ N0, and the location of the wavelet ψλ.
We assume that the wavelets are local in the sense that

diam(suppψλ) <∼ 2−|λ| and sup
x∈Ω,�∈N0

#{|λ| = 
 : B(x; 2−�) ∩ suppψλ} < ∞,

and that they are piecewise smooth, with which we mean that suppψλ\sing suppψλ
is the disjoint union of m open “uniformly Lipschitz” domains Ξλ,1, . . . ,Ξλ,m, with
∪mi=1Ξλ,i = suppψλ, and that ψλ|Ξλ,i is smooth with, for any β ∈ N

n
0 ,

sup
x∈Ξλ,i

|∂βψλ(x)| <∼ 2(|β|+
n
2 −t)|λ|.(2.2)

Examples of piecewise smooth wavelets are tensor products of univariate spline wavelets,
or finite element wavelets subordinate to a subdivision of the domain into n-simplices.

Remark 2.1. Precisely, we will call a collection of domains {Aν} ⊂ R
n uniformly

Lipschitz domains when there exist affine mappings Bν with |DBν | <∼ vol(Aν)
−1 and

|(DBν)
−1| <∼ vol(Aν) such that the sets Bν(Aν) satisfy the condition of “minimal
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smoothness” [Ste70, Chap. VI, sect. 3] with uniform parameters “ε,” “N ,” and “M .”
Examples are given of the interiors of “nondegenerate” polygons.

For minimally smooth domains it is known [Ste70] that there exist universal ex-
tension operators, with Sobolev norms dependent only on the aforementioned param-
eters. So, in particular, by first transforming ψλ|Ξλ,i using such an affine mapping to a
function on a minimally smooth domain with volume one, then making the extension,
and finally applying the inverse transformation, we conclude by (2.2) that there exists
a smooth function ϕλ,i on R

n, equal to ψλ on Ξλ,i, with, for any s ≥ 0, p ∈ [1,∞],
‖ϕλ,i‖W s

p (R
n)

<∼ 2(s−t+
n
2 −n

p )|λ|.

Furthermore, we assume that there exist γ > t, d̃ > −t such that for r ∈ [−d̃, γ),
s < γ,

‖ · ‖Hr(Ω)
<∼ 2�(r−s)‖ · ‖Hs(Ω) on W� := span{ψλ : |λ| = 
}.(2.3)

Remark 2.2. It is known that the above wavelet assumptions are satisfied by
biorthogonal wavelets when the primal and dual spaces have regularity indices γ >
max{0, t}, γ̃ > max{0,−t} and orders d > γ, d̃ > γ̃, respectively (cf. [Dah96, DS99c]),
the primal spaces consist of “piecewise” smooth functions, and, finally, no boundary
conditions are imposed on the dual spaces (“complementary boundary conditions”;
see [DS98]). In particular, (2.3) for r ∈ [−d̃,−γ̃] can be deduced from the lines
following (A.2) in [DS99c]. In Remark 2.5 we will comment on the case when the dual
spaces satisfy the same boundary conditions as the primal ones.

Let us consider two wavelets ψλ′ , ψλ with vol(suppψλ′ ∩ suppψλ) > 0 and |λ′| �
|λ|. Then on the scale of the size of suppψλ′ , ψλ and so by the continuity assumption
(2.1), Lψλ are smooth, and therefore the latter function can be well approximated by
a polynomial that integrated against ψλ′ vanishes because of its vanishing moments,
showing that the entry 〈ψλ′ , Lψλ〉 is small. The quantification of the smoothness of
ψλ is governed by the parameter γ, whereas the number of vanishing moments of ψλ′

is given by d̃. Since t > 0, usually t+ d̃ ≥ γ− t, with which γ becomes the restricting
factor in compression results. To relax the restriction imposed by γ, in the following
theorem we will make use of the fact that most of these ψλ′ will have their support
inside some patch Ξλ,i on which ψλ is infinitely smooth, and that only for ψλ′ with sup-
ports that intersect the (n−1)-dimensional singular support of ψλ, the estimate of the
corresponding entry has to rely on the global smoothness parameter γ. Furthermore,
to obtain sharp results, instead of estimating individual entries, we will directly esti-
mate norms of blocks of the infinite matrix containing all entries that will be dropped.

Theorem 2.3. Let M = 〈Ψ, LΨ〉. For j ∈ N, and with

k(j, n) :=
j

n− 1 when n > 1,

and j ≤ k(j, 1) ≤ 2j, k(j, 1) > jmin{t+d̃,σ}
γ−t , we define the infinite matrix Mj by

replacing all entries Mλ,λ′ = 〈ψλ, Lψλ′〉 by zeros when

∣∣|λ| − |λ′|∣∣ > k(j, n), or

(2.4)

∣∣|λ| − |λ′|∣∣ > j
n and for some 1 ≤ i ≤ m,

{
suppψλ ⊂ Ξλ′,i when |λ| > |λ′|,
suppψλ′ ⊂ Ξλ,i when |λ| < |λ′|.

(2.5)
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Then the number of nonzero entries in each row and column of Mj is of order 2
j,

and for any

s ≤ min{ t+d̃n , σn}, with s < γ−t
n−1 when n > 1,

it holds that ‖M−Mj‖ <∼ 2−sj.
Remark 2.4. In view of Definition 1.1, by taking M̃j = M�j+log(αj)�, with, for

example, αj = j−(1+ε) for some ε > 0, we infer that M is s∗-compressible with

s∗ = min{ t+d̃n , σn ,
γ−t
n−1}

(s∗ = min{t + d̃, σ} when n = 1). So, with d being the order of the wavelets, if
d̃ > d−2t, σ > d−t and when n > 1, γ−tn−1 > d−t

n , then indeed s∗ > d−t
n . The condition

involving γ when n > 1 is satisfied, for instance, when d−t
n > 1

2 and γ = d− 1
2 (spline

wavelets).
Proof of Theorem 2.3. Let λ be some given index. By the locality of the wavelets,

the number of indices λ′ with fixed |λ′| for which vol(suppψλ′ ∩ suppψλ) > 0 is of or-
der max{1, 2(|λ′|−|λ|)n}. By using in addition the piecewise smoothness of the wavelets,
the number of indices λ′ with fixed |λ′| > |λ| for which vol(suppψλ′ ∩ suppψλ) > 0
and suppψλ′ is not contained in some Ξλ,i is of order 2

(|λ′|−|λ|)(n−1). We conclude
that the number of nonzero entries in the λth row and column of Mj is of order∑

||λ′|−|λ||≤ j
n

max{1, 2(|λ′|−|λ|)n}+
∑

j
n<||λ′|−|λ||≤k(j,n)

max{1, 2(|λ′|−|λ|)(n−1)} � 2j .

Let M̂j be defined by

(M− M̂j)λ,λ′ =

{
Mλ,λ′ when

∣∣|λ| − |λ′|∣∣ > k(j, n),
0 otherwise.

The continuity assumptions on L,L′, together with (2.3), show that for

r ∈ (0, t+ d̃] ∩ (0, σ] ∩ (0, γ − t)

and w� ∈ W�, w�′ ∈ W�′ ,

|〈w�, Lw�′〉| <∼ ‖w�‖Ht−r(Ω)‖Lw�′‖H−t+r(Ω)

<∼ ‖w�‖Ht−r(Ω)‖w�′‖Ht+r(Ω)
<∼ 2r(�

′−�)‖w�‖Ht(Ω)‖w�′‖Ht(Ω),(2.6)

and, analogously, |〈w�, Lw�′〉| = |〈L′w�, w�′〉| <∼ 2r(�−�
′)‖w�‖Ht(Ω)‖w�′‖Ht(Ω). So for

arbitrary c,d ∈ 
2(Λ), we have

|〈c, (M− M̂j)d〉| =
∣∣∣∣ ∑
|�−�′|>k(j,n)

〈∑
|λ|=�

cλψλ, L
∑

|λ′|=�′
dλ′ψλ′

〉∣∣∣∣
<∼

∑
|�−�′|>k(j,n)

2−r|�−�
′|
∥∥∥∥ ∑

|λ|=�
cλψλ

∥∥∥∥
Ht(Ω)

∥∥∥∥ ∑
|λ′|=�′

dλ′ψλ′

∥∥∥∥
Ht(Ω)

<∼ 2−k(j,n)r
√√√√∑

�

∥∥∥∥∑
|λ|=�

cλψλ

∥∥∥∥
2

Ht(Ω)

√√√√∑
�′

∥∥∥∥ ∑
|λ′|=�′

dλ′ψλ′

∥∥∥∥
2

Ht(Ω)

� 2−k(j,n)r‖c‖‖d‖,
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or ‖M− M̂j‖ <∼ 2−k(j,n)r .
Finally, we analyze the error as a consequence of dropping entries with indices

that satisfy criterion (2.5). For λ ∈ Λ, 1 ≤ i ≤ m, and 
 > |λ′|, let

A�,λ′,i := {|λ| = 
 : suppψλ ⊂ Ξλ′,i}.

For w�,λ′,i ∈ span {ψλ : λ ∈ A�,λ′,i} ⊂ W� and

q ∈ (0, t+ d̃] ∩ (0, σ],

we will prove that

|〈w�,λ′,i, Lψλ′〉| <∼ 2q(|λ
′|−�)‖w�,λ′,i‖Ht(Ω).(2.7)

Because of (2.6), it is sufficient to consider q ≥ γ − t ≥ −t. From Remark 2.1, recall
that ϕλ′,i is the extension of ψλ′ |Ξλ′,i to a smooth function on R

n with, for s ≥ 0,

‖ϕλ′,i‖Hs(Rn)
<∼ 2(s−t)|λ

′|. From the locality and continuity of L, we conclude that

|〈w�,λ′,i, Lψλ′〉| = |〈w�,λ′,i, Lϕλ′,i〉| <∼ ‖w�,λ′,i‖Ht−q(Ω)‖Lϕλ′,i‖H−t+q(Ω)

<∼ ‖w�,λ′,i‖Ht−q(Ω)‖ϕλ′,i‖Ht+q(Ω)
<∼ 2−q(�−|λ′|)‖w�,λ′,i‖Ht(Ω).

For any c,d ∈ 
2(Λ) and q ∈ (0, t+ d̃] ∩ (0, σ], from (2.7) we have
∣∣∣∣ ∑
j
n<�−�′≤k(j,n)

∑
|λ′|=�′

dλ′

〈 m∑
i=1

∑
λ∈A�,λ′,i

cλψλ, Lψλ′

〉∣∣∣∣
<∼

∑
j
n<�−�′≤k(j,n)

∑
|λ′|=�′

|dλ′ |2−q(�−�′)
m∑
i=1

∥∥∥∥ ∑
λ∈A�,λ′,i

cλψλ

∥∥∥∥
Ht(Ω)

<∼
∑

j
n<�−�′≤k(j,n)

2−q(�−�
′)
√ ∑

|λ′|=�′
|dλ′ |2

√√√√ ∑
|λ′|=�′

( m∑
i=1

√ ∑
λ∈A�,λ′,i

|cλ|2
)2

<∼
∑

j
n<�−�′≤k(j,n)

2−q(�−�
′)
√ ∑

|λ′|=�′
|dλ′ |2

√∑
|λ|=�

|cλ|2 <∼ 2−
j
n q‖d‖‖c‖,

where for the last line we have used that for fixed |λ′|, each λ is contained in at most
a uniformly bounded number of sets A|λ|,λ′,i.

Since, analogous to (2.7), |〈ψλ, Lw�′,λ,i〉| = |〈L′ψλ, w�′,λ,i〉| <∼ 2−q(�
′−|λ|)‖w�′,λ,i‖Ht(Ω)

when w�′,λ,i ∈ span {ψλ′ : λ′ ∈ A�′,λ,i}, and so∣∣∣∣ ∑
j
n<�

′−�≤k(j,n)

∑
|λ|=�

cλ

〈
ψλ, L

m∑
i=1

∑
λ′∈A�′,λ,i

dλ′ψλ′

〉∣∣∣∣ <∼ 2− j
n q‖c‖‖d‖,

we conclude that ‖M̂j −Mj‖ <∼ 2−
j
n q.

A combination of the estimates for M − M̂j and M̂j −Mj shows that for s ≤
min{ t+d̃n , σn}, with s < γ−t

n−1 when n > 1, it holds that ‖M−Mj‖ <∼ 2−sj .
Remark 2.5. Let us consider the situation that t ∈ N, ΓD �= ∅, and that Ψ is a

biorthogonal basis for Ht
0,ΓD

(Ω), where now also the dual spaces satisfy homogeneous
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Dirichlet boundary conditions on ΓD. Then since for s ≥ 0, Hs(Ω)∩Ht
0,ΓD

(Ω) is only

dense in Hs(Ω) when s < 1
2 , we can expect (2.3) only for r ∈ [−d̃, γ), s < γ with

r > − 1
2 . As a consequence, in the proof of Theorem 2.3, the range of r for which (2.6)

holds is restricted to r ∈ (0, t+ d̃] ∩ (0, σ] ∩ (0, γ − t) ∩ (0, t+ 1
2 ).

The same problems are encountered for proving (2.7). However, instead of re-
stricting the range of q, here another solution is possible. The homogeneous Dirichlet
boundary conditions on the dual spaces affect only wavelets with supports near ΓD.
More precisely, one can expect that there exists a constant θ > 0 such that for any
r ∈ [−d̃, γ), s < γ,

‖ · ‖Hr(Ω)
<∼ 2�(r−s)‖ · ‖Hs(Ω) on span{ψλ : |λ| = 
, dist(suppψλ,ΓD) ≥ θ2−|λ|}.

(2.8)

Let us now add to the dropping criterion (2.5) the condition that dist(suppψλ,ΓD) ≥
θ2−|λ| when |λ| > |λ′|, or dist(suppψλ′ ,ΓD) ≥ θ2−|λ′| when |λ| < |λ′|. Then it is
easily verified that the resultingMj , although a little bit less sparse, still has at most
order 2j nonzero entries in each row and column. On the other hand, changing the
definition of A�,λ′,i into

A�,λ′,i := {|λ| = 
 : suppψλ ⊂ Ξλ′,i, dist(suppψλ,ΓD) ≥ θ2−|λ|}
for w�,λ′,i ∈ span{ψλ : λ ∈ A�,λ′,i} and q ∈ (0, t + d̃] ∩ (0, σ), using (2.8) we can
prove that |〈w�,λ′,i, Lψλ′〉| <∼ 2−q(�−|λ′|)‖w�,λ′,i‖Ht(Ω). By copying the remainder of

the proof, and for k(j, 1) > j min{t+d̃,σ}
min{γ−t,t+ 1

2}
, we conclude that for

s ≤ min{ t+d̃n , σn}, with s < min{ γ−tn−1 ,
t+ 1

2

n−1} when n > 1,

it holds that ‖M−Mj‖ <∼ 2−sj .
Remark 2.6. As follows from Remark 2.4, to show s∗-compressibility with s∗ >

d−t
n , it will be necessary that both d̃ and γ increase linearly as a function of d. To
benefit from an often much higher regularity of the solution in Besov than in Sobolev
scale, we are mainly interested in applying the adaptive method with a relatively large
value of d− t. Indeed, for small d− t, the adaptive method can give at most a small
improvement in the order of convergence compared to nonadaptive methods, which
in practice might not compensate for the overhead they require.

In general, nontensor product domains, smooth wavelets, i.e., with large values
of γ, are not easy to construct. The approach from [DS99b], based on a nonoverlap-
ping domain decomposition, yields wavelet bases that in principal for any d satisfy
all requirements concerning smoothness and cancellation properties to obtain s∗ >
d−t
n . Other approaches based on nonoverlapping domain decomposition (see [DS99a,
CTU99, CM00]) yield wavelets which over the interfaces between subdomains are
only continuous. Note that although for nonadaptive wavelet methods the fact that
wavelets along some lower-dimensional interface are less smooth or have reduced can-
cellation properties might not influence the overall complexity-accuracy balance, for
adaptive methods it generally does. Indeed, it might happen that the solution is
smooth everywhere except exactly along that interface, meaning that the adaptive
method mainly produces coefficients corresponding to wavelets with degenerated prop-
erties. Also finite element wavelets as constructed in [DS99c, CES00, Ste00] are only
continuous. For example, for t = 1 and n = 2, with continuous wavelets only for
orders d ≤ 2, s∗ ≥ d−t

n can be shown.
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Still having in mind a nonoverlapping decomposition of the domain into a number
of subdomains or patches Ω1, . . . ,ΩM , as an alternative it seems not too difficult, in
any case, if one refrains from having local dual wavelets, which are not needed here
anyway, to construct wavelets of some given order d, which restricted to each patch are
again wavelets characterized by parameters γ ≤ d− 1

2 and d̃ (“patchwise” smoothness
and cancellation properties) that can be chosen at one’s convenience. If, in addition,
these wavelets have a sufficient global smoothness such that they generate a Riesz
basis for Ht

0,ΓD
(Ω), then 〈Ψ, LΨ〉 = ∑

q〈Ψ|Ωq , LΨ|Ωq 〉. Theorem 2.3 now directly

applies to the matrices in the sum with conditions in terms of the “local” γ and d̃,
and so when these are sufficiently large, s∗ > d−t

n follows.
In [Ste02] we generalized the adaptive wavelet method from [CDD02] to the case

that Ψ is a frame for Ht
0,ΓD

(Ω) instead of a Riesz basis. Writing the domain as

an overlapping union of subdomains Ωq, a suitable frame Ψ is given by ∪Mq=1ωqΨq,
where Ψq is a Riesz basis of wavelet type order d for a Sobolev space of order t on
Ωq, and ωq is a smooth weight function that vanishes at the internal boundary of
Ωq. Since the presence of smooth weight functions and the fact that for q �= q′,
Ψq and Ψq′ are different are both harmless, Theorem 2.3 can be applied to verify
s∗-compressibility of any of the matrices 〈ωqΨq, Lωq′Ψq′〉 and with that of M :=
〈Ψ, LΨ〉 = ∑q,q′〈ωqΨq, Lωq′Ψq′〉. Indeed, note that in the proof of this theorem it
was not used that the wavelets are piecewise smooth with respect to partitions that
are nested as a function of the level. The advantage of this frame approach is that
smoothness requirements on the wavelets Ψq are easily satisfied, since this construction
requires no linking of functions from different subdomains over interfaces, and so that
s∗ > d−t

n can easily be realized.

3. Compressibility of boundary integral operators. In this section, we will
generalize the compression result Theorem 2.3 to a certain class of nonlocal operators
L. Since in particular we think of integral operators resulting from the boundary
integral method, in addition we replace the underlying domain Ω by a manifold Γ.

3.1. Definitions and main result. For some µ ∈ N, let Γ be a patchwise
smooth, compact n-dimensional, globally Cµ−1,1 -manifold in R

n+1. Following [DS99b],
we assume that Γ = ∪Mq=1Γq, with Γq ∩ Γq′ = ∅ when q �= q′, and that for each
1 ≤ q ≤ M , there exists

• a domain Ωq ⊂ R
n and a C∞-parametrization κq : R

n → R
n+1 with

Im(κq|Ωq ) = Γq;
• a domain R

n ⊃ Ω̂q ⊃⊃ Ωq and an extension of κq|Ωq to a Cµ−1,1 parametriza-

tion κ̂q : Ω̂q → Im(κ̂q) ⊂ Γ.
For |s| ≤ µ, the Sobolev spaces Hs(Γ) are well-defined, where for s < 0, Hs(Γ)

is the dual of H−s(Γ). For some |t| ≤ µ, let L be a bounded operator from Ht(Γ)→
H−t(Γ), where we have in mind a singular integral operator of order 2t. Let

Ψ = {ψλ : λ ∈ Λ}
be a Riesz basis for Ht(Γ) of wavelet type.

We assume that the wavelets are local, in the sense that

diam(suppψλ) <∼ 2−|λ| and sup
x∈Γ,�∈N0

#{|λ| = 
 : B(x; 2−�) ∩ suppψλ} < ∞,

where for A ⊂ Γ now B(A; ε) := {y ∈ R
n+1 : dist(A, y) < ε}, and that they are

piecewise smooth, by which we mean that suppψλ\sing suppψλ is the disjoint union
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of sets Ξλ,1, . . . ,Ξλ,m, with ∪mi=1Ξλ,i = suppψλ, such that each Ξλ,i is contained in
some Γq, κ

−1
q (Ξλ,i) are uniformly Lipschitz domains, and (ψλ ◦κq)|κ−1

q (Ξλ,i)
is smooth

with, for any β ∈ Nn
0 ,

sup
ξ∈κ−1

q (Ξλ,i)

|∂β(ψλ ◦ κq)(ξ)| <∼ 2(|β|+
n
2 −t)|λ|.(3.1)

Implicitly via (2.3), in section 2 we assumed that the wavelets have d̃ vanishing
moments. A rough translation of this property to manifolds is that a wavelet inte-
grated against a function vanishes when on each patch the preimage of this function is
a polynomial of degree less than d̃. More precisely, we assume that the wavelets have
the so-called cancellation property of order d̃ ∈ N, saying that there exists a constant
η > 0 such that for any p ∈ [1,∞], for all continuous, patchwise smooth functions v
and λ ∈ Λ,

|〈v, ψλ〉| <∼ 2−|λ|(n2 −n
p+t+d̃) max

1≤q≤M
|v|W d̃

p (B(suppψλ;2−|λ|η)∩Γq).(3.2)

Remark 3.1. Proofs of (3.2) for p = ∞ given in [DS99c, Prop. 4.7], [NS03,
Prop. 3.4] can easily be generalized to yield (3.2) for any p ∈ [1,∞].

Furthermore, for some k ∈ N0 ∪ {−1}, with k < µ and

γ := k + 3
2 > t,(3.3)

we assume that all ψλ ∈ Ck(Γ), where k = −1 means no global continuity condition,
and, similar to (2.3), that for all r ∈ [−d̃, γ), s < γ, necessarily with |s|, |r| ≤ µ,

‖ · ‖Hr(Γ)
<∼ 2�(r−s)‖ · ‖Hs(Γ) on W� := span{ψλ : |λ| = 
}.(3.4)

Inside a patch, a similar property can be required for larger ranges: For all 1 ≤ q ≤ M ,
and for r ∈ [−d̃, γ), s < γ, we assume that

‖ · ‖Hr(Γq)
<∼ 2�(r−s)‖ · ‖Hs(Γq) on span{ψλ : |λ| = 
, B(suppψλ; 2

−�η) ⊂ Γq}.(3.5)

Remark 3.2. For the case that each parametrization κq has a constant Jacobian, in
[DS99c] a simple construction is given of continuous finite element wavelets, i.e., k = 0
and so γ = 3

2 , that in principle for any d̃ and order d satisfies the above assumptions.
This restriction on the Jacobians was removed in [NS03]; however, here wavelets with
supports that extend to more than one patch have the cancellation property of only
order 1. In a forthcoming paper, we will remove this inconvenience for the application
in adaptive methods and construct wavelets that all have the cancellation property
of order d̃.

As in the domain case, wavelets that satisfy the assumptions for, in principle,
any d, d̃ and smoothness permitted by both d and the regularity of the manifold were
constructed in [DS99b]. As will be shown by Theorem 3.3, via several parameters
this regularity, however, seems to impose a principal barrier to the compressibility. In
case of differential operators, we could reduce conditions concerning smoothness and
cancellation properties to corresponding patchwise conditions. Yet, the arguments
used for that do not carry over to the case of nonlocal, integral operators.

With the constructions from [DS99a, CTU99, CM00], biorthogonality was real-
ized with respect to a modified L2(Γ)-scalar product. As a consequence, with the
interpretation of functions as functionals via the Riesz mapping with respect to the
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standard L2(Γ)-scalar product, for negative t the wavelets only generate a Riesz basis
for Ht(Γ) when t > − 1

2 (cf. [NS03, sect. 4]), and likewise wavelets with supports that
extend to more than one patch generally have no cancellation properties in the sense
of (3.2).

The frame approach discussed in the previous section seems to be even more
attractive in the compact manifold case. Because of the absence of a boundary, all
wavelet bases on the overlapping patches may satisfy periodic boundary conditions.
One may verify that Theorem 3.3 below formulated for the Riesz basis case, as well
as the verification of the estimates (3.6) and (3.7), extends to any of the matrices
〈ωqΨq, Lωq′Ψq′〉. It is easy to construct collections Ψq with any smoothness permitted
by the regularity of the manifold.

For the differential operator case, we made use of the fact that 〈ψλ, Lψλ′〉 = 0
whenever vol(suppψλ ∩ suppψλ′) = 0. As a replacement, for the next theorem we
will assume estimate (3.6), saying that the size of |〈ψλ, Lψλ′〉| decreases rapidly with
increasing distance between the supports of ψλ and ψλ′ . In section 3.3, we will verify
this estimate for an important class of singular integral operators that have Schwarz
kernels that decay rapidly away from the diagonal, and which therefore act mainly
local. For ψλ and ψλ′ with vol(suppψλ∩suppψλ′) > 0, in the differential operator case
we made use of the faster decay of |〈ψλ, Lψλ′〉| for |λ| − |λ′| → ∞ whenever suppψλ
does not intersect the singular support of ψλ′ . For the aforementioned class of singular
integral operators, as a replacement in section 3.4 we will prove estimate (3.7), showing
that |〈ψλ, Lψλ′〉| decreases for increasing |λ| − |λ′| and increasing distance between
suppψλ and sing suppψλ. To obtain (3.7) we will need the additional condition that
d̃ > γ−2t, which will be needed anyway in Remark 3.4 to conclude s∗-compressibility
with s∗ > d−t

n .
Theorem 3.3. Let L : Ht(Γ)→ H−t(Γ) be bounded, and for some σ ∈ (0, µ−|t|],

let both L and its adjoint L′ be bounded from Ht+σ(Γ) → H−t+σ(Γ). For Ψ a Riesz
basis for Ht(Γ) as described above with t+ d̃ > 0, let M = 〈Ψ, LΨ〉.

For any λ, λ′ ∈ Λ, let

|〈ψλ, Lψλ′〉| <∼
(
2−||λ|−|λ′||/2

δ(λ, λ′)

)n+2t+2d̃

when δ(λ, λ′) ≥ 3η,(3.6)

where

δ(λ, λ′) := 2min{|λ|,|λ′|}dist(suppψλ, suppψλ′),

and η is from (3.2).
For some τ ≥ σ and all λ′ ∈ Λ, 
 > |λ′|, A� ⊂ {λ ∈ Λ : |λ| = 
} with

1 >∼ δ̃ := 2|λ
′|dist(∪λ∈A�suppψλ, sing suppψλ′) ≥ 2η2|λ′|−�,

diam(∪λ∈A�suppψλ) <∼ 2−|λ′|,

let

|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
<∼ ‖w�‖Ht(Γ)max

{
2(|λ

′|−�)(t+d̃)

δ̃2t+d̃−γ
, 2(|λ

′|−�)τ
}

(3.7)

for any w� ∈ span{ψλ : λ ∈ A�}.
Let α ∈ ( 12 , 1) and bi := (1 + i)−1−ε for some ε > 0. Then for j ∈ N, and with

k(j, n) :=
j

n− 1 when n > 1,
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and j min{t+d̃,τ}
min{t+µ,t+d̃,σ} ≤ k(j, 1) ≤ 2j, k(j, 1) > jmin{t+d̃,τ}

γ−t , we define the infinite matrix

Mj by replacing all entries Mλ,λ′ = 〈ψλ, Lψλ′〉 by zeros when

∣∣|λ| − |λ′|∣∣ > k(j, n), or

(3.8)

∣∣|λ| − |λ′|∣∣ ≤ j
n and δ(λ, λ′) ≥ max{3η, 2α( jn−||λ|−|λ′||)}, or

(3.9)

∣∣|λ| − |λ′|∣∣ > j
n and δ̃(λ, λ′) ≥ max{2n( jn−||λ|−|λ′||)b||λ|−|λ′||− j

n
, 2η2−||λ|−|λ′||},

(3.10)

where

δ̃(λ, λ′) := 2min{|λ|,|λ′|} ×
{
dist(suppψλ, sing suppψλ′) when|λ| > |λ′|,
dist(sing suppψλ, suppψλ′) when|λ| < |λ′|.

Then the number of nonzero entries in each row and column of Mj is of order 2
j,

and for any

s ≤ min
{
t+d̃
n , τn

}
, with s < γ−t

n−1 , s ≤ σ
n−1 and s ≤ t+µ

n−1 when n > 1,

it holds that ‖M−Mj‖ <∼ 2−sj.
Remark 3.4. As in Remark 2.4, we infer that M is s∗-compressible with

s∗ = min
{
t+d̃
n , τn ,

γ−t
n−1 ,

σ
n−1 ,

t+µ
n−1

}
(s∗ = min{t + d̃, τ} when n = 1). So, if d̃ > d − 2t, τ > d − t, and when n > 1,
min{γ−t,σ,t+µ}

n−1 > d−t
n , then s∗ > d−t

n .
Proof. Let λ be some given index. Since Γ is a Lipschitz manifold, by the locality

of the wavelets, the number of indices λ′ with fixed |λ′| ≥ |λ| and dist(suppψλ, suppψλ′)
≤ R is of order (2|λ

′|(2−|λ|+R))n. By using in addition the piecewise smoothness of the
wavelets, the number of indices λ′ with fixed |λ′| > |λ| and dist(sing suppψλ, suppψλ′)
≤ R, where 2−|λ′| <∼ R <∼ 2−|λ|, is of order 2(|λ

′|−|λ|)(n−1)2|λ
′|R. From this, one may

infer that the number of nonzero entries in the λth row or column of Mj is of order∑
−k(j,n)≤|λ′|−|λ|<0

1 +
∑

0≤|λ′|−|λ|≤ j
n

(2|λ
′|(2−|λ| + 2−|λ|max{3η, 2α( jn−|λ′|+|λ|}))n

+
∑

j
n<|λ′|−|λ|≤k(j,n)

2(|λ
′|−|λ|)(n−1)2|λ

′|2−|λ|max{2n( jn−|λ′|+|λ|)b|λ′|−|λ|− j
n
, 2η2|λ|−|λ′|}

� 2j

because of α < 1 and
∑

i bi < ∞.
Let M̂j be defined by

(M− M̂j)λ,λ′ =

{
Mλ,λ′ when

∣∣|λ| − |λ′|∣∣ > k(j, n),
0 otherwise.

The continuity assumptions on L,L′, together with (3.4), show that for

r ∈ (0, t+ d̃] ∩ (0, t+ µ] ∩ (0, σ] ∩ (0, γ − t)
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and w� ∈ W�, w�′ ∈ W�′ ,

|〈w�, Lw�′〉| <∼ ‖w�‖Ht−r(Γ)‖Lw�′‖H−t+r(Γ)

<∼ ‖w�‖Ht−r(Γ)‖w�′‖Ht+r(Γ)
<∼ 2r(�

′−�)‖w�‖Ht(Γ)‖w�′‖Ht(Γ)

and, analogously, |〈w�, Lw�′〉| = |〈L′w�, w�′〉| <∼ 2r(�−�
′)‖w�‖Ht(Γ)‖w�′‖Ht(Γ). As in

the proof of Theorem 2.3, we conclude that ‖M− M̂j‖ <∼ 2−k(j,n)r.
As a second step, let M̃j be defined by

(M̂j − M̃j)λ,λ′

=

{
Mλ,λ′ when δ(λ, λ′) ≥ max{1, 3η, 2α( jn−||λ|−|λ′||)} and ∣∣|λ| − |λ′|∣∣ ≤ k(j, n),
0 otherwise.

Let us recall the Schur lemma: If, for some positive scalars ωλ,
∑

λ′
ωλ|bλ,λ′ |

ωλ′
≤ c and∑

λ

ωλ′ |bλ,λ′ |
ωλ

≤ c, then ‖(bλ,λ′)λ,λ′∈Λ‖ ≤ c. We apply this lemma to M̂j − M̃j with

ωλ = 2
|λ|n2 . By the locality of the wavelets, for each λ, 
′, R >∼ 1, and β > n, one has

∑
{λ′:|λ′|=�′, δ(λ,λ′)>R}

δ(λ, λ′)−β <∼ R−β+n2nmax{0,�′−|λ|}.

Because of t+ d̃ > 0, from the decay estimate (3.6) we obtain that

∑
λ′

ωλ|(M̂j−M̃j)λ,λ′ |
ωλ′

<∼
∑
|λ′|
2(|λ|−|λ′|)n2 2−||λ|−|λ′||(n2 +t+d̃)(max{1, 2α( jn−||λ|−|λ′||)})−(2d̃+2t)2nmax{0,|λ′|−|λ|}

� 2−
j
n (t+d̃)

by α > 1
2 . By the symmetry of the right-hand side of (3.6) in λ, λ′, analogously we

have
∑

λ

ωλ|(M̂j−M̃j)λ,λ′ |
ωλ′

<∼ 2−
j
n (t+d̃), and so ‖M̂j − M̃j‖ <∼ 2−

j
n (t+d̃).

Given λ′ and 
 > |λ′|, let

A�,λ′ = {|λ| = 
 : δ̃(λ, λ′) ≥ max{2n( jn−�+|λ′|)b�−|λ′|− j
n
, 2η2|λ

′|−�}, δ(λ, λ′) < max{1, 3η}}.

Since for
∣∣|λ| − |λ′|∣∣ > j

n , entries Mλ,λ′ with δ(λ, λ′) ≥ max{1, 3η} were already
removed from M̃j , we have

(M̃j −Mj)λ,λ′ =


 Mλ,λ′

{
when j

n < |λ| − |λ′| ≤ k(j, n) and λ ∈ A|λ|,λ′ ,

or j
n < |λ′| − |λ| ≤ k(j, n) and λ′ ∈ A|λ′|,λ,

0 otherwise.
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So from the decay estimate (3.7), for any c,d ∈ 
2(Λ) we have∣∣∣∣∣∣∣
∑

j
n
<�−�′≤k(j,n)

∑
|λ′|=�′

dλ′

〈 ∑
λ∈A�,λ′

cλψλ, Lψλ′

〉∣∣∣∣∣∣∣
<∼

∑
j
n
<�−�′≤k(j,n)

∑
|λ′|=�′

|dλ′ |max

{
2(�

′−�)(t+d̃)

(2n(
j
n
−�+�′)b

�−�′− j
n
)2t+d̃−γ

, 2(�
′−�)τ

}∥∥∥∥ ∑
λ∈A�,λ′

cλψλ

∥∥∥∥
Ht(Γ)

<∼
∑

j
n
<�−�′≤k(j,n)

max

{
2(�

′−�)(t+d̃)

(2n(
j
n
−�+�′)b

�−�′− j
n
)2t+d̃−γ

, 2(�
′−�)τ

}√ ∑
|λ′|=�′

|dλ′ |2
√ ∑

|λ′|=�′

∑
λ∈A�,λ′

|cλ|2

<∼
∑

j
n
<�−�′≤k(j,n)

max

{
2(�

′−�)(t+d̃)

(2n(
j
n
−�+�′)b

�−�′− j
n
)2t+d̃−γ

, 2(�
′−�)τ

}√ ∑
|λ′|=�′

|dλ′ |2
√ ∑

|λ|=�

|cλ|2,

where for the last line we have used that for fixed |λ′|, each λ is contained in at most a
uniformly bounded number of sets A|λ|,λ′ . Since the analogous estimate is valid with

interchanged roles of 
 and 
′, and for s ≤ min{ t+d̃n , τn}, with s < γ−t
n−1 when n > 1,

k(j,n)− j
n∑

m=1

max{2−(m+ j
n )(t+d̃)(2−mnbm)γ−2t−d̃, 2−(m+ j

n )τ} <∼ 2−sj ,(3.11)

we conclude that for such s, ‖M̃j −Mj‖ <∼ 2−sj .
A combination of the estimates forM−M̂j , M̂j −M̃j , and M̃j −Mj shows that

for s ≤ min{ t+d̃n , τn}, with for n > 1, s < γ−t
n−1 , s ≤ σ

n−1 , and s ≤ t+µ
n−1 , it holds that

‖M−Mj‖ <∼ 2−sj .
3.2. Singular integral operators. In section 3.3 and 3.4, we verify the decay

estimates (3.6) and (3.7) for operators

Lu(x) =

∫
Γ

K(x, y)u(y)dµ(y) (x ∈ Γ),

with kernels that satisfy, for all 1 ≤ q, q′ ≤ M , ξ ∈ Ωq, η ∈ Ωq′ ,

|∂αξ ∂βηK(κq(ξ), κq′(η))| <∼ dist(κq(ξ), κq′(η)))−(n+2t+|α|+|β|) (n+ 2t+ |α|+ |β| > 0)
(3.12)

(cf. [DHS02, Def. 2.1]). Following [DHS02], we emphasize that (3.12) requires patch-
wise smoothness but no global smoothness of Γ. Assuming only global Lipschitz
continuity of Γ, the kernel of a boundary integral operator of order 2t can be shown
to satisfy (3.12).

If Γ is a C∞-manifold, then these boundary integral operators are known to
be pseudodifferential operators, meaning that for any σ ∈ R they define bounded
mappings from Ht+σ(Γ) → H−t+σ(Γ). In this case we may conclude that M is s∗-
compressibility with s∗ = min{ t+d̃n , γ−tn−1}. For Γ being only Lipschitz continuous, for
the classical boundary integral equations it is known that L : Ht+σ(Γ) → H−t+σ(Γ)
is bounded for the, in this case, maximum possible value σ = 1 − |t| (cf. [Cos88]).
With increasing smoothness of Γ one may expect this boundedness for larger values
of σ. Few results in this direction seem yet available.
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3.3. Decay estimate (3.6). This estimate for singular integral operators with
wavelets that satisfy the cancellation property (3.2) of order d̃ was first proved in
[Sch98] for C∞-manifolds. In [DS99c], it was shown for Lipschitz manifolds for a
specific wavelet construction. For convenience, in this subsection we recall the argu-
ments used there and show that they also apply to the general setting discussed in
this paper.

With η > 0 from (3.2), let λ, λ′ ∈ Λ with δ(λ, λ′) ≥ 3η. Then with Γλ,η :=
B(suppψλ; 2

−|λ|η), it holds that

2min{|λ|,|λ′|}dist(Γλ,η,Γλ′,η) ≥ 1
3δ(λ, λ

′) > 0.

Because of

n+ 2t+ 2d̃ > 0,

from (3.2) and (3.12), we infer that

|〈ψλ, Lψλ′〉| <∼ 2−|λ|(n2 +t+d̃) sup
|α|=d̃, 1≤q≤M,

ξ∈κ−1
q (Γλ,η∩Γq)

∣∣∣∣
∫
Γ

∂αξ K(κq(ξ), y)ψλ′(y)dµ(y)

∣∣∣∣
<∼ 2−(|λ|+|λ′|)(n2 +t+d̃) sup

|α|=d̃, 1≤q≤M,

ξ∈κ−1
q (Γλ,η∩Γq)

sup
|β|=d̃, 1≤q′≤M,

ζ∈κ−1
q′ (Γλ′,η∩Γq′ )

|∂αξ ∂βζK(κq(ξ), κq′(ζ))|

<∼ 2−(|λ|+|λ′|)(n2 +t+d̃)(2−min{|λ|,|λ′|}δ(λ, λ′))−(n+2t+2d̃)

=

(
2−||λ|−|λ′||/2

δ(λ, λ′)

)n+2t+2d̃

.

3.4. Decay estimate (3.7). Let Γ = ∪Mq=1Γq be a compact n-dimensional,
globally Cµ−1,1-manifold in R

n+1, where the Γq are C∞-manifolds as described in
section 3.1. For some |t| ≤ µ, let L be a singular integral operator of order 2t as
described in section 3.2, which is bounded from Ht(Γ)→ H−t(Γ), and for which there
exists a σ > 0 such that L,L′ : Ht+σ(Γ)→ H−t+σ(Γ) are bounded. Let Ψ be a Riesz
basis for Ht(Γ) as described in section 3.1, consisting of local and piecewise smooth
Ck(Γ) wavelets, that have cancellation properties of order d̃, where k ∈ N0 ∪ {−1},
k < µ, and γ := k + 3

2 > t.
In addition, in this subsection we assume that

d̃ > γ − 2t.(3.13)

Furthermore, with

H̃s(Γq) :=

{
Hs(Γq) when s ≥ 0,
(H−s

0 (Γq))
′ when s < 0,

we assume that there exists a τ ∈ (0, µ− |t|] such that for all 1 ≤ q ≤ M ,

L : Ht+τ (Γ)→ H̃−t+τ (Γq) is bounded.(3.14)

Remark 3.5. Since for any |s| ≤ µ, the restriction of functions on Γ to Γq is a

bounded mapping from Hs(Γ) to H̃s(Γq), from the boundedness of L : Ht+σ(Γ) →
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H−t+σ(Γ), it follows that in any case (3.14) is valid for τ = σ. So, for example, for Γ
a C∞-manifold, (3.14) is valid for any τ ∈ R. Yet, in particular when t < 0, for Γ less
smooth, it might happen that (3.14) is valid for a τ that is strictly larger that any σ
for which L : Ht+σ(Γ)→ H−t+σ(Γ) is bounded.

Proposition 3.6. In the above setting, for all λ′ ∈ Λ, 
 > |λ′|, and A� ⊂
{λ ∈ Λ : |λ| = 
} with δ̃ := 2|λ

′|dist(∪λ∈A�suppψλ, sing suppψλ′) ≥ 2η2|λ
′|−� and

ρ := 2|λ
′|diam(∪λ∈A�suppψλ), it holds that

|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
<∼ ‖w�‖Ht(Γ)max

{
2(|λ

′|−�)(t+d̃)δ̃−2t−d̃+k+1ρ
n−1

2 min{δ̃, ρ} 1
2 , 2(|λ

′|−�)min{τ,t+d̃}
}

for any w� ∈ span{ψλ : λ ∈ A�}. By substituting δ̃, ρ <∼ 1 and by using the fact that
k + 3

2 = γ, the decay estimate (3.7) is obtained.

The proof of Proposition 3.6 will largely rely on techniques developed in [Sch98,
DHS02]. We start with a lemma that will be used to estimate contributions from
pairs of functions with disjoint supports.

Lemma 3.7. For λ′ ∈ Λ, J ⊂ {1, . . . ,M}, let either E = ∪i∈JΞλ′,i or E =

Γ\ ∪i∈J Ξλ′,i, and for 
 > |λ′|, let A� ⊂ {λ ∈ Λ : |λ| = 
} with δ̄ :=

2|λ
′|dist(∪λ∈A�suppψλ, E) ≥ 2η2|λ

′|−� and ρ := 2|λ
′|diam(∪λ∈A�suppψλ). Then for

any w� ∈ span{ψλ : λ ∈ A�}, v ∈ L∞(Γ) with supp v ⊂ E, and

|v(y)| <∼ 2(k+1+n
2 −t)|λ′|dist(y, ∂E)k+1,

it holds that

|〈w�, Lv〉| <∼ ‖w�‖Ht(Γ)2
(|λ′|−�)(t+d̃)δ̄−2t−d̃+k+1ρ

n−1
2 min{δ, ρ} 1

2 .

Proof. By (3.2), for any λ ∈ A�, it holds that

|〈ψλ, Lv〉| <∼ 2−�(
n
2 +t+d̃) max

1≤q≤M
|Lv|W d̃∞(B(suppψλ;2−�η)∩Γq).

For any 1 ≤ q ≤ M , x = κq(ξ) ∈ B(suppψλ; 2
−�η) ∩ Γq, and |α| = d̃, by (3.12) it

holds that

|∂αξ ((Lv) ◦ κq)(ξ)| <∼
∫
E

|∂αξ K(κq(ξ), y)|2(k+1+n
2 −t)|λ′|dist(y, ∂E)k+1dµ(y)

<∼ 2(k+1+n
2 −t)|λ′|

∫
E

|x− y|−(n+2t+d̃)|x− y|k+1dµ(y)

<∼ 2(k+1+n
2 −t)|λ′|

∫
z∈Rn,|z|≥dist(x,E)

|z|k+1−(n+2t+d̃)dz

� 2(k+1+n
2 −t)|λ′|dist(x,E)−2t−d̃+k+1

because of −2t− d̃+ k + 1 < 0 by (3.13).

Writing w� =
∑

λ∈A� cλψλ, by the locality of the wavelets and because of δ̄ ≥
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2η2|λ
′|−� we find that

|〈w�, Lv〉| <∼
(∑
λ∈A�

|cλ|2
) 1

2

2−�(
n
2 +t+d̃)2(k+1+n

2 −t)|λ′|

×
(∑
λ∈A�

sup
x∈B(suppψλ;2−�η)

dist(x,E)−4t−2d̃+2k+2

) 1
2

� ‖w�‖Ht(Γ)2
−�(n2 +t+d̃)2(k+1+n

2 −t)|λ′|

×
(
2�n
∫
∪λ∈A� suppψλ

dist(x,E)−4t−2d̃+2k+2dµ(x)

) 1
2

.(3.15)

Since −4t−2d̃+2k+2 < −1 by (3.13), because of the geometry of E we may estimate∫
∪λ∈A� suppψλ

dist(x,E)−4t−2d̃+2k+2dµ(x)

<∼ (2−|λ′|ρ)n−1

∫ 2−|λ′|δ̄+2−|λ′|ρ

2−|λ′|δ̄
z−4t−2d̃+2k+2dz

� (2−|λ′|ρ)n−1[(2−|λ′|δ̄)−4t−2d̃+2k+3 − (2−|λ′|(δ̄ + ρ))−4t−2d̃+2k+3]

� 2|λ
′|(4t+2d̃−2k−2−n)ρn−1δ̄−4t−2d̃+2k+2min{δ̄, ρ}.

By substituting this result into (3.15) the proof is completed.
Proof of Proposition 3.6. (I) Let λ′ ∈ Λ, 
 > |λ′|, and A� ⊂ {λ ∈ Λ : |λ| = 
} with

δ̃ := 2|λ
′|dist(∪λ∈A�suppψλ, sing suppψλ′) ≥ 2η2|λ′|−� and ρ := 2|λ

′|diam(∪λ∈A�suppψλ)
and let w� ∈ span{ψλ : λ ∈ A�}. It suffices to prove the bound for 〈w�, Lψλ′〉, since
the proof for 〈L′ψλ′ , w�〉 is similar.

For 1 ≤ i ≤ m, we define w
(i)
� by

w
(i)
� (x) =

{
w�(x) when x ∈ Ξλ′,i,
0 elsewhere

and set w
(0)
� = w� −

∑m
i=1 w

(i)
� , meaning that suppw

(0)
� ∩ suppψλ′ = ∅.

We assume that dist(suppψλ, sing suppψλ′) ≥ 2η2−|λ| implies that either suppψλ
⊂ Ξλ′,i for some 1 ≤ i ≤ m or suppψλ ∩ suppψλ′ = ∅. In the very unlikely situation
that this does not hold “automatically,” we can always increase the parameter η such
that this is true, since diam(suppψλ) <∼ 2−|λ|. Under this assumption, for all i we
have w

(i)
� ∈ W� and so ‖w(i)

� ‖Ht(Γ)
<∼ ‖w�‖Ht(Γ).

(II) We consider 〈w(0)
� , Lψλ′〉. Let E = suppψλ′ . If i is such that Ξλ′,i ∩ ∂E �= ∅,

then because of ψλ′ ∈ Ck(Γ) and (3.1) it follows that

|ψλ′(y)| <∼ 2(k+1+n
2 −t)|λ′|dist(y, ∂E)k+1 (y ∈ Ξλ′,i).(3.16)

If Ξλ′,i ∩ ∂E = ∅, then by the “shape regularity” of all sets Ξλ′,i′ for i′ �= i, we

have dist(Ξλ′,i, E) >∼ 2−|λ′|, and so (3.16) follows from |ψλ′(y)| <∼ 2(
n
2 −t)|λ′|. From an

application of Lemma 3.7 with “w”= w
(0)
� and “v”= ψλ′ , we conclude that

|〈w(0)
� , Lψλ′〉| <∼ ‖w�‖Ht(Γ)2

(|λ′|−�)(t+d̃)δ̃−2t−d̃+k+1ρ
n−1

2 min{δ̃, ρ} 1
2 .(3.17)
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(III) Let 1 ≤ i ≤ m, and let 1 ≤ q ≤ M such that Ξλ′,i ⊂ Γq. Note that

suppw
(i)
� ⊂ suppψλ. From (3.5), for r ∈ [−d̃, γ), s < γ, we have ‖w(i)

� ‖Hr(Γq)
<∼

2�(r−s)‖w(i)
� ‖Hs(Γq). We have to handle the less interesting case τ < γ − t separately.

(a) If τ < γ − t, and so τ ≤ t+ d̃ by (3.13), then, by τ ≤ µ− t, the continuity of

L as stated in (3.14), and when t− τ > 0 additionally by w
(i)
� ∈ Ht−τ

0 (Γq), we have

|〈w(i)
� , Lψλ′〉| <∼ ‖w(i)

� ‖Ht−τ (Γq)‖Lψλ′‖H̃τ−t(Γq)

<∼ 2(t−τ)�‖w(i)
� ‖‖ψλ′‖Hτ+t(Γ)

<∼ 2(|λ
′|−�)τ‖w�‖Ht(Γ),

which completes the proof in this case.
(b) Now let τ + t ≥ γ ≥ 0. By assumption, ψλ′ ◦ κq is smooth on κ−1

q (Ξλ′,i),
which is a uniformly Lipschitz domain. From (3.1) and Remark 2.1, we learn that
(ψλ′ ◦ κq)|κ−1

q (Ξλ′,i)
has an extension to a smooth function ϕλ′,i, with, for s ≥ 0

and p ∈ [1,∞], ‖ϕλ′,i‖W s
p (R

n)
<∼ 2(s−t+

n
2 −n

p )|λ′|. By multiplying ϕλ′,i by a smooth

function that is one on Ωq and has support inside the “extended” domain Ω̂q, we

may assume that suppϕλ′,i ⊂ Ω̂q, so that ϕλ′,i ◦ κ̂−1
q ∈ Hµ(Γ) with for s ∈ [0, µ],

‖ϕλ′,i ◦ κ̂−1
q ‖Hs(Γ)

<∼ 2(s−t)|λ
′|. With max{0,−t} ≤ s := min{τ, t + d̃} ≤ µ − t, the

same arguments as applied in (a) show that

|〈w(i)
� , L(ϕλ′,i ◦ κ̂−1

q )〉| <∼ ‖w(i)
� ‖Ht−s(Γq)‖L(ϕλ′,i ◦ κ̂−1

q )‖H̃s−t(Γq)

<∼ 2(t−s)�‖w(i)
� ‖‖ϕλ′,i ◦ κ̂−1

q ‖Hs+t(Γ)
<∼ 2(|λ

′|−�)s‖w�‖Ht(Γ).(3.18)

It remains to estimate |〈w(i)
� , L(ψλ′ −ϕλ′,i ◦ κ̂−1

q )〉|. Recall that suppw(i)
� ⊂ Ξλ′,i,

whereas ψλ′ −ϕλ′,i ◦ κ̂−1
q vanishes on Ξλ′,i. The global smoothness of ψλ′ will ensure

that directly outside Ξλ′,i, ψλ′ is sufficiently close to the smooth extension ϕλ′,i ◦ κ̂−1
q

of ψλ′ |Ξλ′,i so that an application of Lemma 3.7 will lead to the desired bound. We
have to distinguish between a number of cases.

Suppose i′ �= i with Ξλ′,i′ ∩ Ξλ′,i �= ∅, and let q′ be such that Ξλ′,i′ ⊂ Γq′ . Then
from

(a) supξ∈κ−1
q′ (Ξλ′,i′ )

|∂β(ψλ′ ◦ κq′)(ξ)| <∼ 2(|β|+
n
2 −t)|λ′|, (β ∈ N0) ((3.1));

(b) κ−1
q′ ◦ κ̂q ∈ Cµ−1,1(κ̂−1

q (Γq′ ∩ Im κ̂q)), where µ > k;

(c) supξ∈Ω̂q |∂βϕλ′,i(ξ)| <∼ 2(|β|+
n
2 −t)|λ′|, (β ∈ N0);

(d) ψλ′ ◦ κ̂q − ϕλ′,i ∈ Ck(Ω̂q), where it vanishes on κ̂−1
q (Ξλ′,i),

one infers that |(ψλ′ ◦ κ̂q − ϕλ′,i)(ξ)| <∼ 2(k+1+n
2 −t)|λ′|dist(ξ, κ̂−1

q (Ξλ′,i))
k+1 when ξ ∈

κ̂−1
q (Ξλ′,i′ ∩ Im κ̂q), so that for y ∈ Ξλ′,i′ ∩ Im κ̂q,

|(ψλ′ − ϕλ′,i ◦ κ̂−1
q )(y)| <∼ 2(k+1+n

2 −t)|λ′|dist(y,Ξλ′,i)
k+1.(3.19)

If Γ\suppψλ′,i ∩ Ξλ′,i �= ∅, then (a), (b) show that (3.19) is also valid for y ∈
(Γ\suppψλ′,i) ∩ Im κ̂q. For the remaining cases that either y ∈ Ξλ′,i′ with Ξλ′,i′ ∩
Ξλ′,i = ∅ or y ∈ (Γ\suppψλ′,i) ∩ Im κ̂q when Γ\suppψλ′,i ∩ Ξλ′,i = ∅ or y �∈ Im κ̂q,

the “shape regularity” of all sets Ξλ′ ,̌ı show that dist(y,Ξλ′,i) >∼ 2−|λ′|, and so from
|(ψλ′ −ϕλ′,i ◦ κ̂−1

q )(y)| <∼ 2(
n
2 −t)|λ′|, we conclude that (3.19) is valid for all y ∈ Γ\Ξλ′,i.

An application of Lemma 3.7 with E = Γ\Ξλ′,i, “w”= w
(i)
� , and “v”= ψλ′ −ϕλ′,i◦ κ̂−1

q

now shows that

|〈w(i)
� , L(ψλ′ − ϕλ′,i ◦ κ̂−1

q )〉| <∼ ‖w�‖Ht(Γ)2
(|λ′|−�)(t+d̃)δ̃−2t−d̃+k+1ρ

n−1
2 min{δ̃, ρ} 1

2 ,
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which, together with (3.17) and (3.18), completes the proof for the case that τ + t
≥ γ.

Below we discuss some extensions of Proposition 3.6.
In the case suppw� ∩ suppψλ′ = ∅, then step (II) of the proof shows that

|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
<∼ ‖w�‖Ht(Γ)2

(|λ′|−�)(t+d̃)δ̃−2t−d̃+k+1ρ
n−1

2 min{δ̃, ρ} 1
2 .(3.20)

In the case suppψλ′ is contained in one patch Γq, then

|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
(3.21)

<∼ ‖w�‖Ht(Γ)max
{
2(|λ

′|−�)(t+d̃)δ̃−2t−d̃+k+1ρ
n−1

2 min{δ̃, ρ} 1
2 , 2(|λ

′|−�)(t+d̃)
}
.

To see this, consider 〈w(i)
� , Lψλ′〉 as in step (III) of the proof. The functions w

(i)
�

and ψλ′ both live on the same patch Γq, and so 〈w(i)
� , Lψλ′〉 is independent of Γ\Γq.

That is, 〈w(i)
� , Lψλ′〉 gets the same value if Γ is replaced by some extension of Γq to

a compact C∞-manifold. If we now follow the proof of Proposition 3.6 using this
smooth manifold, then τ ≥ σ can be any positive number, with which we conclude
(3.21).

The estimate (3.21) is also valid when w� vanishes on all Ξλ′,i that do not have

distance >∼ 2−|λ′| to an interface between different patches. Indeed, for the other Ξλ′,i
the smooth extension of ψλ|Ξλ′,i can always be chosen to be supported in one patch. So
only in the remaining situation that suppψλ′ is not contained in one patch Γq and w�
does not vanish on all Ξλ′,i adjacent to a patch interface, the parameter τ from (3.14)
enters the upper bound for |〈w�, Lψλ′〉| and |〈L′ψλ′ , w�〉|. Nevertheless, unfortunately
the value of τ does enter the estimate for s∗-compressibility, and although this can be
expected also for less smooth manifolds, only for C∞-manifolds have we shown that
the value of s∗ is never limited by τ .

As we have said, our proof of Proposition 3.6 is a modification of the approach
from [DHS02]. A direct application of the technique from that paper yields the esti-
mate

|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
<∼ ‖w�‖Ht(Γ)max

{
2(|λ

′|−�)(t+d̃)δ̃−2t−d̃ρ
n−1

2 min{δ̃, ρ} 1
2 , 2(|λ

′|−�)(t+d̃)
}
,

(3.22)

which is less sharp when k ≥ 0, except possibly, dependent on the value of τ from
(3.14), in cases where (3.20) or (3.21) do not apply. If instead of Proposition 3.6 we
apply (3.22) in the proof of Theorem 3.3, then by only adapting (3.11) we find thatM

is s∗-compressible with s∗ = min{ t+d̃n , 1/2−tn−1 , σ
n−1 ,

t+µ
n−1}, and s∗ = t+ d̃ when n = 1.

The idea to obtain (3.22) is to write, for 1 ≤ i ≤ m,

〈w(i)
� , Lψλ′〉 = 〈w(i)

� , L(ψλ′ |Ξλ′,i)〉+ 〈w(i)
� , L(ψλ′ − ψλ′ |Ξλ′,i)〉.

Since ψλ′ − ψλ′ |Ξλ′,i is generally discontinuous over ∂Ξλ′,i, the second term can be

bounded only by 2(|λ
′|−�)(t+d̃)δ̃−2t−d̃ρ

n−1
2 min{δ̃, ρ} 1

2 . On the other hand, w
(i)
� and

ψλ′ |Ξλ′,i both live on the same patch Γq, so for estimating the first term we can always
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think of Γ as being a C∞-manifold, so that for any σ > 0, L : Ht+σ(Γ)→ H−t+σ(Γ)
is bounded. Writing ψλ′ |Ξλ′,i as the sum of a smooth function on this manifold plus

their difference, which is zero on Ξλ′,i but which generally is discontinuous over ∂Ξλ′,i,
we can obtain the estimate (3.22).

The upper bounds for |〈w�, Lψλ′〉| and |〈L′ψλ′ , w�〉| from Proposition 3.6, (3.21),
and (3.22) are all given as a minimum of two terms. The first term decreases when ρ :=
2|λ

′|diam(∪λ∈A�suppψλ) decreases. The second term is independent of ρ. Responsible
for this term is the part of w� spanned by those ψλ with λ ∈ Ã� := {λ ∈ A� :
suppψλ ⊂ suppψλ′}. Since for our application of Proposition 3.6 in Theorem 3.3 it
held that 1 >∼ ρ ≥ ρ̃ := 2|λ

′|diam(∪λ∈Ã�suppψλ) >∼ 1, there was no need to construct
an estimate that improves with decreasing diameter. However, to give, for example,
sharp estimates of the individual entries of the infinite stiffness matrix 〈Ψ, LΨ〉, such
a need does exist.

For simplicity, let us consider a situation where we may pretend that Γ is a
compact C∞-manifold, as for (3.21) and (3.22). By the Sobolev embedding theorem,
boundedness for any σ ≥ 0 of L : Ht+σ(Γ)→ H−t+σ(Γ) implies boundedness for any

σ ≥ 0 and p ∈ [2,∞) of L : Ht+σ(Γ) → W
−t+σ−n( 1

2− 1
p )

p (Γ). With Ã
(i)
� := {λ ∈ A� :

suppψλ ⊂ Ξλ′,i} and 1
p′ := 1 − 1

p , using (3.2) and the locality of the wavelets, for

w� =
∑

λ∈A� cλψλ we can replace (3.18) by∣∣∣∣
〈 ∑
λ∈Ã(i)

�

cλψλ, L(ϕλ′,i ◦ κ̂−1
q )

〉∣∣∣∣
<∼ 2−�(

n
2 −n

p+t+d̃)

( ∑
λ∈Ã(i)

�

|cλ|p′
) 1
p′
( ∑
λ∈Ã(i)

�

|L(ϕλ′,i ◦ κ̂−1
q )|pW d̃

p (B(suppψλ;2−|λ|η)

) 1
p

<∼ 2−�(
n
2 −n

p+t+d̃)(#Ã
(i)
� )

1
2− 1

p

( ∑
λ∈Ã(i)

�

|cλ|2
) 1

2

|L(ϕλ′,i ◦ κ̂−1
q )|W d̃

p (Γq)

<∼ 2−�(
n
2 −n

p+t+d̃)(2�nvol(∪
λ∈Ã(i)

�
suppψλ))

1
2− 1

p ‖w�‖Ht(Γ)‖ϕλ′,i ◦ κ̂−1
q ‖

H
d̃+2t+n( 1

2
− 1
p

)
(Γ)

<∼ 2−�(
n
2 −n

p+t+d̃)2(�−|λ′|)n( 1
2− 1

p )ρ̃n(
1
2− 1

p )‖w�‖Ht(Γ)2
(t+d̃+n( 1

2− 1
p ))|λ′|

≤ ρn(
1
2− 1

p )‖w�‖Ht(Γ)2
(|λ′|−�)(t+d̃).

We conclude that for any p ∈ [2,∞), we may replace (3.21) by
|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
(3.23)

<∼ ‖w�‖Ht(Γ)max
{
2(|λ

′|−�)(t+d̃)δ̃−2t−d̃+k+1ρ
n−1

2 min{δ̃, ρ} 1
2 , 2(|λ

′|−�)(t+d̃)ρn(
1
2− 1

p )
}

and (3.22) by

|〈w�, Lψλ′〉|
|〈L′ψλ′ , w�〉|

}
(3.24)

<∼ ‖w�‖Ht(Γ)max
{
2(|λ

′|−�)(t+d̃)δ̃−2t−d̃ρ
n−1

2 min{δ̃, ρ} 1
2 , 2(|λ

′|−�)(t+d̃)ρn(
1
2− 1

p )
}
.

With w� = ψλ for some |λ| = 
 and thus δ̃ >∼ ρ � 2|λ
′|−�, the estimate (3.24) can

already be found in [DHS02] (however, with p =∞, which seems to be a mistake).
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The above technique can also be applied in the general setting of Proposition 3.6,
thus in situations where (3.20) or (3.21) are not necessarily valid. However, in that
case the resulting estimate will depend on continuity properties of L defined on a
Cµ−1,1-manifold with respect to W s

p (Γ)-norms for p �= 2 .
Remark 3.8. In contrast to the derivation of the decay estimate from section

3.3, in the present subsection we never used the fact that ψλ′ is a wavelet, i.e., that
it has cancellation properties. In other words, all results derived in this subsection
are also valid when the wavelet on the lowest of the two involved levels is replaced
by an arbitrary “scaling function” on that level, assuming that its Ht(Γ)-norm is of
order 1.

To illustrate (3.23) and (3.24) we end with an example.

Example 3.9. Let Γ be the boundary of the unit square [0, 1]2, and let L be the
single-layer operator, i.e., (Lu)(x) =

∫
Γ
log |x− y|u(y)dµ(y). Let φλ′ be the standard

continuous piecewise linear “hat”-function with respect to the mesh Γ ∩ 2−|λ′|
N
2
0,

attaining its maximum in the point denoted by m(λ′) . Let ψλ be a continuous
piecewise linear function with respect to Γ ∩ 2−|λ|

N
2
0, with diam(suppψλ) � 2−|λ|,

suppψλ ⊂ suppφλ′ , δ̃ := 2|λ
′|dist(suppψλ, sing suppφλ′) = 2|λ

′|dist(suppψλ,m(λ′)),
having the cancellation property of order 3, and which has support contained in one
of the edges of [0, 1]2. Note that n = 1, µ = 1, t = − 1

2 , k = 0, d = 2, and d̃ = 3.

Using Maple, we computed e := |〈ψλ,Lφλ′ 〉|
‖φλ′‖Ht(Γ)‖ψλ‖Ht(Γ)

. Regardless of the position of

m(λ′), for δ̃ � 1 we found e � 23(|λ
′|−|λ|), which is in correspondence with (3.24) if we

could take p =∞. For δ̃ = 2|λ′|−|λ| andm(λ′) a corner of Γ, we found e � 2(|λ
′|−|λ|), as

predicted by (3.24). For δ̃ = 2|λ
′|−|λ| and m(λ′) not being a corner, and so suppφλ′

contained in one of the edges, we found e � 22(|λ
′|−|λ|), which matches our new

estimate (3.23), and which is an order better than predicted by (3.24).
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[CM00] A. Cohen and R. Masson,Wavelet adaptive method for second order elliptic problems:
Boundary conditions and domain decomposition, Numer. Math., 86 (2000), pp.
193–238.

[Coh00] A. Cohen,Wavelet methods in numerical analysis, in Handbook of Numerical Analysis.
Vol. 7, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 2000, pp.
417–711.

[Cos88] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results,
SIAM J. Numer. Anal., 19 (1988), pp. 613–626.

[CTU99] C. Canuto, A. Tabacco, and K. Urban, The wavelet element method part I: Con-
struction and analysis, Appl. Comput. Harmon. Anal., 6 (1999), pp. 1–52.

[Dah96] W. Dahmen, Stability of multiscale transformations, J. Fourier Anal. Appl., 4 (1996),
pp. 341–362.

[Dah97] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer., 6
(1997), pp. 55–228.



1132 ROB STEVENSON

[Dah99] S. Dahlke, Besov regularity for elliptic boundary value problems on polygonal domains,
Appl. Math. Lett., 12 (1999), pp. 31–36.

[DD97] S. Dahlke and R. DeVore, Besov regularity for elliptic boundary value problems,
Comm. Partial Differential Equations, 22 (1997), pp. 1–16.

[DDU02] S. Dahlke, W. Dahmen, and K. Urban, Adaptive wavelet methods for saddle point
problems—Optimal convergence rates, SIAM J. Numer. Anal., 40 (2002), pp. 1230–
1262.

[DeV98] R. DeVore, Nonlinear approximation, Acta Numer., 7 (1998), pp. 51–150.
[DHS02] W. Dahmen, H. Harbrecht, and R. Schneider, Compression Techniques for Bound-

ary Integral Equations—Optimal Complexity Estimates, IGPM report, RWTH
Aachen, Germany, 2002.

[DS98] W. Dahmen and R. Schneider, Wavelets with complementary boundary conditions—
Function spaces on the cube, Results Math., 34 (1998), pp. 255–293.

[DS99a] W. Dahmen and R. Schneider, Composite wavelet bases for operator equations, Math.
Comp., 68 (1999), pp. 1533–1567.

[DS99b] W. Dahmen and R. Schneider, Wavelets on manifolds I: Construction and domain
decomposition, SIAM J. Math. Anal., 31 (1999), pp. 184–230.

[DS99c] W. Dahmen and R. Stevenson, Element-by-element construction of wavelets sat-
isfying stability and moment conditions, SIAM J. Numer. Anal., 37 (1999), pp.
319–352.

[GR87] L. Greengard and V. Rokhlin, A fast algorithm for particle simulation, J. Comput.
Phys., 73 (1987), pp. 325–348.

[HN89] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary
element by panel clustering, Numer. Math., 54 (1989), pp. 463–491.

[NS03] H. Nguyen and R. P. Stevenson, Finite element wavelets on manifolds, IMA J.
Numer. Math, 23 (2003), pp. 149–173.

[Sch98] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Metho-
den zur Lösung großer vollbesetzter Gleigungssysteme, Adv. Numer. Math., Teub-
ner, Stuttgart, 1998.

[Ste70] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
University Press, Princeton, NJ, 1970.

[Ste00] R. P. Stevenson, Locally supported, piecewise polynomial biorthogonal wavelets on
nonuniform meshes, Constr. Approx., 19 (2003), pp. 477–508.

[Ste02] R. Stevenson, Adaptive solution of operator equations using wavelet frames, SIAM J.
Numer. Anal., 41 (2003), pp. 1074–1100.

[vPS97] T. von Petersdorff and C. Schwab, Fully discrete multiscale Galerkin BEM, in
Multiscale Wavelet Methods for Partial Differential Equations, Wavelet Anal. Appl.
6, W. Dahmen, P. Kurdila, and P. Oswald, eds., Academic Press, San Diego, CA,
1997, pp. 287–346.



ON THE OPTIMIZATION OF THE FUEL DISTRIBUTION IN A
NUCLEAR REACTOR∗

LAURENT THEVENOT†

SIAM J. MATH. ANAL. c© 2004 Society for Industrial and Applied Mathematics
Vol. 35, No. 5, pp. 1133–1159

Abstract. In this paper we give an optimality condition for the optimization problem of the
distribution of fuel assemblies in a nuclear reactor by using the homogenization method. This study
deals with purely fissile fuels and is based on the neutron transport equation modeling for continuous
models. In particular, we prove the differentiability of the leading eigenvalue of the neutron transport
operator with respect to the design parameter, the configuration of the fuels.

Key words. neutron transport, nuclear reactor, optimization, optimality condition, homoge-
nization, leading eigenvalue, eigenvalue derivative
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1. Introduction. This paper deals with the optimization problem of the assem-
blies distribution in a nuclear reactor. The core of a nuclear reactor is composed of a
large number of different fuel and control rods which are immersed in a medium called
a moderator (water, in most reactors). Because of the fission process that consumes
the fuel, the old fuel must be replaced periodically by fresh fuel. However, only part
of the fuel rods is removed since the fuel depletion is not spatially uniform in the
reactor. So, to increase the lifetime of the assemblies, one is faced with the so-called
optimal fuel reloading problem: optimize the assemblies distribution by maximiz-
ing the reactivity of the reactor. Although this is, in fact, a discrete optimization
problem, it is beyond the scope of combinatorial methods due to the huge number of
permutations of the rods and to the complexity of each computation. Many numerical
methods have been proposed for solving this problem. For more details, we refer to
[L], [AC1], [AC2], and the references therein. To date, these studies have been based
on the modeling of the fission process by the multigroup neutron diffusion equation
approximation. Our aim in this paper is to give an optimality condition for a sim-
plified model of the continuous (in velocity) neutron transport equation accounting
for a medium consisting only of (almost) purely fissile fuels. On the other hand,
we deal with the continuous optimization problem; namely, we consider the shape of
the domains occupied by the fuels to be free; a quasi-optimal distribution could be
recovered by means of a penalization method. We follow the strategy developed in
[AC1] for the one-group neutron diffusion equation (and generalized in [AC2] for the
two-group neutron diffusion equation), inspired itself by the homogenization method
introduced in particular in [MT]. Of course a natural follow-up of this work would be
to implement numerically the optimality condition obtained herein.

The reactivity of the reactor core is measured by the real simple leading eigenvalue
λ of the transport operator, which is associated with a positive eigenfunction, the only
one to have a physical meaning. If λ < 0 (the reactor is said to be subcritical), the
leakage of the neutrons at the boundary and the absorption of neutrons by the media
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dominate the fission process, and the nuclear chain reaction dies out. If λ > 0 (the
reactor is said to be supercritical), the phenomenon of fission leads and the nuclear
chain reaction escalates. Lastly, if λ = 0 (the reactor is said to be critical), there is a
perfect balance between the phenomenon of fission and that of depletion of neutrons
by leakage or absorption, and the reactor can safely be operated. Nevertheless, the
reactor can produce energy only if the criticality eigenvalue λ is slightly greater than
0; the reaction is then controlled by rods of absorbing matter.

Because of the disappearance phenomenon of the leading eigenvalue for small bod-
ies with small velocities (v → 0), before dealing with the optimization problem one
has to ensure the existence of the leading eigenvalue, whatever the configuration of the
assemblies, by finding practical criteria related to the physical parameters (space and
velocity domains, cross sections which model the collisions). Indeed, one proves that
the leading eigenvalue can disappear if the measure of the space domain Ω (not nec-
essarily convex) becomes too small. However, for the models without small velocities
(v � 0) there exist some general existence results (see [M2, Chap. 5.4, p. 112]). To
get an optimality condition, we follow the strategy of [AC1]. Namely, first we find a
relaxed formulation of the optimization problem by using the homogenization method
(see [DG], [M3], and [JT]); second, since the relaxed admissible subset is convex, we
can take advantage of the direct method of calculus of variations to derive optimality
conditions. But first, we prove the differentiability of the leading eigenvalue with
respect to the design parameter, the (relaxed) configuration of the fuels. The proof is
inspired by [CHM] and based on the implicit function theorem and the regularity of
some convolution operators.

Here, the method for proving the differentiability of the leading eigenvalue, con-
sisting in integrating with respect to the velocities the eigenvalue equation in order to
get a more tractable equation, imposes to deal with separable transfer cross sections.
This means we consider, in this paper, a medium composed only of (almost) purely
fissile fuels for which the velocities before and after the collisions are not related.
Let us point out that the spectral theory and the relaxation procedure rely on the
compactness of the velocity averages, which is valid only for a class of transfer cross
sections close to a separable one (see [M2, sect. 4.2]).

This paper is organized as follows. In section 2 we state the optimization prob-
lem and give a brief survey of the spectral theory of the neutron transport operator.
In particular, we give some criteria of the existence of the leading eigenvalue inde-
pendently of the configurations of the fuels for models with v → 0, whose proof is
postponed until Appendix B. Section 3 is devoted to the relaxed formulation. In
section 4 we study the differentiability of the leading eigenvalue. The optimality
condition is derived in section 5. Lastly, Appendix A deals with the disappearance
phenomenon of the leading eigenvalue.

2. Statement of the problem. Let Ω ⊂ R
N be a bounded open convex subset,

the domain occupied by the core of the reactor. Let V ⊂ R
N be a bounded closed

subset symmetric about 0, the velocity admissible space of the neutrons, endowed
with the Lebesgue measure.

A nuclear fuel is characterized by two physical parameters called cross sections,
which are bounded and nonnegative: the collision frequency σ(x, v), which is the
collision probability for neutrons located at position x and with velocity v, and the
transfer probability k(x, v, v′), which is the probability that a neutron at position x
and with velocity v′ gives rise, after a collision with a nucleus of the fuel, to a neutron
with velocity v. The collision takes into account not only the fission phenomenon but
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also the scattering phenomenon when the neutron collides with a nonfissile nucleus
and is just scattered into another direction (the energy of the velocity can also change
if one considers neutrons with high velocity). In this study we will assume that the
fuels are (almost) purely fissile, and we will neglect the scattering phenomenon. In the
fission process, the velocities before and after the collision are not related, and thus
the transfer cross section k, due to the fission, is a function with separated velocity
variables. We refer to [BG] for a more complete introduction to reactor physics.

As explained in the introduction, the physically relevant parameter which mea-
sures the reactivity of the nuclear reaction is the leading eigenvalue of the transport
operator. The transport operator on Lp(Ω× V ) (1 ≤ p < ∞) is given by T +K; the
unbounded penetration operator T is defined by{

Tϕ(x, v) = −v · ∇xϕ(x, v)− σ(x, v)ϕ(x, v),

D(T ) = W p
0 (Ω× V )

(1)

and the (bounded) transfer operator K by

Kϕ(x, v) =

∫
V

k(x, v, v′)ϕ(x, v′)dv′,(2)

where

W p
0 (Ω× V ) =

{
ϕ ∈ Lp(Ω× V ), v · ∇xϕ ∈ Lp(Ω× V ), ϕ = 0 on Γ−

}
and Γ− = {(x, v) ∈ ∂Ω× V \ v · n(x) < 0} denotes the incoming flux, n(x) being the
outward normal at x ∈ ∂Ω.

The existence theory of the leading eigenvalue is based on the compactness of
the velocity averages in transport theory (see [GLPS], [G], and [M2]) and the strict
positivity of the transport semigroup {V (t); t ≥ 0} generated by T +K, due to the
nonnegativity of the cross sections σ and k. Both arguments are given, respectively,
by the two following results.
Theorem 1 (see [M2, Thm. 3.2(ii), p. 37]). Let Ω be a bounded and not neces-

sarily convex open subset and let dµ be the measure on V . Let 1 < p < ∞. If the
hyperplanes have zero dµ-measure, then the following operator is compact:

ϕ ∈ W p
0 (Ω× V ) �−→

∫
V

ϕ(x, v)dµ(v) ∈ Lp(Ω).

Theorem 2 (see [Vo1, Thm. 3.2]). Let Ω be connected and let V be an open
subset endowed with the Lebesgue measure. Let there exist 0 ≤ c1 < c2 < ∞ such that

V0 :=
{
v ∈ R

N ; c1 ≤ |v| ≤ c2
} ⊂ V

and

k(x, v, v′) > 0 a.e. on (Ω× V0 × V ) ∪ (Ω× V × V0);(3)

then the semigroup {V (t); t ≥ 0} is irreducible.
The leading eigenvalue is related to the “asymptotic” spectrum of the transport

operator

σas(T +K) = σ(T +K) ∩ {
λ ∈ C; Reλ > s(T )

}
,
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where s(T ) = sup
{
Reλ, λ ∈ σ(T )

}
is the spectral bound of T . The compactness of the

velocity averages ensures that the transfer operator K is T -compact (i.e., K(λ−T )−1-
compact for Reλ > s(T )) in Lp(Ω× V ) for 1 < p < ∞ if the transfer cross section k
is a separable or bounded function. Thus, from a classical stability result of essential
spectra and from [Vo1], one deduces that, with our assumptions (σ bounded and
nonnegative and Ω bounded), the half-plane Reλ ≤ s(T ) belongs to the essential
spectrum of T +K; this result remains true in L1 setting (see [M4]), even though only
a power ofK(λ−T )−1 is compact in L1(Ω×V ) (see [M2, Chap. 4.2]). As a consequence
of the so-called Gohberg–Shmulyan theorem, it follows that the asymptotic spectrum
consists at most of isolated eigenvalues with finite algebraic multiplicity (see [Vi],
[KLH, Thm. 13.13, p. 277], or [GMP, Chap. XII.5]). If the semigroup {V (t); t ≥ 0}
is irreducible and if its spectral bound s(T+K) is a pole of the resolvent (λ−T−K)−1,
then ω(T +K)(= s(T +K)) is a simple eigenvalue (possibly cyclic) associated with a
positive eigenfunction (see [C, p. 209]). Lastly, if k is a separable or bounded function,
it is known that the essential type of T is stable with respect to the perturbation K,
namely, ωe(T + K) = ωe(T ). (The proof is related also to a compactness argument
of some velocity averages; see [M2, sect. 4.3, p. 65, and Thm. 2.10, p. 24].) In our
setting we have ωe(T ) = s(T ) (see [Vo1] and [Vo2]). It is now obvious to conclude,
under the previous assumptions, that if σas(T +K) �= ∅, then ω(T +K) is the only
element of the spectrum of T +K located on the line Reλ = ω(T +K), and ω(T +K)
is a simple eigenvalue associated with a positive eigenfunction (ω(T +K) is also the
only eigenvalue to be associated with a nonnegative eigenfunction). Moreover, there
exists ε > 0 such that

σ(T +K) ∩ {
λ ∈ C; Reλ ≥ ω(T +K)− ε

}
=
{
ω(T +K)

}
.

Thus ω(T + K) is called the leading eigenvalue, and the eigenfunction associated
with ω(T + K) is the only one which has physical meaning because it is positive.
The question is therefore to find practical criteria for the existence of this leading
eigenvalue. Since the function

λ ∈ ]s(T ),∞[ �−→ rσ
(
(λ− T )−1K

)
is continuous and strictly decreasing (see [M2, sect. 5.7]), then σas(T+K) is nonempty
if and only if

lim
λ→s(T )

rσ
(
(λ− T )−1K

)
> 1,

and then the leading eigenvalue is a solution of the equation

rσ
(
(λ− T )−1K

)
= 1.

For a more complete survey of the theory, we refer to [M2, Chap. 2, 3, 4, and 5]
(and [M5] and [M6] for recent developments). Finally, we recall (see [Vo2]) that T
generates an explicit c0-semigroup

etTϕ = e
−
∫ t

0
σ(x−sv,v)ds

ϕ(x− tv, v)χ[0,s(x,v)](t),(4)

where the stay time s(x, v) is given by

s(x, v) = inf{s > 0 / x− vs /∈ Ω},
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and

s(T ) = − lim
t→∞

{
ess inf

t<s(x,v)

1

t

∫ t

0

σ(x− sv, v)ds

}
.(5)

Let us note, if 0 ∈ V and if the collision frequency σ is space homogeneous, that

s(T ) = − lim inf
v→0

σ(v).(6)

We are now in position to state the optimization problem with which we are con-
cerned. We consider that the matter consists of I different fuels, which are charac-
terized by the (space homogeneous and measurable) cross sections σi(v) and ki(v, v

′)
(i = 1, . . . , I). Let ωi ⊂ Ω be the domain occupied by each fuel i such that

ωi ∩ ωj = ∅ if i �= j and

I⋃
i=1

ωi = Ω.(7)

One imposes the volume constraint∫
Ω

χi(x)dx = µi,(8)

where χi is the characteristic function of the domain ωi, and µi are fixed positive
constants such that

I∑
i=1

µi = |Ω|.

We define the cross sections of the reactor, which depend on the partition defined by
χ = (χi)i=1,...,I :

σχ(x, v) =

I∑
i=1

χi(x)σi(v), kχ(x, v, v
′) =

I∑
i=1

χi(x)ki(v, v
′).

We denote by λχ the leading eigenvalue corresponding to the partition χ = (χi)i=1,...,I ;
namely, λχ is the leading eigenvalue of the transport operator Tχ+Kχ on Lp

(
Ω×V

)
,

where {
Tχϕ(x, v) = −v · ∇xϕ(x, v)− σχ(x, v)ϕ(x, v),

D(Tχ) = W p
0

(
Ω× V

)
and

Kχϕ(x, v) =

∫
V

kχ(x, v, v
′)ϕ(x, v′)dv′.

The aim is to find the supremum of the leading eigenvalue λχ on the admissible subset
of all configurations

Uad =

{
χ = (χi)1≤i≤I ∈ L∞(Ω; {0, 1});

I∑
I=1

χi(x) = 1 and

∫
Ω

χi(x)dx = µi

}
.
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However, to avoid some peaks of the power distribution (defined as the energy re-
leased by fission) which can locally yield a strong increase of the temperature and
cause damage to the reactor, one has to minimize also the power peak given by the
maximal value of

∫
V
Kχϕχ(x, v)dv, where ϕχ is the positive leading eigenfunction

associated with λχ. Since such a criterion is nondifferentiable, we search to minimize

the averaging of Kχϕχ on Ω × V , normalized by
(∑I

i=1 ‖
∫
V
ϕχ(., v)gi(v)dv‖2

L2(Ω)

) 1
2

because the eigenfunction is not uniquely defined. The functions gi are introduced be-
low. For more details we refer to [AC1] and [AC2]. Let us point out that in this paper
we get only the differentiability of the velocity averages (with the weights gi) of the
leading eigenfunction and the differentiability of Kχϕχ, but not the differentiability
of the eigenfunction ϕχ. Therefore, the problem is written as follows:

Find inf
χ∈Uad


−λχ +

(Kχϕχ, 1)L2(Ω×V )(∑I
i=1 ‖

∫
V
ϕχ(., v)gi(v)dv‖2

L2(Ω)

) 1
2


 .(9)

However, because of the disappearance phenomenon of the leading eigenvalue for
small domains (see Appendix A), one has to prove the existence of λχ for all the
configurations in Uad before dealing with the optimization problem.

We state now the technical assumptions made throughout this paper. First, we
assume there exist some nonnegative functions σ and σ in L∞(V ) such that σ ≤ σi ≤ σ
for all i = 1, . . . , I. Second, as we consider only purely fissile fuels, the transfer cross
sections are separable functions

ki(v, v
′) = fi(v)gi(v

′), where fi ∈ L∞(V ), gi ∈ L∞(V ) (i = 1, . . . , I).

The functions fi, which denote the fission spectrum, are normalized by∫
V

fi(v)dv = 1,(10)

while the functions gi represent the product of the absorption spectrum with the
average number of neutrons produced by fission. We assume there exist some functions
fm, fM , gm, gM in L∞(V ) such that fm ≤ fi ≤ fM , gm ≤ gi ≤ gM for all i = 1, . . . , I.
To be in the setting of Theorem 2 and to ensure the irreducibility of the semigroup
generated by Tχ+Kχ for all configurations, we assume furthermore that the functions
fm and gm are positive.

On the other hand, since the transfer cross sections kχ are the sum of separable
functions, the compactness of velocity averages (Theorem 1) implies the compact-
ness of Kχ(λ − Tχ)

−1 in Lp(Ω × V ) for Reλ > s(Tχ). Moreover, as the results
in the following sections are true in full generality, we assume that the asymptotic
spectrum σas(Tχ+Kχ) is nonempty regardless of the configuration (that is, the lead-
ing eigenvalue exists regardless of the configuration). More precisely, let us consider
the unbounded penetration operators T and T defined as in (1) but with the colli-
sion frequencies σ and σ, respectively, as well as the bounded integral operators K
and K defined as in (2) but with the kernels fm(v)gm(v′) and fM (v)gM (v′), respec-
tively. We assume there exist λ > λ ≥ s(T ) such that rσ

(
(λ − T )−1K

)
> 1 and

rσ
(
(λ − T )−1K

)
< 1. With these assumptions the leading eigenvalue λχ exists re-

gardless of the configuration χ in Uad and satisfies λ ≤ λχ ≤ λ, and problem (9) is
well-posed, as is shown in the following proof.
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Proof 1. First, according to (5), we have

s(T ) ≤ s(Tχ) ≤ s(T ).

On the other hand, it is easy to see, due to (4) (see also the proof of Proposition 1)
that

(λ− T )−1K ≤ (λ− Tχ)
−1Kχ ≤ (λ− T )−1K ∀λ > s(T ).

Then

rσ
(
(λ− Tχ)

−1Kχ

) ≥ rσ
(
(λ− T )−1K

)
> 1 ∀χ ∈ Uad,

and therefore the leading eigenvalue λχ exists regardless of the configuration χ in Uad

and λ ≤ λχ. Moreover,

rσ
(
(λ− Tχ)

−1Kχ

) ≤ rσ
(
(λ− T )−1K

)
< 1 ∀χ ∈ Uad,

so that λχ ≤ λ. Finally problem (9) is well-posed because, using the definition of the
characterization function, we obtain

‖Kχϕχ‖2
L2(Ω×V ) ≤

I∑
i=1

‖fi‖2
L2(V )

∥∥∥∫
V

ϕχ(., v
′)gi(v′)dv′

∥∥∥2

L2(Ω)
.

We end this section by giving some practical criteria, which ensure those for
latter assumptions, and by posing an open question. By adapting the method in
[M1, Lem. 2], introduced for space homogeneous cross sections, we get some practical
criteria related to the size of the domain Ω. We detail the proof in Appendix B.
Proposition 1. Let 1 < p < ∞. Assume that 0 ∈ V , the collision frequency

σi are positive constants, fi ∈ Lp(V ), gi ∈ Lp′
(V ), and there exist some functions

fm, fM in Lp(V ) and gm, gM in Lp′
(V ) such that fm ≤ fi ≤ fM and gm ≤ gi ≤ gM

for all i = 1, . . . , I. Assume furthermore that fm(−v)gm(−v) = fm(v)gm(v) for all
v ∈ V and ∫

V

fm(v)gm(v)dv > σ − σ,

where σ = min
{
σi, i = 1, . . . , I

}
and σ = max

{
σi, i = 1, . . . , I

}
.

If Ω contains a large enough ball, independent of the configurations χ ∈ Uad, then

σas(Tχ +Kχ) �= ∅ ∀χ ∈ Uad.

Moreover, there exists a positive constant α such that the leading eigenvalue λχ sat-
isfies

−σ + α ≤ λχ ≤ −σ +
∥∥K∥∥ ∀χ ∈ Uad,

where K denotes the integral operator on Lp(Ω × V ) defined as in (2) with kernel
fM (v)gM (v′).

Remark 1. If 0 /∈ V (i.e., V bounded away from 0), Proposition 1 is still valid.
The only difference is that s(Tχ) = −∞ and the leading eigenvalue always exists
independently of the size of Ω (see [M2, Thm. 5.17 and 5.18, p. 113]).

Open question. Assuming that the leading eigenvalue exists for each fuel i (for
the whole space domain Ω), does the leading eigenvalue exist for any possible mixture
of fuels?
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3. The relaxed problem. Problem (9) has two disadvantages. First, the set
Uad is not closed in the weak star topology of L∞(Ω). Indeed minimizing sequences
may converge to limits which are not within Uad, that is, which are not characteristic
functions. Second, we cannot differentiate the cost functions in problem (9) because
the set Uad is not stable with respect to convex combinations. To overcome these
two difficulties, we carry out the so-called relaxation procedure. We determine the
relaxed or generalized optimization problem by applying the homogenization methods
introduced in [DG] and [M3] (and used also in [JT]), which rely on arguments of
compactness of the velocity averages. From a physical point of view, the relaxation
procedure means one deals with composite fuels obtained by mixing microscopically
the original fuels, instead of dealing with a juxtaposition of different fuels.

The following result is inspired by [M3] and [JT]. For the relaxation procedure,
the separability assumption of the transfer cross section ki is not necessary, and the
boundedness of the functions ki is sufficient, as it is stated below.
Lemma 1. Let χn = (χn

i )i=1,...,I be a sequence in Uad. Let σn and kn be the cross
sections defined from the configurations χn,

σn(x, v) =

I∑
i=1

χn
i (x)σi(v) and kn(x, v, v

′) =
I∑

i=1

χn
i (x)ki(v, v

′),

where the functions ki ∈ L∞(V 2) (i = 1, . . . , I), and let Kn be the integral operator
defined as in (2) with the kernel kn. Let λn ∈ R and ϕn ∈ W 2

0 (Ω× V ) be the leading
eigenelements satisfying

−v · ∇xϕn − σnϕn +Knϕn = λnϕn.(11)

The eigenfunctions ϕn are normalized by

I∑
i=1

∥∥∥∫
V

ϕn(., v)gi(v)dv
∥∥∥2

L2(Ω)
= 1.(12)

Then the following hold:
(i) There exist some functions θi ∈ L∞(Ω) (i = 1, . . . , I) satisfying

0 ≤ θi(x) ≤ 1,

I∑
i=1

θi(x) = 1,

∫
Ω

θi(x)dx = µi

such that, possibly on a subsequence,

χn
i −→ θi weakly ' in L∞(Ω).

(ii) There exist a real λθ and a positive function ϕθ ∈ W 2
0 (Ω × V ) such that,

possibly on a subsequence, λn −→ λθ and

ϕn −→ ϕθ weakly in L2(Ω× V ).

Moreover, (λθ, ϕθ) satisfies

−v · ∇xϕθ − σθϕθ +Kθϕθ = λθϕθ,(13)
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where

σθ(x, v) =

I∑
i=1

θi(x)σi(v) and kθ(x, v, v
′) =

I∑
i=1

θi(x)ki(v, v
′),(14)

and Kθ is the integral operator defined as in (2) with the kernel kθ. Thus λθ is the
leading eigenvalue of the transport operator Tθ + Kθ, where Tθ is defined as in (1)
with the collision frequency σθ. Moreover, possibly on a subsequence,

Knϕn −→ Kθϕθ weakly in L2(Ω× V )(15)

and ∫
V

ϕn(., v)gi(v)dv −→
∫
V

ϕθ(., v)gi(v)dv in L2(Ω).(16)

Proof. The point (i) is obvious. We split the proof of (ii) into several parts.
Step 1. Estimate of the eigenelements. We already know from the assumptions

that the leading eigenvalue λn is bounded; more precisely, λ ≤ λn ≤ λ. So there exists
λθ ∈ R such that, possibly on a subsequence, λn −→ λθ. The leading eigenfunction
ϕn satisfies ϕn = (λn − Tn)

−1Knϕn, that is,

ϕn(x, v)=

∫ s(x,v)

0

e
−λnt−

∫ t
0

∑
i
χni (x−sv)σi(v)ds

∫
V

I∑
i=1

χn
i (x−tv)ki(v, v

′)ϕn(x−tv, v′)dv′dt.

Then

ϕn(x, v) ≤ C

∫ s(x,v)

0

e−(λ+σ(v))tdt

∫
V

I∑
i=1

fi(v)gi(v
′)ϕn(x− tv, v′)dv′

and

∥∥ϕn

∥∥
L2(Ω×V )

≤ C
∥∥(λ− T )−1

∥∥ I∑
i=1

‖fi‖2
L2(V )

∥∥∥∫
V

ϕn(., v
′)gi(v′)dv′

∥∥∥
L2(Ω)

.

According to (12), it follows that ϕn is bounded in L2(Ω× V ). Moreover, one easily
deduces from (11) that v · ∇xϕn is bounded in L2(Ω × V ). Thus ϕn is bounded in
W 2

0 (Ω × V ). Then there exists a nonnegative function ϕθ ∈ W 2
0 (Ω × V ) such that,

possibly on a subsequence,

ϕn −→ ϕθ weakly in L2(Ω× V ),

v · ∇xϕn −→ v · ∇xϕθ weakly in L2(Ω× V ).

Step 2. Homogenization procedure. First, we show that, possibly on a subse-
quence,

σnϕn −→ σθϕθ weakly in L2(Ω× V ).(17)

Let q be a test function in L2(Ω×V ). Since σnϕn is bounded in L2(Ω×V ), by density
one can assume that q(x, v) = q1(x)q2(v) and even that q1 and q2 are continuous
functions with compact support. Thus

(
σnϕn, q

)
L2(Ω×V )

=

I∑
i=1

∫
Ω

χn
i (x)q1(x)dx

∫
V

ϕn(x, v)σi(v)q2(v)dv.
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Let dβ(v) = q2(v)σi(v)dv. By decomposing q2 into positive and negative parts, we
can assume that dβ is a positive bounded measure such that the hyperplanes have
zero dβ-measure. Then Theorem 1 implies∫

V

ϕn(x, v)σi(v)q2(v)dv −→
∫
V

ϕθ(x, v)σi(v)q2(v)dv strongly in L2(Ω).

Because Ω is bounded, the previous convergence occurs also in L1(Ω). Therefore (i)
yields assertion (17), namely, possibly on a subsequence,(

σnϕn, q
)
L2(Ω×V )

−→ (
σθϕθ, q

)
L2(Ω×V )

.

Second, we prove (15). Since the transfer cross sections ki are bounded functions,
a domination argument implies that the operators in velocity

ϕ ∈ L2(V ) �−→
∫
V

ki(v, v
′)ϕ(v′)dv′ ∈ L2(V )

are compact, and thus can be approximated in the norm operator by finite rank
operators. Therefore, because ϕn is bounded in L2(Ω×V ), one can assume that kn is

a combination of separable functions kn(x, v, v
′) =

∑I
i=1 χ

n
i (x)fi(v)gi(v

′), with fi and
gi some functions in L2(V ). On the other hand, since the sequence Knϕn is bounded
in L2(Ω× V ), one can still choose a test function q(x, v) = q1(x)q2(v) with q1 and q2
some continuous functions with compact support. Thus we have

(
Knϕn, q

)
L2(Ω×V )

=

I∑
i=1

∫
Ω

χn
i (x)q1(x)dx

∫
V

ϕn(x, v
′)gi(v′)dv′

∫
V

fi(v)q2(v)dv.

The same arguments as before yield∫
V

ϕn(x, v
′)gi(v′)dv′ −→

∫
V

ϕθ(x, v
′)gi(v′)dv′ strongly in L1(Ω)

and, possibly on a subsequence,(
Knϕn, q

)
L2(Ω×V )

−→ (
Kθϕθ, q

)
L2(Ω×V )

.

Step 3. Limit equation. Passing to the limit in (11), according to the previ-
ous steps, it follows that (λθ, ϕθ) satisfies (13). Moreover, Theorem 1 implies the
convergence (16) and

I∑
i=1

∥∥∥∫
V

ϕθ(., v)gi(v)dv
∥∥∥2

L2(Ω)
= 1,

showing that ϕθ is not null. On the other hand, as the semigroup generated by Tθ+Kθ

is irreducible, then the only eigenvalue of Tθ + Kθ associated with a nonnegative
eigenfunction is the leading eigenvalue. Therefore λθ is the leading eigenvalue of
Tθ +Kθ.

We can state now the relaxed or generalized admissible subset of configurations

U�
ad =

{
θ = (θi)1≤i≤I ∈ L∞(Ω); 0 ≤ θi(x) ≤ 1,

I∑
i=1

θi(x) = 1 and

∫
Ω

θi(x)dx = µi

}
.
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Let Tθ +Kθ be the transport operator and let (λθ, ϕθ) be the leading eigenelements
of the transport operator Tθ +Kθ defined as in Lemma 1 and which depend of θ via
the cross sections (14). The arguments in Proof 1 are still valid if we replace Uad by
U�
ad. In particular the leading eigenvalue λθ exists regardless of the configuration in

U�
ad and is bounded. We are now in position to state the relaxation result.
Theorem 3. Let

J(θ) = −λθ +
(Kθϕθ, 1)L2(Ω×V )(∑I

i=1 ‖
∫
V
ϕθ(., v)gi(v)dv‖2

L2(Ω)

) 1
2

,

where θ ∈ U�
ad. Then

inf
χ∈Uad

J(χ) = min
θ∈U�

ad

J(θ).

Proof. Since for all θ in U�
ad there exists a sequence χn ⊂ Uad such that

χn −→ θ weakly ' in L∞(Ω)

(see [MT, Rem. 7]), we deduce from Lemma 1 that

inf
χ∈Uad

J(χ) = inf
θ∈U�

ad

J(θ).

Let us choose a minimizing sequence χn ⊂ Uad of the previous infimum. Then, by
passing to the limit in J(χn) thanks to Lemma 1, we deduce that the infimum is
attained in U�

ad.

4. Differentiability of the leading eigenvalue. We are concerned in this
section with the differentiability of the leading eigenvalue with respect to the de-
sign parameter, namely, the configurations in the relaxed admissible subset U�

ad. We
noted in section 2 that the leading eigenelements (λθ, ϕθ), depending on θ ∈ U�

ad, are
solutions of the implicit eigenvalue equations

ϕ = (λ− Tθ)
−1Kθϕ, λ > s(Tθ), ϕ ≥ 0,(18)

and

rσ
(
(λ− Tθ)

−1Kθ

)
= 1, λ > s(Tθ).

Thus the implicit function theorem seems to be a natural approach for getting the
differentiability of the leading eigenelements. Nevertheless, the resolvent (λ − Tθ)

−1

is the Laplace transform of the semigroup generated by Tθ, and differentiating under
the time integral turns out to be an important obstacle. So we apply a now-classic
method in neutron transport (since [LW]) which consists in transforming the latter
eigenvalue problem by integrating it with respect to the velocities. Thus, using the
convexity of the space domain Ω and the separability of the transfer cross sections ki,
we obtain a more tractable eigenvalue problem (20) for an integral operator in the
space variable whose kernel, given by a time integral, can be more easily estimated
than the Laplace transform. We were inspired by the method of [CHM] in which the
authors obtain the derivative of the leading eigenvalue with respect to the domain for
a simplified model.
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The eigenvalue equation (18) for a function ϕ in W 2
0 (Ω× V ) is written

ϕ(x, v)=

∫ s(x,v)

0

e
−λt−

∫ t
0

∑
i
θi(x−sv)σi(v)dsdt

∫
V

I∑
i=1

θi(x− tv)fi(v)gi(v
′)ϕ(x− tv, v′)dv′.

(19)

Let ϕ̃i(x) =
∫
V
gi(v

′)ϕ(x, v′)dv′. Multiplying (19) by gj and integrating over V , it
follows that

ϕ̃j(x)=

∫
V

gj(v)dv

∫ s(x,v)

0

e
−λt−

∫ t
0

∑
i
θi(x−sv)σi(v)ds

(
I∑

i=1

θi(x− tv)fi(v)ϕ̃i(x− tv)

)
dt.

Thanks to the convexity of Ω, the change of variable x′ = x− tv yields

ϕ̃j(x) =

∫
Ω

dx′
∫ ∞

0

e
−λt−

∫ t
0

∑
i
θi(

s
t x+(1− s

t )x
′)σi( x−x

′
t )ds

(20)

×
(

I∑
i=1

θi(x
′)fi

(
x− x′

t

)
gj

(
x− x′

t

)
ϕ̃i(x

′)

)
χV

(
x− x′

t

)
dt

tN
.

Thus

ϕ̃j =

I∑
i=1

Nij(θ, λ)ϕ̃i,

where Nij(θ, λ) denotes the integral operators on L2(Ω),

Nij(θ, λ)ϕ(x) =

∫
Ω

Eij(θ, λ, x, x
′)θi(x′)ϕ(x′)dx′,

and

Eij(θ, λ, x, x
′)

=

∫ ∞

0

e
−λt−

∫ t
0

∑
l
θl(

s
t x+(1− s

t )x
′)σl( x−x

′
t )ds

fi

(
x− x′

t

)
gj

(
x− x′

t

)
χV

(
x− x′

t

)
dt

tN
.

Let us denote by N(θ, λ) the bounded operator

ϕ̃ =
(
ϕ̃i

)
i=1,...,I

∈ (
L2(Ω)

)I �−→ N(θ, λ)ϕ̃ =

(
I∑

i=1

Nij(θ, λ)ϕ̃i

)
j=1,...,I

∈ (
L2(Ω)

)I
.

Then the eigenvalue problem (18) is equivalent to the problem ϕ̃ = N(θ, λ)ϕ̃ for
λ > s(Tθ) and ϕ̃ ≥ 0. Indeed, let ϕ̃ be a solution of ϕ̃ = N(θ, λ)ϕ̃; then we can check
that the function

ϕ(x, v) =

∫ s(x,v)

0

e
−λt−

∫ t
0

∑
i
θi(x−sv)σi(v)dsdt

I∑
i=1

θi(x− tv)fi(v)ϕ̃i(x− tv)

satisfies (18). On the other hand, let us notice that (λ − Tθ)
−1 and N(θ, λ) are well

defined for λ > λ if
∑I

l=1 θl(x) = 1 and θl ≥ 0 (l = 1, . . . , I); we refer to Proof 1.



OPTIMIZATION OF NUCLEAR FUEL DISTRIBUTION 1145

Thus, we are led to replace θI by 1−∑I−1
l=1 θl in the expressions of Nij(θ, λ), and in

particular the kernel of NIj(θ, λ) gets

EIj(θ, λ, x, x
′)θI(x′)=

∫ ∞

0

dt

tN

(
1−

I−1∑
l=1

θl(x
′)

)
fI

(x− x′

t

)
gj

(x− x′

t

)
χV

(x− x′

t

)

× exp

(
− λt− tσI

(
x− x′

t

)

−
∫ t

0

I−1∑
l=1

θl

(s

t
x+

(
1− s

t

)
x′
)(

σl

(
x− x′

t

)
− σI

(
x− x′

t

))
ds

)
.

Let us consider the mapping

Ψ : U×]λ,∞[× (
L2(Ω)

)I −→ (
L2(Ω)

)I × R,

(θ, λ, ϕ̃) �−→ (Ψ1 (θ, λ, ϕ̃) ,Ψ2 (θ, λ, ϕ̃)) ,

where

U =

{
θ = (θi)1≤i≤I−1 ∈ (L∞(Ω))

I−1
; 0 ≤ θi(x) ≤ 1, 0 ≤

I−1∑
i=1

θi(x) ≤ 1

}

and

Ψ1 (θ, λ, ϕ̃) = N(θ, λ)ϕ̃− ϕ̃ and Ψ2 (θ, λ, ϕ̃) =

I∑
i=1

‖ϕ̃i‖2
L2(Ω) − 1.

The operator N(θ, λ) is well defined on U×]λ,∞[. Thus the eigenelements (λθ, ϕθ)
satisfy Ψ (θ, λθ, ϕ̃θ) = 0 for all θ ∈ U , where ϕ̃θ = ((ϕ̃θ)i)i=1,...,I .

We introduce the notation

∂Eij

∂λ
(θ, λ, x, x′) = −

∫ ∞

0

dt

tN−1
fi

(
x− x′

t

)
gj

(
x− x′

t

)
χV

(
x− x′

t

)

× exp

(
− λt− tσI

(
x− x′

t

)

−
∫ t

0

I−1∑
l=1

θl

(s

t
x+

(
1− s

t

)
x′
)(

σl

(
x− x′

t

)
− σI

(
x− x′

t

))
ds

)
,

and for an increment δθ = (δθl)l=1,...,I−1 in (L∞(Ω))
I−1

such that θ + δθ ∈ U ,
∂Eij

∂θk
(θ, λ, x, x′)(δθk) = −

∫ ∞

0

dt

tN
fi

(
x− x′

t

)
gj

(
x− x′

t

)
χV

(
x− x′

t

)

×
∫ t

0

δθk

(s

t
x+

(
1− s

t

)
x′
)(

σk

(
x− x′

t

)
− σI

(
x− x′

t

))
ds
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× exp

(
− λt− tσI

(
x− x′

t

)
−
∫ t

0

I−1∑
l=1

θl

(s

t
x+

(
1− s

t

)
x′
)(

σl

(
x− x′

t

)

− σI

(
x− x′

t

))
ds

)
.

Lastly, let us denote by Eij(θ, λ),
∂Eij
∂λ (θ, λ), and

∂Eij
∂θk

(θ, λ)(δθk) the integral operators

on L2(Ω) defined, respectively, with the kernels Eij(θ, λ, x, x
′), ∂Eij

∂λ (θ, λ, x, x′), and
∂Eij
∂θk

(θ, λ, x, x′)(δθk).

Theorem 4. The map θ ∈ U �−→ (λθ, ϕ̃θ) is Fréchet-differentiable on U . The
adjoint operator N�(θ, λθ) of N(θ, λθ) admits 1 as a simple eigenvalue, associated
with the normalized positive eigenfunction ϕ̃θ

�
in L2(Ω)I . Let θ ∈ U and δθ be an

increment in (L∞(Ω))
I−1

such that θ + δθ ∈ U . We have

∂λθ

∂θ
(δθ) =

1

γ(λθ, θ)

I∑
j=1

∫
Ω

dx ϕ̃θ
�
j (x)

[
I−1∑
i=1

I−1∑
k=1

∂Eij

∂θk
(θ, λθ)(δθk)θiϕ̃θi(x)

+

I−1∑
k=1

∂EIj

∂θk
(θ, λθ)(δθk)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI(x)

+

I−1∑
i=1

Eij(θ, λθ)δθiϕ̃θi(x)−
I−1∑
l=1

EIj(θ, λθ)δθlϕ̃θI(x)

]
,

where the function

γ(λθ, θ) =

I∑
j=1

∫
Ω

ϕ̃θ
�
j (x)

[∫
Ω

I−1∑
i=1

∂Eij

∂λ
(θ, λθ)θiϕ̃θi(x)(21)

+
∂EIj

∂λ
(θ, λθ)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI(x)

]
dx

is negative. The derivative ∂ϕ̃θ
∂θ (δθ) is the unique solution of the system

I∑
i=1

∫
Ω

ϕ̃θi(x)
∂ϕ̃θi

∂θ
(δθ)(x)dx = 0(22)

and

N(θ, λθ)
∂ϕ̃θ

∂θ
(δθ)− ∂ϕ̃θ

∂θ
(δθ) = G

(
∂λθ

∂θ
(δθ)

)
,(23)
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where G
(
∂λθ
∂θ (δθ)

)
=
(
Gj

(
∂λθ
∂θ (δθ)

))
j=1,...,I

is defined by

Gj

(
∂λθ

∂θ
(δθ)

)
=

I−1∑
i=1

I−1∑
k=1

∂Eij

∂θk
(θ, λθ)(δθk)θiϕ̃θi +

I−1∑
k=1

∂EIj

∂θk
(θ, λθ)(δθk)

(
1 −

I−1∑
l=1

θl

)
ϕ̃θI

+

I−1∑
i=1

Eij(θ, λθ)δθiϕ̃θi −
I−1∑
l=1

EIj(θ, λθ)δθlϕ̃θI +
∂λθ

∂θ
(δθ)

I−1∑
i=1

∂Eij

∂λ
(θ, λθ)θiϕ̃θi

+
∂λθ

∂θ
(δθ)

∂EIj

∂λ
(θ, λθ)

(
1 −

I−1∑
l=1

θl

)
ϕ̃θI .

(24)

Lemma 2. The operators Nij(θ, λ) are compact on L2(Ω) for all λ > λ and θ ∈ U .
Moreover, the operators Nij(θ+ δθ, λ+ δλ) are uniformly bounded on L2(Ω) for every

small enough increment δλ ∈ R and every small enough increment δθ ∈ (L∞(Ω))
I−1

such that θ + δθ ∈ U .
Proof. Let λ > λ and θ ∈ U . Let ω be such that λ > ω > λ. Let α > 0 be small

enough such that λ > ω + α. Let δλ be small enough such that λ+ δλ > ω + α. Let
δθ ∈ (L∞(Ω))

I−1
such that θ + δθ ∈ U . Since ω > λ, it follows that ω > s(Tθ+δθ),

namely,

ω > − lim
t→∞

{
ess inf

t<s(x,v)

1

t

∫ t

0

σθ+δθ(x− sv, v)ds

}
.(25)

If δθ is small enough, then there exists ε > 0 such that for all t > 0

−ess inf
t<s(x,v)

1

t

∫ t

0

σθ+δθ(x− sv, v)ds ≤ −ess inf
t<s(x,v)

1

t

∫ t

0

σθ(x− sv, v)ds+ ε.

Then, according to (25), there exists t0 > 0 such that, for ε small enough,

−ess inf
t<s(x,v)

1

t

∫ t

0

σθ(x− sv, v)ds+ ε < ω ∀t ≥ t0.

Therefore, for all δθ small enough such that θ + δθ ∈ U , we have

−ess inf
t<s(x,v)

1

t

∫ t

0

σθ+δθ(x− sv, v)ds < ω ∀t ≥ t0

and

exp

(
−
∫ t

0

σθ+δθ

(
s

t
x+

(
1− s

t

)
x′,

x− x′

t

)
ds

)
χV

(
x− x′

t

)
≤ eωt ∀t ≥ t0.

On the other hand, for ϕ ≥ 0 and i, j = 1, . . . , I,

Nij(θ + δθ, λ+ δλ)ϕ(x)

≤
∫

Ω

(∫ ∞

t0

dt

tN
fM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
e−(λ+δλ−ω)t

+

∫ t0

0

dt

tN
fM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
e−(λ+δλ)t

)
ϕ(x′)dx′.
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Let us denote by N the integral operator defined by the right-hand side of the above
inequality. Then Nij(θ+δθ, λ+δλ) ≤ N . By a domination argument, it is sufficient to

show that N is compact on L2(Ω) and uniformly bounded for δλ small enough. Then,
by a convolution argument (see [B, p. 74]), it is enough to show that the function∫ ∞

t0

dt

tN
fM

(
x

t

)
gM

(
x

t

)
χV

(
x

t

)
e−(λ+δλ−ω)t +

∫ t0

0

dt

tN
fM

(
x

t

)
gM

(
x

t

)
χV

(
x

t

)
e−(λ+δλ)t

is bounded in L1(Ω) by a constant independent of δλ. The change of variables x = tv
leads to∫

Ω

dx

∫ t0

0

dt

tN
fM

(x

t

)
gM

(x

t

)
χV

(x

t

)
e−(λ+δλ)t ≤

∫
V

dv

∫ t0

0

dtfM (v)gM (v)e−(λ+δλ)t

≤ C‖fMgM‖L1(V )

for all δλ small enough. The same change of variables as before yields∫
Ω

dx

∫ ∞

t0

dt

tN
fM

(x

t

)
gM

(x

t

)
χV

(x

t

)
e−(λ+δλ−ω)t ≤

∫
V

dv

∫ ∞

t0

dtfM (v)gM (v)e−αt

≤ e−αt0

α
‖fMgM‖L1(V ).

Proof of Theorem 4. We split the proof into several parts.
Step 1. Differentiability of the operators Eij . We show that the operators Eij are

differentiable on U × ]λ,∞[ and that the differential of Eij at point (θ, λ) with the

increments δλ ∈ R and δθ = (δθk)k=1,...,I−1 ∈ (L∞(Ω))
I−1

such that θ + δθ ∈ U is

DEij(λ, θ)(δθ, δλ) = δλ
∂Eij

∂λ
(θ, λ) +

I−1∑
k=1

∂Eij

∂θk
(θ, λ)(δθk).

First, the arguments of the proof of Lemma 2 can be applied to show that the operators
∂Eij
∂λ (θ, λ) and

∂Eij
∂θk

(θ, λ)(δθk) are uniformly bounded (and even compact) on L2(Ω)

for every small enough increments δλ ∈ R and δθ ∈ (L∞(Ω))
I−1

. Let ϕ ∈ L2(Ω). We
split

A = Eij(θ + δθ, λ+ δλ)ϕ− Eij(θ, λ)ϕ− δλ
∂Eij

∂λ
(θ, λ)ϕ−

I−1∑
k=1

∂Eij

∂θk
(θ, λ)(δθk)ϕ

as A = A1 +A2 +A3, where

A1 = Eij(θ + δθ, λ+ δλ)ϕ− Eij(θ + δθ, λ)ϕ− δλ
∂Eij

∂λ
(θ + δθ, λ)ϕ,

A2 = Eij(θ + δθ, λ)ϕ− Eij(θ, λ)ϕ−
I−1∑
k=1

∂Eij

∂θk
(θ, λ)(δθk)ϕ,

A3 = δλ
∂Eij

∂λ
(θ + δθ, λ)ϕ− δλ

∂Eij

∂λ
(θ, λ)ϕ.
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Let ω be such that λ > ω > λ. Let α > 0 such that λ > ω + α. We choose δλ small
enough such that λ + δλ > ω + α. In the proof of Lemma 2, we show there exists
t0 > 0 (which only depends on θ) such that

exp

(
−
∫ t

0

σθ+δθ

(
s

t
x+

(
1− s

t

)
x′,

x− x′

t

)
ds

)
χV

(
x− x′

t

)
≤ eωt ∀t ≥ t0

for every small enough increment δθ ∈ (L∞(Ω))
I−1

. The inequality∣∣e−δλt − 1 + δλt
∣∣ ≤ |δλ|2t2 e|δλ|t

implies

‖A1‖L2 ≤ |δλ|2
∥∥∥∥
∫
Ω

dx′
∫ t0

0

dt

tN−2
e−(λ+|δλ|)tfM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
|ϕ(x′)|

+

∫
Ω

dx′
∫ ∞

t0

dt

tN−2
e−(λ+|δλ|−ω)tfM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
|ϕ(x′)|

∥∥∥∥
L2(Ω)

.

For N = 1 or N = 2 we have

‖A1‖L2(Ω) ≤ |δλ|2
∥∥∥∥
∫

Ω

dx′
∫ t0

0

dt

tN−2
e−(ω+α)t|ϕ(x′)|

+

∫
Ω

dx′
∫ ∞

t0

dt

tN−2
e−αt|ϕ(x′)|

∥∥∥∥
L2(Ω)

≤ C|δλ|2‖ϕ‖L2(Ω).

Let vM = sup{|v|, v ∈ V }. Since
x− x′

t
∈ V =⇒ |x− x′|

t
≤ vM ,

we get, for N ≥ 3,

‖A1‖L2(Ω) ≤ vN−2
M |δλ|2

∥∥∥∥
∫

Ω

dx′
∫ t0

0

dt e−(ω+α)t |ϕ(x′)|
|x− x′|N−2

+

∫
Ω

dx′
∫ ∞

t0

dt e−αt |ϕ(x′)|
|x− x′|N−2

∥∥∥∥
L2(Ω)

≤ C|δλ|2‖ϕ‖L2(Ω).

Then the inequality ∣∣e−β − 1 + β
∣∣ ≤ |β|2 e|β|,

with

β =

∫ t

0

δθk

(s

t
x+

(
1− s

t

)
x′
)(

σk

(
x− x′

t

)
− σI

(
x− x′

t

))
ds,

leads to, for δθ small enough,

‖A2‖L2 ≤C‖δθ‖2
∞

∥∥∥∥
∫

Ω

dx′
∫ t0

0

dt

tN−2
e−λtfM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
|ϕ(x′)|

+

∫
Ω

dx′
∫ ∞

t0

dt

tN−2
e−(λ−ω)tfM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
|ϕ(x′)|

∥∥∥∥
L2(Ω)

.
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Above, we used the boundedness of the frequency collisions σi and an argument of
the proof of Lemma 2 quoted just before. And, as previously, we get

‖A2‖L2(Ω) ≤ C‖δθ‖2
∞‖ϕ‖L2(Ω).

Lastly, the inequality ∣∣e−δλt − 1
∣∣ ≤ |δλ|t e|δλ|t

yields

‖A3‖L2(Ω)≤|δλ|2
∥∥∥∥
∫

Ω

dx′
∫ t0

0

dt

tN−2
e−λtfM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
|ϕ(x′)|

+

∫
Ω

dx′
∫ ∞

t0

dt

tN−2
e−(λ−ω)tfM

(
x− x′

t

)
gM

(
x− x′

t

)
χV

(
x− x′

t

)
|ϕ(x′)|

∥∥∥∥
L2(Ω)

.

And, as previously, we get

‖A3‖L2(Ω) ≤ C|δλ|2‖ϕ‖L2(Ω).

We can then conclude with

‖A‖L2(Ω) = o (|δλ|, ‖δθ‖∞) ‖ϕ‖L2(Ω).

Step 2. Differentiability of the function Ψ. The differentiability of Ψ2 is obvious,
and

∂Ψ2

∂θ
(θ, λ, ϕ̃) = 0,

∂Ψ2

∂λ
(θ, λ, ϕ̃) = 0, and

∂Ψ2

∂ϕ̃
(θ, λ, ϕ̃)(δϕ̃) = 2

I∑
i=1

∫
Ω

ϕ̃i(x)δϕ̃i(x)dx.

On the other hand, by using the differentiability of the operator Eij , as well as the
mean-value theorem with Eij , we get easily

Eij(θ + δθ, λ+ δλ) ((θl + δθl)(ϕ̃i + δϕ̃i))− Eij(θ, λ)θlϕ̃i − δλ
∂Eij

∂λ
(θ, λ)θlϕ̃i

−
I−1∑
k=1

∂Eij

∂θk
(θ, λ)(δθk)θlϕ̃i − Eij(θ, λ)δθlϕ̃i − Eij(θ, λ)θlδϕ̃i = o (δθ, δλ, δϕ̃j) .

Thus the function Ψ1 is differentiable and

∂(Ψ1)j
∂λ

(θ, λ, ϕ̃)(δλ) =
I−1∑
i=1

δλ
∂Eij

∂λ
(θ, λ)θiϕ̃i + δλ

∂EIj

∂λ
(θ, λ)

(
1−

I−1∑
l=1

θl

)
ϕ̃I ,

∂(Ψ1)j
∂θ

(θ, λ, ϕ̃)(δθ) =
I−1∑
i=1

I−1∑
k=1

∂Eij

∂θk
(θ, λ)(δθk)θiϕ̃i

+

I−1∑
k=1

∂EIj

∂θk
(θ, λ)(δθk)

(
1−

I−1∑
l=1

θl

)
ϕ̃I +

I−1∑
i=1

Eij(θ, λ)δθiϕ̃i −
I−1∑
l=1

EIj(θ, λ)δθlϕ̃I ,

∂(Ψ1)j
∂ϕ̃

(θ, λ, ϕ̃)(δϕ̃) =

I−1∑
i=1

Eij(θ, λ)θiδϕ̃i + EIj(θ, λ)

(
1−

I−1∑
l=1

θl

)
δϕ̃I − δϕ̃j .
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Step 3. Differentiability of the leading eigenelements. First, it is easy to see that
the function

(θ, λ, ϕ̃) �−→ ∂Ψ

∂(λ, ϕ̃)

is continuous. Second, let λθ and ϕθ be the leading eigenelements for a configu-
ration θ ∈ U . We now show that the operator ∂Ψ

∂(λ,ϕ̃)
(θ, λθ, ϕ̃θ) is an isomorphism

from R × (
L2(Ω)

)I
onto R × (

L2(Ω)
)I
. It follows then from a variant of the implicit

function theorem (see [S, Thm. 25, p. 278, and Thm. 26, p. 283]) that the map
θ ∈ U �−→ (λθ, ϕ̃θ) is Fréchet-differentiable.

Let (λ′, φ′) ∈ R× (
L2(Ω)

)I
. We show there exists a unique (λ, φ) ∈ R× (

L2(Ω)
)I

such that

∂Ψ

∂(λ, ϕ̃)
(θ, λθ, ϕ̃θ)(λ, φ) = (λ′, φ′).

The above equality is written as

2

I∑
i=1

∫
Ω

ϕ̃θi(x)φi(x)dx = λ′(26)

and, for j = 1, . . . , I,

I−1∑
i=1

λ
∂Eij

∂λ
(θ, λθ)θiϕ̃θi + λ

∂EIj

∂λ
(θ, λθ)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI

+

I−1∑
i=1

Eij(θ, λθ)θiφi + EIj(θ, λθ)

(
1−

I−1∑
l=1

θl

)
φI − φj = φ′

j .

(27)

Let F (λ) = (Fj(λ))j=1,...,I , where

Fj(λ) =

I−1∑
i=1

λ
∂Eij

∂λ
(θ, λθ)θiϕ̃θi + λ

∂EIj

∂λ
(θ, λθ)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI .

Then (27) is equivalent to

N(θ, λθ)φ− φ = −F (λ) + φ′.(28)

Let N�(θ, λθ) be the adjoint operator of N(θ, λθ) which is compact on L2(Ω)I . Then,
since rσ (N

�(θ, λθ)) = rσ (N(θ, λθ)) = 1 and since the operator N�(θ, λθ) is strictly
positive, we deduce from the Krein–Rutman theorem [B, p. 100] that 1 is a simple
eigenvalue of N�(θ, λθ) associated with the normalized positive eigenfunction denoted
by ϕ̃θ

�
. From the Fredholm alternative, (28) has a solution if and only if(−F (λ) + φ′, ϕ̃θ

�)
L2(Ω)I

= 0,

and all solutions are given by φ = φ0+βϕ̃θ, where β is a constant and φ0 is a solution
of (28). Then it follows that

λ =

(
φ′, ϕ̃θ

�)
L2(Ω)I

µ(θ, λθ)
,
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where

µ(θ, λθ) =

I−1∑
i=1

∫
Ω

ϕ̃θ
�
i (x)

∂Eij

∂λ
(θ, λθ)θiϕ̃θi(x)dx

+

∫
Ω

ϕ̃θ
�
I(x)

∂EIj

∂λ
(θ, λθ)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI(x)dx.

We notice that µ(θ, λθ) < 0 because the eigenfunctions ϕ̃θ
�
and ϕ̃θ, as well as the

functions fm and gm, are positive. Lastly, φ is uniquely determined by (26).
Step 4. Calculus of the derivatives of λθ and ϕ̃θ with respect to θ. To simplify

the notation, we denote λ′(δθ) = ∂λθ
∂θ (δθ) and ϕ̃′(δθ) = ∂ϕ̃θ

∂θ (δθ). The derivative of
Ψ(θ, λθ, ϕ̃θ) = 0 gives

I∑
i=1

∫
Ω

ϕ̃θi(x)ϕ̃
′
i(δθ)(x)dx = 0(29)

and, for j = 1, . . . , I,

I−1∑
i=1

I−1∑
k=1

∂Eij

∂θk
(θ, λθ)(δθk)θiϕ̃θi +

I−1∑
k=1

∂EIj

∂θk
(θ, λθ)(δθk)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI(30)

+

I−1∑
i=1

Eij(θ, λθ)δθiϕ̃θi −
I−1∑
l=1

EIj(θ, λθ)δθlϕ̃θI + λ′(δθ)
I−1∑
i=1

∂Eij

∂λ
(θ, λθ)θiϕ̃θi

+ λ′(δθ)
∂EIj

∂λ
(θ, λθ)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI +

I−1∑
i=1

Eij(θ, λθ)θiϕ̃
′
i(δθ)

+ EIj(θ, λθ)

(
1−

I−1∑
l=1

θl

)
ϕ̃′
I(δθ)− ϕ̃′

j(δθ) = 0.

Multiplying (30) by ϕ̃θ
�
j , integrating over Ω, and noticing that(

N(θ, λθ)ϕ̃
′(δθ), ϕ̃θ

�)
L2(Ω)I

=
(
ϕ̃′(δθ), N�(θ, λθ)ϕ̃θ

�)
L2(Ω)I

=
(
ϕ̃′(δθ), ϕ̃θ

�)
L2(Ω)I

,

we get

λ′(δθ) γ(λθ, θ) =

I∑
j=1

∫
Ω

ϕ̃θ
�
j (x)

[
I−1∑
i=1

I−1∑
k=1

∂Eij

∂θk
(θ, λθ)(δθk)θiϕ̃θi(x)

+

I−1∑
k=1

∂EIj

∂θk
(θ, λθ)(δθk)

(
1−

I−1∑
l=1

θl

)
ϕ̃θI(x) +

I−1∑
i=1

Eij(θ, λθ)δθiϕ̃θi(x)

−
I−1∑
l=1

EIj(θ, λθ)δθlϕ̃θI(x)

]
dx,

where γ(λθ, θ) is defined by (21). We note that γ(θ, λθ) < 0 since the eigenfunctions
ϕ̃θ

�
and ϕ̃θ, as well as the functions fm and gm, are positive. On the other hand, (30)

is written as

N(θ, λθ)ϕ̃
′(δθ)− ϕ̃′(δθ) = G(λ′(δθ)),
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where G(λ′(δθ)) = (Gj(λ
′(δθ)))j=1,...,I is defined by (24). The necessary condition

(
G(λ′(δθ)), ϕ̃θ

�)
L2(Ω)I

= 0

to solve (30) is ensured by the computation of λ′(δθ). Lastly, the solution ϕ̃′(δθ),
defined up to the addition of a multiple of ϕ̃θ, is uniquely determined by (29).

5. Optimality condition. Let H be the function

θ ∈ U �−→ (Kθϕθ, 1)L2(Ω×V )(∑I
i=1 ‖ϕ̃θi‖2

L2(Ω)

) 1
2

.

As an immediate consequence of Theorem 4 we have the following.
Corollary 1. The norms ‖ϕ̃θi‖2

L2(Ω) are positive for all i = 1, . . . , I. The
function H is Fréchet-differentiable on U and

∂H

∂θ
(δθ) =

1(∑I
i=1 ‖ϕ̃θi‖2

L2(Ω)

) 1
2

(∫
Ω

∂ϕ̃θI

∂θ
(δθ)(x)dx+

I−1∑
i=1

(∫
Ω

δθi(x)ϕ̃θi(x)dx

+

∫
Ω

θi(x)
∂ϕ̃θi

∂θ
(δθ)(x)dx−

∫
Ω

δθi(x)ϕ̃θI(x)dx−
∫

Ω

θi(x)
∂ϕ̃θI

∂θ
(δθ)(x)dx

))

− (Kθϕθ, 1)L2(Ω×V )(∑I
i=1 ‖ϕ̃θi‖2

L2(Ω)

) 3
2

×
I∑

i=1

∫
Ω

ϕ̃θi(x)
∂ϕ̃θi

∂θ
(δθ)(x)dx.

We are now in position to give an optimality condition for the minimizers of the
cost function J upon the relaxed admissible subset U∗

ad . Let us recall, when replacing

θI by 1 −∑I−1
i=1 θi for θ = (θi)1≤i≤I ∈ U∗

ad, that one considers in fact configurations
θ = (θi)1≤i≤I−1 satisfying

θ ∈ U =

{
θ = (θi)1≤i≤I−1 ∈ (L∞(Ω))

I−1
; 0 ≤ θi(x) ≤ 1, 0 ≤

I−1∑
i=1

θi(x) ≤ 1

}

as well as the volume constraints
∫
Ω
θi(x)dx = µi (i = 1, . . . , I − 1). Applying the

general Lagrange multipliers theorem [Z, Thm. 48.B, p. 417], we obtain the following.
Theorem 5. If θ0 is a minimizer of J on the subset U∗

ad, then there exist I − 1
constants Ci (i = 1, . . . , I − 1) such that

−∂λθ0

∂θ
(θ − θ0) +

∂H

∂θ
(θ0)(θ − θ0) +

I−1∑
i=1

Ci

∫
Ω

(θi(x)− (θ0)i(x)) dx ≥ 0(31)

for all θ ∈ U .

Appendix A. Disappearance of the leading eigenvalue. The disappearance
phenomenon, for domains with a small diameter, was first observed by [AM] and
was generalized by [M1, Thm. 1]. Here one proves that the leading eigenvalue can
disappear if the measure of the space domain Ω (not necessarily convex) becomes
too small. This result shows that the disappearance phenomenon can also occur in
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the case of a medium containing absorbing matter (modeled by holes) in too large a
quantity.
Proposition 2. Let us assume that 0 ∈ V , the collision frequency σ is space

homogeneous, and

lim inf
v→0

σ(v) = inf
v∈V

σ(v).(32)

Moreover, let us assume that the kernels k(x, v, v′) and |v|−1k(x, v, v′) belong to
L∞(Ω× V 2) and N < p < ∞.

If the measure |Ω| of Ω is small enough, then σas(T + K) = ∅. More precisely,
there exists a positive constant M , which depends on p, N , vM = sup{|v|, v ∈ V },
the measure |V | of V , ess sup

(|v|−1k(x, v, v′)
)
, and the diameter d of Ω such that

σas(T +K) = ∅ if |Ω| < M .
Proof. The proof consists in showing that rσ

(
(λ− T )−1K

)
< 1 for all λ > s(T )

and relies on the inequality

(
rσ
(
(λ− T )−1K

))2
= rσ

((
(λ− T )−1K

)2) ≤
∥∥∥((λ− T )−1K

)2∥∥∥ .

From (6) and (32), it follows that

s(T ) = − inf
v∈V

σ(v).

According to the assumptions, the integral operator denoted by |v|−1K of kernel
|v|−1k(x, v, v′) is bounded on Lp(Ω× V ); moreover,

(
(λ− T )−1K

)2
= |v|(λ− T )−1|v|−1K(λ− T )−1K.

First, we estimate the norm of the operator |v|(λ− T )−1 as in [M1, Thm. 1]. We
recall that

(λ− T )−1ϕ(x, v) =

∫ s(x,v)

0

e−(λ+σ(v))tϕ(x− tv, v) dt.(33)

The change of variable t → t|v| in (33) leads to

|v|(λ− T )−1ϕ(x, v) =

∫ s(x, v|v| )

0

e−(λ+σ(v)) t
|v|ϕ

(
x− t

v

|v| , v
)

dt.

Thus ∥∥|v|(λ− T )−1ϕ
∥∥p
Lp

≤
∫

Ω×V

(∫ s(x, v|v| )

0

e−(λ+σ(v)) tp
′

|v| dt

) p

p′
(∫ s(x, v|v| )

0

∣∣∣∣ϕ
(
x− t

v

|v| , v
)∣∣∣∣

p

dt

)
dxdv

≤ d
p

p′
∫

Ω×V

∫ d

0

∣∣∣∣ϕ
(
x− t

v

|v| , v
)∣∣∣∣

p

dtdxdv ≤ d
p

p′ +1‖ϕ‖pLp = dp‖ϕ‖pLp ,

where 1
p + 1

p′ = 1. Therefore

∥∥|v|(λ− T )−1
∥∥ ≤ d.(34)
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Second, as the operator |v|−1K(λ− T )−1K is positive, it is sufficient to estimate
its norm on the subset of nonnegative functions. Let ϕ be a nonnegative function in
Lp(Ω× V ). We have

|v|−1K(λ− T )−1Kϕ(x, v) =

∫
V

dv′ |v|−1k(x, v, v′)
∫ s(x,v′)

0

dt e−(λ+σ(v′))t

×
∫
V

dv′′ k(x− tv′, v′, v′′)ϕ(x− tv′, v′′).

The change of variable x′ = x− tv′ yields

|v|−1K(λ− T )−1Kϕ(x, v) ≤
∫

Ω×V

H(x, x′, v, v′′)ϕ(x′, v′′)dx′dv′′ := Hϕ,(35)

where

H(x, x′, v, v′′) =
∫ ∞

0

|v|−1k

(
x, v,

x− x′

t

)
e
−
(
λ+σ( x−x

′
t )

)
t

× k

(
x,

x− x′

t
, v′′

)
χV

(
x− x′

t

)
dt

tN
.

Let us note that we have equality in (35) if Ω is a convex subset. By positivity∥∥|v|−1K(λ− T )−1K
∥∥ ≤ ‖H‖ .

On the other hand

‖H‖ ≤
(∫

Ω×V

(∫
Ω×V

|H(x, x′, v, v′′)|p′
dx′dv′′

) p

p′
dxdv

) 1
p

.(36)

According to the assumptions and since

x− x′

t
∈ V =⇒ |x− x′|

vM
≤ t,

we get

∫
Ω×V

|H(x, x′, v, v′′)|p′
dx′dv′′ ≤ C

∫
Ω×V

∣∣∣∣
∫ ∞

|x−x′|
vM

|x− x′| dt

tN+1

∣∣∣∣
p′

dx′dv′′

≤ C |V | vNp′
M N−p′

∫
Ω

dx′

|x− x′|p′(N−1)
.

By a convolution argument, the function

g : x �−→
∫

Ω

dx′

|x− x′|p′(N−1)

is continuous on R
N if p′ < N

N−1 , that is, if p > N . Therefore g is bounded on Ω by
a constant which depends on p and N . One can conclude, thanks to (34) and (36),
with the following:∥∥∥((λ− T )−1K

)2∥∥∥ ≤ C(p,N) vNm |V | d |Ω| 1p .
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Appendix B. Proof of Proposition 1. According to (5) we deduce s(Tχ) ≤ −σ
for all χ ∈ Uad. Let the unbounded penetration operators T be defined as in (1) but
with the collision frequencies σ, and let the bounded integral operator K be defined as
in (2) but with the kernel fm(v)gm(v′). Let ϕ be a nonnegative function in Lp(Ω×V )
and λ > −σ. It is easy to see that

(λ− Tχ)
−1Kχϕ(x, v) ≥

∫ s(x,v)

0

e−(λ+σ)t

∫
V

fm(v)gm(v′)ϕ(x− tv, v′)dv′.

Therefore

(λ− Tχ)
−1Kχ ≥ (λ− T )−1K ∀χ ∈ Uad

and thus

rσ
(
(λ− Tχ)

−1Kχ

) ≥ rσ
(
(λ− T )−1K

) ∀χ ∈ Uad.

We search some conditions ensuring there exists some λ > −σ such that rσ
(
(λ− T )−1K

)
≥ 1. In this case we can deduce that the asymptotic spectrum σas(Tχ + Kχ) is
nonempty for all χ in Uad and λχ ≥ λ.

Let us notice that (λ−T )−1K is power compact. On the other hand (λ−T )−1K

is an irreducible operator; indeed one can show that
(
(λ− T )−1K

)2
is strictly positive

(see the proof of [M2, Thm. 5.15, p. 109]). It follows that rσ
(
(λ− T )−1K

)
is the only

eigenvalue of (λ−T )−1K associated with a positive eigenfunction (see [Ma]). We are
thus led to study the eigenvalues of (λ− T )−1K, and thus we consider the following
eigenvalue problem:

γϕ(x, v) =

∫ s(x,v)

0

e−(λ+σ)t

∫
V

fm(v)gm(v′)ϕ(x− tv, v′)dv′.

Multiplying the previous equation by gm(v) and integrating over V , we get

γψ(x) =

∫
V

dv fm(v)gm(v)

∫ s(x,v)

0

e−(λ+σ)tψ(x− tv)dt,

where ψ(x) =
∫
V
gm(v)ϕ(x, v)dv. Let us extend ψ by 0 outside Ω as well as fmgm and

σ by 0 outside V . The change of variable x′ = x− tv yields, thanks to the convexity
of Ω,

γψ(x) =

∫
Ω

Nλ(x− x′)ψ(x′)dx′ := Nλψ(x),

where

Nλ(x) =

∫ ∞

0

fm

(x

t

)
gm

(x

t

)
e−(λ+σ)t dt

tN
.

As the kernel Nλ is positive, the convolution operator Nλ on Lp(Ω) is strictly positive.
And according to the Krein–Rutman theorem (see [B, p. 100]), rσ(Nλ) is the only
eigenvalue associated with a positive eigenfunction. Therefore

rσ(Nλ) = rσ
(
(λ− T )−1K

)
.
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On the other hand∫
RN

Nλ(x)dx =

∫
V

fm(v)gm(v)dv

∫ ∞

0

e−(λ+σ)tdt ≤ ‖fmgm‖L1(V )

λ+ σ
;

therefore Nλ maps Lq(Ω) into itself for all 1 ≤ q ≤ ∞ and Nλ is compact in Lq(Ω)
for all 1 ≤ q < ∞ (see [B, p. 74]). Consequently the spectrum of Nλ is the same in
all Lq(Ω) for 1 ≤ q < ∞ (see [D, Thm. 1.6.1, p. 35]). So it is sufficient to study its

spectrum in L2(Ω). By passing in the Fourier variable, (Nλψ)
∧ = N̂λψ̂, where

ψ̂(ξ) = (2π)−
N
2

∫
RN

e−ix.ξψ(x)dx

and

N̂λ(ξ) = (2π)−
N
2

∫
RN

dx e−ix.ξ

∫ ∞

0

fm

(x

t

)
gm

(x

t

)
e−(λ+σ)t dt

tN

= (2π)−
N
2

∫
V

dv

∫ ∞

0

fm(v)gm(v) e−(λ+σ+iv.ξ)tdt

= (2π)−
N
2

∫
V

(λ+ σ)fm(v)gm(v)

(λ+ σ)2 + (v.ξ)2
dv.

The last equality is due to the evenness of the function fmgm. Moreover,

(Nλψ,ψ)L2(Ω) =

∫
RN

dξ |ψ(ξ)|2
∫
V

(λ+ σ)fm(v)gm(v)

(λ+ σ)2 + (v.ξ)2
dv.

Therefore Nλ is a positive self-adjoint compact operator in L2(Ω). We deduce fur-
thermore that

‖Nλ‖L(L2(Ω)) = rσ(Nλ) = rσ
(
(λ− T )−1K

)
.

Let Br be the biggest ball included in Ω, with radius r. By positivity,

‖Nλ‖L(L2(Ω)) ≥ ‖Nλ‖L(L2(Br))
.

Let B be the unit ball of R
N and φ ∈ L2(B) such that ‖φ‖L2(B) = 1. Let ψ(x) =

r−
N
2 φ

(
x
r

)
; then ‖ψ‖L2(Br) = 1. Finally, let R > 0. We have

‖Nλ‖L(L2(Br))
≥ (Nλψ,ψ)L2(Br)

=

∫
RN

dξ rN
∣∣∣φ̂(rξ)∣∣∣2 ∫

V

(λ+ σ)fm(v)gm(v)

(λ+ σ)2 + (v.ξ)2
dv

=

∫
RN

dξ
∣∣∣φ̂(ξ)∣∣∣2 ∫

V

(λ+ σ)fm(v)gm(v)

(λ+ σ)2 +

(
v.ξ

r

)2 dv

≥
∫
|ξ|<R

dξ
∣∣∣φ̂(ξ)∣∣∣2 ∫

V

(λ+ σ)fm(v)gm(v)

(λ+ σ)2 +
R2v2

M

r2

dv

= ε(R) ‖fmgm‖L1(V )

(λ+ σ)

(λ+ σ)2 +
R2v2

M

r2

,
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where

ε(R) =

∫
|ξ|<R

∣∣∣φ̂(ξ)∣∣∣2 dξ.
Let us take now α > 0 small enough and λ = −σ + α. Thus we have

ε(R) ‖fmgm‖L1(V )

(−σ + α+ σ)

(−σ + α+ σ)2 +
R2v2

M

r2

> 1

if and only if

r2 >
v2
MR2(

ε(R) ‖fmgm‖L1(V ) − (−σ + α+ σ)
)
(−σ + α+ σ)

.

We just have to choose R big enough and α small enough to ensure

ε(R) ‖fmgm‖L1(V ) − (−σ + α+ σ) > 0,

which is possible according to the assumptions and because

lim
R→0

∫
|ξ|<R

∣∣∣φ̂(ξ)∣∣∣2 dξ = ∫
RN

∣∣∣φ̂(ξ)∣∣∣2 dξ = 1.

Thus we have proved the first part of the proposition.
Let ϕχ be a positive eigenfunction associated with the leading eigenvalue λχ.

From the eigenvalue equation we deduce

ϕχ(x, v) ≤
∫ s(x,v)

0

e−(λχ+σ)tdt

∫
V

fM (v)gM (v′)ϕχ(x− tv, v′)dv′.

We extend ϕχ by 0 outside Ω× V and we denote φχ(v) =
∫
Ω
ϕχ(x, v)dx. We get

φχ(v) ≤ Kφχ(v)

λχ + σ
.

Since φχ is positive it follows that

‖φχ‖L2(V ) ≤
∥∥K∥∥ ‖φχ‖L2(V )

λχ + σ
.

Therefore λχ ≤ −σ +
∥∥K∥∥.
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Abstract. We consider time-dependent Schrödinger equations in one dimension with double-
well potential and an external nonlinear perturbation. If the initial state belongs to the eigenspace
spanned by the eigenvectors associated to the two lowest eigenvalues, then, in the semiclassical limit,
we show that the reduction of the time-dependent equation to a 2-mode equation gives the dominant
term of the solution with a precise estimate of the error. By means of this stability result we are
able to prove the absence of the beating motion for large enough nonlinearity.

Key words. nonlinear Schrödinger operator, Gross–Pitaevskii equation, norm estimate of solu-
tions
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1. Introduction. Recently, the theoretical analysis of the nonlinear time-
dependent Schrödinger equation

i�ψ̇ = H0ψ + ε|ψ|2ψ, ε ∈ R, ψ̇ =
∂ψ

∂t
,(1)

where

H0 = − �
2

2m
∆+ V, ∆ =

d∑
j=1

∂2

∂x2
j

, d ≥ 1,

has attracted an increasing interest (see [15] for a review and [11] for a rigorous deriva-
tion of the Gross–Pitaevskii energy functional). When V is a double-well potential,
one of the main goals is to understand how the nonlinear perturbation with strength
ε affects the unperturbed beating motion (see, e.g., the review paper [5] and the pa-
per [19], where (1) is proposed as a model for chiral molecules). To this end, it is
crucial to study the solution ψ for times of the order of the beating period; in other
words, for practical purposes the unit of time is given by the beating period T = π�/ω,
where � is the Planck’s constant and ω is one-half of the energy splitting between the
two lowest energies.

Here, I consider (1) in the semiclassical limit where, by assuming that d = 1 and
under some generic assumption on the double-well potential, we give the asymptotic
behavior of the solution ψ with a precise estimate of the error. In particular, the
main result (Theorem 3) consists of proving that the solution of the Gross–Pitaevskii
equation is approximated, with a rigorous control of the error, by means of the solution
of an integrable two-dimensional dynamical system. As a result it follows (Theorem 4)
that the beating motion between the two wells of a state initially made of the two
lowest eigenstates disappears for increasing nonlinearity.
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A similar investigation was recently performed in [7], where the nonlinear pertur-
bation is given by ε〈ψ, gψ〉gψ and g(x) is a given odd function, and in [14], where,
in dimension d = 1 and d = 3, we consider the limit of large barrier between the
two wells. In particular, in [14] I had to assume that the discrete spectrum of the
Schrödinger operator H0 consists of only two nondegenerate eigenvalues and that the
restriction to the continuous eigenspace of the unitary evolution operator satisfies an
a priori estimate uniformly with respect to the parameters of the model.

Finally, we mention other recent results concerning the study of the existence of
stationary solutions for Gross–Pitaevskii equations with double-well potentials [2], [3]
and, in the case of single-well-type potentials, the existence of solutions asymptotically
given by solitary wave functions in the case when the discrete spectrum of the linear
Schrödinger operator has only one nondegenerate eigenvalue [16], [21]. In the case of
linear Hamiltonian H0 with exactly two bound states Tsai and Yau [18], making use
of some ideas by Soffer and Weinstein [17], proved that, in dimension d = 3 and under
certain resonance conditions, if the initial data is near a nonlinear ground state, then
the solution ψ(t, x) asymptotically approaches to certain nonlinear ground state.

Our paper is organized as follows.
In section 2 we introduce the main notation and state the assumptions on the

potential. Moreover, we collect some semiclassical results concerning the spectrum of
the linear Schrödinger operator.

In section 3 we prove the global existence of the solution of the Gross–Pitaevskii
equation, the existence of conservation laws, and an a priori estimate (Theorem 2).
The global existence of the solution is proved for both repulsive and attractive non-
linear perturbation, where, in the second case, we have to assume that the strength
of the nonlinear perturbation is small enough.

In section 4 we introduce the two-level approximation which, roughly speaking,
consists of projecting the Gross–Pitaevskii equation onto the two-dimensional space
spanned by the eigenvectors of the linear Schrödinger operator associated to the two
lowest eigenvalues. For practical purposes, it is more convenient to choose, as a basis
of such a two-dimensional space, the two single-well states. The dynamical system
we obtain is exactly solvable.

In section 5 we give our main result (Theorem 3) proving the stability of the two-
level approximation. Here, we make use of the comparison criterion between ordinary
differential equations and an a priori estimate of the solution of the Gross–Pitaevskii
equation. We emphasize that, in order to obtain such an estimate, assumption d = 1
on the dimension plays a crucial role.

In section 6 we give the full rigorous justification of the results by Vardi [19]
proving the existence of a critical value for the nonlinearity parameter giving the
destruction of the beating motion (Theorem 4).

2. Assumptions and preliminary results. Here, we consider the Cauchy
problem

i�ψ̇ = Hεψ, Hε = H0 +W,(2)

ψ(0, x) = ψ0(x) ∈ L2(R), ‖ψ0‖ = 1,

where ψ̇ denotes the derivative of ψ with respect to the time t, H0 is the lin-
ear Schrödinger operator formally given by (here, x denotes the spatial variable in
dimension 1)

H0 = − �
2

2m

d2

dx2
+ V,(3)
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V is a symmetric double-well potential, and

W = ε|ψ|2

is the nonlinear perturbation with strength ε.
In the following, for the sake of definiteness, we denote by C any positive constant

independent of ε, �, and t, we assume � small enough, that is, � ∈ (0, ��] for some �
�,

and we denote

‖ϕ‖p = ‖ϕ‖Lp =

{∫
|ϕ(x)|pdx

}1/p

and ‖ϕ‖ = ‖ϕ‖2.

Moreover, given y = (y1, . . . , ym) ∈ Rm for some m ≥ 1, we denote

|y| = max
1≤j≤m

|yj |.(4)

2.1. Assumptions on the potential. Here, we assume that the potential V
is a regular symmetric function which admits two nondegenerate minima and it is
bounded from below. More precisely, we have the following hypothesis.

Hypothesis 1. The potential V (x) is a real-valued function such that
(i) V (−x) = V (x) ∀x ∈ R;
(ii) V ∈ C2(R);
(iii) V (x) admits two nondegenerate minima at x = ±a for some a > 0 such that

V (x) > Vmin = V (±a) ∀x ∈ R, x 
= ±a;(5)

in particular, for the sake of definiteness, we assume that

dV (±a)

dx
= 0 and

d2V (±a)

dx2
> 0;

(iv) finally we assume that

lim inf |x|→∞V (x) = V∞ > Vmin.

It follows that the operator formally defined in (3) admits a self-adjoint realization
(still denoted by H0) on L2(R) (see, for instance, Theorem III.1.1 in [4]). Let σ(H0) =
σd∪σess be the spectrum of the self-adjoint operator H0, where σd denotes the discrete
spectrum and σess denotes the essential spectrum. From Hypothesis 1(iv) it follows
that σd ⊂ (Vmin, V∞), σess = ∅ if V∞ = +∞ (see Theorem XIII.67 in [13]) and that
σess ⊆ [V∞,+∞) if V∞ < ∞ (see Theorem III.3.1 in [4]). Furthermore, the following
two lemmas hold.

Lemma 1. Let σd be the discrete spectrum of H0. Then, for any � ∈ (0, ��], it
follows that

(i) σd is not empty and, in particular, it contains two eigenvalues at least;
(ii) letting λ1,2 be the lowest two eigenvalues of H0, they are nondegenerate, in

particular λ1 < λ2, and there exists C > 0, independent of �, such that

inf
λ∈σ(H0)−{λ1,2}

[λ− λ2] ≥ C�.

Proof. The proof is an immediate consequence of the above assumptions and
standard WKB arguments.
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Lemma 2. Let ϕ1,2 be the normalized eigenvectors associated to λ1,2. Then
(i) ϕj, j = 1, 2, can be chosen to be real-valued functions such that ϕj(−x) =

(−1)j−1ϕj(x);
(ii) ϕj ∈ H1(R);
(iii) ϕj ∈ Lp(R) for any p ∈ [1,+∞];
(iv) there exists a positive constant C such that

‖ϕj‖p ≤ C�
− p−2

4p ∀p ∈ [2,+∞], ∀� ∈ (0, ��].(6)

Proof. Property (i) immediately follows from assumption Hypothesis 1(i). Prop-
erty (ii) follows from Lemma III.3.1 in [4]. Property (iii) follows from Theorem III.3.2
in [4]. Finally, property (iv) follows for p = +∞ by means of standard WKB ar-
guments. From this fact, from the normalization of the eigenvectors, and from the
Hölder inequality, property (iv) follows for any p ∈ [2,+∞]:

‖ϕj‖p =
[
‖ϕ2

jϕ
p−2
j ‖1

]1/p
≤ ‖ϕj‖2/p

2 ‖ϕj‖(p−2)/p
∞ = ‖ϕj‖(p−2)/p

∞ .

2.2. Splitting and single-well states. It is well known that the splitting be-
tween the two lowest eigenvalues vanishes as � goes to zero. In particular, we have
the following lemma.

Lemma 3. Let

ω =
λ2 − λ1

2
and Ω =

λ2 + λ1

2

and

ϕR =
1√
2
[ϕ1 + ϕ2] and ϕL =

1√
2
[ϕ1 − ϕ2] ,

where ϕ1,2 are the normalized eigenvectors associated to λ1,2. Then there exist two
positive constants C and Γ, independent of �, such that

‖ϕRϕL‖∞ ≤ Cω(7)

and

ω ≤ Ce−Γ/� ∀� ∈ (0, ��].(8)

As a result it follows that

lim
�→0

ω = 0(9)

and

lim
�→0

Ω− Vmin

�
= c(10)

for some c > 0.
Proof. In order to prove this lemma we observe that V is a symmetric double-well

potential with nonzero barrier between the wells. That is, let δ > 0 be small enough
and let us define the two sets

BR =
{
x ∈ R+ : V (x) ≤ Vmin + δ

}
BL =

{
x ∈ R− : V (x) ≤ Vmin + δ

}
}

, i.e., x ∈ BR ⇔ −x ∈ BL.
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From condition (5) it follows also that

BR = [b, c] and BL = [−c,−b]

for some c > a > b > 0. The sets BR,L are usually called wells. Let

Γδ =

∫ b

−b

√
max[V (x)− (Vmin + δ), 0]dx > 0

be the Agmon distance between the two wells. From these facts and from standard
WKB arguments (see [8] and [9]) then (7)–(10) follow for some Γ ∈ [Γ0,Γδ].

Remark 1. By definition it follows that ϕR(−x) = ϕL(x); moreover, from (7),
it follows that these functions are localized on only one of the wells BR and BL; for
example, ∫

BR

|ϕR(x)|2dx = 1 +O(e−C/�)

for some C > 0. For such a reason we call them single-well (normalized) states.
Remark 2. We emphasize that, by assuming some regularity properties on the po-

tential V , it is then possible to obtain the precise asymptotic behavior of the splitting
as � goes to zero [9].

2.3. Assumptions on the parameters. We assume that the parameter ε is
such that

ε → 0 as � → 0

and

cε

ω
≤ C, c = ‖ϕ2

R‖ ∀� ∈ (0, ��](11)

for some positive constant C. We recall also that the other parameter of the model,
i.e., the splitting ω, satisfies the asymptotic estimate (8).

2.4. Assumption on the initial state. Let

Πc = 1− 〈ϕR, ·〉ϕR − 〈ϕL, ·〉ϕL(12)

be the projection operator onto the eigenspace orthogonal to the two-dimensional
eigenspace associated to the doublet {λ1,2}. Letting ψ0 be the initial wave function,
we assume the following.

Hypothesis 2. Πcψ
0 = 0.

3. Global existence of the solution and conservation laws. Here, we prove
that the Cauchy problem (2) admits a solution for all time provided that Hypotheses
1–2 are satisfied and the strength ε of the nonlinear perturbation is small enough.
Moreover, we prove a priori estimate of the solution ψ.

The following results hold.
Theorem 1. There exist �

� > 0 and ε0 > 0 such that for any � ∈ (0, ��] and
ε ∈ [−ε0, ε0] the Cauchy problem (2) admits a unique solution ψ(t, x) ∈ H1 for any
t ∈ R. Moreover, the following conservation laws hold:

‖ψ(t, ·)‖ = ‖ψ0(·)‖ = 1(13)
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and

E(ψ) =
�

2

2m

∥∥∥∥∂ψ∂x
∥∥∥∥

2

+ 〈V ψ, ψ〉+ 1

2
ε‖ψ2‖2 = E(ψ0).(14)

Proof. From Hypothesis 2 it follows that

ψ0 = c1ϕ1 + c2ϕ2, c1,2 = 〈ψ0, ϕ1,2〉.
From this fact and from Lemma 2, ψ0 ∈ H1. Therefore, existence of the global
solution ψ ∈ C(R, H1) and the conservation laws (13) and (14) follow from known
results (see, for example, the papers quoted in [15] and [16]) for any ε > 0 (repulsive
nonlinear perturbation) and for any ε ∈ (−ε0, 0) for some ε0 > 0 (attractive nonlinear
perturbation).

Remark 3. There exists a positive constant C independent of � and ε such that

|E(ψ)− Vmin| ≤ C(ω + � + ε�−1/2) ∀� ∈ (0, ��], ∀ε ∈ [−ε0, ε0].(15)

This estimate immediately follows from (14), from Hypothesis 2, and from Lemmas
1 and 2. Indeed, from Hypothesis 2 it follows that

E(ψ0) = 〈H0(c1ϕ1 + c2ϕ2), (c1ϕ1 + c2ϕ2)〉+ 1

2
ε‖ψ0‖4

4,

where ‖ψ0‖4 ≤ C�
−1/8 from (6) and where

〈H0(c1ϕ1 + c2ϕ2), (c1ϕ1 + c2ϕ2)〉 = λ1|c1|2 + λ2|c2|2 = Ω− ω + 2ω|c2|2.
From these facts and from (10), inequality (15) follows.

Theorem 2. Let ε0(�) be a function such that

lim
�→0

ε0(�)/�
2 = 0.(16)

The solution ψ of (2) satisfies the following uniform estimate: there exists a positive
constant C independent of t, �, and ε such that

‖ψ‖p ≤ C

[ |E(ψ0)− Vmin|
�2

] p−2
4p

∀p ∈ [2,+∞](17)

and ∥∥∥∥∂ψ∂x
∥∥∥∥ ≤ C

[ |E(ψ0)− Vmin|
�2

] 1
2

for all time and ∀� ∈ (0, ��], ∀ε ∈ [−ε0(�), ε0(�)].
Proof. In order to prove the estimate (17) let

k =
�√
2m

, Λ =
E(ψ0)− Vmin

k2
.

Then the conservation laws (13) and (14) imply that∥∥∥∥∂ψ∂x
∥∥∥∥

2

+
1

2
[sign(ε)]ρ2‖ψ2‖2 ≤ Λ,
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where

ρ = |ε|1/2/k � 1,

according to (16). In particular, if we set

χ = ρψ,

then the above equation takes the form∥∥∥∥∂χ∂x
∥∥∥∥

2

+
1

2
[sign(ε)]‖χ2‖2 ≤ Λρ2,

from which it follows that∥∥∥∥∂χ∂x
∥∥∥∥

2

≤ ρ2|Λ|+ 1

2
‖χ2‖2 = ρ2|Λ|+ 1

2
‖χ‖4

4.(18)

From the Gagliardo–Nirenberg inequality (see, for instance, [6] and [20], where the
dimension is here equal to 1)

‖χ‖2σ+2
2σ+2 ≤ C

∥∥∥∥∂χ∂x
∥∥∥∥
σ

‖χ‖2+σ ∀σ ≥ 0,(19)

where we choose σ = 1, it follows that

‖χ‖4
4 ≤ C

∥∥∥∥∂χ∂x
∥∥∥∥ ‖χ‖3 ≤ C

∥∥∥∥∂χ∂x
∥∥∥∥ ρ3

since ‖χ‖ = ρ‖ψ‖ = ρ and ‖ψ‖ = 1. By inserting this inequality in (18) it follows
that ‖∂χ∂x‖ satisfies ∥∥∥∥∂χ∂x

∥∥∥∥
2

≤ ρ2|Λ|+ Cρ3

∥∥∥∥∂χ∂x
∥∥∥∥(20)

for any t ∈ R. From (20) it immediately follows that∥∥∥∥∂χ∂x
∥∥∥∥ ≤

√
|Λ|ρ (1 + o(1)) as ρ → 0.

Hence, ‖∂ψ∂x ‖ ≤ C
√|Λ| and, from (19), we have that

‖ψ‖p ≤ C

∥∥∥∥∂ψ∂x
∥∥∥∥
σ/p

≤ C|Λ|(p−2)/4p,

where we choose now σ = p−2
2 , i.e., p = 2σ + 2.

Remark 4. Condition (16) is true in the semiclassical limit and under assump-
tion (11).

Remark 5. From the fact E(ψ0) − Vmin = O(�), which follows from (8), (15),
and (16), and from the bounds (17) and (11), it then follows that

‖ψ‖p ≤ C�
− p−2

4p ∀p ∈ [2,+∞] and

∥∥∥∥∂ψ∂x
∥∥∥∥ ≤ C�

− 1
2(21)

for any t ∈ R, � ∈ (0, ��], and ε ∈ [−ε0(�), ε0(�)].
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4. Two-level approximation. For our purposes it is more convenient to make
the substitution ψ → e−iΩt/�ψ; hence (2) takes the following form (where, with abuse
of notation, we still denote the new function by ψ):

i�ψ̇ = (H0 − Ω)ψ + ε|ψ|2ψ, ψ(x, 0) = ψ0(x).(22)

Let us write the solution of this equation in the form

ψ(t, x) = aR(t)ϕR(x) + aL(t)ϕL(x) + ψc(t, x),(23)

where aR(t) and aL(t) are unknown complex-valued functions depending on time and
ψc = Πcψ, Πc, defined in (12), is the projection onto the space orthogonal to the
two-dimensional space spanned by the two single-well states ϕR and ϕL; i.e.,

〈ψc, ϕR〉 = 〈ψc, ϕL〉 = 0 ∀t ∈ R.

From the conservation law (13) it follows that

|aR(t)|2 + |aL(t)|2 + ‖ψc(t, ·)‖2 = 1 ∀t ∈ R.(24)

By substituting ψ by (23) in (2) we obtain that aR, aL, and ψc must satisfy the
system of differential equations


i�ȧR = −ωaL + ε〈ϕR, |ψ|2ψ〉,
i�ȧL = −ωaR + ε〈ϕL, |ψ|2ψ〉,
i�ψ̇c = (H0 − Ω)ψc + εΠc|ψ|2ψ.

(25)

By again substituting ψ by (23) in the first two equations of the above system,
we obtain that these equations take the form{

i�ȧR = −ωaL + εc|aR|2aR + εrR,

i�ȧL = −ωaR + εc|aL|2aL + εrL,
(26)

where

c = ‖ϕ2
R‖2 = ‖ϕ2

L‖2 = O(�−1)(27)

and where rR and rL are given by

rR = 〈ϕR, |ψ|2ψ〉 − |a2
R|aR〈ϕR, |ϕR|2ϕR〉

= 〈ϕR, |ψ|2φL〉+ aR〈|ϕR|2, |φL|2 + aRϕRφ̄L + āRϕ̄RφL〉,
rL = 〈ϕL, |ψ|2ψ〉 − |a2

L|aL〈ϕL, |ϕL|2ϕL〉
= 〈ϕL, |ψ|2φR〉+ aL〈|ϕL|2, |φR|2 + aLϕLφ̄R + āLϕ̄LφR〉,

where

φL = aLϕL + ψc and φR = aRϕR + ψc.

We denote by two-level approximation the solutions bR and bL of the system of
ordinary differential equations{

i�ḃR = −ωbL + εc|bR|2bR,
i�ḃL = −ωbR + εc|bL|2bL,

bR,L(0) = aR,L(0),(28)
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obtained by neglecting the remainder terms rR and rL in (26). It is easy to see that
the solution of this system satisfies the conservation law

|bR(t)|2 + |bL(t)|2 = |bR(0)|2 + |bL(0)|2 = |aR(0)|2 + |aL(0)|2 = 1,(29)

and, moreover, it is also possible to explicitly compute (see [12] and Appendix B
in [14]) the solution of (28) by means of elliptic functions cn and dn [1]. In particular,
we obtain that the imbalance function, defined as

z(t) = |bR(t)|2 − |bL(t)|2,(30)

is given by

z(t) =

{
Acn [Aη(ωt/� − τ0)/2k, k] if k < 1,

Adn [Aη(ωt/� − τ0)/2, 1/k] if k > 1,

where η = εc/ω, τ0 depends on the initial condition,

I =
√

1− z2(0) cos[θ(0)]− ηz2(0)/4,

θ = arg(bR)− arg(bL) is the relative phase,

A =
2
√
2

η

[√
1

4
η2 + 1 + Iη −

(
1 +

1

2
Iη

)]1/2

,

and

k2 =
1

2


1− 1 + 1

2Iη√
1
4η

2 + 1 + Iη


 .(31)

We emphasize that z(t) periodically assumes positive and negative values if and only
if k < 1.

5. Stability of the two-level approximation. Our main result consists of
proving the stability of the two-level approximation when we restore the remainder
terms rR and rL in (28).

We prove the following.
Theorem 3. Let ψc = Πcψ, aR(t) = 〈ψ,ϕR〉, and aL(t) = 〈ψ,ϕL〉, where

ψ is the solution of (22), and let bR(t) and bL(t) be the solution of the system of
ordinary differential equations (28). Let ε ∈ [−ε0(�), ε0(�)], where ε0(�) satisfies the
condition (16). Then, for any τ ′ > 0, there exists a positive constant C independent
of ε, �, and t such that

|bR,L(t)− aR,L(t)| ≤ Ce−C�
−1

and ‖ψc(·, t)‖ ≤ Ce−C�
−1

(32)

for any � ∈ (0, ��] and for any t ∈ [0, �τ ′/ω].
Proof. For the sake of simplicity, hereafter, we omit the parameters when doing

so does not cause misunderstandings. In order to prove the theorem we introduce the
slow time τ = ωt/� and let{

AR,L(τ) = aR,L(t),

BR,L(τ) = bR,L(t),
RR,L(τ) =

ε

ω
rR,L(t), and η =

εc

ω
.
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Then (26) and (28), respectively, take the form (here ′ denotes the derivative with
respect to τ) {

A′
R = iAL − iη|AR|2AR +RR,

A′
L = iAR − iη|AL|2AL +RL

(33)

and {
B′
R = iBL − iη|BR|2BR,

B′
L = iBR − iη|BL|2BL,

(34)

satisfying the same initial condition

BR,L(0) = AR,L(0) = aR,L(0).

Due to (24) and (29), they are such that

|BR(τ)|2 + |BL(τ)|2 = 1, |AR(τ)|2 + |AL(τ)|2 ≤ 1.(35)

In a more concise way, with an obvious meaning of notation, we can write (33) and (34)
as

A′ = f(A) +R and B′ = f(B), A(0) = B(0) = a(0),(36)

where A,B ∈ S2 since (35), S2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1}.
Lemma 4. The function f : S2 → C2 satisfies the Lipschitz condition

|f(A)− f(B)| ≤ L|A−B|, L = 1 + 3η.(37)

Proof. According to the notation (4) we have

|f(A)− f(B)| = max [|fR|, |fL|] ,
where |A| ≤ 1 and |B| ≤ 1 since A,B ∈ S2, and where

fR = (AL −BL)− η(|AR|2AR − |BR|2BR),

fL = (AR −BR)− η(|AL|2AL − |BL|2BL).

Then (37) immediately follows since

fR = (AL −BL)− η
[|BR|2(AR −BR) +AR(|AR|+ |BR|)(|AR| − |BR|)

]
,

where ||AR| − |BR|| ≤ |AR − BR|, and where the other term fL will be treated the
same way.

Lemma 5. Let

β = max[cε, ω],

where c is defined in (27). Let ψc = Πcψ, where ψ is the solution of (22); it satisfies
the uniform estimate

‖ψc‖ ≤ Cβ�
−3/2

[
exp[C�

−1/2(εt/�)] + 1
]

∀t ∈ R(38)
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for some positive constant C independent of �, ε, and t.
Proof. As a first step we consider the following raw estimates:

‖ψc‖p ≤ C�
− p−2

4p ∀p ∈ [2,+∞], ∀t ∈ R(39)

and

|rR,L| ≤ C�
−1/2 ∀t ∈ R.

Indeed, (39) immediately follows from the Minkowski inequality and from (21):

C�
− p−2

4p ≥ ‖ψ‖p ≥ − (|aR(t)|‖ϕR‖p + |aL(t)|‖ϕL‖p) + ‖ψc‖p,
where |aR,L(t)| ≤ 1, and where ϕR,L satisfy the bound (6). In the same way, from
Lemma 2 and Theorem 2, it follows that

|rR| ≤ C‖ϕRψ2‖ · ‖ψ‖+ ‖ϕR‖4
4

≤ C‖ϕR‖∞‖ψ‖2
4‖ψ‖+ C‖ϕR‖4

4

≤ C�
−1/2,

and similarly for |rL|.
Now, in order to prove the estimate (38) we make use of the third equation of

(25), from which it follows that

ψc(·, t) = −i
ε

�

∫ t

0

e−i(H0−Ω)(t−s)/�Πc|ψ(·, s)|2ψ(·, s)ds

since ψ0
c = Πcψ

0 = 0 from Hypothesis 2.
Let ψ = ϕ+ ψc, where ϕ = aRϕR + aLϕL. Then

|ψ|2ψ = ϕI + ψcϕII + ψ̄cϕIII ,




ϕI = |ϕ|2ϕ,
ϕII = 2|ϕ|2 + 2ψ̄cϕ+ |ψc|2 + ϕ̄ψc,

ϕIII = ϕ2.

Therefore, we can write

ψc = −i
ε

�
[I + II + III] ,

where

I =

∫ t

0

e−i(H0−Ω)(t−s)/�ΠcϕIds,

II =

∫ t

0

e−i(H0−Ω)(t−s)/�ΠcψcϕIIds,

III =

∫ t

0

e−i(H0−Ω)(t−s)/�Πcψ̄cϕIIIds.

For the first term we have, by integrating by parts, that

I =
[
−i�e−i(H0−Ω)(t−s)/�[H0 − Ω]−1Πc|ϕ|2ϕ

]t
0

+ i�

∫ t

0

e−i(H0−Ω)(t−s)/�[H0 − Ω]−1Πc
∂|ϕ|2ϕ

∂s
ds.
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Let us emphasize that from Lemma 1 it follows that the following operators, from L2

into L2, are bounded:∥∥∥e−i(H0−Ω)(t−s)/�

∥∥∥ = 1, ‖�[H0 − Ω]−1Πc‖ ≤ C.

Also, from Lemma 2 and (24), (26), and (27), we have the following uniform estimate
for any t ∈ R:

‖ϕ̇‖p ≤ (|ȧr|+ |ȧL|) (‖ϕR‖p + ‖ϕL‖p) ≤ C�
−1 max[cε, ω, ε�− 1

2 ]�− p−2
4p

≤ C�
−1β�

− p−2
4p .

Then we have that

‖I‖ ≤ C max
s∈[0,t]

{‖ϕ3(s, ·)‖+ t‖ϕ̇(s, ·)ϕ2(s, ·)‖}
≤ C max

s∈[0,t]

{‖ϕ(s, ·)‖3
6 + t‖ϕ̇(s, ·)‖ · ‖ϕ(s, ·)‖2

∞
}

≤ C
{

�
−1/2 + t�−1β�

−1/2
}
.

For the other two terms we have that

‖II‖ ≤
∫ t

0

‖ψc‖ · ‖ϕII‖∞ds ≤ C�
−1/2

∫ t

0

‖ψc‖ds

since ‖ϕII‖∞ ≤ C�
−1/2, and similarly

‖III‖ ≤
∫ t

0

‖ψc‖ · ‖ϕIII‖∞ds ≤ C�
−1/2

∫ t

0

‖ψc‖ds.

Indeed, from Lemma 2 and (39) it follows that

‖ϕII‖∞ ≤ C
{‖ϕ‖2

∞ + ‖ψc‖∞‖ϕ‖∞ + ‖ψc‖2
∞
} ≤ C�

−1/2

and

‖ϕIII‖∞ ≤ ‖ϕ‖2
∞ ≤ C�

−1/2.

Collecting all these results and denoting

g(t) = ‖ψc(·, t)‖
we have that g(t) is a positive real-valued function satisfying the estimate

g(t) ≤ C
ε

�

{
�
−1/2

∫ t

0

g(s)ds+ �
−1/2

(
1 + t�−1β

)}

≤ a

∫ t

0

g(s)ds+ a+ abt, a = C
ε

�3/2
, b =

β

�
.

From this estimate, since ψc(0) = 0, and from Gronwall’s lemma (see [10], page 19)
it follows that

g(t) ≤ a+ abt+ a

∫ t

0

ea(t−s)(a+ abs)ds = −b+ aeat + beat

≤ Cβ

�3/2

[
eCεt�

−3/2

+ 1
]
,
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proving the result.
From the inequality (8) and from assumption (11) it follows that for any fixed

τ ′ > 0 there exists C > 0 satisfying the second inequality in (32).
Lemma 6. For any fixed τ ′ > 0 the remainder terms rR and rL satisfy the

uniform estimate

max [|rR|, |rL|] ≤ Cβ�
−2eC�

−1/2 ∀t ∈ [0, τ ′
�/ω]

for some positive constant C independent of �, ε, and t.
Proof. Let us consider only the term |rR|; the other term |rL| could be treated

the same way. By definition, and since max[|aR|, |aL|] ≤ 1, it follows that

|rR| ≤ +
∣∣〈ϕRϕ̄L, |ψ|2〉∣∣(40)

+
∣∣〈ϕR|ψ|2, ψc〉∣∣(41)

+
∣∣〈|ϕR|2, |φL|2 + aRϕRφ̄L + āRϕ̄RφL〉

∣∣ ,(42)

and we estimate separately each term.
From Lemma 3, equation (13), and the Hölder inequality, it follows that the term

(40) satisfies the estimate∣∣〈ϕRϕL, |ψ|2〉∣∣ ≤ ‖ϕRϕ̄L‖∞ · ‖ψ2‖1 ≤ Cω.

From Lemma 5 and the Hölder inequality, it follows that the term (41) satisfies
the estimates ∣∣〈ϕR|ψ|2, ψc〉∣∣ ≤ ‖ϕR‖∞ · ‖ψ2‖ · ‖ψc‖ ≤ Cβ�

−2eC�
−1/2

and that the term (42) satisfies the estimate∣∣〈|ϕR|2, |φL|2 + aRϕRφ̄L + āRϕ̄RφL〉
∣∣

≤ C
[‖ϕRϕL‖∞ + ‖ϕ2

R‖∞‖ψc‖2 + ‖ϕRϕL‖∞‖ψc‖
] ≤ Cω.

Collecting all these estimates, we obtain the proof of the lemma.
The proof of the theorem is almost complete. Indeed, equations (36) can be

rewritten in the integral form

A(τ) = A(0) +

∫ τ

0

f [A(s)]ds+

∫ τ

0

Rds

and

B(τ) = B(0) +

∫ τ

0

f [B(s)]ds,

from which, and from Lemmas 4 and 5, it follows that for any τ ∈ [0, τ ′],

|A(τ)−B(τ)| ≤
∫ τ

0

|f [A(s)]− f [B(s)]| ds+
∫ τ

0

|R|ds

≤ a

∫ τ

0

|A(s)−B(s)| ds+ bτ, a = L, b = C
εβ�

−2eC�
−1/2

ω
.
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From this inequality and by means of Gronwall’s lemma we finally obtain that

|A(τ)−B(τ)| ≤ bτ + ab

∫ τ

0

ea(τ−s)sds =
b

a
[eaτ − 1]

≤ C

L

εβ�
−2eC�

−1/2

ω
,

proving (32) since

ω + ε

C ′ω
≤ L = 1 + 3η ≤ C ′ω + ε

ω

for some C ′ > 0, which implies that β
Lω ≤ C for some C > 0.

Remark 6. Since ω = O(e−Γ/�) the above theorem implies that for any α < 1
and for any τ ′ > 0, there exists C such that

|bR,L(t)− aR,L(t)| ≤ Cωα and ‖ψc(·, t)‖ ≤ Cωα ∀t ∈ [0, �τ ′/ω].

6. Destruction of the beating motion for large nonlinearity.

6.1. The unperturbed case ε = 0. Under Hypothesis 2 it follows that the
solution of the unperturbed equation

i�ψ̇ = H0ψ, ψ(0, x) = ψ0(x)

is simply given by

ψ(t, x) = e−iΩt/�

[
c1 + c2√

2
cos(ωt/�) + i

c2 − c1√
2

sin(ωt/�)

]
ϕR(x)

+ e−iΩt/�

[
c1 − c2√

2
cos(ωt/�)− i

c1 + c2√
2

sin(ωt/�),

]
ϕL(x),

where

c1,2 = 〈ϕ1,2, ψ
0〉, |c1|2 + |c2|2 = 1.

Hence, ψ(t, x) is, up to the phase factor e−i(Ω−ω)t/�, a periodic function with period
T = π�/ω.

In particular, if ψ initially coincides with a single-well state, e.g., ψ0 = ϕR, then

ψ(t, x) = e−i(Ω−ω)t/�

[
e−iωt/� cos(ωt/�)ϕR(x)− ie−iωt/� sin(ωt/�)ϕL(x)

]

and the state ψ(t, x) performs a beating motion. That is, the state, initially localized
on the well BR, is localized on the other well BL after half a period and, after a whole
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period, it returns to the initial well, and so on. In particular, let us consider the
motion of the center of mass defined here as

〈X〉t = 〈Xψ,ψ〉 =
∫
r
X(x)|ψ(t, x)|2dx,

where X ∈ C(R) ∩ L2(R) is a given bounded function such that X(−x) = −X(x).
We have that

〈X〉t = X0

[
cos2(ωt/�)− sin2(ωt/�)

]
,

where

X0 = 〈ϕR, XϕR〉 =
∫
r
X(x)|ϕR(x)|2dx.

Hence, 〈X〉t is a periodic function which periodically assumes positive and negative
values; i.e., we have the well-known beating motion for the double-well problem.

6.2. The perturbed case ε �= 0. In such a case it follows that the center of
mass is given by

〈X〉t = X0[|aR(t)|2 − |aL(t)|2] + r,

where X0 has been previously defined and the remainder term r satisfies the uniform
estimate

|r| = 2 |� [aRāL〈XϕR, ϕL〉+ 〈Xψ,ψc〉]|
≤ 2 [‖ϕRϕL‖∞ + ‖X‖∞‖ψ‖‖ψc‖]
≤ Ce−C�

−1 ∀t ∈ [0, �τ ′/ω].

If we denote by z(t) the imbalance function defined in (30), then, in the semiclassical
limit, it follows that

|aR(t)|2 − |aL(t)|2 ∼ z(t) ∀t ∈ [0, �τ ′/ω];

hence

〈X〉t ∼ X0z(t) ∀t ∈ [0, �τ ′/ω].

Then we have the following.
Theorem 4. Let Hypotheses 1 and 2 be satisfied. Let k2 be defined as in (31),

depending on the initial wave function ψ0. Let τ ′ > 0 be fixed, and let 〈X〉t, up to a
remainder term, be a periodic function for any t ∈ [0, �τ ′/ω]. In particular, if

(i) k2 < 1, then 〈X〉t periodically assumes positive and negative values (i.e., the
beating motion still persists);

(ii) k2 > 1, then 〈X〉t has a definite sign (i.e., the beating motion is forbidden).
Remark 7. Let us close by emphasizing that when the wave function is initially

prepared on just one well, e.g., ψ0 = ϕR, then

I = −1

4
η and k2 =

1

16
η2.

Therefore, from the theorem above it follows that for |η| larger than the critical
value 4 the beating motion is forbidden (see Figure 1). In such a way, we put on a
fully rigorous basis the results obtained by [19] in the two-level approximation.
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Fig. 1. Absence of the beating motion of the center of mass for nonlinearity larger than a
critical value. Here, we plot the imbalance function z(τ) for different values of the nonlinearity
parameter η, where τ = ωt/� denotes the slow time. For η = 0 (point line) and η = 3.8 (broken
line) we still have a beating motion; in contrast, for η larger than the critical value 4, e.g., η = 6.5
(full line), the beating motion is forbidden.
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A QUASI-DUAL FUNCTION METHOD FOR EXTRACTING
EDGE STRESS INTENSITY FUNCTIONS∗
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Abstract. We present a method for the computation of the coefficients of singularities along
the edges of a polyhedron for second-order elliptic boundary value problems. The class of problems
considered includes problems of stress concentration along edges or crack fronts in general linear
three-dimensional elasticity. Our method uses an incomplete construction of three-dimensional dual
singular functions, based on explicitly known dual singular functions of two-dimensional problems
tensorized by test functions along the edge and combined with complementary terms improving their
orthogonality properties with respect to the edge singularities. Our method is aimed at the numerical
computation of the stress intensity functions. It is suitable for a postprocessing procedure in the
finite element approximation of the solution of the boundary value problem.

Key words. edge singularities, dual singularities, stress intensity factors

AMS subject classifications. 35J25, 35B65
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1. Introduction.

1.1. The problem. The solutions of elliptic boundary problems, for example,
those arising from linear elasticity, when posed and solved in nonsmooth domains like
polygons and polyhedra, have nonsmooth parts. It is well known how to describe
these singularities in terms of special singular functions depending on the geometry
and the differential operators on one hand, and of unknown coefficients depending
on the given right-hand sides (for example, volume forces and surface tractions or
displacements) on the other hand.

Concerning the singular functions, they are extensively covered in the literature.
In many cases, like corners in two dimensions or edges in three dimensions, they can
be written analytically (see, for example, [18, 3, 29]) or semianalytically [12]. In other
cases, like polyhedral corners, there exist well-known numerical methods for their
computation (see, for example, [1, 35, 33, 36]).

Concerning the coefficients, there are two cases to distinguish: corners and edges.
1. In the case of a corner in two or three dimensions, i.e., the vertex of a cone,

the space of singular functions up to a given regularity is finite-dimensional. There-
fore only finitely many numbers have to be computed, and there exist several well-
established methods to do this. Let us mention some of them:

In the “singular function method,” also known as the Fix method in the finite
element literature, singular basis functions are added to the space of trial functions,
so that their coefficients are computed immediately as a part of the numerical solution
of the boundary value problem (see [4, 6, 8, 17, 28, 32]).

In the “dual singular function method,” one uses the fact that the coefficients
depend linearly on the solution and therefore also on the right-hand side; see [21, 23]
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where this was first developed. There exist several different ways to express these
linear functionals that extract the coefficients. One can use functionals acting on the
solution of the boundary value problem, and these can then have a simple explicit
form and can be localized. Or one can write them as functionals acting directly on
the right-hand side. These are the dual singular functions, properly speaking, and
they are solutions of a boundary value problem themselves (see [5, 15, 16, 7, 2, 34]).

2. In the case of an edge in three dimensions, the space of singular functions
is infinite-dimensional. Theoretical formulas for the extraction of coefficients then
involve an infinite number of dual singular functions in general; see [22, 26]. The
coefficients can be understood as functions defined on the edge, and their computation
now requires approximation of function spaces on the edge. There exist some papers
describing versions of the singular function method in this case. In [13], the case
of a half-space crack in three-dimensional elasticity is considered. An algorithm is
proposed and analyzed consisting of boundary elements on the crack surface combined
with singular elements that are parametrized by one-dimensional finite elements on
the crack front. This method and the corresponding error analysis are described
for smooth curved cracks in three dimensions in [31]. In [19], the simple case of a
circular edge is treated with Fourier expansion, error estimates are given, and results
of numerical computations are shown.

Every linear functional acting on the edge coefficient functions now gives rise to
a dual singular function. Such linear functionals can be the point evaluation at each
point of the edge or, more regularly, moments, i.e., scalar products with some poly-
nomial basis functions. Computing a finite number of such point values or moments,
one obtains an approximation of the coefficient function. Such a procedure has been
studied in [20] for the simple case of the Laplace equation at a flat crack. In [30]
the coefficients are given by convolution integrals which contain the dual singular
functions, and examples for the Lamé system are provided.

With the exception of the computations in the case of the simple geometries and
operators of [19] and [20], the formulas and theoretical algorithms for the extraction
of edge coefficients mentioned above have not lead to numerical implementations or
serious computational results. A first step towards an algorithm suitable for imple-
mentation in an engineering stress analysis code is described in [36], where point values
of edge coefficients are computed in the case of the Laplace equation near a straight
edge. Very special orthogonality conditions of the Laplace edge singular functions are
used to construct extraction formulas that are essentially two-dimensional.

Whereas this idea cannot be extended directly to more general geometrical and
physical situations like Lamé equations in a polyhedral domain, our paper is an exten-
sion of [36] to such situations in the practical sense of suitability for implementation
in engineering codes.

1.2. Outline. In the present paper we construct an algorithm for the approxi-
mate computation of moments of the edge coefficient functions. The algorithm has a
twofold purpose: It is sufficiently general to be applicable to real-life three-dimensional
boundary value problems and their singularities near polyhedral edges, and it is simple
enough to be implemented in the framework of professional finite element codes. In
a forthcoming paper we will show practical applications in the computation of stress
concentration coefficients in three-dimensional anisotropic elasticity.

Our paper is organized as follows:

After a more detailed description of the idea of our algorithm in this first section,
we recall in section 2 the structure of edge singularities for second-order linear Dirichlet
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boundary value problems in three dimensions. We describe how the leading term in
each singular function is obtained from a two-dimensional problem in a sector and
can be computed from the principal Mellin symbol of the partial differential operator.
For a complete description of the singular function one has to construct higher order
“shadow terms,” for which we also give formulas involving Mellin symbols of the
operator.

In section 3, the structure of dual singular functions is described first in two
dimensions and then for the case of the three-dimensional edge. The dual singular
functions have an asymptotic expansion in terms that have tensor product form in
cylindrical coordinates and are homogeneous with respect to the distance to the edge.
This form allows us to prove a certain approximate duality between finite partial sums
of these asymptotic expansions. These sums can be constructed explicitly from the
Mellin symbols of the operator, and the duality holds approximately on cylindrical
domains in the sense that the error is of the order of an arbitrarily high power of the
radius of the cylinder.

In section 4, we construct the extraction algorithm for moments of the coefficients
of the edge singularities. The algorithm requires the integration of the solution of the
boundary value problem against a smooth function on a cylindrical surface of distance
R to the edge, and it is exact modulo a given arbitrarily high power of R.

In section 5, we discuss generalizations to more general domains and boundary
conditions, and the special case of a crack.

In section 6, we compare our algorithm with possible alternatives based on other
formulas for the extraction of coefficients.

1.3. The main framework. Any three-dimensional elliptic boundary value
problem posed on a polyhedron defines infinite-dimensional singularity spaces cor-
responding to each of the edges. Each singularity along an edge E is characterized

• by an exponent α, which is a complex number depending only on the geometry
and the operator, and which determines the level of nonsmoothness of the singularity,
and

• by a coefficient aα, which is a function along the edge E.
Of great interest are the coefficients aα when Reα is less than 1, corresponding

to non-H2 solutions. In many situations, Reα < 1 when the opening at the edge is
nonconvex. For example, α can be equal to 1

2 in elasticity problems in the presence
of cracks. Sometimes in such a situation the coefficients are called stress intensity
factors. Herein we propose a method for the computation of these coefficients, which
can be applied to any edge (including a crack front) of any polyhedron.

For the exposition of the method we use a model domain Ω where only one edge E
is of interest (in particular, E will be the only possible nonconvex edge). Nevertheless
this method applies, almost without alteration, to any polyhedron; see section 5.

As model domain, we take the tensor product Ω = G×I, where I is an interval, let
us say [−1, 1], and G is a plane bounded sector of opening ω ∈ (0, 2π] and radius 1 (the
case of a crack, ω = 2π, is included). See Figure 1. The variables are (x, y) in G and z
in I, and we denote the coordinates (x, y, z) by x. Let (r, θ) be the polar coordinates
centered at the vertex of G so that G = {(x, y) ∈ R

2 | r ∈ (0, 1), θ ∈ (0, ω)}. The
domain Ω has an edge E which is the set {(x, y, z) ∈ R

3 | r = 0, z ∈ I}.
The operator L is a homogeneous second-order partial differential N ×N system

with constant real coefficients, which means that

L =
3∑
j=1

3∑
i=1

Lij∂i∂j with ∂1 =
∂

∂x
, ∂2 =

∂

∂y
, ∂3 =

∂

∂z
,
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Fig. 1. The domain of interest Ω.

with coefficient matrices Lij in R
N×N . We moreover assume that the matrices Lij

are symmetric. Therefore L is formally self-adjoint.
We assume moreover that L is associated with an elliptic bilinear form B, i.e.,

that for any u and v in H2(Ω)N and any subdomain Ω′ ⊂ Ω there holds∫
Ω′

Lu · v dx = B(u, v) +

∫
Γ′

TΓ′u · v dσ

=

∫
Ω′

u · Lv dx+
∫

Γ′

(
TΓ′u · v − u · TΓ′v

)
dσ,

(1.1)

where TΓ′ is the Neumann trace operator associated with L via B on the boundary
Γ′ of Ω′. Our aim is the determination of the edge structure of any solution u of the
problem

u ∈ H1
0 (Ω) ∀v ∈ H1

0 (Ω) B(u, v) =

∫
Ω

f · v dx,(1.2)

where f is a smooth vector function in C∞(Ω)N . Away from the end points of the
edge, the solution u can be expanded in edge singularities S[α ; aα] associated with the
exponents α and the coefficients aα. These singularities S[α ; aα] are the sums of terms
in tensor product form ∂jzaα(z) Φj [α](x, y), where only the generating coefficients aα
depend on the right-hand side f of problem (1.2).

1.4. The extraction method. In this paper, we construct for each exponent
α a set of quasi-dual singular functions Km[α ; b], where m is a natural integer, which
is the order of the quasi-dual function, and b a test coefficient. We then extract not
the pointwise values of aα, but its scalar product versus b on E with the help of the
following antisymmetric internal boundary integrals J [R] over the surface

ΓR :=
{
x ∈ R

3 | r = R, θ ∈ (0, ω), z ∈ I
}
,
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depending on the radius R:

J [R](u, v) :=

∫
ΓR

(
TΓRu · v − u · TΓRv

)
dσ.(1.3)

Roughly, and with certain limitations (see Theorem 4.3 and its extensions in section 5),
we find that for the lowest values of Reα, there holds

J [R](u,Km[α ; b]) =

∫
I

aα(z) b̄(z) dz +O (Rm+1
)

as R → 0,(1.4)

which allows a precise determination of
∫
I
aα b̄ by extrapolation in R and a recon-

struction of aα by the choice of a suitable set of test coefficients b.
One of the fundamental tools for the proof of (1.4) consists of algebraic relations

based on integration by parts in the domains Ωε,R, where for any ε and R with
0 < ε < R we denote by Gε,R the annulus

Gε,R := {(x, y) ∈ R
2 | r ∈ (ε,R), θ ∈ (0, ω)}

and by Ωε,R the tensor domain Gε,R × I. We note that

∂Ωε,R = Γε ∪ ΓR ∪ (Gε,R × ∂I).

Finally we also denote by G∞ the infinite sector of opening ω and by Ω∞ the infinite
wedge G∞ × I.

2. Edge singularities. Edge singularities are investigated in several works. Let
us quote Maz’ya and Plamenevskii [24], Maz’ya and Rossmann [27], Dauge [14], and
Costabel and Dauge [9]. Here, as a model problem, we concentrate on the simplest
case of a homogeneous operator with constant coefficients.

The structure and the expansion of edge singularities rely on the splitting of the
operator L into three parts,

L =M0(∂x, ∂y) +M1(∂x, ∂y) ∂z +M2 ∂
2
z ,

where M0 is an N ×N matrix of second-order partial differential operators in (x, y),
M1 is an N ×N matrix of first-order partial differential operators in (x, y), and M2

is a scalar N ×N matrix.
We can check that for any smooth function a(z) in I and any sequence (Φj)j≥0

of functions of (x, y) satisfying the relations


M0Φ0 = 0,
M0Φ1 +M1Φ0 = 0,
M0Φj +M1Φj−1 +M2Φj−2 = 0, j ≥ 2,

in G∞,(2.1)

the series

u ∼
∑
j≥0

∂jza(z) Φj(x, y)

formally satisfies the equation Lu ∼ 0 in Ω∞. If, moreover, all derivatives of a are
zero in −+1 and if the Φj satisfy the Dirichlet conditions on ∂G∞, then u ∼ 0 on ∂Ω∞.
In order to provide a more precise meaning, we need a description of solutions of the
system of equations (2.1).
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2.1. Two-dimensional leading singularities. The first terms Φ0 are the so-
lutions of the Dirichlet problem in the infinite sector:{

M0Φ0 = 0 in G∞,
Φ0 = 0 on ∂G∞.

(2.2)

From the general theory we know that the solutions of problem (2.2) are generated
by functions having the particular form in polar coordinates (r, θ)

Φ0 = rαϕ0(θ), α ∈ C.(2.3)

Since it is homogeneous of degree 2, the systemM0 can be written in polar coordinates
in the form

M0(∂x, ∂y) = r−2M0(θ; r∂r, ∂θ).

With the ansatz (2.3), the system (2.2) becomes{ M0(θ;α, ∂θ)ϕ0 = 0 in (0, ω),
ϕ0 = 0 on 0 and ω.

(2.4)

The operator ϕ �→ M0(θ;α, ∂θ)ϕ acting from H1
0 (0, ω) into H−1(0, ω) is the Mellin

symbol of M0, and we denote it by M0(α).
The system (2.4) has nonzero solutions, i.e., M0(α) is not invertible, only for a

discrete subset A = A(M0) of C. We call the numbers α ∈ A the edge exponents.
The ellipticity of L implies the ellipticity of M0, and as a consequence, any strip

Reα ∈ (ξ1, ξ2) contains at most a finite number of elements of A. As the coefficients
of M0 are real, if α belongs to A, then ᾱ also belongs to A. Moreover we have the
general property that

M0(α)
∗ = M∗

0(−ᾱ),

where M0(α)
∗ is the adjoint of M0(α) and M∗

0 denotes the Mellin symbol of the
adjoint M∗

0 of M0. Now M0 is formally self-adjoint: M
∗
0 =M0, and there holds

M0(α)
∗ = M0(−ᾱ).

By the Fredholm alternative, this implies that if α belongs to A, then −ᾱ also belongs
to A.

The operator valued function α �→ M0(α)
−1 is meromorphic on C. If

(H1) ∀α ∈ A, α is a pole of degree 1 of M−1
0 ,

then any solution of (2.2) is a linear combination of solutions of type (2.3) with α ∈ A
and ϕ0 a nonzero solution of (2.4). For simplicity we assume hypothesis (H1) and will
explain in what follows the implications if it does not hold.

2.2. Further two-dimensional generators for singularities. The second
equation of system (2.1) with Dirichlet conditions reduces to finding Φ1 such that{

M0Φ1 = −M1Φ0 in G∞,
Φ1 = 0 on ∂G∞,

(2.5)
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where Φ0 = rαϕ0(θ) as determined in the previous subsection. Since it is homogeneous
of degree 1, the system M1 can be written in polar coordinates in the form

M1(∂x, ∂y) = r−1M1(θ; r∂r, ∂θ).

Therefore, M1Φ0 = rα−1M1(θ;α, ∂θ)ϕ0 and an ansatz like (2.3) for the solution of
problem (2.5) is

Φ1 = rα+1ϕ1(θ),(2.6)

with ϕ1 solution of the Dirichlet problem{ M0(θ;α+ 1, ∂θ)ϕ1 = −M1(θ;α, ∂θ)ϕ0 in (0, ω),
ϕ1 = 0 on 0 and ω;

(2.7)

in other words, ϕ1 solves M0(α + 1)ϕ1 = −M1(α)ϕ0. Therefore, if α + 1 does not
belong to A, the previous problem has a unique solution. This is why we assume
hypothesis (H2):

(H2) ∀α ∈ A, ∀j ∈ N, j ≥ 1, α+ j �∈ A.

If (H2) holds, then for each solution Φ0 = rαϕ0 of problem (2.4), we obtain by
induction a unique sequence (Φj)j≥0 solution of (2.1) with Dirichlet conditions in the
form

Φj = rα+jϕj(θ),

where ϕj solves

M0(α+ j)ϕj = −M1(α+ j − 1)ϕj−1 −M2ϕj−2 .(2.8)

We recall that M2, being a scalar matrix, has the same expression in Cartesian coor-
dinates as in polar coordinates (viz. M2 =M2).

2.3. Three-dimensional singularities. Assuming hypotheses (H1) and (H2),
for any α ∈ A with Reα > 0, let pα denote the dimension of the kernel of M0(α) and
let Φ0[α, p], for p = 1, . . . , pα, be a basis of kerM0(α). Moreover, for any j ≥ 1, let
Φj [α, p] be the solution of (2.7) or (2.8) (also called “shadow singularities”) generated
by Φ0[α, p].

For any integer n ≥ 0 we call “singularity at the order n” any expression of the
form

Sn[α, p ; a] :=

n∑
j=0

∂jza(z) Φj [α, p](x, y),(2.9)

where a belongs to Cn+2(I).
By construction, there holds

LSn[α, p ; a] = ∂n+1
z a (M1Φn +M2Φn−1) + ∂n+2

z aM2Φn,(2.10)

whence we have the following lemma.
Lemma 2.1. For any α ∈ A, Reα > 0, and a ∈ Cn+2(I) we have

LSn[α, p ; a] = O (rReα+n−1
)
;(2.11)

i.e., r−Reα−n+1LSn[α, p ; a] is bounded in Ω. Moreover Sn[α, p ; a] = 0 on ∂G∞×I.
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3. Dual singular functions. We first recall and reformulate well-known facts
about the dual singular functions for two-dimensional problems (cf. Maz’ya and
Plamenevskii [21, 23, 25], Babuška and Miller [2], Dauge et al. [15, 16]) and then
extend these notions in the framework of our edge problem, so that we obtain what
we call “quasi-dual singular functions” (compare with the extraction functions in
[1] by Andersson, Falk, and Babuška) as opposed to exact dual singular functions;
cf. Maz’ya and Plamenevskii [22], Maz’ya and Rossmann [26] (pointwise duality), and
Lenczner [20] (Sobolev duality).

3.1. Two-dimensional dual singular functions. The two-dimensional oper-
ator is the homogeneous second-order operator M0 with real coefficients. We develop
its symbol M0(α) in powers of α (of degree 2):

M0(θ;α, ∂θ) = N0(θ; ∂θ) + αN1(θ; ∂θ) + α2N2(θ).(3.1)

Since M0 is self-adjoint, we can deduce that

N0 and N2 are self-adjoint and N1 is anti-self-adjoint.(3.2)

Lemma 3.1. Let α, β be in A and let ϕ, ψ be in the kernels of M0(α), M0(β),
respectively. Then there holds the identity

(α+ β̄)

∫ ω

0

(N1 + (α− β̄)N2

)
ϕ · ψ dθ = 0.(3.3)

Proof. We start with the duality relation:

0 =

∫ ω

0

ϕ · M0(β)ψ =

∫ ω

0

M0(β)
∗ϕ · ψ =

∫ ω

0

M0(−β̄)ϕ · ψ.

Then we use the identity

M0(−β̄) = M0(α)− (β̄ + α)N1 + (β̄
2 − α2)N2.

From M0(α)ϕ = 0, we obtain

0 =

∫ ω

0

M0(−β̄)ϕ · ψ =
∫ ω

0

(− (β̄ + α)N1 + (β̄
2 − α2)N2

)
ϕ · ψ

= −(α+ β̄)

∫ ω

0

(N1 + (α− β̄)N2

)
ϕ · ψ.

Lemma 3.2. Let α, β, ϕ, and ψ be as in Lemma 3.1.
(i) If −β̄ �= α, then ∫ ω

0

(N1 + (α− β̄)N2

)
ϕ · ψ = 0.(3.4)

(ii) If −β̄ = α, then the left-hand side of (3.4) becomes

∫ ω

0

(N1 + 2αN2

)
ϕ · ψ =

∫ ω

0

(
d

dα
M0(α)

)
ϕ · ψ,(3.5)
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and, if we moreover assume hypothesis (H1), then for any basis
(
ϕ[α, p]

)
p
of kerM0(α)

there exists a unique dual basis
(
ψ[α, p]

)
p
of kerM0(−ᾱ) such that∫ ω

0

(N1 + 2αN2

)
ϕ[α, p] · ψ[α, q] = δp,q.(3.6)

Proof. (i) is a straightforward consequence of Lemma 3.1.
(ii) Identity (3.5) is clear. Concerning (3.6), we first note that since M0(α)

∗ =
M0(−ᾱ), the dimension of the kernel of M0(α) is equal to the codimension of the
closure of the range of M0(−ᾱ). On the other hand, as for any α′ ∈ C \ A, M0(α

′)
is invertible, and since M0(α)− M0(α

′) is a compact operator, M0(α) is a Fredholm
operator of index 0. As a consequence,

dimkerM0(α) = dimkerM0(−ᾱ).

In order to obtain (3.6) it suffices now to prove that if ϕ ∈ kerM0(α) satisfies

∀ψ ∈ kerM0(−ᾱ),

∫ ω

0

(N1 + 2αN2

)
ϕ · ψ = 0,

then ϕ = 0. If this does not hold, thanks to (3.5) there exists ϕ ∈ kerM0(α) such
that

∀ψ ∈ kerM0(−ᾱ),

∫ ω

0

(
d

dα
M0(α)

)
ϕ · ψ = 0.

By the Fredholm alternative, there exists ϕ′ such that

M0(α)ϕ
′ +

d

dα
M0(α)ϕ = 0.

As a consequence the function

α′ �−→ (α′ − α)−2 M0(α
′)
(
ϕ+ (α′ − α)ϕ′)

has an analytic extension in α. This contradicts hypothesis (H1) according to which
M−1

0 has a pole of order 1 in α.
We end this subsection with a relation between the expression in the left-hand

sides of (3.4) and (3.6) and a trace obtained by integration by parts.
Considering the Green formula (1.1) in the domain Ωε,R for functions u and v,

which are zero on the two faces θ = 0 and θ = ω of Ω, we have contributions on the
parts ΓR and Γε of the boundary of Ωε,R, where r = R and r = ε, respectively. We
denote by T (r) the Neumann trace operator on Γr. It has the form

T (r) = T (r, θ; ∂r, ∂θ, ∂z) = r−1T0(θ; r∂r, ∂θ) + T1(θ) ∂z .(3.7)

We also have contributions of the lateral sides Gε,R × ∂I. Denoting by T∂I the
Neumann trace on these sides, we have the Green formula∫

Ωε,R

Lu · v − u · Lv dx =

∫
I

∫ ω

0

T (R)u · v − u · T (R)v R dθ dz

−
∫
I

∫ ω

0

T (ε)u · v − u · T (ε)v εdθ dz

+

∫
Gε,R×∂I

T∂I u · v − u · T∂I v dσ.

(3.8)
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Applying the above identity to functions u and v independent of z (and zero on the two
sides θ = 0 and θ = ω), we note that the contributions on the two sides Gε,R × {−+1}
cancel out because the two Neumann operators T−+1 which compose T∂I are opposite
to each other. Thus we obtain∫

Gε,R

M0u · v − u ·M0v dxdy =

∫ ω

0

T0(R)u · v − u · T0(R)v dθ

−
∫ ω

0

T0(ε)u · v − u · T0(ε)v dθ,

(3.9)

where T0(R) denotes T0(θ;R∂r, ∂θ).
Lemma 3.3. Let α and β be complex numbers and let ϕ and ψ belong to H1

0 (0, ω)
N .

Set Φ := rαϕ(θ) and Ψ := r−β̄ψ(θ). For any R > 0 there holds∫ ω

0

T0(R)Φ ·Ψ− Φ · T0(R)Ψ dθ = Rα−β
∫ ω

0

(N1 + (α+ β)N2

)
ϕ · ψ dθ .(3.10)

Proof. Formula (3.9) and the splitting (3.1) of M0 = r2M0 yield for any ε < R∫
Gε,R

((N0 + r∂rN1 + (r∂r)
2N2

)
Φ ·Ψ − Φ · (N0 + r∂rN1 + (r∂r)

2N2

)
Ψ
)

1
r dr dθ

=

∫ ω

0

T0(R)Φ ·Ψ− Φ · T0(R)Ψ dθ

−
∫ ω

0

T0(ε)Φ ·Ψ− Φ · T0(ε)Ψ dθ.

Since N0 is self-adjoint, integration by parts gives∫ R

ε

((N0 + r∂rN1 + (r∂r)
2N2

)
Φ ·Ψ − Φ · (N0 + r∂rN1 + (r∂r)

2N2

)
Ψ
)

1
r dr

=
[N1Φ ·Ψ+ (r∂r)N2Φ ·Ψ− Φ · (r∂r)N2Ψ

]R
ε
.

We have

N1Φ ·Ψ+ (r∂r)N2Φ ·Ψ−N2Φ · (r∂r)Ψ = rα−β
(N1ϕ · ψ + αN2ϕ · ψ + ϕ · βN2ψ

)
,

and as N2 is self-adjoint (cf. (3.2)), we finally obtain

(N1ϕ · ψ + (α+ β)N2ϕ · ψ)(Rα−β − εα−β
)

=

∫ ω

0

T0(R)Φ ·Ψ− Φ · T0(R)Ψ dθ

−
∫ ω

0

T0(ε)Φ ·Ψ− Φ · T0(ε)Ψ dθ.

Now the right-hand side of the above equality also has the form c(α, β)(Rα−β−εα−β),
and we deduce (3.10) for any α �= β. Since, for fixed β, ϕ, ψ, and R, both members
of (3.10) depend continuously on α, we deduce (3.10) for α = β by continuity.

3.2. Three-dimensional dual singular functions. We assume hypotheses
(H1) and (H2), and for any α ∈ A, Reα > 0, we choose a basis ϕ[α, p], p = 1, . . . , pα,
of kerM0(α). Then we denote by ψ[α, p], p = 1, . . . , pα, the corresponding dual basis
according to Lemma 3.2. We recall that we have denoted rαϕ[α, p] by Φ0[α, p] and
that associated singularities at the order n are defined in (2.9).
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Following the same lines, we set

Ψ0[α, p] := r−ᾱψ[α, p],

and for any integer n ≥ 0, we define the “quasi-dual singular function at the order n”
by

Kn[α, p ; b] :=

n∑
j=0

∂jzb(z)Ψj [α, p](x, y),(3.11)

where b belongs to Cn+2(I) and the sequence (Ψj)j≥0 is defined by induction as
solution of (2.1) in the form

Ψj = r−ᾱ+jψj(θ),

where ψj solves

M0(−ᾱ+ j)ψj = −M1(−ᾱ+ j − 1)ψj−1 −M2ψj−2.(3.12)

Of course, Kn[α, p ; b] is but Sn[−ᾱ, p ; b] (generated by Ψ0). Therefore by (2.11)
there holds, for any α ∈ A, Reα > 0, and b ∈ Cn+2(I),

LKn[α, p ; b] = O (r−Reα+n−1
)
.(3.13)

In the next proposition we state that the singularities Sn[α, p ; a] and the quasi-dual
singular functions Kn[β, q ; b] are in duality with each other (modulo a remainder) if
linked by the following antisymmetric sesquilinear form:

J [R](u, v) :=

∫
ΓR

(
Tu · v − u · Tv

)
dσ =

∫
I

∫ ω

0

(
Tu · v − u · Tv

) ∣∣
r=R

R dθ dz,(3.14)

where T = T (R) is the radial Neumann trace operator (3.7).
Proposition 3.4. Let α, β ∈ A with Reα, Reβ > 0. We assume that hypotheses

(H1) and (H2) hold. For an integer n ≥ 0, let the coefficients a and b be in Cn+2(I).
We assume moreover that ∂jzb = 0 for j = 0, . . . , n − 1 on ∂I. Then for any R > 0
there holds

J [R]
(
Sn[α, p ; a] ,Kn[β, q ; b]

)
= δα,β δp,q

∫
I

a(z) b̄(z) dz +O (RReα−Re β+n+1
)
.

(3.15)

Proof. We use the Green formula (3.8) on Gε,R for

u = Sn[α, p ; a] and v = Kn[α, q ; b].

Since u = O (rReα
)
and v = O (r−Re β

)
, (2.11) and (3.13) imply

∫
Ωε,R

Lu · v − u · Lv dx = O
(∫ R

ε

rReα−Re β+n−1 rdr

)
.

With formula (2.10), we even obtain the more precise expression

∫
Ωε,R

Lu · v − u · Lv dx =
2n∑

k=n−1

γk

∫ R

ε

rα−β+k rdr ,
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with coefficients γk independent of R and ε. As a consequence of hypothesis (H2) we
know that α− β + k is different from −1 for k = n, . . . , 2n+ 1. Thus

∫
Ωε,R

Lu · v − u · Lv dx =
2n+2∑
k=n+1

λk
(
Rα−β+k − εα−β+k

)
,

with coefficients λk independent of R and ε. For the boundary integral J [r](u, v)
(3.14), we omit the mention of (u, v). Thus the Green formula (3.8) gives

J [R]− J [ε] +

∫
Gε,R×∂I

T∂Iu · v − u · T∂Iv rdr dθ =

2n+2∑
k=n+1

λk
(
Rα−β+k − εα−β+k

)
.

As T∂I is of the form r−1T∂I,0(θ; r∂r, ∂θ) + T∂I,1(θ) ∂z (cf. (3.7)), and as the ends ∂I
are zeros of order n of b, we are left with

T∂Iu·v−u·T∂Iv = T∂Iu·∂nz bΨn−u·∂nz b
(
r−1T∂I,0Ψn+T∂I,1Ψn−1

)−u·∂n+1
z b T∂I,1Ψn.

Integrating on Gε,R × ∂I and using the structure of Ψj , we obtain as before

T∂Iu · v − u · T∂Iv =

2n+2∑
k=n+1

λ′
k

(
Rα−β+k − εα−β+k

)
.

From the last three equalities we obtain

J [R]− J [ε] =

2n+2∑
k=n+1

λ′′
k

(
Rα−β+k − εα−β+k

)
.(3.16)

It remains to expand J [r] in homogeneous parts: we have

J [r] =
2n+1∑
k=0

Jkr
α−β+k(3.17)

with (cf. (3.7))

Jk =
∑
j+�=k

∫
I

∫ ω

0

∂jza ∂
�
z b̄
(
T0(θ;α+ j, ∂θ)ϕj · ψ� − ϕj · T0(θ;−β + 1, ∂θ)ψ�

)
dθdz

(3.18)

+
∑

j+�=k−1

∫
I

∫ ω

0

(
∂j+1
z a ∂�z b̄ T1(θ)ϕj · ψ� − ∂jza ∂

�+1
z b̄ ϕj · T1(θ)ψ�

)
dθdz.

Combining (3.16) with (3.17) we obtain

2n+1∑
k=0

Jk(R
α−β+k − εα−β+k) =

2n+2∑
k=n+1

λ′′
k

(
Rα−β+k − εα−β+k

)
.

By identification of terms, we immediately deduce that

∀k ≤ n, Jk(R
α−β+k − εα−β+k) = 0.
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Therefore

∀k ≤ n such that α− β + k �= 0, Jk = 0.

By hypothesis (H2), the number α− β + k can be 0 only if k = 0. Therefore

∀k, 1 ≤ k ≤ n, Jk = 0 and ∀α, β ∈ A, α �= β, J0 = 0.

In order to obtain (3.15), it remains to study J0 when α = β. Formula (3.18) yields,
for J0,

J0 =

∫
I

∫ ω

0

a b̄
(
T0(θ;α, ∂θ)ϕ0[α, p] · ψ0[α, q]− ϕj [α, p] · T0(θ;−β, ∂θ)ψ0[α, q]

)
dθdz.

Applying Lemma 3.3 for α = β we have

J0 =
(∫

I

a b̄ dz
)(∫ ω

0

(N1 + 2αN2

)
ϕ[α, p] · ψ[α, q] dθ

)
,

and with the orthogonality relation (3.6) we deduce that

J0 = δp,q

∫
I

a b̄ dz.

Note that in formula (3.18), we can integrate by parts in z without any boundary
contribution for k ≤ n, because ∂jzb = 0 for j = 0, . . . , n− 1 on ∂I. Therefore

Jk =
(∫

I

a ∂kz b̄dz
)
Hk[α, p ; β, q],(3.19)

where

Hk[α, p ; β, q] =
∑
j+�=k

∫ ω

0

(−1)j
(
T0(θ;α+ j, ∂θ)ϕj · ψ� − ϕj · T0(θ;−β + 1, ∂θ)ψ�

)
dθ

(3.20)

−
∑

j+�=k−1

∫ ω

0

(−1)j
(
T1(θ)ϕj · ψ� + ϕj · T1(θ)ψ�

)
dθ.

As a consequence of the proof of Proposition 3.4 we have

∀α, β ∈ A, ∀p, q, ∀k ∈ N, Hk[α, p ; β, q] = δk,0 δα,β δp,q.(3.21)

Later on, we will use formula (3.21), and not Proposition 3.4, to extract the singularity
coefficients of a true solution of problem (1.2).

4. Extraction of singularity coefficients. In this section, we first describe
asymptotic expansions of the solution u of problem (1.2). The right-hand side f is
C∞(Ω), and we suppose in a preliminary step that f ≡ 0 in a neighborhood of the
edge E. The expansions of u show edge singularity coefficients aα,p along the edge
E. We propose a method based on the duality formula (3.15) to determine these
coefficients.
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4.1. Expansion of the solution along the edge. The edge expansions are
valid only away from the sides G × ∂I. This is the reason why we introduce for any
δ ∈ (0, 1) the subinterval

Iδ = (−1 + δ, 1− δ)

and consider the subdomains G× Iδ. We need the introduction of weighted spaces to
describe the remainders in the expansions. For ξ ∈ R, let

Vη(G× Iδ) :=
{
v ∈ C∞(G× Iδ) | ∀m ∈ N

3, r−η+|m|∂m
x v ∈ L∞(G× Iδ)

}
.

Then the following theorem holds; cf. [27].
Theorem 4.1. Let δ ∈ (0, 1) and η > 0 be given. Then for any α ∈ A such

that Reα ∈ (0, η) and for any p ∈ {1, . . . , pα}, there exists a unique coefficient aα,p ∈
C∞(Iδ) such that

u−
∑

α, 0<Reα<η

∑
p

Sn
[
α, p ; aα,p

] ∈ Vη(G× Iδ),(4.1)

where n = n(α) is the smallest integer such that Reα+ n > η.
Letting δ tend to 0, this clearly defines unique coefficients aα,p in C∞(I) such

that for any δ (4.1) holds with aα,p
∣∣
Iδ
. But this does not imply that (4.1) holds

in Ω, because in general the remainders on G × Iδ depend on δ and their norms
blow up as δ → 0. This is due to the presence of corner singularities at the corners
c−+ := (0, 0,−+1). We have to analyze these corner singularities in order to obtain
uniform estimates in Ω.

4.2. Corner exponents. We describe the situation in a neighborhood of the
corner c+ and particularize the notation by the superscript +. A similar situation
holds for the other corner c−. Let K+ be the infinite cone coinciding with Ω in
a neighborhood of c+. Let S

+ denote the sphere of radius 1 centered at c+, ρ+ the
distance to c+, and ϑ+ the coordinates on S

+. Thus (ρ+, ϑ+) are spherical coordinates
centered at c+. Finally, let S+ denote the intersection S

+ ∩K+. The operator L can
be written in these spherical coordinates as

L = (ρ+)−2L+(ϑ+; ρ+∂ρ+ , ∂ϑ+),

which defines the Mellin symbol γ �→ L+(γ) of L at c+, where L+(γ) is the operator
φ �→ L+(ϑ+; γ, ∂ϑ+)φ acting from H1

0 (S
+) into H−1(S+). We denote by G+ the set

of γ ∈ C such that L+(γ) is not invertible. We call these γ the corner exponents. We
introduce the analogue of hypothesis (H1) for L+:

(H3) ∀γ ∈ G+, γ is a pole of degree 1 of (L+)−1.

For each γ ∈ G+, we denote by φ[γ, q], q = 1, . . . , qγ , a basis of kerL
+(γ).

We need a new family of weighted spaces: Let us introduce r+ on S+ as the
distance to the corner (r = 0, z = 0) of S+ corresponding to the edge E and extend
it by homogeneity: r+(x) = r+

(
ϑ+(x)

)
. Note that we have the equivalence

r+(x) � r(x)/ρ+(x).(4.2)

In the same way we define r̃+ on S+ as the distance to the two other corners of S+,
(r = 1, θ = 0, z = 1) and (r = 1, θ = ω, z = 1), and extend r̃+ by homogeneity. We
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define for ξ > − 1
2 and η > 0

Vξ, η(Ω+) :=
{
v ∈ C∞(Ω+) |

∀m ∈ N
3, (ρ+)−ξ+|m| (r+)−η+|m| (r̃+)|m|∂m

x v ∈ L∞(Ω+)
}
,

with Ω+ = G× (0, 1). There holds the corner expansion for any fixed ξ > − 1
2 :

u−
∑

γ, −1/2<Re γ<ξ

∑
q

cγ,q (ρ
+)γφ[γ, q](ϑ+) ∈ Vξ, 0(Ω+),(4.3)

where the coefficients cγ,q are complex numbers. Note that the remainder in (4.3)
is flat with respect to the “distance” ρ+ to the corner c+ and not with respect to
the edge E. Thus, the expansions (4.1) and (4.3) give complementary and seemingly
independent information about the structure of u.

In fact, we will use this result only to obtain the optimal corner regularity of u
without splitting u into regular and singular parts at this corner. We define the set

of exponents G− attached to the corner c− in a similar way as G+. We define ξ−+
1 as

ξ−+
1 = min

{
Re γ | γ ∈ G−+ and Re γ > − 1

2

}
.(4.4)

The choice ξ = ξ+
1 is the best possible so that the corner expansion in (4.3) is empty.

There holds

u ∈ Vξ+1 , 0(Ω
+) and u ∈ Vξ−1 , 0(Ω

−).(4.5)

4.3. Edge expansion up to the corner. Relying on [14, Chap. 17] we can
expand u along the edge E while taking its corner regularity into account. Near c+

the edge coefficients will themselves belong to weighted spaces of the type Vξ(0, 1) on
the half-edge {z ∈ (0, 1)} (here ρ+ coincides with 1− z),

Vξ(0, 1) :=
{
a ∈ C∞(0, 1) | ∀m ∈ N, (ρ+)−ξ+m ∂mρ+a ∈ L∞(0, 1)

}
,

and near c− the coefficients will belong to a space Vξ(−1, 0) where the weight function
is ρ−(z) = 1 + z instead of ρ+.

Theorem 4.2. Let η > 0 be given. Then for any α ∈ A such that Reα ∈ (0, η)
and any p = 1, . . . , pα, the coefficient aα,p appearing in the splitting (4.1) belongs to
Vξ+1−Reα(0, 1) and there holds

u−
∑

α, 0<Reα<η

∑
p

χ(r+)Sn
[
α, p ; aα,p

]
=: u+

reg,η ∈ Vξ+1 , η(Ω
+),(4.6)

where χ is a smooth cut-off function which is 1 in a neighborhood of 0, r+ = r+(x)
is defined in (4.2), and n = n(α) is the smallest integer such that Reα + n > η.
Similarly, aα,p

∣∣
(−1,0)

belongs to Vξ−1−Reα(−1, 0) and there holds

u−
∑

α, 0<Reα<η

∑
p

χ(r−)Sn
[
α, p ; aα,p

]
=: u−

reg,η ∈ Vξ−1 , η(Ω
−).(4.7)
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4.4. Extraction of edge coefficients. Our main goal is the determination
and the computation of the edge coefficients aα,p—at least those corresponding to the
smallest values of Reα. These coefficients are defined via the expansion (4.1), and
a sharp estimate of both the coefficients and the remainder is given in Theorem 4.2.
The method for extracting them is based on the use of the antisymmetric bilinear
form J [R](u, v) defined in (3.14), where v is chosen as Kn[β, p ; b] for a certain range
of β ∈ A and of test edge coefficients b. The choice of the order n will determine
the order of the error, which is a positive power of R. We introduce a last technical
hypothesis

(H4) ∀α ∈ A, Reα ≥ 0, ξ+
1 − Reα �∈ N, ξ−1 − Reα �∈ N.

The main result of our work is the following.
Theorem 4.3. Let u be the solution of problem (1.2) with a smooth right-hand

side f , which is zero in a neighborhood of the edge E. We assume the hypotheses
(H1)–(H4). The function u admits the edge expansion (4.1) for all δ > 0. Let β ∈ A
with Reβ > 0. We fix an integer n ≥ 0 such that

n ≥ Reβ − ξ1 − 1 with ξ1 = min{ξ+
1 , ξ−1 } ,(4.8)

where we recall that ξ+
1 defined in (4.4) is attached to the corner c+ and ξ−1 is its

analogue for the corner c−. Let m be an integer m ≥ n and finally let b ∈ Cm(I) be
such that ∂jzb(−+1) = 0 for all j = 0, . . . , n− 1. Then there holds

J [R]
(
u,Km[β, p ; b]

)
=

∫
I

aβ,p(z) b̄(z) dz +O
(
Rmin{n+ξ1 ,m+η1}−Re β+1

)
(4.9)

as R → 0, where

η1 = min
{
Reα | α ∈ A and Reα > 0

}
.(4.10)

Before starting the proof, we give a corollary of identity (3.21). For this, we first
introduce the decomposition of the bilinear form J [R] according to the splitting (3.7)
of the radial traction T :

J0[R](u, v) :=

∫
ΓR

(
T0u · v − u · T0v

)
R−1dσ =

∫
I

∫ ω

0

(
T0u · v − u · T0v

) ∣∣
r=R

dθ dz

and

J1[R](u, v) :=

∫
ΓR

(
T1u · v − u · T1v

)
dσ =

∫
I

∫ ω

0

(
T1u · v − u · T1v

) ∣∣
r=R

R dθ dz.

Lemma 4.4. Let α, β ∈ A. Let m ∈ N and integers 0 ≤ n ≤ m, 0 ≤ k ≤ m.
Let b ∈ Cm(I) such that ∂jzb(−+1) = 0 for all j = 0, . . . , n − 1. Let a ∈ Vξ(−1, 1). If
ξ + n− k + 1 > 0, then∑

j+�=k

J0[R]
(
∂jzaΦj [α, q] , ∂

�
zbΨ�[β, p]

)
+

∑
j+�=k−1

J1[R]
(
∂jzaΦj [α, q] , ∂

�
zbΨ�[β, p]

)
= δk,0 δα,β δp,q

∫
I

a(z) b̄(z) dz.

This lemma is merely a consequence of identity (3.21). Indeed, the assumptions
about a and b ensure that (i) all integrals in z are convergent, and (ii) integrations by
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parts in z (to have all derivatives on b) do not produce any boundary contribution.
Therefore we can separate the integrals over I and (0, ω) as in (3.19). The integrals
over (0, ω) are zero (or 1) thanks to (3.21), which correspondingly yields the lemma.

Proof of Theorem 4.3. Relying on the decompositions (4.6)–(4.7) of u, we split
the integral J [R]

(
u,Km[β, p ; b]

)
into several pieces, I0+ I+

1 + I+
2 + I−1 + I−2 + I3, and

estimate each of them.
• We first assume that m > n+ ξ1 − η1.
(A) We define I0 as

I0 =
∑
α, q, k

ξ1−Reα+n−k+1>0

( ∑
j+�=k

J0[R]
(
∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1[R]
(
∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

))
,

where the coefficients aα,q are those of expansion (4.6). The assumptions of Lemma 4.4
are fulfilled because of the following:

(a) The inequality ξ1 −Reα+ n− k + 1 > 0 implies that k < ξ1 −Reα+ n+ 1,
which is ≤ n + ξ1 − η1; since we have assumed that m > n + ξ1 − η1, then
k ≤ m.

(b) By Theorem 4.2, aα,q belongs to the weighted space Vξ+1 −Reα(0, 1) in the part

of the edge which belongs to Ω+, and similarly in Ω−; therefore the inequality
ξ1 −Reα+ n− k+ 1 > 0 is the assumption η+ n− k+ 1 > 0 of Lemma 4.4.

Moreover, the assumption n ≥ Reβ−ξ1−1 implies that the triple (α = β, q = p, k = 0)
belongs to the sum defining I0. Therefore

I0 =

∫
I

aβ,p(z) b̄(z) dz.

(B) We define I+
1 as

I+
1 =

∑
α, q, k

ξ+1 −Reα+n−k+1>0

( ∑
j+�=k

J0[R]
(
(χ(r+)− 1)∂jzaα,q Φj [α, q] , ∂�zbΨ�[β, p]

)

+
∑

j+�=k−1

J1[R]
(
(χ(r+)− 1)∂jzaα,q Φj [α, q] , ∂�zbΨ�[β, p]

))
.

Let us define z+ as 1 − z. The domain of integration of the terms in I+
1 is ΓR ∩

supp(χ(r+)− 1) and is contained in a set of the form{
x ∈ R

3 | r = R, θ ∈ (0, ω), z+ ∈ (0, cR)},
where c is a positive constant.

Each term in I+
1 can be estimated by a product of three terms:

(i) an integral in z+ over (0, cR) of a function depending on z+ but not on R or
θ;

(ii) an integral in θ over (0, ω) of a function depending on θ but not on R or z+;
(iii) a power of R corresponding to the restriction on ΓR of a power of r.
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We observe the following:

(i) The integral over (0, cR) is
∫ cR
0
(z+)ξ

1
+−Reα+n−k dz+, which isO(Rξ1+−Reα+n−k+1

)
since ξ1

+ − Reα+ n− k + 1 > 0.
(ii) The integral over (0, ω) does not depend on R.
(iii) The power of R is RReα−Re β+k.
Therefore

I+
1 = O

(
Rξ

1
++n−Re β+1

)
.

The corresponding part I−1 in the neighborhood of c− has a similar bound.
(C) We define I+

2 as

I+
2 =

∑
α, q, j, �

ξ+1 −Reα+n−j−�+1<0

�≤m, Reα+j<n+ξ+1 +1

( ∑
j+�=k

J0
+[R]

(
χ(r+) ∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

)

+
∑

j+�=k−1

J1
+[R]

(
χ(r+) ∂jzaα,q Φj [α, q] , ∂

�
zbΨ�[β, p]

))
,

where J0
+ and J1

+ are the contributions over Ω+ of J0 and J1.
As for I+

1 , each term of I+
2 can be estimated by the product of three terms

(i)–(iii). The only difference is that the integral (i) in z+ is over (cR, 1) instead of

(0, cR) and is equal to
∫ 1

cR
(z+)ξ

1
+−Reα+n−k dz+, which is still O(Rξ1+−Reα+n−k+1

)
since ξ1

+ −Reα+ n− k + 1 is < 0. The power (iii) of R is the same; thus we obtain,
as above, that

I+
2 = O

(
Rξ

1
++n−Re β+1

)
.

(D) We set η := n+ ξ+
1 + 1. We check that

I0 + I+
1 + I−1 + I+

2 + I−2 =
∑
α, q, j

Reα+j<η

J [R]
(
χ(r+) ∂jzaα,q Φj [α, q] ,K

m[β, p ; b]
)
.

But according to Theorem 4.2

u+
reg,η := u−

∑
α, q, j

Reα+j<η

χ(r+) ∂jzaα,q Φj [α, q] ∈ Vξ+1 , η(Ω
+),

and similarly for the other corner. Therefore it remains to estimate

I3 := J [R]
(
u+

reg,η ,Km[β, p ; b]
)

and, more precisely, each contribution J [R]
(
u+

reg,η, ∂
�
zbΨ�

)
for 1 = 0, . . . ,m. Since

u+
reg,η belongs to Vξ+1 , η(Ω

+),

u+
reg,η = O

(
(ρ+)ξ

+
1 (r+)η

)
= O

(
(ρ+)ξ

+
1 −η rη

)
and ∇u+

reg,η = O
(
(ρ+)ξ

+
1 −η rη−1

)
.

For the bounding of J [R]
(
u+

reg,η , ∂
�
zbΨ�

)
, we split the integral over ΓR into (a) the

contribution on z+ ∈ (0, R), and (b) the contribution on z+ ∈ (R, 1), and we estimate
each piece by a product of three terms as we did before.
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(a) When z+ ∈ (0, R), the distance ρ+ is equivalent to R on ΓR. Therefore the

weight over u+
reg,η is equivalent to Rξ

+
1 in that region. Part (i) is the integral∫ R

0
(z+)n−� dz+ = O(Rn−�+1

)
, and the power (iii) of R is Rξ

+
1 −Re β+�. Their

product is Rn+ξ+1 −Re β+1.
(b) When z+ ∈ (R, 1), the distance ρ+ is equivalent to z+ on ΓR. Therefore the

weight over u+
reg,η is equivalent to (z

+)ξ
+
1 −η rη in that region. Part (i) is the

integral
∫ 1

R
(z+)ξ

+
1 −η+n−� dz+ = O(Rξ+1 −η+n−�+1

)
(since ξ+

1 −η+n−1+1 < 0),

and the power (iii) of R is Rη−Re β+�. The product of both is Rξ
+
1 +n+1−Re β .

Gathering all the previous results of parts (A)–(D), we obtain formula (4.9) in
the case m > n+ ξ1 − η1.

• Whenm < n+ξ1−η1, we follow the same lines with the corresponding changes:

For I0 we reduce the sum by the extra condition that k ≤ m, and the same for I−+
1 . The

conclusions are still the same. For I+
2 the sum is augmented by the set of (α, q, j, 1)

such that ξ+
1 −Reα+ n− j − 1+1 > 0 and j + 1 > m. The new terms do not satisfy

the same estimates as the old ones since the corresponding contribution (i) in z+ is
now O (1). As the power (iii) of R is still RReα−Re β+j+�, we obtain that

I+
2 = min

{
O(Rξ1++n−Re β+1

)
,O (RReα−Re β+j+�

)}
,

where the min is taken over (α, j, 1) such that ξ+
1 − Reα + n − j − 1 + 1 > 0 and

j + 1 > m. The minimum of Reα + j + 1 is attained for α = β1 and j + 1 = m + 1,
whence

I+
2 = O (Rη1−Re β+m+1

)
.

We have proved formula (4.9) in the case m < n+ ξ1 − η1.
Remark 4.5. (i) Formula (4.9) is, of course, still valid if hypotheses (H1)–(H4)

are only assumed to hold for the exponents which are used in the proof, namely,
Reβ < η = n+ ξ1 + 1 for (H1), (H2), and (H4) and Re γ = ξ+

1 for (H3).
(ii) If we discard hypotheses (H3) and (H4), we can still prove a formula like (4.9),

up to the possible multiplication of the remainder by | logMR| for some integer M .
(iii) We still obtain formula (4.9) if we relax the assumption on the right-hand

side so that f is no longer supposed to be zero in the neighborhood of the edge, but
only flat up to a specified order, in relation to what is needed in the proof of (4.9):
it suffices that f belongs to the weighted spaces Vξ1−2 , η−2(Ω

+) and Vξ1−2 , η−2(Ω
−),

with ξ1 defined in (4.8) and η = n+ ξ1+1. Then the edge expansion up to the corner
(4.6) still holds with such a right-hand side, which makes part (D) of the proof of
(4.9) still valid.

Remark 4.6. The assumptions about the test edge coefficients b can be slightly
relaxed.

(i) Instead of the boundary conditions ∂jzb(−+1) = 0 for any j = 0, . . . , n − 1, we
may assume that (1 − z)−n+j(z + 1)−n+j∂jzb ∈ L∞(I) for j ≤ m, and the statement
of Theorem 4.3 can be extended to noninteger n.

(ii) We may assume that b is only Cm−1(I) globally and piecewise Cm on a finite
partition of I.

5. A wider range of applications for quasi-dual methods. We extend the
results of Theorem 4.3 to any edge of a general polyhedron and discuss the case of
cracks (where ω = 2π). We also evaluate the limitation of the convergence rate in R
when the right-hand side is not flat along the edge.
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5.1. The domain. By a slight modification we can adapt our method to the
determination of edge singularities along any edge of a three-dimensional polyhedron,
that is, a domain Ω with plane faces and, therefore, straight edges.

Let E be an edge of Ω. E is an open segment whose end points c+ and c− are
corners of Ω. We choose cylindrical coordinates (r, θ, z) adapted to Ω around E:

E =
{
x ∼ (r, θ, z) | r = 0, z ∈ (−h2 , h2 )

}
,

where h is the length of E. There exists a conical neighborhood1 Θ of E such that

Ω ∩Θ = {x ∼ (r, θ, z) | r = (0, 1), ω ∈ (0, ω), z ∈ (−h2 , h2 )
} ∩Θ,

where ω is the opening of Ω along the edge E.
We still define, for any R < 1, the internal cylinder ΓR as

ΓR =
{
x ∼ (r, θ, z) | r = R, ω ∈ (0, ω), z ∈ (−h2 , h2 )

}
.

But it may happen that even for small R, ΓR is not included in Ω. Then we define
the reduced internal cylinder Γ̆R as

Γ̆R =
{
x ∼ (r, θ, z) | r = R, ω ∈ (0, ω), z ∈ (−h2 + kR, h2 − kR)

}
,

where k > 0 defines the conical neighborhood Θ. In other words, for any R ≤ R0,
Γ̆R = ΓR ∩Θ.

On the same model as (3.14), we define

J̆ [R](u, v) :=

∫
Γ̆R

(
Tu·v−u·Tv

)
dσ =

∫ h
2 −kR

−h
2 +kR

∫ ω

0

(
Tu·v−u·Tv

) ∣∣
r=R

R dθ dz.(5.1)

Then defining the sets G−+ of corner exponents at c−+ as before, but now on the polyhe-

dral cones K−+ coinciding with Ω in neighborhoods of c−+, and defining ξ−+
1 in the same

way, we have expansions2 (4.6)–(4.7), and there holds, with the same assumptions as
in Theorem 4.3,

J̆ [R]
(
u,Km[β, p ; b]

)
=

∫ h
2

−h
2

aβ,p(z) b̄(z) dz +O
(
Rmin{n+ξ1 ,m+η1}−Re β+1

)
.(5.2)

The proof follows exactly the same steps as the proof of (4.9). The parts I0, I
−+
1 ,

and I−+
2 are still defined by integrals over ΓR. We modify only part (D), noting that,

thanks to the condition on the support of χ, the expansion (4.6) now gives

J̆ [R](u,Km[β, p ; b]) = J̆ [R](u+
reg,η,K

m[β, p ; b]) + I0 + I+
1 + I−1 + I+

2 + I−2 .

The conclusion follows by the same arguments as before.

1In cylindrical coordinates, Θ has the form

Θ =
{
x ∼ (r, θ, z) | r = (0, R0), ω ∈ (0, ω), z ∈ (−h

2
+ kr, h

2
− kr)

}
,

with a k > 0 and R0 > 0.
2With the cut-off function χ chosen so that in the cylinder r ≤ R0, the support of x �→ χ(r−

+
)

is contained in the conical neighborhood Θ. The subdomains Ω+ and Ω− correspond to the regions
z > 0 and z < 0, respectively.
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5.2. In the presence of cracks. We now consider the case where the opening
ω is equal to 2π. This means that the model domain Ω is the cylinder of radius 1
with an internal boundary formed by the plane rectangle

Σ = {x ∈ R
3 | x ∈ (0, 1), y = 0, z ∈ I}.

This case is in principle included in our analysis. But the special situation of the
singularity exponents prevents hypothesis (H2) from being satisfied: By the result
of [10], the set A of singular exponents is included in the set of half-integers and,
moreover,

∀j̄ ∈ N, dimkerM0(
1
2 + j̄) = N,(5.3)

where we recall that N is the size of the system L. But our method can still be applied
in this case! We are going to explain why.

The first place where we use (H2) is for the definition of the shadow singularities
Φj [α, p]. The general theory gives that Φj [α, p] can be found in the form of a finite
sum of the form rα+j

∑
logqr ϕj,q(θ). But in this situation of cracks, it is proved in

[11] that the logarithmic terms are absent. But still, the solution of (2.8), though
existing, is not unique. This circumstance will help in the second place where we use
(H2).

We used (H2) to prove (3.21), in particular that Hk[α, p ;β, q] = 0 for all α and β
in A when k �= 0.

Lemma 5.1. For all j̄ ∈ N, p = 1, . . . , N , and j ≥ 1 let the singularities Φ0[
1
2 +

j̄, p] and their shadows Φj [
1
2 + j̄, p] be fixed. The dual singularities Ψ0[

1
2 + 1̄, q] are

still determined according to Lemma 3.2, and there exists a choice of the shadows
Ψ�[

1
2 + 1̄, q] such that there holds (cf. (3.20) and (3.21))

∀j̄, 1̄ ∈ N, ∀p, q ≤ N, ∀k > 0, Hk[
1
2 + j̄, p ; 1

2 + 1̄, q] = 0.(5.4)

Proof. By the proof of Proposition 3.4, we know that for any choice of the Ψ�[β, q],
the identity Hk[α, p ;β, q] = 0 holds as soon as α− β + k �= 0, i.e., in our case, when
1
2 + j̄ − 1

2 − 1̄+ k �= 0. Thus it remains to prove (5.4) when j̄ − 1̄+ k = 0.

Let 1̄ and q be fixed. The proof uses induction over k. For k = 1, j̄ = 1̄− 1. Let
us fix a particular solution ψ̆1[

1
2 + 1̄, q] of (3.12). Any solution of (3.12) is the sum of

ψ̆1[
1
2 + 1̄, q] and of an element of kerM0(− 1

2 − 1̄ + 1) = kerM0(− 1
2 − j̄). A basis of

this kernel is the set of ψ0[
1
2 + j̄, p′], p′ = 1, . . . , N . Therefore H1[

1
2 + j̄, p ; 1

2 + 1̄, q] is
the sum of a fixed contribution and of a linear combination of the contributions of the
ψ0[

1
2 + j̄, p′], i.e., of H0[

1
2 + j̄, p ; 1

2 + j̄, p′]. By Lemma 3.2, we can determine elements
of the kernel kerM0(− 1

2 − j̄) so that H1[
1
2 + j̄, p ; 1

2 + 1̄, q] = 0 for all p = 1, . . . , N .

For a general k, we assume that the Ψ�[
1
2 + 1̄, q] are determined for 1 < k and

have to prove (5.4) for j̄ = 1̄− k. We isolate the contribution j = 0, 1 = k in Hk, and
the proof is similar to the case k = 1.

5.3. The right-hand side. Let us consider now a standard smooth right-hand
side f ∈ C∞(Ω). Then f belongs to the weighted spaces V0,0(Ω

+) and V0,0(Ω
−). With

ξ+
0 = min{ξ+

1 , 2} and ξ−0 = min{ξ−1 , 2},(5.5)

there holds, for η = 2,

f ∈ Vξ+0 −2 , η−2(Ω
+) and f ∈ Vξ−0 −2 , η−2(Ω

−).(5.6)
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Thus a general smooth interior right-hand side alters the asymptotics of the solution
only in the region of exponents Reα ≥ 2 and Re γ ≥ 2. The corresponding parts in
the asymptotics of u (either polynomial or singular) are no longer orthogonal in the
sense of the bilinear form J [R] versus the standard singularities associated with a zero
(or flat) right-hand side.

In connection with Remark 4.5(iii), we see that in order to take (5.6) into account,
we first have to replace ξ1 by ξ0 := min{ξ+

0 , ξ−0 } in the statement of Theorem 4.3 and
investigate the consequences on the estimates of the limitation η = 2.

We assume that m > n + ξ0 − η1. We make changes in the general proof of
Theorem 4.3 in the same spirit as at the end of this proof: For I0 we reduce the sum

by the extra condition that Reβ + k < 2, and the same for I−+
1 . Thus we require that

Reα < 2 so that the triple (β = α, q = p, k = 0) belongs to the sum defining I0. The
conclusions are still the same.

For I+
2 the sum is augmented by the set of (β, q, j, 1) such that ξ+

1 − Reβ + n−
j − 1+ 1 > 0 and Reβ + j + 1 ≥ 2. The new terms do not satisfy the same estimates
as the old ones since the corresponding contribution (i) in z+ is now O (1). As the
power (iii) of R is still RRe β−Reα+j+�, we obtain

I+
2 = min

{
O(Rξ1++n−Reα+1

)
,O (RRe β−Reα+j+�

)}
,

where the min is taken over (β, j, 1) such that ξ+
1 − Reβ + n − j − 1 + 1 > 0 and

Reβ + j + 1 ≥ 2.
We have also to consider I3 anew with the constraint that η = 2. Part (a) of the

estimate is the same, but concerning part (b), we now have to deal with the possibility
that ξ+

0 − η+ n+1 = ξ+
0 − 2+ n+1 may be ≥ 0. In this case, the contribution (i) is

O (1) and the contribution (iii) is Rη−Reα = R2−Reα.
Let Q[R](u,Km[α, p; b]) be the remainder J [R](u,Km[α, p; b])−∫

I
aα,p(z) b̄(z) dz.

Theorem 5.2. Let u be the solution of problem (1.2) with a smooth right-hand
side f ∈ C∞(Ω). We assume the hypotheses (H1)–(H4). Let α ∈ A with Reα ∈ (0, 2).
We fix an integer n ≥ 0 such that

n ≥ Reα− ξ0 − 1.(5.7)

Let m be an integer m ≥ n and let b ∈ Cm(I) be such that ∂jzb(−+1) = 0 for all
j = 0, . . . , n− 1. Then there holds

Q[R]
(
u,Km[α, p ; b]

)
= O

(
Rmin{1 , n+ξ1 ,m+η1}−Reα+1

)
.(5.8)

Remark 5.3. If f is zero on the edge E, then f belongs to V1,1(Ω−+) and the above
statement can be improved by replacing everywhere 2 by 3, including in the definition

(5.5) of ξ−+
0 , and we obtain the following estimate for the remainder:

Q[R]
(
u,Km[α, p ; b]

)
= O

(
Rmin{2 , n+ξ1 ,m+η1}−Reα+1

)
.(5.9)

5.4. Other boundary conditions. In a way similar to that described in detail
for Dirichlet boundary conditions, we can treat other self-adjoint boundary conditions
such as Neumann conditions or mixed conditions in several forms, i.e., Dirichlet on
certain faces and Neumann on the others, or of mixed type for systems, where, for
example, in elasticity some components of the displacement are prescribed to 0 and
the complementing components of the traction are also prescribed.
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We may also consider transmission conditions based on a coercive bilinear form
B with piecewise constant coefficients.

Once the correct Mellin symbols M0 and L−+ are defined, we consider their re-
spective spectra A and G−+ and everything works in the same way, mutatis mutandis.
But we have to emphasize that the sets of exponents A and G−+ may systematically
contain (small) integers. For example, if we consider a Neumann problem, 0 always
belongs to A and G−+, which implies that α1 = 0 (and, in general, ξ1 = 0), though
this zero exponent corresponds to a “singular function” Φ0 which is constant.

Also the consideration of nonzero boundary data in the neighborhood of the
edge would introduce more perturbation in the orthogonality relations between the
asymptotics of the solution and the standard singularities associated with a zero right-
hand side.

6. Other methods and formulas: A comparison. Inspired by [26] and [20]
we can provide other families of formulas for the determination of the edge coefficients.
We present them and then compare them with each other. All of them are valid in
the extended framework of polyhedral domains as in section 5.1.

6.1. Pointwise dual formulas. Adapting [26] we find the formula, valid for
any solution u of (1.2) with smooth Lu = f , sufficiently flat near the edge E: For
each fixed z0 ∈ I,

aα,p(z0) =

∫
Ω

Lu ·Kz0 [α, p] dxdy dz.(6.1)

The three-dimensional dual function (x, y, z) �→ Kz0 [α, p](x, y, z) is defined as

Kz0 [α, p] := Ψ
3D
z0 [α, p]−Xz0 [α, p],

where the following hold:
1. Ψ3D

z0 [α, p] is a dual three-dimensional “corner” singularity at (0, 0, z0) consid-
ered the vertex of a cone: With ρ0 the distance to the point (0, 0, z0), and ϑ0

the corresponding spherical coordinates, Ψ3D
z0 [α, p] has the form

Ψ3D
z0 [α, p](ρ0, ϑ0) = ρ−1−ᾱ

0 ψ[α, p](ϑ0)

and satisfies on the infinite wedge WI coinciding with Ω in the conical neigh-
borhood Θ {

LΨ3D
z0 [α, p] = 0 in WI ,

Ψ3D
z0 [α, p] = 0 on ∂WI .

It does not belong to H1 in any neighborhood of z0 due to its strong singu-
larity in ρ−1−ᾱ

0 . The spherical pattern ψ depends only on the wedge WI and
the operator L, but not on the particular point z0 since we have supposed
that the operator has constant coefficients.

2. Xz0 [α, p] is the correction in H1(G), solution of{
LXz0 [α, p] = 0 in Ω,

Xz0 [α, p] = Ψ3D
z0 [α, p]

∣∣
∂Ω

on ∂Ω.
(6.2)

Note that Xz0 strongly depends on z0, because the trace of Ψ
3D
z0 [α, p] on ∂Ω

depends on z0.
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6.2. Global dual formulas. In the same spirit as formulas (6.1)–(6.2), we can
also obtain exact formulas for moments of the coefficients: For test functions b ∈
C∞
0 (I) (or, more generally, b as in Theorem 4.3 with n large enough)∫ 1

−1

aα,p(z) b(z) dz =

∫
Ω

Lu ·Kb[α, p] dxdy dz.(6.3)

Here Kb[α, p] := Km[α, p; b] − Xb[α, p], where Km[α, p; b] is defined in (3.11) with
m > Reα − 1 (i.e., so that LKm[α, p; b] belongs to H−1(Ω); see (3.13)) and Xb[α, p]
is the correction in H1(G), solution of{

LXb[α, p] = LKm[α, p; b] in Ω,

Xb[α, p] = Km[α, p; b]
∣∣
∂Ω

on ∂Ω.
(6.4)

Compare with [20], where the case L = ∆ with m = 0 is considered.
An alternative to (6.3) in the spirit of [15] is the following mixed formula:∫ 1

−1

aα,p(z) b(z) dz =

∫
Ω

Lu · χKm[α, p; b]− u · L(χKm[α, p; b]) dxdy dz.(6.5)

Here the cut-off χ can be taken as in the expansions (4.6)–(4.7), i.e., χ(x) = χ(r+)
in Ω+ and χ(x) = χ(r−) in Ω−. Simpler cut-off can be used if Ω contains a cylinder
of the form {x, r < r0, 0 < θ < ω, z ∈ I}: then χ = χ(r) with χ(r) ≡ 1 for r < r0/2
and ≡ 0 for r ≥ r0.

6.3. Comparison. Formula (6.1) yields exact pointwise values for the edge co-
efficient, provided the right-hand side is smooth enough to ensure the continuity of
the coefficient and flat enough to cancel any Taylor part of degree ≤ Reα in the
solution u. This formula makes use of the right-hand side only and does not need the
computation of u. But its main drawback is its own computation. The determination
of the dual spherical pattern ψ[α, p] is seldom explicit and difficult in general: In ad-
dition to the Laplace operator, this is done only for the Lamé system under Neumann
boundary conditions for a crack situation (ω = 2π); see [30]. Moreover the solution of
the three-dimensional problem (6.2) is necessary for each value of z0 where we want to
have the value of the coefficient aα,p. Finally, the application of formula (6.1) requires
the computation of a volume integral.

Formula (6.3) yields exact evaluation of the moment of the coefficient against
the test function. It has the following advantages over (6.1): the continuity of the
coefficients is no longer necessary; the basic function Km[α, p; b] is easier to deter-
mine (one-dimensional problems on (0, ω)) and less singular than Ψ3D

z0 . But it is
still necessary to solve as many three-dimensional problems (6.4) as values of test
functions b.

Formula (6.5) is closer to the idea of the quasi-dual formulas, since it is no longer
necessary to solve three-dimensional problems for the determination of the dual func-
tionals, but it does require the knowledge of the solution u. Still (6.5) is a volume
integral, and the determination of the cut-off terms χKm[α, p; b] and L(χKm[α, p; b])
is not obvious.

The quasi-dual formulas (4.9) and (5.2) need the determination of the same basic
functions Km[α, p; b] and the computation of the solution u itself, but no other three-
dimensional solution. It requires only one (or a few) surface integrals, away from the
edge where the functions Km[α, p; b] are the most singular. Each determination of
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J [R]
(
u,Km[β, p ; b]

)
does not provide the exact value of the moment of aα,p against b

but its value modulo a (known) power of R, which allows a Richardson extrapolation
of the limit from the computation of J [R]

(
u,Km[β, p ; b]

)
for 3 values of R.

The works [34] in two dimensions and [36] in three dimensions also introduce an
extraction method based on integration over a circular arc of radius R, followed by
Richardson extrapolation in R. They are successfully implemented in an engineering
stress analysis code. In a certain sense, they are precursory to our present method,
with the following important distinction: In these two references the antisymmetric
duality pairing J [R] is replaced by a simple scalar product involving only the angular
part of the singular functions. This possibility exists only for the Laplace operator
due to its natural separation of variables (see [36]) and for the Lamé equations in two
dimensions (see [34]). In order to reach a wide generality, we are led to deal with
the universal duality pairing J [R]. On the other hand, the extraction done in [36]
yields pointwise values of the coefficients. Extracting moments is more suitable to the
regularity properties of the edge coefficients near corners and to the approximation
by finite elements.
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value problems for the Lamé equations, ZAMM Z. Angew. Math. Mech., 71 (1991), pp. 423–
431.

[4] H. Blum, On the approximation of linear elliptic systems on polygonal domains, in Singularities
and Constructive Methods for Their Treatment (Oberwolfach, 1983), Lecture Notes in
Math. 1121, Springer-Verlag, Berlin, pp. 28–37.

[5] H. Blum, Numerical treatment of corner and crack singularities, in Finite Element and Bound-
ary Element Techniques from Mathematical and Engineering Point of View, CISM Courses
and Lectures 301, Springer-Verlag, Vienna, 1988, pp. 171–212.

[6] H. Blum and M. Dobrowolski, On finite element methods for elliptic equations on domains
with corners, Computing, 28 (1982), pp. 53–63.

[7] M. Bourlard, M. Dauge, M.-S. Lubuma, and S. Nicaise, Coefficients of the singularities
for elliptic boundary value problems on domains with conical points. III. Finite element
methods on polygonal domains, SIAM J. Numer. Anal., 29 (1992), pp. 136–155.

[8] M. Bourlard, M. Dauge, and S. Nicaise, Error estimates on the coefficients obtained by the
singular function method, Numer. Funct. Anal. Optim., 10 (1989), pp. 1077–1113.

[9] M. Costabel and M. Dauge, General edge asymptotics of solutions of second order elliptic
boundary value problems. I and II, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), pp. 109–
184.

[10] M. Costabel and M. Dauge, Crack singularities for general elliptic systems, Math. Nachr.,
235 (2002), pp. 29–49.

[11] M. Costabel, M. Dauge, and R. Duduchava, Asymptotics without logarithmic terms for
crack problems, Comm. Partial Differential Equations, 28 (2003), pp. 869–926.

[12] M. Costabel, M. Dauge, and Y. Lafranche, Fast semi-analytic computation of elastic edge
singularities, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 2111–2134.

[13] M. Costabel and E. P. Stephan, An improved boundary element Galerkin method for three-
dimensional crack problems, Integral Equations Operator Theory, 10 (1987), pp. 467–504.

[14] M. Dauge, Elliptic Boundary Value Problems in Corner Domains. Smoothness and Asymp-
totics of Solutions, Lecture Notes in Math. 1341, Springer-Verlag, Berlin, 1988.

[15] M. Dauge, S. Nicaise, M. Bourlard, and J. M.-S. Lubuma, Coefficients des singularités
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[34] B. A. Szabó and Z. Yosibash, Numerical analysis of singularities in two dimensions. II. Com-
putation of generalized flux/stress intensity factors, Internat. J. Numer. Methods Engrg.,
39 (1996), pp. 409–434.

[35] Z. Yosibash, Computing singular solutions of elliptic boundary value problems in polyhedral
domains using the p-FEM, Appl. Numer. Math. 33 (2000), pp. 71–93.
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Abstract. The Bramble–Hilbert lemma is a fundamental result on multivariate polynomial
approximation. It is frequently applied in the analysis of finite elements methods (FEM) used for
numerical solutions of PDEs. However, this classical estimate depends on the geometry of the domain
and may “blow up” for simple examples such as a sequence of triangles of equivalent diameter that
become thinner and thinner. Thus, in FEM applications one usually requires that the mesh has
“quasi-uniform” geometry. This assumption is perhaps too restrictive when one tries to obtain
estimates of nonlinear approximation methods that use piecewise polynomials.

Our main result that improves upon this point is the following. Let Ω ⊂ R
n be a bounded convex

domain and let g ∈ Wm
p (Ω), m ∈ N, 1 ≤ p ≤ ∞, where Wm

p (Ω) is the Sobolev space. Then there
exists a polynomial P of total degree m− 1 for which

|g − P |k,p ≤ C(n,m)
(
diamΩ

)m−k|g|m,p, k = 0, 1, . . . ,m,

where | · |k,p :=
∑

|α|=k ‖Dα · ‖Lp(Ω) is the Sobolev seminorm of order k. As a consequence we get

that for f ∈ Lp(Ω),

Em−1(f,Ω)p ≈ Km

(
f,

(
diamΩ

)m)
p
,

where Em−1(f,Ω)p := infP∈Πm−1
‖f − P‖Lp(Ω) is the error of polynomial approximation of degree

m − 1 and Km( , )p is the K-functional associated with the pair (Lp(Ω),Wm
p (Ω)), and where the

constants of equivalence depend only on m and n.
For the case of convex domains (elements) this extends a recent result for p = 2, and for m = 1

and 2 < p ≤ ∞. This also improves previous results where the constant in the estimate further
depends on the geometry of the domain, or where there is a constraint p > n(≥ 2).

Key words. Bramble–Hilbert lemma, multivariate nonlinear approximation, finite element
methods

AMS subject classifications. 41A10, 41A25, 41A63, 65M60
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1. Introduction. We begin by recalling classical smoothness measures over mul-
tivariate domains. Here and throughout the paper we assume that the domain Ω ⊂ R

n

is compact with a nonempty interior. A first notion of smoothness uses the Sobolev
spaces Wm

p (Ω). These are spaces of functions g ∈ Lp(Ω) which have all their distri-

butional derivatives of order up to m, Dαg := ∂kg
∂x
α1
1 ···∂xαnn , α = (α1, . . . , αn), α ∈ Z

n
+,

|α| :=
∑n
i=1 αi = k, 0 ≤ k ≤ m, in Lp(Ω). The seminorm of Wm

p (Ω) is given by
|g|m,p :=

∑
|α|=m ‖Dαg‖Lp(Ω) <∞ and may be regarded as a measure of the smooth-

ness of order m of a function, provided the function is in the appropriate Sobolev
space. The K-functional of order m of f ∈ Lp(Ω) (see, e.g., [De], [BeSh]) is defined
by

Km(f, t)p := K
(
f, t, Lp(Ω),Wm

p (Ω)
)

:= inf
g∈Wm

p (Ω)
{‖f − g‖p + t|g|m,p}.(1.1)
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Since we assume Ω to be compact we may denote

Km(f,Ω)p := Km(f, dm)p,(1.2)

where d := diam Ω.
For f ∈ Lp(Ω), 1 ≤ p ≤ ∞, h ∈ R

n, andm ∈ N, we recall themth order difference
operator ∆m

h (f, ·) : Ω → R

∆m
h (f, x) := ∆m

h (f,Ω, x) :=

{∑m
k=0(−1)m−k(m

k

)
f(x+ kh), [x, x+mh] ⊂ Ω,

0 otherwise,

where [x, y] denotes the line segment connecting any two points x, y ∈ R
n. The

modulus of smoothness (see, e.g., [De], [BeSh]) is defined by

ωm(f, t)p := sup
|h|≤t

‖∆m
h (f,Ω, ·)‖Lp(Ω), t > 0,(1.3)

where for h ∈ R
n, |h| denotes the norm of h. We also denote

ωm(f,Ω)p := sup
h∈Rn

‖∆m
h (f,Ω, ·)‖Lp(Ω).(1.4)

It is known that the above two notions of smoothness, (1.1) and (1.3), are sometimes
equivalent (see section 5.4 in [BeSh] for the case Ω = R

n and [JS] for the case of
multivariate Lipschitz domains). That is, there exist C1, C2 > 0, such that for any
t > 0

C1Km(f, tm)p ≤ ωm(f, t)p ≤ C2Km(f, tm)p.(1.5)

However, while it is easy to show that C2 in (1.5) depends only on m (see [BeSh,
(5.4.33)]), the constant C1 may further depend on the geometry of Ω.

Let Πm−1 := Πm−1(Rn) denote the multivariate polynomials of total degreem−1
(order m) in n variables. Given a “nontrivial” multivariate domain, our goal is to
estimate the degree of approximation of a function f ∈ Lp(Ω), 1 ≤ p ≤ ∞,

Em−1(f,Ω)p := inf
P∈Πm−1

‖f − P‖Lp(Ω),

using one of the above notions of smoothness. One of the classical results in this
direction is the Bramble–Hilbert lemma [BrHi]. To introduce it we require the following
definitions.

A domain Ω is star-shaped with respect to a ball B ⊆ Ω if for each point x ∈ Ω, the
closed convex-hull of {x} ∪B is contained in Ω. Let ρmax = max{ρ : Ω is star-shaped
with respect to a ball B ⊆ Ω of radius ρ}. The chunkiness parameter of Ω is defined
by

γ :=
d

ρmax
(d = diam Ω).(1.6)

This leads to the following formulation of the Bramble–Hilbert lemma (a weaker
formulation estimates, instead, sublinear functionals; see Corollary 1.5).

Bramble–Hilbert Lemma. Let Ω be star-shaped with respect to some ball B
and let g ∈ Wm

p (Ω), 1 ≤ p ≤ ∞, m ∈ N. Then there exists a polynomial P ∈ Πm−1

for which

|g − P |k,p ≤ C(n,m, γ)dm−k|g|m,p, k = 0, 1, . . . ,m.(1.7)
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See Chapter 4 in [BrSc] for a proof of this result and [H] for a slightly stronger version
of (1.7). Obviously the main drawback of (1.7) is that the constant depends on the
chunkiness parameter (1.6) which “blows up,” for example, in the case of a sequence
of triangles of equivalent diameter that become thinner and thinner. This problem is
usually resolved in the finite elements methods (FEM) literature by assuming that the
mesh is quasi-uniform, i.e., that the collection of domains (elements) used to discretize
the given problem has a uniformly bounded chunkiness parameter.

Perhaps another limitation of (1.7) is that it is too restrictive to be applied in
estimates in nonlinear approximation by piecewise polynomials. For instance, let
f ∈ Lp([0, 1]2) and define SmN (R2) to be the collection

N∑
k=1

1∆k
Pk,

where ∆k are triangles with disjoint interiors and Pk ∈ Πm−1(R2), and we wish to
estimate (see [KP], [DLS])

σN,m(f)p := inf
ϕ∈SmN

‖f − ϕ‖Lp([0,1]2).

Thus, there have been quite a few attempts at removing the dependence of the
constants on the geometry of Ω, and of estimating them. Perhaps the most significant
result has recently been obtained by Verfürth [V], in the case of convex domains and
p = 2. Using the notation Hm := Wm

2 , Verfürth has proved the following proposition.
Proposition (see [V]). Let Ω be a convex domain and let g ∈ Hm(Ω), m ∈ N.

Then there exists a polynomial P ∈ Πm−1 for which

|g − P |Hk ≤ C(n,m)dm−k|g|Hm , k = 0, 1, . . . ,m− 1.(1.8)

Also if m = 1, and if g ∈W 1
p , 2 < p ≤ ∞, then

‖g − P‖Lp(Ω) ≤ C(n, p)d|g|W 1
p
.(1.9)

Verfürth gives concrete estimates of the above constants and has some further
results for star-shaped domains as well.

Earlier, Dechevski, and Quak [DQ] improved the Bramble–Hilbert lemma in some
cases. Their result applies to the larger class of domains that are star-shaped with
respect to a point. A domain Ω is star-shaped with respect to a point x0 ∈ Ω if for any
point x ∈ Ω the line segment [x0, x] is contained in Ω. The following is a modified
version of their result.

Proposition (see [DQ]). Let Ω be a Lipschitz domain, which is star-shaped with
respect to a point x0 ∈ Ω. Then for m ∈ N and 2 ≤ n < p ≤ ∞, there exists a
polynomial P ∈ Πm−1 for which

|g − P |k,p ≤ C(n,m, p)dm−k|g|m,p, k = 0, 1, . . . ,m.(1.10)

Although the constant in (1.10) does not depend on geometrical parameters such
as (1.6), the above proposition assumes the constraint n < p that does not cover one
of the most common cases in applications of the FEM, namely, n = p = 2.

Our approach differs from previous work in one crucial detail. For convex domains
we can construct an approximating polynomial that is more adaptive to the shape
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of the domain. Thus, instead of constructing a polynomial using either some center
point x0 ∈ Ω or some maximal but relatively small ball B ⊂ Ω, our construction
uses John’s “maximal” ellipsoid (see Proposition 3.2) combined with a simple affine
transformation argument. Our main result is

Theorem 1.1. Let Ω ⊂ R
n be convex, and let g ∈ Wm

p (Ω), m ∈ N, 1 ≤ p ≤ ∞.
Then there exists a polynomial P ∈ Πm−1 for which

|g − P |k,p ≤ C(n,m)dm−k|g|m,p, k = 0, 1, . . . ,m.(1.11)

We emphasize that our proof of Theorem 1.1 is constructive and we are going
to specify the polynomial P which yields (1.11). In fact we show that one may take
P (x) := Qm(g(A·)(A−1x), where Qm is the averaged Taylor polynomial over the ball
B(0, 1) ⊂ R

n, and A is an affine transformation related to Ω (see definitions and
details in sections 2 and 3).

A direct consequence of Theorem 1.1 is the following.

Corollary 1.2. For all convex domains Ω ⊂ R
n and functions f ∈ Lp(Ω),

1 ≤ p ≤ ∞,

Em−1(f,Ω)p ≈ Km(f,Ω)p,

where Km(f,Ω)p is defined in (1.2), and the constants of equivalency depend only on
m and n.

We wish to point out a recent result of Karaivanov and Petrushev [KP] who
showed that if ∆ ⊂ R

2 is a triangle and f ∈ Lp(∆), 0 < p ≤ ∞, then for any m ∈ N

Em−1(f,∆)p ≤ C(m, p)ωm(f,∆)p,(1.12)

where ωm(f,∆)p is defined in (1.4). This implies that for all triangles ∆ ⊂ R
2 and

functions f ∈ Lp(∆), 1 ≤ p ≤ ∞, we have the equivalence

Em−1(f,∆)p ≈ ωm(f,∆)p ≈ Km(f,∆)p,

where the constants of equivalence depend only on p and m. Indeed, it is this result
that motivated us to try to find shape-independent estimates.

We also get the following formulation of the Bramble–Hilbert lemma.

Corollary 1.3. Let Ω ⊂ R
n be convex, and let l be a sublinear functional given

on Wm
p (Ω), m ∈ N, 1 ≤ p ≤ ∞, with the following properties.

(i) There exists a constant C̃ such that for all g ∈Wm
p (Ω), |l(g)| ≤ C̃∑m

k=0 d
k|g|k,p;

(ii) l(P ) = 0 for all P ∈ Πm−1.

Then for all g ∈Wm
p (Ω),

|l(g)| ≤ C(n,m, C̃)dm|g|m,p.

Section 2 reviews the averaged Taylor polynomial approach to the classical Bramble–
Hilbert lemma (see Chapter 4 in [BrSc]). In section 3 we introduce John’s theorem
and explain how this tool can be applied in the case of convex domains via an affine
transformation argument. Finally, in section 4 we assemble all the above tools to give
a constructive proof of Theorem 1.1. We also define the notion of “almost convex”
domains and note that our results extend to this case too.
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2. The averaged Taylor polynomial. We recall some basic definitions of mul-
tivariate polynomials, differentials, and Taylor series. Throughout this section we use
the notation of Chapter 4 in [BrSc]. For a multi-index α ∈ Z

n
+ let α! =

∏n
i=1 αi!, and

denote by xα :=
∏n
i=1 x

αi
i the multivariate monomial of total degree |α|. Denote the

set of all multivariate polynomials of total degree m− 1 by

Πm−1(Rn) :=

{ ∑
|α|≤m−1

cαx
α

}
.

The classical Taylor polynomial of order m (degree m − 1) of a function g ∈ Cm(Ω)
at x ∈ Ω, about the point y ∈ Ω, is given by

Tmy g(x) :=
∑

|α|<m

Dαg(y)

α!
(x− y)α.(2.1)

The Taylor remainder of order m of a function g ∈ Cm(Ω) at x ∈ Ω, about the point
y ∈ Ω, is given by

TRmy g(x) := m
∑

|α|=m

(x− y)α
α!

∫ 1

0

sm−1Dαg
(
x+ s(y − x)

)
ds.(2.2)

It is meaningful provided the segment [y, x] is contained in Ω. Then we have

g(x) = Tmy g(x) + TRmy g(x).

Next we introduce the averaged Taylor polynomial. It can be shown that for a ball
B(x0, ρ) := {z ∈ R

n : |z − x0| ≤ ρ} there exists a cut-off function φB with the
following properties:

(i)
∫

Rn
φB(x)dx = 1,

(ii) supp(φB) = B,
(iii) φB ∈ C∞(Rn),
(iv) ‖φB‖∞ ≤ ρ−n.

Given g ∈ Cm(Ω), the averaged Taylor polynomial of orderm (degreem−1) (averaged
over a ball B ⊆ Ω) is defined by

Qmg(x) :=

∫
B

Tmy g(x)φB(y)dy, x ∈ Ω.(2.3)

We also define the averaged Taylor remainder, namely,

Rmg(x) := g(x) −Qmg(x).(2.4)

The following lemma is a special case of the classical Bramble–Hilbert lemma
which estimates the (simultaneous) degree of approximation of the averaged Taylor
polynomial in a “normalized” setting. For the proof see Theorem 4.3.8 in [BrSc];
observe that the chunkiness parameter (1.6) in this case depends only on n.

Lemma 2.1. Let B(0, 1) ⊆ Ω ⊆ B(0, n) be star-shaped with respect to B(0, 1).
Then for any g ∈ Cm(Ω), m ∈ N, and 1 ≤ p ≤ ∞, we have

|g −Qmg|k,p ≤ C(n,m)|g|m,p, k = 0, 1, . . . ,m,

where Qm is averaged over B(0, 1).
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3. John’s theorem.
Definition 3.1. An ellipsoid E is the image of the closed unit ball in R

n under
a nonsingular affine mapping A(x) = Mx+ b, M ∈Mn×n(R), b ∈ R

n. The center of
E is b = A(0).

The next result [J] (see also [Ba]) is the crucial ingredient that is missing in
previous work. Let c+ n(E − c) := {c+ n(x− c) : x ∈ E}.

Proposition 3.2 (John’s theorem). Let Ω ⊂ R
n be convex. Then there exists

an ellipsoid E ⊆ Ω such that if x0 is the center of E, then

E ⊆ Ω ⊆ x0 + n(E − x0).

By Definition 3.1, John’s theorem implies that for each convex domain Ω we can
find a nonsingular affine mapping A such that

B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n).

It is interesting to note that John’s ellipsoid is the ellipsoid E ⊆ Ω with maximal
volume. In some sense this means that E “covers” Ω sufficiently well.

To use John’s maximal ellipsoid (or equivalently, John’s optimal affine transforma-
tion), we apply the following commutativity of Taylor polynomials and differentiation.

Lemma 3.3. Let A(x) = Mx + b, M ∈ Mn×n(R), b ∈ R
n, be a nonsingular

affine mapping, and let g ∈ Cm(Ω). Then for any x ∈ Ω, y ∈ A−1(Ω), and α ∈ Z
n
+,

1 ≤ |α| ≤ m− 1, we have

Dαx

[
Tmy
(
g(A·))(A−1x)

]
= Tm−|α|

y

(
(Dαg)(A·))(A−1x).(3.1)

Proof. Observe that it is sufficient to prove that for any 1 ≤ k ≤ m − 1 and
1 ≤ s ≤ n,

Desx

[ ∑
|β|=k

Dβy g̃(y)

β!
(A−1x− y)β

]
=

∑
|γ|=k−1

Dγy g̃xs(y)

γ!
(A−1x− y)γ ,(3.2)

where g̃ := g(A·), g̃xs := gxs(A·), gxs := ∂g
∂xs

, and {es}s=1,... ,n is the standard basis of
R
n. The case of a general multivariate derivative Dαx follows by repeated applications

of (3.2), and the Taylor series formulation (3.1) is obtained by adding all the degrees
1 ≤ k ≤ m− 1. To prove the above let M =: (ai,j)1≤i,j≤n and M−1 =: (bi,j)1≤i,j≤n.
In the calculations below, if βi = 0, then differentiating (A−1x− y)β with respect to
xs does not produce the term βibi,s(A

−1x− y)β−ei ; rather we have 0, and it does not
appear in the summation. Hence in this case we regard βibi,s(A

−1x−y)β−ei := 0 and
(β− ei)! = ∞, and again the term is not there. This takes care of itself automatically
when we switch the summation below from β to γ = β − ei.

Desx


∑
|β|=k

Dβy g̃(y)

β!
(A−1x− y)β


 =

∑
|β|=k

Dβy g̃(y)

β!
Desx

(
(A−1x− y)β)

=
∑
|β|=k

Dβy g̃(y)

β!

n∑
i=1

βibi,s(A
−1x− y)β−ei

=
∑
|β|=k

n∑
i=1

Dβy g̃(y)

(β − ei)!bi,s(A
−1x− y)β−ei
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=
∑

|γ|=k−1

(A−1x− y)γ
γ!

n∑
i=1

bi,sD
γ+ei
y g̃(y)

=
∑

γ|=k−1

(A−1x− y)γ
γ!

n∑
i=1

bi,sD
γ
y

( n∑
j=1

aj,igxj (Ay)

)

=
∑

|γ|=k−1

(A−1x− y)γ
γ!

n∑
j=1

Dγy
(
gxj (Ay)

) n∑
i=1

aj,ibi,s

=
∑

|γ|=k−1

(A−1x− y)γ
γ!

n∑
j=1

Dγy
(
gxj (Ay)

)
δj,s

=
∑

|γ|=k−1

Dγy (g̃xs(y))

γ!
(A−1x− y)γ .

By (2.3), we have the following corollary.
Corollary 3.4. Let Ω ⊂ R

n, and let A be a nonsingular affine mapping such
that B(0, 1) ⊆ A−1(Ω). Then for g ∈ Cm(Ω) and α ∈ Z

n
+, |α| = k, 1 ≤ k ≤ m− 1,

Dα
[
Qm
(
g(A·))(A−1x)

]
= Qm−k((Dαg)(A·))(A−1x),(3.3)

where Qm is averaged on B(0, 1).
Observing that affine transformations map convex domains onto convex domains,

the following argument, when combined with John’s theorem, is the main tool of our
approach.

Lemma 3.5. Let Ω ⊂ R
n, and let A be a nonsingular affine mapping such that

B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n) and A−1(Ω) is star-shaped with respect to B(0, 1). Then
for g ∈ Cm(Ω), 1 ≤ p <∞, and P (x) = Qm(g(A·))(A−1x) (where Qm is averaged on
B(0, 1)), we have

|g − P |Wk
p (Ω) ≤ C(n,m)dm−k|g|Wm

p (Ω), k = 0, 1, . . . ,m.(3.4)

Proof. Since A(x) = Mx + b maps B(0, 1) into Ω, we conclude that ‖M‖2 ≤ d.
Thus with M = (ai,j)1≤i,j≤n, we have that max1≤i,j≤n |ai,j | ≤ d. Recalling that g̃ =
g(A·), this implies that for y ∈ A−1(Ω), x = Ay, and α ∈ Z

n
+, |α| = i, i = 0, . . . ,m,

|Dαy g̃(y)| ≤ di
∑
|γ|=i

|Dγg)(Ay)|,

and hence, in particular,∑
|α|=m

‖Dαy g̃‖Lp(A−1(Ω)) ≤ C(n,m)dm
∑

|α|=m
‖(Dαg)(A·)‖Lp(A−1(Ω)).(3.5)

We can now prove (3.4) for k = 0. Let P̃ := Qm(g(A·)); then by Lemma 2.1 and (3.5)

‖g − P‖Lp(Ω) = |detM |1/p‖g̃ − P̃‖Lp(A−1(Ω))

≤ C(n,m)|detM |1/p|g̃|Wm
p (A−1(Ω))

= C(n,m)|detM |1/p
∑

|α|=m
‖Dαy g̃‖Lp(A−1(Ω))
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≤ C(n,m)|detM |1/pdm
∑

|α|=m
‖(Dαg)(A·)‖Lp(A−1(Ω))

= C(n,m)dm
∑

|α|=m
‖Dαx g‖Lp(Ω)

= C(n,m)dm|g|Wm
p (Ω).

For 1 ≤ k ≤ m − 1 take α ∈ Z
n
+, |α| = k, 1 ≤ k ≤ m − 1, and let h := Dαg. Then

(3.3) yields

‖Dα(g − P )‖Lp(Ω) =
∥∥h(x) −Qm−k(h(A·))(A−1x)

∥∥
Lp(Ω)

.

By the case k = 0 proved above,∥∥h(x) −Qm−k(h(A·))(A−1x)
∥∥
Lp(Ω)

≤ C(n,m)dm−k|h|m−k,p,

which in turn implies that

‖Dα(g − P )‖Lp(Ω) ≤ C(n,m)dm−k|g|m,p.(3.6)

Summing up (3.6) over all α ∈ Z
n
+, |α| = k, we obtain the required result. The case

k = m is trivial.

4. Proofs of the main results.
Proof of Theorem 1.1. The proof of (1.11) for the case p = ∞ can be applied

to star-shaped domains with respect to a point x0, by using the classical Taylor
polynomial (2.1) at the point y = x0 and estimating the remainder (2.2). We leave the
details to the reader and assume 1 ≤ p <∞. Let E ⊆ Ω be John’s maximal ellipsoid
(see Proposition 3.2) and A the corresponding affine mapping, i.e., A(B(0, 1)) = E.
John’s theorem implies that

B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n).

First assume that g ∈ Cm(Ω). By Lemma 3.5 the polynomial P (x) = Qm(g(A·))(A−1x)
is in Πm−1 and satisfies

|g − P |k,p ≤ C(n,m)dm−k|g|m,p, k = 0, 1, . . . ,m.

Since C∞(Ω) is dense in Wm
p (Ω) (see, e.g., Theorem 1.3.4 in [BrSc]), the proof of the

general case follows from a standard density argument.
Proof of Corollary 1.2. The method of proof is standard but we give it for the

sake of completeness. Let f ∈ Lp(Ω) and g ∈Wm
p (Ω) be such that

‖f − g‖p + dm|g|m,p ≤ 2Km(f,Ω)p.

By (1.9) with k = 0, there exists P ∈ Πm−1 such that

‖g − P‖p ≤ C(n,m)dm|g|m,p.
Therefore

Em−1(f)p ≤ ‖f − P‖p
≤ ‖f − g‖p + ‖g − P‖p
≤ ‖f − g‖p + C(n,m)dm|g|m,p
≤ C(n,m)Km(f,Ω)p.
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In the other direction, it is easy to see from (1.1) that for any polynomial Q ∈ Πm−1

and any t > 0,

Km(f, t)p ≤ ‖f −Q‖p.

Consequently,

Km(f,Ω)p ≤ Em−1(f)p.

Proof of Corollary 1.3. Let g ∈ Wm
p (Ω), and let P be the polynomial for which

(1.11) holds. Then by property (ii) of the sublinear functional l we have that |l(g)| ≤
|l(g − P )|. Property (i) and (1.11) yield

|l(g)| ≤ |l(g − P )|

≤ C̃
m∑
k=0

dk|g − P |k,p

≤ C̃C(n,m)

m∑
k=0

dkdm−k|g|m,p

≤ C(n,m, C̃)dm|g|m,p .

Finally, we would like to point out a certain natural extension of our results to
slightly more general types of domains.

Definition 4.1. A compact domain Ω ⊂ R
n with nonempty interior is almost

convex if there exists a nonsingular affine mapping A, such that
(i) B(0, 1) ⊆ A−1(Ω) ⊆ B(0, n),
(ii) A−1(Ω) is star-shaped with respect to B(0, 1).
Indeed, John’s theorem shows that every convex domain is almost convex. Fur-

thermore, by the method used in this work (specifically Lemma 3.5) it can be seen
that our main results remain valid for this type of domain.

Acknowledgments. We are grateful and indebted to the referees for bringing
to our attention the paper by Verfürth. We also thank Manor Mendel for fruitful
discussions of this work.
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DETERMINING A FUNCTION FROM ITS MEAN VALUES OVER A
FAMILY OF SPHERES∗
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Abstract. Suppose D is a bounded, connected, open set in Rn and f is a smooth function on
Rn with support in D. We study the recovery of f from the mean values of f over spheres centered
on a part or the whole boundary of D. For strictly convex D, we prove uniqueness when the centers
are restricted to an open subset of the boundary. We provide an inversion algorithm (with proof)
when the mean values are known for all spheres centered on the boundary of D, with radii in the
interval [0, diam(D)/2]. We also give an inversion formula when D is a ball in Rn, n ≥ 3 and odd,
and the mean values are known for all spheres centered on the boundary.

Key words. spherical mean values, wave equation

AMS subject classifications. 35L05, 35L15, 35R30, 44A05, 44A12, 92C55
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1. Introduction. Wave propagation and integral geometry are the physical and
mathematical underpinnings of many medical imaging modalities. To date, standard
modalities measure the same type of output energy as was input to the system. Ultra-
sound systems send and receive ultrasound waves; CT systems send and receive X-ray
radiation. Recent work on a hybrid imaging technique, thermoacoustic tomography
(TCT), uses radio frequency (RF) energy input at time t0 and measures emitted
ultrasound waves [18], [19], [20].

RF energy is deposited impulsively in time and uniformly throughout the imaging
object, causing a small amount of thermal expansion. The premise is that cancerous
masses absorb more RF energy than healthy tissue [17]. Cancerous masses prefer-
entially absorb RF energy heat and expand more quickly than neighboring tissue,
creating a pressure wave which is detected by ultrasound transducers at the edge of
the object. Assuming constant sound speed, c, the sound waves detected at any point
in time t > t0 were generated by inclusions lying on the sphere of radius c(t − t0)
centered at the transducer. Therefore, this imaging technique requires the inversion
of a generalized Radon transform, because integrals of the tissue’s RF absorption
coefficient are measured over surfaces of spheres.

Figure 1.1 shows a TCT mammography system. The breast is immersed in a
tank of water and transducers surround the exterior of the tank. Integrals of the RF
absorption coefficient over spheres centered at each transducer are measured. Notice
that only “limited angle” data may be measured, as we cannot put transducers on
certain parts of the exterior of the tank.

The above motivated the study of the following mathematical problem. For a
continuous, real valued function f on Rn, n ≥ 2, p a point in Rn, and r a real
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Fig. 1.1. TCT mammography system.

number, define the mean value operator

(Mf)(p, r) =
1

wn

∫
|θ|=1

f(p+ rθ) dθ,

where wn is the surface area of the unit sphere in Rn. Let D denote a bounded, open,
connected subset of Rn with a smooth boundary S. For functions f supported in D,
we are interested in recovering f from the mean value of f over spheres centered on
S; that is, given (Mf)(p, r) for all p in S and all real numbers r, we wish to recover
f . We also examine the situation where the mean values of f are given over spheres
centered on an open subset of S.

In the rest of the article, Bρ(p) will represent the open ball of radius ρ centered

at p, Bρ(p) its closure, and Sρ(p) its boundary; Ω
c will represent the complement of

Ω. Furthermore, all functions will be real valued.
We have the following results.
Theorem 1 (uniqueness). Suppose D is a bounded open subset of Rn, n ≥ 2,

with a smooth boundary S and D is strictly convex. Let Γ be any relatively open subset
of S. If f is a smooth function on Rn, supported in D, and (Mf)(p, r) = 0 for all
p ∈ Γ and all r, then f = 0.

Here by the strict convexity of D we mean that if p, q are in D, then any other
point on the line segment pq is in D. Also, note that (Mf)(p, r) = 0 for all p ∈ S,
|r| > diam(D).

Theorem 2 (reconstruction). Suppose D is a bounded, open, connected subset
of Rn, n odd and n ≥ 3, with a smooth boundary S. If f is a smooth function on Rn,
supported in D, and (Mf)(p, r) is known for all p in S and for all r ∈ [0, diam(D)/2],
then we may stably recover f . If (Mf)(p, r) is known for all p in S and for all r, then
f may be recovered by a simpler algorithm.

Note that we do not assume D is convex, but we do need the centers to vary over
all of S. If D is a ball in Rn, n ≥ 3 and n odd, and we know the mean values for all
spheres centered on the boundary of D, then we have an explicit inversion formula.
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We introduce some notation to state the explicit inversion formula. Let C̃∞(Sρ(0)×
[0,∞)) consist of smooth functionsG(p, t) which are zero for t large and also ∂kt G(p, t) =
0 at t = 0 for k = 0, 1, 2, . . . and all p ∈ Sρ(0). Let us define the operator

N : C∞
0 (Bρ(0)) → C̃∞ (Sρ(0)× [0,∞)) ,

(N f)(p, t) = tn−2(Mf)(p, t), p ∈ Sρ(0), t ≥ 0

and the operator (for odd n ≥ 3)

D : C̃∞(Sρ(0)× [0,∞)), → C̃∞(Sρ(0)× [0,∞)),

(DG)(p, t) =
(
1

2t

∂

∂t

)(n−3)/2

(G(p, t)).

For example, D = I when n = 3.
We now compute the formal L2 adjoints ofN and D. For G ∈ C̃∞(Sρ(0)×[0,∞)),

using the change of variables (t, θ) → y = p+ tθ, we note that

〈N f ,G〉 =
∫
|p|=ρ

∫ ∞

0

(N f)(p, t)G(p, t) dt dSp

=
1

ωn

∫
|p|=ρ

∫ ∞

0

∫
|θ|=1

tn−2f(p+ tθ)G(p, t) dθ dt dSp

=
1

ωn

∫
Rn

∫
|p|=ρ

f(y)
G(p, |p− y|)

|p− y| dSp dy

= 〈f ,N ∗G〉
if we take

(N ∗G)(x) =
1

ωn

∫
|p|=ρ

G(p, |p− x|)
|p− x| dSp.(1.1)

Note that for G ∈ C̃∞(Sρ(0) × [0,∞)), (N ∗G)(x) is a smooth function on Rn with
compact support. The smoothness may be seen as follows: from the hypothesis on G,
we may express G(p, t) in the form G(p, t) = tK(p, t2) for |p| = ρ, t ∈ [0,∞) for some
smooth function K(p, s). Substituting this expression for G in the definition of N ∗,
the smoothness of N ∗G becomes clear.

Also

〈DG1 , G2〉 =
∫
|p|=ρ

∫ ∞

0

(
1

2t

∂

∂t

)(n−3)/2

(G1(p, t)) G2(p, t) dt dSp

= (−1)(n−3)/2

∫
|p|=ρ

∫ ∞

0

G1(p, t)

(
∂

∂t

1

2t

)(n−3)/2

(G2(p, t)) dt dSp

= (−1)(n−3)/2

∫
|p|=ρ

∫ ∞

0

G1(p, t) t

(
1

2t

∂

∂t

)(n−3)/2(
G2(p, t)

t

)
dt dSp

= 〈G1 ,D∗G2〉
if we take

(D∗G)(p, t) = (−1)(n−3)/2tD(G(p, t)/t).(1.2)
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Note that D∗ maps functions in C̃∞(Sρ(0)×[0,∞)) to functions in C̃∞(Sρ(0)×[0,∞)).
Theorem 3 (inversion formula). If n ≥ 3 and odd, f is a smooth function

supported in Bρ(0) and (Mf)(p, r) (and hence (N f)(p, r)) is known for all p ∈ Sρ(0)
and all real r, then we have the explicit inversion formulas

f(x) = − π

2 ρΓ(n/2)2
(N ∗ D∗ ∂2

t tDN f
)
(x), x ∈ Bρ(0),

f(x) = − π

2 ρΓ(n/2)2
(N ∗ D∗ ∂t t ∂tDN f) (x), x ∈ Bρ(0),

f(x) = − π

2 ρΓ(n/2)2
∆x (N ∗ D∗ tDN f) (x), x ∈ Bρ(0).

The inversion formulas in Theorem 3 are local in the sense that f(x) is determined
purely from the mean values of f over spheres centered on Sρ(0) passing through an
arbitrarily small neighborhood of x. These inversion formulas also generate energy L2

norm identities, which are a step toward a characterization of the range of the map
f → Mf .

There is some similarity between the inversion formula in Theorem 3 and the
inversion formula for the Radon transform. The Radon transform of a function f on
Rn is

(Rf)(θ, r) =

∫
x·θ=r

f(x) dSx ∀r ∈ (−∞,∞), θ ∈ Rn, |θ| = 1.

Its L2 adjoint is, for every function F on S1(0)× (−∞,∞),

(R∗F )(x) =
∫
|θ|=1

F (θ, x · θ) dθ ∀x ∈ Rn,

and the inversion formula for the Radon transform is (see [25])

f(x) =
(−1)(n−1)/2

2(2π)n−1
∆(n−1)/2
x (R∗Rf)(x) ∀x ∈ Rn.

The above theorems will be proved by converting the problem to a problem about
the solutions of the wave equation. Consider the IVP

✷u ≡ utt −∆u = 0, x ∈ Rn, t ∈ R,(1.3)

u(., t=0) = 0, ut(., t=0) = f(.),(1.4)

with f smooth and supported in D. Then, from the standard theory for solutions
of the wave equation, u is smooth in x, t, odd in t (because −u(x,−t) is also the
solution), and as shown in [7, p. 682] for n ≥ 2,

u(x, t) =
1

(n− 2)!

∂n−2

∂tn−2

∫ t

0

r (t2 − r2)(n−3)/2 (Mf)(x, r) dr, t ≥ 0.(1.5)

Hence the original problem is equivalent to the problem of recovering ut(x, 0) from
the value of u(x, t) on subsets of S× (−∞,∞). So Theorems 1 and 2 will follow from
the following theorems.
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Theorem 4 (uniqueness). Suppose D is a bounded open subset of Rn, n ≥ 2,
with a smooth boundary S, and D is strictly convex. Let Γ be a relatively open subset
of S. Suppose f is a smooth function on Rn, supported in D, and u is the solution
of the IVP (1.3) and (1.4). If u(p, t) = 0 for all p ∈ Γ and all t, then f = 0.

The appropriate version of this result for n = 1 is also true and may be shown by
arguments similar to (but simpler than) those used in proving the above theorem.

Theorem 5 (reconstruction). Suppose D is a bounded, open, connected subset
of Rn, n odd, with a smooth boundary S. Suppose f is a smooth function on Rn,
supported in D, and u is the solution of the IVP (1.3) and (1.4). If u(p, t) is known
for all p in S and for all t ∈ [0, diam(D)/2], then we may recover f . We have a
simpler algorithm if u(p, t) is known for all t ∈ R (and all p ∈ S).

In our reconstruction procedures, we use the fact that for n odd the fundamental
solution of the wave operator is supported on the cone t2 = |x|2. This is not true in
even dimensions, and so our algorithm is not valid in even space dimensions. Further-
more, the method of descent does not help, because if we consider u as a function of
an additional one-dimensional variable z, of which u is independent, then the initial
data of the new u is supported in an infinite cylinder in x, z space, and hence is not
supported in a bounded domain.

We show, at the end of the introduction, that Theorem 3 follows from the following
theorem.

Theorem 6 (trace identity). Suppose n ≥ 3, n odd, ρ > 0, fi ∈ C∞
0 (Bρ(0)), and

ui is the solution of the IVP (1.3) and (1.4) for f = fi, i = 1, 2. Then we have the
identities

1

2

∫
Rn

f1(x) f2(x) dx =
−1
ρ

∫ ∞

0

∫
|p|=ρ

t u1(p, t) u2tt(p, t) dSp dt,(1.6)

1

2

∫
Rn

f1(x) f2(x) dx =
1

ρ

∫ ∞

0

∫
|p|=ρ

t u1t(p, t) u2t(p, t) dSp dt.(1.7)

Note that (1.6) is not symmetric, so it clearly implies another similar identity.
Some other interesting consequences of the nonsymmetry will be addressed elsewhere.

We do not have an inversion formula similar to the one in Theorem 3 or Theorem
6 for even dimensions. If we can prove an inversion formula or an identity of the above
type for the n = 2 case, even when f is spherically symmetric, then we feel that the
techniques used in the proof of Theorem 6 would carry over to a proof for all n even
and all f (not just spherically symmetric f). However, we do not have an inversion
formula in the n = 2 case even when f is spherically symmetric.

The identity in Theorem 3 is a step towards identifying the range of the map
f → (Mf)(p, r) in the case when D is a ball in Rn, n odd. The other theorems do
not attempt to specify the range of this map for the general case. The identity in
Theorem 6 has important implications for optimal regularity of traces of solutions
of hyperbolic partial differential equations whose principal part is the wave operator.
Some of this may be seen in the proof of Theorem 6, but the general trace regularity
results and their proofs will be given in [11].

Theorems 4 and 5 (and hence Theorems 1 and 2) are valid under a slightly weaker
hypothesis. Let D be a bounded, open, connected subset of Rn with a smooth bound-
ary, and U be the unbounded component of Rn \D (note that ∂U ⊂ S). Then, for
Theorem 4, we may replace the hypothesis that D be strictly convex by the hypoth-
esis that Rn \ U be strictly convex, and Γ must be a relatively open subset of ∂U
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(instead of S). For Theorem 5, the reconstruction requires knowing u(p, t) for all
t ∈ [0, diam(D)/2] and for all p in ∂U (instead of all p in S). This may be seen by
applying Theorems 4 and 5 to the same function f , but over the region Rn \U instead
of D, because we are given that f = 0 on the bounded components of Rn \D.

The recovery of a function from its mean values over spheres centered on some
surface or other families of surfaces has been studied by many authors. John [15] is
a good source for the early work on recovering a function from its mean values over
a family of spheres with centers on a plane. A very interesting theoretical analysis
of the problem with centers restricted to a plane was provided by Bukhgeim and
Kardakov in [5]; see also the work of Fawcett [9] and Andersson [4] for additional
results for this problem. The difficult problem of recovering a function from integrals
over a fairly general family of surfaces has also been studied; see [22] and [23] and the
references there. The results in our article, for the very specialized family of surfaces
we consider, are stronger.

Cormack and Quinto in [6] and Yagle in [35] studied the recovery of f from the
mean values of f over spheres passing through a fixed point. Volchkov in [31] studied
the injectivity issue in the problem of recovering a function from its mean values over
a family of spheres. He characterizes injectivity sets which have a spherical symmetry,
so these results do not cover the injectivity result in Theorem 1. Using techniques
from D-module theory, Goncharov in [13] finds explicit inversion formulas for the
spherical mean value transform operator restricted to some n-dimensional varieties of
spheres in Rn. The variety of spheres tangent to a hypersurface is included, but our
interest, the family of spheres centered on a hypersurface, is not.

Agranovsky and Quinto in [1], [2] have proved several significant uniqueness re-
sults for the spherical mean transform, and applied them to related questions such as
stationary sets for solutions of the wave equation. In [1] they give a complete charac-
terization of sets of uniqueness (sets of centers) for the spherical mean transform on
compactly supported functions in the plane, i.e., without assumption on the location
of the support with respect to the set of centers. In [21] there is an announcement of
a uniqueness theorem more general than our Theorem 1, which can be proved using
techniques from microlocal analysis in the analytic category as exposed in section 3
of [2]. We think that our proof is still interesting. We use domain of dependence
arguments and unique continuation for the time-like Cauchy problem to prove Theo-
rem 4, and hence Theorem 1. Since the domain of dependence result and the unique
continuation result for the time-like Cauchy problem are valid for very general hyper-
bolic operators (with coefficients independent of t), our proof of Theorem 4 is actually
valid if the wave operator is replaced by a first order perturbation with coefficients
which are C1 and independent of t. Our technique may perhaps extend to solutions of
more general hyperbolic operators with nonconstant reasonably smooth coefficients,
whereas the methods in [2], [21] would carry over, at most, to operators with analytic
coefficients.

Theorem 3 in [3] also addresses a question similar to the one dealt with in Theorem
1. There, they are interested in the uniqueness question when the mean values of f
are known for all spheres centered on the boundary, but they do not require that f
be supported inside the region D. They show uniqueness holds if f ∈ Lq(Rn) as long
as q ≤ 2n/(n− 1). The theorem fails for q > 2n/(n− 1).

Norton in [26] derived an explicit inversion formula for the n = 2 case of the
problem discussed in Theorem 3, using an expansion in Bessel functions. The inversion
formula needs further analysis to analyze the effect of the zeros of Bessel functions
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used in the formula. Norton and Linzer in [27] considered the recovery of f (supported
in a ball in R3) from the mean values of f over all spheres centered on the boundary of
the ball, again by using a harmonic decomposition. They also related it to the solution
of the wave equation and then transferred the problem to the frequency domain by
taking the Fourier transform of the time variable. There they provide an inversion
formula in the form of an integral operator whose kernel is given by an infinite sum.
Then they truncated this sum to obtain an approximate inversion formula. They did
not deal with the higher dimensional case. Our exact inversion formula, which is valid
in all odd dimensions, seems to have a cleaner closed form. The recent articles [32],
[33], [34] use the work of Norton and Linzer [27] for reconstruction in TCT.

After the presentation of some of the results of this paper at Oberwolfach, A. G.
Ramm informed us that he could also invert the spherical mean transform with centers
on some surfaces and sent us the preprint [28]. For the problem of inversion when
centers lie on a sphere, he gives a series method whose details are given for dimension
n = 3. In that case, his result can already be found in formulas (52) and (56) of
Norton and Linzer [27]. He also establishes a uniqueness theorem whose strength in
relation to prior results is not fully clear, but it does not contain our Theorem 1, for
example.

We conclude the introduction by showing how Theorem 3 follows from Theorem
6. For n odd, n ≥ 3, from page 682 of [7], we have a more convenient representation
of u(x, t) in terms of (Mf)(x, r) than the one given earlier. We have

u(x, t) =

√
π

2Γ(n/2)

(
1

2t

∂

∂t

)(n−3)/2 (
tn−2(Mf)(x, t)

)
=

√
π

2Γ(n/2)
DN (f)(x, t).(1.8)

Hence, for all f1, f2 ∈ C∞
0 (Bρ(0)), (1.6) and (1.7) may be rewritten as

〈f1, f2〉 = −π
2 ρΓ(n/2)2

〈tDN f1 , ∂
2
tDN f2〉 =

−π
2 ρΓ(n/2)2

〈N ∗ D∗ ∂2
t tDN f1 , f2〉,

〈f1, f2〉 = π

2 ρΓ(n/2)2
〈t ∂tDN f1 , ∂tDN f2〉 =

−π
2 ρΓ(n/2)2

〈N ∗ D∗ ∂t t ∂tDN f1 , f2〉.

We have an additional identity which comes from the observation that if u is a solution
of (1.3), (1.4), then utt is also a solution of (1.3) but with the initial conditions
utt(., t=0) = 0 and uttt(., t=0) = ∆f . Hence (1.6) also implies

〈f1, f2〉 =
−π

2 ρΓ(n/2)2
〈tDN f1 , DN∆f2〉 =

−π
2 ρΓ(n/2)2

〈∆N ∗ D∗ tDN f1 , f2〉.

These give us the three inversion formulas of Theorem 3.

2. Proof Of Theorem 4. We will need three results in the proof of Theorem
4.

2.1. Unique continuation for time-like surfaces. The first result concerns
unique continuation for the time-like Cauchy problem for the wave equation.

Proposition 1. If u is a distribution and satisfies (1.3) and u is zero on Bε(p)×
(−T, T ) for some ε > 0, and p ∈ Rn, then u is zero on (see Figure 2.1)

{ (x, t) : |x− p|+ |t| < T },
and in particular on

{ (x, t=0) : |x− p| < T } .
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Fig. 2.2. Shortest path between p and q.

Proof of Proposition 1. Proposition 1 follows quickly from Theorem 8.6.8 in [14],
which itself is derived from Holmgren’s theorem. In that theorem, take X2 = { (x, t) :
|x− p|+ |t| < T } and X1 = X2 ∩ (Bε(p)× (−T, T )), and note that any characteristic
hyperplane through a point in X2 has the form (x − x0) · θ + (t − t0) = 0 for some
unit vector θ and some point (x0, t0) ∈ X2. This plane cuts the vertical line x = p (in
(x, t) space) at the point (p, t), where t = t0−(p−x0)·θ, and hence |t| ≤ |t0|+|p−x0| <
T .

While Proposition 1 is well known in certain circles, we did not find a ready
reference for the proof and so have included the proof above. The proposition was
generalized by Robbiano and Hormander to apply to hyperbolic operators with co-
efficients independent of t, but the generalization was not as sharp as Proposition 1.
The definitive form, due to Tataru in [30], includes Proposition 1 as a special case.
The proof of Tataru’s result is quite complicated, but for Theorem 4 we need only the
special case above. The possible extension of Theorem 4 to more general hyperbolic
operators would require the full strength of Tataru’s result.

2.2. Domain of dependence for exterior problems. Let D be a bounded
open subset of Rn with a smooth boundary S. For points p, q outside D, let d(p, q)
denote the infimum of the lengths of all the piecewise C1 paths in Rn \ D joining
p to q (see Figure 2.2). Using ideas in Chapter 6 of [24] (where it is applied to the
distance function generated by a Riemannian metric), one may show that d(p, q) is a
topological metric on Rn \D.
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For any point p in Rn \ D and any positive number r, define Er(p) to be the p
centered ball of radius r in Rn \D under this metric, that is,

Er(p) = { x ∈ Rn \D : d(x, p) < r }.
The second result we need in the proof of Theorem 4 is about the domain of depen-
dence of solutions of the wave equation on an exterior domain. Loosely speaking,
the result claims that the value of the solution of the wave equation in an exterior
domain, at a point (x, s), affects the value of the solution at the point (y, t) only if
d(x, y) ≤ t− s.

Proposition 2 (domain of dependence). Suppose D is a bounded, connected,
open subset of Rn with a smooth boundary S. Suppose u is a smooth solution of the
exterior problem

utt −∆u = 0, x ∈ Rn \D, t ∈ R,

u = h on S ×R .

Suppose p is not in D, and t0 < t1 are real numbers. If u(., t0) and ut(., t0) are zero
on Et1−t0(p) and h is zero on

{(x, t) : x ∈ S, t0 ≤ t ≤ t1, d(x, p) ≤ t1 − t },
then u(p, t) and ut(p, t) are zero for all t ∈ [t0, t1).

In textbooks one may find proofs of this result when D = ∅ (in which case
d(x, y) = |x − y|), whereas we are interested in the result for solutions in exterior
domains. While the method of attack for proving such a result is clear enough, the
details are complicated by the fact that the map x → d(x, p) is not a smooth map
and hence one has to appeal to a more general version of the divergence theorem.

Proof. To prove Proposition 2 we first show that for any p outside D, the function
x → d(x, p) is a locally Lipschitz function on Rn\D; that is, for every point q ∈ Rn\D,
there is a ball Bρ(q) such that

|d(x, p)− d(y, p)| ≤ C|x− y| ∀x, y ∈ Bρ(q) \D
with C independent of x and y. From the triangle inequality,

|d(x, p)− d(y, p)| ≤ d(x, y),

so the Lipschitz nature will follow if we can show that, for every q ∈ Rn \D, there is
a ball Bρ(q) such that

d(x, y) ≤ C|x− y| ∀ x, y ∈ Bρ(q) \D,(2.1)

with C independent of x, y. We give the proof below.
If q is not on the boundary of D, then we can find a ball Bρ(q) contained in R

n\D
and hence d(x, y) = |x− y| for all x, y ∈ Bρ(q). So the challenge is to prove (2.1) for
q ∈ S. We give a proof of (2.1) in the n = 3 case (the general case is very similar, but
the notation gets a little cumbersome). For q ∈ S, without loss of generality, we may
find a ball Bρ(q) so that

D ∩Bρ(q) = {u = (u1, u2, u3) : u3 > φ(u1, u2), u ∈ Bρ(q)}
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Fig. 2.3. Lipschitz estimate.

for some smooth function φ(u1, u2). Now if x, y ∈ Bρ(q) \ D, then x3 ≤ φ(x1, x2),
y3 ≤ φ(y1, y2). If the line segment xy does not intersect D, then d(x, y) = |x− y| and
(2.1) is valid. So assume that the segment xy enters D at a and leaves D the last
time at b (see Figure 2.3). Then

d(x, y) ≤ |x− a|+ d(a, b) + |b− y| ≤ |x− y|+ d(a, b) + |x− y| = 2|x− y|+ d(a, b).

So if we could prove d(a, b) ≤ C|a− b| for a, b on the boundary of D, then (2.1) would
follow because |a− b| ≤ |x− y|. So let us estimate d(a, b). From its definition, d(a, b)
is not larger than the length of the projection of the line segment ab onto S. Now the
projection of the segment ab onto S is

s → r(s) = (1− s)[a1, a2, 0] + s[b1, b2, 0]

+[0, 0, φ((1− s)a1 + sb1, (1− s)a2 + sb2)], 0 ≤ s ≤ 1.

Hence

|r′(s)| = | [b1 − a1, b2 − a2, φ1(., .)(b1 − a1) + φ2(., .)(b2 − a2)] | ≤ C|b− a|
because the partial derivatives of φ are bounded on S. Hence the length of the
projection is no more than C|b− a|. This proves (2.1) for x, y ∈ Bρ(q).

Since the map x → d(x, p) is Lipschitz, from Rademacher’s theorem (see [8]),
d(x, p) is differentiable almost everywhere in Rn \D. Let us estimate |∇xd(x, p)| (if
it exists) for x /∈ D. For x not in D, there is a ball around x which does not intersect
D, and hence for any y in this ball we have d(x, y) = |x−y| . Since d(x, p) is a metric,
for any y in this ball |d(y, p)− d(x, p)| ≤ d(x, y) = |x− y|, and hence

|d(y, p)− d(x, p)|
|y − x| ≤ 1

for all y in the ball. Hence the directional derivative of d(x, p) at x, in any direction,
does not exceed 1, and hence |∇xd(x, p)| ≤ 1 for all x not in D, where it exists.
Actually, we believe |∇d(x, p)| = 1 almost everywhere, but we do not need this.

Proof of Proposition 2. For any real number τ in (t0, t1), choose ε > 0 so that
τ + ε < t1. Let K be the backward “conical” surface t = τ + ε− d(x, p) in x, t space
with vertex (p, τ + ε), defined by d(p, q). Specifically

K = { (x, τ + ε− d(x, p)) : x ∈ Rn \D }.
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Fig. 2.4. Domain of integration.

Since d(x, p) is a Lipschitz function, K is a Lipschitz surface and so has a normal
almost everywhere. For points of K corresponding to x not in S, the upward pointing
normal (where it exists) will be parallel to (∇xd(x, p), 1). So if (νx, νt) is the upward
pointing unit normal to K, then

|νx| = |∇xd(x, p)|√
1 + |∇xd(x, p)|2

≤ 1√
1 + |∇xd(x, p)|2

= νt.

To prove the domain of dependence result we imitate the proof used for such a
result if the domain were the whole space. We will perform an integration over the
region Ω (which is the subset of (Rn \D) × R) enclosed by the planes t = τ , t = t0,
the surface S × [t0, τ ], and the backward cone K (see Figure 2.4). Since Ω need not
be a domain with a smooth (or even C1) boundary, we will appeal to a generalization
of the divergence theorem—the generalized Gauss–Green theorem of Federer. Please
see the appendix and [8] for definitions and the statement of the results below. Let Φ
be the n-dimensional Hausdorff measure on Rn+1 (which is a regular Borel measure
on Rn+1), and let (νx, νt) = ν = ν(Ω, x, t) be the generalized outward pointing unit
normal at (x, t) associated with the region Ω.

We have

(u2
t + |∇u|2)t − 2∇ · (ut∇u) = 2ut(utt −∆u) = 0 in Ω.

Hence from the Gauss–Green theorem (Proposition 6 in the appendix)

0 =

∫
Ω

(u2
t + |∇u|2)νt − 2ut∇u · νx dΦ.(2.2)

Note that to apply the Gauss–Green theorem we must make sure that the Φ measure
of ∂Ω is finite. However, ∂Ω is a subset of the union of bounded parts of the surfaces
of t = t0, t = τ , K, and S × [t0, τ ], and the Φ measure of these surfaces equals their
surface area (for Lipschitz surfaces), and all these surface areas are finite (including
K : t = τ + ε − d(x, p) because |∇xd(x, p)| ≤ 1). Note that all the sets entering our
discussion are Borel sets.

Now, by definition (see the appendix), ν(x, t) = 0 at all interior points of Ω and
Ωc. So we need ν(Ω, x, t) for points (x, t) on the boundary of Ω. The boundary of Ω
consists of a part coming from t = τ , a part coming from t = τ0, a part from K, and a
part from S× [t0, τ ]. The generalized normal agrees with the usual normal to surfaces
at points where the boundary is Lipschitz (so where it is smooth). The boundary
is Lipschitz at all those points which lie on only one of the bounding surfaces: the
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difficulties arise at points where one or more bounding surfaces of Ω meet. Hence at
most points of ∂Ω, on t = τ we have ν = (0, 1), on t = t0 we have ν = (0,−1), on
S × [t0, τ ] we have ν = (νx, 0), and on K we have ν = (νx, νt) with |νx| ≤ νt.

Now we must deal with the boundary points which lie on the intersection of two
or more of the bounding surfaces of Ω. If we could prove that the Φ measure of this
set is zero, then we would not need to know the value of ν(Ω, x, t) for points on this
set. This is true perhaps if all surfaces were C1, but we are not sure if this is true
if one them is Lipschitz. So we must determine ν(Ω, x, t) at these special points on
the boundary. From Proposition 5 in the appendix, if the special point lies at the
intersection of (two smooth nontangential) surfaces t = t0 or t = τ with S × [t0, τ ],
then ν = 0 at that point; if the special point lies at the intersection of K with t = t0
or t = τ or S× [t0, τ ], then either ν = 0 at that point or ν is the normal at that point
to the corresponding smooth surface t = t0 or t = τ or S× [t0, τ ] (as if K did not play
a part).

Now we examine the contribution to the right-hand side (RHS) of (2.2) from the
various parts. Based on our description of ν(Ω, x, t) in the previous paragraph, we get
nonzero contributions, at most, from points on the boundary of Ω. The contribution
from the S× [t0, τ ] part will be zero because νt = 0 on S× [t0, τ ] and u, and hence ut
is zero on the part of ∂Ω on S× [t0, τ ]. The contribution from the t = τ0 parts is zero
because u and ut are zero on the part of ∂Ω on t = t0. The contribution from the K
part of ∂Ω which is not on any of the other parts is nonnegative because for this part
νt(x, t) ≥ |νx(x, t)| ≥ 0 for x /∈ D, and hence the integrand is nonnegative because

(u2
t + |∇u|2)νt − 2ut∇u · νx ≥ (u2

t + |∇u|2)νt − 2|ut||∇u||νx|
≥ νt(u

2
t + |∇u|2 − 2|ut||∇u|) = νt(|ut| − |∇u|)2.

Hence the contribution from the t = τ part (which is nonnegative because νx = 0 and
νt = 1 on t = τ) must be zero. Furthermore, the integration is over a region lying
above the part of Bε(p) outside D. Hence ut(p, τ) = 0 for every τ ∈ [t0, t1). Also
u(p, t0) = 0 by hypothesis; hence u(p, τ) = 0 for all τ ∈ [t0, t1).

2.3. Distance computation. The third intermediate result we need is the cru-
cial computation of a certain distance. Below, when we refer to the boundary or the
closure of Er(p), we mean that as a subset of Rn in the topology of Rn and not in
the topology induced by d(p, q).

Proposition 3. Suppose D is a bounded open subset of Rn, n ≥ 2, S is its
smooth boundary, and D is strictly convex. Suppose p is a point on S and ρ a small
enough positive number less than r. If K = D \Br(p) is not empty, then the shortest
distance between K and the closure of Eρ(p) is the length of some line segment joining
a point on S ∩ Sr(p) to a point on the boundary of Eρ(p) which lies on S (see Figure
2.5).

Proof of Proposition 3. Let δ be the shortest distance between K and the closure
of Eρ(p). Let Γ be the subset of S consisting of points whose geodesic distance from
p (on S) is less than or equal to ρ. The boundary of K consists of a part on S, which
we call the outer boundary, and the rest (which is on Sr(p)), which we call the inner
boundary. The boundary of Eρ(p) consists of a part to the right of the tangent plane
to S at p (the part in the region (x− p) · νp > 0 where νp is the exterior normal to S
at p), a part on S which is Γ, and the rest which we denote by C.

It is clear enough that the shortest distance will be the distance between some
point on the boundary of K and some point on the boundary of Eρ(p). Furthermore,
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a shortest segment will be normal to the two boundaries provided the boundaries are
smooth at the optimal points.

Because of the strict convexity of D, we can find points p′ on S arbitrarily close to
p so that the distance between p′ and the inner boundary of K is less than r, implying
δ < r. In fact pick a point q in the interior of the inner boundary of K so that the
segment pq is not normal to S. Then we can find a direction tangential to S so that
if p moves in that direction on S, then |p − q| will decrease. So an optimal point on
∂K cannot be on the interior of the inner boundary of K, or else an optimal segment
will be normal to Sr(p) and hence would pass through p.

An optimal point on the boundary of Eρ(p) cannot be to the right of the tangent
plane to S at p because then the corresponding optimal line will be normal to Sρ(p),
and hence will pass through p, and then p will be a better candidate than this point.

Next we claim that no point of C is a candidate for an optimal point on the
boundary of Eρ(p), unless it is on Γ. We show this by showing that for any point q
on S \ Γ, the point on C closest to q is on Γ.

For ρ small enough, we may parameterize Γ by (s, θ), where s is the geodesic
distance from p and θ is a unit vector representing the tangent vector to the geodesic
at p. So the surface Γ is

x = γ(s, θ), 0 ≤ s ≤ ρ, |θ| = 1, θ ∈ Rn−1,

and for each fixed θ the curve s → γ(s, θ) with s ∈ [0, ρ] is a geodesic on S and s is
the arc length along this geodesic. So γss(s, .) is normal to S at γ(s, .) and |γs| = 1.

Furthermore, because D is strictly convex, for ρ small enough, for any point q in
the closure of Eρ(p), the d(p, q) is attained either as the length of the segment pq or
the length of a curve consisting of a geodesic on S, starting at p, followed by a line
segment from the end point of the geodesic to q which is tangential to the geodesic;
see Figure 2.2 (of course p is on S in our case). So, for ρ small enough, C is generated
by the family of curves

s → c(s, θ) = γ(s, θ) + (ρ− s)γs(s, θ), 0 ≤ s ≤ ρ,

as θ ranges over the unit sphere in Rn−1.

Let us examine the distance between q and points on one of the generating curves
of C. Define h(s) = |c(s, .) − q|2—the square of the distance between q and a point
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on a generating curve. Then, for 0 ≤ s ≤ ρ,

h′(s) = 2(c(s, .)− q) · cs(s, .)
= 2(γ(s, .) + (ρ− s)γs(s, .)− q) · γss(s, .)(ρ− s)

= 2(ρ− s)(γ(s, .)− q) · γss(s, .).
Above we used γs · γss = 0 because γs is tangential to S and γss is normal to S. Now
γ(s, .) is a point on S (actually on Γ) (denote it by a), and γss(s, .) is the inward
pointing normal to S there. Hence the strict convexity of D implies (note q �= a)

0 < (q − a) · γss = (q − γ(s, .)) · γss(s, .).
Hence h′(s) < 0 for 0 ≤ s < ρ, and so h(s), on 0 ≤ s ≤ ρ, attains its minimum at
s = ρ, that is, at the point c(ρ, .), which is γ(ρ, .), which lies on Γ. This proves that
the point on C closest to a fixed point q on S \ Γ must be on Γ.

Because D is strictly convex, the normal lines to the exterior boundary of K will
have to cross the inner boundary of K before they meet Γ. To see this, suppose the
normal line connects a point x on the exterior boundary to a point y on Γ. Then
strict convexity of D implies that the line segment xy is in D (except for the end
points). Now |x − p| > r and |y − p| < r, so there is a point z on the line segment
xy so that |z − p| = r, and hence z is on the inner boundary of K. Hence no interior
point of the outer boundary of K can be an optimal point. This completes the proof
of Proposition 3.

2.4. Proof of Theorem 4. We now give the proof of Theorem 4. Without loss
of generality, we may assume that there is a point p on S and a small positive real
number ρ so that Γ = Eρ(p) ∩ S.

Step 1. Choose any ε > 0 smaller than ρ. Let q be any point in the hemisphere
H ∩ Bε(p), where H is the region to the right of, and includes, the tangent plane
to S at p (see Figure 2.5); so H is the half-space in x-space containing p and not
intersecting D. Then d(p, q) = |p− q| < ε, and hence from the triangle inequality, for
any x in S \ Γ, we have d(x, q) ≥ d(x, p)− d(p, q) ≥ ρ− ε.

Let u = h on S ×R. Then u is the solution of the exterior problem

utt −∆u = 0, x ∈ Rn \D, t ∈ R,

u(x, t=0) = 0, ut(x, t=0) = 0, x ∈ Rn \D,

u = h on S ×R.

Now h is supported in (S \ Γ)× R and the distance of q from S \ Γ is at least ρ− ε.
Hence from Proposition 2, we have u(q, t) is zero for |t| < ρ− ε for all q ∈ H ∩Bε(p).

Now u is the solution of the wave equation on Rn × R, so the previous result
combined with Proposition 1 gives that f(x) = ut(x, t=0) is zero on

{ x ∈ Rn : |x− q∗| < ρ− ε }
for some (actually all) q∗ in the interior of H ∩ Bε(p) for all small ε > 0. Since
|x− q∗| ≤ |x− p|+ |p− q∗|, f(x) is zero on

{ x ∈ Rn : |x− p| < ρ− 2ε }
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for all ε > 0. Hence f(x) is zero on

{ x ∈ Rn : |x− p| < ρ }.

Step 2. We now show that f(x) is zero for all x. This will follow easily if we can
show the following: if f(x) is zero on the region |x− p| < r for some r ≥ ρ, then f(x)
is zero on the region |x− p| < r + σ, where σ is a positive number independent of r.

Please refer to Figure 2.5 for a geometrical interpretation of the notation below.
So suppose f is supported in the region K consisting of the part of D outside Br(p).
Let δ > 0 be the straight line distance between Eρ(p) and K; then we show that f is
zero on Bρ+δ(p). Postponing the proof of this claim, let α be the supremum of the
straight line distances between p and points on Γ. Since D is strictly convex, from
the definition of Γ, we have α < ρ. From Proposition 3, δ is the length of the line
segment AB for some point A on Sr(p) ∩ S and some point B on Γ. Then, using the
triangle inequality (see Figure 2.6),

ρ+ δ = ρ+ |AB| = |AB|+ |Bp|+ (ρ− |Bp|)
≥ |pA|+ (ρ− |Bp|) ≥ r + (ρ− α),

and we note that ρ− α is positive and independent of r. Hence Theorem 4 holds.
So it remains to show that if f is supported in K = D−Br(p), then f is zero on

Bρ+δ(p). Since u is the solution of the IVP (1.3), (1.4), and δ = dist(Eρ(p),K), the
standard domain of dependence argument for IVPs implies that u and ut are zero on

{(x, t) : x ∈ Eρ(p), |t| < δ}.(2.3)

Fix a small ε > 0, ε < ρ, and let q ∈ Bε(p)∩H; note that q ∈ Eρ(p). Now u may
be considered as the solution of the initial boundary value problem

utt −∆u = 0, x ∈ Rn \D, t ≥ δ − ε,

u = f1, ut = f2, on {Rn \D} × {t = δ − ε},

u = h on S × [δ − ε,∞)

for some functions f1 and f2. Now f1 and f2 are zero on Eρ(p) (by hypothesis), h is
zero on Γ× [δ − ε,∞), and d(q, x) ≥ d(p, x)− d(p, q) ≥ ρ− ε for all x ∈ Dc which are
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not in Eρ(p) ∪ Γ (note that Γ is the part of the boundary of Eρ(p) which lies on S).
Hence from Proposition 2, u(q, t) is zero for all t ∈ [δ − ε, δ − ε+ ρ− ε).

Since we have already shown that u is zero on (2.3), we have that u(q, t) is zero
for all t in [0, ρ + δ − 2ε). Since u is odd in t we have u(q, t) is zero for all t with
|t| < ρ + δ − 2ε, for all q ∈ Bε(p) ∩ H. So, from Proposition 1, ut(x, 0), and hence
f(x), is zero on

{ x : |x− q∗| < ρ+ δ − 2ε }
for all small ε > 0 and a (actually any) q∗ in the interior of Bε(p)∩H. Hence f(x) is
zero on

{ x : |x− p| < ρ+ δ − 3ε }
for all ε > 0, and hence f(x) is zero on

{ x : |x− p| < ρ+ δ }
and the theorem is proved.

3. Proof of Theorem 5. Since D is a bounded, open, connected subset of
Rn, with a smooth boundary, it follows that the complement of D will be a disjoint
union of connected open sets called components of Rn \D. Since D is bounded, only
one of the components will be unbounded and the rest of the components will be
subsets of a fixed ball in Rn. Then from the smoothness of the boundary of D and
compactness, one may show that the number of components is finite, the boundaries
of the components are disjoint and subsets of the boundary of D, and the boundaries
are smooth.

Part 1. Let δ = diam(D) and u = h on S × [0, δ/2] (h is given to us). Since u is
an odd function of t, we extend h as an odd function of t. Below ∂νu will represent
the derivative of u on S × (−∞,∞) in the direction of the outward pointing normal
to S × (−∞,∞).

Since f is supported in D, we may consider u as the solution of the exterior
problem

utt −∆u = 0, on (Rn \D)× [−δ/2, δ/2],

u(x, t=0) = 0, ut(x, t=0) = 0, x ∈ Rn \D,

u = h (given) on S × [−δ/2, δ/2].
This initial boundary value problem (IBVP) is well posed, and so one may obtain the
value of ∂νu on S× [−δ/2, δ/2]; this may be done numerically using finite differences
(one may assume u = 0 for points far away from S without changing the value of ∂νu
on S × [−δ/2, δ/2]) .

Now we have u and ∂νu on S × [−δ/2, δ/2] and we show how we may recover u
and ut over the region D×{t=−δ/2}. This is done using the Kirchhoff formula, which
expresses the value of a solution of the wave equation in a cylindrical (in time) domain,
at a point, purely in terms of the value of the solution and its normal derivative, on
the intersection of the cylinder with the forward light cone through the point; see
Figure 3.1. This may be done only in odd space dimensions as will be seen in the
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t=−δ /2

δ/2, 

t+δ/2 = |x−p|

p

S X [− δ/2]

Fig. 3.1. Kirchhoff formula.

formal derivation below; the derivation may be made rigorous. A rigorous derivation
in the three space dimensional case may be found in [12].

Let E+(x, t) be the fundamental solution of the wave operator with support in
the region t ≥ 0 (see [14, Chapter VI]). Consider a point p ∈ D. Then

✷E+(x− p, t+ δ/2) = δ(x− p, t+ δ/2), (x, t) ∈ Rn+1 .

Also, note that E+(x−p, t+δ/2) is zero for t < −δ/2 and is zero also on D×(δ/2,∞)
because the support of E+(x− p, t+ δ/2), for odd n, is on the cone t+ δ/2 = |x− p|
and |x− p| ≤ δ for any x ∈ D. Then, from Green’s theorem,

u(p,−δ/2) =
∫ ∞

−∞

∫
D

u(x, t) δ(x− p, t+ δ/2) dx dt

=

∫ ∞

−∞

∫
D

u(x, t)✷E+(x− p, t+ δ/2) dx dt

=

∫ ∞

−∞

∫
D

✷u(x, t)E+(x− p, t+ δ/2) dx dt

+

∫ ∞

−∞

∫
S

(∂νu(x, t)E+(x− p, t+ δ/2)

−u(x, t) ∂νE+(x− p, t+ δ/2)) dSx dt

=

∫ δ/2

−δ/2

∫
S

(∂νu(x, t)E+(x− p, t+ δ/2)

−u(x, t) ∂νE+(x− p, t+ δ/2)) dSx dt.

Note that the singular set of E+ consists of the forward light cone through (p,−δ/2)
and the singular directions (the wave front set) of E+, away from the vertex of the
cone, are the normals to the cone, and so are transverse to S × (−∞,∞), and hence
E+ and ∂νE+ have traces on S × (−∞,∞).

Examining the definition of E+ in [14, Chapter VI], the last integral may be
written in terms of the values of u and ∂νu (and their time derivatives) on S ×
[−δ/2, δ/2]. Hence we now have the values of u on D × {t = −δ/2}; using continuity
we can determine the value on D × {t = −δ/2}. A similar argument will recover the
value of ut on D × {t = −δ/2}.

Knowing u and ut on D×{t = −δ/2} and that u is the solution of the well-posed
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tu  = 0u=0 ,

S u known

t=diam(D)

t=0u  = ft

Fig. 3.2. Backward IBVP.

IBVP

utt −∆u = 0 on D × [−δ/2, 0],
u(., t = −δ/2) = known, ut(., t = −δ/2) = known on D

u = h (given) on S × [−δ/2, 0];

we may solve this numerically using finite differences and obtain the value of ut on
D × {t = 0} and so obtain f .

Part 2. Again δ represents the diameter of D. If u is known on S × [0, δ], then
we now give a simpler inversion scheme than the one given above. The problem is the
recovery of ut(x, 0) for x ∈ D from the values of u on S × [0, δ].

In odd space dimensions, the domain of dependence of the value of the solution of
the wave equation at a point is the sphere of intersection of the backward characteristic
cone through that point with t = tinit. Since u is a smooth solution of the wave
equation and the initial data is supported in D, we have u(x, t) is zero for t ≥ δ and
x ∈ D. Hence u and ut are zero on D × {t = δ}. Now we may consider u as the
solution of the backward IBVP (see Figure 3.2)

utt −∆u = 0 on D × [0, δ],

u(., t=δ) = 0, ut(., t=δ) = 0 on D,

u = h on S × [0, δ].

This problem is well posed, so given h one may obtain ut(x, 0) for x in D and hence
recover f .

4. Proof of Theorem 6. We first note that (1.7) follows fairly quickly from
(1.6) (but not vice versa) as shown next. Noting that (1.7) is symmetric, it is enough
to prove its norm form, namely

1

2

∫
R3

|f(x)|2 dx =
1

ρ

∫ ∞

0

∫
|p|=ρ

t |ut(p, t)|2 dSp dt



DETERMINING A FUNCTION FROM ITS MEAN VALUES 1231

for all f ∈ C∞
0 (Bρ(0)). To prove this, we take f1 = f2 = f in (1.6). Then, using an

integration by parts,

1

2

∫
R3

|f(x)|2 dx =
−1
ρ

∫ ∞

0

∫
|p|=ρ

tu(p, t)utt(p, t) dSp dt

=
1

ρ

∫ ∞

0

∫
|p|=ρ

{t ut(p, t)ut(p, t) + u(p, t)ut(p, t)} dSp dt

=
1

ρ

∫ ∞

0

∫
|p|=ρ

{
t |ut(p, t)|2 + 1

2

∂

∂t
(u2(p, t))

}
dSp dt

=
1

ρ

∫ ∞

0

∫
|p|=ρ

t |ut(p, t)|2 dSp dt,

where we made use of the fact that u(p, t=0) = f(p) = 0 for |p| = ρ and that from
Huyghen’s principle (note that n is odd and n ≥ 3) u(p, t) = 0 for all t > 2ρ and
|p| = ρ.

To prove (1.6), we will first prove it in the case when n = 3, and then we will
show (with some effort) that the case for all odd n ≥ 3 follows from this.

4.1. Proof of trace identity (1.6) when n = 3. Part I—An inversion
formula. The proof of the three-dimensional case is actually based on proving one of
the inversion formulas in Theorem 3 directly, that is without relating it to the wave
equation. Note that D is the identity operator when n = 3. We will show that for
every f ∈ C∞

0 (Bρ(0)),

f(x) = − 2

ρ
∆(N ∗ tN )(f)(x) ∀x ∈ Bρ(0).(4.1)

Below, we will make use of the following observation. Suppose M is an n − 1
dimensional surface in Rn, given by φ(z) = 0, with ∇φ(z) �= 0 at every point of M.
Then ∫

M
h(z) dSz =

∫
h(z) |∇φ(z)| δ(φ(z)) dz.

We now compute N ∗(t(N f)(x)). We have

(N ∗(tN f))(x) =
1

4π

∫
|p|=ρ

1

|x− p| |x− p| (N f)(p, |x− p|) dSp(4.2)

=
1

8π2

∫
|p|=ρ

∫
R3

f(y) δ(|y − p|2 − |x− p|2) dy dSp

=
1

8π2

∫
R3

f(y)

∫
|p|=ρ

δ(|y − p|2 − |x− p|2) dSp dy

=
ρ

4π2

∫
R3

f(y)

∫
R3

δ(|y − p|2 − |x− p|2) δ(|p|2 − ρ2) dp dy.(4.3)

The inner integral is an integral on the curve of intersection of the sphere |p| = ρ with
the plane of points equidistant from x and y. Define a characteristic function χ(x, y),
for x �= y, which is 1 if the above plane intersects the sphere |p| = ρ in a circle of
nonzero radius and zero otherwise.

Let Q be the orthogonal transformation which maps y − x to |y − x|e3, where
e3 = [0, 0, 1]. Then Qx and Qy differ only in the third coordinate and in the fact
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M

p1

p3

p2

h

Qy

Qx

Fig. 4.1. The plane M.

that Qy = Qx + |y − x|e3. Then, using an orthogonal change of variables, the inner
integral may be rewritten as∫

R3

δ(|y −QT p|2 − |x−QT p|2) δ(|QT p|2 − ρ2) dp

=

∫
R3

δ(|Qy − p|2 − |Qx− p|2) δ(|p|2 − ρ2) dp.

Let M be the plane consisting of points in p space which are equidistant from Qx
and Qy (see Figure 4.1). In factM is the plane p3 = h, where h = (Qx)·e3+|y−x|/2.
Furthermore∣∣∇p(|Qy − p|2 − |Qx− p|2)∣∣ = 2 |(p−Qy)− (p−Qx)| = 2|Qx−Qy| = 2|x− y|.
Then for x, y with χ(x, y) = 1, the inner integral of (4.3) equals

1

2|x− y|
∫
M

δ(|p|2 − ρ2) dSp.

Now M may be parameterized by p1, p2; hence the inner integral of (4.3) is

1

2|x− y|
∫

δ(p2
1 + p2

2 + h2 − ρ2) dp1 dp2.

So the integral is really over the circle C centered at the origin with radius
√
ρ2 − h2.

Now on p2
1 + p2

2 +h2 = ρ2, the magnitude squared of the gradient of p2
1 + p2

2 +h2 − ρ2

is

4(p2
1 + p2

2) = 4(ρ2 − h2).

Hence the integral equals

1

2|x− y|
∫
C

1

2
√
ρ2 − h2

ds =
π

2|x− y| .

Hence

(N ∗(tN f))(x) =
ρ

8π

∫
χ(x, y)

f(y)

|x− y| dy.

The above calculations could be done more rigorously (i.e., without the use of δ
functions) with the help of the coarea formula in [8].
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Now if x and y are in the open ball Bρ(0), and x �= y, then χ(x, y) = 1. Hence if

f is a smooth function supported in the ball Bρ(0), then

(N ∗(tN f))(x) =
ρ

8π

∫
f(y)

|x− y| dy ∀x ∈ Bρ(0).(4.4)

Hence, taking the Laplacian of both sides, we get

∆x(N ∗tN )(f)(x) =
−4πρ
8π

∫
f(y)δ(x− y) dy =

−ρf(x)
2

∀x ∈ Bρ(0),

which implies

f(x) =
−2
ρ
∆x(N ∗tN )(f)(x), x ∈ Bρ(0)(4.5)

for all smooth functions f supported in Bρ(0).
Part II—The identity. We now prove (1.6) in Theorem 6 for the n = 3 case. For

fi ∈ C∞
0 (Bρ(0)), i = 1, 2, let ui(x, t) be the solutions of the IVP (1.3), (1.4) with

f = fi. Then, from (1.8), ui(p, t) = (N f)(p, t) for any p ∈ Sρ(0). Furthermore, uitt
is also a solution of (1.3) except its initial conditions are

uitt(x, 0) = ∆xui(x, 0) = 0, uittt(x, 0) = ∆xuit(x, 0) = ∆fi(x).

Hence N (∆fi)(p, t) = uitt(p, t) for all p ∈ Sρ(0) and all t ∈ [0,∞).
From (4.5) we have

1

2

∫
R3

f1(x) f2(x) dx =
−1
ρ

〈∆(N ∗tN f1), f2〉

=
−1
ρ

〈t(N f1)(p, t),N (∆f2)(p, t)〉

=
−1
ρ

∫ ∞

0

∫
|p|=ρ

t (N f1)(p, t)N (∆f2)(p, t) dSp dt

=
−1
ρ

∫ ∞

0

∫
|p|=ρ

t u1(p, t)u2tt(p, t) dSp dt,

proving (1.6) for the n = 3 case.

4.2. Proof of trace identity (1.6) for all odd n ≥ 3. Let {φm}∞m=1 be
spherical harmonics which form an orthonormal basis for L2(S1(0)); see Chapter 4 of
[29]. These are restrictions to S1(0) of some harmonic homogeneous polynomials on
Rn. If φm is the restriction of a homogeneous polynomial of degree k(m), then that
harmonic homogeneous polynomial is rk(m)φm(θ), where r = |x| and θ = x/|x|.

Suppose f is a smooth function on Rn supported in Bρ(0). We have a decompo-
sition of f of the form (convergence in L2)

f(rθ) =

∞∑
m=1

fm(r) r
k(m) φm(θ), r ≥ 0, |θ| = 1,

with

rk(m)fm(r) =

∫
|θ|=1

f(rθ)φm(θ) dθ.(4.6)
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From the smoothness and support of f(x), we may show1 that fm(r) is a smooth,
even function on (−∞,∞), supported in [−ρ, ρ].

Below we will show that the solution u(x, t), of (1.3), (1.4), will have the form

u(x, t) =

∞∑
m=1

am(r, t) r
k(m)φm(θ),

where r = |x| and θ = x/|x|. Then, from the orthonormality of {φm}∞m=1, the left-
hand side (LHS) of the trace identity (1.6) is

1

2

∫ ∞

0

∫
|θ|=1

rn−1 f1(rθ) f2(rθ) dθ dr =
1

2

∞∑
m=1

∫ ∞

0

rn−1r2k(m)f1m(r) f2m(r) dr

=
1

2

∞∑
m=1

∫ ∞

0

rν(m)−1f1m(r) f2m(r) dr,

where ν(m) = 2k(m) + n. The RHS of (1.6) is

RHS =
−1
ρ

∫ ∞

0

∫
|p|=ρ

t u1(p, t)u2tt(p, t) dSp dt

=
−1
ρ

∞∑
m=1

∞∑
l=1

∫ ∞

0

∫
|p|=ρ

t a1m(ρ, t) a2ltt(ρ, t) ρ
k(m)+k(l) φm(p/|p|)φl(p/|p|) dSp dt

= −
∞∑
m=1

∞∑
l=1

ρk(m)+k(l)+n−2

∫ ∞

0

t a1m(ρ, t) a2ltt(ρ, t) dt

∫
|θ|=1

φm(θ)φl(θ) dθ

= −
∞∑
m=1

ρν(m)−2

∫ ∞

0

t a1m(ρ, t) a2mtt(ρ, t) dt.

So, to prove (1.6), it would be enough to prove the following: if fi(x) have the form
gi(r)r

kφ(θ), where gi(r) are smooth, even functions of r, supported in [−ρ, ρ], and
φ(x) is a homogeneous harmonic polynomial on Rn of some degree k with the L2

norm of φ on S1(0) equal to 1, then the solution ui(x, t) has the form ai(r, t)r
kφ(θ)

and

1

2

∫ ∞

0

rν−1g1(r) g2(r) dr = − ρν−2

∫ ∞

0

t a1(ρ, t) a2tt(ρ, t) dt,(4.7)

where ν = n+ 2k. Note that the RHS of (4.7) depends on ρ while the LHS does not
seem to; but we assumed that the gi were supported in [−ρ, ρ].

1One may show that all derivatives of the function

r →
∫
|θ|=1

f(rθ)φm(θ) dθ

up to order k(m) − 1 are zero at r = 0 because these derivatives at r = 0 will be sums of terms of
the form ∫

|θ|=1

θα φm(θ) dθ, |α| < k(m),

and φm is orthogonal to all polynomials of degree less than k(m) on the unit sphere (Theorem 2.1
and Corollary 2.4 of Chapter IV in [29]).
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Since rkφ(θ) is harmonic, if ∆S is the Laplace–Beltrami operator on S1(0), then,
noting that

∆ = ∂2
r +

n− 1

r
∂r +

1

r2
∆S ,

one may show that

∆Sφ = −k(k + n− 2)φ on S1(0).(4.8)

When f = g(r)rkφ(θ), we seek a solution of (1.3), (1.4) of the form u(x, t) =
a(r, t)rkφ(θ). Noting that

(ark)r = rkar + krk−1a,

(ark)rr = rkarr + 2krk−1ar + k(k − 1)ark−2,

if we substitute u = a(r, t)rkφ(θ) in (1.3) and use (4.8), we have

0 =

(
(ark)tt − (ark)rr − n− 1

r
(ark)r

)
φm − ark

r2
∆Sφm

= φmr
k

(
att − arr − n+ 2k − 1

r
ar

)
.

Hence a(r, t) must satisfy (here ν = n+ 2k)

att − arr − ν − 1

r
ar = 0, r ∈ (−∞,∞), t ≥ 0,(4.9)

a(., t=0) = 0, at(., t=0) = g.(4.10)

This is an IVP for the Darboux equation, which is well posed and has an explicit
solution given on page 700 of [7]. Essentially, one may use a method of descent to
reduce the problem to the cases ν = 2 and ν = 3 by noting that ar/r also satisfies
(4.9) and (4.10), except with ν replaced by ν + 2 and g replaced by gr/r.

Now if n is odd, then ν = n + 2k is odd. So the goal is to show that for all odd
ν = 3, 5, . . . , and all gi(r) which are smooth, even, and supported in [−ρ, ρ], we have

1

2

∫ ∞

0

rν−1 g1(r) g2(r) dr = rν−2

∫ ∞

0

t a1(r, t) a2tt(r, t) dt ∀r ≥ ρ,(4.11)

where ai(r, t), i = 1, 2 are the solution of (4.9), (4.10) with g = gi.
Now we have proved (1.6) for n = 3 and hence we have proved (4.11) for all

ν = 3 + 2k with k = 0, 1, 2, . . . . Hence, we have already proved (4.11) for all odd ν,
ν ≥ 3 (note (4.9) depends on ν and not on n directly). So we have completed the
proof of (1.6).

Remark. Another possible approach to proving (4.11) without first proving (1.6)
for the n = 3 case is to first verify (4.11) for ν = 3 (it is easy to write the explicit
solution of (4.9) when ν = 3), and then use a method of descent by observing that
ar/r also solves (4.9) except with ν replaced by ν+2. So far, we have been unable to
use the method of descent to prove (4.11). We were able to prove a symmetric version
of this relation using the method of descent, and while the nonsymmetric version
easily implies the symmetric version, the validity of the converse is not known.
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Appendix. The material is based on [8] and [10] and is included here for the
reader’s convenience; just Proposition 5 is new.

We give a definition of the m − 1 dimensional Hausdorff measure on Rm. For a
subset S of Rm, define

γ(S) = vol(m− 1) (diam(S)/2)m−1,

where vol(m− 1) is the volume of the m− 1 dimensional unit ball. So if S were the
intersection of a ball in Rm with a hyperplane, then γ(S) would be its surface area.
For any positive δ, define

φδ(S) = inf
F

∑
U∈F

γ(U),

where F is a countable open cover of S, with each set in F having diameter less than
δ. Now φδ(S) is a decreasing function of δ (the larger the δ the greater the number
of admissible open covers and hence the smaller the infimum), so we may define

Φ(S) = lim
δ→0+

φδ(S) = sup
δ>0

φδ(S).

It is shown in [8] that Φ is an outer measure, the σ algebra of all Borel subsets of
Rm are measurable in this outer measure, and Φ is regular. Furthermore, if a surface
S is the graph of a smooth function from an open subset of Rm−1 to R, then Φ(S)
equals the usual surface area of S (Section 3.3.4 in [8]). So the Hausdorff measure
generalizes the notion of surface area to Borel subsets of Rm.

H+

ν

A

H_

p

Next we define the exterior normal for any subset of Rm. For a point p ∈ Rm

and a unit vector ν we define the half-planes

H+(p, ν) = {x ∈ Rm : (x− p) · ν > 0 } , H−(p, ν) = {x ∈ Rm : (x− p) · ν < 0 } .
Suppose A is a subset of Rm and p a point in Rm. A unit vector ν is defined to

be an exterior normal to A at p if

lim
r→0+

r−m |Ac ∩H−(p, ν) ∩Br(p)| = 0,

lim
r→0+

r−m |A ∩H+(p, ν) ∩Br(p)| = 0.

Here | | is the Lebesgue measure on Rm. It is shown in [10] that if such a unit vector
exists (for a given A and p) then it is unique. We denote this unit vector by ν(A, p).
If no such unit vector exists then we set ν(A, p) = 0.

Proposition 4. Below, a vector x ∈ Rm will be occasionally written as x =
[x′, xm].
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• If A is a subset of Rm, then ν(A, p) is zero if p is in the interior of A or
Rm \A.

• If p ∈ ∂A and for some ρ > 0,

A ∩Bρ(p) = {x ∈ Bρ(p) : xm > f(x′)}

for some C2 function f(x′) of m − 1 variables, then ν(A, p) is a positive
multiple of [∇f(p′),−1].

• Under the conditions in the second item, for any unit vector θ �= ν(A, p),
there is a c > 0 so that for r small enough,

r−m |Ac ∩H−(p, θ) ∩Br(p)| > c,

r−m |A ∩H+(p, θ) ∩Br(p)| > c.

So, the second item asserts that ν(A, x) extends the notion of an outward pointing
unit normal to arbitrary subsets of Rn. In the third item, if θ �= ν(A, p), then the
definition of ν(A, p) implies that at least one of the limits will be nonzero; our claim
is that both of them are nonzero for A with C2 boundary.

Proof of first item. If p is an interior point of A, then for r small enough and any
unit vector θ,

r−m |A ∩H+(p, θ) ∩Br(p)| = r−m |H+(p, θ) ∩Br(p)| = vol(m)/2 > 0,

and hence θ cannot be ν(A, p). A similar argument works if p is an interior point of
Ac.

Proof of second and third items. We will prove the result in the case m = 2; the
general case is very similar. Here points in R2 will be denoted by (x, y).

Without loss of generality, we assume that p = (0, 0), that there is an f ∈ C2(R)
with f(0) = 0, f ′(0) = 0, and that

A = { (x, y) : y > f(x) } .

Hence we have the representation f(x) = x2g(x) for some continuous function g(x).
Since Br(0) contains the rectangle [−r/2, r/2] × [−r/2, r/2] and is contained in

the rectangle [−r, r] × [−r, r], without loss of generality we may assume that Br(p)
is the rectangle [−r, r] × [−r, r]. Furthermore, we may take r small enough so that
|f(x)| < r for |x| < r.

We first show that ν(A, p) = e2 = (0,−1). Now H+(e2, p) is the lower half-plane
and H−(e2, p) is the upper half-plane. Then

A ∩Br(p) ∩H+(e2, p) = { (x, y) ; −r < x < r, min(f(x), 0) ≤ y ≤ 0 },
Ac ∩Br(p) ∩H−(e2, p) = { (x, y) ; −r < x < r, 0 ≤ y ≤ max(f(x), 0) }.

Hence

r−2 |A ∩Br(p) ∩H+(e2, p)| ≤ r−2

∫ r

−r
|f(x)| dx ≤ Cr−2

∫ r

−r
x2 dx =

2Cr

3
,

r−2 |Ac ∩Br(p) ∩H−(e2, p)| ≤ r−2

∫ r

−r
|f(x)| dx ≤ Cr−2

∫ r

−r
x2 dx =

2Cr

3
,

which proves the second item.
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H+

−r

r

y=f(x)

p

a H_b

l
m

θ

−r
c n

r

A

We now give a proof of the third item. We will give a proof when θ = (θ1, θ2)
with θ1 < 0 and θ2 < 0. The other cases are similar. Below we will talk of the quadri-
laterals (or triangles) Quad(pabc) and Quad(plmn), which represent the intersections
of H+(p, θ) and H−(p, θ) with the second and fourth quadrants.

We observe that

A ∩H+(p, θ) ∩Br(p) ⊃ Quad(pabc) \Ac
= Quad(pabc) \ { (x, y) : −r < x < 0, 0 ≤ y ≤ max(f(x), 0) },
Ac ∩H−(p, θ) ∩Br(p) ⊃ Quad(plmn) \A
= Quad(plmn) \ { (x, y) : 0 < x < r, min(f(x), 0) ≤ y ≤ 0 }.

Hence

r−2 |A ∩H+(p, θ) ∩Br(p)| ≥ r−2Area(pabc)− r−2

∫ 0

−r
|f(x)| dx,

r−2 |Ac ∩H−(p, θ) ∩Br(p)| ≥ r−2Area(plmn)− r−2

∫ r

0

|f(x)| dx.

Now r−2Area(pabc) = r−2Area(plmn) = C for some constant C > 0 independent of
r, and

r−2

∫ r

−r
|f(x)| dx ≤ C1r

−2

∫ r

−r
x2 dx =

2C1r

3
.

Hence the result follows.
For subsets A and B of Rm, let p ∈ ∂(A∩B). We now wish to relate ν(A∩B, p)

to ν(A, p) and ν(B, p). If p ∈ ∂(A∩B), then p ∈ ∂A∪ ∂B, and if p is not a boundary
point of B, then it is an interior point of B, and hence Br(p) ∩ (A ∩B) = Br(p) ∩A
for r small enough. Hence for boundary points p of A∩B, with p /∈ ∂A∩∂B, we have
ν(A∩B, p) = ν(A, p) if p ∈ ∂A and ν(A∩B, p) = ν(B, p) if p ∈ ∂B. So it remains to
determine ν(A ∩B, p) when p ∈ ∂A ∩ ∂B.

Proposition 5. Suppose A and B are subsets of Rm, p is a boundary point of
A ∩B, and p ∈ ∂A ∩ ∂B. Suppose, for some ρ > 0,

A ∩Bρ(p) = {x ∈ Bρ(p) : xm > f(x′)}
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for some C2 function f(x′) of m − 1 variables; then either ν(A ∩ B, p) = ν(A, p) or
ν(A ∩B, p) = 0.

Proof. Let θ be a unit vector, θ �= ν(A, p). Then, from Proposition 4, there is a
c > 0 so that for small enough r

r−m |Ac ∩H−(p, θ) ∩Br(p)| > c.

Hence, for small enough r,

r−m |(A ∩B)c ∩H−(p, θ) ∩Br(p)| > c.

So θ cannot be the normal to A ∩B at p.
Now we state the Gauss–Green theorem as stated in [10].
Proposition 6 (Gauss–Green theorem). Let A be a bounded measurable subset

of Rm with Φ(∂A) < ∞, and f ∈ C1(Rm). Then∫
A

∂f

∂xj
dx =

∫
Rm

f(x) νj(A, x) dΦ, j = 1, 2, . . . ,m.

Here νj(A, x) is the jth component of ν(A, x).
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Abstract. In this paper we study a nonlinear eigenvalue problem and associated perturba-
tions of the problem. More specifically, we generalize a variational characterization of the second
eigenvalue for homogenous quasi-linear elliptic operators, such as the p-Laplacian, to a class of non-
homogeneous quasi-linear elliptic operators. Neumann boundary data is assumed throughout the
paper. To demonstrate the utility of this characterization we use it to prove a generalized Fredholm
alternative for nonresonant perturbations of the given eigenvalue problem.
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1. Introduction. In this paper we consider the nonlinear eigenvalue problem

Qu− λ|u|p−2u = 0 a.e. in Ω,
∂u
∂ν = 0 on ∂Ω,

(1.1)

where Q is a quasi-linear elliptic operator generalizing the p-Laplacian, Ω ⊂ �N is a
smooth bounded domain, ν is the unit outward normal on ∂Ω, λ is a real number, and
1 < p <∞. A key technical challenge is that Q is not assumed to be homogeneous.

It will be clear that the principal eigenvalue is λ1 = 0 with an associated simple
eigenspace of constant functions, W := span{1}. Our interest is in establishing
and exploiting an appropriate variational characterization for the second eigenvalue.
For homogeneous operators, it is simplest to define λ2 as the smallest number that
is strictly larger than λ1 such that (1.1) has a nontrivial solution, and it is well
known that this definition has useful variational characterizations; see [2]. Choosing
an appropriate definition becomes more subtle when dealing with nonhomogeneous
operators, because the existence of a λ such that (1.1) has a nontrivial solution does
not necessarily imply the existence of an unbounded set of solutions. Describing
unbounded sets of solutions is fundamental to understanding perturbations of (1.1).
In order to motivate a useful definition, it is helpful to review the properties of more
familiar operators.

In the linear case, e.g., where Q = −∆, it is well known that

λ2 = inf
Q(v, v)

||v||2L2

for v ∈ V2 \ {0},(1.2)

where Q(u, v) :=
∫
Ω
∇u · ∇v is the bilinear form associated with Q, and V2 := W⊥ =

{u ∈ W 1,2(Ω) :
∫
Ω
u = 0}. An equivalent characterization, of minimax type, is given

by

λ2 = inf
γ∈Γ

sup
t∈[−1,1]

Q(γ(t), γ(t)),(1.3)

∗Received by the editors April 9, 2003; accepted for publication July 18, 2003; published elec-
tronically January 6, 2004.
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where Γ := {γ : [−1, 1] → ∂B1 : γ is continuous, and γ(±1) = ±φ1}, ∂B1 := {u ∈
W 1,2(Ω) : ||u||L2 = 1}, and φ1 := ( 1

|Ω| )
1
2 .

These statements generalize in a natural way to certain homogeneous operators
such as the p-Laplacian, i.e., Qu := −∇ · (|∇u|p−2∇u). To generalize (1.2) in this
case, replace the bilinear form with the quasi-linear form Q(u, v) =

∫
Ω
|∇u|p−2∇u·∇v,

and replace the subspace V2 with the surface Vp := {u ∈ W 1,p(Ω) :
∫ |u|p−2u = 0}.

To this author’s knowledge, it was not known until recently whether replacing V2

with Vp is necessary. In fact, for the ODE case, and for the PDE case over certain
simple domains such as Ω = [0, 1]N , it is clear that one obtains the same value when
minimizing over either V2 or Vp. However, in [7] it is shown that, in general, a sharper
characterization is obtained by minimizing over Vp.

To generalize (1.3), simply replace L2 norms by Lp norms in appropriate places.
See [2], [3], [4], and the references therein for a more detailed discussion of the p-
Laplacian and its eigenvalues.

For nonhomogeneous quasi-linear operators, there are many papers in the litera-
ture describing the properties of the principle eigenvalue and corresponding principle
eigenfunctions. For example, see the results and references in [5]. However, there seem
to be relatively few papers that consider the second eigenvalue. A notable exception
is found in the work of Shapiro et al., where a variety of resonance and nonresonance
theorems involving a second eigenvalue are proved under very general circumstances.
For example, see [10] and [12] and references therein. (Studying these results was a
primary motivation for this paper.) In both [10] and [12], the second eigenvalue is
defined as

λ∗2 := lim inf
||v||Lp(Ω)→∞

Q(v, v)

||v||pLp(Ω)
for v ∈ V2.

This definition is naturally motivated by the nearly orthogonal splitting of the
Banach space W 1,p(Ω) = W + V2. Observe that this definition generalizes (1.2) but
does not substitute Vp for V2. The result in [7] shows that λ∗2 < λ2 in general. It
follows that our results, which are based upon the sharper characterization, lay the
groundwork for more general existence theorems, as is demonstrated in section 4.

The paper is organized as follows. In section 2 we provide a precise description
of Q along with preliminary remarks on notation and simple properties. In section 3
we define λ2 using a natural generalization of (1.3) and then show that this is equiv-
alent to a natural generalization of (1.2). Moreover, we establish a helpful estimate
regarding the primitive of the quasi-linear form associated with Q and hint at possible
generalizations. Finally, in section 4 we consider the boundary value problem

Qu− g(x, u) = h a.e. in Ω,
∂u
∂ν = 0 on ∂Ω

(1.4)

and prove an existence theorem assuming that g(x,u)
|u|p−2u lies strictly between 0 and λ2 for

large u and that h ∈ (W 1,p(Ω))∗ is arbitrary. This demonstrates the usefulness of λ2

as a bound for existence theorems and generalizes one case of the Fredholm alternative
for self-adjoint linear operators. The proof obtains a solution as a saddle point over
linked sets. For the relevant definitions and theorems of measure theory, Sobolev
spaces, and variational theory, we refer the reader to [9], [1], and [13], respectively.
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2. Preliminaries. Let A : Ω ×�N → �N such that

(A–1) (Carathéodory) The map x→ A(x, ξ) is measurable for each ξ ∈ �N , and the
map ξ → A(x, ξ) is continuous for a.e. x ∈ Ω.

(A–2) (Growth) There exist a positive constant c1, a constant p ∈ (1,∞), and a

nonnegative function h̃ ∈ Lp′(Ω), where p′ = p/(p− 1), such that

|A(x, ξ)| ≤ h̃(x) + c1|ξ|p−1

for a.e. x ∈ Ω and for all ξ ∈ �N .
(A–3) (Ellipticity) There exists a positive constant c2 such that

N∑
i=1

Ai(x, ξ) · ξ ≥ c2

N∑
i=1

|ξ|p

for a.e. x ∈ Ω and for all ξ ∈ �N , where p is as in (A–2).
(A–4) (Monotonicity) Assume that for a.e. x ∈ Ω and each ξ, ξ∗ ∈ �N with ξ �= ξ∗,

N∑
i=1

[Ai(x, ξ) −Ai(x, ξ∗)](ξi − ξ∗i ) > 0.

(A–5) (One-sided p-homogeneity) A(x, tξ) · ξ ≤ tp−1A(x, ξ) · ξ for all t > 0 and all
(x, ξ) ∈ Ω ×�N .

Given the assumptions above, it now makes sense to formally define

Qu := −∇ · (A(x,∇u))(2.1)

and to define the quasi-linear Dirichlet form

Q(u, v) :=

∫
Ω

A(x,∇u) · ∇v ∀ u, v ∈W 1,p(Ω).(2.2)

In view of (A–2), we see that Q is well defined on W 1,p(Ω) ×W 1,p(Ω).
In order to impose a variational structure on Q, we assume that A(x, ξ) =

∇ξF (x, ξ), where F : Ω ×�N → � satisfies the following:
(F–1) (Carathéodory) The map x→ F (x, ξ) is measurable for each ξ ∈ �N , and the

map ξ → F (x, ξ) is continuously differentiable for a.e. x ∈ Ω.
(F–2) (Growth) There exist a positive constant c3 and a nonnegative function h ∈

L1(Ω) such that

|F (x, ξ)| ≤ h(x) + c3|ξ|p

for a.e. x ∈ Ω and all ξ ∈ �N , where p is chosen as in (A–2).
(F–3) (Normalization) F (x, 0) = 0 for a.e. x ∈ Ω.

It follows that u �→ ∫
Ω
F (x,∇u) is a C1 functional on W 1,p(Ω) with derivative

u �→ Q(u, ·). Moreover, using the fundamental theorem of calculus and Fubini’s

theorem, we see that
∫
Ω
F (x,∇u) =

∫ 1

0
Q(tu, u)dt, which will be the more useful form

for later estimates. Given this structure, we see that solutions of (1.1) and (1.4) are
equivalent to critical points of the functionals

Eλ(u) =
∫ 1

0
Q(tu, u)dt− λ

p

∫
Ω
|u|p and

J(u) =
∫ 1

0
Q(tu, u)dt− ∫

Ω
G(x, u) − h(u),

(2.3)
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respectively, where G(x, u) :=
∫ u
0
g(x, t)dt.

Throughout this paper we will use the norm in W 1,p(Ω) given by

||u||p1,p = ||u||pLp +

N∑
i=1

|| ∂u
∂xi

||pLp ,

where || · ||Lp denotes the Lp(Ω) norm. We will also be using the seminorm

|u|′1,p =

{
N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
p

Lp

}1/p

.

Observe that by the definition of Q in (2.2) and (A–3) we get

Q(u, u) ≥ c2

∫
Ω

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
p

= c2(|u|′1,p)p(2.4)

for all u ∈W 1,p(Ω) so that lim inf ||u||Lp→∞
Q(u,u)
||u||p

Lp
≥ 0. Define

λ1 := lim inf
||u||Lp→∞

Q(u, u)

||u||pLp
as in [11, p. 1821] . Since Q(u, u) = 0 for u constant, we see that λ1 = 0. On the other
hand, for nonconstant v ∈ W 1,p(Ω) we obtain from (2.4) that Q(v, v) > 0, so λ1 = 0
behaves like a simple eigenvalue with constant normalized eigenfunction φ1 ≡ 1

|Ω|1/p
and corresponding eigenspace W := span{1}.

Remark 1. Conditions (A–1) through (A–5) and (F–1) through (F–3) are not
entirely independent. For example, the growth condition on F can be derived from
the growth condition on A. For convenience and clarity, we chose to state these
standard properties separately.

Remark 2. Condition (A–5) is only used in the proof of the Palais–Smale con-
dition in section 4. Conditions of this type have appeared often in the literature.
Recently, in [12], Shapiro used a similar condition to prove an existence theorem for
(1.4), assuming that g satisfies a superlinear growth condition. (A–5) implies that
pF (x, ξ) ≤ ∇ξF (x, ξ) · ξ, which is closely related to the Ambrosetti–Rabinowitz con-
dition (AR), which has appeared in a variety of contexts. However, AR is usually
imposed on the nonlinear perturbation of a linear elliptic boundary value problem
(see condition (p4) on page 9 of [6]), whereas (A–5) is imposed upon the nonlinear
differential operator.

3. Definition and characterization of λ2. We begin by stating a natural
generalization of (1.3).

Definition 3.1. Let ΓR := {γ : [−1, 1] → ∂BR : γ is continuous, and γ(±1) =

±φR}, where ∂BR := {u ∈ W 1,p(Ω) : ||u||Lp = R}, and φR := ( R|Ω| )
1
p . Define

λ2,R := infγ∈ΓR supt∈[−1,1]
Q(u,u)
Rp , and λ2 := lim infR→∞ λ2,R.

Our first lemma establishes an equivalence between the above definition and a
generalization of (1.2).

Lemma 3.2. λ2 = lim inf ||v||Lp→∞
Q(v,v)
||v||p

Lp
for v ∈ Vp := {u ∈W 1,p(Ω) :

∫
Ω
|u|p−2u

= 0}.
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Proof. Consider definition (3.1). Any curve in ΓR must cross Vp, so it is clear
that

λ2,R ≥ inf
v∈Vp∩∂BR

Q(v, v)

Rp
.

Thus λ2 ≥ lim inf ||v||Lp→∞
Q(v,v)
||v||p

Lp
for v ∈ Vp.

On the other hand, given ε > 0 and R > 0, consider vR ∈ Vp ∩ ∂BR such that
Q(vR,vR)

Rp < infv∈∂BR∩Vp
Q(v,v)
Rp + ε. Now consider the curve

η(t) :=




−T + tvR for 0 ≤ t ≤ 1,

t− 1 − T + vR for 1 ≤ t ≤ 2T + 1,

T + (−t+ 2T + 2)vR for 2T + 1 ≤ t ≤ 2T + 2,

where T is a large positive constant. This is essentially a long line segment paralleling
W with short connections to W on either end. Also consider the set

C := {u ∈W 1,p(Ω) : ∃ continuous γ : [−1, 1] → ∂B||u||Lp such that

γ(−1) = − ||u||Lp
|Ω|

1
p

and Q(γ(t), γ(t)) < λ2,||u||Lp ||u||pLp ∀t}.

C is the set of points in W 1,p(Ω) that can be connected to a negative constant function
by a curve which stays on the surface of an Lp sphere, ∂BR, without crossing a point

where Q(u,u)
Rp ≥ λ2,R. A straightforward argument shows that C is open. It is clear

that η(0) = −T ∈ C. Thus η−1(C) is a nonempty open subset of [0, 2T + 2]. If
η−1(C) = [0, 2T+2], then η(2T+2) = T is in C, so T can be connected to −T by a curve

on ∂BR, where Q(u,u)
Rp < (λ2,R)Rp, for R = T

|Ω|
1
p

, which contradicts the definition of

λ2,R. Therefore, there is a maximal t′ ∈ (0, 2T + 2) such that η(t) ∈ C for t ∈ [0, t′).
Let u′ = η(t′) and R′ = ||u′||Lp . We see that Q(u′, u′) ≥ λ2,R′(R′)p, or else we could
move a little farther along η while remaining in C, which would contradict our choice
of t′. For large T , we argue that t′ ∈ (1, 2T + 1). For any t ∈ [0, 1]

⋃
[2T + 1, 2T + 2],

we have Q(η(t),η(t))
||η(t)||p

Lp
= Q(t∗vR,t∗vR)

||η(t)||p
Lp

, where t∗ ∈ [0, 1] and ||η(t)||Lp → ∞ as T → ∞, so

Q(η(t),η(t))
||η(t)||p

Lp
<< λ2 for large T . This estimate leads to the fact that η(t) ∈ C for any

t ∈ [0, 1] and η(t) �∈ C for any t ∈ [2T + 1, 2T + 2], and thus t′ ∈ (1, 2T + 1). Along
the segment where 1 < t < 2T + 1, we see that Q(η(t), η(t)) ≡ Q(vR, vR). Also, since
for any u ∈ W 1,p(Ω) the function τ → ∫

Ω
|u + τ |p achieves a unique minumum for s

such that u+ s ∈ Vp, we see that ||η(t)||pLp achieves its minimum at t = T + 1, where

η(t) = vR. Hence R′ > R and λ2,R′ ≤ Q(u′,u′)
(R′)p ≤ Q(vR,vR)

Rp ≤ infVp∩∂BR
Q(v,v)
Rp + ε.

The lemma follows.
Of course, if the given characterizations lead to λ2 = λ1 = 0, then the existence

theorem in section 4 would not be very interesting. Thus we should take a moment
to mention the following.

Lemma 3.3. 0 < λ2 <∞.
Proof. The first inequality follows from the ellipticity condition and a Poincare–

type inequality. For the details of a more general estimate see Lemma 3.2 in [8]. The
second inequality follows from the growth condition on A.

In the homogeneous case the relationship between Q and its primitive is trivial,

because
∫ 1

0
Q(tu, u)dt = Q(u, u)

∫ 1

0
tp−1dt = 1

pQ(u, u), but in the nonhomogenous
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case this relationship is more subtle. The following lemma provides a useful estimate
and a relationship between Q and its primitive.

Lemma 3.4. λ2 ≤ lim inf ||v||Lp→∞
p
∫ 1

0
Q(tv,v)dt

||v||p
Lp

for v ∈ Vp.
Proof. Given ε > 0 and δ > 0, choose R > 0 such that inf∂Br∩Vp Q(v, v) ≥

(λ2 − ε)rp for all r > δR. Hence for v ∈ (∂BR ∪ Vp),

p

∫ 1

0

Q(tv, v)dt ≥ p(λ2 − ε)
∫ 1

δ

tp−1dt

∫
Ω

|v|p = (λ2 − ε)(1 − δp)
∫

Ω

|v|p.

The result follows.
Remark 3. An interesting possibility would be to base our definition of λ2 on the

generalized Raleigh quotient

p
∫ 1

0
Q(tv, v)dt∫
Ω
|v|p

rather than on

Q(u, u)∫
Ω
|u|p .

This is not an issue in the homogenous case, but might be of interest for certain
nonhomogeneous operators. Notice that a straightforward Lagrange multipliers argu-

ment shows that a critical point of
∫ 1

0
Q(tv, v)dt constrained to a sphere ∂BR must

occur on Vp
⋂
∂BR. Hence a minimax characterization similar to Definition 3.1 would

reduce to the lim inf characterization in Lemma 3.4. Moreover, it would be of inter-
est to compare these variational definitions to an arguably more natural definition
generalizing λ2 := inf{λ > 0 : (1.1) has a nontrivial solution}, as in [2].

Remark 4. In order to simplify notation and clarify exposition, we have limited
ourselves to second order operators. However, the notation and the results in this
paper generalize in a straightforward way to operators of order 2m. See [10] for
details.

4. A nonresonance theorem. In this section we consider the boundary value

problem (1.4), where g(x,u)
|u|p−2u is bounded strictly between the eigenvalues λ1 and λ2,

and where h ∈ (W 1,p(Ω))∗. This is called a nonresonance problem and we should
expect, as in the Fredholm alternative, that the problem will be solvable for any
choice of h. Proving this theorem verifies the practicality of Definition 3.1.

First we set the stage for a variational proof. Let G(x, u) :=
∫ u
0
g(x, t)dt and let

J(u) :=

∫ 1

0

Q(tu, u)dt−
∫

Ω

G(x, u) − h(u) for u ∈W 1,p(Ω).

J is a C1 functional with

J ′(u)v = Q(u, v) −
∫

Ω

g(x, u)v − h(v).

Critical points of J correspond to weak solutions of (1.4).
Our proof establishes the existence of a critical point using a saddle point theorem

over linked sets. See [13, Theorem 8.4] for details. We will show that J has a saddle
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geometry over the linked sets W and Vp, and then we will show that J satisfies the
Palais–Smale condition, i.e., that if {un} ⊂ W 1,p(Ω) such that {J(un)} is bounded
and J ′(un) → 0 in (W 1,p(Ω))∗, then {un} has a converging subsequence.

Theorem 4.1. Assume (A–1), (A–2), (A–3), (A–4), (A–5), (F–1), (F–2), and
(F–3) and that Q(u) := −∇ · (A(x,∇u)). In addition assume that g : Ω×� → � is a
Carathéodory function satisfying

0 ≤ ε ≤ g(x, u)

|u|p−2u
≤ λ2 − ε(4.1)

for some ε > 0. Assume that h ∈ (W 1,p(Ω))∗. Then (1.4) has at least one weak
solution in W 1,p(Ω).

Proof. It is clear that, for any constant C > 0, if γ : [−1, 1] → W 1,p(Ω) is a
continuous curve such that γ(±1) = ±C, then there is at least one t0 ∈ [−1, 1] such
that γ(t) ∈ Vp. Thus {±C} and Vp link.

Consider J restricted to W . Since Q(u, c) = 0 for any u ∈ W 1,p(Ω) and any
constant c, we have

J(c) = −
∫

Ω

G(x, c) − h(c).

Using (4.1) we see thatG(x, c) ≥ ε
p |c|p for all c, so it follows that lim||w||W1,p(Ω)→∞ J(w) =

−∞.

Consider J restricted to Vp. First we choose δ > 0 and apply ellipticity to get

J(v) ≥ δc2

∫
Ω

|∇v|p + (1 − δ)
∫ 1

0

Q(tv, v)dt−
∫

Ω

G(x, v) − h(v).

By Lemma 3.4 there is an R > 0 such that
∫ 1

0
Q(tv, v) ≥ (λ2− ε

2 )||v||pLp for ||v||Lp > R.

Applying (4.1) again, we see that G(x, v) ≤ λ2−ε
p |v|p for all v, so

J(v) ≥ δc2

∫
Ω

|∇v|p + (1 − δ)
(
λ2 − ε

2

p

)
||v||pLp −

λ2 − ε
p

||v||pLp − ||h||W 1,p(Ω)∗ ||v||1,p.

For δ small enough, there is a constant c′ > 0 such that

J(v) ≥ c′||v||p1,p − ||h||W 1,p(Ω)∗ ||v||1,p.

Hence, for J restricted to Vp, we have lim||v||1,p→∞ J(v) = ∞.

We have shown that J has a saddle geometry over the linked sets W and Vp.
It remains to prove the Palais–Smale condition. Suppose that {un} ∈ W 1,p(Ω) such
that |J(un)| ≤ K for all n for some K > 0, and such that J ′(un) → 0 in (W 1,p(Ω))∗.
We must show that {un} has a converging subsequence. We note that it suffices to
show that there is a bounded subsequence. See [10]. Suppose that ||un||1,p → ∞.
First, using ellipticity and (4.1), we see that

J ′(un) · un ≥ c2(|un|′1,p)p − (λ2 − ε)||un||pLp .

Since J ′(un) → 0, we can divide the given inequality by ||un||Lp and discover that
|un|′1,p ≤ c′||un||Lp for some c′ > 0, and thus ||un||1,p ≤ c′′||un||Lp for some c′′ > 0.
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Without loss of generality, the sequence { un
||un||Lp } converges weakly in W 1,p(Ω) and

strongly in Lp(Ω) to some function u such that ||u||Lp = 1. Now consider

J ′(un) · 1 =

∫
Ω

g(x, un) =

∫
Ω

g(x, u+
n ) +

∫
Ω

g(x,−u−n ).

Equation (4.1) implies

ε

∫
Ω
|u±n |p−1

||un||p−1
Lp

≤ ±
∫
Ω
g(x,±u±n )

||un||p−1
Lp

≤ (λ2 − ε)
∫
Ω
|u±n |p−1

||un||p−1
Lp

,

and J ′(un) → 0 implies that

lim
n→∞

∫
Ω
g(x, u+

n )

||un||p−1
Lp

= − lim
n→∞

∫
Ω
g(x,−u−n )

||un||p−1
Lp

,

where we can assume that the given limits exist by passing to a subsequence. If
this limit is 0, then

∫
Ω
|u+|p−1 =

∫
Ω
|u−|p−1 = 0, which contradicts the fact that

u is nontrivial. Thus the limit is positive and it follows that both u+ and u− are
nontrivial. Now consider

J ′(un) · u+
n = Q(un, u

+
n ) −

∫
Ω

g(x, un)u+
n = Q(u+

n , u
+
n ) −

∫
Ω

g(x, u+
n )u+

n .

Dividing through by ||un||pLp , using (4.1), and using the fact that J ′(un) · un
||un||Lp → 0,

we see that

Q(u+
n , u

+
n ) ≤

(
λ− ε

2

)∫
Ω

|u+
n |p

for n large. A similar estimate holds for u−n . Hence, for large n, we have that
u+
n and u−n are nontrivial and satisfy the previous inequality. Using such a un we

construct the curve γ(α, β) = αu+
n − βu−n such that α and β are nonnegative and

αp||u+
n ||pLp + βp||u−n ||pLp = ||un||pLp . It is now straightforward to check that this curve

lives on the Lp ball of radius ||un||Lp and crosses Vp. Using (A–5) we get the estimate

Q(αu+
n − βu−n , αu+

n − βu−n ) = Q(αu+
n , αu

+
n ) + Q(−βu−n βu−n )

≤ (αp||u+
n ||pLp + βp||u−n ||pLp) (λ2 − ε

2 )
≤ ||u||Lp(λ2 − ε

2 ).

However, for large ||un||Lp , we must have Q(γ(α, β)) > (λ2 − ε
2 )||un||pLp at the point

where this curve crosses Vp. Thus we have reached a contradiction and the proof
is complete.
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Abstract. This paper concerns the fluid dynamics modelled by the stochastic flow{
η̇ (t, x) = u (t,η (t, x)) + σ (t,η (t, x)) ◦ Ẇ ,

η(0, x) = x,

where the turbulent term is driven by the white noise Ẇ . The motivation for this setting is to
understand the motion of fluid parcels in turbulent and randomly forced fluid flows. Stochastic
Euler equations for the undetermined components u(t, x) and σ(t, x) of the spatial velocity field are
derived from the first principles. The resulting equations include as particular cases the deterministic
and randomly forced counterparts of these equations.

In the second part of the paper, we prove the existence and uniqueness of a strong local solution
to the stochastic Navier–Stokes equation in W 1

p (Rd), d > 1, p > d. In the two-dimensional case, the
existence and uniqueness of a global strong solution is shown.

In the third part, we deal with the propagation of Wiener chaos by the stochastic Navier–Stokes
equation and its relation to statistical moments of the solution.

Key words. stochastic Navier–Stokes, turbulence, Kraichnan’s turbulence, Wiener chaos, mo-
ments
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1. Introduction. The relation of the Navier–Stokes equation to the phenomenon
of hydrodynamic turbulence is widely regarded as one of the most fascinating prob-
lems of fluid mechanics. The onset of turbulence is often related to the randomness
of background movement. One way to model this is to consider a randomly forced
Navier–Stokes equation. Bensoussan and Temam [3] have pioneered the analytical
study of a Navier–Stokes equation driven by white noise type random force. Later,
this approach was substantially developed and extended by many authors (see, e.g.,
[4], [5], [7], [13], [15], [21], [35], [41], [51], [52], etc.).

These papers postulated some form of randomly forced Navier–Stokes equation
at the inception point. A somewhat different approach was taken in the recent paper
[40]. This paper assumed that the dynamics of the fluid particle was given by the
stochastic diffeomorphism

η̇ (t, x) = u (t,η (t, x)) + σ (t,η (t, x)) ◦ Ẇ ,η(0, x) = x(1.1)

with undetermined local characteristics u (t, x) , and σ (t, x) .1 In this setting, Ẇ is
a time derivative of a Hilbert space valued Brownian motion (e.g., space-time white

∗Received by the editors June 3, 2002; accepted for publication (in revised form) April 18, 2003;
published electronically January 30, 2004. This work was partially supported by NSF grant DMS-
98-02423, ONR grant N00014-97-1-0229, and ARO grant DAAG55-98-1-0418.
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1Here and throughout the rest of the paper, vector fields on Rd are denoted by boldface letters.

This convention also applies if the entries of the vector field are taking values in a Hilbert space.
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noise) and the stochastic integral is understood in the Stratonovich sense. The gener-
alized random field σ (t, x) ◦ Ẇ models the turbulent part of the velocity field, while
u (t, x) models its regular component.

The idea of splitting up the velocity field into a sum of slow oscillating (deter-
ministic) and fast oscillating (stochastic) components has often been entertained in
fluid mechanics; important developments along these lines may be traced to the work
of Reynolds in the 1880s. Our interest in stochastic flows of the form (1.1) stems in
part from recent developments in modelling a turbulent velocity field by a generalized
Gaussian field V (t, x) with zero mean and covariance C(x−y, t−s) = K(x−y)δ(t−s)
such that the spatial part is of the form

Kij(x− y) = Aij +Dij |x− y|κ for |x− y| << 1,

where κ ∈ (0, 2) and decays rapidly as |x− y| −→ ∞. This model was pioneered by
Kraichnan in his work on turbulent transport [26] and substantially developed later
in a series of works by Gawedzki et al. [16], [17] and other authors. The velocity field
V (t, x) can be realized by way of its identification with a random field of the form
σ (x) · Ẇ (t) (see [2], [31], and section 2.2).

Relating the Kraichnan velocity field to classic fluid mechanics might naturally
lead us to ask: “Can we compensate V (t, x) by a field u (t, x) that is more regular
with respect to time variable so that there is a balance of momentum for the resulting
field U (t, x) = u (t, x) + σ (x) ◦ Ẇ (t) or, equivalently, that the motion of a fluid
particle modelled by (1.1) satisfies the Newton’s second law?”2

The answer to this question is positive. Moreover, it turns out that following
the classic scheme of Newtonian fluid mechanics (i.e., coupling (1.1) with Newton’s
second law), a quite general stochastic Navier–Stokes equation,

∂tu = ∆u− (u,∇)u−∇p+ f(u)

+ [(σ,∇)u−∇p̃+ g(u)] ◦ Ẇ ,
(1.2)

may be derived for u (t, x) (see [40] and section 2.2). Special cases of this equation
include the standard deterministic Navier–Stokes and Euler equation as well as many
other variations of the stochastic Navier–Stokes equation considered in the literature.
A more detailed treatment of this subject is given in section 2. To emphasize the
relation of equation (1.2) to the flow (1.1) involving the (short time) turbulent com-
ponent σ (x) ◦ Ẇ (t) , we will often refer to it as a turbulent stochastic Navier–Stokes
equation.

Section 3 deals with the analytical theory of the stochastic Navier–Stokes equation
(1.2) and some generalizations of this equation. One technically challenging feature
of the SNS equation (1.2) is that it involves multiplicative noise with the diffusion
coefficient depending on ∇u. The existence and uniqueness of a maximal local solu-
tion in the Sobolev space W 1

p (R
d) for arbitrary d > 1 and p > d is shown (Theorem

3). Note that owing to the embedding C1−d/p(Rd) ⊂ W 1
p (R

d), the solution is Hölder
continuous. The maximal solution is understood in the (probabilistic) strong sense,
e.g., pathwise rather than as a solution of a martingale problem. For the latter, see,
e.g., [4], [15], [41], [51]. In the case of d = 2, it is proved in Theorem 4 that there
exists a unique global solution to (1.2) .

2A priori, it is not clear in what sense the motion described by Kraichnan’s velocity might fit
into the paradigm of Newtonian mechanics.
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We remark that the results of section 3 do not cover the case of only Hölder-
continuous σ (x) , that assumption being important for Kraichnan’s turbulent velocity
model. This case is addressed in the forthcoming paper [43].

The Lp-theory of strong solutions of SNS equations was studied in [5] (see also
references therein). In that paper, the local (global in two dimensions) existence and
uniqueness were proved for a randomly forced Navier–Stokes equation

∂tu = ∆u− (u,∇)u−∇p+ f(u) + g(u) ◦ Ẇ(1.3)

in a smooth bounded domain of Rd (d = 2 or 3). In this equation, the noise influences
the motion of the fluid only by the velocity, rather than by the velocity and its gradient,
as is the case in [4], [15], [39], and the present paper. Consequently, it does not cover
the case of turbulent stochastic flow.

For a substantial body of related work on Lp-solutions of deterministic Navier–
Stokes equations, see, e.g., [18], [24], [25], etc.

Section 4 deals with the propagation of Wiener chaos and moment theory for
SNS equations. In this section, we derive a deterministic parabolic system for the
Hermite–Fourier coefficients in a Wiener chaos expansion of u (t, x) , which we refer
to as the “propagator.” We show that the statistical moments of the velocity field
u (t, x) can be directly expressed via the solution of the propagator. While still an
infinite-dimensional system, the propagator for the SNS equation is a much simpler
object than the related Kolmogorov equation. On the other hand, it is quite sufficient
for dealing with the basic statistical properties of solutions to the SNS equation.3

2. Phenomenology of stochastic Navier–Stokes and Euler equations.

2.1. Preliminaries. Classic fluid mechanics deals with two essentially equiva-
lent approaches to modelling the motion of fluid, namely Euclidean and Lagrangian
formalisms. The centerpiece of the former is the Navier–Stokes equation for the fluid
velocity u(t, x). This equation is expressed in Euclidean coordinates as


∂tu+ uluxl − ν∆u+ 1

ρ∇p = f , in [0, ∞)×Rd,

u(0) = u0.

(2.1)

In the case of ideal fluid, (2.1) reduces to Euler equation


∂tu+ uluxl +
1
ρ∇p = f , in [0, ∞)×Rd,

u(0) = u0.

(2.2)

In the case of incompressible fluid, both equations have to be complemented by the
equation

divu(t, x) = 0.

The Lagrangian formalism emphasizes the dynamics of fluid particles. Let us
write η(t, x) for the trajectory followed by the fluid particle that is at point x at time
t = 0. Obviously, η(t) = (ηi(t, x), i = 1, . . . , d) verifies the equation

∂tη
i (t, x) = ui (t,η (t, x)) , ηi (0, x) = xi.(2.3)

3The main results of the paper were announced in [39].
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The function η(t, x) is usually referred to as a fluid flow or fluid flow map. Equation
(2.3) yields that the fluid flow is defined by u(t, x), a solution of the Navier–Stokes
(Euler) equation. On the other hand, one could argue that fluid flow η is an equally
or even more basic notion than velocity u. Indeed, the classic Euclidean approach
postulates that the fluid particle motion is given by (2.3) with unknown smooth
velocity field u; it then shows that this equation, together with Newton’s second law,
yields (2.1) (see, e.g., [30], [8]). A more recent approach to fluid mechanics pioneered
by Arnold, Marsden, and Ebin (see [1], [14]) treats the fluid flow as an intrinsically
defined infinite-dimensional dynamical system.

In this paper we consider a flow similar to (2.3) but make the fluid particle subject
to turbulent diffusion. The motivation for this setting is to understand the motion of
fluid parcels in turbulent and randomly forced fluid flows.

More specifically, we postulate that the fluid particle’s motion is given by the
equation

η̇ (t, x) = u (t,η (t, x)) + σ (t,η (t, x)) ◦ Ẇ ,η(0, x) = x,(2.4)

where W (t) is a cylindrical Brownian motion in some Hilbert space Y (see [41]),
Ẇ = ∂W (t)/∂t, and u(t, x) and σ(t, x) are unknown random fields.

The fluid flow map (2.4) corresponds to the velocity field

U (t, x) = σ (t, x) ◦ Ẇ + u (t, x) .(2.5)

The singular term of this field, σ (t, x)◦Ẇ , is referred to as the “turbulent component.”
If W and σ are statistically independent, e.g., if σ is nonrandom, σ (t, x) ◦ Ẇ :=
σ(t, x) · Ẇ + 1

2σxp (t, x)σ
p (t, x) .

We remark that Kraichnan’s turbulence model is an interesting example of the
turbulent component in (2.5) .

In the generalization of Kraichnan’s model introduced in [16] (see also [17]), the
turbulent component V (t, x) is modelled by a homogeneous, isotropic, and stationary
Gaussian random field with zero mean and covariance

EV i (t, x)V j (s, x) = Kij (x− y) δ (t− s) ,

where Kij (x− y) = Cij
0 δij −Dij (x− y) . The following asymptotic properties were

assumed:
(i) The spatial covariance Kij (x− y) decays fast for |x− y| > 1.
(ii) For |x− y| << 1,

Dij (x− y) = D
(
(d+ κ− 1) δij − κxixj/ |x|2

)
|x|κ .

As illustrated in [31], one possible construction of a homogeneous Gaussian ran-
dom field with the Kraichnan-type covariance is given by

σ (x) · Ẇ (t) =
d

dt

( ∞∑
i=1

σk (x)w
k (t)

)
,

where wk (t) are independent one-dimensional Brownian motions and σk (x) are Hölder
continuous with an exponent κ/2 and so that divσk (x) = 0 and

∑
ik |σik (x) |2 ≤ K <

∞.
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In this section we will derive equations for u(t, x) and σ(t, x). This will be done
by coupling (2.4) with Newton’s second law, in much the same way as it is done in
classic macroscopic fluid dynamics.

The equations obtained include as particular cases the deterministic Navier–
Stokes equation (2.1), as well as the Navier–Stokes equation with stochastic forcing
(see [3], [4], [5], [7], [15], [41], [51], etc.).

2.2. Balance of momentum. Let (Ω,F ,P ) be a complete probability space
and let Y be a separable Hilbert space. Let W be Y -valued cylindrical Brownian
motions on (Ω,F ,P ). Write FW

t = σ(W (s), s ≤ t).
Consider the equation

dη(t, x) = u(t,η(t, x))dt+ σ(t,η(t, x)) ◦ dW (t),η(0, x) = x,(2.6)

where ◦ indicates the Stratonovich version of the stochastic integral.
Let us assume the following:
(H1) u is continuous semimartingale given by

du (t, x) = α (t, x) dt+ β (t, x) ◦ dW (t),(2.7)

where α : Ω× [0,∞)×Rd → Rd and β : Ω× [0,∞)×Rd → Y d are measurable and
FW
t -adapted functions for every x; σ : [0,∞)×Rd → Y d is a nonrandom measurable

function.
In what follows, we shall also assume that, for fixed t,η is an invertible mapping;

α,β, and σ are appropriately integrable and smooth so that the stochastic integrals
are defined and the following manipulations are legitimate. In particular, to define
the Stratonovich integral, one needs to assume the existence and some regularity of
the joint quadratic variation 〈β (·, x) ,W 〉t (see [29]).

One fundamental postulate of fluid mechanics (see, e.g., [8] ) is Newton’s second
law: “the rate of change of momentum of a fluid particle equals the force applied to
it”; that is,

d

dt
η̇ (t) =

F (t,η (t))

ρ(t,η(t))
,(2.8)

where F (t, x) is the total force applied to the fluid particle and ρ(t, x) is the mass
density. For the sake of simplicity, in this paper, we assume that ρ = 1.

In our case the acceleration,

d

dt
η̇ (t) =

d

dt

(
σ (t,η (t)) ◦ Ẇ

)
+

d

dt
u (t,η (t)) ,

is highly irregular. Thus (2.8) shall be interpreted in the sense of distributions; i.e.,
for every ϕ ∈ C∞

0

(
R1

)
,∫

ϕ (t)F (t,η (t)) dt = −
∫

ϕ′ (t)σ (t,η (t)) ◦ dW (t) +

∫
ϕ (t) du (t,η (t)) .(2.9)

Obviously, both sides of (2.8) must have the same structure. Hence, formulas (2.9)
and (2.11) yield that there exist FW

t -adapted functions f : Ω× [0,∞)×Rd → Rd, g :
Ω× [0,∞)×Rd → Y d, and d : Ω× [0,∞)×Rd → Y d so that∫

ϕ (t)F (t,η (t)) dt = − ∫
ϕ′ (t)d (t,η (t)) ◦ dW (t)

+
∫
ϕ (t) (f (t,η (t)) dt+ g(t,η (t)) ◦ dW (t))

(2.10)
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By the Itô–Wentzell formula (see, e.g., Theorem 3.3.2 in [29] or Theorem 1.4.9 in
[47]),

du (t,η (t)) = α (t,η (t)) dt+ β (t,η (t)) ◦ dW (t)

+uxiu
i(t,η(t))dt+ uxiσ

i(t,η(t)) ◦ dW (t).
(2.11)

By matching terms in (2.9) and (2.10) and taking into account (2.11), we obtain
the following equalities:

d = σ, g = β + uxiσ
i,(2.12)

α = −uxju
j + f .(2.13)

Thus, we arrive at the following equation for the regular velocity component u:

du =
[−uxju

j + f
]
dt+

[
g(t, x)− uxpσ

p (t, x)
] ◦ dW (t).(2.14)

2.3. Derivation of stochastic Euler and Navier–Stokes equations.

2.3.1. Incompressible stochastic fluids and Euler equation. A fluid char-
acterized by flow η given by (2.4) is incompressible if η(t, x) is a volume preserving
map. It can be shown that the latter holds iff

divσ (t, x) = divu (t, x) = 0(2.15)

Indeed, we may easily see that the Jacobian of η verifies the equation

dJη (t) = Jη (t) {divσ (t,η (t)) · dW (t) + divu (t,η (t)) dt

+(1/2) [|divσ (t,η (t)) |2Y + (∂j divσ)(t,η(t)) · σj(t,η(t))] dt}.
(2.16)

The rest of the proof is similar to the case of σ = 0 (see, e.g., [8]).
Suppose that the fluid is ideal (nonviscous). Similar to that found in the classic

setting, we can assume that the force acting on the fluid particle is of the form
F = −∇P + F̄ , where P is the (unknown) pressure and F̄ is the given body force.
More specifically, we assume that f = −∇P a+f̄ , g = −∇P d+ḡ, and d = −∇P t+d̄.
The body force components are considered to be given, while those of the pressure
are subject to determination.



du = [−uxiu
i −∇P a + f̄ ]dt+

(
ḡ −∇P d − uxiσ

i
) ◦ dW ;

σ (t, x) = −∇P t (t, x) + d̄ (t, x) , divu = 0,divσ = 0;

u(0, x) = u0(x).

(2.17)

Since divu=divσ = 0, we have ∆P t =divd̄, ∆P d =divḡ, and

∆P a = div [f̄ − uxiu
i].

The number of equations equals the number of unknown functions, and so math-
ematically this is a reasonable system.



1256 R. MIKULEVICIUS AND B. L. ROZOVSKII

Write 2aij = σi · σj . Since divσ = 0, the first equation in (2.17) can be rewritten
in the Itô form as follows:

du =

[
(aijuxi)xj − uxju

j − 1

2

(
gxpσ

p −G
)
+ f

]
dt

+
[
g − uxpσ

p
] · dW.

In spite of the presence of the “effective viscosity” term (aijuxi (t, x))xj , which
is induced by the turbulent term, we shall still regard (2.17) as a stochastic Euler
equation. First, it was derived for the ideal fluid. Second, (2.17) passes the ultimate
test for Euler type equations, namely, it conserves the energy. Specifically, it can be
easily shown that if there are no free forces, f̄ = ḡ = h̄ = 0, then

∫
|u(t, x)|2dx =

∫
|u(0, x)|2dx P -a.s.(2.18)

Besides, in “appearance,”(2.17) bears more of a resemblance to the deterministic
Euler equation, since it does not contain the second order term. A special case of
equation (2.17) was derived (very informally) in [21] using the variational formulation
of the Euler equation. In that paper it was assumed that σ = const, ḡ = h̄ = 0 and
W was a one-dimensional Brownian motion.

Now let us consider some comparatively straightforward generalizations of the
setup considered above. Let V be a Y -valued cylindrical Brownian motion indepen-
dent of W . Write FW,V

t = σ(W (s), V (s), s ≤ t).

Assume

(H1’) du (t, x) = α (t, x) dt+ β (t, x) · dW (t) + γ(t, x) · dV (t),
where α : Ω× [0,∞)×Rd → Rd,β : Ω× [0,∞)×Rd → Y d, and γ : Ω× [0,∞)×
Rd → Y d are FW,V

t -adapted functions.

The stochastic integrals in (H1’) are understood in the Itô sense.

Remark 1. The Itô setting has its advantages and disadvantages. One advantage
of the Itô formulation is that it does not require the existence of joint quadratic varia-
tions 〈g (·, x) ,W 〉t , 〈β (·, x) ,W 〉t , and 〈γ (·, x) , V 〉t, which is a necessary assumption
for the existence of the related Stratonovich integrals. On the other hand, if the fluid
particle’s motion was given by the Itô equation

dη (t, x) = u(t,η(t, x))dt+ σ(t,η(t, x)) · dW (t),(2.19)

the equations (2.15) would no longer guarantee that η(t, x) is a volume preserving
map. Instead, a more cumbersome condition would be needed. Therefore, we will
continue with the Stratonovich form (2.6).

Of course, owing to (H1’), the balance of momentum considerations yield that
the force must be of the form

F =
d

dt

(
d ◦ Ẇ

)
+ f + g · Ẇ (t) + h · V̇ (t).
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The interested reader could prove that, in the new setting, we have


du (t, x) = (
(
aijuxi

)
xj

− uxiu
i − gxi · σi −∇P a + f̄)dt

+
(
ḡ −∇P d − uxiσ

i
) · dW (t) +

(
h̄−∇P̃ d

)
· dV (t);

σ (t, x) = −∇P t (t, x) + d̄ (t, x) , divu = 0,divσ = 0;

u(0, x) = u0(x),

where h = −∇P̃ d + h̄ (for details see [40]) .

2.3.2. Stochastic Navier–Stokes equation. Let us now drop assumption
(2.17) and assume that the fluid we are dealing with is viscous. This requires the
appropriate modification of the structure of forces acting on the fluid particle. Be-
cause of the molecular motion of particles, the force exerted per unit area on an
arbitrary surface S in the fluid has a component of the form

ν∇U (x, t)(n = ν[∇σ (t, x) ◦ Ẇ +∇u (t, x)](n,

where (n is the unit normal to S (see [8]). By the divergence theorem, this implies
the following structure of forces: f = −∇P a + ν∆u + 1

2∆σxp (t, x)∆σp (t, x) + f̄ ,

g = −∇P d+∆σ+ḡ, h = −∇P̃ d+h̄. The resulting stochastic Navier–Stokes equation
for the components of the velocity field (2.5) is as follows:



du = [ν∆u+ (aijuxi)xj − uxiu
i − (

ḡxi −∇P d
xi

) · σi
−∇P a + f̄ + 1

2∆σxp (t, x) ·∆σp (t, x)]dt

+
(
h̄−∇P̃ d

)
· dV (t) + (

ḡ + ν∆σ −∇P d − uxiσ
i
) · dW ;

σ (t, x) = −∇P t (t, x) + d̄ (t, x) , divu = 0,divσ = 0;u(0, x) = u0(x),

(2.20)

where ν is the viscosity coefficient.

2.3.3. Special cases. Now let us review several important particular cases.
1. Assume that the stochastic components of the force g = h = d = 0. Then, by

(2.12) , σ = γ = β = 0, and we arrive at the standard deterministic Euler equation.
2. Assume that there is no turbulent component in (2.4) and the force has no

turbulent component, i.e., σ = g = 0. Then, by (2.12) , d = β = 0, and the stochastic
Navier–Stokes equation reduces to the following Navier–Stokes equation with random
forcing: 


du = [ν∆u− uxiu

i −∇P a + f̄ ]dt+ h · dV (t);

divu = 0,u(0, x) = u0(x).

3. Assume that ν = 0, β = 0 and α,γ are FV
t -adapted. Then, by (2.12) , we

have

α = −uxiu
j + f − (

uxia
ij
)
xj

, g = uxpσ
p.(2.21)
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We then arrive at the following equation for u:


du = [−uxiu
i −∇P a + f̄

− (
ḡ −∇P d

)
xj

·
(
d̄j − P t

xj

)
]dt+

(
h̄−∇P̃ d

)
· dV (t);

divu = 0,u(0, x) = u0(x).

(2.22)

In addition, (2.21) yields

∆P d = uixpσ
p
xi − divḡ.(2.23)

Obviously, if h = 0, the dynamics of the nonturbulent component u of the velocity
field U = σ ◦ Ẇ + u is given by a deterministic Euler type equation.

We remark that the above results rectify the statement in [40] that (2.17) is
ill-posed if β = 0.

3. Analytical theory of turbulent stochastic Navier–Stokes equations.

3.1. Preliminaries.

3.1.1. Notation. We begin by outlining some of the notation that will be used
in the paper.

Rd denotes a d-dimensional Euclidean space with elements x = (x1, . . . , xd); if
x, y ∈ Rd, we write

(x, y) =

d∑
i=1

xiyi, |x| =
√
(x, x).

Let us fix a separable Hilbert space Y . The scalar product of x, y ∈ Y will be
denoted by x · y.

If u is a function on Rd, the following notational conventions will be used for its
partial derivatives: ∂iu = ∂u/∂xi, ∂

2
ij = ∂2u/∂xi∂xj , ∂tu = ∂u/∂t, and ∇u = ∂u =

(∂1u, . . . , ∂du), and ∂2u = (∂2
iju) denotes the Hessian matrix of second derivatives.

Let α = (α1, . . . , αd) be a multi-index; then ∂αx = Π
d
i=1∂

αi
xi .

Let C∞
0 = C∞

0 (R
d) be the set of all infinitely differentiable functions on Rd with

compact support.

For s ∈ (−∞,∞), write Λs = Λsx = (1−
∑d

i=1 ∂
2/∂x2

i )
s/2.

For p ∈ [1,∞] and s ∈ (−∞,∞), we define the space Hs
p = Hs

p(R
d) as the space

of generalized functions u with the finite norm

|u|s,p = |Λsu|p,

where | · |p is the Lp norm. Obviously, H0
p = Lp. Note that if s ≥ 0 is an integer, the

space Hs
p coincides with the Sobolev space W

s
p =W s

p (R
d).

If p ∈ [1,∞] and s ∈ (−∞,∞), Hs
p(Y ) = Hs

p(R
d, Y ) denotes the space of Y -

valued functions on Rd so that the norm ||g||s,p = | |Λsg|Y |p < ∞. We also write

Lp(Y ) = Lp(R
d, Y ) = H0

p (Y ) = H0
p (R

d, Y ). Let C∞
0 (Y ) be the space of Y -valued

infinitely differentiable functions on Rd with compact support.
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Obviously, the spaces C∞
0 , C∞

0 (Y ), H
s
p(R

d), and Hs
p(R

d, Y ) can be extended to
vector functions (denoted by bold-faced letters). For example, the space of all vector
functions u = (u1, . . . , ud) such that Λsul ∈ Lp, l = 1, . . . , d, with the finite norm

|u|s,p =
(∑

l

|ul|ps,p
)1/p

,

we denote by H
s
p = H

s
p(R

d). Similarly, we denote by H
s
p(Y ) = H

s
p(R

d, Y ) the space

of all vector functions g = (gl)1≤l≤d, with Y -valued components gl, 1 ≤ l ≤ d, so that
||g||s,p = (

∑
l |gl|ps,p)1/p < ∞. The set of all infinitely differentiable vector functions

u = (u1, . . . , ud) on Rd with compact support will be denoted by C
∞
0 . We denote by

C
∞
0 (Y ) the set of all infinitely differentiable vector functions u = (u1, . . . , ud) on Rd

with compact support (all ul are Y -valued).
When s = 0, H

s
p(Y ) = Lp(Y ) = Lp(R

d, Y ). Also, in this case, the norm ||g||0,p is
denoted more briefly by ||g||p. To forcefully distinguish Lp-norms in spaces of Y -valued
functions, we write || · ||p, while in all other cases a norm is denoted by |·| .

The duality 〈·, ·〉s between H
s
q(R

d) and H
−s
p (Rd), p ≥ 2, s ∈ (−∞,∞), and

q = p/ (p− 1) is defined by

〈φ,ψ〉s = 〈φ,ψ〉s,p =
d∑
i=1

∫
Rd

[
Λsφi

]
(x) Λ−sψi (x) dx,φ ∈ H

s
q,ψ ∈ H

−s
p .

3.1.2. Solenoidal and gradient projections of Hilbert-valued vector fields.
In this section we present some facts about solenoidal and gradient projections of vec-
tor fields, most of which were proved in [37].

We will use the Riesz transform for the definition of the projections. We set for
f ∈ L2(R

d, Y ),

Rj(f)(x) = lim
ε→0

c∗
∫
|y|≥ε

yj
|y|d+1

f(x− y) dy, j = 1, . . . , d,

with c∗ = G(n+1
2 )/π(n+1)/2 (G is the gamma function). Rj is called a Riesz transform.

According to [49] (see Chapter III, formula (8), p. 58),

R̂jf(x) = −i
ξj
|ξ| f̂ ,

where

f̂(ξ) = F(f) = (2π)−d/2
∫

e−i(ξ,x)f(x) dx.

Given a function f ∈ Lp(R
d, Y ), we define a vector Riesz transform

Rf = (R1f, . . . , Rdf).
For v ∈ L2(Y ), set (see [24], [25])

G(v) = −RRjv
j ,S(v) = v − G(v).

Then (see [24], [25], and Lemma 2.7 in [37]), L2(Y ) is a direct sum

L2(Y ) = G(L2(Y ))⊕ S(L2(Y )),

S(L2(Y )) = {g ∈ L2(Y ) : div g = 0},
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and G(L2(Y )) is a Hilbert subspace orthogonal to S(L2(Y )).
Remark 2. If f ∈ C∞

0 (R
d), it is known (see, e.g., [44]) that the classical solution

to

∆u(x) = f(x), x ∈ Rd(3.1)

is given by the formula

u(x) =

∫
Γ(x− y)f(y) dy,(3.2)

where

Γ (x− y) =

{
|x− y|2−d /d(2− d)ωd, d > 2,
1
2π ln |x− y| , d = 2

and ωd is the volume of the unit ball in Rd. If f ∈ C
∞
0 (Y ), we may easily show that

G(f) =∇
∫
Γxi(x− y)f i(y) dy = −RRjf

j .(3.3)

The functions G(v) and S(v) are usually referred to as the potential and the
solenoidal projections, respectively, of the vector field v.

The following statement holds.
Lemma 1 (see [24], [25], and Lemmas 2.11 and 2.12 in [37]). G,S can be extended

continuously to all H
s
p(Y ), s ∈ (−∞,∞): there is a constant C so that for all v ∈

H
s
p(Y )

||G(v)||s,p ≤ C||v||s,p, ||S(v)||s,p ≤ C||v||s,p.
Moreover, the space H

s
p (Y ) can be decomposed into the direct sum

H
s
p (Y ) = G(Hs

p (Y ))⊕ S(Hs
p (Y )),

and, if (1/p) + (1/q) = 1, f ∈ G(Hs
p (Y )), g ∈ S(H−s

q (Y )), then

〈f, g〉
Hsp(Y ),H−s

q (Y ) = 0.(3.4)

Also,

S(Hs
p (Y )) = {v ∈ H

s
p (Y ) : divv = 0}.(3.5)

3.2. Strong solutions of the Navier–Stokes equation in Rd.

3.2.1. Main results. Let (Ω,F ,P ) be a probability space with a filtration F

of right continuous σ-algebras (Ft)t≥0. All the σ-algebras are assumed to be P -
completed. Let W (t) be an F-adapted cylindrical Brownian motion in Y .

For v ∈ H
1
p, let G(v, t) = G(v, t, x) be a predictable Lp(Y )-valued function and

F (v, t) = F (v, t, x) a predictable Lp-valued function. Let us consider the following
Navier–Stokes equation:



∂tu
l (t, x) = ∂i

(
a ij (t, x) ∂ju

l (t, x)
)− uk (t, x) ∂ku

l(t, x)

−∂lP (t, x) + bi(t, x)∂iu(t, x) + F l (u (t) , t, x)

+[σi(t, x)∂iu
l (t, x) +Gl (u (t) , t, x)− ∂lP̃ (t, x)] Ẇt,

divu = 0,u (0, x) = u0 (x) , l = 1, . . . d.

(3.6)
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In vector form, the equation would be

∂tu (t) = ∂i
(
a ij (t) ∂ju (t)

)− uk (t) ∂ku(t)−∇P (t) + bi(t)∂iu(t) + F (u (t) , t)

+ F (u (t) , t) + [σi(t)∂iu (t) +G (u (t) , t)−∇P̃ (t)] Ẇt,

u (0) = u0,divu = 0.

(3.7)

Of course, the unknowns in the equation (3.7) are the functions u = (ul)1≤l≤d, P,
and P̃ .

Everywhere in this section it is assumed that p ≥ 2. The vector field u0 is always
F0-measurable and divu0 = 0.

It is assumed that aij , bi are measurable F-adapted functions on [0,∞)×Rd and
the matrix

(
aij

)
is symmetric. Let us assume also that σi are Y -valued measurable

F-adapted functions on [0,∞)×Rd.
In addition, we will need the following assumptions.
B1. P -a.s.

1∑
k=0

(|∂kaij |+ |∂k bi|+ |∂k σi|Y ) ≤ K;

for all t ≥ 0, x, λ ∈ Rd, we have

K|λ|2 ≥
[
aij(t, x)− 1

2
σi(t, x) · σj(t, x)

]
λiλj ≥ δ|λ|2,

where K, δ are fixed strictly positive constants (notice that this assumption excludes
the Euler equation).

B2(p). For all v ∈ H
1
p, t > 0,

|F (v, t)− F (v̄, t)|p ≤ C|v − v̄|p, ||G(v, t)−G(v̄, t)||p ≤ C|v − v̄|p,
and for all t > 0,v ∈ H

1
p,

| |G(v, t)| |1,p ≤ | |G(0, t)| |1,p + C|v|1,p, |F (v, t)|1,p ≤ |F (0, t)|1,p + C|v|1,p.
Suppose also that ∫ t

0

(| |G(0, r)| |p1,p + |F (0, r)|p1,p) dr < ∞

P -a.s. for all t.
B3(p). For each M, there is a constant C such that for all v, v̄ ∈ BM,p = {v ∈

H
1
p : |v|1,p ≤ M}, t > 0

||∇(G(v, t)−G(v̄, t))||p ≤ C|v − v̄|1,p.
Since divu = 0, we have

div
(
σi(t)∂iu (t) +G (u (t) , t)−∇P̃ (t)

)
= 0

and
div

[−uk (t) ∂ku(t)) + ∂i
(
a ij (t) ∂ju (t)

)
+ F (u(t), t)−∇P (t)

]
= 0.

(3.8)
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Then, if the expressions in the left-hand sides of both equations in (3.8) belong to H
1
p

for some p > 1, by Remark 2 we have

∇P̃ (t, x) = G (
σi(t)∂iu (t) +G(u(t), t)

)
,

and

∇P (t, x) = G[−uk (t))∂ku(t)) + ∂i
(
a ij (t) ∂ju (t)

)
+ F (u(t), t)].

So, in Lp-theory, instead of (3.7), we can and will consider its equivalent form


∂tu (t) = S[∂i
(
a ij (t) ∂ju (t)

)− uk (t) ∂ku(t) + bi(t)∂iu(t) + F (u (t) , t)]

+S[σi(t)∂iu (t) +G (u (t) , t)] Ẇt,u (0) = u0.
(3.9)

Given a stopping time τ , we define a stochastic interval

[[0, τ(ω)]] =

{
[0, τ(ω)] if τ(ω) < ∞,
[0,∞), otherwise.

Let s ∈ {0, 1}.
Definition 2. Given a stopping time τ, an H

s
p(R

d)-valued F-adapted function
u(t) on [0,∞) is called an H

s
p-solution of equation (3.7) (or (3.9)) in [[0, τ ]] if it is

strongly continuous in t with probability 1,

u(t) = u(t ∧ τ) and

∫ t∧τ

0

|u(r)|ps+1,p dr < ∞ ∀t > 0,P − a.s.,(3.10)

and the equality

u(t) = u0 +
∫ t∧τ
0

S[−ui (r) ∂iu (r) + ∂i(a
ij(r)∂ju (r)) + F (u(r), r)]dr

+
∫ t∧τ
0

S(σk(r)∂ku (r) +G(u(r), r)) · dW (r)

(3.11)

holds in H
s−1
p (Rd) for every t > 0, P -a.s.

If τ = ∞, we simply say u is an H
s
p-solution of equation (3.6). The stochastic

integral in (3.11) is defined in the appendix.

Sometimes, when the context is clear, instead of “Hs
p-solution” we will just say

“solution.”

If an H
s
p-solution in [[0, τ ]] is also an H

s
q-solution in [[0, τ ]], we call it an H

s
p ∩H

s
q-

solution in [[0, τ ]].

Example 1. Let f l be measurable F-adapted functions on [0,∞)×Rd×Rd. Let
hl,i be Y -valued measurable F-adapted functions on [0,∞)×Rd, and gl be Y -valued
measurable F-adapted functions on [0,∞)×Rd ×Rd. Given v ∈ H

1
p, define

G(v, t) = (gl(t, x,v(x)))1≤l≤d(3.12)

F (v, t) = (f l(t, x,v(x))l + (h
l,j(t, x)Lj(t, x,v))1≤l≤d,

where L(t, x,v) = (Ll(t, x,v))1≤l≤d = G[σk(t)∂kv +G(v, t)].
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Assume that, for each t ≥ 0, x ∈ Rd, u ∈ Rd,

1∑
k=0

|∂kxg(s, x, u)| ≤ G1(s, x) +K|u|,

1∑
k=0

|∂kxf(s, x, u)| ≤ F1(s, x) +K|u|,(3.13)

|∂ug|+ |∂uf |+
1∑

k=0

(|∂kxhl,j |Y + |∂kxσj |Y ) ≤ C,

and P -a.s. for all t

∫ t

0

(|G1(r)|pp + |F1(r)|pp) dr < ∞.(3.14)

The assumptions (3.13), (3.14) imply the assumption B2(p) for G,F defined by
(3.12).

The assumptions (3.13), (3.14) and the boundedness of ∂2
ug(t, x, u) imply the as-

sumption B3(p) for G.
Now we can formulate the main theorems on local and global existence and

uniqueness.
Theorem 3. (a) Let B1, B2(p), B3(p) be satisfied (p > d) and E(|u0|p1,p) < ∞.
Then there is a unique predictable stopping time ζ, P (ζ > 0) = 1 such that for

each stopping time S, [0, S] ⊆ [0, ζ) if and only if there is a H
1
p-valued continuous

Lp-solution to (3.7) in [[0, S]].
Also, there is a unique H

1
p-valued continuous process u(t) on [0, ζ) such that

lim supt↑ζ |u(t)|1,p = ∞ on {ζ < ∞}, and u(t ∧ S) is an Lp-solution of (3.7) in
[[0, S]] for each S so that [0, S] ⊆ [0, ζ).

Moreover, if E(|u0|p2−2/p,p) < ∞, then u(t) is also an H
1
p-solution of (3.7) in

[[0, S]] for all stopping times S such that [0, S] ⊆ [0, ζ) and limt↑ζ |u(t)|1,p = ∞ on
{ζ < ∞} P -a.s.

(b) Let B1, B2(p), B3(p), B2(2), B3(2) be satisfied, and

E(|u0|p1,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t. Then there is a unique predictable stopping time ζ, P (ζ > 0) = 1 such
that, for each stopping time S, [0, S] ⊆ [0, ζ) if and only if there is an H

1
p ∩ H

1
2-valued

continuous Lp ∩ L2-solution to (3.7) in [[0, S]].
Also, there is a unique H

1
p ∩H

1
2-valued continuous process u(t) on [0, ζ) such that

lim supt↑ζ(|u(t)|1,p + |u(t)|1,2) =∞ on {ζ < ∞}, and u(t∧ S) is an Lp ∩L2-solution
to (3.7) on [0, S] for each S so that [0, S] ⊆ [0, ζ).

Moreover, if E(|u0|p2−2/p,p) < ∞, then u(t) is also an H
1
p ∩ H

1
2-solution of (3.7)

in [[0, S]] for all stopping times S such that [0, S] ⊆ [0, ζ).
In both cases, (u(t), ζ) is called a maximal solution to (3.7) and ζ is called its

explosion time.
If d = 2, a stronger result holds. Specifically, there is a unique global solution.
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Theorem 4. Let B1, B2(p), B3(p), B2(2), B3(2) be satisfied, p > d = 2, and

E(|u0|p2−2/p,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t.
Then there is a maximal unique H

1
p ∩ H

1
2-solution (u(t), ζ) of (3.7) and P (ζ =

∞) = 1.
Moreover, for each T > 0 there is a constant C such that, for all stopping times

τ ≤ T,

E sups≤τ (|u(t)|p1,p + |u(t)|p1,2) ≤ C[E(|u0|p1,p + |u0|p1,2)

+
∫ τ
0
(||G(0, r)||p1,p + |F (0, r)|p1,p + ||G(0, r)||p1,2 + |F (0, r)|p1,2) dr].

Proof of these theorems will be given in sections 3.3–3.6.

3.3. Mollified Navier–Stokes equation. In this section we consider an auxil-
iary equation obtained from (3.7) by applying the standard mollifier to the first term
of the Navier–Stokes nonlinearity (u · ∇)u.

Let ψ(x) ∈ C∞
0 (R

d), ψ ≥ 0,
∫
ψ dx = 1. Given a scalar function v on Rd, we

define

Ψε(v)(x) =

{ ∫
v(x− y)ψε(y) dy, ε > 0,

v, ε = 0,

where ψε(x) = ε−dψ(x/ε), ε > 0. Similarly, for a vector function v,

Ψε(v)(x) =

{
(
∫
vl(x− y)ψε(y) dy)l, ε > 0,

v(x), ε = 0.

For a fixed ε ≥ 0, we consider the equation for u =
(
ul
)
1≤l≤d , P, P̃

∂tu(t, x) = ∂i(a
ij(t, x)∂ju)−Ψε(uk(t))∂ku(t) +D(u(t), t, x)−∇P (t, x)

+[σk(t, x)∂ku(t, x) +G(u(t), t, x)−∇P̃ (t, x)] · Ẇ ,(3.15)

u(0, x) = u0(x), divu = 0,

where u(t) = u(t, x) = (uk(t, x))1≤k≤d and D(v, t) = bi(t)∂iv + F (v, t).
Obviously, if ε = 0, (3.15) coincides with (3.7).
Similarly to (3.7), (3.15) is equivalent to

∂tu(t) = S[∂i(aij(t)∂ju(t))−Ψε(uk(t))∂ku(t) +D(u(t), t))]

+S[σk(t)∂ku(t) +G(u(t), t)] · Ẇ ,(3.16)

u(0) = u0.

For ε > 0, we will solve (3.16) in H
s
p, s ∈ (−∞,∞), p ≥ 2.

Definition 5. Given a stopping time τ, an H
s
p(R

d)-valued F-adapted function
u(t) on [0,∞) is called an H

s
p-solution of equation (3.15) (or (3.16)) in [[0, τ ]] if it is

strongly continuous in t with probability 1;

u(t) = u(t ∧ τ),

∫ t∧τ

0

|u(r)|ps+1,p dr < ∞ ∀t > 0,P − a.s.,(3.17)
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and the equality

u(t) = u0 +

∫ t∧τ

0

S[−Ψε(ui)∂iu+ ∂i(a
ij(r)∂ju) +D(u)]dr

+

∫ t∧τ

0

S(σk∂ku+G(u)) · dW (r)(3.18)

holds in H
s−1
p (Rd) for every t > 0, P -a.s.

If τ =∞, we simply say u is an H
s
p-solution of (3.15).

If an H
s
p-solution in [[0, τ ]] is also an H

s
q-solution in [[0, τ ]], we call it an H

s
p ∩H

s
q-

solution in [[0, τ ]].
In this subsection, we fix ε > 0 and consider the corresponding equation (3.15)

(equivalently (3.16)).
For an integer s > 0, we denote

Cs(Y )=

u ∈ Cs−1 : ||u||Cs=

∑
|a|≤s−1

||∂αu||∞+
∑

|α|=s−1

sup
x=y

|∂αu(x)−∂αu(y)|Y
|x− y| <∞


 .

Define

Bs(Y ) =




Hs
∞(Y ) if s > 0 is not an integer,

Cs(Y ) if s > 0 is an integer,
L∞(Y ) if s = 0,

and denote the corresponding norms by | · |Bs .
The following assumptions will often be used in the future.
A. For all t ≥ 0, x, λ ∈Rd,

K|λ|2 ≥
[
aij(t, x)− 1

2
σi(t, x) · σj(t, x)

]
λiλj ≥ δ|λ|2,

where K, δ are fixed strictly positive constants.
A1(s, p). For all t, x, y,P -a.s.

|aij(t, x)− aij(t, y)|+ |σi(t, x)− σi(t, y)|Y ≤ K|x− y|
and 



|aij(t)|Bs ≤ K if s ≥ 1,

|a(t, x)| ≤ K if − 1 < s < 1,

|aij(t)|B−s+ε ≤ K if s ≤ −1.
where ε ∈ (0, 1).

For all i, t, x, 


||σi(t)||Bs ≤ K if s ≥ 1,
|σi(t, x)|Y ≤ K if s ∈ (−1, 1),
||σi(t)||B−s+ε ≤ K if s ≤ −1,

where ε ∈ (0, 1).
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A2(s, p). For v ∈ H
s+1
p , G(v, t) = G(v, t, x) is a predictable H

s
p(Y )-valued func-

tion and D(v, t) = D(v, t, x) is a predictable H
s−1
p -valued function, and P -a.s. for

each t ∫ t

0

(|D(0, r)|ps−1,p + ||G(0, r)||ps,p) dr < ∞ ∀t > 0,P -a.s.,

where 0 = (0, . . . , 0).
A3(s, p). For every ε > 0, there exists a constant Kε such that, for any u,v ∈

H
s+1
p ,

|D(u, t, x)−D(v, t, x)|s−1,p + ||G(u, t, x)−G(v, t, x)||s,p

≤ ε|u− v|s+1,p +Kε|u− v|s−1,p P − a.s.

We start with the following statement.
Proposition 6. Let s ∈ (−∞,∞), p ∈ [2,∞). Assume A, A1(s, p)–A3(s, p) are

satisfied and E(|u0|ps+1−2/p,p) < ∞. Then there is a unique predictable stopping time

ζ, P (ζ > 0) = 1 such that, for each stopping time S, [0, S] ⊆ [0, ζ) if and only if there
is a unique H

s
p-solution to (3.15) in [[0, S]];

Also, there is a unique H
s
p-valued continuous process u(t) on [0, ζ) such that P -

a.s. lim supt↑ζ |u(t)|s,p = ∞ on {ζ < ∞}, and u(t ∧ S) is a solution to (3.15) in
[[0, S]] for each S so that [0, S] ⊆ [0, ζ). Moreover, for each T > 0,M > 1 there is a
constant C, such that for each stopping time τ ≤ T ∧ τM

E

[
sup
r≤τ

|u(r)|ps,p +
∫ τ

0

|∂2u(r)|ps−1,p dr

]
≤ CE

[
|u0|ps+1−2/p,p +

∫ τ

0

(|D(0, r)|ps−1,p

+ |G(0, r)|ps,p) dr
]
,(3.19)

where τM = inf(t : |u(t)|s,p ≥ M).
(The pair (u(t), ζ) is called a maximal H

s
p-solution of (3.15).)

Proof. For each M > 0, we define a function on H
s
p

ϕM (u) =

{
u if |u|s,p ≤ M,

M |u|−1
s,pu, otherwise.

For every u, ū ∈ H
s
p, we obviously have |ϕM (u)|s,p ≤ M and

|ϕM (u)− ϕM (ū)|s,p ≤ 2|u − ū|s,p.

Define a function Bk
M (u) = ukεϕM (u),u ∈ H

s
p, where ukε = Ψε(uk). There is a

constant C so that for each u,v ∈ H
s
p

|Bk
M (u)−Bk

M (v)|s,p ≤ CM |u− v|s,p.(3.20)

Indeed, if |u|s,p ≤ M, |v|s,p ≤ M , then

Bk
M (u)−Bk

M (v) = ukεu− vkεv = (u
k
ε − vkε )u+ vkε (u− v),
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and, by Lemma 7 in [38],

|Bk
M (u)−Bk

M (v)|s,p ≤ |ukε − vkε |B|s| |u|s,p + |vkε |B|s| |u− v|s,p ≤ CM |u− v|s,p.
If |u|s,p ≤ M, |v|s,p > M , then

Bk
M (u)−Bk

M (v) = ukεu− vkεvM |v|−1
s,p

= |v|−1
s,p[(u

k
ε − vkε )vM +Mukε(u− v) + ukεu(|v|s,p −M)],

and, by Lemma 7 in [38],

|Bk
M (u)−Bk

M (v)|s,p ≤ C[|ukε − vkε |B|s|M +M |ukε |B|s| |u− v|s,p
+|ukε |B|s| |u− v|s,p] ≤ CM |u− v|s,p.

Similarly, if |u|s,p > M, |v|s,p > M , then

Bk
M (u)−Bk

M (v) = ukεuM |u|−1
s,p − vkεvM |v|−1

s,p

=M |u|−1
s,p|v|−1

s,p[(u
k
ε − vkε )u|v|s,p + vkε (u− v)|u|s,p + vkε (u|v|s,p − |u|s,p)],

and

|Bk
M (u)−Bk

M (v)|s,p ≤ C[|ukε − vkε |B|s|M +M |vkε |B|s| |u− v|s,p|v|−1
s,p

+|vkε |B|s| |u− v|s,p|v|−1
s,p] ≤ CM |u− v|s,p.

So, (3.20) holds and therefore

|Bk
M (u)|s,p ≤ CM |u|s,p.(3.21)

Since (3.20), (3.21) hold, then, according to Theorem 3.3 in [37] and Remark 5.5 in
[28], for each M , there is a unique H

s
p-solution u = uM of the equation

∂tu(t) = ∂i(a
ij(t)∂ju(t))− ∂kB

k
M (u(t)) +D(u(t), t) +∇p(t)

+[σk(t)∂ku(t) +G(u(t), t) +∇p̃(t)] · Ẇ ,

u(0) = u0,divu = 0.

Let τM = inf{t : |uM (t)|s,p ≥ M}. By Corollary 3.6 in [37], P -a.s.
uM (t ∧ τM ) = uM ′(t ∧ τM ) for all t(3.22)

if M ′ > M. Following the proof of Theorem 14.21 in [22], we consider the set S of all
stopping times S such that a H

s
p-solution to (3.15) exists on [0, S]. Obviously, S is not

empty (τM ∈ S for all M). It is closed with respect to the finite minimum and finite
maximum operations. Let ζ be the essential upper bound of the set S. So, there is
a sequence Tn ∈ S increasing to ζ. Let Un be a corresponding sequence of solutions
in [0, Tn]. The sequence Un defines a solution u on ∪n[0, Tn]. Let yt = |u(t)|ps,p,
Rm = ζ ∧ inf(t : yt ≥ m). Then u(· ∧ Tq ∧ Rm) is a solution in [0, Tq ∧ Rm].
Passing to a limit as q → ∞, we obtain that u(· ∧ Rm) is a solution in [0, Rm]. If
P (Rm = ζ < ∞) > 0, then (3.22) would imply that there is a stopping time S ∈ S
such that S ≥ Rm and P (Rm = ζ < S) > 0. This would contradict the definition
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of ζ. Thus P -a.s. Rm < ζ on {ζ < ∞}, and lim supt↑ζ yt = ∞ on {ζ < ∞}. So
the sequence (Rm) “announces” ζ and ζ is a predictable stopping time. Let S be
a stopping time such that P -a.s. S < ζ. Then u(· ∧ S) is a solution in [0, S]: it is
enough to notice that u(· ∧ Rq ∧ S) is a solution in [0, Rq ∧ S] and pass to the limit
as q → ∞.

Let τM = inf(t : yt ≥ m). Since u(· ∧ τM ) = uM (· ∧ τM ), it follows by Theorem
3.3 in [37] that for each T and M there is a constant C so that for each stopping time
τ ≤ τM ∧ T and all t,

E

[
sup
r≤τ

|u(r ∧ τ)|ps,p +
∫ t∧τ

0

|∂2u(r)|ps−1,p dr

]

≤ CE

[
|u0|ps+1,p +

∫ t∧τ

0

(|D(0, r)|ps−1,p + |ukε (r)u(r)|ps,p + |G(0, r)|ps,p) dr
]

≤ CE

[
|u0|ps+1,p +

∫ t∧τ

0

(|D(0, r)|ps−1,p + |u(r)|ps,p + |G(0, r)|ps,p) dr
]
.

So, inequality (3.19) follows by the Gronwall lemma.
Corollary 7. Let s ∈ (−∞,∞), p ∈ [2,∞). Assume A, A1(s, p)–A3(s, p).

Assume further A1(s, q)–A3(s, q) for q ≥ 2, and suppose that E(|u0|ps+1−2/p,p +

|u0|qs+1−2/q,q) < ∞. Then the maximal unique H
s
p-solution (u, ζ) of (3.15) defined in

Proposition 6 is also a maximal unique H
s
q-solution of the equation. Moreover, for

each T > 0,M > 1, there is a constant C such that for each stopping time τ ≤ T ∧τM ,

E

[
sup
r≤τ

|u(r)|ls,l +
∫ τ

0

|∂2u(r)|ls−1,l dr

]
≤ CE

[
|u0|ls+1,l +

∫ τ

0

(|D(0, r)|ls−1,l

+ |G(0, r)|ls,l) dr
]
, l = p, q,

where τM = inf(t : |u(t)|s,p ≥ M).
(The pair (u(t), ζ) is called a maximal H

1
p ∩ H

1
q-solution.)

Proof. Let (u(t), ζ) be the maximal H
s
p-solution u of (3.15), τM = inf{t :

|u(t)|s,p ≥ M}. Consider the equation for ξ:
∂tξ(t) = S[∂i(aij(t)∂jξ(t))− ∂k(Ψ

ε(uk(t ∧ τM ))ξ(t)) +D(ξ(t), t)]

+ S[σk(t)∂kξ(t) +G(ξ(t), t)] · Ẇ , ξ(0) = u0(x).

By Theorem 3.3, Corollary 3.7, and Corollary 3.6 in [37], ξ(t) = u(t) is also a unique
H
s
q-solution of (3.15) in [[0, τM ]], and the statement obviously follows.
Proposition 8. Assume that for each v ∈ H

s+1
p , G(v, t) is a predictable H

s+1
p -

valued process and D(v, t) is a predictable H
s
p-valued process. Let A, A1(s, p)–

A3(s, p), A1(s + 1, p), A2(s + 1, p) be satisfied, E|u0|ps+2−2/p,p < ∞, and for all

t > 0,v ∈ H
s+1
p ,

| |G(v, t)| |s+1,p ≤ | |G(0, t)| |s+1,p + C|v|s+1,p,

|D(v, t)|s,p ≤ |D(0, t)|s,p + C|v|s+1,p.

Suppose also that ∫ t

0

(| |G(0, r)| |ps+1,p + |D(0, r)|ps,p) dr < ∞
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P -a.s. for all t.
Then the unique maximal H

s
p-solution of (3.15) is also a unique maximal H

s+1
p -

solution.
Moreover, for each T > 0,M > 1, there is a constant C such that for each stopping

time τ ≤ T ∧ τM ,

E

[
sup
r≤τ

|u(r)|ps+1,p +

∫ τ

0

|∂2u(r)|ps,p dr
]
≤ CE

[
|u0|ps+2−2/p,p

+

∫ τ

0

(|D(0, r)|ps,p + | |G(0, r)| |ps+1,p) dr

]
,

where τM = inf(t : |u(t)|s,p ≥ M).
Proof. Since the assumptions A, A1(s, p)–A3(s, p) are satisfied, the existence

and uniqueness of maximal H
s
p-solution is guaranteed by Proposition 6. Let τM =

inf{t : |u(t)|s,p ≥ M}. Consider a linear equation
∂tξ(t) = S(∂i(aij(t)∂jξ(t))−Ψε(uk (t ∧ τM ))∂ku

l(t) +D(u(t), t)

+ S[σk(t)∂kξ(t) +G(u(t), t)] · Ẇ , ξ(0) = u0.

By Proposition 3.8 in [37], the linear equation has a unique H
s+1
p -solution in [[0, τM ]],

which is also a unique H
s
p-solution. Thus, ξ = u P -a.s. on [[0, τM ]]. Moreover, for

each T, there is a constant C such that for all stopping times τ ≤ T ∧ τM ,

E

[
sup
r≤t∧τ

|u(r)|ps+1,p +

∫ t∧τ

0

|∂2u(r)|ps,p dr
]
≤ CE

[
|u0|ps+2−2/p,p +

∫ t∧τ

0

(|u(r)|ps+1,p

+ |Ψε(uk (r))u(r)|ps+1,p + |D(0, r)|ps,p + ||G (0, r)||ps+1,p) dr

]

for all t. Since

|Ψε(uk (r ∧ τM ))u(r)|ps+1,p ≤ CM |u(r)|ps+1,p,

we have

E

[
sup
r≤t∧τ

|u(r)|ps+1,p +

∫ t∧τ

0

|∂2u(r)|ps,p dr
]
≤ CE

[
|u0|ps+2−2/p,p +

∫ t∧τ

0

(|u(r)|ps+1,p

+ |D(0, r)|ps,p + ||G (0, r)||ps+1,p) dr

]
.

Now the estimate of the statement follows by the Gronwall lemma.
Corollary 9. Assume A, A1(s, 2)–A3(s, 2), p ≥ 2. Suppose E|u0|ps,2 < ∞.

Assume further that ∫ t

0

(|D(0, r)|ps−1,2 + | |G(0, r)| |ps,2) dr < ∞

P -a.s. for all t. Let (u, ζ) be the maximal H
s
2-solution to (3.15).

Then for each T > 0,M > 1, there is a constant C such that for each stopping
time τ ≤ T ∧ τM ,

E

[
sup
r≤τ

|u(r)|ps,2 +
∫ τ

0

|u(r)|p−2
s,2 |∇u(r)|2s,2 dr

]
≤ CE

[
|u0|ps,2 +

∫ τ

0

(|D(0, r)|ps−1,2

+ | |G(0, r)| |ps,2) dr
]
,
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where τM = inf(t : |u(t)|s,p ≥ M).
Proof. Let M > 0, τM = inf{t : |u(t)|s,2 ≥ M}. We easily obtain the statement

by Proposition 2 in [38] applied to the H
s
2-solution ξ of the equation

∂tξ(t) = ∂i(a
ij(t)∂jξ(t))−Ψε(uk (t ∧ τM ))∂kξ(t) +D(ξ(t), t)

− G[∂i(aij(t)∂jξ(t))−Ψε(uk (t ∧ τM ))∂kξ(t) +D(ξ(t), t)]

[σk(t)∂kξ(t) +G(ξ(t), t)− G(σk(t)∂kξ(t) +G(ξ(t), t))] · Ẇ ,

ξ(0) = u0, div ξ = 0.

According to Proposition 2 in [38],

E sup
r≤τ

|u(r)|ps,2 ≤ CE

[
|u0|ps,2 +

∫ τ

0

(|D(0, r)|ps−1,2

+ |Ψε(uk(r))u(r)|ps,2 + | |G(0, r)| |ps,2) dr
]
.

Since

|Ψε(uk(r))u(r)|ps,2 ≤ CM |u(r)|ps,2,
the statement follows by the Gronwall lemma.

Corollary 10. Let s ∈ {0, 1, . . . }, q ≥ 2, E|u0|qs+1−2/q,q < ∞, and A, A1(s, q)–

A3(s, q) hold. Assume further that aij ∈ Bs∨2 if s ≥ 1, and

| |G(v, t)| |s,q ≤ | |G(0, t)| |s,q + C|v|s,q, |D(v, t)|s−1,q ≤ |D(0, t)|s−1,q + C|v|s,q,
∫ t
0
(|D(0, r)|ps−1,q + | |G(0, r)| |ps,q) dr < ∞

P -a.s. for all t. Let (u, ζ) be a maximal H
s
q-solution to (3.15).

Then for each T > 0,M > 1, there is a constant C such that for each stopping
time τ ≤ T ∧ τM ,

E sup
r≤τ

|u(r)|ps,q ≤ CE

[
|u0|ps,q +

∫ τ

0

(|D(0, r)|ps−1,q + | |G(0, r)| |ps,q) dr
]
,

where τM = inf{t : |u(t)|s,q ≥ M}.
Proof. Let M > 1, τM = inf{t : |u(t)|s,q ≥ M}. We easily obtain the statement

by Proposition 3 in [38] applied to the H
s
q-solution ξ of the equation

∂tξ(t) = ∂i(a
ij(t)∂jξ(t))−Ψε(uk (t ∧ τM ))∂kξ(t) +D(ξ(t), t)

− G(∂i(aij(t)∂jξ(t))−Ψε(uk (t ∧ τM ))∂kξ
l(t) +D(ξ(t), t))

[σk(t)∂kξ(t) +G(ξ(t), t)− G(σk(t)∂kξ(t) +G(ξ(t), t))] · Ẇ ,

ξ(0) = u0, div ξ = 0.

According to Proposition 2 in [38],

E sup
r≤τ∧t

|u(r)|ps,q ≤ CE

[
|u0|ps,q +

∫ t∧τ

0

(|D(0, r)|ps−1,q

+ |Ψε(uk(r))u(r)|ps,q + | |G(0, r)| |ps,q) dr
]
.
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Also,

|Ψε(uk(r))u(r)|ps,q ≤ CM |u(r)|ps,q,

and the statement follows by the Gronwall lemma.
Now we point out a simple case when ζ =∞ P -a.s.
Proposition 11. Assume A, A1(0, 2)–A3(0, 2) are satisfied and E|u0|22 < ∞.

Let (u(t), ζ) be a maximal H
0
2 = L2-solution to (3.15).

Then the stopping time ζ = ∞ P -a.s. Moreover, for each T > 0, there is a
constant C so that for all stopping times τ ≤ T,

E

[
sup
r≤τ

|u(r)|22 +
∫ τ

0

|∇u(r)|22 dr
]
≤ CE

[
|u0|22 +

∫ τ

0

|D(0, r)|2−1,2 + ||G(0, r)||22 dr
]
.

Proof. Let M > 1, τM = inf{t : |u(t)|s,2 ≥ M),uM (t) = u(t ∧ τM )}. By the Itô
formula (see [38]) we have

|uM (t)|22 = |u(0)|22 + 2
∫ t∧τM

0

〈u(r),D(u(r), r)〉1 ds

− 2

∫ t∧τM

0

∫
aij(r)∂iu

l(r))∂ju
l(r) dx dr

+ 2

∫ t∧τM

0

(∫
ul(r)b̃l(r) dx

)
· dWr +

∫ t∧τM

0

∫ ∑
i

|bi(r)|2Y dx dr,

where b̃k(r) = σi(r)∂iu
k(r)+Qk(u, r), bk(r) = σi(r)∂iu

k(r)+Qk(u, r)−G(σi(r)∂iuk(r)
+Qk(u, r)). Therefore, for each T, there is a constant C, independent of M, so that
for all stopping times τ ≤ T,

E sup
r≤τ

|uM (r)|22 +
∫ τ

0

|∇uM (r)|22 dr ≤ CE

[
|u0|22 +

∫ τ

0

(|uM (r)|22

+ |D(0, r)|2−1,2 + ||G(0, r)||22 dr
]
,

and the statement follows.

3.4. Approximating sequence. Given a scalar function v on Rd, we define

Ψn(v)(x) = Ψ
1/n(v)(x) =

∫
v(x− y)ψ1/n(y) dy,

where ψε(x) = ε−dψ(x/ε). Similarly, for a vector function v,

Ψn(v)(x) = Ψ
1/n(v)(x).

We construct a sequence of approximations to (3.7) by solving for u = (ul)1≤l≤d =
un =

(
uln

)
1≤l≤d the equation


∂tu (t) = S[∂i

(
a ij (t) ∂ju (t)

)−Ψn(ui(t))∂iu(t)
+bi(t)∂iu(t) + F (u(t), t)] + S[σi(t)∂iu (t) +G (u(t), t)] Ẇt,
u (0) = u0,n,

(3.23)
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where u0,n = u0 ∗ψ1/n,Ψn(v)(x) = Ψ
1/n(v)(x) =

∫
v(x−y)ψ1/n(y) dy. Alternatively,

we may write it as

∂tu (t) = ∂i
(
a ij (t) ∂ju (t)

)−Ψn(ui (t))∂iu(t)−∇P (t)

+ bi(t)∂iu(t) + F (u (t) , t) + [σi(t)∂iu (t) +G (u (t) , t)−∇P̃ (t)] Ẇt,
u (0) = u0,n,divu = 0.

(3.24)

Proposition 12. (a) Let B1, B2(p) be satisfied (p ≥ 2), E(|u0|p1,p) < ∞. Then

for each n > 1 there is a unique maximal H
1
p-solution (u, ζ) = (un, ζn) of (3.24).

(b) Let B1, B2(p) (p > 2), and B2(2), B2(2, p) be satisfied, and E(|u0|p1,p +
|u0|p1,2) < ∞. Then for each n > 1 the unique maximal H

1
p-solution (u, ζ) = (un, ζn)

is also a unique maximal H
1
2-solution of (3.24). Moreover, ζ = ζn =∞ P -a.s.

Proof. Fix n. For each p ≥ 2, the conditions B1, B2(p) imply the assumptions
A, A1(0, p)–A3(0, p), and A1(1, p)–A2(1, p) with

D(v, t) = bi∂iv + F (v, t),

We apply Propositions 6 and 8 to (3.24) in order to obtain part (a) of the statement.
Part (b) follows by Corollary 7 and Propositions 6–11.
Applying curl operator to both sides of (3.24), we obviously obtain the following

statement.
Remark 3. Under the assumptions of Proposition 12, for each stopping time S

such that [0, S] ⊆ [0, ζ), η=curl u (definition and properties of curl and crossproduct
for d > 3 are given in the appendix, subsection 5.5) satisfies in [[0, S]] the equation

∂tη (t) = ∂i
(
a ij (t) ∂jη (t)

)−Ψn(ui(t))∂iη(t)
+rn(u(t)) + bi(t)∂iη(t) + curl {F (u(t), t)}+ r(u(t), t)

+[σi(t)∂iη (t) + r̃(u(t), t) + curl {G (u(t), t)}] Ẇt,
η (0) = curlu0,n,

(3.25)

where

r(v, t) = ∂i(∇aij(t)× ∂jv) + (∇bi(t))× ∂iv,

rn(v) = −∇Ψn(vi)× ∂iv, r̃(v, t) =∇σi(t)× ∂iv,v ∈ H
1
p.

The equation is linear in η. In fact, each component of (3.25) has a unique Lp-solution
in [[0, S]] of a corresponding linear equation. (It is also L2-solution in [[0, S]] in case
(b).)

For v ∈ H
1
p we set

Ln(v) = G[Ψn(vi)∂iv],
G̃(v, r) = (G̃l(v, r))1≤l≤d = S(G(v, r))− G(σi(r)∂iv),
F̃ (v, r) = S(F (v, r)) + S(bi(r)∂iv)− ∂iG(aij(r)∂jv).

Also, we define

H(v, t) = curl {F (v, t)}+ r(v, t),B(v, t) = r̃(v, t) + curl {G (v, t)},
where

r(v, t) = ∂i(∇aij(t)× ∂jv) + (∇bi(t))× ∂iv, r̃(v, t) =∇σi(t)× ∂iv.
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Then we can rewrite (3.24) as

∂tu (t) = ∂i
(
a ij (t) ∂ju (t)

)−Ψn(ui (t))∂iu(t)
+F̃ (u (t) , t) +Ln(u(t) + [σ

i(t)∂iu (t) + G̃ (u (t) , t)] Ẇt,
u (0) = u0,n,divu = 0.

(3.26)

Similarly, (3.25) can be written as

∂tη (t) = ∂i
(
a ij (t) ∂jη (t)

)−Ψn(ui(t))∂iη(t)
+rn(u(t)) + bi(t)∂iη(t) +H (u(t), t) + [σi(t)∂iη (t) +B (u(t), t)}] Ẇt,
η (0) = curlu0,n,

(3.27)

where

rn(v) = −∇Ψn(vi)× ∂iv,v ∈ H
1
p.

For the estimate of Lp-norm of u, we will need some simple estimates of F̃ , G̃,H,B.
Lemma 13. Assume B2(p) holds. Then
(a) there is a constant C so that for all v ∈ H

1
p, t,

|F̃ (v, t)|−1,p ≤ C(|F (0, t)|p + |v|p),
||G̃(v, t)||p ≤ C(||G(0, t)||p + |v|p),

|H(v, t)|−1,p ≤ C(|F (0, t)|p + |v|p + |∇v|p),
||B(v, t)||p ≤ C(||G (0, t) ||1,p + |v|p + |∇v|p);

(b) there is a constant C so that for all v, v̄ ∈ H
1
p, t ≥ 0,

|F̃ (v, t)− F̃ (v̄, t)|−1,p ≤ C|v|p,
||G̃(v, t)− G̃(v̄, t)||p ≤ C|v|p),

|H(v, t)−H(v̄, t)|−1,p ≤ C(|v − v̄|p + |∇v −∇v̄|p),
||B(v, t)−B(v̄, t)||p ≤ C(|v − v̄|p + |∇v −∇v̄|p).

Proof. By our assumption and Lemma 1, there is a constant C so that

|S(F (v, t))|p ≤ |F (0, t)|p + C|v|p),
||S(G(v, t))||p ≤ ||G(0, t)||p + C|v|p).

By Corollary 40 and Lemma 39 (see the appendix), there is a constant C so that

|∂iG(aij(r)∂jv)|−1,p ≤ C|v|p, |G(σi(r)∂iv)|p ≤ C|v|p.
Also,

|S(bi(r)∂iv)|−1,p = |∂iS(bi(r)v)− S(∂ibi(r)v)|−1,p ≤ C|v|p,
and the statement obviously follows.

The following standard estimate will be needed later as well.
Lemma 14. Let p ≥ 2.
(a) There is a constant C such that for all v ∈ H1

p (R
d,Rm),

|v̄|1,p′ ≤ C

[(∫
|v|p−2|∇v|2 dx

)1/2

|v|(p−2)/2
p + |v|p−1

p

]
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where v̄ = |v|p−2v, (p′)−1 + p−1 = 1.
For each ε > 0 there is a constant Cε such that for all v ∈ H1

p (R
d,Rm),

|v̄|1,p′ |v|p ≤ ε

(∫
|v|p−2|∇v|2 dx

)
+ Cε|v|pp.

(b) For each ε > 0 there is a constant Cε such that for all v ∈ H1
p (R

d,Rm),h ∈
Lp(R

d,Rm), ∫
|v|p−2|∇v||h| dx ≤ ε

(∫
|v|p−2|∇v|2 dx

)
+ Cε(|v|pp + |h|pp).

(c) If for all t, x, y

|σ(t, x)− σ(t, y)|Y ≤ K|x− y|,

then there is a constant C such that for all v ∈ H1
p (R

d,Rm),h ∈ Lp(R
d,Rm),∣∣∣∣

∫
(|v|p−2v, σk∂kv + h) dx

∣∣∣∣ ≤ C(|v|pp + |v|p−1
p |h|p).

Proof. We have

|v̄|1,p′ ≤ C

(
|v̄|p′ +

∑
k

|∂kv̄|p′
)
,

and, obviously, |v̄|p′ = |v|p−1
p . By the Hölder inequality,

|∂kv̄|p′ ≤ C| |v|p−2|∇v| |p′ = C

(∫
|v|p′(p−2)|∇v|p′

)1/p′

= C

(∫
|v|p′(p−2)/2(|∇v|p′ |v|p′(p−2)/2)

)1/p′

≤ C

(∫
(|∇v|p′ |v|p′(p−2)/2)2/p

′
)1/2 (∫

(|v|p′(p−2)/2)2/(2−p
′)
)(2−p′)/2

= C

(∫
|v|p−2|∇v|2 dx

)1/2

|v|(p−2)/2
p .

Therefore

|v̄|1,p′ |v|p ≤ C

(∫
|v|p−2|∇v|2 dx

)1/2

|v|p/2p + |v|pp),

and part (a) follows.
For each ε > 0 there is a constant Cε such that∫

|v|p−2|∇v||h| dx ≤ ε

(∫
|v|p−2|∇v|2 dx

)
+ Cε

∫
|v|p−2|h|2 dx,

and part (b) follows by the Hölder inequality.
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Integrating by parts, we easily obtain (c).
For the estimates of Lp-norms, we will need the following important quantity. For

v ∈ H1
p (R

d,Rm), we define

Np(v, t) = −
∫
{[|v|p−2vl∂i(a

ij(t)∂jv
l) + 2−1[(p− 2)|v|p−4vi(s)vj(s)

+ |v|p−2δij ]σ
k(t) · σm(t)∂kvi∂mvj ]} dx(3.28)

=

∫
|v|p−2∂iv

lAij(t)∂jv
l dx

+ (p− 2)
∫

|v|p−4 vm∂iv
mAij(t)vl∂jv

l dx,

where

Aij(t) = aij(t)− 1

2
σi(t) · σj(t).

Notice that

(p− 2)
∫

|v|p−4 vm∂iv
mAijvl∂jv

l dx = [4(p− 2)/p2]aij∂i(|v|p/2)∂j(|v|p/2).

3.5. Estimates of approximations.

3.5.1. Estimate of Lp-norm of u. For estimating Lp-norms of the approxima-
tions, we need some auxiliary statements. We start with some interpolation inequal-
ities.

Lemma 15 (see [12]). (a) Given v ∈ H
1
p, p > d > 2,∫

|v|p+2 dx ≤ C|v|p+2−d
p H(v)d/p,

where H(v) = |∇(|v|p/2)|22;
(b) Given v ∈ H

1
p, p > d = 2,

(∫
|v|2p dx

)2/p

≤ 22/p|v|2pH(v)2/p.

Proof. (a) is proved in [12]: one applies the inequality

|φ|2(p+2)/p ≤ c|φ|1−d/(p+2)
2 |∇φ|d/(p+2)

2

for the scalar function φ = |v|p/2.
In case (b), we apply the inequality∫

φ4 dx ≤ 2

∫
φ2 dx

∫
|∇φ|2 dx

for the scalar function φ = |v|p/2. We have∫
|v|2p dx ≤ 2

∫
|v|p dx

∫
|∇(|v|p/2)|2 dx = 2|v|ppH(v).
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Notice H(v) ≤ C
∫ |v|p−2|∇v|2 dx ≤ C|v|p1,p. We have also the following obvious

statement.
Corollary 16. (a) Let p > d > 2. For each ε there is a constant Cε such that

for all v ∈ H
1
p, ∫

|v|p+2 dx ≤ εH(v) + Cε(|v|pp)1+µ,

where µ = 2/(p− d).
(b) Let p > d = 2. For each ε there is a constant Cε such that for all v ∈ H

1
p,

|v|p−2
p

(∫
|v|2p dx

)2/p

≤ εH(v) + Cε(|v|pp)1+µ,

where µ = 2/(p− d).
Lemma 17. For each ε there is a constant Cε independent of n such that for all

v ∈ H
1
p, ∣∣∣∣

∫
|v|p−2(v,Ln(v)) dx

∣∣∣∣ ≤ ε

∫
|v|p−2|∇v|2 dx+ Cε(|v|pp)1+µ,(3.29)

where µ = 2/(p− d).
Proof. Denote Dil the lth component of Di = G(Ψn(vi)v). Since

G(Ψn(vi)∂iv) = ∂iG(Ψn(vi)v),

integrating by parts, we get that for each ε there is a constant Cε independent of n
such that∣∣∣∣

∫
|v|p−2(v,Ln(v)) dx

∣∣∣∣ =
∣∣∣∣
∫

∂i(|v|p−2vl)Dil dx

∣∣∣∣ ≤ C

∫
|v|p−2|∇u||Di| dx

≤ ε

∫
|v|p−2|∇v|2 dx+ Cε

∫
|v|p−2|Di|2 dx.

We need to estimate the term B =
∫ |v|p−2|Di|2 dx =

∫ |v|p−2|Di|2. By the Hölder
inequality and Lemma 1,

B ≤
(∫

|v|p+2

) p−2
p+2

(∫
|Di| p+2

2

) 4
p+2

≤
(∫

|v|p+2

) p−2
p+2

(∫
{|Ψn(vi)||v|}

p+2
2

) 4
p+2

(3.30)

≤
(∫

|v|p+2

) p−2
p+2

(∫
|Ψκ(vi)|p+2

) 2
p+2

(∫
|v|p+2

) 2
p+2

≤
∫

|v|p+2.

On the other hand,

B ≤
(∫

|v|p
) p−2

p
(∫

|Di|p
) 2
p

≤ C|v|p−2
p

(∫
{|Ψκ(vi)||v|}p

) 2
p

(3.31)

≤ C|v|p−2
p

(∫
|Ψn(vi)|2p

) 1
p
(∫

|v|2p
) 1
p

≤ C|v|p−2
p

(∫
|v|2p

) 2
p

.
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By Corollary 16 (using (3.30) for d > 2, and (3.31) for d = 2), for each ε there is a
constant Cε such that

B ≤ εH(v) + Cε(|v|pp)1+µ,
where µ = 2/(p− d) and

H(v) = | ∇(|v|p/2)|22 ≤ C

∫
|v|p−2|∇v|2 dx ≤ C(|v|pp + |∇v|pp.

Using the Itô formula, we estimate the Lp-norm of the solution.
Proposition 18. (a) Let B1, B2(p) be satisfied, p > d, E|u0|p1,p < ∞. Then for

some F-adapted functions a(s), b(s) (in which a(s) is real valued and b(s) is Y -valued)
P -a.s. in [0, ζn),

|u(t)|pp = |u0,n|pp +
∫ t

0

a(r) ds+

∫ t

0

γ(r) · Ẇsds.(3.32)

Moreover, there is a constant C independent of n such that

a(r) ≤ C[|u(r)|pp + (|u(r)|pp)1+µ + |G(0, r)|pp + |F (0, r)|pp],(3.33)

|γ(r)|Y ≤ C[|u(r)|pp + |u(r)|p−1
p |G(0, r)|p),

where µ = 2/(p− d).
(b) Let B1, B2(p), and B2(2) be satisfied, p > d, and

E(|u0|p1,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t. Then (3.32), (3.33) hold and for some F-adapted functions ã(s), γ̃(s)
and all t,

|u(t)|p2 = |u0,n|p2 +
∫ t

0

ã(r) dr +

∫ t

0

γ̃(r) · dWr

P -a.s. Moreover, there is a constant C independent of n such that

ã(r) ≤ C[|u(r)|p2 + |G(0, r)|p2 + |F (0, r)|p2],
|γ̃(r)|Y ≤ C[|u(r)|p2 + |u(r)|p−1

2 |G(0, r)|2).
Proof. According to Proposition 12, there is a solution u = un to (3.24) such

that P -a.s. for all T

sup
t≤T

|u(t)|p1,p +
∫ T

0

|∂2u(t)|pp dt < ∞.

Denoting c(r) = (ci(r))1≤i≤d = σk∂ku(r) + G̃(u(r), r), and applying the Itô formula
to u satisfying (3.26) (see [38]), we find that

|u(t)|pp = |u0|pp − p

∫ t

0

Np(u(r), r) dr + p

∫ t

0

∫
|u(r)|p−2(u(r),Ln(u(r))) dx dr

+ p

∫ t

0

∫
|u(r)|p−2(u(r), F̃ (u(r), r)) dx+

∫ t

0

p

∫
|u(r)|p−2ul(r)cl(r) dxẆ dr

+
p

2

∫ t

0

(∫
[(p− 2)|u(r)|p−4ui(r)uj(r) + |u(r)|p−2δij ]b̄

ij(r) dx

)
dr,
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where

b̄ij(r) = σk(r)∂ku
i(r) · dj(r) + σk(r)∂ku

j(r) · di(r) + di(r) · dj(r),

and di(r) = G̃i(u(r), r). By Lemmas 13 and 14, for each ε > 0, there is a constant Cε
such that

∣∣∣∣
∫
|u(r)|p−2(u(r), F̃ (u(r), r)) dx

∣∣∣∣ ≤ ε

∫
|u(r)|p−2|∇u(r)|2 dx+Cε(|u(r)|pp+|F (0, r)|pp),

(3.34)

∣∣∣∣
∫
[(p− 2)|u(r)|p−4ui(r)uj(r) + |u(r)|p−2δij ]b̄

ij(r) dx

∣∣∣∣(3.35)

≤ ε

∫
|u(r)|p−2|∇u(r)|2 dx+ Cε(|u(r)|pp + |G(0, r)|pp).

By Lemma 14 ∣∣∣∣
∫

|u(r)|p−2ul(r)cl(r) dx

∣∣∣∣ ≤ C(|u(r)|pp + |u(r)|p−1
p ||G(0, r)|p).(3.36)

So, (3.33) follows by Lemma 17.
In the case (b), applying the Itô formula (see [38]), we obtain

|u(t)|p2 = |u(0)|p2 − p

∫ t

0

|u(r)|p−2
2 N2(u(r), r) dr

+ p

∫ t

0

|u(r)|p−2
2

∫
(u(r), F̃ (u(r), r)) dx dr + p

∫ t

0

|u(r)|p−2
2

(∫
ul(r)cl(r) dx

)
dWr

+ p/2

∫ t

0

|u(r)|p−2
2

(∫
b̄ii(r) dx

)
dr +

p

2
(p− 2)

∫ t

0

|u(r)|p−4
2

∣∣∣∣
∫

ul(r)cl(r) dx

∣∣∣∣
2

Y

dr.

Since (3.34)–(3.36) holds for p = 2 as well, the assertion of part (b) follows.
Remark 4. There is a constant C = C(K, d, p) independent of δ such that

a(s) ≤ C[|u(s)|pp + |∇u(r)|pp + (|u(s)|pp)1+µ + |G(0, s)|pp + |F (0, s)|pp],
|γ(s)|Y ≤ C[|u(s)|pp + |u(s)|p−1

p |G(0, s)|p).

3.5.2. Estimate of Lp-norm of∇u. Since by the Biot–Savaret law (see Propo-
sition 42 in the appendix), for each p > 1,

|∇u|p ≤ C|η|p, (η = curlu),

we need to estimate |η|p. According to Remark 3, η satisfies linear equation (3.25) or
(3.27).

Proposition 19. (a) Let B1, B2(p) be satisfied (p > d), E(|u0|p1,p) < ∞, and
let u be the solution of (3.26). Then for some F-adapted functions h(t), κ(t) (h(t) is
real valued and κ(t) is Y -valued) P -a.s. in [0, ζn),

|η(t)|pp = |curlu0,n|pp +
∫ t

0

h(r) ds+

∫ t

0

κ(r) · dWs.
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Moreover, there is a constant C independent of n such that

h(r) ≤ C[|η(r)|pp + (|η(r)|pp)1+µ + |u(r)|pp + |F (0, r)|p1,p + ||G(0, r)||p1,p],
|κ(r)|Y ≤ C[|η(r)|pp + |u(r)|pp + |η(r)|p−1

p |G(0, r)|1,p),
where µ = 2/(p− d).

(b) Let B1, B2(p), and B2(2) be satisfied (p > d = 2), and

E(|u0|p1,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t. Let u be the solution of (3.26). Then for some F-adapted functions
ã(s), b̃(s) (ã(s) is real valued and b̃(s) is Y -valued) P -a.s. for all t,

|η(t)|p2 = |curlu0,n|p2 +
∫ t

0

ã(r) ds+

∫ t

0

b̃(r) · dWs.

Moreover, there is a constant C independent of n such that

ã(r) ≤ C[|η(r)|p2 + (|η(r)|p2)1+2/p + |u(r)|p2 + |F (0, r)|p1,2 + ||G(0, r)||p1,2],
|b̃(r)|Y ≤ C[|η(r)|p2 + |η(r)|p−1

2 (|u(r)|2 + ||G(0, r)||1,2)].
Proof. By applying the Itô formula to function η (t) , which verifies (3.27), we

find that

|η(t)|pp = |η(0)|pp − p

∫ t

0

Np(η(r), r) dr − p

∫ t

0

∫
|η(r)|p−2(η(r), rn(u(r))) dx dr

+ p

∫ t

0

〈|η(r)|p−2η(r),H(r)
〉
1,p

dr +

∫ t

0

p

∫
|η(r)|p−2ηl(r)cl(r) dxẆrdr

+
p

2

∫ t

0

(∫
[(p− 2)|η(r)|p−4ηi(r)ηj(r) + |η(r)|p−2δij ]b̄

ij(r) dx

)
dr,

where c(r) = (ci(r))i = σk(r)∂kη(r) +B(u(r), r),

H(r) = (H l(r))l = bi(r)∂iη(r)) +H(u(r), r),

and

b̄ij(r) = σk∂kη
idj(r) + σk∂kη

jdi(r) + di(r)dj(r),

and d(r) = B(u(r), r).
According to Lemmas 13 and 14, for every ε > 0, there is a constant Cε so that∣∣∣∣

∫
[(p− 2)|η(r)|p−4ηi(r)ηj(r) + |η(r)|p−2δij ]b̄

ij(r) dx

∣∣∣∣(3.37)

≤ ε

∫
|η|p−2|∇η|2 dx+ Cε(|G(0, r)|p1,p + |u(r)|p1,p),

and

| 〈|η(r)|p−2η(r),H(r)
〉
1,p

| ≤ ε

∫
|η|p−2|∇η|2 dx+ Cε(|F (0, r)|p1,p + |u(r)|p1,p).

(3.38)



1280 R. MIKULEVICIUS AND B. L. ROZOVSKII

Also, ∣∣∣∣
∫

|η(r)|p−2ηl(r)cl(r) dx

∣∣∣∣
Y

≤ C(|η(r)|pp + |u(r)|p1,p + |G(0, r)|1,p|η(r)|p−1
p ).(3.39)

It remains to estimate the term

A =

∫
|η(r)|p−2η(r), rn(u(r)) dx

=

∫
|η(r)|p−2(η(r),∇(Ψn(ui(r)))× ∂iu(r)) dx .

We have

|A| ≤ C

(∫
|η|p +

∫
|η|p−2|∇Ψκ(u)|2|∇u|2

)
,

and by the Hölder inequality∫
|η|p−2|∇Ψκ(u)|2|∇u|2 ≤ |η|p−2

p+2|∇Ψn(u)|2p+2|∇u|2p+2 ≤
∫

|η|p+2

or ∫
|η|p−2|∇Ψκ(u)|2|∇u|2 ≤ C|η|p−2

p

(∫
|η|2p

)2/p

.

So, by Corollary 16, for each ε there is a constant Cε independent of n such that

|A| ≤ ε

∫
|η|p−2|∇η|2 dx+ Cε(|η|pp)1+µ,(3.40)

where µ = 2/(p− d). Part (a) of the statement obviously follows by summarizing all
the estimates.

In case (b), we apply the Itô formula to |η(t)|p2:

|η(t)|p2 = |η(0)|p2 − p

∫ t

0

|η(r)|p−2
2 N2(η(r), r) dr−p

∫ t

0

|η(r)|p−2
2

∫
(η(r), rn(u(r))) dx dr

+ p

∫ t

0

|η(r)|p−2
2

∫
(η(r),H(r)) dx dr +

∫ t

0

p|η(r)|p−2
2

(∫
ηl(r)cl(r) dx

)
dWr

+
p

2

∫ t

0

|η(r)|p−2
2

(∫
b̄ii(r) dx

)
dr +

p

2
(p− 2)

∫ t

0

|η(r)|p−4
2

∣∣∣∣
∫

ηl(r)cl(r) dx

∣∣∣∣
2

Y

dr.

Since (3.37)–(3.39) hold for p = 2 as well, it remains to estimate A =
∫
(η(r),

∇(Ψn(u)i)× ∂iu(r)) dx:

|A| ≤ C|η(r)|2|η(r)|24 ≤ C|η(r)|22|∇η(r)|2 if d = 2.

So,

|η(r)|p−2
2 |A| ≤ ε|η(r)|p−2

2 |∇η(r)|22 + Cε(|η(r)|p2)1+2/p.

Now, part (b) follows.
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Remark 5. (a) Consider a scalar process yt = |u(t)|pp + |η(t)|pp. Then, according
to parts (a) of Propositions 18 and 19, for some adapted functions h(t) and κ(t) (κ is
Y -valued) in [0, ζn),

yt = y0 +

∫ t

0

hr dr +

∫ t

0

κr · Ẇrdr,(3.41)

and there is a constant C = C(δ,K, d, p) such that

hr ≤ C(yr + y1+µ
r + zr),(3.42)

|κr|Y ≤ C(yr + y1−1/p
r z̃1/p

r ),

where zr = |F (0, r)|p1,p + ||G(0, r)||p1,p, z̃s = ||G(0, r)||p1,p.
(b) Consider a scalar process ỹt = |u(t)|p2 + |η(t)|p2. Then, according to parts (b)

of Proposition 18 and 19, for some adapted functions h̃(t) and κ̃(t) (κ̃ is Y -valued),

ỹt = ỹ0 +

∫ t

0

h̃r dr +

∫ t

0

κ̃r · Ẇrdr,

and there is a constant C = C(δ,K, d, p) such that

h̃r ≤ C(ỹr + ỹ1+2/p
r + z̃r),

|κ̃r|Y ≤ C(ỹr + ỹ1−1/p
r (z̃′r)

1/p),

where z̃r = |F (0, r)|p1,2 + ||G(0, r)||p1,2, z̃′r = ||G(0, r)||p1,2.
We introduce the smooth scalar function

G(y) =

∫ y

0

(1 + x+ x1+µ)−1 dx.

Notice that G′(y) = (1 + y + y1+µ)−1 > 0, G′′(y) ≤ 0.
Remark 6. In the context of the previous remark, we obtain by the Itô formula

G(yt) = G(y0) +

∫ t

0

r̄sds+

∫ t

0

b̄s · Ẇs ds,

where rs = G′(ys)rs+2−1G′′(ys)|b̄s|2Y ≤ C(1+zs), |b̄s|Y = G′(ys)|bs|Y ≤ C(1+ z̃
1/p
s ).

A similar observation holds for ỹr.

3.5.3. Convergence of approximations. The following two auxiliary state-
ments will be needed later.

Lemma 20. (a) Let v, g,f ∈ H
1
p. For each ε > 0 there is a constant Cε such that∣∣∣∣

∫
(S[(Ψn(vk)−Ψn′(v̄k))∂kg],f |f |p−2) dx

∣∣∣∣ ≤ ε

∫
|∇f |2|f |p−2 dx+ Cε(|f |pp + |gA|pp),∣∣∣∣

∫
(S[Ψn′(v̄k))∂kg],f |f |p−2) dx

∣∣∣∣ ≤ ε

∫
|∇f |2|f |p−2 dx+ Cε(|f |pp + |gB|pp),

where A = |Ψn(vk)−Ψn′(v̄k)|, B = |Ψn′(v̄k)| ;
(b) Let v ∈ H

1
p,f = (f

l), g = (gl) ∈ H1
p (R

d,Rd(d−1)/2). For each ε > 0 there is a
constant Cε such that∣∣∣∣

∫
(Ψn(v

k)−Ψn′(v̄k))∂kg
lf l|f |p−2 dx

∣∣∣∣ ≤ ε

∫
|∇f |2|f |p−2 dx+ Cε(|Ag|pp + |f |pp),
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where g = (gl),f = (f l), A = |Ψn(vk)−Ψn′(v̄k)|.
Proof. (a) Indeed, we have∣∣∣∣

∫
(S[(Ψn(vk)−Ψn′(v̄k))∂kg],f |f |p−2) dx

∣∣∣∣
=

∣∣∣∣
∫
(S[(Ψn(vk)−Ψn′(v̄k))g], ∂k(f

l|f |p−2)) dx

∣∣∣∣
≤ ε

∫
|∇f |2|f |p−2 dx+ Cε(|f |pp + |gA|pp).

Similarly, the second estimate follows.
(b) We have∣∣∣∣
∫
(Ψn(v

k)−Ψn′(v̄k))∂kg
lf l|f |p−2 dx

∣∣∣∣ =
∣∣∣∣
∫
(Ψn(v

k)−Ψn′(v̄k))gl∂k(f
l|f |p−2) dx

∣∣∣∣
≤ ε

∫
|∇f |2|f |p−2 dx+ Cε

∫
A2|g|2|f |p−2 dx ≤ ε

∫
|∇f |2|f |p−2 dx+ Cε|Ag|2p|f |p−2

p

≤ ε

∫
|∇f |2|f |p−2 dx+ Cε(|Ag|pp + |f |pp),

and the statement follows.
Lemma 21. (a) There is a constant C so that for all v, v̄ ∈ H

1
p, n

′ ≥ n > 1,

|Ψn(vk)−Ψn′(v̄k)|p ≤ C(|v − v̄|1,p + n−1(|∇v|p + |∇v̄|p)].
(b) Let p > d. Then there is a constant C so that for all v, v̄ ∈ H

1
p, n

′ ≥ n > 1,

|Ψn(vk)−Ψn′(v̄k)|∞ ≤ C[|v − v̄|1,p + n−ν |v|1,p],
where ν = 1− d/p.

Proof. By Sobolev’s embedding theorem there is a constant C so that for all
v ∈ H

1
p

sup
x

|v(x)|+ sup
x,y

|v(x)− v( y)||x− y|ν ≤ C|v|1,p,

where ν = 1− d/p. Therefore,

sup
x

|Ψn(vk)−Ψn′(v̄k)| ≤ sup
x

|Ψn(vk)−Ψn(v̄k)|+ sup
x

|Ψn(v̄k)− v̄k|

+sup
x

|v̄k −Ψn′(v̄k)| ≤ C[sup
x

|v(x)−v̄ (x)|+ ((1/n)ν + (1/n′)ν)|v̄|1,p],

and the statement follows.
We will need the following equalities and estimates later.
Lemma 22. Let v,d ∈ H

1
p, η = (η

jl)j<l ∈ H1
p (R

d,Rd(d−1)/2), η̄ = η|η|p−2, p > d.
Then ∫ (∇dk × ∂kv, η̄

)
dx =

∫ (
dk∂kv ×∇, η̄

)
dx+

∫
(∇× v, dk∂kη̄) dx.

Also, for each ε there is a constant Cε such that for all v,d ∈ H
1
p, η = (η

jl)j<l ∈
H1
p (R

d, Rd(d−1)/2),∫
| (∇dk × ∂kv, η̄

)
dx| ≤ ε

∫
|η|p−2|∇η|2 dx+ Cε(|η|pp + |∇v|pp|d|p∞).
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Proof. It is enough to prove the statement for v,d ∈ C
∞
0 , ηjl ∈ C∞

0 . Integrating
by parts, we have∫ (∇dk × ∂kv, η̄

)
dx =

∫
εjk(∂jd

k∂kv
l − ∂ld

k∂kv
j)η̄jl dx

= −
∫

εjkd
k(∂k∂jv

l − ∂k∂lv
j)η̄jl dx−

∫
εjkd

k(∂kv
l∂j η̄

jl − ∂kv
j∂l η̄

jl) dx

=

∫
εjk(d

k∂jv
l − dk∂lv

j)∂kη̄
jl dx+

∫
εjk(d

k∂kv
j∂l η̄

jl − dk∂kv
l∂j η̄

jl) dx,

where εjk = (−1)j+k−1. Therefore, for each ε there is a constant Cε such that∣∣∣∣
∫ (∇dk × ∂kv, η̄

)
dx

∣∣∣∣ ≤ ε

∫
|η|p−2|∇η|2 dx+ Cε

∫
|η|p−2|d|2|∇v|2 dx,

and the statement follows by the Hölder inequality.
Remark 7. If d = 2, then for all v ∈ H

1
p

∇vk × ∂kv = 0.

Let u = un = (uln) = (ul) be a maximal H
1
p-solution to (3.24). Let η = ηn =

(ηln) = curl un. Fix a large number M > 0 and T > 0. Given a positive integer n, let
Tn = T M,T

n be the set of all stopping times τ ≤ T ∧ ζn such that P -a.s.

sup
s≤τ

(|un(s)|p + |ηn(s)|p) ≤ M.

In the case d = 2, we also introduce the set T̃n = T̃ M,T
n of all stopping times τ ≤ T

such that

sup
s≤τ

(|un(s)|p + |ηn(s)|p + |un(s)|2 + |ηn(s)|2) ≤ M.

Let Tn,n′ = Tn ∩ Tn′ , T̃n,n′ = T̃n ∩ T̃n.
Lemma 23. (a) Let B1, B2(p), B3(p) be satisfied (p > d), E(|u0|p1,p) < ∞. Let

u = un = (u
l
n) = (u

l) be H
1
p-solutions to (3.24). Then

lim
n
sup{E sup

s≤τ
|un′ − un|p1,p : n′ ≥ n, τ ∈ Tn′,n} = 0,

where Tn′,n = Tn ∩ Tn′ .
(b) Let B1, B2(p), B3(p), B2(2), B3(2) be satisfied (p > d = 2), and

E(|u0|p1,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t. Let u = un = (u
l
n) = (u

l) be an H
1
p ∩ H

1
2-solution to (3.24). Then

lim
n→∞ sup{E sups≤τ

(|un′ − un|p1,p + |un′ − un|p1,2) : n′ ≥ n, τ ∈ T̃n′,n} = 0,

where T̃n′,n = T̃n ∩ T̃n′ .
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Proof. Let τ ∈ Tn′,n, n
′ ≥ n. Consider

w(t) = un′(t ∧ τ)− un(t ∧ τ), ξ(t) = ηn′(t ∧ τ)− ηn(t ∧ τ).

Denote ū = un′ , u = un.
Applying the Itô formula (see [38]), we have

|w(t)|pp = |w(0)|pp − p

∫ t∧τ

0

Np(w(r), r) dr + p

∫ t∧τ

0

∫
|w(r)|p−2(w(r),a(r) dx dr

+ p

∫ t∧τ

0

∫
|w(r)|p−2wl(r)cl(r) dWr

+
p

2

∫ t∧τ

0

(∫
[(p− 2)|w(r)|p−4wi(r)wj(r) + |w(r)|p−2δij ]c̄

ij(r) dx

)
dr

− p

∫ t∧τ

0

(∫
|w(r)|p−2(w(r),S[∂kw(r)Ψn′(ūk) + (Ψn′(ūk)−Ψn(uk))∂ku] dx

)
dr,

(3.43)

where c(r) = (ci(r))i = σk∂kw(r) + G̃(ū, r)− G̃(u, r),

a(r) = (al(r))l = F̃ l(v, r)− F̃ l(u, r);

and

c̄ij(r) = σk(r)∂kw
i(r) · dj(r) + σk(r)∂kw

j(r) · di(r) + di(r) · dj(r),

where di(r) = G̃i(ū(r), r)− G̃i(u(r), r).
Also, by the Itô formula (see [38]),

|ξ(t)|pp = |ξ(0)|pp − p

∫ t∧τ

0

Np(ξ(r), r) dr + p

∫ t∧τ

0

∫
|ξ(r)|p−2ξl(r)H l(r) dx dr

+ p

∫ t∧τ

0

∫
|ξ(r)|p−2(ξ(r), rn′(ū(r))− rn(u(r)) dx dr

+ p

∫ t∧τ

0

∫
|ξ(r)|p−2ξl(r)κl(r) dx dWr

+
p

2

∫ t∧τ

0

(∫
[(p− 2)|ξ(r)|p−4ξi(r)ξj(r) + |ξ(r)|p−2δij ]κ̄

ij(r) dx

)
dr

− p

∫ t∧τ

0

∫
|ξ(s)|p−2ξl(s)[∂kξ

l(s)Ψn′(ūk) + (Ψn′(ūk)−Ψn(uk))∂kηln dx ds,

where κ(r) = (κi(r))i = σk∂kξ(r) +B(ū, r)−B(u, r)),

H(r) = (H l(r))l = bi∂iξ(r) +H(ū(r), r)−H(u(r), r));

and

κ̄ij(r) = σk(r)∂kξ
i(r) ·Dj(r) + σk(r)∂kξ

j(r) ·Di(r) +Di(r) ·Dj(r),

where Di(r) = Bi(ū(r), r)−Bi(u(r), r).
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By Lemmas 20 (a) and 21 (b) and the Sobolev embedding theorem

L̄1 =

∣∣∣∣
∫

|w(r)|p−2(w(r),S[∂kw(r)Ψn′(ūk) + (Ψn′(ūk)−Ψn(uk))∂ku] dx
∣∣∣∣

≤ ε

∫
|∇w(r)|2|w(r)|p−2 dx+ Cε(|w(r)|pp + |w(r)A|pp + |w(r)B|pp)(3.44)

≤ ε

∫
|∇w(r)|2|w(r)|p−2 dx+ Cε(M)(|w(r)|pp + |ξ(r)|pp + n−νp),

where A = |Ψn′(ūk)−Ψn(uk)|, B = |Ψn′(ūk)|, ν = 1− d/p.
Similarly, by Lemmas 20 (b) and 21 (b),

L̄2 =

∣∣∣∣
∫

|ξ(s)|p−2ξl(s)(Ψn′(ūk)−Ψn(uk))∂kηln dx
∣∣∣∣

≤ ε

∫
|∇ξ(r)|2|ξ(r)|p−2 dx+ Cε(|Aηn(r)|pp + |ξ(r)|pp)(3.45)

≤ ε

∫
|∇ξ(r)|2|ξ(r)|p−2 dx+ Cε(M)(|w(r)|pp + |ξ(r)|pp + n−pν).

Obviously,

L̄3 =

∣∣∣∣
∫
(|ξ(r)|p−2ξ(r),∇(Ψn′(ūi))× ∂iū(r)−∇(Ψn(ui))× ∂iu(r)) dx

∣∣∣∣
≤

∣∣∣∣
∫
(|ξ(r)|p−2ξ(r), (∇(Ψn′(ūi))−∇(Ψn(ui))× ∂iū(r)) dx

∣∣∣∣
+

∣∣∣∣
∫
(|ξ(r)|p−2ξ(r),∇(Ψn′(ūi))× ∂iw(r)) dx

∣∣∣∣ = L̄31 + L̄32.

By Lemmas 22 and 21 (part (b)),

L̄31 ≤ ε

∫
|ξ(r)|p−2|∇ξ(r)|2 dx+ Cε(|ξ(r)|pp + |∇ū(r)|pp|A|p∞)

≤ ε

∫
|ξ(r)|p−2|∇ξ(r)|2 dx+ Cε(M)(|ξ(r)|pp + |w(r)|pp + n=pν),(3.46)

L̄32 ≤ ε

∫
|ξ(r)|p−2|∇ξ(r)|2 dx+ Cε(|ξ(r)|pp + |∇w(r)|pp|B|p∞)

≤ ε

∫
|ξ(r)|p−2|∇ξ(r)|2 dx+ Cε(M)(|ξ(r)|pp).

Let Zt = |w(t)|pp+|ξ(t)|pp. Using (3.44)–(3.46) and estimating the remaining terms
by Lemmas 13 and 14, we obtain that for some adapted functions a(t), b(t) (b(t) is
Y -valued)

dZt = a(t) dt+ b(t) · dWt,(3.47)

and there is a constant C such that on [0, τ ] for all τ ∈ Tn′,n, n
′ ≥ n,

a(t) ≤ C(Zt + (1/n
νp)), |b(t)|Y ≤ CZt.(3.48)

(We use B3(p) to estimate the term∫
[(p− 2)|ξ(r)|p−4ξi(r)ξj(r) + |ξ(r)|p−2δij ]κ̄

ij(r) dx.)
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Now part (a) of the statement follows by Lemma 36.

In case (b), we have (τ ∈ T̃n′,n)

|w(t)|p2 = |w(0)|p2 − p

∫ t∧τ

0

|w(s)|p−2
2 N2(w(r), r) dr

+ p

∫ t∧τ

0

|w(r)|p−2
2

∫
(w(r),a(r)) dx dr + p

∫ t∧τ

0

|w(r)|P−2
2

(∫
wl(r)cl(r) dx

)
dWr

+ p/2

(∫ t∧τ

0

|w(r)|p−2
2

(∫
c̄ii(r) dx

)
dr+(p− 2)

∫ t∧τ

0

|w(r)|p−4
2 |

∫
wl(r)cl(r) dx|2Y dr

)

−
∫ t∧τ

0

|w(r)|p−2
2

(∫
wl(r)[∂kw

l(r)Ψn′(ūk(r)) + (Ψn′(ūk)−Ψκ(uk))∂kul] dx
)

dr.

Similarly,

|ξ(t)|p2 = |ξ(0)|p2 − p

∫ t∧τ

0

|ξ(r)|p−2
2 N2(ξ(r), r) ds

− p

∫ t∧τ

0

|ξ(r)|p−2
2

∫
(ξ(r),∇(Ψn(ūi(r)))× ∂iw(r)

+ (∇(Ψn′(ui(r))−∇(Ψn(ui(r)))× ∂iu(r)) dx dr

p

∫ t∧τ

0

|ξ(r)|p−2
2

(∫
(ξ(r),H(r)

)
dx dr +

∫ t∧τ

0

p|ξ(r)|p−2
2

(∫
ξl(r)κl(r) dx

)
dWr

+
p

2

∫ t∧τ

0

|ξ(r)|p−2
2

(∫
κ̄ii(r) dx

)
dr +

p

2
(p− 2)

∫ t∧τ

0

|ξ(r)|p−4
2 |

∫
ξl(r)κl(r) dx|2Y dr.

Let n′ ≥ n. According to Lemmas 20 (part (a)) and 21 (part (a)) and the Sobolev
embedding theorem, for each ε > 0, there is a constant Cε such that P -a.s. on [0, τ [,

H =

∣∣∣∣
∫

wl(r)(Ψn′(ūk(r))−Ψκ(uk(r)))∂kul(r)] dx
∣∣∣∣

≤ ε|∇w(r)|22 + Cε|u(r)|2∞|Ψn′(ūk(r))−Ψn(uk(r)|22
≤ ε|∇w(r)|22 + CεM

2(|w(r)|21,2 + n−2(|∇ū(r)|22 + |∇ū(r)|22)
≤ ε|∇w(r)|22 + CεM

2(|w(r)|21,2 + n−2),

and

|w(r)|p−2
2 H ≤ ε|∇w(r)|22|w(r)|p−2

2 + Cε(M)(|w(r)|p2 + |ξ(r)|p2 + n−p).(3.49)

By Lemma 22 and the Sobolev imbedding theorem,

L1 =

∣∣∣∣
∫
(ξ(r),∇(Ψn(ūi(r)))× ∂iw(r) dx

∣∣∣∣
≤ ε|∇ξ(r)|22 + Cε(|ξ(r)|22 + |Ψn(ūi(r))|2∞|∇w(r)|22)(3.50)

≤ ε|∇ξ(r)|22 + Cε(1 +M2)|ξ(r)|22.
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By Lemmas 22 and 21 (b),

L2 =

∣∣∣∣
∫
(ξ(r), (∇(Ψn′(ūi(r))−∇(Ψn(ui(r)))× ∂iu(r)) dx

∣∣∣∣
≤ ε|∇ξ(r)|22 + Cε(|ξ(r)|22 + |Ψn(ūi(r))−Ψn′(ūi(r))|2∞|∇u(r)|22)(3.51)

≤ ε|∇ξ(r)|22 + Cε[|ξ(r)|22 +M2(|w(r)|21,p + n−2νM2)]

≤ ε|∇ξ(r)|22 + Cε(M)(|ξ(r)|22 + |w(r)|21,p + n−2ν),

where ν = 1− 2/p. So,
|ξ(r)|p−2

2 L2 ≤ ε|∇ξ(r)|22|ξ(r)|p−2
2 + Cε(M)(|ξ(r)|p2 + |w(r)|p1,p + n−2ν),(3.52)

|ξ(r)|p−2
2 L1 ≤ ε|∇ξ(r)|22|ξ(r)|p−2

2 + Cε(M)|ξ(r)|p2.
Let Kt = |w(t)|p2 + |ξ(t)|p2. Using (3.49)–(3.52) and estimating the remaining terms
by Lemmas 13 and 14, we obtain that for some adapted functions ā(t), b̄(t) (b̄(t) is
Y -valued),

dKt = ā(t) dt+ b̄(t) · dWt,(3.53)

and there is a constant C such that on [0, τ ] for all τ ∈ Tn′,n, n
′ ≥ n,

ā(t) ≤ C(Kt + |w(t)|p1,p + (1/np)), |b̄(t)|Y ≤ CKt.(3.54)

(We use B3(2) to estimate
∫
b̄ii(r) dx.)

Combining (3.47), (3.53), (3.48), and (3.54), we find that for some adapted func-
tions ã(t), b̃(t)

Rt = |w(t)|p2 + |ξ(t)|p2 + |w(t)|pp + |ξ(t)|pp
= R(0) +

∫ t

0

ã(r) dr +

∫ t

0

b̃(r) · dWr,

and there is a constant C such that on any [0, τ ], τ ∈ T̃n′,n,

ã(t) ≤ C[R(t) + (1/np) + (1/npν)], |b̄(t)|Y ≤ CR(t).

Now part (b) of the statement follows by Lemma 36 (see the appendix).

3.6. Local existence and uniqueness.

3.6.1. Uniqueness.
Proposition 24. Let τ be a bounded stopping time, p > d. Let B1, B2(p) be

satisfied. Assume u(t) and ū(t) are Lp-solutions of (3.7) in [[0, τ ]] and also H
1
p-valued

and continuous.
Then P -a.s. u(t ∧ τ) = ū(t ∧ τ) for all t.
Proof. For v ∈ H

1
p, we set

G̃(v, r) = (G̃l(v, r))1≤l≤d = S(G(v, r))− G(σi(r)∂iv),
F̃ (v, r) = S(F (v, r) + bi(r)∂iv)− ∂iG(aij(r)∂jw).

Then for all v, v̄ ∈ H
1
p,

|G̃(v, r)− G̃(v̄, r)|p ≤ C|v − v̄|p,(3.55)

|F̃ (v, r)− F̃ (v̄, r)|−1,p ≤ C|v − v̄|p.
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Let

Np(v, r) = −
∫
{[|v|p−2vl∂i(a

ij(r)∂jv
l) + 2−1[(p− 2)|v|p−4vivj

+ |v|p−2δij ]σ
k(r) · σm(r)∂kvi∂mvj ]} dx.

Obviously (see (3.28)),

Np(v, r) ≥ δ

∫
|v|p−2|∇v|2 dx.

Let w(t) = u(t ∧ τ)− ū(t ∧ τ). By the Itô formula (see [38]),

|w(t)|pp = −p

∫ t∧τ

0

Np(w(r), r) dr + p

∫ t∧τ

0

∫
|w(r)|p−2wl(r)al(r) dx dr

+ p

∫ t∧τ

0

∫
|w(r)|p−2wl(r)cl(s) dWs

+
p

2

∫ t∧τ

0

(∫
[(p− 2)|w(r)|p−4wi(r)wj(r) + |w(r)|p−2δij ]c̄

ij(r) dx

)
dr

− p

∫ t∧τ

0

(∫
|w(r)|p−2(w(r),S[∂kw(r)ūk(r) + wk(r)∂ku(r)] dx

)
dr,

where c(r) = (ci(r))1≤i≤d = σk∂kw(r) + G̃(ū, r)− G̃(u, r),

a(r) = (al(r))l = F̃ l(ū, r)− F̃ l(u, r),

and

c̄ij(r) = σk(r)∂kw
i(r) · dj(r) + σk(r)∂kw

j(r) · di(r) + di(r) · dj(r),
where di(r) = G̃i(ū(r), r)− G̃i(u(r), r).

By (3.55), for each ε > 0, there is a constant Cε such that∣∣∣∣
∫

|w(r)|p−2wl(r)al(r) dx

∣∣∣∣ ≤ ε

∫
|w(r)|p−2|∇w(r)|2 dx+ Cε|w(r)|pp.(3.56)

Integrating by parts, and using the Sobolev embedding theorem (p > d) and the
Hölder inequality, we obtain that for each ε > 0 there is a constant Cε such that∣∣∣∣

∫
|w(r)|p−2(w(r),S[∂kw(r)ūk(r) + wk(r)∂ku(r)]) dx

∣∣∣∣
=

∣∣∣∣
∫

|w(r)|p−2(w(r), ∂kS[w(r)ūk(r) + wk(r)u(r)] dx

∣∣∣∣
(3.57)

≤ ε

∫
|w(r)|p−2|∇w(r)|2 dx+ Cε

∫
|w(r)|p−2|S[w(r)ūk(r) + wk(r)u|2 dx

≤ ε

∫
|w(r)|p−2|∇w(r)|2 dx+ Cε|w(r)|pp(|ū(r)|1,p + |u(r)|1,p).

By (3.55), for each ε > 0 there is a constant Cε such that∣∣∣∣
∫
[(p− 2)|w(r)|p−4wi(r)wj(r) + |w(r)|p−2δij ]c̄

ij(r) dx

∣∣∣∣(3.58)

≤ ε

∫
|w(r)|p−2|∇w(r)|2 dx+ Cε|w(r)|pp.
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Integrating by parts and by (3.55), we have∣∣∣∣
∫

|w(r)|p−2wl(r)cl(r) dx

∣∣∣∣ ≤ C|w(r)|pp.(3.59)

Let M > 1 and τM = inf(t : |ū(t)|1,p + |u(t)|1,p ≥ M) ∧ τ. Since (3.56)–(3.59)
hold, the assumptions of Lemma 36 (see the appendix) are satisfied with

Zt = |w(t)|pp, ct =
∫

|w(t)|p−2|∇w(t)|2 dx, ft = gt = 0, Z0 = 0.

Therefore, P -a.s. w(t ∧ τM ) = 0 for all t. Since M is arbitrary, pathwise uniqueness
follows.

3.6.2. Existence. Now we extract a converging subsequence.
Lemma 25. (a) Let B1, B2(p), B3(p) be satisfied (p > d), E(|u0|p1,p) < ∞. Then

there is a bounded stopping time τ such that P (τ > 0) = 1 and a unique Lp-solution
u(t) of (3.7) in [[0, τ ]] which is also an H

1
p-valued continuous process such that

E sup
t≤τ

|u(t)|p1,p < ∞.

(b) Let B1, B2(p), B2(2), B3(p), B3(2) be satisfied (p > d = 2), and

E(|u0|p1,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t. Then there is a stopping time τ such that P (τ > 0) = 1 and a unique
Lp ∩ L2-solution u(t) of (3.7) in [[0, τ ]], which is also an H

1
p ∩ H

1
2-valued continuous

process such that

E sup
t≤τ

(|u(t)|p1,p + |u(t)|p1,2) < ∞.

Proof. We apply Lemma 37 (see the appendix) to extract a converging subse-
quence. We choose the Banach space

B =

{
H

1
p in case (a),

H
1
p ∩ H

1
2 in case (b).

In H
1
p ∩ H

1
2 we use the norm

|v|B = (|v|pp + |curlv|pp + |v|p2 + |curlv|p2)1/p.

In H
1
p the norm |v|B = (|v|pp + |curlv|pp)1/p is used.
Fix arbitrary T0 > 0,M0 > 1. Since Lemma 23 holds, according to Lemma 37, it

is enough to prove that

lim
T→0

sup
n,τ∈TM0,T0

n

P ( sup
s≤τ∧T

|un(s)|B > |un(0)|B +M0 − 1) = 0,(3.60)
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where T M0,T0
n is the set of all stopping times τ ≤ T0 such that sups≤τ |un(s)|B ≤

M0 + |un(0)|B . Let T < T0;

Sn = inf(t : |un(t)|B > |un(0)|B +M0 − 1).

Let

Kt=

{∫ t
0
(||G(0, r)||p1,p+|F (0, r)|p1,p) dr in case (a),∫ t

0
(||G(0, r)||p1,p+|F (0, r)|p1,p + ||G(0, r)||p1,2 + |F (0, r)|p1,2) dr in case (b).

Define τM = inf(t : Kt ≥ M) ∧ T0. By Propositions 18 and 19, for τ ∈ T M0,T0
n , we

have for each M

P

(
sup

t≤τ∧T
|un(t)|B > |un(0)|B +M0 − 1

)
≤ P (|un(Sn ∧ T )|B > |un(0)|B +M0 − 1)
≤ P (|un(Sn ∧ T )|pB > |un(0)|pB + (M0 − 1)p)
≤ P (|un(Sn ∧ τM ∧ T )|pB > |un(0)|pB + (M0 − 1)p)
+ P

(
τM < T0

) ≤ C(M0)[T + EKτM∧T ] + P
(
τM < T0

)
.

Therefore, for each M ,

lim sup
T→0

sup
n,τ∈TM0,T0

n

P

(
sup

s≤τ∧T
|un(s)|B > |un(0)|B +M0 − 1

)
≤ P

(
τM < T0

)
,

and (3.60) follows. By Lemma 37, there is a stopping time τ such that P (τ >
0) = 1, a B-valued stochastic process u on the interval [0, τ ] and a subsequence unk
converging uniformly on [0, τ ] to u. Obviously, u(t) is an Lp-solution (respectively,
Lp ∩ L2-solution) of (3.7) in [[0, τ ]], which is also H

1
p (respectively, H

1
p ∩ H

1
2) valued

and continuous. Uniqueness follows by Proposition 24.
The following almost obvious statement is a straightforward generalization of

Lemma 25.
Lemma 26. (a) Let B1, B2(p), B3(p) be satisfied (p > d) and E(|u0|p1,p) < ∞.

Assume that u(t) is an H
1
p-valued continuous Lp-solution of (3.7) on [0, S], where S

is a finite stopping time and

E sup
t≤S

|u(t)|p1,p < ∞.

Then there exist a finite stopping time τ and an H
1
p-valued continuous Lp-solution

v(t) to (3.7) in [[0, τ ]] such that P (τ > S) = 1 and v coincides with u on [0, S] and

E sup
t≤τ

|v(t)|p1,p < ∞.

(b) Let B1, B2(p), B3(p), B2(2), B3(2) be satisfied, and

E(|u0|p1,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞
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P -a.s. for all t. Assume that u(t) is an H
1
p ∩ H

1
2-valued continuous Lp ∩ L2-solution

of (3.7) in [[0, S]], where S is a finite stopping time and

E sup
t≤S

(|u(t)|p1,p + |u(t)|p1,2) < ∞.

Then there exist a finite stopping time τ and an H
1
p ∩ H

1
2-valued continuous Lp ∩ L2-

solution v(t) of (3.7) in [[0, τ ]] such that P (τ > S) = 1, and v coincides with u on
[0, S] and

E sup
t≤τ

(|v(t)|p1,p + |v(t)|p1,2) < ∞.

Now we can prove the main result.

3.6.3. Proof of Theorem 3. We follow here with the proof of Theorem 14.21
in [22]. Consider the set S of all finite stopping times S such that an H

1
p (respectively,

H
1
p ∩ H

1
2)-valued continuous Lp (respectively, Lp ∩ L2)-solution u(t) of (3.7) exists in

[[0, S]] and

E sup
t≤S

|u(t)|p1,p < ∞ (respectively, E sup
t≤S

(|u(t)|p1,p + |u(t)|p1,2) < ∞).

By Lemma 25, S is not empty. It is closed with respect to the finite minimum and
finite maximum operations. Let ζ be the essential upper bound of the set S. So, there
is a sequence Tn ∈ S increasing to ζ. Let Un be a corresponding sequence of solutions
on [0, Tn]. Since Proposition 24 holds, the sequence Un defines a continuous process
u on ∪n[0, Tn].

Let yt = |U(t)|1,p (respectively, yt = |u(t)|1,p + |u(t)|1,2)). Let Rm = ζ ∧ inf(t :
yt ≥ m). Then Tq ∧Rm ∈ S and u(· ∧Tq ∧Rm) is a solution in [[0, Tq ∧Rm]]. Passing
to a limit as q → ∞, we obtain that Rm ∈ S and u(· ∧Rm) is a solution in [[0, Rm]].
If P (Rm = ζ < ∞) > 0, Lemma 26 would imply that there is a stopping time S ∈ S
such that S ≥ Rm and P (Rm = ζ < S) > 0. This would contradict the definition of
ζ. Thus P -a.s. Rm < ζ on {ζ < ∞}, and, obviously, lim supt↑ζ yt =∞ on {ζ < ∞}.
So, the sequence (Rm) “announces” ζ and ζ is a predictable stopping time. Obviously,
[0, S] ⊆ [0, ζ) for all S ∈ S. Let S be a stopping time such that P -a.s. S < ζ. Then
Tq ∧ S ∈ S and u(· ∧ Tq ∧ S) is a solution in [[0, Tq ∧ S]]. Passing to the limit as
q → ∞, we obtain that u(· ∧ S) is a solution in [[0, S]].

Let, in addition, E(|u0|p2−2/p,p) < ∞. Let S be a stopping time such that S < ζ

P -a.s. Consider a linear equation in [[0, S]] for v(t)




∂tv (t) = S[∂i
(
a ij (t) ∂jv (t)

)− uk (t) ∂ku(t) + bi(t)∂iu(t) + F (u (t) , t)]

+ S[σi(t)∂iv (t) +G (u (t) , t)] Ẇt,
v (0) = u0.

(3.61)

By Theorem 3.3 in [37], in case (a) there is a unique H
1
p-solution of (3.61) which is

also a unique Lp-solution. So, u(t) = v(t) on [0, S] and u(t) is an H
1
p-solution to (3.7)

in [[0, S]]. In case (b) we do the same using Corollary 3.7 in [37] and obtain that u(t)
is an H

1
p ∩ H

1
2-solution in [[0, S]].

It remains to prove that, in case (a), limt↑ζ |u(t)|1,p = ∞ on {ζ < ∞} if
E(|u0|p2−2/p,p) < ∞.
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Fix an arbitrary m > 1. Let

τm+1 = inf(t : yt ≥ m+ 1).

Define a sequence of stopping times

S1 = inf(t > τm+1 : yt ≤ m) ∧ ζ, S2n = inf(t > S2n−1 : yt ≥ m+ 1) ∧ ζ,

S2n+1 = inf(t > S2n : yt ≤ m) ∧ ζ.

Let S = limn Sn. Applying the Itô formula (see the proof of Proposition 18), we find
that for some adapted a(r), b(r)

y(t ∧ S) = |u(t ∧ S)|pp + |curlu(t ∧ S)|pp(3.62)

= y(0) +

∫ t∧S

0

a(r) dr +

∫ t∧S

0

b(r) · dWr,

and

ar ≤ C(yr + y1+µ
r + zr), |br|Y ≤ C(yr + y1−1/p

r z̃1/p
r ),(3.63)

where zr = |F (0, r)|p1,p + ||G(0, r)||p1,p, z̃r = ||G(0, r)||p1,p, µ > 0.
We will prove that P (S = ζ < ∞) = 0. Since m is arbitrary, this will imply that

P -a.s. limt↑ζ |u(t)|1,p =∞ on {ζ < ∞}.
For M > 1 we set

τM = inf

(
t :

∫ t

0

(|F (0, r)|p1,p + ||G(0, r)||p1,p) dr ≥ M

)
.

It is enough to prove that for all q,M,

P (S = ζ < q ∧ τM ) = 0.

If P (S = ζ < q ∧ τM ) > 0 for some M, q, then by (3.62), (3.63),

∞ = E
∑
k≥1

[y(S2k)− y(S(2k − 1)] ≤ C(m,M) < ∞.

The statement follows.

3.7. Stochastic Navier–Stokes equation in two dimensions.
Lemma 27. Let B1, B2(p), B3(p), B2(2), B3(2) be satisfied, p > d = 2, and

E(|u0|p2−2/p,p + |u0|p1,2) < ∞,∫ t

0

(||G(0, r)||p1,2 + |F (0, r)|p1,2) dr < ∞

P -a.s. for all t.
Then there is a maximal unique H

1
p ∩ H

1
2-solution u(t) of (3.7), and for some

F-adapted functions al(t), bl(t) (al(t) is real valued and bl(t) is Y -valued), l = p, 2,
P -a.s. on [0, S] ⊆ [0, ζ)

|η(t)|pl = |η(0)|pl +
∫ t

0

al(r) ds+

∫ t

0

bl(r) · dWs,

|u(t)|p2 = |u(0)|p2 +
∫ t

0

a(r) ds+

∫ t

0

b(r) · dWs,
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l = p, 2, η(t) =curlu(t). Moreover, there is a constant C independent of S such that

|al(r)| ≤ C[|η(r)|p2 + |u(r)|pl + ||G(0, r)||p1,l + |F (0, r)|p1,l],
|bl(r)|Y ≤ C[|η(r)|pl + |u(r)|pl + ||η(r)|p−1

l ||G(0, r)|1,l),
|a(r)| ≤ C[|u(r)|p2 + ||G(0, r)||p1,2 + |F (0, r)|p1,2],

|b(r)|Y ≤ C[|u(r)|p2 + |u(r)|p−1
2 ||G(0, r)||2),

l = p, 2.
Proof. The existence of a unique maximal H1

p∩H
1
2-solution (u(t), ζ) is guaranteed

by Theorem 3. Since in two dimensions ∇vi×∂iv = 0, the following “regular growth”
equation holds for η(t) in any [[0, S]] ⊆ [0, ζ) (cf. (3.27)):

∂tη (t) = ∂i
(
a ij (t) ∂jη (t)

)− ui (t) ∂iη(t) + bi(t)∂iη(t) +H (u(t), t)

+ [σi(t)∂iη (t) +B (u(t), t))] dWt, η (0) = curlu0.

By the Itô formula (see [38]),

|u(t ∧ S)|p2 = |u(0)|p2 − p
∫ t∧S
0

|u(r)|p−2
2 N2(u(r)) ds

+ p
∫ t∧S
0

|u(r)|p−2
2

∫
(u(r), ā(r)) dx dr + p

∫ t∧S
0

|u(r)|p−2
2 (

∫
ul(r)cl(r) dx) dWr

+ p/2
∫ t∧S
0

|u(r)|p−2
2 (

∫
b̄ii(r) dx) dr + p

2 (p− 2)
∫ t∧S
0

|u(r)|q−4
2 | ∫ ul(r)cl(r) dx|2Y dr,

where

ā(r) = bi(r)∂iu(r) + F (u(r), r),

b̄ij(r) = σk(r)∂ku
i(r) · dj(r) + σk(r)∂ku

j(r) · di(r) + di(r) · dj(r),
and d(r) = (di(r)) = G̃(u(r), r)), c(r) = (cl(r)) = σk(r)∂ku(r) + d(r).

Similarly, for each stopping time S so that [0, S] ⊆ [0, ζ),

|η(t ∧ S)|p2 = |η(0)|p2 − p

∫ t∧S

0

|η(r)|p−2
2 N2(η(r), r) dr

+ p

∫ t∧S

0

|η(r)|p−2
2

∫
(η(r),H(r) dx dr

+

∫ t∧S

0

p|η(r)|p−2
2

∫
η(r)γ(r) dx) dWr +

p

2

∫ t∧S

0

|η(r)|p−2
2

(∫
γ̄(r) dx

)
dr

+
p

2
(p− 2)

∫ t∧S

0

|η(r)|p−4
2

∣∣∣∣
∫

η(r)γ(r) dx

∣∣∣∣
2

Y

dr,

where

H(r) = bi(r)∂iη(r) +H(u(r), r)), γ̄(r) = 2σk(r)∂kη · d̄(r) + |d̄(r)|2Y ,
and d̄(r) =∇σi×∂iu+curl (G (u, t)), γ(r) = σk(r)∂kη(r)+ d̄(r). By Lemmas 13 and
14,

|η(t ∧ S)|p2 = |η(0)|p2 +
∫ t∧S

0

a2(r) ds+

∫ t∧S

0

b2(r) · dWs,

|u(t ∧ S)|p2 = |u(0)|p2 +
∫ t∧S

0

a(r) ds+

∫ t∧S

0

b(r) · dWs,
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and there is a constant C independent of S such that

a2(r) ≤ C[|η(r)|p2 + |u(r)|p2 + ||G(0, r)||p1,2 + |F (0, r)|p1,2],
|b2(r)|Y ≤ C[|η(r)|p2 + |u(r)|p2 + ||η(r)|p−1

2 ||G(0, r)|1,2),
a(r) ≤ C[|u(r)|p2 + ||G(0, r)||p1,2 + |F (0, r)|p1,2],

|b(r)|Y ≤ C[|u(r)|p2 + |u(r)|p−1
2 ||G(0, r)||p2).

Also by the Itô formula

|η(t)|pp = |η(0)|pp − p

∫ t

0

Np(η(r), r) ds+ p

∫ t

0

〈|η(r)|p−2η(r), ā(r)
〉
1,p

dr

+

∫ t

0

p

∫
|η(r)|p−2η(r)c(r) dxdẆr + p

∫ t

0

(∫
(p− 2)|η(r)|p−2b̄(r) dx

)
dr,

where

ā(r) = bi∂iη + curl (F (u, r)) + ∂i(∇aij × ∂ju) + (∇bi)× ∂iu

= bi∂iη + curl (F (u, r)) + r(u(r), r),

b̄(r) = 2σk∂kη · d(r) + |d̄(r)|2Y ,

and d̄ = ∇σi × ∂iu + curl (G (u, t)), c(r) = σk(r)∂kη(r) + d̄(r). Using Lemmas 13
and 14, we obtain

|η(t)|pp = |η(0)|pp +
∫ t

0

ap(r) ds+

∫ t

0

bp(r) · dWs;

and there is a constant C independent of S such that

|ap(r)| ≤ C[|η(r)|pp + |u(r)|pp + ||G(0, r)||p1,p + |F (0, r)|p1,p],
|bp(r)|Y ≤ C[|η(r)|pp + |u(r)|pp + ||η(r)|p−1

p ||G(0, r)|1,p).

So, the statement follows.
Now we can complete the proof of Theorem 4.

3.7.1. Proof of Theorem 4. We have immediately the existence of a maximal
solution by Theorem 3. It remains to prove that P (ζ = ∞) = 1 and the estimate.
Let

yt = |u(t)|p2 + |curlu(t)|p2 + |curlu(t)|pp,

Rm = inf(t : yt ≥ m) ∧ ζ. Since in two dimensions Lp is continuously embedded into
H

1
2 (Lp ⊆ H

1
2), we obtain by Lemma 27 that for some adapted functions h(t), κ(t),

yt∧Rm = y0 +

∫ t∧Rm

0

h(r) dr +

∫ t∧Rm

0

κ(r) · dWr,

and there is a constant C independent of m such that

h(r) ≤ C(yr + zr), κ(r) ≤ C(yr + y1−1/p
r z̃1/p

r ),
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where

zr = ||G(0, r)||p1,p + |F (0, r)|p1,p + ||G(0, r)||p1,2 + |F (0, r)|p1,2,
z̃r = ||G(0, r)||p1,p + ||G(0, r)||p1,2.

By Lemma 36 (see the appendix), for each T there is a constant C (independent of
m) so that for all stopping times τ ≤ T

E sup
t≤τ

yt ≤ CE

[
y0 +

∫ τ

0

(||G(0, r)||p1,p + |F (0, r)|p1,p(3.64)

+ ||G(0, r)||p1,2 + |F (0, r)|p1,2) dr
]
.

Let

Kt =

∫ t

0

(||G(0, r)||p1,p + |F (0, r)|p1,p + ||G(0, r)||p1,2 + |F (0, r)|p1,2) dr.

For M > 1, set τM = inf(t : Kt ≥ M). Since the sequence Rm “announces” the
predictable stopping time ζ, for each T > 0 and M > 1, we have

P (Rm < T ) ≤ P (yRm∧T∧τM ≥ m) + P (τM < T )

≤ m−1EyRm∧T∧τM + P (τM < T ).

So, by (3.64), for each M > 1,

lim sup
m

P (Rm < T ) ≤ P (τM < T ).

Therefore limmP (Rm < T ) = 0, and P (ζ =∞) = 1. The statement follows.
4. Wiener chaos and moment theory.

4.1. Preliminaries. In this section we continue the study of global solutions of
stochastic Navier–Stokes equations. We will deal with the equation

∂tu = ∂i
(
a ij∂ju

)
+ bi∂iu− uk∂ku+ hi · Gi (σik∂iu+ g

)
− ∇P + f + [σik∂iu+ g −∇P̃ ] · Ẇt, divu = 0,
u (0, x) = u0 (x)

(4.1)

with the free forces f = f (t, x) and g = g (t, x) that do not include a solution as an
independent variable. Since the existence of global solutions is proved only for d = 2,
we restrict ourselves to this case.

Our goal now is to investigate how the SNS equation (4.1) propagates the chaos
generated by the driving Brownian motion and randomness in the initial conditions.
We are particularly interested in deriving formulas for the statistical moments of a
solution to (4.1).

Let (Ω,F ,P ) be a complete probability space. Let W (t) and ξ0 be a cylindrical
Brownian motion and a cylindrical Gaussian random variable in Y. We assume that
W (t) and ξ0 are defined on (Ω,F ,P ) and independent.

Let us fix a positive number T < ∞. Let FT be a P -completion of σ{ξ0,W (r) :
r ≤ t} and Ft be the a σ-algebra generated by ∩t<s≤Tσ{ξ0,W (r) , r ≤ s} and all
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the negligible sets of F . The filtration of right continuous σ-algebras (Ft)t≤T will be
denoted by F.

We will assume in the future that the initial value u0 (x) is random, but its
randomness is due solely to its dependence on ξ0.

To begin with we shall introduce additional notation and recall some basic facts
about Wiener chaos theory (see, e.g., [19], [20], [34], [36], etc.).

Let us fix a positive number T < ∞. Let {mk, k ≥ 1} be an orthonormal basis
in L2 (0, T ) and {Jk, k ≥ 1} an orthonormal basis in Y. Write ξki =

∫ T
0
mi (s) dw

k (t),

where wk (t) = (W (t) , Jk)Y .
Without any loss of generality, we assume that F0 is generated by the sequence

of independent standard (i.e., N (0, 1) ) Gaussian random variables
{
ξ0
i , i ≥ 1

}
.

Let α =
{
αki , k ≥ 0; i ≥ 1

}
be a multiindex, i.e., for every (i, k) , αki ∈ N =

{0, 1, 2, . . . }. We shall consider only such α that |α| = ∑
k,i α

k
i < ∞, i.e., only a

finite number of αki are nonzero, and we denote by J the set of all such multi-
indices. Obviously, if α ∈ J , the number α! = Πk,iα

k
i ! is well defined. We also write

α! =
∏
k,l(α

l
k!).

For α ∈ J , we write

ζα :=

∞∏
i=1

∞∏
k=0

Hαk
i
(ξki ),

where Hn is the nth Hermite polynomial Hn(x) = (−1)n( dndxn e−
x2

2 )e
x2

2 . The random
variable ζα is often referred to as (unnormalized) αth Wick polynomial.

Let J0 be a subset of J consisting of all multiindices of the form

α =
{
αki , k ≥ 0, i ≥ 1 : αki = 0 if k  = 0} .

We will often denote a multiindex from J0 by α0. Obviously, for α0 ∈ J ,

ζα0 :=

∞∏
i=1

Hα0
i
(ξ0
i ).

It is a standard fact that

Eζαζβ =

{(
0 if α  = β

α! if α = β

)
.(4.2)

The most important feature of the Wick polynomials ζα is that the set {ζα/
√
α!,

α ∈ J } is an orthonormal basis in L2 (Ω,FT ,P ) (see, e.g., [6], [36]) . This result is
often referred to as the Cameron–Martin theorem. The following lemma is an obvious
extension of the Cameron–Martin theorem to the vector case.

Let H be a separable Hilbert space and {hi, i ≥ 1} be an orthonormal basis in H.
Lemma 28. Let η : Ω −→ H be an F-measurable random variable so that

E ‖η‖2
H < ∞. Then, η admits the Wiener chaos expansion in L2(Ω;H),

η =
∑
α∈J

η̂α
α!

ζα,(4.3)

where η̂α = E[ηζα] :=
∑∞

i=1 E[(η, hi)ζα]hi.
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Moreover,

E ‖η‖2
H =

∑
α∈J

|η̂α|2
α!

=
∑
α∈J

∞∑
i=1

1

α!
E[(η, hi)Hζα]

2.(4.4)

In the future, we will refer to the functions η̂α as unnormalized Hermite–Fourier
coefficients, or simply Hermite–Fourier coefficients, of η.

4.2. Propagator. Suppose that the assumptions of Theorem 4 hold. Then,
(4.1) has a unique F-adapted global solution in H

1
p(R

2)
⋂

H
1
2(R

2) and

E sup
s≤T

(|u(t)|21,p + |u(t)|p1,2
)
< ∞.

By (4.3), a solution of (4.1) allows the Wiener chaos expansion u (t, x) =∑
α∈J

ûα(t,x)
α! ζα.

This equality holds for all t in L2

(
Ω;H1

2

(
R2

))
as well as for all t, x in L2

(
Ω;R2

)
.

The latter is due to the well-known imbedding H1,p ⊂ C1−2/p.
Of course, the main problem of interest is how to characterize the Hermite–Fourier

coefficients uα (t, x) . It will be shown below that these coefficients verify a certain
nonlinear system of equations. This system describes the pattern of deterministic
propagation of randomness in (4.1).

In this section we shall make the following additional assumptions:
(C1) The initial value u0 is a measurable F0-adapted function.
(C2) The coefficients αij and bi are measurable functions on [0, T )×R2; f l are

predictable functions on [0, T ) × R2 × Ω; σl, hl,i are Y -valued measurable functions
on [0, T )×R2; gl are Y -valued predictable functions on [0, T )×R2 ×Ω; and for all

t, x
∑1

i=0

(∣∣∂kxhl,i (t, x)∣∣Y + ∣∣∂kxσ (t, x)∣∣) ≤ C.
(C3) For p > 2 and l = 2, p,

∫ T

0

E

(
|g (t)|p1,l +

∑
i

|f (t)|p1,l
)
dt < ∞.

Note that, in contrast to the previous sections, we postulate that aij , bi, and hl,i

are nonrandom.
Now we introduce some additional notation.
Write

ûi∂iuα (t) =
∑
p∈J

∑
0≤β≤α

1

p!

(
α

β

)
ûip+β (t) ∂iûp+α−β (t) ,(4.5)

M (ûα, t) = σj(t)∂jûα (t) + ĝα (t) .

For j  = 0, we define multiindex α (i, j) ∈ J by the formula

α (i, j)
k
l =

{
αkl if (k, l)  = (j, i) or k = 0,(
αkl − 1

) ∧ 0 if (k, l) = (j, i);(4.6)

i.e., the multiindex α (i, j) might differ from α only by its (i, j) entry, which is equal
to

(
αij − 1

) ∨ 0.
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Set

DM (ûα, t) =

{ ∑
k =0

(
ĝα(i,k) (t) + σj (t) ∂jûα(i,k) (t)

)
αkimi (t) if α /∈ J0,

0 otherwise,

and

L0 (ûα, t) = ∂i
(
a ij (t) ∂jûα (t)

)
+ bi(t)∂iûα(t) + f̂α (t) + hi(t)Gi(M (ûα, t) .

Theorem 29. Assume that C1− C3, as well as the assumptions of Theorem 4,
hold.

Then the Fourier–Hermite coefficients ûα of the global solution of SNS (4.1) are
continuous H

1
p(R

2)
⋂

H
1
2(R

2)-valued functions on [0, T ]. Moreover, the set of func-
tions {ûα (t, x) , α ∈ J } verifies the following system of equations:


(ûα (t) ,ϕ)2 = (ûα (0) ,ϕ)2 +

∫ t
0
{〈L0 (ûα, s) ,ϕ〉

+ (−ûi∂iuα (s) +DM (ûα, s),ϕ)2}ds; divûα (t) = 0
for all t ≤ T and ϕ ∈ (

C∞
0

(
R2

))2
so that divϕ = 0.

(4.7)

4.2.1. Proof of Theorem 29. To begin with, we remark that, for α = 0,
ûα (0) = Eu0, and if α has at least one positive entry αki with k  = 0, ûα (0) = 0.

By Theorem 4 we have that u (t), a solution of (4.1) , is a continuousH
1
p

(
R2

)⋂
H

1
2(

R2
)
-valued function and

E sup
t≤T

(|u(t)|p1,p + |u(t)|p1,2) < ∞.(4.8)

Owing to (4.8) , we have by the Hölder inequality that for l = 2, p

sup
t≤T

(|ûα(t)|l + |(∂iu)α(t)|l) < ∞ .(4.9)

By the Fubini theorem, for all ϕ ∈ (
C∞

0

(
R2

))2
and t ≤ T,

((∂iu(t))α ,ϕ)2 = −E [(u (t) , ∂iϕ)2 ζα] = − (ûα (t) , ∂iϕ)2 .

Thus,

∂iûα(t) = ̂(∂iu (t))α.(4.10)

Now, by (4.9) and (4.10) we have that for all t, ûα(t) ∈ H
1
p(R

2)
⋂

H
1
2(R

2). Since for
integer n and q ≥ 1, the norm |·|n,q is equivalent to the norm of the Sobolev space
Wn,q, by (4.10) and the Hölder inequality, we have that for l = 2, p

|ûα(t)− ûα(s)|1,l

≤ C

(
|E (u(t)− u(s)) ζα|l +

∑
i

|E (∂iu(t)− ∂iu(s)) ζα|l
)

≤ C ′E|u(t)− u(s)|1,l.

Thus, by the dominated convergence theorem we have that the Fourier–Hermite co-
efficients ûα (t) are continuous in H

1
p(R

2)
⋂

H
1
2(R

2).
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Owing to (4.10), we also have that, for every α ∈ J , divûα(t) = 0.
We continue with two simple but useful lemmas.
Lemma 30. Let η and ψ be F-measurable H-valued random variables, and

E[‖η‖2
H + ‖ψ‖2

H] < ∞.
Then,

(ψ, η)H =
∑

γ,β∈J

(
ψ̂γ , η̂β

)
H

∑
p≤γ∧β

((γ − p)! (β − p)!p!)
−1

ζγ+β−2p

=
∑
α,p∈J

∑
0≤β≤α

(
α

β

)
1

α!p!

(
ψ̂p+α−β , η̂p+β

)
H
ζα.(4.11)

Proof. It is a standard fact (see, e.g., [36]) that

ζγζβ =
∑

p≤γ∧β

(
γ

p

)(
β

p

)
p!ζγ+β−2p.(4.12)

By Lemma 28 and (4.12) , we have

(ψ, η)H =
∑

γ,β∈J

1

γ!β!

(
ψ̂γ , η̂β

)
H
ζγζβ

=
∑

γ′,β′∈J

(
ψ̂γ′ , η̂β′

)
H

∑
p≤γ′∧β′

((γ′ − p)! (β′ − p)!p!)
−1

ζγ′+β′−2p.(4.13)

By making the change of variables α = γ′+β′−2p, β = β′−p in (4.13) and observing
that γ′ − p = α− β, we arrive at

(ψ, η)H =
∑
α,p∈J

∑
0≤β≤α

(
α

β

)
1

α!p!

(
ψ̂p+α−β , η̂p+β

)
H
ζα.

Lemma 31 (see [43]). The process ζα (t) = E [ζα|Ft] verifies the following equa-
tion:

dζα(t) = mi (t)α
k
i ζα(i,k)(t)dw

k (t) .(4.14)

Remark 8. Write Dζα (t) = mi (t)α
k
i ζα(i,k)(t)Jk, where as before, (Jk)k≥1 is an

orthonormal basis in Y. It is readily checked (cf. [45]) that Dζα (t) is the Malliavin
derivative of ζα (t) . Now we can rewrite (4.14) in the following more compact and
maybe more insightful form:

dζα(t) = Dζα (t) · dW (t) .

Note that since (ζα(t),Ft) is a uniformly integrable martingale, we can sharpen
(4.3) as follows.

Corollary 32. If v ∈ L2(Ω,Fs,P ;L2) for some s ∈ [0, T ], then v̂α = E [vζα(s)] ,
and

v =
∑
α∈J

v̂α
α!

ζα(s)

in L2(Ω,Fs,P ;L2).
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WriteMk (u, t) = σjk(t)∂ju (t)+gk (t) andMk(ûα, t) = σjk(t)∂jûα (t)+ ĝkα (t) ,
where σjk =

(
σi, Jk

)
Y
, gk = (g, Jk)Y , and (Jk, k ≥ 1) is an orthonormal basis in Y.

By the Itô formula, Lemma 31, and (4.1), we have


d ((u (t) ,ϕ)2ζα (t)) = [ζα (t) 〈L (u, t) ,ϕ〉
+ I{α/∈J}

∑
k =0 mi (t)α

k
i ζα(i,k)(t)

(Mk (u, t) ,ϕ
)
2
]dt

+
[
ζα (t) (Mk (u, t) ,ϕ)2 + I{α=α0}(u (t) ,ϕ)2mi (t)α

k
i ζα(i,k)(t)

]
dwk (t) ,

where

〈L (u) ,ϕ〉 := [− (
a ij∂ju, ∂iϕ

)
2
+ (bi∂iu− uk∂ku+ f +

(
hi · Gi(M (u)),ϕ

)
2
].

Taking the expectations of both sides of the equation and using Corollary 32, we
arrive at

∂tûα (t) = E [ζα (t) 〈L (u, t) ,ϕ〉] + I{α/∈J0}
∑
k =0

mi (t)α
k
iE

[
ζα(i,k)(t)

(Mk (u, t) ,ϕ
)
2

]
.

(4.15)

Now we shall express E [ζα (t) 〈L (u, t) ,ϕ〉] and E
[
ζα(i,k)(t)

(Mk (u, t) ,ϕ
)
2

]
in

terms of Hermite–Fourier coefficients of u,f , and g.
Write 〈L̃0(u, t),ϕ〉 = −(a ij(t)∂ju(t), ∂iϕ)2 + (bi(t)∂iu(t) + f(t),ϕ)2. Obviously,

〈L0(u, t),ϕ〉 = 〈L̃0(u, t),ϕ〉+R(t,ϕ), where

R (t,ϕ) =
(
hi(t) · G(σj(t)∂ju (t) + g (t)),ϕ

)
2
.(4.16)

It is easily seen that

E
[
ζα (t)

(
L̃0 (u, t) ,ϕ

)
2

]
=

(
L̃0 (ûα, t) ,ϕ

)
2
,(4.17)

and for α /∈ J0,

∑
k =0

mi (t)E
[
ζα(i,k)(t)α

k
i

(Mk (u, t) ,ϕ
)
2

]
=

∑
k =0

mi (t)α
k
i

(Mk
(
ûα(i,k), t

)
,ϕ

)
2
.

(4.18)

Let us consider now the term
(
ui (t) ∂iu (t) ,ϕ

)
2
. By the Schwartz inequality,

E

∫ t

0

∫
R2

∣∣ζαui (s, x) ∂iuj (s, x)ϕj (x)
∣∣ dsdx

≤
(∫ t

0

∫
R2

E
∣∣ζαui (s, x)∣∣2 dsdx

)1/2 (∫ t

0

∫
R2

E
∣∣∂iuj (s, x)ϕj (x)

∣∣2 dsdx)1/2

< ∞.

Thus, by the Fubini theorem and Lemma 30, we have that

E

[
ζα (t)

∫ t

0

(
ui (s) ∂iu (s) ,ϕ

)
2
ds

]

=
∑
α,p∈J

∑
0≤β≤α

1

p!

(
α

β

)(
ûip+β (t) , ∂iûp+α−β (t) ,ϕ

)
2
.(4.19)
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It remains to evaluate

R (t) = E
[
ζα (t)

(
hi(t) · G(σj(t)∂ju (t) + g (t)),ϕ

)
L2

]
.

To this end, we need the following simple result.

Lemma 33. If v ∈ L2(Ω,Fs,P ;L2), then for all α ∈ J , (̂Gv)α = Gv̂α and

(̂Sv)α = Sv̂α.
Proof. Since S (v) = v − G (v) , it is sufficient to prove only the first equality.

By Stein’s theorem, G (v) is Fs-measurable and |Gv|
L2

≤ C |v|
L2

, which yields that

Gv ∈ L2(Ω,Fs,P ;L2). Thus, by the Fubini theorem, we have

(̂Gv)α = E

[
ζα∇

∫
Γxi(x− y)vi(y) dy

]
= ∇

∫
Γxi(x− y)viα(y) dy = Gv̂α.

It follows immediately from the lemma that

R (t,ϕ) =
(
hi(t) · G(σj(t)∂jûα (t) + gα (t)),ϕ

)
2
.

This completes the proof of Theorem 29.

Now we shall derive another convenient representation for the term ûi∂iuα.
For α, β ∈ J , define |α− β| = (|a1 − β1| , |a2 − β2| , . . . ) .
Definition 34. We say that a triple of multiindices (α, β, γ) is complete, written

(α, β, γ) ∈ C, if all the entries of the multiindex α + β + γ are even numbers and
|α− β| ≤ γ ≤ α+ β.

Obviously, if (α, β, γ) is complete, then we also have that |α− γ| ≤ β ≤ α +
γ, |γ − β| ≤ α ≤ γ+ β, and α+ β− γ, α− β+ γ, and β+ γ−α are even multiindices.

It is readily checked that the following criterion holds.
Lemma 35. A triple (α, β, γ) is complete if and only if α+ β + γ = 2p for some

p ∈ J and p ≤ α ∧ β.
For (α, β, γ) ∈ C, we define

Φ (α, β, γ) =

((
α− β + γ

2

)
!

(
β − α+ γ

2

)
!

(
α+ β − γ

2

)
!

)−1

.

Obviously Φ (α, β, γ) is invariant with respect to permutations of the arguments.
For α ∈ J , write Uα = {γ, β ∈ J : (α, β, γ) ∈ C} .
By Lemma 30,

Eui∂iu
jζα =

∑
γ,β∈J

ûiγ∂iû
j
β

∑
p≤γ∧β

((γ − p)! (β − p)!p!)
−1

α!I(α=γ+β−2p).(4.20)

Since γ + β − α = 2p, γ + β + α is also an even multi-index. Also, the inequality
p ≤ γ ∧ β implies |γ − β| ≤ α ≤ γ + β. Thus (γ, β, α) is complete. Now, it follows
from (4.20) that

̂(ui∂iu)α =
∑

γ,β∈Uα
α!ûiγ∂iûβΦ (α, β, γ) .(4.21)

The propagators for advection type equations were studied in [33], [42], [45] (see also
the references therein). Applications of Wiener chaos expansions to fluid mechanics
have been sporadically discussed in the literature since the 1960s. For example, the
inertial range spectrum of low order Wiener chaos truncations of a (random) Burgers
equation were discussed in [10], [9], [48], [46]. There also exists a body of engineering
literature on numerical aspects of Wiener chaos approximations (see, e.g., [32], [23],
and the references therein).
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4.3. Moments. Making use of the Wiener chaos expansion [6] for a solution of
the SNS (4.1) , one can immediately compute the first two moments of the solution
via the Hermite–Fourier coefficients given by (4.7) for the propagator. Indeed, let us
assume that the assumptions of Theorem 29 hold. It was shown in the previous section
that the Hermite–Fourier coefficients ûα (t) are H

1
p(R

2)
⋂

H
1
2(R

2)-valued uniformly

continuous functions of t. Owing to the imbedding H1,p

(
R2

) ⊂ C1−2/p
(
R2

)
, we can

interpret the Hermite–Fourier coefficients ûα (t, x) as continuous real functions on R2

× [0, T ] .
Since Eζα = 0 for α  = 0 and Eζ0 = 1, where 0 is the multiindex α ∈ J such that

|α| = 0, we have that for all t, x,

Eu (t,x) = û0 (t,x) .

By [6] and Parceval’s identity, one has that for all x,y ∈ Rd and t, s ∈ [0, T ] ,

E (u (t,x) ,u (s,y)) =
∑
α∈J

1

α!
(ûα (t,x) , ûα (s,y)) .

Similarly, given the solution of (4.7) , the higher order moments of the solution to
SNS equation (4.1) can be obtained by computing the moments of the Wick polyno-
mials ζα.

Below we will derive some convenient formulas for these moments.
Let us consider the triple product ζαζβζγ . By (4.12)

ζαζβζγ =
∑

p≤α∧β

(
α

p

)(
β

p

)
p!ζα+β−2pζγ .(4.22)

It is readily checked that if f is a function on J , then for α, β ∈ J ,

∑
p≤α∧β

f (α+ β − 2p)
(
α

p

)(
β

p

)
p! = α!β!

∑
r∈Uα,β

f (r) Φ (α, β, r) .(4.23)

Therefore, from (4.22), (4.23), and (4.2), it follows that

Eζαζβζγ = α!β!
∑

r∈Uα,β
Φ (α, β, r)Eζrζγ

= α!β!γ!
∑

r∈Uα,β
Φ (α, β, r) I(r=γ) = α!β!γ!Φ (α, β, γ) I{(α,β,γ)∈C}.(4.24)

By induction, it is easy to verify that

EΠm+1
i=1 ζαi = Π

m−3
i=0 ri!αm−i!

∑
ri+1∈U(αm−i,ri)

Φ
(
αm−i, ri, ri+1

)
× rm−2!α2!α1!Φ

(
α2, rm−2, α1

)
I{(α2,rm−2,α1)∈C},(4.25)

where r0 = αm+1(cf. [34, Thm. 5.3]).
For example,

Eζαζβζγζκ = α!β!γ!κ!
∑

r∈U(α,β)

Φ (α, β, r) r!Φ (r, γ, κ) I{(r,γ,κ)∈C}.
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Formula (4.25) allows us to compute pseudomoments of orders higher then 2. Let
v be an FT -measurable random variable and Ev3 < ∞.

Obviously, the set {ζα, α ∈ J} is total in all Lp(Ω). Given v ∈ Lp(Ω), there is
a sequence of finite linear combinations vm =

∑
α c

m
α ξα so that E|v − vm|p → 0 as

m → ∞. If p = 3, then, of course,

E(vm)3 =
∑

(α,β,γ)∈C
v̂mα v̂mβ v̂mγ Φ (α, β, γ)→ Ev3.

It is readily checked that v̂mα → v̂α for all α. Therefore, we may define the third
pseudomoment 〈v3〉 by the formula

〈v3〉 =
∑

(α,β,γ)∈C
v̂αv̂β v̂γΦ (α, β, γ) .

Formula

〈v4〉 =
∑

α,β,γ,κ

v̂αv̂β v̂γ v̂κ
∑

r∈U(α,β)

Φ (α, β, r) r!Φ (r, γ, κ) I{(r,γ,κ)∈C}(4.26)

as well as similar formulas for higher pseudomoments could be proved by similar
arguments.

Of course, the pseudomoments 〈vp〉 coincide with the respective moments for
p = 1, 2. However, if p > 2, the relation between the moments and the related pseu-
domoments is an open problem.

5. Appendix.

5.1. Nonnegative semimartingales. We will need also some estimates of
nonnegative semimartingales.

Lemma 36. Let Zt be a nonnegative semimartingale such that

Zt = Z0 +

∫ t

0

as ds+

∫ t

0

bs · dWs.

Assume that there are nonnegative measurable functions cs, fs, gs, and a number δ ≥ 0
such that for any ε,

as ≤ (−δ + εδ)cs + Cε(Zs + fs), |bs|Y ≤ δε(csZs)
1/2 + Cε(Zs + Z1−1/p

s g1/p
s ),

where Cε is a constant depending on ε.
Then for every T > 0, there is a constant C = C(T ) such that for all stopping

times τ ≤ T

E

[
sup
s≤τ

|Zs|+ (δ/2)
∫ τ

0

cs ds

]
≤ CE

[
Z0 +

∫ τ

0

(fs + gs) ds

]
.

Proof. Let s < t ≤ T, t− s ≤ 1, and τ̃ be a stopping time such that sups≤τ̃ Zs is
bounded and

E

∫ τ̃

0

(fs + gs) ds < ∞.
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Fix an arbitrary stopping time τ . Let τ̄ = τ̃ ∧ τ . Then by Burkholder’s inequality

E

[
sup
s≤r≤t

Zr∧τ̄ + δ

∫ t∧τ̄

s∧τ̄
cr dr

]
≤ EZs∧τ̄ + E

[
δε

∫ t∧τ̄

s∧τ̄
cr dr + Cε,δ sup

s≤r≤t
Zr∧τ̄ (t− s)

+ Cε,δ

∫ t∧τ̄

s∧τ̄
fr dr +N

(∫ t∧τ̄

s∧τ̄
(ε2δ2Zrcr + C2

ε,δZ
2
r + C2

ε,δZ
2(1−1/p)
r g2/p

r ) dr

)1/2
]
.

Obviously, for every ε > 0, there is a constant Cε independent of T such that(∫ t∧τ̄

s∧τ̄
Z2(1−1/p)
r g2/p

s ds

)1/2

≤ sup
s≤r≤t

Z
1−1/p
r∧τ̄

(∫ t∧τ̄

s∧τ̄
g2/p
s ds

)1/2

≤ ε sup
s≤r≤t

Zr∧τ̄ + Cε

(∫ t∧τ̄

s∧τ̄
g2/p
s ds

)p/2

.

Hence,

E

[
sup
s≤r≤t

Zr∧τ̄ + δ

∫ t∧τ̄

s∧τ̄
cr dr

]
≤ EZs∧τ̄ + E

{
δε

∫ t∧τ̄

s∧τ̄
cr dr

+ (N + 1)Cε,δ sup
s≤r≤t

Zr∧τ̄ (t− s)1/2 + C̃ε,δ

[∫ t∧τ̄

s∧τ̄
fr dr +

(∫ t∧τ̄

s∧τ̄
g2/p
r dr

)p/2
]

+ ε sup
s≤r≤t

Zr∧τ̄ + 2−1Nεδ sup
s≤r≤t

Zr∧τ̄ + 2−1Nεδ

∫ t∧τ̄

s∧τ̄
cr dr

}
.

Let us take ε so that(
1− ε

(
1 + 2−1Nδ

))
/
(
1− ε

(
1 + 2−1Nδ

))
= 1/4.

Then, there is a constant C = C(T ) such that

E sup
s≤r≤t

Zr∧τ̄ + (1/4)δ
∫ t

s

cr dr ≤ CE

[
Zs∧τ̄ + sup

s≤r≤t
Zr∧τ̄ (t− s)1/2)

+

∫ t∧τ̄

s∧τ̄
fr dr +

(∫ t∧τ̄

s∧τ̄
g2/p
r dr

)p/2
]
.

By choosing κ = t− s small enough, we obtain

E sup
s≤r≤t

Zr∧τ̄ + (1/2)δ
∫ t∧τ̄

s∧τ̄
cr dr ≤ CE

[
Zs∧τ̄ +

∫ t∧τ̄

s∧τ̄
(fs + gs) ds

]
.(5.1)

To prove a similar estimate for s = 0 and an arbitrary t ≤ T , we apply estimate (5.1)
successively on the intervals, [0, κ] , [κ, 2κ] , . . . . Now, the statement follows.

5.2. Convergence lemma. Let B be a Banach space with a norm | · |B . Let Xn

be a sequence of B-valued continuous processes defined on [0, ζn), where ζn = ζn(Xn)
is such that P -a.s. ζn > 0 and

lim sup
t↑ζn

|Xn(t)|B =∞
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on {ζn < ∞}. For M > 0, T > 0, n, n′, let T M,T
n be the set of all stopping times

τ ≤ T such that sups≤τ |Xn(s)|B ≤ M + |Xn(0)|B , T M,T
n,n′ = T M,T

n ∩ T M,T
n′ .

Lemma 37. (a) Let P -a.s. ζn =∞ for all n. Assume that for each M,T

lim
n→∞ sup

n′≥n,τ∈TM,T
n,n′

E sup
s≤τ

|Xn(s)−Xn′(s)|B = 0,

sup
n

E sup
s≤T

|Xn(s)|B < ∞.

Then there is a B-valued continuous process X and a subsequence nk such that P -a.s.
for each T

sup
s≤T

|Xnk(s)−X(s)|B → 0.

(b) Assume that for some M0 > 1, T0 > 0

lim
n→∞ sup

n′≥n,τ∈TM0,T0
n,n′

E sup
s≤τ

|Xn(s)−Xn′(s)|B = 0,

and

lim
T→0

sup
n,τ∈TM0,T0

n

P ( sup
s≤τ∧T

|Xn(s)|B > |Xn(0)|B +M0 − 1) = 0.

Then there is a bounded stopping time τ such that P (τ > 0) = 1 and a B-valued
continuous process X on [0, τ ] and a subsequence nk such that P -a.s.

sup
s≤τ

|Xnk(s)−X(s)|B → 0.

Moreover, if supnE|Xn(0)|pB < ∞, p ≥ 1, then E supt≤τ |X(t)|pB < ∞.
Proof. (a) Obviously, there are nk ↑ ∞, Tk ↑ ∞,Mk ↑ ∞ such that

sup
n′≥nk

E sup
s≤τ∈T k

n,n′

|Xnk(s)−Xn′(s)|B ≤ 2−2k,

where T k
n,n′ = T Mk,Tk

n,n′ . Fix T > 0 and M > 0. Let τk = inf(t : |Xnk(t)|B >

|Xnk(0)|B +M + 2−k) ∧ T. Then, for k so that Mk > M + 2−k, Tk > T, we have

P ( sup
s≤τk∧τk+1

|Xnk(s)−Xnk+1
(s)|B > 2−k/4)

≤ 4 · 2kE sup
s≤τk∧τk+1

|Xnk(s)−Xnk+1
(s)|B ≤ 4 · 2−k.

By the Borelli–Cantelli lemma,

sup
s≤τk∧τk+1

|Xnk(s)−Xnk+1
(s)|B ≤ 2−k/4

or τk+1 ≤ τk for sufficiently large k. Let τ = limk τk. Then Xnk(t) converges to some
process X(t) on [0, τ ]. Also,

P (τ < T ) = limP (τk < T ) ≤ M−1E sup
s≤T

|Xnk(s)|B .



1306 R. MIKULEVICIUS AND B. L. ROZOVSKII

(b) Obviously, there is nk ↑ ∞ such that

sup
n′≥nk

E sup
s≤τ∈Tn,n′

|Xnk(s)−Xn′(s)|B ≤ 2−2k,

where Tn,n′ = T M0,T0

n,n′ . Let τk = inf(t : |Xnk(t)|B > |Xnk(0)|B +M0 − 1 + 2−k) ∧ T0.
Then

P ( sup
s≤τk∧τk+1

|Xnk(s)−Xnk+1
(s)|B > 2−k/4)

≤ 4 · 2kE sup
s≤τk∧τk+1

|Xnk(s)−Xnk+1
(s)|B ≤ 4 · 2−k.

By the Borelli–Cantelli lemma,

sup
s≤τk∧τk+1

|Xnk(s)−Xnk+1
(s)|B ≤ 2−k/4

or τk+1 ≤ τk for sufficiently large k. Let τ = limk τk. Then Xnk(s) converges to some
process X(s) on [0, τ ]. Also,

P (τ < ε) = limP (τk < ε) ≤ lim sup
k

P ( sup
s≤τk∧ε

|Xnk(s)|B > |Xnk(0)|B +M0 − 1)→ 0,

as ε → 0, i.e., P (τ = 0) = 0.
Since

sup
k

E sup
t≤τ

|Xnk(t)|pB < ∞,

if supnE|Xn(0)|pB < ∞, the last assertion follows by the Fatou lemma.
5.3. Estimates of gradient projection. In this section, for the sake of conve-

nience, we summarize some basic estimates for gradient projections proved in [37].
Lemma 38 (see Lemma 2.13 in [37]). Assume v ∈ H

s+1
p (Y ), p ∈ (1,∞). Then

G(∂lv) = ∂lG(v) = −(1−∆)−s/2RRl((1−∆)s/2divv).(5.2)

There is a constant C such that for all v ∈ H
s+1
p (Y ),

||∂G(v)||s,p ≤ C||divv||s,p,
and for all v ∈ H

s
p(Y ),

||G(v)||s,p ≤ C||divv||s−1,p + ||v||s−1,p.

We need Lp-estimates of the function G(h), where h = cj∂jv.
Lemma 39 (see Lemma 2.14 in [37]). Let h = cj(x)∂jv(x), where c =(cj) is a

measurable d-vector of Hilbert space Y -valued functions, v ∈ H
s+1
p , divv = 0, ε ∈

(0, 1). Assume

||c||B|s| < ∞ if s ≥ 1,

||c||B1 < ∞ if s ∈ (−1, 1),
||c||B−s+ε < ∞ if s ≤ −1.
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Then

||G(h)||s,p ≤
{

C(||∂lcj∂jv||s−1,p + ||cj∂jv||s−1,p) if s > 0,
C(||∂lcjvl||s,p + ||(div c) v||s,p] if s ≤ 0.

Also, we need Lp-estimates of the function G(h), where h = ∂i(c
ij(x)∂jv).

Corollary 40 (see Corollary 2.15 in [37]). Let h = ∂i(c
ij(x)∂jv), where c =

(cij) is a measurable function, v ∈ H
s+1
p , divv = 0, ε ∈ (0, 1). Assume

|c|B|s| < ∞ if s ≥ 1,

|c|B1 < ∞ if s ∈ (−1, 1),
|c|B−s+ε < ∞ if s ≤ −1.

Then

|G(h)|s−1,p ≤
{

C(|∂lcij∂jvl|s−1,p + |cij∂jvl|s−1,p) if s > 0,
C(|∂lcijvj |s,p + |∂jcij v|s,p] if s ≤ 0.

5.4. Biot–Savart law in Rd. The Biot–Savart law is usually discussed only in
dimensions d = 2, 3. In this subsection we introduce a slightly more general construc-
tion for any d.

Definition 41. (a) Given two vectors a = (a1, . . . , ad), b = (b1, . . . , bd) in Rd,
we define their product

a× b =
(
εlk(a

kbl − albk)
)
1≤k<l≤d ∈ Rd(d−1)/2,

where εlk = (−1)l+k−1.
(In standard notation, we could also use a matrix

√
2a∧b = (

akbl − albk
)
1≤k,l≤d .)

(b) Given a vector field v(x) = (v1(x), . . . , vd(x)), we define a new vector field

curlv =∇× v =
(
εlk(∂kv

l − ∂lv
k)
)
1≤k<l≤d ∈ Rd(d−1)/2.

Remark 9. (a) Given a scalar function a, we have

curl (av) = a curl (v) + (∇a)× v.(5.3)

(b) If v =∇p (p is a scalar function), then curlv =∇× v = 0.
Proposition 42. For each v ∈ H

1
p

∂mS(v) = −
∑
j

RmRj(∂jv −∇vj).

There is a constant C so that for all v ∈ H
1
p

|∂S(v)|p ≤ C|curlv|p.

In general, there is a constant C so that for all v ∈ H
s+1
p ,

|∂S(v)|s,p = |S(∂v)|s,p ≤ C|curlv|s,p,
|S(v)|s+1,p ≤ C(|curlv|s,p + |v|s,p),
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or for all v ∈ H
s
p

|S(v)|s,p ≤ C(|curlv|s−1,p + |v|s−1,p).

Proof. Indeed, considering Fourier transforms, we easily find that for all v ∈ C
∞
0 ,

S(v) = v − G(v). = −
∑
j

(RjRjv −RjRv
j) = −R(R ∧ v),

∂mS(v) = −
∑
j

RmRj(∂jv −∇vj).

Also,

∂mJsS(v) = −
∑
j

RmRj(∂jJsv −∇Jsv
j)

= −
∑
j

RmRjJs(∂jv −∇vj),

where Js = (1−∆)s/2. Since the Riesz transform is bounded in Lp and

|v|s,p + |∂v|s,p ∼ |v|s+1,p,

the statement follows.
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Abstract. We study the families of periodic orbits of the spatial isosceles 3-body problem (for
small enough values of the mass lying on the symmetry axis) coming via the analytic continuation
method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular
momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic
orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced
problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem
at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov
problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits.
These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom
system. The continuation of periodic orbits is done in two different ways, the first going directly from
the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using
two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the
reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic
Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces
different results. This work is merely analytic and uses the variational equations in order to apply
Poincaré’s continuation method.

Key words. periodic orbits, quasi-periodic orbits, 3-body problem, analytic continuation
method
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1. Introduction. We consider a special case of the spatial 3-body problem,
the spatial isosceles 3-body problem, or simply the isosceles problem. This problem
consists of describing the motion of two equally massive bodies, m1 = m2 = 1/2,
having initial conditions and velocities symmetric with respect to a straight line which
passes through their center of mass, and a third body, with mass m3 = µ, having
initial position and velocity on this straight line. This problem is called the isosceles
problem because the three bodies form an isosceles triangle at any time, eventually
degenerated to a segment.

The most interesting application of the spatial isosceles 3-body problem was given
by Xia in [25]. He used two spatial isosceles 3-body problems to prove that five bodies
can escape to infinity in a finite time without collision. Other works on the spatial
isosceles 3-body problem are [16] and the references therein. If in the spatial isosceles
3-body problem the initial positions and velocities of the three bodies are contained
in a plane, then the motion remains always in this plane, and we have the so-called
planar isosceles 3-body problem. There are several papers about the planar isosceles
3-body problem, for instance, [9], [17], etc.

When the third body of the isosceles 3-body problem has infinitesimal mass (i.e.,
µ = 0) then we obtain the restricted isosceles problems. Depending on the motion
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of the primaries m1 and m2 we have seven different cases for the restricted isosceles
problems. Here we consider, due to their richness in periodic orbits, only the cases
in which the primaries move in circular or elliptic orbits of the 2-body problem, the
circular and elliptic restricted isosceles problems, also called the circular and elliptic
Sitnikov problems.

The isosceles problem and the restricted isosceles problems possess the first inte-
gral of the angular momentum. In section 3 we will prove that the phase portrait of
any of these problems on each level of the angular momentum c with c �= 0 is the same.
Notice that the angular momentum c = 0 contains the triple and the double collision
orbits, but collision orbits are not treated in this work. With a fixed value of the
angular momentum c �= 0, we reduce by two dimensions (an angle and its derivative)
the phase space of the isosceles problem, obtaining the reduced isosceles problem. In
particular, we see that each periodic orbit of the reduced isosceles problem gives an
invariant two-dimensional torus of the isosceles problem, filled with either periodic or
quasi-periodic orbits, which is not a KAM tori. We note that the circular and elliptic
Sitnikov problems that appear in the literature are essentially our reduced circular
and elliptic Sitnikov problems.

The main objective of this work is to prove that the invariant two-dimensional
tori of the restricted isosceles problem that come from the known periodic orbits of the
reduced circular Sitnikov problem persist when we pass from the restricted isosceles
problem to the isosceles problem for µ > 0 sufficiently small. Consequently these
tori persist inside the general spatial 3-body problem. The main tool for proving this
result will be the classical Poincaré analytic continuation method of periodic orbits.
In particular, we continue the known periodic orbits of the reduced circular Sitnikov
problem to periodic orbits of the reduced isosceles problem for µ > 0 sufficiently
small. In order to do that, we will use the symmetries of the problem. The isosceles
problem is invariant under the time reversibility (t-symmetry), and it is also invariant
under a symmetry with respect to the plane defined by the motion of m1 and m2 (r-
symmetry). These symmetries will allow us to find r- and t-symmetric periodic orbits
for the reduced isosceles problem. We still distinguish another type of symmetric
periodic orbits, the doubly symmetric periodic orbits, which are simultaneously r- and
t-symmetric periodic orbits.

Using the analytical continuation method of Poincaré, we will continue the known
periodic orbits of the reduced circular Sitnikov problem (where µ = 0), which are
doubly symmetric periodic orbits, to symmetric periodic orbits of the reduced isosceles
problem for µ > 0 sufficiently small. Those periodic orbits are continued in two
different ways. The first goes directly from the reduced circular Sitnikov problem
to the reduced isosceles problem. The second uses two steps: first we continue the
periodic orbits from the reduced circular Sitnikov problem to symmetric periodic
orbits of the reduced elliptic Sitnikov problem (where µ = 0) for small values of the
eccentricity e, and then we continue those symmetric periodic orbits of the reduced
elliptic Sitnikov problem to the reduced isosceles problem for small values of µ > 0.

A key point in this work is the knowledge of an analytical expression for the
solution of the variational equations of the reduced circular (elliptic) Sitnikov problem
along the periodic solution that we want to continue. We must remark that all results
presented in this paper are analytical results.

The main results about continuation of periodic orbits from the reduced circular
Sitnikov problem to the reduced isosceles problem are summarized in the following
result.
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Theorem A. Let γ be a periodic orbit of the reduced circular Sitnikov problem
with period T > π/

√
2, and let f(e) = (1 − e2)3/2. Then γ can be continued to

the following families of periodic orbits of the reduced isosceles problem with angular
momentum c = 1/4 and µ > 0 sufficiently small:

1. Case T = 2πω with ω > 1/(2
√
2) an irrational number.

(a) γ can be continued directly to one 2-parameter family (on µ and τ) of
doubly symmetric periodic orbits with period τ sufficiently close to T .

2. Case T = 2πp/q for some p, q ∈ N coprime with p > q/(2
√
2).

(a) p odd:
i. γ can be continued directly to one 2-parameter family (on µ and τ)

of doubly symmetric periodic orbits with period τ sufficiently close
to T .

ii. γ can be continued by two steps to two 2-parameter families (on
µ and e) of r-symmetric periodic orbits with period qT f(e) where
e > 0 is sufficiently small.

iii. γ can be continued by two steps to two 2-parameter families (on
µ and e) of t-symmetric periodic orbits with period qT f(e) where
e > 0 is sufficiently small.

(b) p even and q �= 1:
i. γ can be continued directly to one 2-parameter family (on µ and τ)

of doubly symmetric periodic orbits with period τ sufficiently close
to T .

ii. γ can be continued by two steps to two 2-parameter families (on µ
and e) of doubly symmetric periodic orbits of period qT f(e) where
e > 0 is sufficiently small.

(c) p even and q = 1:
i. γ can be continued by two steps to two 2-parameter families (on µ

and e) of doubly symmetric periodic orbits of period qT f(e) where
e > 0 is sufficiently small.

Using direct continuation we can continue all periodic orbits of the reduced circu-
lar Sitnikov problem except the ones that have period multiple of 4π. In particular,
we can continue the periodic orbits, with period 2πω and ω irrational. These periodic
orbits become quasi-periodic orbits in the restricted isosceles problem. So, in fact
we have continued quasi-periodic orbits of the restricted isosceles problem to either
periodic or quasi-periodic orbits of the isosceles problem for µ > 0 sufficiently small.

The continuation in two steps allows us to continue only periodic orbits of the
reduced circular Sitnikov problem with period T = 2πp/q for all p, q ∈ N coprime and
p > q/(2

√
2). These periodic orbits become periodic orbits of the restricted isosceles

problem. We note that the periodic orbits of the reduced circular Sitnikov problem
that cannot be continued directly can be continued in two steps. Moreover the rest of
the periodic orbits with period T = 2πp/q can be continued in both ways, obtaining
different periodic orbits for the reduced isosceles problem.

Since each periodic orbit of the reduced isosceles problem gives an invariant two-
dimensional torus of the isosceles problem, in particular we have continued the in-
variant two-dimensional tori of the circular restricted isosceles problem (µ = 0) to
invariant two-dimensional tori of the isosceles problem for µ > 0 sufficiently small.
In section 13 we state Theorem A translated to the language of tori for the isosceles
problem.

This paper is organized as follows. In section 2 we give the equations of motion



1314 MONTSERRAT CORBERA AND JAUME LLIBRE

of the isosceles problem in appropriate cylindrical coordinates; these coordinates will
allow us to define the reduced isosceles problem in section 3. In section 4 we give
the relationships between the orbits of the reduced isosceles problem and the isosceles
problem. In particular, we see that if ϕ is an orbit for the reduced isosceles prob-
lem, then ϕ × S

1 is an invariant manifold for the isosceles problem (for more details
see Theorem 4.1). In section 5 we analyze the symmetries of the reduced isosceles
problem. In section 6 we define the restricted isosceles problems and the reduced re-
stricted isosceles problems. In this work, we will consider only the circular and elliptic
restricted isosceles problems, which are treated in sections 7 and 8, respectively. In
particular, we are interested in the invariant two-dimensional tori of these problems
that come from periodic orbits of the corresponding reduced problems. In section 7.1,
we summarize the basic properties given in [8] of the periodic solutions of the circular
Sitnikov problem. In section 8.1 we summarize the basic properties of the periodic
solutions of the elliptic Sitnikov problem and give the basic results on continuation of
periodic solutions from the circular Sitnikov problem (e = 0) to the elliptic Sitnikov
problem for e > 0 sufficiently small. These results have also been extracted from [8].
In section 9 we analyze the variational equations of the reduced circular and elliptic
Sitnikov problem and explicitly give the solution of the variational equations of the
Kepler problem along a circular or elliptic periodic solution and the solution of the
variational equations of the circular Sitnikov problem. In section 10 we analyze the
direct continuation of periodic solutions from the reduced circular Sitnikov problem
to the isosceles problem for µ > 0 sufficiently small; in particular, we prove statements
1(a), 2(a)i, and 2(b)i of Theorem A (see Theorem 10.1). In section 11 we analyze the
continuation of the symmetric periodic solutions of the reduced elliptic Sitnikov prob-
lem that we give in section 8 to the isosceles problem for µ > 0 sufficiently small. The
continuation by two steps from the reduced circular Sitnikov problem to the reduced
isosceles problem is analyzed in section 12; in particular, we prove the remaining
statements of Theorem A (see Theorem 12.8). In section 13 we summarize the basic
results on continuation of invariant two-dimensional tori from the circular restricted
isosceles problem to the isosceles problem for µ > 0 small.

2. Coordinates and equations of motion of the isosceles problem. Let
P1 and P2 be two particles, with equal masses m1 = m2, having initial positions and
velocities symmetric with respect to a straight line that passes through their center
of mass. Let P3 be a third particle, with mass m3, having initial position and velocity
on this straight line. The spatial isosceles 3-body problem, or simply the isosceles
problem in this work, consists of describing the motion of these three particles under
their mutual Newtonian gravitational attraction. We note that the solutions of the
isosceles problem are in fact solutions of the general spatial 3-body problem.

We choose an inertial coordinate system (X,Y, Z) in such a way that the Z-axis
is the straight line that contains the particle P3. The initial positions of the particles
P1, P2, and P3 in this coordinate system are (X,Y, Z2), (−X,−Y,Z2), (0, 0, Z1), re-
spectively, and their respective velocities are (Ẋ, Ẏ , Ż2), (−Ẋ,−Ẏ , Ż2), and (0, 0, Ż1)
(see Figure 2.1). Of course, the dot denotes the derivative with respect to the time t.

In order to develop our analysis we will use the cylindrical coordinates (r, z, θ) ∈
R

+ × R × S
1 introduced as follows. Here R

+ denotes the open interval (0,∞). First
we put the origin 0 of the coordinate system at the center of mass of m1, m2, and m3,
which implies taking Z2 = −m3Z1. Then we define a new variable z = Z1 − Z2 ∈ R

which denotes the distance between the third particle P3 and the orthogonal plane to
the Z-axis that contains the particles P1 and P2 with the convenient sign (positive
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Fig. 2.1. The isosceles problem.

if Z1 > Z2 and negative if Z1 < Z2). Finally we consider polar coordinates, (r, θ) ∈
R

+ × S
1, in the above orthogonal plane by taking X = r cos θ and Y = r sin θ.

We choose the unit of mass in such a way that m1 = m2 = 1/2 and m3 = µ,
and the unit of length is chosen so that the gravitational constant is one. Then the
kinetic energy and the potential energy in the coordinate system (r, ṙ, z, ż, θ, θ̇) are
given, respectively, by

T =
1

2

(
ṙ2 + r2θ̇2 +

µ

1 + µ
ż2

)
and U = − 1

8 r
− µ

(z2 + r2)1/2
.

Therefore the Lagrangian equations of motion for the isosceles problem are

d

dt
(ṙ) = rθ̇2 − 1

8 r2
− µr

(z2 + r2)3/2
,

d

dt

(
µ

1 + µ
ż

)
= − µz

(z2 + r2)3/2
,

d

dt
(r2θ̇) = 0.

(2.1)

We note that the third equation of system (2.1) can be integrated directly, ob-
taining the first integral of the angular momentum

C = r2θ̇.(2.2)

Of course, system (2.1) also has the first integral given by the energy H = T + U .

3. The reduced isosceles problem. To avoid singular situations, throughout
this work we consider only solutions of system (2.1) having nonzero angular momen-
tum (i.e., in particular, we do not consider solutions with collision between the masses,
either triple or double). We note that under this assumption it is sufficient to consider
solutions of (2.1) having a fixed value of the angular momentum C = c for some c �= 0,
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because the phase portrait of the isosceles problem on each angular momentum level
c �= 0 is the same as that shown in the following proposition.

Proposition 3.1. Let (r(t), ṙ(t), z(t), ż(t), θ(t), θ̇(t)) be a solution of the isos-
celes problem (2.1) with angular momentum C = c for some c �= 0. If we take
α1/2 = c/c �= 0, then

ϕ(t) =

(
αr(α3/2t),

ṙ(α3/2t)

α1/2
, αz(α3/2t),

ż(α3/2t)

α1/2
, θ(α3/2t),

θ̇(α3/2t)

α3/2

)

is a solution of (2.1) with angular momentum c.
Proof. It is easy to see that system (2.1) is invariant under the transformation

(t, r, ṙ, z, ż, θ, θ̇) �−→ (α3/2t, αr, α−1/2ṙ, αz, α−1/2ż, θ, α−3/2θ̇).

Thus ϕ(t) is a solution of (2.1). Moreover the angular momentum of ϕ(t) is given by

α2r2(α3/2t)α−3/2θ̇(α3/2t) = α1/2c = c.

Then ϕ(t) is a solution of (2.1) with angular momentum c.
Assuming that the value of the angular momentum is fixed at C = c for some

c �= 0, we can reduce by two units the dimension of the phase space. Indeed, the
variable θ does not appear explicitly in system (2.1); moreover from (2.2), θ̇ = c/r2,
and thus we need to consider only the first two equations of (2.1) with θ̇ replaced by
c/r2. That is, we need to consider only the reduced isosceles problem

r̈ =
c2

r3
− 1

8 r2
− µr

(z2 + r2)3/2
, z̈ = − (1 + µ)z

(z2 + r2)3/2
.(3.1)

4. Relationships between the reduced isosceles problem and the isosce-
les problem. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced isosce-
les problem (3.1) for a fixed c �= 0 with initial conditions r(0) = r0, ṙ(0) = ṙ0,
z(0) = z0, ż(0) = ż0. For each θ0 ∈ S

1, the solution ϕ(t) gives rise to a solution
γϕ,θ0,c(t) = (r(t), ṙ(t), z(t), ż(t), θ(t), θ̇(t)) of the isosceles problem (2.1) with angular
momentum c, having initial conditions r(0) = r0, ṙ(0) = ṙ0, z(0) = z0, ż(0) = ż0,
θ(0) = θ0 (mod 2π), θ̇(0) = c/r20, where θ̇(t) and θ(t) are given by

θ̇(t) =
c

r2(t)
and θ(t) =

∫ t

0

c

r2(τ)
dτ + θ0 = F (t) + θ0.(4.1)

It is well known that all solutions of the 3-body problem, except those that end
in collision, are defined for all t ∈ R (see [18] or [21]). Since our isosceles problem
is a particular case of the general 3-body problem, all its solutions with angular
momentum c �= 0 are defined for all t ∈ R.

Fixing a value of c �= 0, the union of the orbits γϕ,θ0,c = {γϕ,θ0,c(t) : t ∈ R},
varying θ0 ∈ S

1, is an invariant submanifold Eϕ,c of the phase space of the isosceles
problem E = {(r, ṙ, z, ż, θ, θ̇) ∈ R

+ × R
3 × S

1 × R}. In particular, Eϕ,c is an invariant
submanifold of Ec = {(r, ṙ, z, ż, θ, θ̇) ∈ E : r2θ̇ = c}. Note that Ec, called the angular
momentum level C = c, is a submanifold of dimension 5 of E because c �= 0. The
invariant submanifold Eϕ,c is called the relative set associated to the orbit ϕ = {ϕ(t) :
t ∈ R}, and it is diffeomorphic to ϕ× S

1.
By the qualitative theory of differential equations we know that the orbits of the

reduced isosceles problem (3.1) can be either equilibrium points, periodic orbits, or
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orbits diffeomorphic to R. Thus if ϕ is an equilibrium point, then the corresponding
relative set is diffeomorphic to a circle S

1 (a relative periodic orbit). If ϕ is a periodic
orbit (i.e., a closed curve diffeomorphic to S

1), then the corresponding relative set
is diffeomorphic to a two-dimensional torus S

1 × S
1 (a relative torus). This relative

torus can be filled with either periodic or quasi-periodic orbits (in this last case the
orbits are dense on the torus). We note that these kinds of tori are not KAM tori
(see, for instance, [1]), because they are two-dimensional tori of a problem with three
degrees of freedom, and the KAM tori of such a system have dimension 3. Finally if
ϕ is neither an equilibrium point nor a periodic orbit, then the corresponding relative
set is diffeomorphic to a cylinder R × S

1. In particular, we have the following result.
Theorem 4.1. Let ϕ = {ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) : t ∈ R} be an orbit of the

reduced isosceles problem (3.1) for a fixed value of c �= 0; and let γϕ,θ0,c = {γϕ,θ0,c(t) =
(r(t), ṙ(t), z(t), ż(t), θ(t), θ̇(t)) : t ∈ R} be the orbit of the isosceles problem (2.1) with
θ(t) = F (t) + θ0 (see (4.1)) for a fixed θ0 ∈ S

1. Then Eϕ,c is diffeomorphic to one of
the following manifolds:

1. A circle S
1 ⊂ Ec formed by a periodic orbit of (2.1) with period 128πc3/(1 +

8µ)2 if ϕ = (8c2/(1 + 8µ), 0, 0, 0) is the equilibrium point of (3.1). This
periodic orbit is known as the collinear solution of Euler for the 3-body problem
(for more details see [21]).

2. A two-dimensional torus S
1 × S

1 ⊂ Ec if ϕ is a T -periodic orbit. Moreover
this torus is formed by the union of
(a) periodic orbits of period mT if F (T ) = 2πl/m with l ∈ Z, m ∈ N and l,

m coprime;
(b) quasi-periodic orbits if F (T ) = ω2π with ω an irrational number.

3. A cylinder S
1 × R ⊂ Ec if ϕ is neither the equilibrium point nor a periodic

orbit.

5. Symmetries. It is easy to check that the equations of motion of the reduced
isosceles problem (3.1) are invariant under the symmetry

(t, r, ṙ, z, ż) �−→ (−t, r,−ṙ,−z, ż).(5.1)

This means that if ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) is a solution of system (3.1), then also
ψ(t) = (r(−t),−ṙ(−t),−z(−t), ż(−t)) is a solution. We note that in the configuration
space {(r, z) ∈ R

+×R} this symmetry corresponds to a symmetry with respect to the
r-axis, so in what follows it will be denoted by the r-symmetry. On the other hand,
in the configuration space {(r, z, θ) ∈ R

+×R×S
1} the r-symmetry would correspond

to a symmetry with respect to the plane defined by the motion of the particles P1

and P2.
This symmetry can be used, in a standard way, to find periodic solutions as

follows. Suppose that ϕ(t) crosses orthogonally the r-axis at a time t = 0; that is,
z(0) = 0 and ṙ(0) = 0. Using symmetry (5.1) we have that the two solutions ϕ(t) and
ψ(t) coincide at t = 0; then by the theorem of uniqueness of solutions of an ordinary
differential equation they must be the same. If there is another time such that the
solution ϕ(t) crosses the r-axis orthogonally, then by symmetry (5.1) the orbit of ϕ(t)
must be closed, and ϕ(t) is called an r-symmetric periodic solution.

Since system (3.1) is autonomous, the origin of time can be chosen arbitrarily.
Thus, if γ(t) is a solution of (3.1) that crosses the r-axis in a point p at t = t0, then
ϕ(t) = γ(t + t0) is a solution of (3.1) that crosses the r-axis in the point p at t = 0.
Therefore we have proved the following well-known result.

Proposition 5.1. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced
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isosceles problem (3.1). If ṙ(t) and z(t) are zero at t = t0 and at t = t0 + T/2 but are
not simultaneously zero at any value of t ∈ (t0, t0+T/2), then ϕ(t) is an r-symmetric
periodic solution of period T .

Equations (3.1) are also invariant under the symmetry

(t, r, ṙ, z, ż) �−→ (−t, r,−ṙ, z,−ż),(5.2)

i.e., the time reversibility symmetry, which will be denoted in what follows by the t-
symmetry. As in the r-symmetry we can introduce the notion of t-symmetric periodic
solutions, which are characterized as follows.

Proposition 5.2. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced
isosceles problem (3.1). If ṙ(t) and ż(t) are zero at t = t0 and at t = t0 + T/2 but are
not simultaneously zero at any value of t ∈ (t0, t0 + T/2), then ϕ(t) is a t-symmetric
periodic solution of period T .

We note that there could be periodic solutions of (3.1) that are simultaneously
r- and t-symmetric. These periodic solutions will be called doubly symmetric periodic
solutions (see, for instance, [12] for more information about doubly symmetric periodic
orbits) and are characterized by the following result.

Proposition 5.3. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a solution of the reduced
isosceles problem (3.1).

1. If ṙ(t) and z(t) are zero at t = t0 and ṙ(t) and ż(t) are zero at t = t0 + T/4
but are not simultaneously zero at any value of t ∈ (t0, t0 + T/4), then ϕ(t)
is a doubly symmetric periodic solution of period T .

2. If ṙ(t) and ż(t) are zero at t = t0 and ṙ(t) and z(t) are zero at t = t0 + T/4
but are not simultaneously zero at any value of t ∈ (t0, t0 + T/4), then ϕ(t)
is a doubly-symmetric periodic solution of period T .

6. Restricted isosceles problems. To obtain the restricted isosceles problems
we assume that the value of the mass m3 is infinitesimally small (i.e., µ = 0). Then
the equations of motion of the restricted isosceles problem become

r̈ = rθ̇2 − 1

8 r2
, z̈ = − z

(z2 + r2)3/2
,

d

dt
(r2θ̇) = 0.(6.1)

Notice that the first and the third equations of (6.1) do not depend on z; more-
over they are the equations of motion of a 2-body problem in polar coordinates. This
means that the particles P1 and P2 (the primaries) move on the plane z = 0 describing
a solution of this 2-body problem. Moreover the particle P3 that lies on the straight
line orthogonal to the plane containing P1 and P2 that passes through their center
of mass moves under the gravitational attraction of the previous two but does not
influence their motion. Thus, for every solution (r(t), θ(t)) of that 2-body problem,
system (6.1) defines a different restricted isosceles problem; it can be a circular, ellip-
tic, parabolic, hyperbolic, elliptic collision, parabolic collision, or hyperbolic collision
restricted isosceles problem depending on the nature of the solution (r(t), θ(t)).

As in the isosceles problem (2.1) if we assume that the value of the angular
momentum is fixed at C = c for some c �= 0, then we can reduce the dimension of the
phase space by two, obtaining the reduced restricted isosceles problem

r̈ =
c2

r3
− 1

8 r2
, z̈ = − z

(z2 + r2)3/2
.(6.2)

In this work we are interested only in the periodic solutions of system (6.2) for
c �= 0. So, we will consider only the reduced circular and elliptic restricted isosceles
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problems, which we will call reduced circular Sitnikov problem and reduced elliptic
Sitnikov problem, respectively.

7. On the circular restricted isosceles problem. Without loss of generality
we can assume that the primaries describe a circular orbit of radius 1/2 (or, equiv-
alently, a circular orbit of period 2π). This corresponds to fixing the value of the
angular momentum to c = 1/4. Then the equation of motion for the infinitesimal
mass becomes

z̈ = − z

(z2 + 1/4)3/2
,(7.1)

which is the equation of the known circular Sitnikov problem.
Assume that (z(t), ż(t)) is a solution of (7.1) with arbitrary initial conditions

z(0) = z0 and ż(0) = ż0. Then it is clear that ϕ(t) = (r(t) = 1/2, ṙ(0) = 0, z(t), ż(t))
is a solution of the reduced circular Sitnikov problem

r̈ =
1

16 r3
− 1

8 r2
, z̈ = − z

(z2 + r2)3/2
,(7.2)

with initial conditions r(0) = 1/2, ṙ(0) = 0, z(0) = z0, ż(0) = ż0. Next we analyze
the periodic solutions of this problem.

Since we have taken r(t) = 1/2, ṙ(t) = 0, it’s clear that ϕ(t) = (r(t), ṙ(t), z(t), ż(t))
is a periodic solution of the reduced circular Sitnikov problem with period T if and
only if (z(t), ż(t)) is a periodic solution of the circular Sitnikov problem (7.1) with
period T . So, we start summarizing the basic results about periodic solutions of the
circular Sitnikov problem (7.1) that are needed for the development of this work. Then
we will analyze the periodic solutions of the reduced circular Sitnikov problem and
their relationship with the corresponding solutions of the circular restricted isosceles
problem.

7.1. Periodic solutions of the circular Sitnikov problem. Equation (7.1)
defines an integrable Hamiltonian system of one degree of freedom with Hamiltonian

H = v2/2−(z2 + 1/4
)−1/2

, where v = ż. The orbits for the circular Sitnikov problem
in the energy level h are described by the curve H = h, where h varies in [−2,∞).

The circular Sitnikov problem has been studied by several authors. In 1907 Pa-
vanini [19] expressed its solutions by means of Weierstrassian elliptic functions. Four
years later MacMillan [14] expressed the solutions in terms of Jacobian elliptic func-
tions (a detailed description of this work can be found in Stumpff [22]). Some other
analytical expressions for the solutions of this problem can be found, for instance, in
[23], [2], and [24]. In particular, in this paper we will use the analytical expressions of
the solutions of the circular Sitnikov problem for h > −2 that appear in [2], which are
given in terms of Jacobian elliptic functions. A detailed description of all Jacobian
elliptic functions to be used in this paper can be found in [4] and [8].

We remark that the knowledge of an analytic expression for the solutions of the
circular Sitnikov problem plays a key role in our analysis, because it allows us to prove
our results analytically.

In what follows we use the following notation for the Jacobian elliptic functions:
sn ν = sn (ν, k), cn ν = cn (ν, k), dn ν = dn (ν, k) are the sine, cosine, and delta
amplitude Jacobian elliptic functions, respectively; F (ν) = F ( am (ν), k), E(ν) =
E( am (ν), k), Π(ν, 2k2) = Π( am (ν), 2k2, k) are the normal elliptic integral of the first,
second, and third kind, respectively; am (ν) is the amplitude Jacobian elliptic function;
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and finally K = K(k) = F (π/2, k), E = E(k) = E(π/2, k), Π(α2, k) = Π(π/2, α2, k)
are the complete elliptic integrals of the first, second, and third kind, respectively (see
[4] or [8] for the precise definitions).

Using the analytic expression for the solutions of the circular Sitnikov problem
given in Theorem A of [2], we see that the periodic solutions of that problem can be
written as follows (see [8] for more details).

Lemma 7.1. The periodic solutions of the circular Sitnikov problem have energy
−2 < h < 0 and can be written as

(z(t), ż(t)) =

(
k sn ν dn ν

1− 2k2 sn 2ν
, 2

√
2k cn ν

)
,(7.3)

where k =
√
2 + h/2 and ν is the function of t defined implicitly by

t =

√
2

8(1− 2k2)

[
2E(ν)− ν +Π(ν, 2k2)− 4k2 sn ν cn ν dn ν

1− 2k2 sn 2ν

]
+ C

= τ(ν, k) + C.

Here C is an integration constant whose value depends on the initial conditions of the
periodic solution (z(t), ż(t)).

Since sn ν and cn ν are periodic functions of period 4K and dn ν is a periodic
function of period 2K (see formulas 122 in [4]), from (7.3) we see that the period in
the new time ν is 4K, where K = K(k) is the complete elliptic integral of the first
kind and k =

√
2 + h/2. Moreover the period in the real time t is given by

T =

√
2

2(1− 2k2)
[2E(k)−K(k) + Π(2k2, k)];(7.4)

for more details see Theorem 2.3 in [8].
We note that (7.1) is autonomous, so the origin of time can be chosen arbitrarily.

In particular, in this paper we are interested only in periodic solutions (z(t), ż(t))
having initial conditions either z(0) = 0 or ż(0) = 0. The following lemma, taken
from [8], gives the values of the integration constant C for those initial conditions.

Lemma 7.2. Let T be the period of the periodic solution (z(t), ż(t)) given in (7.4).
1. If (z(t), ż(t)) has initial conditions z(0) = 0 and ż(0) =

√
2h+ 4, then taking

ν(0) = 0, we have t = τ(ν, k).
2. If (z(t), ż(t)) has initial conditions z(0) = 0 and ż(0) = −√

2h+ 4, then
taking ν(0) = 2K, we have t = τ(ν, k)− T/2.

3. If (z(t), ż(t)) has initial conditions z(0) =
√

1
h2 − 1

4 and ż(0) = 0, then taking

ν(0) = K, we have t = τ(ν, k)− T/4.

4. If (z(t), ż(t)) has initial conditions z(0) = −
√

1
h2 − 1

4 and ż(0) = 0, then

taking ν(0) = 3K, we have t = τ(ν, k)− 3T/4.
In order to simplify computations we will usually work with the new time ν

instead of the real time t, but always keeping in mind that ν is a function of t via
Lemma 7.2. The two following lemmas taken also from [8] give some relationships
between the real time t and the new time ν that will be useful later on.

Lemma 7.3. Let T be the period of the periodic solution (z(t), ż(t)).
1. ν(t+ qT ) = ν(t) + q4K for all t ∈ R and for all q ∈ N.
2. ν(t+ qT/2) = ν(t) + q2K for all t ∈ R and for all q ∈ N.
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Lemma 7.4. Let T be the period of the solution (z(t), ż(t)). If ν(0) = lK for
l = 0, 1, 2, 3, then ν(qT/4) = (l + q)K for all q ∈ N.

The following result gives the properties of the function T = T (h).
Theorem 7.5. The period T satisfies
1. limh→−2 T (h) = π/

√
2;

2. limh→0 T (h) =∞;
3. dT/dh > 0 for all h ∈ (−2, 0);
4. limh→−2 dT/dh = π(1 + 4

√
2)/16;

5. limh→0 dT/dh =∞.
Proof. See the proof of Theorem C in [2].
Theorem 7.5 assures the existence of periodic orbits of the circular Sitnikov prob-

lem with period T = T (h) for all T > π/
√
2. In fact, since T = T (h) is an injective

function there is a one-to-one correspondence between h ∈ (−2, 0) and T ∈ (π/√2,∞),
so we can characterize the periodic orbits either by the period or by the energy.

7.2. Periodic solutions of the reduced circular Sitnikov problem. Notice
that equations (7.2) are invariant under symmetries (5.1) and (5.2). These symmetries
can be used to obtain symmetric periodic solutions for the reduced circular Sitnikov
problem. It is not difficult to prove the next result.

Proposition 7.6. All periodic orbits of the reduced circular Sitnikov problem are
doubly symmetric periodic orbits.

We note that the periodic solutions of the reduced circular Sitnikov problem are
periodic solutions for the infinitesimal mass, but in general they are not periodic
solutions involving the three masses; that is, they are not periodic solutions of the
circular restricted isosceles problem. Since the primaries describe a circular solution
of a 2-body problem with period 2π, the only periodic orbits of the circular Sitnikov
problem that give periodic orbits involving the three masses are the ones that have
a period commensurable with 2π; that is, T = T (h) = 2πp/q for some p, q ∈ N

coprime. In this case the period of the corresponding orbit involving the three masses
is τ = 2πp = qT (h). That is, during a period τ , the primaries have completed p
revolutions and the infinitesimal mass has completed q revolutions.

7.3. Invariant tori of the circular restricted isosceles problem. From sec-
tion 7.2, we have the following result, which can be obtained easily from Theorem 4.1.

Proposition 7.7. Let {(zh(t), żh(t)) : t ∈ R} be a periodic orbit of the circular
Sitnikov problem with energy h for some h ∈ (−2, 0); and let ϕh = {ϕh(t) = (r(t) =
1/2, ṙ(t) = 0, zh(t), żh(t)) : t ∈ R} be its corresponding orbit of the reduced circular
Sitnikov problem. Then the relative set of the circular restricted isosceles problem as-
sociated to the orbit ϕh is diffeomorphic to a two-dimensional torus S

1×S
1. Moreover,

this relative torus is formed by the union of
1. periodic orbits of period qT if T = T (h) = 2πp/q for some p, q ∈ N coprime

and p > q/(2
√
2);

2. quasi-periodic orbits if T = T (h) = 2πω for some irrational ω > 1/(2
√
2).

8. On the elliptic restricted isosceles problem. We assume that the pri-
maries are describing an elliptic orbit of the 2-body problem with period 2π and
eccentricity e. This corresponds to fixing the value of the angular momentum to
c = ce =

√
1− e2/4. Then, choosing conveniently the origin of time, a solution of the

reduced elliptic Sitnikov problem is a solution ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) of

r̈ =
1− e2

16 r3
− 1

8 r2
, z̈ = − z

(z2 + r2)3/2
,(8.1)
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with initial conditions r(0) = (1 ± e)/2, ṙ(0) = 0, z(0) = z0, ż(0) = ż0 for some
z0, ż0 ∈ R.

Since r(t) is a 2π-periodic function, the periodic solutions of the reduced ellip-
tic Sitnikov problem must have period that is a multiple of 2π. Moreover ϕ(t) =
(r(t), ṙ(t), z(t), ż(t)) is a periodic solution of the reduced elliptic Sitnikov problem
with period T = 2kπ for some k ∈ N if and only if (z(t), ż(t)) is a periodic solution
with period T = 2kπ of the elliptic Sitnikov problem

z̈ = − z

(z2 + r(t)2)3/2
.

It is clear that equations (8.1) are invariant under symmetries (5.1) and (5.2).
These symmetries can be used to obtain symmetric periodic solutions for the reduced
elliptic Sitnikov problem. We remark that symmetries (5.1) and (5.2) for the reduced
elliptic Sitnikov problem correspond to the r- and the t-symmetry of the elliptic
Sitnikov problem defined in [7] and [8].

8.1. Periodic solutions of the reduced elliptic Sitnikov problem. In sec-
tion 7.2 we have seen that all periodic orbits of the reduced circular Sitnikov problem
are doubly symmetric periodic orbits. This fact does not occur when we consider the
reduced elliptic Sitnikov problem, as follows from the next result.

Proposition 8.1. For the reduced elliptic Sitnikov problem there exist four differ-
ent types of periodic orbits: nonsymmetric periodic orbits, doubly symmetric periodic
orbits, and r- and t-symmetric periodic orbits that are not doubly symmetric.

Proof. See the proof of Propositions 12, 15, and 23 in [7].
On the other hand, [8] gives initial conditions for some symmetric periodic solu-

tions of the elliptic Sitnikov problem (or, equivalently, the reduced elliptic Sitnikov
problem) with sufficiently small values of the eccentricity e > 0. These initial condi-
tions are obtained from the analytic continuation of the known periodic solutions of
the reduced circular Sitnikov problem to symmetric periodic solutions of the reduced
elliptic Sitnikov problem for sufficiently small values of the eccentricity e. Later on, in
section 11, the symmetric periodic solutions of the reduced elliptic Sitnikov problem
given in [8] will be continued to the reduced isosceles problem for sufficiently small
values of µ > 0. Here we summarize the main results of [8] about symmetric periodic
orbits of the reduced elliptic Sitnikov problem.

In what follows ϕc(t;x0, µ) = (r(t;x0, µ), ṙ(t;x0, µ), z(t;x0, µ), ż(t;x0, µ)), with
x0 = (r0, ṙ0, z0, ż0), denotes the solution of the reduced isosceles problem (3.1) with
angular momentum C = c �= 0, satisfying the initial conditions r(0; r0, ṙ0, z0, ż0, µ) =
r0, ṙ(0; r0, ṙ0, z0, ż0, µ) = ṙ0, z(0; r0, ṙ0, z0, ż0, µ) = z0, ż(0; r0, ṙ0, z0, ż0, µ) = ż0.

Theorem 8.2. Given p, q ∈ N coprime with p > q/(2
√
2), let ϕ1/4 (t; r0 = 1/2,

ṙ0 = 0, z0 = 0, ż0 = ż∗0 = ±√
2h+ 4, µ = 0

)
be a periodic solution of the reduced cir-

cular Sitnikov problem with period T = 2πp/q.
1. This solution can be continued to two families ϕce(t; r0 = (1 − e)/2, ṙ0 =
0, z0 = 0, ż0 = żP0 = ż∗0 + O(e), µ = 0) and ϕce(t; r0 = (1 + e)/2, ṙ0 = 0, z0 =
0, ż0 = żA0 = ż∗0+O(e), µ = 0) of r-symmetric periodic solutions of the reduced
elliptic Sitnikov problem having period τ = 2πp = qT for e > 0 sufficiently
small.

2. If p is odd, then those r-symmetric periodic solutions are not doubly symme-
tric, whereas if p is even, then they are doubly symmetric.

Proof. See the proof of Theorem 4.4 in [8].
Theorem 8.3. Given p, q ∈ N coprime with p > q/(2

√
2), let ϕ1/4 (t; r0 = 1/2,
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ṙ0 = 0, z0 = z∗0 = ±
√

1
h2 − 1

4 , ż0 = 0, µ = 0) be a periodic solution of the reduced

circular Sitnikov problem with period T = 2πp/q.
1. This solution can be continued to two families ϕce(t; r0 = (1 − e)/2, ṙ0 =
0, z0 = zP0 = z∗0 + O(e), ż0 = 0, µ = 0) and ϕce(t; r0 = (1 + e)/2, ṙ0 = 0, z0 =
zA0 = z∗0+O(e), ż0 = 0, µ = 0) of t-symmetric periodic solutions of the reduced
elliptic Sitnikov problem having period τ = 2πp = qT for e > 0 sufficiently
small.

2. If p is odd, then those t-symmetric periodic solutions are not doubly symme-
tric, whereas if p is even, then they are doubly symmetric.

Proof. See the proof of Theorem 4.6 in [8].
We note that in Theorems 8.2 and 8.3 we continue four different initial conditions

of the periodic orbit of the reduced circular Sitnikov problem with period T = 2πp/q
for given p, q ∈ N coprime, p > q/(2

√
2); they are ϕ1/4

(
t; 1/2, 0, 0,

√
2h+ 4, 0

)
and

ϕ1/4

(
t; 1/2, 0, 0,−√

2h+ 4, 0
)
in Theorem 8.2, and ϕ1/4(t; 1/2, 0,

√
1
h2 − 1

4 , 0, 0) and

ϕ1/4(t; 1/2, 0,−
√

1
h2 − 1

4 , 0, 0) in Theorem 8.3. These four initial conditions are con-
tinued to eight families of periodic orbits of the reduced elliptic Sitnikov problem for
e > 0 sufficiently small. The following theorem says how many of these eight families
of periodic orbits are really different (see [8] for more details).

Theorem 8.4. The periodic solutions of the reduced circular Sitnikov problem
with period T = 2πp/q, for given p, q ∈ N coprime p > q/(2

√
2), can be continued to

1. two families of r-symmetric periodic orbits and two families of t-symmetric
periodic orbits (that are not doubly symmetric) of the reduced elliptic Sitnikov
problem with period τ = 2πp = qT , for e > 0 sufficiently small, when p is
odd;

2. two families of doubly symmetric periodic orbits of the reduced elliptic Sitnikov
problem with period τ = 2πp = qT , for e > 0 sufficiently small, when p is
even.

Proof. See the proof of Theorem 4.15 in [8].

8.2. Invariant tori of the elliptic restricted isosceles problem. From The-
orem 4.1(2)(a), the next result follows.

Proposition 8.5. Let ϕ = {ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) : t ∈ R} be a periodic
orbit of the reduced elliptic Sitnikov problem with period τ = 2πn for some n ∈ N.
Then the relative set of the restricted isosceles problem associated to the orbit ϕ is
diffeomorphic to a two-dimensional torus S

1 × S
1 ⊂ Ece , which is formed by periodic

orbits of period τ .
We remark that the orbits of the circular restricted isosceles problem coming from

periodic orbits of the reduced circular Sitnikov problem are not in general periodic
orbits (see Proposition 7.7).

By means of Propositions 7.7 and 8.5, Theorem 8.4 can be extended to the re-
stricted isosceles problem, obtaining the following result.

Theorem 8.6. Let Γpq be the periodic two-dimensional tori of the circular re-
stricted isosceles problem that comes from the periodic orbit of the reduced circular
Sitnikov problem with period T = p2π/q, p, q ∈ N coprime and p > q/2

√
2. Then

Γpq can be continued to two or four families (two for even p and four for odd p) of
periodic two-dimensional tori of the elliptic restricted isosceles problem.

9. Variational equations. The main objective of this work is to continue the
known symmetric periodic orbits of the reduced circular and elliptic Sitnikov problems
to symmetric periodic orbits of the reduced isosceles problem for µ > 0 sufficiently
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small. Those periodic orbits will be continued by using the classical analytic continu-
ation method of Poincaré (for details see [21] or [15]). In order to apply this method
to our problem we must know the solution of the variational equations of the reduced
circular and elliptic Sitnikov problems along the periodic solutions that we want to
continue. In this section we will analyze those variational equations.

Let (r(t), R(t), z(t), Z(t)) be a solution of the reduced circular (e = 0) or elliptic
(0 < e < 1) Sitnikov problem

ṙ = R, Ṙ =
1− e2

16 r3
− 1

8 r2
, ż = Z, Ż = − z

(z2 + r2)3/2
,(9.1)

with initial conditions r(0) = r0 = (1 ± e)/2, R(0) = R0 = 0, z(0) = z0, Z(0) = Z0.
In particular, (r(t), R(t)) is a circular or elliptic solution of the Kepler problem

ṙ = R , Ṙ =
1− e2

16 r3
− 1

8 r2
;(9.2)

and (z(t), Z(t)) is a solution of the circular or elliptic Sitnikov problem

ż = Z , Ż = − z

(z2 + r2(t))3/2
(9.3)

(see sections 7 and 8).
The variational equations of system (9.1) along the solution curve (r(t), R(t), z(t),

Z(t)) are given by the matrix differential equation

d

dt
A = B(t)A,(9.4)

with initial condition A(0) = I (the 4× 4 identity matrix), where

A =

(
A1 A2

A3 A4

)
, B(t) =




0 1 0 0
b1(t) 0 0 0
0 0 0 1

b2(t) 0 b3(t) 0


 ,

with A1, A2, A3, and A4 given by


∂r

∂r0

∂r

∂R0

∂R

∂r0

∂R

∂R0


 ,




∂r

∂z0

∂r

∂Z0

∂R

∂z0

∂R

∂Z0


 ,




∂z

∂r0

∂z

∂R0

∂Z

∂r0

∂Z

∂R0


 , and




∂z

∂z0

∂z

∂Z0

∂Z

∂z0

∂Z

∂Z0


 ,

respectively, and

b1(t) = −3(1− e2)

16 r4(t)
+

1

4 r3(t)
, b2(t) =

3 r(t) z(t)

(z2(t) + r2(t))5/2
, b3(t) =

2 z2(t)− r2(t)

(z2(t) + r2(t))5/2
.

If we denote q1 = r0 , q2 = R0 , q3 = z0, and q4 = Z0 system (9.4) can be written
like the linear system of differential equations,


d

dt

(
∂r

∂qi

)
=
∂R

∂qi
,

d

dt

(
∂R

∂qi

)
=

(
−3(1− e2)

16 r4(t)
+

1

4 r3(t)

)
∂r

∂qi
,

(9.5)
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d

dt

(
∂z

∂qi

)
=
∂Z

∂qi
,

d

dt

(
∂Z

∂qi

)
=

3 r(t)z(t)

(z2(t) + r2(t))5/2
∂r

∂qi
+

2 z2(t)− r2(t)

(z2(t) + r2(t))5/2
∂z

∂qi
,

(9.6)

with initial conditions

∂r

∂qi
(0) = δ1,i ,

∂R

∂qi
(0) = δ2,i ,

∂z

∂qi
(0) = δ3,i ,

∂Z

∂qi
(0) = δ4,i ,

where i = 1, . . . , 4, δi,j = 1 if i = j and δi,j = 0 if i �= j.
Since equations (9.5) do not depend on ∂z/∂qi and ∂Z/∂qi, they can be solved

separately. Thus, the derivatives ∂r/∂r0, ∂r/∂R0, ∂R/∂r0, and ∂R/∂R0 are given
by the solution of the matrix differential equation

d

dt
A1 =


 0 1

−3(1− e2)

16 r4(t)
+

1

4 r3(t)
0


A1 ,(9.7)

with initial condition A1(0) = I (the 2 × 2 identity matrix); that is, they are given
by the solution of the variational equations of the Kepler problem (9.2) along the
solution curve (r(t), R(t)).

On the other hand,

∂r

∂z0
(t) = 0 ,

∂R

∂z0
(t) = 0 ,

∂r

∂Z0
(t) = 0 ,

∂R

∂Z0
(t) = 0,(9.8)

because the first two equations of (9.1) do not depend on z and Z; consequently
changes on the initial conditions z0 and Z0 do not affect the solution (r(t), R(t)).

By (9.6) and (9.8), the derivatives ∂z/∂z0 , ∂z/∂Z0 , ∂Z/∂z0, and ∂Z/∂Z0 are
given by the solution of the matrix differential equation

d

dt
A4 =


 0 1

− 2 z2(t)− r2(t)

(z2(t) + r2(t))5/2
0


A4,(9.9)

with initial condition A4(0) = I (the 2× 2 identity matrix); that is, they are given by
the solution of the variational equations of the circular or elliptic Sitnikov problem
(9.3) along the solution curve (z(t), Z(t)).

We note that we do not know an exact expression for the symmetric periodic
solutions of the nonautonomous elliptic Sitnikov problem, and thus their variational
equations cannot be solved explicitly. However, since the eccentricity e is sufficiently
small, the solution of these variational equations may be expressed as a power series
of the eccentricity e. We have computed analytically the terms of zero order in e.
They are given by the variational equations of the circular Sitnikov problem.

Finally the derivatives ∂z/∂r0, ∂z/∂R0, ∂Z/∂r0, and ∂Z/∂R0 are obtained by
solving the nonhomogeneous linear system of differential equations that comes from
replacing in (9.6) ∂r/∂qi and ∂R/∂qi, i = 1, 2, by the solutions (∂r/∂qi)(t) and
(∂R/∂qi)(t) of the variational equations of the Kepler problem (9.2) along the so-
lution curve (r(t), R(t)). If we know a fundamental matrix Φ(t) of the variational
equations of the circular or elliptic Sitnikov problem (9.3) along the solution curve
(z(t), Z(t)) (i.e., a fundamental matrix of the homogeneous system), then we can solve
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the nonhomogeneous one using the method of variation of constants (see, for instance,
[11, p. 81]). Thus, for i = 1, 2, we have that


∂z

∂qi
(t)

∂Z

∂qi
(t)


 = Φ(t)

∫ t

0

Φ−1(s)




0

3 r(s)z(s)

(z2(s) + r2(s))5/2
∂r

∂qi
(s)


 ds.

In order to compute the solution of the variational equations of the Kepler problem
(9.2), for 0 � e < 1, and of the circular Sitnikov problem (9.3) with r(t) = 1/2, we
could use a theorem of Diliberto [10] on the integration of the homogeneous variational
equations of a plane autonomous differential system in terms of geometric quantities
along a given solution curve of the system (see also the paper of Chicone [5], where,
in addition to using the Diliberto theorem to address his problem, he corrects a flaw
in the theorem). But we compute here the solution of those variational equations
directly using a result that appears in [8].

We note that the Kepler problem (9.2) and the circular Sitnikov problem (9.3)
with r(t) = 1/2 can be written like a second order differential equation of the form

ẍ = f(x).(9.10)

The solution of the variational equations of (9.10) along a given nonconstant solution
curve x(t) are given by the following result.

Proposition 9.1. The linear variational equations of (9.10) along a nonconstant
solution curve x(t) have a fundamental matrix Φ(t), satisfying that det(Φ(0)) = 1,
which is given by

Φ(t) =

(
ẋ(t) g(t)

f(x(t)) ġ(t)

)
,

where g(t) = ẋ(t)
∫

dt
ẋ2(t) without the constant due to integration.

Moreover, the solution of these variational equations is given by


∂x

∂x0
(t)

∂x

∂y0
(t)

∂y

∂x0
(t)

∂y

∂y0
(t)


 = Φ(t)Φ−1(0),

where y = ẋ, x0 = x(0), and y0 = ẋ(0).
Proof. See the proof of Proposition B.1 in [8].

9.1. Variational equations of the Kepler problem. We start computing a
fundamental matrix of the variational equations (9.7) of the Kepler problem (9.2) for
0 � e < 1 along an arbitrary elliptic solution (a circular solution if e = 0)

r(t) = 1
2 (1− e cosu).(9.11)

As usual u is the eccentric anomaly which is a function of t via the Kepler’s equation

u− e sinu = t− τ =M,(9.12)

where M is the mean anomaly and τ is the time of pericenter passage. Later on we
will give the solution of those variational equations when (r(t), R(t)) is the solution
with initial conditions r(0) = (1± e)/2 and R = ṙ(0) = 0.
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We note that when e = 0 we cannot apply Proposition 9.1 to solve the variational
equations (9.7) of the Kepler problem (9.2) along the solution curve (9.11), because
r(t) = 1/2 is constant.

Proposition 9.2. When e = 0, the solution of the variational equations (9.7) of
the Kepler problem (9.2) along the solution curve (9.11) is given by

A1(t) =

(
cos t sin t

− sin t cos t

)
.

Proof. The proof follows easily, noting that the solution of the variational equa-
tions (9.7) when e = 0 is a matrix whose columns are the solutions of the differential
equation

d

dt

(
ω1

ω2

)
=

(
0 1

−1 0

)(
ω1

ω2

)
,

with initial conditions ω1(0) = 1, ω2(0) = 0 and ω1(0) = 0, ω2(0) = 1, respec-
tively.

When 0 < e < 1, to solve the variational equations (9.7) of the Kepler problem
(9.2) along the solution curve (9.11), we apply Proposition 9.1. Thus a fundamental
matrix of those variational equations is given by

Φ(t) =


 Φ11(t) Φ12(t)

Φ21(t) Φ22(t)


 =


 ṙ(t) g(t)

1− e2

16 r3(t)
− 1

8 r2(t)
ġ(t)


 ,

where g(t) = ṙ(t)
∫

dt
ṙ2(t) .

In order to simplify our computations we will work with the eccentric anomaly,
u, instead of the real time, t, but keeping in mind that u is a function of t via (9.12)
when it is necessary.

Replacing r(t) by (9.11) in Φ21(t) and simplifying we get that

Φ21(t) = − e2 − e cosu

2(1− e cosu)3
.(9.13)

Differentiating (9.11) with respect to t we obtain

Φ11(t) = ṙ(t) =
dr

du

du

dt
=

e sinu

2(1− e cosu)
.(9.14)

Substituting ṙ(t) into g(t) and working with the variable u instead of the variable t,
we have that

Φ12(t) = g(t) =
2 sinu

e(1− e cosu)

∫
(1− e cosu)3

sin2 u
du

=
2

e(1− e cosu)
[−(1 + 3e2) cosu− 3e2u sinu+ e3 sin2 u+ 3e+ e3].(9.15)

Finally, differentiating g(t) we obtain

Φ22(t) = ġ(t) =
dg

du

du

dt
=

2

e(1− e cosu)3
[sinu(1− 3e2 − 3e4)− 3e2u cosu

+ 5e3 sinu cosu+ 3e3u+ e4 sin3 u].(9.16)
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In short, we have proved the following result.
Proposition 9.3. A fundamental matrix of the variational equations (9.7) of

the Kepler problem (9.2) along the solution curve (9.11), when 0 < e < 1, is Φ(t) =
(Φij(t)), where Φij(t), with i, j = 1, 2, are given by (9.13), (9.14), (9.15), and (9.16),
and u is the eccentric anomaly as a function of t via the Kepler equation (9.12).
Moreover the solution of these variational equations is

A1(t) = Φ(t)Φ
−1(0).(9.17)

Now we compute the solution of the variational equations (9.7) of the Kepler
problem (9.2) along the elliptic solution (r(t), R(t)) with initial conditions r(0) =
(1± e)/2 and R(0) = 0.

Case r(0) = (1− e)/2. Without loss of generality, we can assume that u(0) = 0.
Then the Kepler equation (9.12) becomes

u− e sinu = t.(9.18)

Therefore, by Proposition 9.3, the fundamental matrix Φ(t) evaluated at t = 0 (or,
equivalently, at u = 0) is given by Φ11(0) = Φ22(0) = 0, Φ12(0) = −2(1 − e)2/e,
Φ21(0) = e/(2(1− e)2). Therefore, from (9.17) after doing some computations, we get

∂r

∂r0
(t) =

(1 + 3e2) cosu+ 3e2u sinu− e3 sin2 u− 3e− e3

(1− e)2(1− e cosu)
,

∂r

∂R0
(t) = (1− e)2

sinu

(1− e cosu)
,(9.19)

∂R

∂r0
(t) = − 1

(1− e)2(1− e cosu)3
[(1− 3e2 − 3e4) sinu

− 3e2u cosu+ 5e3 sinu cosu+ 3e3u+ e4 sin3 u],

∂R

∂R0
(t) = (1− e)2

(cosu− e)

(1− e cosu)3
,

and u is the eccentric anomaly as a function of time via (9.18).
Case r(0) = (1 + e)/2. Without loss of generality, we can assume that u(0) = π,

and the Kepler equation (9.12) becomes

u− e sinu = t+ π.(9.20)

By Proposition 9.3, the fundamental matrix Φ(t) evaluated at t = 0, or, equiva-
lently, at u = π, is given by Φ11(0) = 0, Φ12(0) = 2(1+e)

2/e, Φ21(0) = −e/(2(1+e)2),
Φ22(0) = 6eπ/(1 + e)2. Thus, by (9.17) we have

∂r

∂r0
(t) = − (1 + 3e

2) cosu+ 3e2u sinu− e3 sin2 u− 3e− e3 − 3e2π sinu
(1 + e)2(1− e cosu)

,

∂r

∂R0
(t) = −(1 + e)2

sinu

1− e cosu
,(9.21)

∂R

∂r0
(t) =

1

(1 + e)2(1− e cosu)3
[(1− 3e2 − 3e4) sinu− 3e2u cosu

+ 5e3 sinu cosu+ 3e3u+ e4 sin3 u+ 3e2π cosu− 3e3π],
∂R

∂R0
(t) = −(1 + e)2

(cosu− e)

(1− e cosu)3
,

and u is the eccentric anomaly as a function of time via (9.20).
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9.2. Variational equations of the circular Sitnikov problem. The vari-
ational equations (9.9) of the circular Sitnikov problem (9.3) with r = 1/2 along a
given periodic solution curve (z(t), Z(t)) were solved in [8]; therefore we will refer to
the corresponding results in this paper when it is necessary.

9.3. Variational equations of the elliptic Sitnikov problem for small
values of the eccentricity. We consider the elliptic Sitnikov problem (9.3) where
r(t)(1− e cosu)/2 is the elliptic solution of the Kepler problem (9.2), 0 < e < 1, and
u is the eccentric anomaly, which is a function of t via equation (9.12).

If the eccentricity e is small, then r(t) may be expanded in terms of the mean
anomaly M and of the eccentricity e, and r(t) = (1 − e cosM)/2 + O(e2) (see, for
instance, [3]). Thus, system (9.3) may be written as

ż = Z, Ż = − z

(z2 + 1/4)3/2
− e

[
3

4

z

(z2 + 1/4)5/2
cosM

]
+O(e2).(9.22)

Let (z(t), Z(t)) be a periodic solution of system (9.22). If the eccentricity e is
sufficiently small, then by the Poincaré expansion theorem (see, for instance, [20] or
[13]) (z(t), Z(t)) may be expanded in power series of e and

(z(t), Z(t)) = (z(0)(t) + z(1)(t)e+O(e2), Z(0)(t) + Z(1)(t)e+O(e2)),

where (z(0)(t), Z(0)(t)) is a given solution of the circular Sitnikov problem (or, equiv-
alently, a solution of (9.22) for e = 0).

We analyze here the solution of the variational equations of the elliptic Sitnikov
problem (9.3) along the solution curve (z(t), Z(t)) for e > 0 sufficiently small. These
variational equations are given by the matrix differential equation

d

dt
A4 =

(
0 1

b(t) 0

)
A4,

with initial condition A4(0) = I (the 2× 2 identity matrix), where

b(t) =
2z2(t)− 1/4

(z2(t) + 1/4)5/2
+ e

[
3

4

4z2(t)− 1/4
(z2(t) + 1/4)7/2

cosM

]
+O(e2)

=
2z(0)

2(t)− 1/4
(z(0)

2(t) + 1/4)5/2
+ eF (t) +O(e2),

and

F (t) =
−6z(0)

3(t)z(1)(t) + 9z(0)(t)z(1)(t)/4 + 3 cosM(4z(0)
2(t)− 1/4)/4

(z(0)
2(t) + 1/4)7/2

.

Thus the derivatives (∂z/∂z0, ∂Z/∂z0) and (∂z/∂Z0, ∂Z/∂Z0) are given by the solu-
tion of system

dx

dt
= y,

dy

dt
=

(
2z(0)

2(t)− 1/4
(z(0)

2(t) + 1/4)5/2
+ F (t)e+O(e2)

)
x,

with initial conditions x(0) = 1, y(0) = 0 and x(0) = 0, y(0) = 1, respectively. By the
Poincaré expansion theorem this solution may be expanded in power series of e and


∂z

∂z0
(t)

∂z

∂Z0
(t)

∂Z

∂z0
(t)

∂Z

∂Z0
(t)


 =




∞∑
n=0

x1(n)(t)e
n

∞∑
n=0

x2(n)(t)e
n

∞∑
n=0

y1(n)(t)e
n

∞∑
n=0

y2(n)(t)e
n


 ,(9.23)
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where (
x1(0)(t)

y1(0)(t)

x2(0)(t)

y2(0)(t)
) is the solution of the variational equations (9.9) of the circular

Sitnikov problem along the solution curve (z(0)(t), Z(0)(t)) and


 x1(n)(t) x2(n)(t)

y1(n)(t) y2(n)(t)


 =




∂n

∂en

(
∂z

∂z0

)
(t)

∣∣∣∣
e=0

∂n

∂en

(
∂z

∂Z0

)
(t)

∣∣∣∣
e=0

∂n

∂en

(
∂Z

∂z0

)
(t)

∣∣∣∣
e=0

∂n

∂en

(
∂Z

∂Z0

)
(t)

∣∣∣∣
e=0


 .

We remark that the solution of the variational equations (9.9) of the circular
Sitnikov problem along the solution curve (z(0)(t), Z(0)(t)) is unbounded when t goes
to infinity. Therefore, with a fixed value of e, (9.23) is valid only for t less than a
constant which depends on the value of e.

10. Continuation of periodic orbits from the reduced circular Sitnikov
problem to the reduced isosceles problem. In this section we will use the ana-
lytic continuation method of Poincaré to continue the periodic orbits of the reduced
circular Sitnikov problem to symmetric periodic orbits of the reduced isosceles prob-
lem for µ > 0 sufficiently small.

Choosing conveniently the origin of time, the periodic orbit of the reduced circular
Sitnikov problem with period T > π/

√
2 is the orbit associated to the periodic solution

with initial conditions ϕ1/4(t; r0 = 1/2, ṙ0 = 0, z0 = 0, ż0 = ż∗0 =
√
2h+ 4, µ = 0).

Here h ∈ (−2, 0) is the energy of the periodic orbit of period T ∈ (π/
√
2,∞) (see

Theorem 7.5 for details). We remark that the notation used here is the one defined
in section 8.

Since the reduced isosceles problem is autonomous, if we continue using differ-
ent initial conditions defining the same periodic orbit, then we will obtain the same
continued periodic orbits. So, it will be sufficient to continue periodic solutions with
initial conditions ϕ1/4 (t; 1/2, 0, 0, ż

∗
0 , 0) for −2 < h < 0. We note that these periodic

solutions are doubly symmetric, so we can investigate their continuation to periodic
solutions of the reduced isosceles problem for µ > 0 small that are either doubly
symmetric, r-symmetric, or t-symmetric. Here we analyze only the continuation to
doubly symmetric periodic solutions. We have also analyzed the continuation to r-
and to t-symmetric periodic solutions, but these two types of continuation provide
again the same families of doubly symmetric periodic orbits of the reduced isosceles
problem for µ > 0 small (for details see [6]).

By Proposition 5.3(1), if we can find initial conditions r0 and ż0 such that the
solution ϕ1/4(t; r0,0,0, ż0, µ) = (r(t; r0, ż0, µ), ṙ(t; r0, ż0, µ), z(t; r0, ż0, µ), ż(t; r0, ż0, µ))
of the reduced isosceles problem (3.1) with c = 1/4 satisfies

ṙ(τ/4; r0, ż0, µ) = 0, ż(τ/4; r0, ż0, µ) = 0,(10.1)

and ṙ,ż are not simultaneously zero for t ∈ (0, τ/4), then ϕ1/4(t; r0, 0, 0, ż0, µ) is a
doubly symmetric periodic solution with period τ .

Observe that τ = T = T (h), r0 = 1/2, ż0 = ż∗0 =
√
2h+ 4, and µ = 0 is a

solution of (10.1) for each −2 < h < 0. It corresponds to the doubly symmetric
periodic solution ϕ1/4 (t; 1/2, 0, 0, ż

∗
0 , 0) of the reduced circular Sitnikov problem. Our

aim is to find solutions of (10.1) near the known solution τ = T , r0 = 1/2, ż0 = ż∗0 ,
and µ = 0. For this goal, we will apply the implicit function theorem to (10.1) in a
neighborhood of that point, choosing (r0, ż0) as the dependent variables and (µ, τ) as
the independent ones.



PERIODIC ORBITS FOR THE ISOSCELES 3-BODY PROBLEM 1331

We note that there are five other choices for the dependent (independent) vari-
ables. Since we want to continue periodic solutions from µ = 0 to µ > 0 small, we
are interested in solutions of (10.1) depending on µ. So, the other possible choices for
the independent variables are (µ, r0) and (µ, ż0). Since the reduced isosceles problem
possesses the first integral of the energy, we also could be interested in expressing
the solutions of (10.1) as a function of µ and of the energy h̃. We have analyzed
these other possible choices for the independent variables, then saw that the implicit
function theorem using either (µ, r0) or (µ, h̃) as the independent variables cannot be
applied to this problem because the corresponding determinant vanishes. Moreover,
if we apply the implicit function theorem using (µ, ż0) as the independent variables,
we obtain the same solutions of (10.1) as we do using (µ, τ). The difference is that
these solutions are parameterized by (µ, ż0) instead of (µ, τ).

We apply the implicit function theorem to system (10.1) in a neighborhood of
the point τ = T , r0 = 1/2, ż0 = ż∗0 , and µ = 0, choosing µ and τ as the independent
variables. If

det




∂ṙ(τ/4; r0, ż0, µ)

∂r0

∂ṙ(τ/4; r0, ż0, µ)

∂ż0

∂ż(τ/4; r0, ż0, µ)

∂r0

∂ż(τ/4; r0, ż0, µ)

∂ż0



|(µ=0,τ=T,r0=1/2,ż0=ż∗0 )

�= 0,(10.2)

then for each (µ, τ) in a sufficiently small neighborhood of (0, T ), there exist two
unique functions r0 = r0(µ, τ) and ż0 = ż0(µ, τ) such that r0(0, T ) = 1/2, ż0(0, T ) =
ż∗0 , and r0, ż0 satisfy system (10.1). We note that the negative values of µ do not have
physical meaning. Therefore, if condition (10.2) is satisfied, then for each (µ, τ) in a
sufficiently small neighborhood of (0, T ) with µ � 0, ϕ1/4(t; r0(µ, τ), 0, 0, ż0(µ, τ), µ)
is a doubly symmetric periodic solution of the reduced isosceles problem (3.1) for
c = 1/4 with period τ . Since the functions that appear in system (10.1) are analytic,
the functions r0(µ, τ) and ż0(µ, τ) are also analytic and may be expanded in power
series of µ and τ = τ − T in U , a sufficiently small neighborhood of (0, 0); that is,
r0 = 1/2 +O(µ, τ) and ż0 = ż∗0 +O(µ, τ).

Now we compute the value of the determinant (10.2). The derivatives that appear
in this determinant are obtained by evaluating at time t = T/4 the corresponding
solution of the variational equations of the reduced restricted isosceles problem (6.2)
for c = 1/4 along the solution curve ϕ1/4(t; 1/2, 0, 0, ż

∗
0 , 0). These variational equations

were solved in section 9. Then, from (9.8),

∂ṙ(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=T,r0=1/2,ż0=ż∗0 )

= 0.

The value of the derivative ∂ṙ(τ/4; r0, ż0, µ)/∂r0 evaluated at µ = 0, τ = T , r0 = 1/2,
and ż0 = ż∗0 can be obtained by evaluating at t = T/4 the corresponding solution of
the variational equations of the Kepler problem (9.2), with e = 0, along the solution
curve (r(t) = 1/2, ṙ(t) = 0). Thus, by Proposition 9.2, we get

∂ṙ(τ/4; r0, ż0, µ)

∂r0

∣∣∣∣
(µ=0τ=T,r0=1/2,ż0=ż∗0 )

= − sin(T/4),

which is different from zero if and only if the period T is a nonmultiple of 4π.
It remains only to find the value of ∂ż(τ/4; r0, ż0, µ)/∂ż0 at µ = 0, τ = T ,

r0 = 1/2, and ż0 = ż∗0 . This value can be obtained by evaluating at t = T/4 the
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Fig. 10.1. The graphic of g(k).

corresponding solution of the variational equations of the circular Sitnikov problem
along the solution curve (z(t; 1/2, 0, 0, ż∗0 , 0), ż(t; 1/2, 0, 0, ż

∗
0 , 0)). The solution of those

variational equations is given by formula (B.12) of [8]. In particular, the derivative
∂ż(t; r0, ż0, µ)/∂ż0 evaluated at µ = 0, r0 = 1/2, and ż0 = ż∗0 is

(1− 2k2 sn 2ν)2

(2k2 − 1)2k′2
[
− k2 sn 2ν cn ν + dn 2ν cn ν − sn ν dn ν

(
k′2(k2 + 1)ν

− (2k2k′2 + 1)E(ν)− 3k2k′2Π(ν, 2k2) + 4k4k′2
sn ν cn ν dn ν

1− 2k2 sn 2ν

)

+ cn ν

(
k′2(k2 + 1)− (2k2k′2 + 1) dn 2ν − 3k2k′2

1− 2k2 sn 2ν
(10.3)

+ 4k4k′2
( cn 2ν dn 2ν − sn 2ν dn 2ν − k2 sn 2ν cn 2ν)

1− 2k2 sn 2ν

+ 16k6k′2
sn 2ν cn 2ν dn 2ν

(1− 2k2 sn 2ν)2

)]
,

where ν is a function of t via Lemma 7.2(1), k =
√
2 + h/2, and k′ =

√
1− k2.

By Lemmas 7.2(1) and 7.4, we have that ν(0) = 0 and ν(T/4) = K, respec-
tively. Then, by formula 122.02 of [4] we have that sn ν(T/4) = 1, cn ν(T/4) = 0,
dn ν(T/4) = k′, and by formula (A.5) of [8] we have that E(ν(T/4)) = E and
Π(ν(T/4), 2k2) = Π(2k2, k). Therefore,

∂ż(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=T,r0=1/2,ż0=ż∗0 )

= − 1

k′
g(k),

where

g(k) = k′2(k2 + 1)K − (2k2k′2 + 1)E − 3k2k′2Π(2k2, k).(10.4)

Since −2 < h < 0, we have that k ∈ (0,√2/2). We plot the function g(k) in the
range 0 < k <

√
2/2, obtaining Figure 10.1. Therefore g(k) is always different from

zero except when k = 0, but this case is not considered here because it corresponds
to the equilibrium point of the reduced circular Sitnikov problem.

In short, if the period T = T (h) is a nonmultiple of 4π, then determinant (10.2)
is different from zero. This proves the following theorem.
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Theorem 10.1. For any T > π/
√
2, with T �= 4πn for all n ∈ N, the periodic

orbit of the reduced circular Sitnikov problem with period T can be continued to a
2-parameter family (on µ and τ) of doubly symmetric periodic orbits of the reduced
isosceles problem (3.1) with angular momentum c = 1/4, which have period τ for
(µ, τ) in a sufficiently small neighborhood of (0, T ) with µ � 0.

10.1. Remarks. We note that Theorem 10.1 also gives periodic orbits of the
reduced isosceles problem for µ = 0. One might think that this theorem could be
used to find new symmetric periodic orbits of the reduced elliptic Sitnikov problem.
But this is not the case because the symmetric periodic orbits for µ = 0 that we
obtain in this way are periodic orbits of the reduced circular Sitnikov problem, which
are already known. This follows from the fact that the functions r0(µ, τ) and ż0(µ, τ)
are unique and that ϕ1/4(t; r0 = 1/2, 0, 0, ż0 =

√
2h(τ) + 4, 0) is a periodic solution of

the reduced circular Sitnikov problem.
On the other hand, Theorem 10.1 does not allow us to continue the periodic orbits

of the reduced circular Sitnikov problem that have period T that is a multiple of 4π.
Later on, in section 12, we will see that these periodic solutions can be continued
in two steps to two different families of doubly symmetric periodic solutions of the
reduced isosceles problem (3.1) with angular momentum c = 1/4 and µ > 0 sufficiently
small, having period τ near T (see Theorem 12.8). The fact that the continuation is
to two families explains why we have not been able here to continue these periodic
orbits using only the implicit function theorem.

Often when we analyze a problem of continuation of periodic solutions we are
interested in families of periodic solutions with the same period or with the same
energy (these last families are called isoenergetic families). We could also consider
families of periodic solutions with a fixed initial condition. In order to obtain these
kinds of families in our problem we would fix one of the variables (it could be T ,

h̃, r0, or ż0) in system (10.1), and then we would continue, in function of µ, the
known periodic solutions of the reduced circular Sitnikov problem. We have done
that and seen that the periodic solutions of the reduced circular Sitnikov problem
with period T , nonmultiple of 4π, can be continued to a 1-parameter family (on
µ) of doubly symmetric periodic solutions of the reduced isosceles problem having
fixed period T , and another 1-parameter family having fixed initial condition ż0 = ż∗0 .
Clearly these two families are contained in the 2-parameter family of doubly symmetric
periodic orbits of the reduced isosceles problem obtained in Theorem 10.1. Finally,
the continuation fixing either the initial condition r0 or the energy h̃ is not possible
because the corresponding determinants vanish.

Theorem 10.1 is improved by the following result.
Theorem 10.2. For any interval [T1, T2] with T1 > π/

√
2 and such that 4πn /∈

[T1, T2] for all n ∈ N, there exist µ0 > 0 and two unique analytic functions r0(µ, τ)
and ż0(µ, τ), defined for all µ ∈ [0, µ0) and τ ∈ [T1, T2], such that ϕ1/4(t; r0(µ, τ), 0, 0,
ż0(µ, τ), µ) is a double symmetric periodic solution, with period τ , of the reduced
isosceles problem (3.1) with angular momentum c = 1/4. Moreover r0(0, τ) = 1/2
and ż0(0, τ) =

√
2h(τ) + 4, where h(τ) is the value of the energy of the periodic orbit

of the circular Sitnikov problem having period τ .
Proof. Fixed τ∗ ∈ [T1, T2], the implicit function theorem assures the existence

of two unique analytic functions r0(µ, τ) and ż0(µ, τ) for (µ, τ) in a sufficiently small
neighborhood of (0, τ∗). Due to the compactness of [T1, T2] and the uniqueness of
r0(µ, τ) and ż0(µ, τ), we can find µ0 > 0 such that, for 0 � µ < µ0, these functions
are defined for all τ∗ ∈ [T1, T2], which proves the result.
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11. Continuation of symmetric periodic orbits from the reduced ellip-
tic Sitnikov problem to the reduced isosceles problem. In this section we
will continue the known symmetric periodic solutions of the reduced elliptic Sitnikov
problem with eccentricity e (meaning the symmetric periodic solutions given in sec-
tion 8) to symmetric periodic solutions of the reduced isosceles problem with c = ce
and µ > 0 sufficiently small. In particular we will prove the following result.

Theorem 11.1. Let γe0 be a symmetric periodic orbit of the reduced elliptic
Sitnikov problem with eccentricity e0 given by Theorems 8.2 or 8.3 that has period τ� =
2πp = qT for fixed values of p, q ∈ N coprime with p > q/(2

√
2). If the eccentricity

e0 is sufficiently small, then γe0 can be continued to a 2-parameter family (on µ and
τ) of symmetric periodic orbits of the reduced isosceles problem (3.1) with angular
momentum c =

√
1− e02/4 and µ � 0 that have period τ for (µ, τ) in a sufficiently

small neighborhood of (0, τ�). Moreover the continued periodic orbits satisfy the same
symmetry as the initial orbit γe0 .

Apart from the symmetric periodic orbits of the reduced elliptic Sitnikov problem
given by Theorems 8.2 and 8.3, we know the existence of infinitely many symmetric
periodic orbits of the reduced elliptic Sitnikov problem for all 0 < e < 1 (see Propo-
sitions 12 and 15 in [7]); unfortunately we do not know analytical expressions for
their initial conditions. Nevertheless we will give sufficient conditions in order to con-
tinue an arbitrary symmetric periodic orbit of the reduced elliptic Sitnikov problem to
symmetric periodic orbits of the reduced isosceles problem for µ > 0 sufficiently small.

We start analyzing the continuation of doubly symmetric periodic orbits of the
reduced elliptic Sitnikov problem, after which we will analyze the continuation of r-
and t-symmetric periodic orbits.

Choosing conveniently the origin of time, the symmetric periodic orbits of the
reduced elliptic Sitnikov problem can be seen as the orbits associated to symmetric
periodic solutions with initial conditions either ϕce(t; r0 = r�0 = (1±e)/2, ṙ0 = 0, z0 =
0, ż0 = ż�0 , µ = 0) or ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 , ż0 = 0, µ = 0). So,
we will study only the continuation of symmetric periodic solutions of these types.
Of course, if we continue different initial conditions defining the same periodic orbit,
then we will obtain the same periodic orbit of the reduced isosceles problem.

11.1. Continuation of doubly symmetric periodic solutions. As in section
10, by Proposition 5.3(1), the solution ϕce(t; r0, 0, 0, ż0, µ)=(r(t; r0, ż0, µ), ṙ(t; r0, ż0, µ),
z(t; r0, ż0, µ), ż(t; r0, ż0, µ)) is a doubly symmetric periodic solution of the reduced
isosceles problem (3.1) with c = ce having period τ if it satisfies

ṙ(τ/4; r0, ż0, µ) = 0, ż(τ/4; r0, ż0, µ) = 0,(11.1)

and ṙ, ż are not simultaneously zero for t ∈ (0, τ/4).
Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be a doubly

symmetric periodic solution of the reduced elliptic Sitnikov problem for a fixed 0 <
e < 1 and let τ� = 2πp, with p ∈ N even, be its period. This is equivalent to saying
that τ = τ�, r0 = r�0 , ż0 = ż�0 , and µ = 0 is a solution of system (11.1).

Applying the implicit function theorem to (11.1) in a neighborhood of the point
τ = τ�, r0 = r�0 , ż0 = ż�0 , and µ = 0, and choosing µ and τ as the independent
variables, if

det




∂ṙ(τ/4; r0, ż0, µ)

∂r0

∂ṙ(τ/4; r0, ż0, µ)

∂ż0

∂ż(τ/4; r0, ż0, µ)

∂r0

∂ż(τ/4; r0, ż0, µ)

∂ż0



|(µ=0,τ=τ�,r0=r�0 ,ż0=ż

�
0 )

�= 0,
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then for each (µ, τ = τ − τ�) in a sufficiently small neighborhood Wd of (0, 0) with
µ � 0, we can find two unique analytic functions r0(µ, τ) = r�0+O(µ, τ) and ż0(µ, τ) =
ż�0 +O(µ, τ) such that ϕce(t; r

�
0 +O(µ, τ), 0, 0, ż

�
0 +O(µ, τ), µ) is a doubly symmetric

periodic solution of period τ for the reduced isosceles problem (3.1) for c = ce and
µ � 0 small enough.

The derivatives that appear in this determinant are obtained by evaluating at time
t = τ�/4 the corresponding solution of the variational equations of the reduced re-
stricted isosceles problem (6.2) for c = ce along the solution curve ϕce(t; r

�
0 , 0, 0, ż

�
0 , 0)

with r�0 = (1 ± e)/2. The solution of these variational equations has been studied in
section 9.1.

By (9.8), the derivative ∂ṙ(τ/4; r0, ż0, µ)/∂ż0 evaluated at µ = 0, τ = τ�, r0 = r�0 ,
and ż0 = ż�0 equals zero. The value of the derivative ∂ṙ(τ/4; r0, ż0, µ)/∂r0 evaluated
at µ = 0, τ = τ�, r0 = r�0 , and ż0 = ż�0 can be obtained by evaluating at t = T/4 the
corresponding solution of the variational equations of the Kepler problem (9.2) along
the solution curve (r(t; r�0 , ż

�
0 , 0), ṙ(t; r

�
0 , ż

�
0 , 0)).

If r�0 = (1−e)/2—that is, t = 0 corresponds to the minimum value of r(t; r�0 , ż�0 , 0)—
then from Kepler’s equation (9.18), u(τ�/4) = u(mπ) = mπ. Moreover, since p is
even, p = 2m for some m ∈ N. Therefore, from (9.19),

∂ṙ(τ/4; r0, ż0, µ)

∂r0

∣∣∣∣
(µ=0,τ=τ�,r0= 1−e

2 ,ż0=ż�0 )

=
3e2mπ((−1)m − e)

(1− (−1)me)3(1− e)2
,(11.2)

which is different from zero because e �= 0 and e �= 1.
If r�0 = (1+e)/2—that is, t = 0 corresponds to the maximum value of r(t; r

�
0 , ż

�
0 , 0)—

then from Kepler’s equation (9.20), u(τ�/4) = u(mπ) = (m+ 1)π. Thus by (9.21),

∂ṙ(τ/4; r0, ż0, µ)

∂r0

∣∣∣∣
(µ=0,τ=τ�,r0= 1+e

2 ,ż0=ż�0 )

=
3e2mπ(e− (−1)m+1)

(1− (−1)m+1e)3(1 + e)2
,(11.3)

which is also different from zero. In short, we have proved the following result.
Theorem 11.2. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0)

be a doubly symmetric periodic solution of the reduced elliptic Sitnikov problem for a
fixed 0 < e < 1 and let τ� = 2πp with p ∈ N even be its period. If

∂ż(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż0)

�= 0,(11.4)

then this solution can be analytically continued to a 2-parameter family (on µ and τ)
ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of doubly symmetric
periodic solutions of the reduced isosceles problem, with angular momentum c = ce
and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈ Wd, with Wd a sufficiently small
neighborhood of (0, 0).

11.1.1. Application of Theorem 11.2. Now we apply Theorem 11.2 to con-
tinue the doubly symmetric periodic solutions of the reduced elliptic Sitnikov problem
given by Theorem 8.2. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 =
ż∗0 +O(e), µ = 0), with ż∗0 = ±√

2h+ 4, be one of these periodic solutions for a fixed
e > 0 sufficiently small and fixed p, q ∈ N coprime with p even and p > q/(2

√
2). By

Theorem 11.2, this doubly symmetric periodic solution can be continued to doubly
symmetric periodic solutions of the reduced isosceles problem for µ > 0 if (11.4) holds.
The value of the derivative (11.4) is obtained from the solution, evaluated at t = τ�/4,
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of the variational equations of the elliptic Sitnikov problem (9.3) along the solution
curve (z(t), ż(t)) = (z(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0), ż(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0)).
We note that if the eccentricity e is sufficiently small, then by the Poincaré expansion
theorem, the solution (z(t), ż(t)) may be expanded in power series of ż�0 − ż∗0 and
e. Since ż�0 − ż∗0 = O(e), we have that (z(t), ż(t)) = (z(0)(t) + O(e), ż(0)(t) + O(e)),
where (z(0)(t), ż(0)(t)) is the solution of the circular Sitnikov problem with initial con-
ditions z(0)(0) = 0 and ż(0)(0) = ż∗0 . So, the solution of the variational equations
of the elliptic Sitnikov problem along that solution curve (z(t), ż(t)) is given by the
solution of the variational equations of the reduced circular Sitnikov problem along
the solution curve (z(0)(t), ż(0)(t)) plus terms of at least order one in e (see section

9.3). Since ż∗0 = ±√
2h+ 4, the solution of these last variational equations is given

by formula (B.12) of [8].
We assume that e is small enough so that (9.23) is valid at least for 0 � t � τ�/4.

From formula (B.12) of [8] and (9.23), the derivative ∂ż(t; r0, ż0, µ)/∂ż0 evaluated
at µ = 0, r0 = r�0 , and ż0 = ż�0 is given by (10.3) plus terms of at least order one
in e. On the other hand, from Lemmas 7.2(1) and 7.4, we have that ν(0) = 0 and
ν(τ/4) = qK, respectively. We consider that q = 2l + 1 for some l ∈ N (we note that
q is odd because p is even and p and q are coprime). By formulas 122.02 and 122.04
of [4] we have that sn ν(τ/4) = (−1)l, cn ν(τ/4) = 0, dn ν(τ/4) = k′; moreover by
formula (A.5) of [8] we have that E(ν(τ/4)) = qE and Π(ν(τ/4), 2k2) = qΠ(2k2, k).
Hence

∂ż(τ/4; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż

�
0 )

= − (−1)
lq

k′
g(k) +O(e),

where l ∈ N is such that q = 2l + 1, and g(k) is given by (10.4). Since g(k) is
always different from zero, if the eccentricity e is small enough, then the derivative
∂ż(τ/4; r0, ż0, µ)/∂ż0 evaluated at µ = 0, τ = τ�, r0 = r�0 , and ż0 = ż�0 is different
from zero. Thus we have the following result.

Corollary 11.3. For fixed e > 0 sufficiently small, let ϕce(t; r0 = r�0 = (1 ±
e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 = ±√

2h+ 4+O(e), µ = 0) be one of the doubly symmetric
periodic solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 that
has period τ� = 2πp = qT for given values of p, q ∈ N coprime with p even and
p > q/(2

√
2). Then this solution can be analytically continued to a 2-parameter family

(on µ and τ) ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of doubly
symmetric periodic solutions of the reduced isosceles problem, with angular momentum
c = ce and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈Wd, with Wd a sufficiently
small neighborhood of (0, 0).

11.2. Continuation of r-symmetric periodic solutions. By Proposition 5.1,
ϕce(t; r0, 0, 0, ż0, µ) is an r-symmetric periodic solution of the reduced isosceles prob-
lem (3.1) with c = ce having period τ if it satisfies

ṙ(τ/2; r0, ż0, µ) = 0 , z(τ/2; r0, ż0, µ) = 0,(11.5)

and ṙ, z are not simultaneously zero for t ∈ (0, τ/2).
Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be an r-symmetric

periodic solution of the reduced elliptic Sitnikov problem for a fixed 0 < e < 1 and
let τ� = 2πp with p ∈ N be its period. Or, equivalently, let τ = τ�, r0 = r�0 , ż0 = ż�0 ,
and µ = 0 be a solution of system (11.5). Applying the implicit function theorem to
system (11.5) in a neighborhood of that solution, choosing µ and τ as the independent
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variables, if

det




∂ṙ(τ/2; r0, ż0, µ)

∂r0

∂ṙ(τ/2; r0, ż0, µ)

∂ż0

∂z(τ/2; r0, ż0, µ)

∂r0

∂z(τ/2; r0, ż0, µ)

∂ż0



|(µ=0,τ=τ�,r0=r�0 ,ż0=ż0)

�= 0,

then for each (µ, τ = τ − τ�) in a sufficiently small neighborhood Wr of (0, 0) with
µ � 0, we can find two unique analytic functions r0(µ, τ) = r�0+O(µ, τ) and ż0(µ, τ) =
ż�0+O(µ, τ) such that ϕce(t; r

�
0+O(µ, τ), 0, 0, ż

�
0+O(µ, τ), µ) is an r-symmetric periodic

solution of period τ for the reduced isosceles problem (3.1) for c = ce and µ � 0 small.
The derivatives that appear in this determinant are obtained by evaluating at time

t = τ�/2 the corresponding solution of the variational equations of the reduced re-
stricted isosceles problem (6.2) for c = ce along the solution curve ϕce(t; r

�
0 , 0, 0, ż

�
0 , 0).

Thus from (9.8),

∂ṙ(τ/2; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż

�
0 )

= 0.(11.6)

On the other hand, if r�0 = (1 − e)/2, then from (9.18), u(τ�/2) = u(pπ) = pπ;
and if r�0 = (1+e)/2, then from (9.20), u(τ

�/2) = u(pπ) = (p+1)π. Therefore, taking
p instead of m in (11.2) and (11.3), we have that the derivative ∂ṙ(τ/2; r0, ż0, µ)/∂r0
evaluated at µ = 0, τ = τ�, ż0 = ż�0 , and r0 = (1− e)/2 (respectively, r0 = (1 + e)/2)
is given by

3e2pπ((−1)p − e)

(1− (−1)pe)3(1− e)2

(
respectively,

3e2pπ(e− (−1)p+1)

(1− (−1)p+1e)3(1 + e)2

)
,(11.7)

which is different from zero. In short, we have proved the following result.
Theorem 11.4. Let ϕce(t; r0 = r�0 = (1± e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be

an r-symmetric periodic solution of the reduced elliptic Sitnikov problem for a fixed
0 < e < 1 and let τ� = 2πp with p ∈ N be its period. If

∂z(τ/2; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż

�
0 )

�= 0,(11.8)

then this solution can be analytically continued to a 2-parameter family (on µ and τ)
ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of r-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce and µ � 0,
that have period τ for (µ, τ = τ − τ�) ∈Wr, with Wr a sufficiently small neighborhood
of (0, 0).

11.2.1. Application of Theorem 11.4. Now let ϕce(t; r0 = r�0 = (1 ± e)/2,
ṙ0 = 0, z0 = 0, ż0 = ż�0 = ±√

2h+ 4+O(e), µ = 0) be one of the r-symmetric periodic
solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 for fixed e > 0
small and τ� = 2πp = qT with p, q ∈ N coprime and p > q/(2

√
2). By Theorem 11.4,

the r-symmetric periodic solution ϕce(t; r
�
0 , 0, 0, ż

�
0 , 0) can be continued if (11.8) holds.

The value of the derivative (11.8) is obtained from the solution, evaluated at t = τ�/2,
of the variational equations of the elliptic Sitnikov problem (9.3) along the solution
curve (z(t), ż(t)) = (z(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0), ż(t; r�0 , ż0 = ż�0 = ż∗0 + O(e), 0)).
We have seen that if e is sufficiently small, then the solution of those variational
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equations is given by the solution of the variational equations of the reduced circular
Sitnikov problem along the solution curve (z(0)(t), ż(0)(t)) plus terms of at least order
one in e, where (z(0)(t), ż(0)(t)) is the solution of the circular Sitnikov problem with
initial conditions z(0)(0) = 0, ż(0)(0) = ż∗0 . Proceeding as in the continuation of
doubly symmetric periodic solutions (see section 11.1.1), we can see that

∂z(τ/2; r0, ż0, µ)

∂ż0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,ż0=ż

�
0 )

=
(−1)qq√

2(2k2 − 1)2k′2 g(k) +O(e),

which is different from zero if the eccentricity e is small enough.
In short, if the eccentricity e is sufficiently small, then ϕce(t; r

�
0 , 0, 0, ż

�
0 , 0) can be

continued to a family ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ)
of r-symmetric periodic solutions of the reduced isosceles problem, with angular mo-
mentum c = ce and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈Wr.

We note that if p is even, then ϕce(t; r
�
0 , 0, 0, ż

�
0 , 0) is a doubly symmetric periodic

solution. Thus, if the eccentricity e is sufficiently small, then it can also be continued
to a family ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0 + O(µ, τ), µ) of doubly
symmetric periodic solutions of the reduced isosceles problem, with c = ce and µ � 0,
that have period τ for (µ, τ) ∈ Wd (see Corollary 11.3). Due to the uniqueness of
the functions r0(µ, τ) and ż0(µ, τ) given by the implicit function theorem we have
that if p is even and (µ, τ) ∈ Wd ∩ Wr, then the r-symmetric periodic solutions
ϕce(t; r

�
0 +O(µ, τ), 0, 0, ż�0 +O(µ, τ), µ) are doubly symmetric periodic solutions.

If p is odd, then ϕce(t; r
�
0 , 0, 0, ż

�
0 , 0) is an r-symmetric periodic solution that is

not doubly symmetric because ṙ(τ�/4, r�0 , ż
�
0 , 0) �= 0. So, ṙ(τ/4, r�0 + O(µ, τ), ż�0 +

O(µ, τ), µ) �= 0 for (µ, τ = τ − τ�) in a sufficiently small neighborhood of (0, 0). Con-
sequently the r-symmetric periodic solutions ϕce(t; r

�
0 + O(µ, τ), 0, 0, ż�0 + O(µ, τ), µ)

are not doubly symmetric periodic solutions. In short, we have proved the following
result.

Theorem 11.5. For fixed e > 0 sufficiently small, let ϕce(t; r0 = r�0 = (1 ±
e)/2, ṙ0 = 0, z0 = 0, ż0 = ż�0 = ±√

2h+ 4 + O(e), µ = 0) be one of the r-symmetric
periodic solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 that
has period τ� = 2πp = qT for given values of p, q ∈ N coprime and p > q/(2

√
2).

1. This solution can be continued to a 2-parameter family (on µ and τ) ϕce(t;
r0 = r�0+O(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż�0+O(µ, τ), µ) of r-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce
and µ � 0, that have period τ for (µ, τ = τ − τ�) in a sufficiently small
neighborhood of (0, 0).

2. If p is odd, then the r-symmetric periodic solutions ϕce(t; r
�
0 + O(µ, τ), 0,

0, ż�0 + O(µ, τ), µ) are not doubly symmetric, whereas if p is even, they are
doubly symmetric.

11.3. Continuation of t-symmetric periodic solutions. By Proposition 5.2,
ϕce(t; r0, 0, z0, 0, µ) = (r(t; r0, z0, µ), ṙ(t; r0, z0, µ), z(t; r0, z0, µ), ż(t; r0, z0, µ)) is a t-
symmetric periodic solution of the reduced isosceles problem (3.1), with c = ce having
period τ , if it satisfies

ṙ(τ/2; r0, z0, µ) = 0, ż(τ/2; r0, z0, µ) = 0,(11.9)

and ṙ, ż are not simultaneously zero for t ∈ (0, τ/2).
Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 , ż0 = 0, µ = 0) be a t-symmetric

periodic solution of the reduced elliptic Sitnikov problem for a fixed 0 < e < 1 and let
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τ� = 2πp with p ∈ N be its period. That is, let τ = τ�, r0 = r�0 , z0 = z�0 , and µ = 0 be
a solution of system (11.9). Applying the implicit function theorem to system (11.9)
in a neighborhood of that solution, choosing µ and τ as the independent variables, if

det




∂ṙ(τ/2; r0, z0, µ)

∂r0

∂ṙ(τ/2; r0, z0, µ)

∂z0

∂ż(τ/2; r0, z0, µ)

∂r0

∂ż(τ/2; r0, z0, µ)

∂z0



|(µ=0,τ=τ�,r0=r�0 ,z0=z

�
0 )

�= 0,

then for each (µ, τ = τ − τ�) in a sufficiently small neighborhood Wt of (0, 0) with
µ � 0, we can find two unique analytic functions r0(µ, τ) = r�0+O(µ, τ) and z0(µ, τ) =
z�0+O(µ, τ) such that ϕce(t; r

�
0+O(µ, τ), 0, z

�
0+O(µ, τ), 0, µ) is a t-symmetric periodic

solution of period τ for the reduced isosceles problem (3.1) for c = ce and µ �
0 small enough. The derivatives that appear in this determinant are obtained by
evaluating at time t = τ�/2 the corresponding solutions of the variational equations
of the reduced restricted isosceles problem (6.2) for c = ce along the solution curve
ϕce(t; r

�
0 , 0, z

�
0 , 0, 0). The solution of these variational equations was studied in section

9. Since the first equation of (6.2) does not depend on z and ż, r(t; r0, z0, 0) and
ṙ(t; r0, z0, 0) do not depend on the initial conditions z(0; r0, z0, 0) and ż(0; r0, z0, 0).
So, using the computations made in section 11.2 (see (11.6) and (11.7)) we can prove
the following result.

Theorem 11.6. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 , ż0 = 0, µ = 0)
be a t-symmetric periodic solution of the reduced elliptic Sitnikov problem for a fixed
0 < e < 1 and let τ� = 2πp with p ∈ N be its period. If

∂ż(τ/2; r0, z0, µ)

∂z0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,z0=z

�
0 )

�= 0,(11.10)

then this solution can be analytically continued to a 2-parameter family (on µ and τ)
ϕce(t; r0 = r�0 + O(µ, τ), ṙ0 = 0, z0 = z�0 + O(µ, τ), ż0 = 0, µ) of t-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce and µ � 0,
that have period τ for (µ, τ = τ − τ�) ∈Wt, with Wt a sufficiently small neighborhood
of (0, 0).

11.3.1. Application of Theorem 11.6. Now we apply Theorem 11.6 to con-
tinue the t-symmetric periodic solutions of the reduced elliptic Sitnikov problem given
by Theorem 8.3. Let ϕce(t; r0 = r�0 = (1 ± e)/2, ṙ0 = 0, z0 = z�0 = z∗0 + O(e), ż0 =

0, µ = 0), with z∗0 = ±
√

1
h2 − 1

4 , be one of these periodic solutions for a fixed e > 0
sufficiently small and fixed p, q ∈ N coprime with p > q/(2

√
2). The t-symmetric

periodic solution ϕce(t; r
�
0 , 0, z

�
0 , 0, 0) can be continued if (11.10) holds. Proceeding in

a similar way to that of sections 11.1 and 11.2, we can see that if the eccentricity e is
sufficiently small, then

∂ż(τ/2; r0, ż0, µ)

∂z0

∣∣∣∣
(µ=0,τ=τ�,r0=r�0 ,z0=z

�
0 )

= (−1)q+14
√
2(1− 2k2)2q g(k) +O(e) �= 0.

In short, if the eccentricity e is sufficiently small, then ϕce(t; r
�
0 , 0, z

�
0 , 0, 0) can

be continued to a family ϕce(t; r0 = r�0 +O(µ, τ), ṙ0 = 0, z0 = z�0 +O(µ, τ), ż0 = 0, µ)
of t-symmetric periodic solutions of the reduced isosceles problem, with angular
momentum c = ce and µ � 0, that have period τ for (µ, τ = τ − τ�) ∈ Wt.
Moreover, due to the uniqueness of the functions r0(µ, τ) and z0(µ, τ) given by
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the implicit function theorem we can see that the t-symmetric periodic solutions
ϕce(t; r

�
0 + O(µ, τ), 0, z�0 + O(µ, τ), 0, µ) are doubly symmetric when p is even, and

they are not doubly symmetric when p is odd (see the arguments of section 11.2.1).
Therefore we have proved the following result.

Theorem 11.7. For fixed e > 0 sufficiently small, let ϕce(t; r0 = r�0 = (1 ±
e)/2, ṙ0 = 0, z0 = z�0 = z∗0 + O(e), ż0 = 0, µ = 0), with z∗0 = ±

√
1
h2 − 1

4 , be one of
the t-symmetric periodic solutions of the reduced elliptic Sitnikov problem given by
Theorem 8.3 that has period τ� = 2πp = qT for given values of p, q ∈ N coprime and
p > q/(2

√
2).

1. This solution can be continued to a 2-parameter family (on µ and τ) ϕce(t;
r0 = r�0+O(µ, τ), ṙ0 = 0, z0 = z�0 +O(µ, τ), ż0 = 0, µ) of t-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce
and µ � 0, that have period τ for (µ, τ = τ − τ�) in a sufficiently small
neighborhood of (0, 0).

2. If p is odd, then the t-symmetric periodic solutions ϕce(t; r
�
0+O(µ, τ), 0, z

�
0 +

O(µ, τ), 0, µ) are not doubly symmetric, whereas if p is even, they are doubly
symmetric.

11.4. Remarks. In Theorems 11.5 and 11.7, we continued eight periodic solu-

tions of the reduced elliptic Sitnikov problem: ϕce(t; r0 = r�0 =
(1±e)

2 , ṙ0 = 0, z0 =

0, ż0 = ±√
2h+ 4+O(e), µ = 0) and ϕce(t; r0 = r�0 =

(1±e)
2 , ṙ0 = 0, z0 = ±

√
1
h2 − 1

4 +
O(e), ż0 = 0, µ = 0). But not all eight periodic solutions give different periodic or-
bits of the reduced elliptic Sitnikov problem (see Theorem 8.4). Since the reduced
isosceles problem is an autonomous system, if we continue different periodic solutions
that define the same periodic orbit, then we will obtain the same periodic orbit of
the reduced isosceles problem. Therefore, Corollary 11.3 and Theorems 11.5 and 11.7
prove Theorem 11.1.

We note that in order to continue the symmetric periodic solutions of the reduced
elliptic Sitnikov problem, we applied the implicit function theorem, choosing µ and τ
as the independent variables. As happened in the continuation of periodic solutions
from the reduced circular Sitnikov problem (see section 10), there are other possible
choices for the independent variables. These other possible choices are (µ, r0), (µ, ż0),

and (µ, h̃) (respectively, (µ, r0), (µ, z0), (µ, h̃)) when the starting initial condition

that we continue is r-symmetric (respectively, t-symmetric). Here h̃ is the energy of
the periodic solution. We have analyzed these choices for the independent variables,
but we have not obtained new periodic orbits. In particular, we have seen that the
determinant that we must evaluate when we use (µ, ż0) (respectively, (µ, z0)) as the
independent variables is more complicated than in the other cases because we do not
know an explicit expression of some of the derivatives.

In particular, we also have analyzed the continuation of the symmetric periodic
solutions of the reduced elliptic Sitnikov problem given by Theorems 8.2 and 8.3
to symmetric periodic solutions of the reduced isosceles problem by fixing either the
period, one of the initial conditions, or the energy. We have seen that if the eccentricity
e is sufficiently small, then these symmetric periodic solutions can be continued to
families of symmetric periodic solutions of the reduced isosceles problem for µ > 0
sufficiently small that have either the same period, the same initial condition r0, or
the same energy h̃ as the initial orbit. We have also evaluated numerically for some
periodic orbits the correspondent determinant when we continue by fixing the initial
condition ż0 (respectively, z0), and we have seen that it is different from zero.
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We note that in order to apply successfully the implicit function theorem it is
very important to choose a good set of independent variables.

12. From reduced circular Sitnikov problem to reduced isosceles prob-
lem in two steps. In section 10 we have continued directly the periodic orbits of
the reduced circular Sitnikov problem with period T �= 4πn for all n ∈ N to doubly
symmetric periodic orbits of the reduced isosceles problem for µ > 0 sufficiently small
having period near T and fixed angular momentum c = 1/4. Now we continue, by
using two steps, the periodic orbits of the reduced circular Sitnikov problem with
rational period T = 2πp/q for all p, q ∈ N coprime and p > q/(2

√
2) to symmetric

periodic orbits of the reduced isosceles problem for µ > 0 sufficiently small having
period near 2πp and fixed angular momentum c = 1/4. First, we continue them to
periodic orbits of the reduced elliptic Sitnikov problem for sufficiently small values
of e, and then we continue the periodic orbits of the reduced elliptic Sitnikov prob-
lem to the reduced isosceles problem for µ > 0 sufficiently small, always having fixed
angular momentum c = 1/4. The main differences between direct continuation and
continuation in two steps are analyzed at the end of this section.

Lemma 12.1. Let ϕ(t) = (r(t), ṙ(t), z(t), ż(t)) be a periodic solution of the reduced
isosceles problem (3.1) with c = ce having initial conditions r(0) = r0, ṙ(0) = 0,
z(0) = z0, ż(0) = ż0 and period τ . If we set α = 1/(1 − e2), r̃(t) = αr(α3/2t),
˙̃r(t) = α−1/2ṙ(α3/2t), z̃(t) = αz(α3/2t), and ˙̃z(t) = α−1/2ż(α3/2t), then γ(t) =

(r̃(t), ˙̃r(t), z̃(t), ˙̃z(t)) is a periodic solution of the reduced isosceles problem (3.1) with

c = 1/4 having initial conditions r̃(0) = αr0, ˙̃r(0) = 0, z̃(0) = αz0, ˙̃z(0) = α−1/2ż0
and period τ̃ = α−3/2τ .

Proof. The proof is an immediate consequence of Proposition 3.1.
Remark 12.2. We note that the period τ̃ = τ̃(e) = τ(1 − e2)3/2 is a decreasing

function in (0, 1), so in this interval the function τ̃(e) has the inverse

e(τ̃) =

√
1−

(
τ̃

τ

)2/3

.

Therefore, the solution γ(t) = (r̃(t), ˙̃r(t), z̃(t), ˙̃z(t)) can be parameterized by the period
τ̃ instead of the eccentricity e.

Let γpq be the periodic orbit of the reduced circular Sitnikov problem with period
T = 2πp/q for given p, q ∈ N coprime with p > q/(2

√
2). Choosing conveniently

the origin of time, γpq can be thought of as the orbit associated to either the so-
lutions ϕ1/4

(
t; r0 = 1/2, ṙ0 = 0, z0 = 0, ż0 = ż∗0 = ±√

2h+ 4, µ = 0
)
or the solutions

ϕ1/4(t; r0 = 1/2, ṙ0 = 0, z0 = z∗0 = ±
√

1
h2 − 1

4 , ż0 = 0, µ = 0), where h is such that
T = T (h) = 2πp/q.

We start analyzing the continuation in two steps of the periodic solutions ϕ1/4(t;
1/2, 0, 0, ż∗0 = ±√

2h+ 4, 0
)
to r-symmetric periodic solutions of the reduced isosceles

problem with c = 1/4 and µ > 0 sufficiently small. Afterward we will analyze the
continuation in two steps to t-symmetric periodic solutions of the periodic solutions

ϕ1/4(t; 1/2, 0, z
∗
0 = ±

√
1
h2 − 1

4 , 0, 0). We note that it is not necessary to consider the
continuation in two steps of the above periodic solutions to doubly symmetric periodic
solutions, because it can be obtained from the continuation of either r- or t-symmetric
periodic solutions having period T = 2πp/q with p even.

By Theorem 8.2, each periodic solution ϕ1/4(t; 1/2, 0, 0, ż
∗
0 = ±√

2h+ 4, 0) can be
continued to two families ϕce(t; r0 = rP0 = (1 − e)/2, ṙ0 = 0, z0 = 0, ż0 = żP0 = ż∗0 +
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O(e), µ = 0) and ϕce(t; r0 = rA0 = (1+e)/2, ṙ0 = 0, z0 = 0, ż0 = żA0 = ż∗0+O(e), µ = 0)
of r-symmetric periodic solutions of the reduced elliptic Sitnikov problem having
period τ� = 2πp = qT for e > 0 sufficiently small. Moreover these two families
are formed by doubly symmetric periodic solutions if p is even, and they are formed
by r-symmetric periodic solutions that are not doubly symmetric if p is odd. Then,
using Lemma 12.1, Theorem 8.2 can be stated as follows.

Theorem 12.3 (reformulation of Theorem 8.2). Let ϕ1/4 (t; r0 = 1/2, ṙ0 = 0,
z0 = 0, ż0 = ż∗0 = ±√

2h+ 4, µ = 0
)
be a periodic solution of the reduced circular Sit-

nikov problem with period T = 2πp/q for given p, q ∈ N coprime and p > q/(2
√
2).

We denote

r̃P0 (e) =
rP0

1− e2
=

1

2(1 + e)
, r̃A0 (e) =

rA0
1− e2

=
1

2(1− e)
,

˙̃z
P

0 (e) =
√
1− e2 żP0 , ˙̃z

A

0 (e) =
√
1− e2 żA0 .

1. The solution ϕ1/4 (t; 1/2, 0, 0, ż
∗
0 , 0) can be continued to two families ϕ1/4(t;

r0 = r̃P0 (e), ṙ0 = 0, z0 = 0, ż0 =
˙̃z
P

0 (e), µ = 0) and ϕ1/4(t; r0 = r̃A0 (e), ṙ0 = 0,

z0 = 0, ż0 = ˙̃z
A

0 (e), µ = 0) of r-symmetric periodic solutions of the reduced
elliptic restricted isosceles problem with angular momentum c = 1/4 having
period τ̃ = 2πp(1− e2)3/2 for e ∈ (0, e) with e sufficiently small.

2. If p is odd, the r-symmetric periodic solutions ϕ1/4(t; r̃
P, A

0 (e), 0, 0, ˙̃z
P, A

0 (e), 0)
are not doubly symmetric, whereas if p is even, then they are doubly sym-
metric.

Let ϕce(t; r0 = r�0 , ṙ0 = 0, z0 = 0, ż0 = ż�0 , µ = 0) be one of the r-symmetric
periodic solutions of the reduced elliptic Sitnikov problem given by Theorem 8.2 for
fixed values of p, q and e > 0 small. If e is sufficiently small, then from Theorem 11.5,
this r-symmetric periodic solution can be continued to a 2-parameter family (on µ
and τ) ϕce(t; r0 = r0(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż0(µ, τ), µ) of r-symmetric periodic
solutions of the reduced isosceles problem, with angular momentum c = ce and µ �
0, that have period τ for (µ, τ) in a sufficiently small neighborhood W of (0, τ�).
Moreover r0(µ, τ) and ż0(µ, τ) are the two unique analytic functions defined in W
such that r0(0, τ

�) = r�0 and ż0(0, τ
�) = ż�0 . We note that, by Lemma 12.1,

ϕ1/4

(
t; r0 = r0 =

r0(µ, τ)

1− e2
, ṙ0 = 0, z0 = 0, ż0 = ż0 =

√
1− e2 ż0(µ, τ), µ

)

is an r-symmetric periodic solution of the reduced isosceles problem, with angular mo-
mentum c = 1/4 and µ � 0, that has period τ = τ(1− e2)3/2. In short, Theorem 11.5
can be stated as follows.

Theorem 12.4 (reformulation of Theorem 11.5). Let ϕ1/4(t; r0 = r̃ P, A0 , ṙ0 = 0,

z0 = 0, ż0 = ˙̃z
P, A

0 , µ = 0) be one of the r-symmetric periodic solutions of the reduced
elliptic restricted isosceles problem given by Theorem 12.3 for fixed e > 0 sufficiently
small and p, q ∈ N coprime with p > q/(2

√
2).

1. This solution can be continued to a 2-parameter family (on µ and τ)
ϕ1/4(t; r0 = r0(µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż0(µ, τ), µ

)
of r-symmetric periodic

solutions of the reduced isosceles problem, with angular momentum c = 1/4
and µ � 0, that have period τ for (µ, τ) in a sufficiently small neighborhood
W of

(
0, 2πp(1− e2)3/2

)
. Moreover r0(µ, τ) and ż0(µ, τ) are the two unique

analytic functions defined in W such that r0
(
0, 2πp(1− e2)3/2

)
= r̃ P, A0 and

ż0

(
0, 2πp(1− e2)3/2

)
= ˙̃z

P, A

0 .
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2. If p is odd, the r-symmetric periodic solutions ϕce(t; r0(µ, τ), 0, 0, ż0(µ, τ), µ)
are not doubly symmetric, whereas if p is even, they are doubly symmetric.

We note that using Remark 12.2, the solutions obtained from Theorems 12.3 and
12.4 can be parameterized by means of the period τ̃ and τ , respectively, instead of
the eccentricity.

Using the period instead of the eccentricity as a parameter, the r-symmetric peri-

odic solutions of the reduced restricted isosceles problem ϕ1/4(t; r̃
P, A

0 (e), 0, 0, ˙̃z
P, A

0 (e), 0)

given by Theorem 12.3 become ϕ1/4(t; r̂
P, A

0 (τ̃), 0, 0, ˙̂z
P, A

0 (τ̃), 0), where r̂ P, A0 (τ̃) =

r̃ P, A0 (e(τ̃)) and ˙̂z
P, A

0 (τ̃) = ˙̃z
P, A

0 (e(τ̃)), with

e(τ̃) =

√
1−

(
τ̃

2πp

)2/3

and τ̃ ∈ (τ̃1, τ̃2) =
(
τ�(1− e2)3/2, τ�

)
for e sufficiently small. On the other hand,

from Theorem 12.4, we have that, for a fixed value of τ̃∗ ∈ (τ̃1, τ̃2), we can find two
unique analytic functions r P, A0 (µ, τ) and ż

P, A

0 (µ, τ) in such a way that ϕ1/4(t; r0 =

r P, A0 (µ, τ), ṙ0 = 0, z0 = 0, ż0 = ż
P, A

0 (µ, τ), µ) is an r-symmetric periodic solution of
the reduced isosceles problem, with angular momentum c = 1/4 and µ � 0, that
has period τ for (µ, τ) in a sufficiently small neighborhood W of (0, τ̃∗). Moreover
r P, A0 (µ, τ) and ż

P, A

0 (µ, τ) are the two unique analytic functions defined in W such

that r P, A0 (0, τ̃∗) = r̂ P, A0 (τ̃∗) and ż
P, A

0 (0, τ̃∗) = ˙̂z
P, A

0 (τ̃∗). In particular, r P, A0 (0, τ̃) =

r̂ P, A0 (τ̃) and ż
P, A

0 (0, τ̃) = ˙̂z
P, A

0 (τ̃) for all (0, τ̃) ∈ W . Then using the compactness
argument of Theorem 10.2 and working again with the parameter e instead of τ̃ ,
Theorem 12.4 can be improved as follows.

Theorem 12.5. For fixed p, q ∈ N coprime with p > q/(2
√
2), for any interval

[e1, e2] with 0 < e1 < e2 < e and e sufficiently small, we can find µ0 > 0 and analytic
functions rP0 (µ, e), ż

P
0 (µ, e), r

A
0 (µ, e), ż

A
0 (µ, e) defined for all µ ∈ [0, µ0) and e ∈

[e1, e2] such that ϕ1/4 (t; r
P
0 (µ, e), 0, 0, ż

P
0 (µ, e), µ) and ϕ1/4 (t; r

A
0 (µ, e), 0, 0, ż

A
0 (µ, e), µ)

are r-symmetric periodic solutions of the reduced isosceles problem (3.1), with angular
momentum c = 1/4, that have period τ = 2πp(1− e2)3/2. Moreover

rP0 (0, e) =
1

2(1 + e)
, żP0 (0, e) =

˙̃z
P

0 (e) , rA0 (0, e) =
1

2(1− e)
, żA0 (0, e) =

˙̃z
A

0 (e) ,

where the functions ˙̃z
P

0 (e) and ˙̃z
A

0 (e) are the ones given by Theorem 12.3.
Moreover if p is even, then the continued periodic solutions are doubly symmetric,

whereas if p is odd, then they are r- but not doubly symmetric.
In short, from Theorems 12.3 and 12.5, we have the following result.
Theorem 12.6. The two periodic solutions of the reduced circular Sitnikov prob-

lem ϕ1/4

(
t; 1/2, 0, 0,±√

2h+ 4, 0
)

having period T = 2πp/q for given p, q ∈ N co-

prime with p > q/(2
√
2) can be continued by two steps to two 2-parameter families

(on µ and e) ϕ1/4 (t; r
P
0 (µ, e), 0, 0, ż

P
0 (µ, e), µ) and ϕ1/4 (t; r

A
0 (µ, e), 0, 0, ż

A
0 (µ, e), µ) of

r-symmetric periodic solutions of the reduced isosceles problem (3.1), with angular
momentum c = 1/4 and µ � 0 sufficiently small, that have period τ = 2πp(1− e2)3/2

for e > 0 sufficiently small. Furthermore if p is even, then the continued periodic
solutions are doubly symmetric, whereas if p is odd, then they are r- but not doubly
symmetric.

Applying to the t-symmetric periodic solutions ϕ1/4(t; 1/2, 0, z
∗
0 = ±

√
1
h2 − 1

4 , 0, 0)
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the arguments that we have used to continue the r-symmetric periodic solutions in
two steps, we obtain the following result.

Theorem 12.7. The two periodic solutions of the reduced circular Sitnikov prob-

lem ϕ1/4(t; 1/2, 0,±
√

1
h2 − 1

4 , 0, 0) having period T = 2πp/q for given p, q ∈ N co-

prime with p > q/(2
√
2) can be continued by two steps to two 2-parameter families

(on µ and e) ϕ1/4 (t; r
P
0 (µ, e), 0, z

P
0 (µ, e), 0, µ) and ϕ1/4 (t; r

A
0 (µ, e), 0, zA0 (µ, e), 0, µ) of

t-symmetric periodic solutions of the reduced isosceles problem (3.1), with angular
momentum c = 1/4 and µ � 0 sufficiently small, that have period τ = 2πp(1− e2)3/2

for e > 0 sufficiently small. Furthermore if p is even, then the continued periodic
solutions are doubly symmetric, whereas if p is odd, then they are t-symmetric but not
doubly symmetric.

By Theorems 12.6 and 12.7 the periodic orbit of the reduced circular Sitnikov
problem with period T = 2πp/q for given p, q ∈ N coprime and p > q/(2

√
2) can

be continued in two steps to eight 2-parameter families (on µ and e) of symmetric
periodic orbits of the reduced isosceles problem (3.1) with angular momentum c = 1/4
and µ � 0 small. But not all eight families of symmetric periodic orbits are different.

Theorem 12.8. Let γpq be the periodic orbit of the reduced circular Sitnikov
problem with period T = 2πp/q for given p, q ∈ N coprime with p > q/(2

√
2).

1. If p is odd, then γpq can be continued by two steps to four 2-parameter families
(on µ and e) of symmetric periodic orbits of the reduced isosceles problem
(3.1), with angular momentum c = 1/4 and µ � 0 sufficiently small, that
have period τ = 2πp(1 − e2)3/2 with e > 0 sufficiently small. Moreover, two
of these families are formed by r-symmetric periodic orbits that are not doubly
symmetric, and the other two are formed by t-symmetric periodic orbits that
are not doubly symmetric.

2. If p is even, then γpq can be continued by two steps to two 2-parameter families
(on µ and e) of doubly symmetric periodic orbits of the reduced isosceles
problem (3.1), with angular momentum c = 1/4 and µ � 0 sufficiently small,
that have period τ = 2πp(1− e2)3/2 with e > 0 sufficiently small.

Proof. From Lemma 12.1, we can see easily that different periodic orbits of the
reduced isosceles problem with c = ce correspond to different periodic orbits of the
reduced isosceles problem with c = 1/4. Thus the proof follows immediately from
Theorems 8.4, 11.1, 12.6, and 12.7.

We remark that the periodic orbits γp1 of the reduced circular Sitnikov problem
with period T = 2πp for some even p ∈ N cannot be continued by direct continuation.
They can only be continued by using two steps. The periodic orbits γpq with q �= 1
and the ones with p odd and q = 1 can be continued in both ways, that is, using
direct continuation and using continuation in two steps. We note that if we use direct
continuation, then γpq can be continued to a family of doubly symmetric periodic
orbits with period near T = 2πp/q. On the other hand, using continuation in two
steps, γpq can be continued to two or four families of symmetric periodic orbits with
period near τ� = 2πp = qT (two families of doubly symmetric periodic orbits when p is
even, and two families of r-symmetric plus two families of t-symmetric periodic orbits
that are not doubly symmetric when p is odd). Therefore if q �= 1, then the periodic
orbits obtained from direct continuation and those obtained from continuation in two
steps are always different, because they have different periods. Moreover, when p
is odd, the orbits obtained from direct continuation are doubly symmetric, whereas
the ones obtained from continuation in two steps are r- and t-symmetric, but not
doubly symmetric. Therefore when p is odd and q = 1 the direct continuation and the
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continuation in two steps also give different periodic orbits. Finally the periodic orbits
of the reduced circular Sitnikov problem with period T = 2πω, where ω > 1/(2

√
2)

is an irrational number, can be continued by direct continuation, but they cannot be
continued in two steps.

13. Summary. The main results about continuation of the periodic orbits of the
reduced circular Sitnikov problem to symmetric periodic orbits of the reduced isosceles
problem for µ > 0 sufficiently small—that is, Theorem 10.1 and Theorem 12.8—are
summarized in Theorem A of the introduction.

In Remark 12.2 we have seen that we can work with the parameter τ = 2πp f(e)
(the period) instead of the eccentricity e. Thus the 2-parameter families of periodic
orbits of the reduced isosceles problem obtained from continuation in two steps of
periodic orbits of the reduced circular Sitnikov problem with period T = 2πp/q for
p, q ∈ N coprime with p > q/(2

√
2) can be parameterized by means of µ and τ instead

of µ and e. This means that Theorem A of the introduction can be stated using µ
and τ as parameters instead of µ and e.

Next we give the extension of Theorem A to the full isosceles problem (see section
4 for more details about the relationship between the periodic orbits of the reduced
isosceles problem and the orbits of the full isosceles problem).

Let ΠT denote the two-dimensional invariant torus of the restricted isosceles prob-
lem that comes from a periodic orbit of the reduced circular Sitnikov problem with
period T . Then we have the following result.

Theorem 13.1. The torus of the circular restricted isosceles problem ΠT with
T > π/

√
2 can be continued to the following families of two-dimensional tori of the

isosceles problem with µ > 0 sufficiently small. These tori are filled with either periodic
or quasi-periodic orbits:

1. Case T = 2πω with ω > 1/(2
√
2) an irrational number.

(a) ΠT can be continued directly to one 2-parameter family (on µ and τ with
τ sufficiently close to T ) of two-dimensional tori.

2. Case T = 2πp/q for some p, q ∈ N coprime with p > q/(2
√
2).

(a) p odd:
i. ΠT can be continued directly to one 2-parameter family (on µ and
τ with τ sufficiently close to T ) of two-dimensional tori.

ii. ΠT can be continued by two steps to four 2-parameter families (on
µ and τ with τ sufficiently close to Tq) of two-dimensional tori.

(b) p even and q �= 1:
i. ΠT can be continued directly to one 2-parameter family (on µ and
τ with τ sufficiently close to T ) of two-dimensional tori.

ii. ΠT can be continued by two steps to two 2-parameter families (on µ
and τ with τ sufficiently close to Tq) of two-dimensional tori.

(c) p even and q = 1:
i. ΠT can be continued by two steps to two 2-parameter families (on µ

and τ with τ sufficiently close to Tq) of two-dimensional tori.
By Proposition 7.7, the tori ΠT are filled with periodic orbits when T = p2π/q

for some p, q ∈ N coprime with p > q/(2
√
2); and they are filled with quasi-periodic

orbits when T = 2πω with ω > 1/(2
√
2) an irrational number. So, in particular, we

have continued tori filled with quasi-periodic orbits. The tori of the isosceles problem
for µ > 0 that we have obtained are filled with either periodic or quasi-periodic orbits
of the isosceles problem.

Remember that the phase portrait of the isosceles problem on each angular mo-
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mentum level c with c �= 0 is the same (see Proposition 3.1). Therefore we have
obtained invariant periodic and quasi-periodic two-dimensional tori on each angular
momentum level c �= 0.
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[2] E. Belbruno, J. Llibre, and M. Ollé, On the families of periodic orbits which bifurcate from

the circular Sitnikov motions, Celestial Mech. Dynam. Astronom., 60 (1994), pp. 99–129.
[3] D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New

York, 1961.
[4] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists,

Springer-Verlag, Berlin, 1954.
[5] C. Chicone, Bifurcations of nonlinear oscillations and frequency entrainment near resonance,

SIAM J. Math. Anal., 23 (1992), pp. 1577–1608.
[6] M. Corbera, Periodic and Quasi-periodic Motions for the Spatial Isosceles 3-Body Problem,

Ph.D. thesis, Universitat Autònoma de Barcelona, 1999.
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SYSTEMS OF CONSERVATION LAWS∗
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Abstract. We demonstrate an a posteriori error estimate in the L1 norm for front-tracking
approximate solutions to hyperbolic systems of nonlinear conservation laws. Starting with the L1-
stability result of Bressan, Liu, and Yang, we use their L1-equivalent functional for pairs of front-
tracking approximations and identify the leading order contribution to the numerical error. Our
measure for the error explicitly identifies the local sources of errors within front-tracking approx-
imations. We also show that these local error estimators are necessary and sufficient global error
estimators. We apply the estimate to a new and wider class of front-tracking approximations, which
includes the approximations of Risebro.
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1. Introduction. We present an a posteriori error estimate for front-tracking
approximate solutions to the Cauchy problem for nonlinear systems of conservation
laws in one space dimension,

ut + f(u)x = 0.(1.1)

Our estimate of the difference between an exact and an approximate solution to (1.1)
is called a posteriori because it depends only on the approximate solution, the initial
data, and the flux f . This result extends the L1-stability estimate of Bressan, Liu, and
Yang [6] by explicitly identifying the leading order contribution to the error in front-
tracking approximations. The global error is bounded by local error estimators which
measure the entropy production along discontinuities in the piecewise constant front-
tracking approximations [17]. The front-tracking approximations developed in this
paper generalize a construction of Risebro [22] by allowing some additional flexibility
in the choice of the strengths, speeds, and interactions of its discontinuities.

A posteriori error estimates serve as upper bounds of the error within approxima-
tions and as criteria for local mesh refinement strategies. They are well established
for elliptic and parabolic equations [1], while for hyperbolic equations their study has
been hindered by the lack of stability estimates for most numerical methods. Previ-
ous a posteriori estimates were either for scalar conservation laws, linear systems of
conservation laws, or systems with some stabilizing mechanism. For nonlinear scalar
conservation laws, we mention the estimates of Nessyahu and Tadmor [20], Cockburn
and Gau [7], and Gosse and Makridakis [11]. As we showed in [17], our estimates
restricted to scalar conservation laws coincide with those of Cockburn and Gau but
with a proof fashioned upon Keyfitz’s L1-stability result [14]. One popular approach
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advocated by, among others, Johnson [13] and Süli [24] involves solving an adjoint
problem to characterize the process of error generation and error propagation. The
existence of a solution to the adjoint problem has yet to be established except for
scalar equations [25], and in practice the problem requires stabilizing the original
problem, usually with artificial viscosity. We refer to the monograph edited by Barth
and Deconinck [3] for a recent survey.

Our estimate therefore distinguishes itself as the first rigorous a posteriori error
estimate for nonlinear systems of conservation laws. In [17], our a posteriori error es-
timate is used to construct an adaptive version of front-tracking. This error estimate
is also of interest for numerical methods that involve discontinuous approximations,
like the discontinuous Galerkin finite element method. For those methods, our local
error estimators provide a rigorous basis to estimate the error generated by disconti-
nuities. In terms of the stability theory for conservation laws, this paper provides a
more explicit form of the error estimate and a proof for a new class of front-tracking
approximations. We remark that most of the local estimates needed for this result
have already been described in Bressan’s proof of L1-stability [5]. The most impor-
tant changes are related to our introduction and analysis of waves unique to Risebro’s
front-tracking approximations but not present in the original ε-approximations used
in [5, 6].

The main tool in this work is the L1-equivalent functional Φ(·, ·) of Liu and Yang
[19] defined for pairs of front-tracking approximations of small total variation. Extend-
ing their already a posteriori estimate, we show that the leading order contribution
to the error is a time integral of local error estimators D(x, t) called discrepancies. In
[17], discrepancies are further related to entropy production. If D(u(t)) denotes the
set of positions of discontinuities in u(·, t), then we show that there exists a constant
C such that

Φ
(
u(·, t), v(·, t)) ≤ Φ

(
u(·, 0), v(·, 0))+ C

∫ t

0

( ∑
z∈D(u(s))

⋃
D(v(s))

D(z, s)
)

ds.(1.2)

This can be immediately translated into a bound in the L1 norm. We provide only
those details of the proof that differ from either [5] or [6].

Our presentation and our notation follow the paper by Bressan, Liu, and Yang
[6] and the monograph of Bressan [5]. In section 2.1 we cover preliminaries and give a
brief description of front-tracking approximations. The discrepancy and the Liu–Yang
functional are described in sections 2.2 and 2.3. Assuming a local estimate, we state
and prove our main results in section 3. The proof of the local estimate is given in
section 4 albeit only for the important case of a discontinuity modeling a rarefaction
wave. A complete proof of this a posteriori error estimate may be found in [16]. We
conclude with some remarks in section 5.

2. Preliminaries.

2.1. Front-tracking. Consider a system of n conservation laws

ut + f(u)x = 0,(2.1)

where the Jacobian of the smooth function f has n distinct real eigenvalues λ1(u) <
· · · < λn(u) for u inside some neighborhood of the origin Ω ⊂ R

n. Given initial data
ū : R → Ω we shall say that the bounded measurable function u : R × R

+ → Ω is a
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weak solution of the system (2.1) if u(x, 0) = ū(x) and if∫ ∞

0

∫ ∞

−∞

(
φtu+ φxf(u)

)
dxdt+

∫ ∞

−∞
φ(x, 0)u(x, 0) dx = 0(2.2)

for every smooth φ with compact support in t ≥ 0.
Let r1, . . . , rn be the eigenvectors of Df(u), given as smooth functions of u ∈ Ω.

Define the kth rarefaction curve through the point u− to be the unique solution
Rk(·)(u−) of

d

dσ
Rk(σ)(u

−) = rk
(
Rk(σ)(u

−)
)

and Rk(0)(u
−) = u−.

Given two states u+ and u−, the matrix

A(u+, u−) =
∫ 1

0

Df
(
(1− θ)u− + θu+

)
dθ(2.3)

satisfies the relation

A(u+, u−)(u+ − u−) = f(u+)− f(u−).(2.4)

Define the kth shock curve through u− to be the set of states u+ ≡ Sk(σ)(u
−)

satisfying the Rankine–Hugoniot condition

f(u+)− f(u−) = s(u+ − u−),

and such that s ∈ R is the kth eigenvalue of A(u+, u−). Let sk(u
+, u−) denote the

kth eigenvalue of A(u+, u−).
We say that a family k ∈ {1, . . . , n} is genuinely nonlinear if rk · ∇λk �= 0, and

linearly degenerate if rk · ∇λk = 0. If the kth family is genuinely nonlinear, then the
shock and rarefaction curves can be parameterized to satisfy

d
dσλk

(
Sk(σ)(u)

)
= 1, d

dσλk
(
Rk(σ)(u)

)
= 1,

λk
(
Sk(σ)(u)

)− λk(u) = σ, λk
(
Rk(σ)(u)

)− λk(u) = σ.
(2.5)

We parameterize a linearly degenerate family by arc-length. For a genuinely nonlinear
family k define

Tk(σ)(u
−) =

{
Rk(σ)(u

−), σ ≥ 0,

Sk(σ)(u
−), σ < 0,

(2.6)

and for a linearly degenerate family let Tk(σ)(u
−) = Sk(σ)(u

−). The curve Tk is
smooth for σ �= 0 with two continuous derivatives at σ = 0. In particular, for small σ
the difference between Rk(σ)(u

−) and Sk(σ)(u
−) is third order in σ.

A Riemann problem is an initial value problem for (2.1) consisting of piecewise
constant initial data along the t = 0 axis formed of two constant states u− and u+

separated at the origin. It is well known [18] that if u− and u+ belong to a sufficiently
small neighborhood of the origin in R

n then the Riemann problem has a unique self-
similar solution composed of n+1 constant states ũ0 = u−, ũ1, . . . , ũn = u+ satisfying
ũk = Tk(pk)(ũk−1) for real numbers pk = pk(u

−, u+). The solution is formed of n
self-similar regions where it takes on the values ũk−1, ũk along the boundaries of the
kth region. Each region contains either
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(i) a discontinuity traveling with the Rankine–Hugoniot speed and separating
ũk−1 from

ũk = Sk
(
pk(u

−, u+)
)
(ũk−1),

(ii) or a continuous solution u
(
x/t
)
satisfying λk

(
u(x/t)

)
= x/t and

ũk = Rk
(
pk(u

−, u+)
)
(ũk−1).

A similar result also holds with the curves Tk replaced by the shock curves Sk.
For any two states u− and u+ sufficiently close to the origin, there exists a unique
sequence of shocks of strength q1(u

−, u+), . . . , qn(u
−, u+) satisfying

u+ = Sn
(
qn(u

−, u+)
) ◦ · · · ◦ S1

(
q1(u

−, u+)
)
(u−).(2.7)

The parameters q1(u
−, u+), . . . , qn(u

−, u+) are called the shock coordinates of u−

with respect to u+. For more information on hyperbolic conservation laws one may
consult [5].

We assume that there exists a positive constant d such that

d < inf
{
|li − lj |

∣∣∣i �= j and for k = i, j, lk ∈ λk(Ω), or(2.8)

lk = sk(u, v) ∀u, v ∈ Ω
}
.

Such a number exists if the flux f is strictly hyperbolic over a sufficiently small
neighborhood Ω.

Front-tracking approximations are piecewise constant approximations containing
a finite number of discontinuities. We present an extension of Risebro’s version of
the front-tracking algorithm [22]. Our form of Risebro’s front-tracking algorithm has
weaker restrictions on the speed of the waves, the strength of the rarefactions, and
on the onset of linear approximations to nonlinear interactions. These new aspects of
the front-tracking construction lead to errors that were not seen in the approximate
solutions of Bressan, Liu, and Yang [2, 4, 6]. We begin with a few preliminary defini-
tions which will help to clarify the construction. For convenience, given a function v
of time t and space x let v(t) denote the function of space v(x, ·).

Definition 2.1. A wave in v at time t is a position and an integer (xα, kα) ∈
R × {1, . . . , n} such that the states separating the discontinuity at x = xα, say, v

− =
v(xα−, t), v+ = v(xα+, t), satisfy pkα(v

−, v+) �= 0. In this case, we say that α belongs
to the discontinuity at x = xα and call

(i) kα its characteristic type,
(ii) σα = pkα(v

−, v+) its strength, and
(iii) xα its position.

The set of all waves in v(t) is denoted W(v(t)).
This definition distinguishes between discontinuities, bounded by any two arbi-

trary states, and the components of the solution of the underlying Riemann problem.
In contrast to [6], where all discontinuities are called waves, here each nonzero com-
ponent pk(v

−, v+) of a discontinuity separating v− and v+ corresponds to a different
wave.

Definition 2.2. A wave α is called isolated if it is the only wave located at
xα ∈ R . If a wave belonging to a genuinely nonlinear family satisfies σα < 0, it will
be called a shock wave; otherwise it will be called a rarefaction wave. A wave will be
called linearly degenerate if the family kα is linearly degenerate.
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Let D(v(t)) denote the set of points in space where the approximation v(t) has
discontinuities.

The construction of a front-tracking approximation v for all times begins with the
choice of piecewise constant initial data v(·, 0) with a finite number of discontinuities.
We choose the initial data so that the difference v(·, 0)− v̄ belongs to L1(R) and that
each discontinuity represents one isolated wave α. In this case the states neighboring
a discontinuity at xα, say, v

+ and v−, are related by

v+ = Tkα
(
pkα(v

−, v+)
)
(v−).(2.9)

Each isolated wave α in the initial approximation is propagated forward along xα(t)
in any way that satisfies

ẋα ∈ λkα(Ω).

In a first instance, we attempt to construct v using only isolated waves satisfying
(2.9). Under this constraint, we may use the following approximate Riemann solver.
Consider two isolated waves meeting at time t1 and separated by three consecutive
states of v, namely, vl, vm, and vr. If ṽ0 = vl, ṽ1, . . . , ṽn = vr are the n + 1 states of
the self-similar solution to the Riemann problem for vl and vr, then, for t > t1, we set
v to be a piecewise constant function composed of n regions separated by the states
{ṽi}. In particular,

(i) if ṽk = Sk
(
pk(vl, vr)

)
(ṽk−1), then the states ṽk−1 and ṽk are connected by an

isolated shock wave α traveling at a speed

ẋα ∈ λkα(Ω);(2.10)

(ii) if ṽk = Rk
(
pk(vl, vr)

)
(ṽk−1), then ṽk and ṽk−1 are connected by a finite

number of isolated rarefaction waves α(1), . . . , α(j) of strengths

j∑
i=1

σα(i) = pk(vl, vr),(2.11)

and traveling at speeds

ẋα(i−1) < ẋα(i) and ẋα(i) ∈ λkα(Ω) ∀i.(2.12)

There is considerable flexibility in the application of such a Riemann solver, es-
pecially with respect to the speeds ẋα and the strength of the rarefaction waves.
Unfortunately, without further restrictions on the Riemann solver the approximation
might develop infinitely many discontinuities in a finite amount of time. For this rea-
son, Risebro proposed that for certain interactions this solver be replaced by a second
one. To explain when this must be done, let tk be the time when the kth interaction
occurs and compute

Pk =
∑
α,β

|σα · σβ |,(2.13)

where the sum occurs over pairs of waves colliding at time tk. Risebro showed that
for any positive γ there exists an integer N = N(γ) such that

∀k ≥ N, Pk < γ.(2.14)



1352 M. LAFOREST

The proof of the existence of the time tN follows from the total variation boundedness
of the approximations.

When condition (2.14) is satisfied, the following new solver is used to limit the
number of new discontinuities in the approximation. This second solver does not
generally produce isolated waves. Applying the algorithm inductively, we therefore
suppose that two discontinuities meet at time tN and that the discontinuities contain,
respectively, waves α and β such that ẋα ∈ λkα(Ω) and ẋβ ∈ λkβ (Ω). If kα < kβ and
ṽ0 = vl, ṽ1, . . . , ṽn = vr are the n + 1 states of the exact Riemann solver, then we
pick any integer i between kα and kβ and construct v for time t > tN by using only
the three states ṽ0 = vl, ṽi, and ṽn = ur. The result is two outgoing discontinuities
separated by the state ṽi. The speeds of the outgoing discontinuities are restricted
to the range of the incoming discontinuities λkα(Ω)

⋃
λkβ (Ω). If kα = kβ , only one

outgoing discontinuity is produced with neighboring states vl and vr. In effect, this
algorithm begins with an approximation defined up to some maximal but finite time
t∞, then computes the time tN < t∞ and redefines the approximation at time tN with
the second solver. Using the first solver a new approximation can then be recomputed
up to a new maximal time t′∞ > t∞, and the process is repeated.

After some time, condition (2.14) will always hold and therefore no new discon-
tinuities will be created [22]. Since the system is strictly hyperbolic, eventually all
discontinuities will cross paths and the approximation will consist of a finite number
of discontinuities spreading apart. The approximation will therefore be defined for all
times. This method satisfies the Courant–Friedrichs–Levy condition

|ẋα| ≤ Λ ∀α ∈ W(v(t)),(2.15)

where

Λ = sup
w∈Ω

k=1,... ,n

∣∣λk(w)
∣∣.(2.16)

We summarize the result of Risebro. We say that two waves α, β ∈ W(v(t)) are
approaching if xα < xβ and kα > kβ , or if kα = kβ and at least one of the waves is a
shock. Define the interaction potential to be

Q
(
v(t)

)
=

∑
α approaches β

|σα · σβ |,(2.17)

and consider the functional

V (v(t)) =
∑

α∈W(v(t))

|σα|,(2.18)

equivalent to the total variation norm ||v(t)||TV. Adapting the existence proof of
Glimm [10], Risebro demonstrated the following.

Lemma 2.3. For any γ, there exist positive constants δ1 and K, depending on
the system (2.1) but independent of γ, such that if v is a front-tracking approximation
satisfying

||v(0)||L∞ + ||v(0)||TV < δ1,(2.19)

then it is defined for all t and has values in Ω. Moreover, for this approximation the
functional

V
(
v(t)

)
+KQ

(
v(t)

)
(2.20)
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is decreasing in time.
In the original construction of Risebro, a narrower class of approximations was

considered so that existence results for the initial value problem (2.1) could be achieved.
These so-called ε-approximations [2, 4, 22] depended on a parameter ε controlling the
size of rarefaction waves, errors in wave speeds, the size of the constant γ, and the
approximation of the initial data.

2.2. Residuals and discrepancies. In a global a posteriori estimate, the upper
bound on the error should be measurable in terms of local and computable quantities.
Usually, local error estimators for an approximation v are obtained by evaluating the
residual pointwise

R(v) = vt + f(v)x.(2.21)

For front-tracking approximations, the residual might vanish along rarefaction waves,
even if (2.21) is considered in a weak sense [17], since this quantity only verifies
conservation of v. For this reason, we propose a different error estimator measuring the
rate of growth of the local error in L1. In [17], these error estimators are constructed
as measures of entropy production following Cockburn and Gau [7] and Dafermos [8].

For our purposes, it suffices to define the discrepancy as the pointwise change in
time of the error in the L1 norm measured along the curves Tk. Let v be a front-
tracking approximation with an arbitrary discontinuity located for convenience at the
origin. If the discontinuity is initially traveling at speed ż(0), then define

V (x, t) =

{
v− for x < ż(0)t,

v+ for x ≥ ż(0)t,

and for ξ = x/t the self-similar solution of the Riemann problem Vr(ξ) with initial
data V (·, t). Instead of measuring the distance between V and Vr in phase-space, we
measure the distance in oriented wave coordinates (p̃1(ξ), . . . , p̃n(ξ)), that is, those
satisfying

Vr(ξ) = Tn
(
p̃n(ξ)

) ◦ · · · ◦ T1

(
p̃1(ξ)

)(
V (ξ)

)
for ξ < ż(0),(2.22)

V (ξ) = Tn
(
p̃n(ξ)

) ◦ · · · ◦ T1

(
p̃1(ξ)

)(
Vr(ξ)

)
for ξ ≥ ż(0).

To treat shock waves consistently, their strengths must be measured along the shock
curves Sk both before and after the point ξ = ż(0). This explains why the order in
which we measure the distance between Vr and V must be reversed as we cross the
line ξ = ż(0).

Definition 2.4. Define the discrepancy of the wave α = (xα, kα) to be

Dα(t) =

∫ ∞

−∞
|p̃kα(ξ)| dξ.(2.23)

Let the discrepancy of a discontinuity at (z, t) be the sum of the discrepancies of the
waves {α|xα(t) = z}.

Discrepancies were first introduced by Kružkov [15] and defined in terms of the
one-parameter family of Kružkov entropies. Note that the discrepancy of a disconti-
nuity is equivalent to the quantity∫ ∞

−∞
‖V (ξ)− Vr(ξ)‖ dξ,
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measuring the error in phase-space. The discrepancy (2.23) could also have been
defined as the rate of change of the L1 distance between the V and Vr. By their very
construction, these local error estimators are necessarily global error estimators. In
section 4 we will show that they are also sufficient. The next lemma provides us with
an explicit formula for the discrepancies of waves in front-tracking approximations.
We begin with a definition.

Definition 2.5. Let α = (xα, kα) ∈ W(v(t)) be a wave belonging to a disconti-
nuity at xα, with neighboring states v− and v+. We define the left- and right-hand
states of α to be, respectively,

v−α = Tkα−1

(
pkα−1(v

−, v+)
) ◦ · · · ◦ T1

(
p1(v

−, v+)
)
(v−) and(2.24)

v+
α = Tkα(σα)(v

−
α ).

We mention these states because the discrepancy in fact depends only on v−α , v
+
α ,

and the speed of the discontinuity, although Definition 2.4 emphasizes the dependence
of Dα on the neighboring states v− and v+ of the discontinuity. For a fixed wave α,
this can be seen by constructing

Ṽ (x, t) =

{
v−α for x < ẋα(0)t,

v+
α for x ≥ ẋα(0)t,

and the solution Ṽr to the Riemann problem with initial data Ṽ (0, ·). It is then
straightforward to verify that the integrand p̃kα , originally introduced in (2.22), also
satisfies

Ṽr(ξ) = Tkα
(
p̃kα(ξ)

)(
Ṽ (ξ)

)
for ξ < ẋα(0),(2.25)

Ṽ (ξ) = Tkα
(
p̃kα(ξ)

)(
Ṽr(ξ)

)
for ξ ≥ ẋα(0).

For this reason, when computing discrepancies we will be able to assume that α is an
isolated wave. We now present two lemmas providing us with explicit descriptions of
discrepancies for shocks and rarefactions.

Lemma 2.6. If α ∈ W(v(t)) is a shock wave or a linearly degenerate wave, then

Dα(t) = |σα|
∣∣ẋα − skα(v

−
α , v+

α )
∣∣.(2.26)

If α is a rarefaction wave, then

Dα(t) =

{
1
2

(
λkα(v

−
α )− ẋα

)2
+ 1

2

(
ẋα − λkα(v

+
α )
)2

if ẋα ∈ [λkα(v
−
α ), λkα(v

+
α )],

|σα|
∣∣ẋα − 1

2

(
λkα(v

−
α ) + λkα(v

+
α )
)∣∣, otherwise.

(2.27)

Proof. Suppose that (xα(t), t) = (0, 0) and write v− = v−α , v+ = v+
α . Assume

that α is a shock wave or a linearly degenerate wave and that skα(v
−, v+) < ẋα. The

parameterization (2.5) implies that

p̃kα(ξ) =

{
σα if ξ ∈ [skα(v

−, v+), ẋα],
0, otherwise.

A short calculation of (2.23) then suffices to verify (2.26).
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Suppose now that α is a rarefaction wave. We consider only the case ẋα ∈
[λkα(v

−), λkα(v
+)]. Using again the parameterization (2.5), we find

p̃kα(ξ) =




ξ − λkα(v
−) if ξ ∈ [λkα(v

−), ẋα),
λkα(v

+)− ξ if ξ ∈ [ẋα, λkα(v
+)),

0, otherwise.

The discrepancy can then be evaluated

Dα(t) =

∫ ẋα

λkα (v−)

|ξ − λkα(v
−)| dξ +

∫ λkα (v+)

ẋα

|λkα(v+)− ξ| dξ

=
1

2
(ẋα − λkα(v

−))2 +
1

2
(λkα(v

+)− ẋα)
2.

The other cases are similar.
Lemma 2.7. Assume that α is a rarefaction wave. For any speed ẋα we have

|σα|
∣∣∣ẋα − 1

2

(
λkα(v

−
α ) + λkα(v

+
α )
)∣∣∣ ≤ Dα(t)(2.28)

with equality precisely when ẋα /∈ (λkα(v−α ), λkα(v+
α )
)
. Moreover,

inf
ẋα

Dα(t) =
|σα|2
4

.(2.29)

Proof. The proof is omitted.

2.3. The Liu–Yang functional. Following the succinct presentation of [6], we
construct the functional Φ of Liu and Yang. Let u and v be two front-tracking
approximations and assume that u(0) − v(0) ∈ L1. Since the total variation of both
solutions remains bounded, u(t) − v(t) ∈ L1 for all times t. The distance between
both approximate solutions u(t) and v(t) will be measured in the shock coordinates
(2.7). The shock coordinates will only be used in this context and the time t will be
fixed throughout; therefore we will abbreviate

qk
(
u(x, t), v(x, t)

)
= qk(x).(2.30)

The quantities qk do not represent waves in either approximation, but they do play a
similar role, and for clarity we name them virtual waves.

The functional of Liu and Yang

Φ
(
u(t), v(t)

)
=

n∑
i=1

∫ ∞

−∞
|qi(x)|Wi(x) dx(2.31)

is finite if the Wi are uniformly bounded. It is convenient to require

1 ≤ Wi(x) ≤ 2 ∀x ∈ R,(2.32)

uniformly in time. The weights have the form

Wi(x) = 1 + κ1

(
Ai(x) +Bi(x)

)
+ κ2

(
Q
(
u(t)

)
+Q

(
v(t)

))
,(2.33)
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where the terms Ai and Bi are given below and the constants κ1, κ2 will later be
chosen to satisfy (2.32). Let

Ai(x) =
( ∑
α∈W(u)

⋃W(v)
xα<x, kα>i

+
∑

α∈W(u)
⋃W(v)

xα>x, kα<i

)
|σα|(2.34)

measure the strength of all waves α, kα �= i, which approach the virtual wave qi.
When the ith family is linearly degenerate, set Bi = 0. If the ith family is genuinely
nonlinear, then let

Bi(x) =



(∑

α∈W(u)
xα<x, kα=i

+
∑

α∈W(v)
xα>x, kα=i

)
|σα| if qi(x) < 0,(∑

α∈W(v)
xα<x, kα=i

+
∑

α∈W(u)
xα>x, kα=i

)
|σα| if qi(x) ≥ 0

(2.35)

measure the strength of the waves of the family kα = i which approach qi. Many of
our later arguments will be localized around a specific wave α, and it will therefore be
natural, when it is clear from the context, to suppress the symbol α. For a quantity
G we write

Gα± = lim
x→xα±

G(x).(2.36)

Lemma 2.8. If α ∈ W(v(t)) is an isolated wave, then, for i �= kα,

Wα+
i −Wα−

i =

{
κ1|σα| if i < kα,
−κ1|σα| if i > kα.

(2.37)

If α is a genuinely nonlinear wave, then

Wα+
kα

−Wα−
kα

=

{
κ1|σα| if q−kα and q+

kα
are both positive,

−κ1|σα| if q−kα and q+
kα

are both negative.
(2.38)

Proof. The lemma follows directly from the definition of Φ.
Assuming that κ1 is some known but large constant, the next lemma states that

condition (2.32) can be satisfied. The value of κ1 will be determined later in the proof,
where it will be shown to depend only on the flux f and the domain Ω.

Lemma 2.9. For any fixed value of κ1, there exist δ2 and κ2, depending only
on κ1 and the system (2.1), such that if u and v are front-tracking approximations
satisfying

||u(0)||L∞ + ||u(0)||TV, ||v(0)||L∞ + ||v(0)||TV < δ2,(2.39)

u(0)− v(0) ∈ L1(R,Ω),

then they are defined for all t and have values in Ω. Under these conditions, the
functional Φ exists, condition (2.32) holds, and the weights Wi decrease in time.
Moreover, we have the bound

κ1

(
V
(
u(t)

)
+ V

(
v(t)

))
≤ 1.(2.40)
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Proof. For δ1 and K from Lemma 2.3, and two approximations satisfying (2.19),
both u and v take values in Ω and can be defined for all time. At the cost of possibly
further restricting the size of δ1, we may assume that

(
V
(
u(t)

)
+ V

(
v(t)

))
+K

(
Q
(
u(t)

)
+Q

(
v(t)

)) ≤ 1

κ1
∀t.(2.41)

Both Ai and Bi are sums over subsets of V (u(t)) + V (v(t)), and therefore the decay
of the functional (2.20) implies the decay of Wi(x). Multiply (2.41) by κ1 and add 1
to demonstrate (2.32).

At times when no interactions occur, the functional Φ is smooth in time and the
weights Wi(x) are constant away from the trajectories of the waves. On the other
hand, at a discrete time t0 when an interaction does occur at x0 ∈ R, Lemma 2.9
implies that

lim
t→t0+

Wi(x) ≤ lim
t→t0−

Wi(x), x �= x0.(2.42)

Since the terms Wi decrease during interactions, so does the functional Φ. The main
step will therefore be an analysis of Φ during those times when it is smooth.

3. Main results. In this section we provide the statement and proof of our
main results while assuming certain local estimates. The proof of the required local
estimates is postponed until section 4.

Fix a time t and let u and v be front-tracking approximations satisfying the
conditions of Lemma 2.9. For every x, we define the intermediate states w0(x) ≡
u(x, t), and

wk(x) ≡ Sk
(
qk(x)

) ◦ · · · ◦ S1

(
q1(x)

)(
u(x, t)

)
, k = 1, . . . , n;(3.1)

and to each virtual wave qk connecting wk−1 to wk, we associate a wave speed

sk(x) ≡ sk
(
wk(x), wk−1(x)

)
.(3.2)

Note that we have suppressed the dependence on time. Let D(u(t)) be the set of all
points of discontinuity in the approximation u at time t. As explained in section 2.3,
the functional Φ is discontinuous but decreasing when discontinuities cross paths.
When no interactions occur, Φ is a differentiable function of time. Using the notation
(2.36) we compute the derivative of Φ

d

dt

(
Φ
(
u(t), v(t)

))
=

∑
z∈D(u(t))

⋃
D(v(t))

n∑
k=1

{∣∣qz−k ∣∣W z−
k − ∣∣qz+k ∣∣W z+

k

}
· ż

=
∑

z∈D(u(t))
⋃

D(v(t))

n∑
k=1

{∣∣qz+k ∣∣W z+
k (sz+k − ż)− ∣∣qz−k ∣∣W z−

k (sz−k − ż)
}
.(3.3)

This last identity follows from the observation that qk(x) vanishes at infinity and that
for two successive discontinuities at z < y,∣∣qz+k ∣∣W z+

k sz+k =
∣∣qy−k ∣∣W y−

k sy−k .(3.4)
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Introducing the terms

Ek(z) =
∣∣qz+k ∣∣W z+

k

(
sz+k − ż

)− ∣∣qz−k ∣∣W z−
k

(
sz−k − ż

)
,(3.5)

we may rewrite the derivative (3.3) as

d

dt

(
Φ
(
u(t), v(t)

))
=

∑
z∈D(u(t))

⋃D(v(t))

n∑
k=1

Ek(z).(3.6)

We now present upper bounds for the local quantities Ek(z) which can be com-
puted a posteriori. In the following, O(1) will denote a quantity whose absolute value
satisfies a uniform bound depending only on the system (2.1) and Ω.

Lemma 3.1. Consider the strictly hyperbolic system (2.1) with genuinely non-
linear or linearly degenerate families in a neighborhood Ω of the origin. There exist
positive constants δ, κ1, κ2, depending only on the system (2.1) and Ω, with the fol-
lowing property. For any pair of front-tracking approximations u and v satisfying

||u(0)||L∞ + ||u(0)||TV, ||v(0)||L∞ + ||v(0)||TV < δ,(3.7)

and any position z and time t, we have

n∑
k=1

Ek(z) ≤ O(1)
∑

{α|xα=z}
Dα(t).(3.8)

In contrast to [6], where the local estimate for an ε-approximation is of order
O(1)ε|σα|, we have identified the approximation error and related it to the discrep-
ancies. The local estimates in Bressan [5], which are an improvement over those in
the original paper [6], can be used to demonstrate (3.8) for isolated waves. A new
argument is needed for nonisolated waves. The proof of Lemma 3.1 for isolated and
nonisolated waves is the topic of sections 4.1 and 4.2. Our global a posteriori error
estimate is an immediate consequence of this local estimate.

Theorem 3.2. Under the hypothesis of Lemma 3.1, there exists a constant C,
depending only on the system (2.1) and on Ω, such that at any time t

Φ
(
u(t), v(t)

) ≤ Φ
(
u(0), v(0)

)
+ C

∫ t

0

[ ∑
α∈W(u(s))

⋃
W(v(s))

Dα(s)
]

ds.(3.9)

Proof. The coefficient O(1) in (3.8) is bounded over all waves by some constant
C depending only on (2.1). Replace O(1) by C in inequality (3.8). Use (3.8) in (3.6)
and integrate over time to obtain the final result.

Theorem 3.2 can be translated into a bound in the L1 norm for the difference
between an approximate solution and a weak solution.

Theorem 3.3. Consider the strictly hyperbolic system (2.1) with genuinely non-
linear or linearly degenerate families in a neighborhood Ω of the origin. There exist
positive constants δ and C, depending only on (2.1) and Ω, with the following property.
If u is any front-tracking approximation with u(0) ∈ L1(R,Ω) and v is any weak solu-
tion in L∞([0, t], L1(R,Ω)

)
which is the limit in L1 of a sequence of ε-approximations

and moreover, if both u and v satisfy

||u(0)||TV, ||v(0)||TV < δ,(3.10)
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then we have the estimate

||u(t)− v(t)||L1 ≤ C||u(0)− v(0)||L1 + C

∫ t

0

[ ∑
z∈D(u(s))

Dz(s)
]

ds.(3.11)

Proof. Use Theorem 3.2 with u and vε an ε-approximation. Then replace Φ by
the equivalent L1 norm. Taking the limit as ε → 0 demonstrates the estimate.

4. Local estimates. The goal of this section is to indicate the portions of the
proof of Lemma 3.1 which differ significantly from the proof of the analogous lemmas
in [6] and [5]. The ε-approximations used in the original proof of L1-stability involved
nonisolated waves whose strength was a priori small. Although this was sufficient for
the L1 bound, our local estimates for those waves require a more delicate analysis.
Nonisolated waves are treated in section 4.2. In section 4.1, we demonstrate Lemma
3.1 for isolated waves and essentially repeat the arguments given in [5] with a few
minor changes. For the sake of brevity, we focus on demonstrating the estimate for
genuinely nonlinear rarefaction waves. A complete proof can be found in [16].

4.1. Isolated waves. In this section we prove Lemma 3.1 under the assumption
that α is a isolated rarefaction wave. The proof for this type of wave is sufficient to
indicate the main ideas for shocks and linearly degenerate waves. Nonisolated waves
will be discussed in section 4.2. We assume that the waves under discussion belong
to the approximate solution v, omitting the similar arguments for the waves in u.
Time t and the wave α will be fixed throughout the proof and the subscripts and the
superscripts involving t and α will usually be removed. In particular, our notation
qα±i given in (2.36) will be abbreviated to q±i . The left- and right-hand states of
an isolated rarefaction wave, as given in Definition 2.5, coincide with the left- and
right-sided limits of v at ẋα, here denoted by v− and v+.

We begin with two interaction estimates from Bressan [5], where we have already
restricted our attention to the case of a single isolated rarefaction wave. These two
estimates are slight improvements over the ones presented in [6].

Lemma 4.1. For an isolated rarefaction wave α ∈ W(v(t)), we have

|q+
kα

− q−kα − σα|+
∑
i �=kα

|q+
i − q−i |

= O(1)
(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i �=kα

|q−i |
)
|σα|.

(4.1)

Lemma 4.2. Choose w ∈ Ω, σ, σ′ ∈ R, k ∈ {1, . . . , n}. Define the states and the
wave speeds

w = Sk(σ)(w), s = sk(w,w),
w′ = Sk(σ

′)(w), s′ = sk(w,w′),
w′′ = Sk(σ + σ′)(w), s′′ = sk(w,w′′).

If the family k is genuinely nonlinear, then∣∣(σ + σ′)(s′′ − s′)− σ(s− s′)
∣∣ = O(1)|σσ′| · |σ + σ′|.(4.2)

During the proof of Lemma 3.1 the possibly large value of κ1 will be mitigated
by other factors appearing in the expansions.
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Lemma 4.3. For any positive value of κ1, there exist a positive constant δ3,
depending only on κ1, the system (2.1), and Ω such that if u and v are front-tracking
approximations satisfying

||u(0)||L∞ + ||u(0)||TV, ||v(0)||L∞ + ||v(0)||TV < δ3,(4.3)

then

κ1

n∑
i=1

|qi(x)| ≤ 1 ∀x ∈ R ,(4.4)

κ1|σα| ≤ 1 ∀α ∈ W(v(t)).(4.5)

Proof. The distance
∑

qi(x) is bounded by the sum of the total variation of u
and v measured between x and infinity since both approximations coincide and vanish
there. Using the bound (2.40) completes the proof.

The proof of Lemma 3.1 for isolated rarefaction waves can be derived from the
estimates contained in Chapter 8 of [5]. It suffices to observe that every occurrence in
[5] of a factor ε corresponds to either an error in wave speeds |ẋα − skα(v

−, v+)| or a
bound on |σα|. Inequalities (2.28) and (2.29) can then be used to bound the resulting
quantities by discrepancies. For the reader’s convenience we provide the details for
the important case of a rarefaction wave, since the verification of these facts would
be straightforward but tedious.

Lemma 4.4. Under the assumptions of Lemma 3.1, there exist positive con-
stants δ, κ1, κ2, depending only on the system (2.1) and Ω, such that, for any pair
of front-tracking approximations satisfying (3.7) and any isolated rarefaction wave
α ∈ W(v(t)), we have

n∑
i=1

Ei(α) ≤O(1)Dα(t).(4.6)

Proof. Overall, the proof involves three steps. The first step is a decomposition
of Ei(α), which permits a simplification to the case of a shock with σα > 0. In the
second step, estimates are derived for Ei(α), i �= kα. Finally, we bound the remaining
term Ekα(α). Our goal is to indicate the changes to the original proof in [5] required
to obtain (4.6). For this purpose, it is sufficient to assume that both q−kα and q+

kα
are

positive. Throughout, we also assume that the total variation and the L∞ norms of
the initial data are sufficiently small to guarantee the conclusions of Lemmas 2.9 and
4.2.

We begin by defining the state and the wave speed

v✸ = Skα(σα)(v
−), ẋ✸

α = skα(v
−, v✸).(4.7)

Let q✸
i denote the virtual waves satisfying

v✸ = Sn
(
q✸
n

) ◦ · · · ◦ S1

(
q✸
1

)(
u(xα, t)

)
.(4.8)

Associated to these virtual waves, we have intermediate states w✸
0 = u(xα, t),

w✸
i ≡ Si

(
q✸
i

) ◦ · · · ◦ S1

(
q✸
1

)(
u(xα, t)

)
, i = 1, . . . , n,(4.9)

with speeds

s✸
i = si(w

✸
i , w✸

i−1).(4.10)
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Shock and rarefaction curves are tangent to second order, and so the following iden-
tities hold:

|v✸ − v+| = O(1)|σα|3, |w✸
i − w+

i | = O(1)|σα|3,
|q✸
i − q+

i | = O(1)|σα|3, |s✸
i − s+

i | = O(1)|σα|3.(4.11)

Following Bressan [5], we decompose Ei(α) into one equivalent expression involv-
ing only shock curves and two others measuring the error introduced by changing over
to shock curves.

Ei(α) = W+
i |q+

i |(s+
i − ẋα)−W−

i |q−i |(s−i − ẋα)

= W+
i |q✸

i |(s✸
i − ẋ✸

α)−W−
i |q−i |(s−i − ẋ✸

α)

+
{
W+
i |q✸

i |(s+
i − s✸

i ) +W+
i

(|q+
i | − |q✸

i |
)
(s+
i − ẋ✸

α)
}

+(ẋ✸
α − ẋα)

{
W+
i

(|q+
i | − |q−i |

)
+
(
W+
i −W−

i

)|q−i |}
.
= E′

i(α) + E′′
i (α) + E′′′

i (α).(4.12)

Using estimates (4.11), we can verify that

E′′
i (α) = O(1)|σα|3.(4.13)

Furthermore, this quantity is bounded by the discrepancy since the minimum of the
discrepancy of a rarefaction is second order (2.29). This is carried out below.

E′′
i (α) = O(1)|σα|3 =

[O(1)|σα|3
Dα(t)

]
Dα(t) ≤ O(1)|σα|Dα(t) = O(1)Dα(t).(4.14)

To bound E′′′
i (α), notice that Lemma 2.8 yields

W+
i −W−

i = O(1)κ1|σα|.(4.15)

Recall that, to second order, the shock speeds are the average of the characteristic
velocities of the states neighboring a shock. We also observe that when q+

i q−i > 0,
then ∣∣|q+

i | − |q−i |
∣∣ = |q+

i − q−i | = O(1)|σα|.
With the help of the upper bound (2.28), Lemma 4.3, and the two previous relations
we can estimate the third term in (4.12) as

E′′′
i (α) = O(1)|ẋα − ẋ✸

α ||σα|
≤ O(1)

∣∣∣ẋα − 1

2

(
λkα(v

−) + λkα(v
+)
)∣∣∣|σα|

+O(1)
∣∣∣1
2

(
λkα(v

−) + λkα(v
+)
)− skα(v

−, v+)
∣∣∣|σα|

+O(1)
∣∣∣skα(v−, v+)− ẋ✸

α

∣∣∣|σα|
= O(1)Dα(t) +O(1)|σα|3 = O(1)Dα(t).(4.16)

When q+
i q−i ≤ 0 then both q+

i and q−i must be of the order of σα and the calculation
(4.16) is still applicable. It therefore remains to show that

E′
i(α) ≤ O(1)Dα(t).(4.17)
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Before we can study (4.17) we need a few preliminary estimates. Define the sets
of waves

I =
{
i
∣∣i �= kα, q

+
i , q−i , q✸

i have the same sign
}
,

I ′ =
{
i
∣∣i �= kα, q

+
i , q−i , q✸

i are not all of the same sign
}
.

The virtual waves indexed by I ′ are in some sense smaller than those in I. Combining
identities (4.11) and Lemma 4.1 produces

|q✸
kα − q−kα − σα|+

∑
i �=kα

|q✸
i − q−i |

= O(1)
(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i �=kα

|q−i |
)
|σα|.(4.18)

When i ∈ I ′ and q−i q✸ < 0, this implies that

|q✸
i |+ |q−i | = |q✸

i − q−i | = O(1)
(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i �=kα

|q−i |
)
|σα|.(4.19)

If q−i q✸ ≥ 0, then (4.19) still holds because of (4.11). Apply this identity to each wave
i ∈ I ′ and suppose that the total variation bound (3.7) is small enough to ensure∑

i∈I′
|q−i | ≤ nO(1)|σα|

(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i �=kα

|q−i |
)

≤ 1

2

(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i �=kα

|q−i |
)
.(4.20)

With this last bound, we can check that∑
i �=kα

|q−i | =
∑
i∈I′

|q−i |+
∑
i∈I

|q−i | ≤
(
|σα|2 + |q−kα ||σα + q−kα |

)
+ 2

∑
i∈I

|q−i |.(4.21)

In the remainder of this proof, we will often use this bound to restrict ourselves to
the sum of strengths of waves in I. The next property of the auxiliary waves q✸

i with
i �= kα can be derived from identities (4.18) and (4.21).

q✸
i (s

✸
i − ẋ✸

α)− q−i (s
−
i − ẋ✸

α) = (q✸
i − q−i )(s

✸
i − ẋ✸

α)− q−i (s
−
i − s✸

i )(4.22)

= O(1)
(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.

Finally, we make the observation that if the sign of q✸
kα

is different from the sign of

q−kα , then (4.18) supplies the bound

|q✸
kα | = O(1)

(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.23)

This estimate essentially allows us to replace q✸
kα
, q+

kα
, and q−kα by |σα| when those

three waves are not of the same sign. Under those circumstances the remaining work
would be greatly simplified but no longer illustrative of these techniques. Henceforth,
we assume that the three virtual waves q✸

kα
, q+
kα
, and q−kα are positive.
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Returning to our proof of (4.17) for an isolated rarefaction wave, we distinguish
between two cases, i �= kα and i = kα. To examine the first case, we begin by assuming
that i ∈ I. According to Lemma 2.8,

sign(W+
i −W−

i ) = sign(kα − i) = − sign(s−i − ẋ✸
α).(4.24)

Using this observation, the definition (2.8) of d, and (4.22), we verify that

E′
i(α) =W+

i |q✸
i |(s✸

i − ẋ✸
α)−W−

i |q−i |(s−i − ẋ✸
α)

=
(
W+
i −W−

i

)|q−i |(s−i − ẋ✸
α) +W+

i

{
|q✸
i |(s✸

i − ẋ✸
α)− |q−i |(s−i − ẋ✸

α)
}

=− κ1d|σα||q−i |+O(1)
(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.25)

When i ∈ I ′, expression (4.20) states that estimates for the virtual waves in I ′ involve
only interaction terms, and therefore, from the definition of E′

i(α) in (4.12), it follows
that

E′
i(α) = O(1)

(
|σα|2 + |q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.26)

The third order terms in |σα| are bounded by the discrepancy, as seen in (4.14), and
therefore (4.25) and (4.26) can be combined to obtain∑

i �=kα
E′
i(α) =− κ1d|σα|

∑
i∈I

|q−i |+O(1)Dα(t)

+O(1)
(
|q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.27)

We complete the proof by considering the last case in (4.17) with i = kα. Rewrite
E′
kα
(α) as follows:

E′
kα(α) = W+

kα
|q✸
kα |(s✸

kα − ẋ✸
α)−W−

kα
|q−kα |(s−kα − ẋ✸

α)

=
(
W+
kα

−W−
kα

)|q−kα |(s−kα − ẋ✸
α) +W+

kα

{
|q✸
kα |(s✸

kα − ẋ✸
α)− |q−kα |(s−kα − ẋ✸

α)
}
.(4.28)

Lemma (2.8) states that when the signs of the virtual waves are all positive then the
change in the weight Wkα across the discontinuity is

W+
kα

−W−
kα

= κ1|σα|.(4.29)

Introduce the state and the wave speed

w̃ = Skα(σα)(w
−
kα
) and s̃ = skα(w

−
kα

, w̃).(4.30)

The waves centered at v− and w−
kα

and ending, respectively, at v✸ and w̃ have the
same strength. Their associated shock speeds must therefore be proportional to the
distance separating v− and w−

kα
, namely,

|s̃− ẋ✸
α | = O(1)

∑
i �=kα

|q−i |.(4.31)
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Approximating the shock speeds by the average of the characteristic velocities gener-
ates the second-order errors

s−kα =
1

2

(
λkα(w

−
kα−1) + λkα(w

−
kα
)
)
+O(1)|q−kα |2,(4.32)

s̃ =
1

2

(
λkα(w

−
kα
) + λkα(w̃)

)
+O(1)|σα|2.(4.33)

To the first term in our decomposition (4.28) of E′
kα
(α), we apply the bounds (4.29),

(4.31), and the previous two estimates

(W +
kα

−W−
kα
)|q−kα |(s−kα − ẋ✸

α)

= κ1|σα||q−kα |(s−kα − s̃) + κ1|σα||q−kα |(s̃− ẋ✸
α)

= κ1|σα||q−kα |
1

2

(
λkα(w

−
kα−1)− λkα(w̃)

)
+ O(1)κ1|σα||q−kα |

(
|σα|2 + |q−kα |2

)
+O(1)|σα|

∑
i �=kα

|q−i |.(4.34)

With the help of the parameterization (2.5) for shock curves, we compute that for a
rarefaction α and positive virtual waves

λkα(w
−
kα−1)− λkα(w̃) = −(σα + q−kα).(4.35)

Substituting this identity into (4.34) and using (4.21) result in the estimate

(W+
kα

−W−
kα
)|q−kα |(s−kα − ẋ✸

α) ≤− 1

2
κ1|σα||q−kα ||σα + q−kα |+O(1)Dα(t)

+O(1)
(
|q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.36)

The second term in the decomposition (4.28) of E′
kα
(α) requires the use of an

additional intermediate state. Recall the definition (4.30) of w̃ and introduce

w∗ = Skα(q
−
kα

+ σα)(w
−
kα−1) and s∗ = skα(w

−
kα−1, w

∗).(4.37)

Using the positivity of the virtual waves, we reorganize the second term in (4.28) in
the following manner:

W +
kα

{
|q✸
kα |(s✸

kα − ẋ✸
α)− |q−kα |(s−kα − ẋ✸

α)
}

= W+
kα

{
|q✸
kα − q−kα − σα|(s✸

kα − ẋ✸
α) + |q−kα + σα|(s✸

kα − s∗)

+ |q−kα + σα|(s∗ − s̃) + |q−kα + σα|(s̃− ẋ✸
α)

− |q−kα |(s−kα − s̃)− |q−kα |(s̃− ẋ✸
α)

}

= W+
kα

{
|q−kα + σα|(s∗ − s̃)− |q−kα |(s−kα − s̃)

+ |q✸
kα − q−kα − σα|(s✸

kα − ẋ✸
α)

+ |q−kα + σα|(s✸
kα − s∗)− |σα|(s̃− ẋ✸

α)

}
.(4.38)
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We may ignore the factor W+
kα

because of the bounds (2.32) on Wi. We are then left

with five terms. The expression presented in Lemma 4.2 with w̄ = w−
kα−1, σ = q−kα ,

and σ′ = σα is actually the first two terms in (4.38). Therefore, these terms are of
order

O(1)|σα||q−kα ||σα + q−kα |.(4.39)

The third term in (4.38) is bounded by an interaction term of order

O(1)
(
|q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|+O(1)Dα(t).(4.40)

The fourth term in (4.38) involves the factor

s✸
kα − s∗ =O(1)

∣∣w✸
kα−1 − w−

kα−1

∣∣
=O(1)

(
|q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.41)

From definitions (4.7) and (4.30), it is clear that

|σα||s̃− ẋ✸
α | =O(1)|σα|

∣∣w−
kα

− v−
∣∣

=O(1)|σα|
∑
i �=kα

|q−i |.(4.42)

A bound on the second term in (4.28) can be found be summing the estimates (4.39)–
(4.42). After an additional application of (2.29) and (4.21) to this sum, we conclude
that

W+
kα

{
|q✸
kα |(s✸

kα − ẋ✸
α)− |q−kα |(s−kα − ẋ✸

α)
}

≤O(1)Dα(t) +O(1)
(
|q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.43)

Combining the local estimates (4.36) and (4.43), we have thus demonstrated that

E′
kα(α) ≤− 1

2
κ1|σα||q−kα ||σα + q−kα |+O(1)Dα(t)

+O(1)
(
|q−kα ||σα + q−kα |+

∑
i∈I

|q−i |
)
|σα|.(4.44)

So far, estimates (4.27) and (4.44) provide us with

n∑
i=1

E′
i(α) ≤O(1)Dα(t) +

(O(1)− κ1d
)|σα|∑

i∈I
|q−i |

+

(
O(1)− 1

2
κ1

)
|σα||q−kα ||σα + q−kα |,(4.45)

which is close to our goal of (4.6) since the remaining terms E′′
i and E′′′

i in (4.12)
have already been shown to be of order O(1)|σα|. Recall that O(1) depends on f , Ω,
and the initial data but is independent of u and v. We can now take κ1 sufficiently
large to make the last two terms negative, possibly at the cost of decreasing the total
variation bound (2.39) in Lemma 2.9. The values for δ, κ1, and κ2 in Lemma 2.9 can
therefore be chosen a priori. The final estimate is a posteriori since the discrepancies
depend only on the approximate solutions.
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4.2. Nonisolated waves. In this section, we show that the local estimates of
Lemma 3.1 for discontinuities containing more than one wave can be deduced from
our earlier estimates for isolated waves. In the ε-approximations of [5, 6], nonisolated
waves were weak and did not interact in a consistent manner with other waves. The
estimates of Lemma 2.8 therefore did not hold for these waves and their local estimates
were a consequence of the fact these waves were a priori weak. For our a posteriori
error estimates, we must show that the discrepancy measures the local error even
when it is small. We therefore present a new argument for the nonisolated waves in
Risebro’s front-tracking approximations.

The front-tracking approximations of Risebro give rise to discontinuities contain-
ing more than one wave when wave interactions satisfy condition (2.14). In this case
the approximate Riemann solver limits the number of outgoing discontinuities by
merging n discontinuities, each of which can be identified with an isolated wave, into
two discontinuities, each composed of several waves. To demonstrate the estimate of
Lemma 3.1 for one of these discontinuities, we construct an auxiliary front-tracking
approximation where the discontinuity of the original approximation has been re-
placed locally by n isolated waves. In this way, the original approximation can be
obtained as the limit of a sequence of these auxiliary approximations. The estimates
for the isolated waves of the auxiliary approximations are then also shown to pass to
the limit.

Consider a front-tracking approximation v with a single discontinuity located
at z(t) and containing n waves in W(v(t)) denoted α(1), α(2), . . . , α(n). Assume
that these waves are ordered by the requirement that kα(i) < kα(i+1). It suffices to
demonstrate Lemma 3.1 at a time t0 when discontinuities are not colliding. Therefore,
for any point (z(t0), t0) on the discontinuity but away from a collision we can find an
ε > 0 such that there is only one discontinuity within the rectangle

Bε = [z(t0)− ε, z(t0) + ε]× [t0 − ε, t0 + ε].

If v− and v+ are the neighboring states at z(t), let ṽ0, ṽ1, . . . , ṽn be the n+ 1 states
of the exact Riemann solution of section 2.1. For every ε ≥ 0 construct a family of
smooth and disjoint trajectories τi,ε, i = 1, . . . , n, inside of Bε that satisfy

τi,ε(t) < τi+1,ε(t),(4.46)

τi,ε(t) = z(t), when |t− t0| ≥ ε, and(4.47)

lim
ε→0

τ̇i,ε(t) = ż(t).(4.48)

A family of auxiliary approximations can then be constructed as

Vε(x, t) =

{
ṽi if (x, t) ∈ Bε and τi,ε(t) ≤ x ≤ τi+1,ε(t), i = 1, . . . , n− 1,

v(x, t), otherwise.

(4.49)

In the approximation Vε, the single discontinuity along z originally in v is split inside
Bε into n isolated waves. It is easy to see that Vε is still a front-tracking approximation
and that the results of Lemmas 2.3 and 2.9 continue to hold. In particular, the Liu–
Yang functional is well defined for Vε

Φ
(
u(t), Vε(t)

)
=

n∑
k=1

∫ ∞

−∞
|qk,ε(x)|Wk,ε(x) dx,(4.50)
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where we have used ε to distinguish it from the integrand in the functional

Φ
(
u(t), v(t)

)
=

n∑
k=1

∫ ∞

−∞
|qk(x)|Wk(x) dx.

In general, we will use an additional subscript ε to denote any quantity derived from
(4.50). Recall the notation

qβ±k = lim
x→xβ±

qk(x),(4.51)

which will also be used for any function of x.
Lemma 4.5.

lim
ε→0

n∑
i=1

n∑
k=1

Ek,ε
(
α(i)

)
=

n∑
k=1

Ek(z(t0)).(4.52)

Proof. For α(i) and α(i+1) compare the two contributions from the time deriva-
tive of Φ

(
u(t), Vε(t)

)
:

Ek,ε
(
α(i)

)
=
∣∣qα(i)+
k,ε

∣∣Wα(i)+
k,ε

(
s
α(i)+
k,ε − τ̇i

)
− ∣∣qα(i)−

k,ε

∣∣Wα(i)−
k,ε

(
s
α(i)−
k,ε − τ̇i

)
,(4.53)

Ek,ε
(
α(i+ 1)

)
=
∣∣qα(i+1)+
k,ε

∣∣Wα(i+1)+
k,ε

(
s
α(i+1)+
k,ε − τ̇i+1

)
− ∣∣qα(i+1)−

k,ε

∣∣Wα(i+1)−
k,ε

(
s
α(i+1)−
k,ε − τ̇i+1

)
.(4.54)

Using Definition 2.5,

q
α(i)+
k,ε = qk(u, v

+
α(i)) = qk(u, v

−
α(i+1)) = q

α(i+1)−
k,ε .(4.55)

The same procedure also shows that

s
α(i)+
k,ε = s

α(i+1)−
k,ε and W

α(i)+
k,ε = W

α(i+1)−
k,ε .(4.56)

Moreover, notice that as ε → 0 both τ̇i and τ̇i+1 approach ż. For fixed k, in the limit
as ε → 0, the terms on the left-hand side of (4.52) form a telescoping sum and only
the first and last terms remain. The limit can therefore be reduced to

lim
ε→0

n∑
i=1

n∑
k=1

Ek,ε
(
α(i)

)
= lim
ε→0

n∑
k=1

∣∣qα(n)+
k,ε

∣∣Wα(n)+
k,ε

(
s
α(n)+
k,ε − ż

)

− ∣∣qα(1)−
k,ε

∣∣Wα(1)−
k,ε

(
s
α(1)−
k,ε − ż

)
.(4.57)

For the waves α(1) and α(n) we have

q
α(1)−
k,ε = qk(u, v

−
α(1)) = qk(u, v

−) = qz−k ,(4.58)

q
α(n)+
k,ε = qk(u, v

+
α(n)) = qk(u, v

+) = qz+k ,

and

s
α(1)−
k,ε = sz−k and s

α(n)+
k,ε = sz+k .(4.59)
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We now examine the weight

W
α(1)−
k,ε = 1 + κ1

(
A
α(1)−
k,ε +B

α(1)−
k,ε

)
+ κ2

(
Q(u) +Q(Vε)

)
.(4.60)

We know that Q(Vε) = Q(v) since both approximations contain the same waves. From
the definition of Ai, (2.34), we find

lim
ε→0

A
α(1)−
k,ε = lim

ε→0

( ∑
β∈W(u)

⋃W(Vε)
xβ<τ1, kβ>k

+
∑

β∈W(u)
⋃W(Vε)

xβ≥τ1, kβ<k

)
|σβ |

=Az−k .(4.61)

One can also show that

lim
ε→0

A
α(n)+
k,ε = Az+k .(4.62)

If k is a genuinely nonlinear family, then

lim
ε→0

B
α(1)−
k,ε = lim

ε→0



(∑

β∈W(u)
xβ<τ1, kα=k

+
∑

β∈W(Vε)
xβ≥τ1, kα=k

)
|σβ | if q

α(1)−
k,ε < 0,(∑

β∈W(Vε)
xβ<τ1, kβ=k

+
∑

β∈W(u)
xβ≥τ1, kβ=k

)
|σβ | if q

α(1)−
k,ε > 0

=Bz−
k .(4.63)

In the same manner, one verifies that

lim
ε→0

B
α(n)+
k,ε = Bz+

k .(4.64)

Applying identities (4.58)–(4.64) to (4.57) completes the demonstration of the
lemma.

There is a similar identity relating the sum of the discrepancies of the isolated
waves in Vε to the discrepancies in v.

Lemma 4.6.

lim
ε→0

Dα(i),ε(t0) = Dα(i)(t0).(4.65)

Proof. If α(i) is a shock wave or a linearly degenerate wave, then use formula
(2.26) to compute

lim
ε→0

Dα(i),ε(t0) = lim
ε→0

|σα(i)|
∣∣τ̇i − si(v

−
α(i), v

+
α(i))

∣∣
=|σα(i)|

∣∣ż − si(v
−
α(i), v

+
α(i))

∣∣
=Dα(i)(t0).(4.66)

If α is a rarefaction wave, repeat the calculation with formula (2.27).
We now provide an outline of the proof of Lemma 3.1 for nonisolated waves.
Proof. It suffices to demonstrate this lemma at a point (z0, t0). As noted earlier,

Vε satisfies the same bounds on the total variation as v. Summing the estimates of
Lemma 3.1 for isolated waves, near (z0, t0) we find that

n∑
i=1

n∑
k=1

Ek,ε
(
α(i)

) ≤ O(1)

n∑
i=1

Dα(i),ε(t0).(4.67)

Using the two previous lemmas in the limit as ε → 0 completes the proof.
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5. Concluding remarks. We have demonstrated an a posteriori error estimate
for hyperbolic systems of nonlinear conservation laws which improves on the L1 sta-
bility estimate of Bressan, Liu, and Yang [6]. The unknown factor O(1) in the local
estimate (3.8) of Lemma 3.1 makes our discrepancy an unreliable estimate of the true
error, but it may still be used for mesh refinement [17]. On the other hand, this
a posteriori estimate does show that the entropy produced along discontinuities in
general approximations is an appropriate measure of the error. These error processes
for nonlinear discontinuities were not present in either linear systems [24] or nonlin-
ear systems with dissipation [12, 13]. In systems of conservation laws with smooth
solutions the residual of the approximation has sufficed as a practical error indicator.
For numerical approximations with discontinuities, discrepancies suggest that entropy
production might be an appropriate error indicator. A numerical study of entropy
production in central schemes also supports its potential use as an error indicator [21].

We mention two avenues for future research. In the same way that Schatzman
extended Glimm’s functional to piecewise smooth approximations [23], it might be
possible to use Dafermos’ [8] version of the Liu–Yang functional for such approxi-
mations to demonstrate an a posteriori error estimate. This might lead to an error
estimate involving both the residual in the smooth regions and the discrepancy along
discontinuities. Another interesting possibility might be to demonstrate existence
and stability results for the adjoint problem to nonlinear systems of conservation
laws, thus answering a question raised by Houston and Süli [12]. The existence of the
adjoint problem for a single conservation law has already been examined by Gimse
and Risebro [9].

Acknowledgments. The author thanks James Glimm for having proposed this
problem. His numerous editorial comments during early drafts were appreciated. The
author is also indebted to Tai-Ping Liu for his advice and for his insightful exposition
of his joint work with Tong Yang.
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Abstract. In the two-dimensional case, we consider the problem of determining two convection
coefficients from the Dirichlet to Neumann map. With the theory of generalized analytic functions
which was developed by Bers and Vekua, we can formulate the problem as an inverse problem for a
first order elliptic system. By using the inverse scattering method for the first order elliptic system,
we prove that, in two dimensions, the Dirichlet to Neumann map uniquely determines two convection
coefficients without any smallness assumption of unknown coefficients.
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1. Introduction. In recent years, the problems of determining coefficients in
elliptic equations by using all possible boundary measurements, i.e., the Dirichlet to
Neumann map, have been studied extensively. An important reason for this current
interest is that these kinds of formulations are reasonable for detection or identification
problems in many applied fields such as geophysics, medicine, biology, etc.

Since the mathematical problems for electric impedance tomography was first
proposed and studied by Calderón in [7], gratifying progress has been made in this
field [8], [10], [13], [14], [15], [17], [22], [23], [24]. In particular, in [22] it was first shown
that, when the dimension is greater than two, the conductivity can be uniquely de-
termined by all voltage and current flux at the boundary. However, the problem
is more difficult in the two-dimensional case. Nachman has proved that the global
uniqueness theorem is true also in two dimensions [16]. Here, by the global unique-
ness we mean the uniqueness in determining coefficients without any smallness as-
sumptions on coefficients. For the global uniqueness for the inverse conductivity
problem, Nachman used an inverse scattering theory for a first order elliptic system.
Recently, Brown and Uhlmann [5] improved Nachman’s result to nonsmooth conduc-
tivity coefficients by treating the elliptic equation as a first order elliptic system in
the complex plane. For other results in two dimensions, we refer the reader to [12],
[18]. It should be noted here that all the mentioned papers treat determination of a
single function from the Dirichlet to Neumann map. For determining multiple coeffi-
cients from the Dirichlet to Neumann map, there are only partial answers in the two-
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dimensional case (see [11]). In the three-dimensional case, some global results are
obtained by Nakamura, Sun, and Uhlmann [17]. The global uniqueness of multiple
coefficients in the two-dimensional case is open. The purpose of this paper is to answer
to a global uniqueness problem in determining two coefficients in the two-dimensional
case.

Since we want to determine two functions from boundary measurements, we can-
not transform our equation into the Schrödinger equation with one potential. There-
fore Nachman’s approach to the inverse conductivity problem cannot work well. Our
method is similar to Brown and Uhlmann’s paper [5] in the following ways:

(i) We treat second order elliptic equations in terms of first order elliptic systems
in the complex plane and apply the theory of generalized analytic functions (Vekua
[25] and Bers [4]).

(ii) We apply the inverse scattering method for first order systems which was
developed by Beals and Coifman [3].

In [19], [20], [21] Sung gives more detailed treatments for that method. In this
paper, we will mainly use Sung’s notation and formulations. Moreover, a Carleman
estimate by Bukhgeim [6] is used for our argument.

We note that in spite of the similarity to [5] our method allows us to prove that,
in the two-dimensional case, the Dirichlet to Neumann map can uniquely determine
two unknown functions of a convection term. Moreover, we can show that at most
two coefficients are uniquely determined in two dimensions. Our proof is constructive
in a sense similar to [16].

Our paper is organized as follows:
• Section 2: Formulation of the inverse problem and the main result.
• Section 3: Some lemmata.
• Section 4: Proof of the main result.
• Section 5: Concluding remarks.

2. Formulation of the inverse problem and the main result. Throughout
this paper, we identify R2 with the complex plane C and let W s,p(∂Ω) be the Sobolev
space ([1, pp. 214–217]).

Suppose that Ω is a simply connected bounded domain in R2 with Lipschitz
boundary ∂Ω. We consider the following elliptic equation in Ω:

∆u(x) + b1(x)
∂u

∂x1
(x) + b2(x)

∂u

∂x2
(x) = 0, x ∈ Ω,(2.1)

where x = (x1, x2) and b(x) = (b1(x), b2(x)) ∈ Lp(Ω) × Lp(Ω) (p > 2), bj , j = 1, 2,
are real-valued. Henceforth Ω denotes the closure of Ω.

By [25], we know that (2.1) with Dirichlet boundary condition

u(x) = f(x), x ∈ ∂Ω,(2.2)

is uniquely solvable in W 2,p(Ω) for all real-valued f ∈W 2− 1
p ,p(∂Ω).

In terms of this solution, we can define the Dirichlet to Neumann map Λb :

W 2− 1
p ,p(∂Ω) −→W 1− 1

p ,p(∂Ω) by

Λbf =
∂u

∂ν
.

Our inverse problem is to determine b(x) = (b1(x), b2(x)) from Λb.
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Remark 2.1. Let b(x) = ∇ ln γ(x), x ∈ Ω, where γ > 0 on Ω. Then our problem
is the inverse conductivity problem which has been studied more extensively (see [5],
[16] for the two-dimensional case).

We establish our main result, the following global uniqueness theorem for our
inverse problem.

Theorem 2.1. Suppose that p > 2 and b(j) = (b
(j)
1 , b

(j)
2 ) ∈ Lp(Ω) × Lp(Ω),

j = 1, 2, are real-valued. If

Λb(1) = Λb(2) ,(2.3)

then we have

b
(1)
1 (x) = b

(2)
1 (x), b

(1)
2 (x) = b

(2)
2 (x), x ∈ Ω.(2.4)

Remark 2.2. In [17], it is shown that the Dirichlet to Neumann map is invariant
under a gauge transform so that the difficulty of unique determination of multiple
coefficients is mentioned. However, in our case we assume that (2.1) has no zeroth
order term in u, which cancels such nonuniqueness.

3. Some lemmata.

3.1. Transform of (2.1) to a first order elliptic equation in the complex
plane C. Henceforth we identify x = (x1, x2) ∈ R2 with the complex variable z =
x1 + ix2, and we set z̄ = x1 − ix2, �z = x1, and �z = x2.

Let w(z) = ∂zu(z) = 1
2 ( ∂
∂x1

− i ∂
∂x2

)u(z).
From (2.1), we have that w(z) satisfies

∂z̄w(z) +
1

4
(b1 + ib2)(z)w(z) +

1

4
(b1 − ib2)(z)w(z) = 0, z ∈ Ω,(3.1)

where ∂z̄ = 1
2 ( ∂
∂x1

+ i ∂
∂x2

).

Let B(z) = 1
4 (b1(z) + ib2(z)). Then (3.1) can be written as

∂z̄w(z) +B(z)w(z) +B(z)w(z) = 0, z ∈ Ω.(3.2)

Lemma 3.1. If u ∈ W 2,p(Ω) satisfies (2.1), then w = ∂zu ∈ W 1,p(Ω) satisfies
(3.2). Conversely, if w ∈ W 1,p(Ω) satisfies (3.2), then there exists u ∈ W 2,p(Ω) (not
necessarily unique) such that

∆u+ b1
∂u

∂x1
+ b2

∂u

∂x2
= 0 in Ω

and

w = ∂zu in Ω.

Proof. We need only to prove that, from the solution w = �w+ i�w of (3.2), we
can obtain a solution u of (2.1).

From the imaginary part of (3.2), we obtain

∂�w
∂x1

+
∂�w
∂x2

= 0.

Since Ω is a simply connected domain in C, there exists a real function u of class
W 1,p(Ω) such that

w = ∂zu.
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By (3.2), we can directly verify that u satisfies

∆u(x) + b1(x)
∂u

∂x1
(x) + b2(x)

∂u

∂x2
(x) = 0, x ∈ Ω.

The proof is complete.
Let us define an operator T by

(Tv)(z) = − 1

π

∫
Ω

v(ζ)

ζ − z
dζ, z ∈ Ω.

Then the following is known (see, e.g., Vekua [25]):
(i) T : Lp(Ω) −→ Cβ(Ω) is a bounded linear operator, where p > 2 and β = p−2

p .

(ii) lim|z|→∞(Tv)(z) = 0 if v ∈ Lp(Ω), p > 2.
Moreover, we have the following lemma.
Lemma 3.2. If w(z) satisfies (3.2), then

w(z) + T (Bw)(z) + T (Bw)(z) = Φ(z), z ∈ Ω,(3.3)

where Φ = Φ(z) is a holomorphic function in Ω and Φ(z) = 1
2πi

∫
∂Ω

w(ζ)
ζ−z dζ, z ∈ Ω.

In particular, Φ depends only on boundary values of w.
Conversely, for any given holomorphic function Φ, if w satisfies (3.3), then w

satisfies (3.2) and Φ(z) = 1
2πi

∫
∂Ω

w(ζ)
ζ−z dζ, z ∈ Ω.

Since the fundamental solution of ∂z̄ is 1
πz (see, e.g., [2]), this lemma can be

proved by the Green formula. See also Chapter I in [25].
We conclude this subsection with the following lemma.
Lemma 3.3. The integral equation

w(z) + T (Bw)(z) + T (e−
i
2 (k̄z+kz̄)Bw)(z) = Φ(z), z ∈ Ω,

possesses a unique solution w ∈ W 1,p(Ω) ∩ C(Ω) for any given holomorphic function
Φ ∈ C(Ω). Here k is a complex number.

Proof. Since the operator (Pw)(z) = T (Bw)(z)+T (e−
i
2 (k̄z+kz̄)Bw)(z) is compact

from C(Ω) to C(Ω) (see [25]), it is sufficient to prove that there is only a trivial solution
for the homogeneous equation.

Assume that w0(z) is the solution of

w0 + Pw0 = 0 in Ω.

We take the 0-extension of B outside of Ω. Then we extend w0(z) to the whole
complex plane by defining w0(z) = (Pw0)(z), z ∈ Ωc. Then w0 satisfies

∂z̄w0 +Bw0 + e−
i
2 (k̄z+kz̄)Bw0 = 0 in C

and

lim
|z|→∞

w0(z) = 0.

By the Liouville theorem for generalized analytic functions (p. 154 in [25]), we have
w0(z) = 0, z ∈ C. The proof is complete.
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3.2. Introduction of a complex parameter k. Let w = w(z) satisfy (3.2).
With a complex parameter k, we set

α(z, k) = w(z)e−
1
2 ik̄z.

Then, noticing that ∂z̄g = 0 for a holomorphic function g, we see that α(z, k) satisfies

∂z̄α(z, k) +B(z)α(z, k) + e−
1
2 i(k̄z+kz̄)B(z)α(z, k) = 0, z ∈ Ω.(3.4)

We set

ek(z) = exp

(
− i

2
(k̄z + kz̄)

)
.

We note that |ek(z)| = 1 for all k, z ∈ C.
Lemma 3.4. Let v ∈ Lp(Ω) be complex-valued with p > 2. Then

lim
|k|→∞

max
z∈Ω

|(Tekv)(z)| = 0.

Proof. Contrarily, assume that the conclusion is not true. Then there exists a
constant ε0 > 0 and two sequences {kn}∞n=1 ⊂ C, {zn}∞n=1 ⊂ Ω such that

lim
n→∞ |kn| = ∞

and

|(Teknv)(zn)| > ε0, n = 1, 2, 3, . . . .(3.5)

Since Ω is compact, there exists z0 ∈ Ω such that limn→∞ zn = z0, by choosing a
subsequence if necessary.

By Theorem I-1.19 (p. 38) in [25], we have

|(Teknv)(zn) − (Teknv)(z0)|
≤M1‖v‖Lp(Ω)|zn − z0|β , k ∈ C,

where M1 > 0 is independent of k.
Therefore there exists N1 ∈ N such that

|(Teknv)(zn) − (Teknv)(z0)| ≤
ε0
4

for n ≥ N1.
Hence it follows from (3.5) that

|(Teknv)(z0)| >
3ε0
4
, n > N1 + 1.(3.6)

We set ζ = ξ1 + iξ2 = (ξ1, ξ2) ∈ R2, k = k1 + ik2 = (k1, k2) ∈ R2, and (k, ζ) =
k1ξ1 + k2ξ2.

Then e−
i
2 (k̄ζ+kζ̄) = e−i(k,ζ) and

(Tekv)(z0) = − 1

π

∫
Ω

e−i(k,ζ)
v(ζ)

ζ − z0
dζ.
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Since h(ζ) = v(ζ)
ζ−z0 ∈ L1(Ω) by v ∈ Lp(Ω), p > 2, and the Hölder inequality, we can

apply the Riemann–Lebesgue lemma. Therefore there exists N2 ∈ N such that

|(Tekv)(z0)| < ε0
4

for |k| > N2.
This contradicts (3.6). Thus the proof of the lemma is complete.
By Lemma 3.2, equation (3.4) is equivalent to the following integral equation:

α(z, k) + T (Bα)(z) + T (ekBα)(z) = Φ(z), z ∈ Ω,(3.7)

where Φ is a holomorphic function with respect to z in Ω.
Henceforth we consider a solution of (3.7) for Φ(z) = 1, and for simplicity we

denote this solution by the same notation α(z, k):

α(z, k) + T (Bα)(z) + T (ekBα)(z) = 1, z ∈ Ω.(3.8)

By Lemma 3.3, we note that there exists a unique solution to (3.8) in C(Ω).
Then we have the following result about the asymptotic property of α(z, k) as

|k| → ∞.
Lemma 3.5. For z ∈ Ω, we have

α(z, k) → α0(z) as |k| → ∞,

where α0(z) is the solution of

α0(z) + T (Bα0)(z) = 1, z ∈ Ω.(3.9)

Proof. By Lemma 3.3, we know that

α0 ∈ L∞(Ω).

From (3.8) and (3.9), we see that ρ(z, k) = α(z, k) − α0(z) satisfies

ρ+ T (Bρ) = −T (ekBρ) − T (ekBα0) in Ω.(3.10)

We introduce a new function λ = λ(z, k):

λ(z, k) = ρ(z, k) + T (Bρ)(z), z ∈ Ω.(3.11)

If we regard (3.11) as an integral equation with respect to ρ, then this integral equation
is uniquely solvable (see, e.g., [25] or Lemma 3.3) because λ, ρ ∈ L∞(Ω) and the
solution can be expressed as

ρ(z, k) = λ(z, k) +

∫
Ω

L(ζ, z)λ(ζ, k)dζ ≡ λ(z, k) + Lλ(z, k), z ∈ Ω.(3.12)

Moreover,

|L(ζ, z)| ≤M2
1

|ζ − z| , z, ζ ∈ Ω.

Here M2 > 0 depends only on Ω and B. In particular, L is a bounded linear operator
from L∞(Ω) to itself.
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Therefore (3.10) can be written as

λ(z, k) + T (ekB(λ+ Lλ))(z) = −T (ekBα0)(z), z ∈ Ω.(3.13)

From (3.13), we have

λ = −T
(
ekB(λ+ Lλ)

)
− T (ekBα0)(3.14)

= T
(
ekB

[
T (ekB(λ+ Lλ)) + T (ekBα0)

])
+ T

(
ekBL

[
T (ekB(λ+ Lλ)) + T (ekBα0)

])
− T (ekBα0)

= T
(
ekB

[
T (ekBλ)

])
+ T

(
ekB

[
T (ekBLλ)

])
+ T

(
ekBL

[
T (ekBλ)

])
+ T

(
ekBL

[
T (ekBLλ)

])
+ ηk(z)

≡ Ak1λ+Ak2λ+Ak3λ+Ak4λ+ ηk.

Here we note that

ηk(z) = T
(
ekBT (ekBα0)

)
(z) + T

(
ekBLT (ekBα0)

)
(z) − T (ekBα0)(z).

Next, we will show that, for sufficiently large |k|, Akj (j = 1, 2, 3, 4) are contraction
operators on L∞(Ω).

(i) For the operator Ak1 ,

(Ak1λ)(z) = T
(
ekB

[
T (ekBλ)

])
(z) =

∫
Ω

Ak1(ζ, z)λ(ζ)dζ, z ∈ Ω,

where

Ak1(ζ, z) =
1

π2

∫
Ω

e−
1
2 i(k̄ζ1+kζ̄1)B(ζ1)

ζ1 − z

e
1
2 i(k̄ζ+kζ̄)B(ζ)

ζ̄ − ζ̄1
dζ1.

Here and henceforth we denote the kernels of the integral operators Akj by the same

letters Akj (j = 1, 2, 3, 4). Therefore we have

Ak1(ζ, z) = −e
1
2 i(k̄ζ+kζ̄)B(ζ)

π2(ζ − z)

∫
Ω

e−
1
2 i(k̄ζ1+kζ̄1)B(ζ1)

ζ1 − ζ

ζ̄1 − ζ̄

[
1

ζ1 − ζ
− 1

ζ1 − z

]
dζ1

= − 1

π2

e
1
2 i(k̄ζ+kζ̄)B(ζ)

ζ − z

∫
Ω

e−
1
2 i(k̄ζ1+kζ̄1)B(ζ1)

1

ζ̄1 − ζ̄
dζ1

+
1

π2

e
1
2 i(k̄ζ+kζ̄)B(ζ)

ζ − z

∫
Ω

e−
1
2 i(k̄ζ1+kζ̄1)B(ζ1)

ζ1 − ζ

ζ̄1 − ζ̄

1

ζ1 − z
dζ1

=
1

π

e
i
2 (k̄ζ+kζ̄)B(ζ)

ζ − z
(TekB)(ζ)

− 1

π

e
i
2 (k̄ζ+kζ̄)B(ζ)

ζ − z

(
Tek(ζ1)B(ζ1)

ζ1 − ζ

ζ̄1 − ζ̄

)
(z).

At the last equality we have used∫
Ω

v(ζ)dζ =

∫
Ω

v(ζ)dζ.
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By Lemma 3.4, we have

σk ≡ max
ζ∈Ω

∣∣∣(TekB)(ζ)
∣∣∣→ 0 as |k| → ∞(3.15)

and

σ̂k ≡ max
z,ζ∈Ω

∣∣∣∣
∫

Ω

e−
1
2 i(k̄ζ1+kζ̄1)B(ζ1)

ζ1 − ζ

ζ̄1 − ζ̄

1

ζ1 − z
dζ1

∣∣∣∣→ 0 as |k| → ∞.(3.16)

In fact, (3.15) is straightforward from Lemma 3.4. For (3.16), we assume contrar-
ily that there exist ε0 > 0, {kn}∞n=1 ⊂ C, {zn}∞n=1 ⊂ Ω, {ζn}∞n=1 ⊂ Ω such that
limn→∞ |kn| = ∞ and∣∣∣∣

(
TeknB

ζ1 − ζn
ζ̄1 − ζ̄n

)
(zn)

∣∣∣∣ > ε0, n = 2, 3, . . . .(3.17)

We can choose subsequences {zn}∞n=1, {ζn}∞n=1 such that limn→∞ zn = z0 and
limn→∞ ζn = ζ0 by the compactness of Ω. Then we have∣∣∣∣

(
TeknB

ζ1 − ζn
ζ̄1 − ζ̄n

)
(zn) −

(
TeknB

ζ1 − ζ0
ζ̄1 − ζ̄0

)
(z0)

∣∣∣∣
≤
∣∣∣∣
(
TeknB

ζ1 − ζn
ζ̄1 − ζ̄n

)
(zn) −

(
TeknB

ζ1 − ζn
ζ̄1 − ζ̄n

)
(z0)

∣∣∣∣
+

∣∣∣∣
(
TeknB

(
ζ1 − ζn
ζ̄1 − ζ̄n

− ζ1 − ζ0
ζ̄1 − ζ̄0

))
(z0)

∣∣∣∣
≤M3

∥∥∥∥eknBζ1 − ζn
ζ̄1 − ζ̄n

∥∥∥∥
Lp
ζ1

(Ω)

|zn − z0|β

+ M3

∥∥∥∥eknB
(
ζ1 − ζn
ζ̄1 − ζ̄n

− ζ1 − ζ0
ζ̄1 − ζ̄0

)∥∥∥∥
Lp
ζ1

(Ω)

by Theorem I-1.19 (p. 38) in [25] and TLp(Ω) ⊂ Cβ(Ω).
Since

lim
n→∞

∥∥∥∥ζ1 − ζn
ζ̄1 − ζ̄n

− ζ1 − ζ0
ζ̄1 − ζ̄0

∥∥∥∥
Lp
ζ1

(Ω)

= 0

by the Lebesgue convergence theorem, we see that∣∣∣∣
(
TeknB

ζ1 − ζn
ζ̄1 − ζ̄n

)
(zn) −

(
TeknB

ζ1 − ζ0
ζ̄1 − ζ̄0

)
(z0)

∣∣∣∣
≤ ε0

4

for n > N1 which is some large natural number.
Therefore (3.17) implies∣∣∣∣

(
TeknB

ζ1 − ζ0
ζ̄1 − ζ̄0

)
(z0)

∣∣∣∣ > 3ε0
4

if n > N1. This is a contradiction by Lemma 3.4. Thus the proof of (3.16) is complete.
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Therefore, noticing that maxz∈C
∫
Ω

1
|ζ−z|dζ <∞, we can obtain

‖Ak1λ‖L∞(Ω) ≤ sup
z∈Ω

∫
Ω

|Ak1(ζ, z)|dζ‖λ‖L∞(Ω)(3.18)

≤ M4

π2
‖B‖Lp(Ω)(σk + σ̂k)‖λ‖L∞(Ω).

(ii) For the operator Ak2 ,

(Ak2λ)(z) = T
(
ekB

[
T (ekBLλ)

])
(z) = (Ak1Lλ)(z), z ∈ Ω.

Therefore by (3.18) we see

‖Ak2λ‖L∞(Ω) ≤ M4

π2
‖B‖Lp(Ω)(σk + σ̂k)‖L‖L∞(Ω)‖λ‖L∞(Ω).

Here we recall that L is bounded from L∞(Ω) to L∞(Ω).
For the operators Ak3 and Ak4 , we can similarly prove that

‖Akj ‖L∞ → 0, |k| → ∞, j = 3, 4.

Therefore there exists a positive constant R such that, for |k| > R,

‖Akj ‖L∞ ≤ 1

8
, j = 1, 2, 3, 4.

From (3.14), we can have that, for |k| > R,

‖λ‖L∞(Ω) ≤ 1

2
‖λ‖L∞(Ω) + ‖ηk‖L∞(Ω).

Therefore for |k| > R we can obtain

‖λ‖L∞(Ω) ≤ 2‖ηk‖L∞(Ω).

From Lemma 3.4, we can verify that

lim
|k|→∞

‖ηk‖L∞(Ω) = 0.

Consequently,

lim
|k|→∞

‖λ(·, k)‖L∞(Ω) = 0.

Therefore by (3.12) we can obtain

lim
|k|→∞

‖ρ(·, k)‖L∞(Ω) = 0.

The proof is complete.
We conclude this subsection with the following lemma.
Lemma 3.6. The solution of (3.9) can be written as

α0(z) = Φ0(z)e
−(TB)(z), z ∈ Ω,(3.19)

where Φ0 is a holomorphic function in Ω and is continuous on Ω.
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Moreover,

Φ0(z) = 0, z ∈ Ω.(3.20)

Proof. It is easy to verify that α0 satisfies the following first order elliptic complex
equation:

∂z̄α0 +Bα0 = 0 in Ω.(3.21)

Since ∂z̄(TB) = B (see, e.g., [25]), we have ∂z̄(α0e
TB) = (∂z̄α0)e

TB + α0(∂z̄e
TB) =

−Bα0e
TB +α0Be

TB = 0 in Ω by (3.21). Therefore Φ0 ≡ α0e
TB is holomorphic in Ω.

Hence (3.19) follows.
Next, we have to prove (3.20). If there exists z0 ∈ Ω such that Φ0(z0) = 0, then

we can see that Φ0 can be written as

Φ0(z) = (z − z0)Φ1(z), z ∈ Ω,(3.22)

where Φ1 is a holomorphic function in Ω.
Substituting (3.22) and (3.19) in (3.9), we have

(z − z0)Φ1(z)e
−(TB)(z) − 1

π

∫
Ω

B(ζ)(ζ − z0)Φ1(ζ)e
−(TB)(ζ)

ζ − z
dζ = 1.(3.23)

Therefore, letting z → z0, we can obtain

− 1

π

∫
Ω

B(ζ)Φ1(ζ)e
−(TB)(ζ)dζ = 1.(3.24)

By (3.23), we have

1 = (z − z0)Φ1(z)e
−(TB)(z)

− 1

π

∫
Ω

B(ζ)(ζ − z + z − z0)Φ1(ζ)e
−(TB)(z)

ζ − z
dζ

= (z − z0)

(
Φ1(z)e

−(TB)(z) − 1

π

∫
Ω

B(ζ)Φ1(ζ)e
−(TB)(ζ)

ζ − z
dζ

)

− 1

π

∫
Ω

B(ζ)Φ1(ζ)e
−(TB)(ζ)dζ.

Therefore (3.24) implies

(z − z0)(Φ1(z)e
−(TB)(z) − 1

π

∫
Ω

B(ζ)Φ1(ζ)e
−(TB)(ζ)

ζ − z
dζ) = 0, z ∈ Ω;

that is,

Φ1e
−TB + T (BΦ1e

−TB) = 0 in Ω.

By Lemma 3.3, we can see that Φ1 = 0 in Ω. Therefore α0 = 0. This contradicts
(3.9). The proof is complete.
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4. Proof of the main result. For j = 1, 2, let us consider

∆u(x) + b
(j)
1 (x)

∂u

∂x1
(x) + b

(j)
2 (x)

∂u

∂x2
(x) = 0, x ∈ Ω,

and

u(x) = f(x), x ∈ ∂Ω,

with f ∈W 2− 1
p ,p(∂Ω), (b

(j)
1 , b

(j)
2 ) ∈ Lp(Ω) × Lp(Ω), p > 2.

By [25], there exists a unique solution in W 2,p(Ω), and we denote it by u(j)(x, f),
j = 1, 2.

We set b(j) = (b
(j)
1 , b

(j)
2 ) ∈ Lp(Ω) × Lp(Ω) and

B(j)(z) =
1

4
(b

(j)
1 (z) + ib

(j)
2 (z)), z ∈ Ω.

By Lemma 3.3, the integral equation

α+ T (B(j)α) + T (ekB(j)α) = 1 in Ω(4.1)

is uniquely solvable in L∞(Ω), and henceforth we denote the unique solution to (4.1)
by α(j)(z, k), j = 1, 2, k ∈ C.

We state a relation between α(1) and α(2), provided that Λb(1) = Λb(2) .
Lemma 4.1. Let Λb(1) = Λb(2) . Then

α(1)(z, k) = α(2)(z, k), z ∈ ∂Ω, k ∈ C.
Proof. First it follows from Lemma 3.2 that

1

2πi

∫
∂Ω

α(1)(ζ, k)dζ

ζ − z
= 1, z ∈ Ω.(4.2)

By Lemma 3.3, we see α(1)(·, k) ∈W 1,p(Ω), and so

w(1)(z, k) ≡ α(1)(z, k)e
1
2 ik̄z ∈W 1,p(Ω)(4.3)

and

∂z̄w
(1) +B(1)w(1) +B(1)w(1) = 0 in Ω.

Hence Lemma 3.1 implies the existence of u(1) ∈W 2,p(Ω) such that

w(1) = ∂zu
(1) in Ω

and

∆u(1)(x) + b
(1)
1 (x)

∂u(1)

∂x1
(x) + b

(1)
2 (x)

∂u(1)

∂x2
(x) = 0, x ∈ Ω.

We set

f = u(1)|∂Ω.

Then we can see that f ∈W 2− 1
p ,p(∂Ω).



1382 JIN CHENG AND MASAHIRO YAMAMOTO

By Vekua [25], there exists a unique solution u(2) = u(2)(·, f) ∈W 2,p(Ω) to

∆u(2)(x) + b
(2)
1 (x)

∂u(2)

∂x1
(x) + b

(2)
2 (x)

∂u(2)

∂x2
(x) = 0, x ∈ Ω,

and

u(2)|∂Ω = f.

Since Λb(1) = Λb(2) , it follows that ∂u(1)

∂ν = ∂u(2)

∂ν on ∂Ω.

With u(1) = u(2) = f on ∂Ω, we obtain

∂zu
(1) = ∂zu

(2) on ∂Ω.

We set

w(2) = ∂zu
(2) in Ω.

By Lemma 3.1, w(2) satisfies

∂z̄w
(2) +B(2)w(2) +B(2)w(2) = 0 in Ω

and

w(1) = w(2) on ∂Ω.

Setting

α̃(2)(z, k) = w(2)(z)e−
1
2 ik̄z, z ∈ Ω, k ∈ C,

from (4.3), we see that

α(1)(z, k) = α̃(2)(z, k), z ∈ ∂Ω, k ∈ C,(4.4)

and

∂z̄α̃
(2) +B(2)α̃(2) + ekB(2)α̃(2) = 0 in Ω.

Hence Lemma 3.2 yields

α̃(2) + T (B(2)α̃(2)) + T (ekB(2)α̃(2)) = Φ2(·, k) in Ω

with a holomorphic function Φ2 in Ω given by

Φ2(z, k) =
1

2πi

∫
∂Ω

α̃(2)(ζ, k)

ζ − z
dζ, z ∈ Ω, k ∈ C.

In terms of (4.2) and (4.4), we have

Φ2(z, k) = 1, z ∈ Ω, k ∈ C,

and from (4.1) we conclude that α(2)(z, k) = α̃(2)(z, k), z ∈ Ω, k ∈ C. Thus the
equality (4.4) completes the proof of the lemma.
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Henceforth we assume that

Λb(1) = Λb(2) .

Next, we will prove the following lemma.
Lemma 4.2.

(TB(1))(z) = (TB(2))(z), z ∈ C \ Ω,

where B(j) = 1
4 (b

(j)
1 + ib

(j)
2 ), j = 1, 2.

Proof. By Lemma 3.5, we see that

α(j)(z, k) → α
(j)
0 (z), z ∈ Ω, |k| → ∞,

where α
(j)
0 = α

(j)
0 (z), j = 1, 2, satisfy

α
(j)
0 + T (B(j)α

(j)
0 ) = 1 in Ω.

Therefore from Lemma 4.1 we see that

α
(1)
0 (z) = α

(2)
0 (z), z ∈ ∂Ω.(4.5)

From Lemma 3.6, we obtain

α
(j)
0 (z) = Φ

(j)
0 (z)e−(TB(j))(z), z ∈ Ω,

where Φ
(j)
0 is holomorphic in Ω and Φ

(j)
0 (z) = 0, z ∈ Ω for j = 1, 2.

By (4.5), we have

Φ
(1)
0 (z)e−(TB(1))(z) = Φ

(2)
0 (z)e−(TB(2))(z), z ∈ ∂Ω.

We define Ψ = Ψ(z) by

Ψ(z) = e(TB
(1)−TB(2))(z), z ∈ C \ Ω,

Ψ(z) =
Φ

(1)
0 (z)

Φ
(2)
0 (z)

, z ∈ Ω.
(4.6)

By the form of T and Φ
(2)
0 (z) = 0 for all z ∈ Ω, it is easy to verify that Ψ is

holomorphic in C \ ∂Ω. Therefore by (4.5) we can apply the Painlevé theorem on
analytic continuation, and we can see that Ψ is holomorphic in C. Moreover, we can
directly see that

(TB(1))(z) − (TB(2))(z) −→ 0 as |z| → ∞

and

Ψ(z) → 1 as |z| → ∞.

Therefore by the Liouville theorem for holomorphic functions we have
Ψ(z) = 1, z ∈ C, and so (4.6) implies

(TB(1) − TB(2))(z) = 2πni for z ∈ C \ Ω,
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where n ∈ N is independent of z. Since lim|z|→∞(TB(1) − TB(2))(z) = 0, we obtain
n = 0. Thus the proof is complete.

The next step is to apply the inverse scattering method by [19], [20], [21].
For j = 1, 2, we set

C(j) = eTB
(j)

e−TB
(j)
B(j) in Ω,(4.7)

Q(j) =

(
0 −C(j)

−C(j) 0

)
in Ω,

and

I =

(
1 0
0 1

)
.

We consider an integral equation for 2×2 matrix function µ(j) =

(
µ

(j)
11

µ
(j)
21

µ
(j)
12

µ
(j)
22

)
, j = 1, 2,

which is a key in [19], [20], [21]:

µ(j)(z, k) = I − 1

π

∫
Ω

ek(ζ)Q
(j)(ζ)

ζ − z
µ(j)(ζ, k)dζ, z ∈ Ω, k ∈ C, j = 1, 2.(4.8)

By [25], there exists a unique solution µ(j)(·, k) ∈W 1,p(Ω) to (4.8) for j = 1, 2.
Then, in terms of Lemma 4.2, an argument similar to the proof of Lemma 4.1

leads us to the following lemma.
Lemma 4.3. Let Λb(1) = Λb(2) . Then

µ(1)(z, k) = µ(2)(z, k), z ∈ ∂Ω, k ∈ C.(4.9)

Proof. By [25], we have

I =
1

2πi

∫
∂Ω

µ(j)(ζ, k)

ζ − z
dζ, z ∈ Ω, k ∈ C, j = 1, 2.(4.10)

We set

ω(j)(z, k) = µ(j)(z, k)e
i
2 k̄z, z ∈ Ω, k ∈ C, j = 1, 2.(4.11)

Again, by [25], noticing that ∂z̄(e
i
2 k̄z) = 0, we can verify

∂z̄ω
(j) = Q(1)ω(j) in Ω(4.12)

for j = 1, 2.
We set

ω(j)(z, k) =

⎛
⎝ φ

(j)
11 (z, k) φ

(j)
12 (z, k)

φ
(j)
21 (z, k) φ

(j)
22 (z, k)

⎞
⎠ , z ∈ Ω, k ∈ C, j = 1, 2.(4.13)

We can rewrite (4.12) as

∂z̄φ
(1)
11 = −C(1)φ

(1)
21 , ∂z̄φ

(1)
21 = −C(1)φ

(1)
11 ,

∂z̄φ
(1)
12 = −C(1)φ

(1)
22 , ∂z̄φ

(1)
22 = −C(1)φ

(1)
12

in Ω.
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Setting

v
(1)
11 = φ

(1)
11 + φ

(1)
21 , v

(1)
21 = i(φ

(1)
11 − φ

(1)
21 ),

v
(1)
12 = φ

(1)
12 + φ

(1)
22 , v

(1)
22 = i(φ

(1)
12 − φ

(1)
22 )

in Ω,

we can further rewrite (4.12) as

∂z̄v
(1)
lm = −C(1)v

(1)
lm in Ω, 1 ≤ l, m ≤ 2.(4.14)

Next, by setting

w
(1)
lm (z, k) = e−(TB(1))(z)v

(1)
lm (z, k), z ∈ Ω, k ∈ C, 1 ≤ l, m ≤ 2,(4.15)

the definition (4.7) and the equalities (4.14) yield

∂z̄w
(1)
lm +B(1)w

(1)
lm +B(1)w

(1)
lm = 0, z ∈ Ω, k ∈ C, 1 ≤ l, m ≤ 2.

Therefore, for 1 ≤ l,m ≤ 2, there exist u
(1)
lm ∈W 2,p(Ω) such that ∂zu

(1)
lm = w

(1)
lm and

∆u
(1)
lm + b

(1)
1

∂u
(1)
lm

∂x1
+ b

(1)
2

∂u
(1)
lm

∂x2
= 0 in Ω.

We put

flm = u
(1)
lm |∂Ω.

By flm ∈W 2− 1
p ,p(∂Ω), we can uniquely solve

∆u
(2)
lm + b

(2)
1

∂u
(2)
lm

∂x1
+ b

(2)
2

∂u
(2)
lm

∂x2
= 0 in Ω,

u
(2)
lm |∂Ω = flm, 1 ≤ l, m ≤ 2,

and

u
(2)
lm ∈W 2,p(Ω), 1 ≤ l, m ≤ 2.

Then by Λb(1) = Λb(2) we see that

∂zu
(2)
lm = ∂zu

(1)
lm on ∂Ω, 1 ≤ l, m ≤ 2.(4.16)

Conversely to the derivation for v
(1)
lm , we set

v
(2)
lm = eTB

(2)

∂zu
(2)
lm in Ω, 1 ≤ l, m ≤ 2.

Noticing Lemma 3.1 and (4.7), we see by direct calculations that Lemma 4.2 and
(4.16) imply

∂z̄v
(2)
lm + C(2)v

(2)
lm = 0 in Ω, 1 ≤ l, m ≤ 2,(4.17)

and

v
(1)
lm = v

(2)
lm on ∂Ω.(4.18)
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Setting

µ̃ =

(
φ̃11 φ̃12

φ̃21 φ̃22

)
e−

1
2 ik̄z

and

φ̃11 = 1
2v

(2)
11 − i

2v
(2)
21 , φ̃21 = 1

2v
(2)
11 + i

2v
(2)
21 ,

φ̃12 = 1
2v

(2)
12 − i

2v
(2)
22 , φ̃22 = 1

2v
(2)
12 + i

2v
(2)
22

in Ω,

in terms of (4.11), (4.13), (4.15), (4.17), and (4.18), we can directly see that

∂z̄µ̃ = ekQ
(2)µ̃ in Ω(4.19)

and

µ(1) = µ̃ on ∂Ω.(4.20)

Equation (4.19) is rewritten as

µ̃(z) = Φ2(z) − 1

π

∫
Ω

ek(ζ)Q
(2)(ζ)

ζ − z
µ̃(ζ)dζ, z ∈ Ω,(4.21)

where

Φ2(z) =
1

2πi

∫
∂Ω

µ̃(ζ)

ζ − z
dζ, z ∈ Ω.

Here (4.20) and (4.10) imply

Φ2(z) =
1

2πi

∫
∂Ω

µ̃(ζ)

ζ − z
dζ = I, z ∈ Ω.

The uniqueness of solutions of (4.21) with Φ2 = I yields

µ̃ = µ(2) in Ω,

with which (4.20) completes the proof of the lemma.
Henceforth we take the zero extension of B(j), j = 1, 2, outside Ω:

B(j)(z) = 0, z ∈ C \ Ω, j = 1, 2.

We note that C(j)(z) = 0, Q(j)(z) = 0, z ∈ C \ Ω, j = 1, 2.
For z ∈ C \ Ω, we set

µ(j)(z, k) = I − 1

π

∫
Ω

ek(ζ)Q
(j)(ζ)µ(j)(ζ, k)

ζ − z
dζ, k ∈ C, j = 1, 2.

Then we can rewrite (4.8) as

µ(j)(z, k) = I − 1

π

∫
C

ek(ζ)Q
(j)(ζ)

ζ − z
µ(j)(ζ, k)dζ, z, k ∈ C, j = 1, 2.(4.22)
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Consequently, by [25] we can easily verify

∂z̄µ
(j)(z, k) = ek(z)Q

(j)(z)µ(j)(z, k), z ∈ C, k ∈ C, j = 1, 2,

and

lim
|z|→∞

µ(j)(z, k) = I, k ∈ C, j = 1, 2,

On the basis of Lemma 4.3, we can apply the method in [19], [20], [21].
Lemma 4.4. If Λb(1) = Λb(2) , then

C(1)(z) = C(2)(z), z ∈ Ω.

Proof. We define ν(j) = ν(j)(z, k), z ∈ Ω, k ∈ C, j = 1, 2, by

ν(j)(z, k) =

⎛
⎝ ν

(j)
11 (z, k) ν

(j)
12 (z, k)

ν
(j)
21 (z, k) ν

(j)
22 (z, k)

⎞
⎠

=

⎛
⎝ µ

(j)
11 (z, k) µ

(j)
12 (z, k)e−k(z)

µ
(j)
21 (z, k)e−k(z) µ

(j)
22 (z, k)

⎞
⎠ ,

where we recall e−k(z) = e
1
2 i(k̄z+kz̄).

It is verified in [19], [20], [21] that ν(j) satisfies the following first order elliptic
equation with respect to k:

∂ν(j)

∂k̄
(z, k) = e−k(z)T (j)(k)ν(j)(z, k), k ∈ C, z ∈ C, j = 1, 2,

where

T (j)(k) =

(
0 T

(j)
12 (k)

T
(j)
21 (k) 0

)
, k ∈ C, j = 1, 2,

T
(j)
12 (k) =

i

2π

∫
Ω

ek(ζ)C
(j)(ζ)µ

(j)
22 (ζ, k)dζ,(4.23)

T
(j)
21 (k) =

i

2π

∫
Ω

ek(ζ)C
(j)(ζ)µ

(j)
11 (ζ, k)dζ,(4.24)

k ∈ C, j = 1, 2.

By the symmetry of the matrix function Q(j), from (4.22) we can see that

µ
(j)
11 (z, k) = µ

(j)
22 (z, k), z ∈ C, k ∈ C, j = 1, 2.

Therefore (4.23) and (4.24) imply

T
(j)
12 (k) = T

(j)
21 (k), k ∈ C, j = 1, 2.

Next, we can see

T (1)(k) = T (2)(k), k ∈ C.(4.25)
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In fact, for an arbitrarily fixed k ∈ C, setting

Ψ(j)(z) =

∫
Ω

ek(ζ)Q
(j)(ζ)µ(j)(ζ, k)

ζ − z
dζ, z ∈ C \ Ω, j = 1, 2,

we see from (4.8) and (4.9) that

Ψ(1)(z) = Ψ(2)(z), z ∈ ∂Ω.

Since Q(j) ∈ Lp(Ω) and µ(j) ∈ L∞(Ω) for j = 1, 2, we see by the Hölder inequality
that there exist constant M5 > 0 and R > 0 such that

|Ψ(1)(z) − Ψ(2)(z)| ≤ M5

|z| , |z| > R.

Consequently, since Ψ(1) − Ψ(2) is holomorphic in C \ Ω, we apply the Cauchy inte-
gration formula on ∂Ω ∪ {z||z| = R1} with sufficiently large R1 > 0 and let R1 tend
to ∞ so that we obtain

Ψ(1)(z) = Ψ(2)(z), z ∈ C \ Ω.(4.26)

On the other hand, taking z ∈ C \Ω such that |z| is so large that
∣∣∣ ζz ∣∣∣ < 1

2 for all ζ ∈ Ω,

we have

Ψ(j)(z) =
1

z

∫
Ω

ek(ζ)Q
(j)(ζ)µ(j)(ζ, k)
ζ
z − 1

dζ

= −1

z

∞∑
n=0

1

zn

∫
Ω

ek(ζ)Q
(j)(ζ)µ(j)(ζ, k)ζndζ, j = 1, 2.

In terms of (4.26), comparing the coefficients of n = 0 of Ψ(1)(z) and Ψ(2)(z), we
obtain ∫

Ω

ek(ζ)Q
(1)(ζ)µ(1)(ζ, k)dζ =

∫
Ω

ek(ζ)Q
(2)(ζ)µ(2)(ζ, k)dζ.

Therefore from (4.23) and (4.24) we can obtain (4.25).
Hence d(z, k) = ν(1)(z, k) − ν(2)(z, k) satisfies

∂d

∂k̄
(z, k) = e−k(z)T (1)(k)d(z, k), k ∈ C, z ∈ C.(4.27)

It is shown that

T (j)(k) ∈ L2(C)(4.28)

(Theorem B in [5]) and there exists a constant q > 2p
p−2 such that

sup
z∈C

‖ν(j)(z, ·) − I‖Lq(C) <∞(4.29)

(Theorem 2.3 in [5]).
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Since T
(j)
12 = T

(j)
21 , we can reduce (4.27) to four independent complex equations.

Therefore in view of (4.28) and (4.29) a sharp version of the Liouville theorem (The-
orem 3.1 in [5]) gives

d(z, k) = ν(1)(z, k) − ν(2)(z, k) = 0, z ∈ Ω, k ∈ C.
On the other hand, by [19], [20], [21] we obtain

C(j)(z) = lim
|k|→∞

ik

2
ν

(j)
12 (z, k), z ∈ C, j = 1, 2.

Consequently,

C(1)(z) = C(2)(z), z ∈ Ω.

The proof is complete.
In order to finish the proof of the main result, we have to prove

B(1)(z) = B(2)(z), z ∈ Ω.

From Lemma 4.4 and (4.7), we can see that

B(1)(z)e(TB
(1)−TB(1))(z) = B(2)(z)e(TB

(2)−TB(2))(z), z ∈ Ω.(4.30)

Since we set B(j)(z) = 0, j = 1, 2, for z ∈ C \ Ω, equality (4.30) holds for all z ∈ C.

Let Ξ(z) = T (B(2) − B(1))(z) and κ(z) = eT (B(2)−B(1))(z)−T (B(2)−B(1))(z). From
(4.30), we can see that

B(1)(z) = κ(z)B(2)(z), z ∈ C.
Therefore we can obtain that

∂z̄Ξ = B(2) −B(1) = (1 − κ)B(2) in C.
Let iθ = T (B(2) −B(1)) − T (B(2) −B(1)). Then θ is real. Therefore we can obtain

|κ− 1| =

∣∣∣∣2 sin
θ

2

(
− sin

θ

2
+ i cos

θ

2

)∣∣∣∣ ≤ 2

∣∣∣∣sin θ2
∣∣∣∣ ≤ |θ|.

It is easy to verify directly that

|θ| = |T (B(2) −B(1)) − T (B(2) −B(1))| ≤ 2|T (B(2) −B(1))| = 2|Ξ|(4.31)

so that

|∂z̄Ξ| ≤ |B(2)||1 − κ| ≤ 2|B(2)||Ξ| in C.(4.32)

From Lemma 4.2, we have

Ξ(z) = 0, z ∈ C \ Ω.(4.33)

Let us take a bounded domain Ω1 with smooth boundary ∂Ω1 such that Ω ⊂ Ω1.
We directly see that Ξ ∈ W 1,p(Ω1). Then, since suppΞ ⊂ Ω, by (4.33) we have the
following Carleman estimate:∫

Ω1

∆ϕ|Ξ|2eϕdx ≤ 4

∫
Ω1

|∂z̄Ξ|2eϕdx,(4.34)

where ϕ is a real-valued function and ϕ ∈W 2, p2 (Ω1).
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In fact, by Lemma 2.2 in [6] or Lemma 6.1 in the appendix we directly see (4.34)
for Ξ ∈ C1(Ω1) and ϕ ∈ C2(Ω1). By p > 2 and Sobolev’s embedding, we can take
approximation sequences, and we obtain (4.34) for Ξ ∈W 1,p(Ω1) and ϕ ∈W 2, p2 (Ω1).

From (4.32), we obtain that∫
Ω1

∆ϕ|Ξ|2eϕdx ≤ 16

∫
Ω1

|B(2)|2|Ξ|2eϕdx.

Since |B(2)| ∈ Lp(Ω) (p > 2), we can choose

ϕ(x) =
16

π

∫
Ω1

ln |x− y||B|2dy ∈W 2, p2 (Ω),

where B = max(|B(2)|, 1).
Therefore, noticing ∆ϕ = 32|B|2 in Ω1, we obtain that∫

Ω1

|B|2|Ξ|2eϕdx = 0,

i.e.,

Ξ(z) = 0, z ∈ Ω.(4.35)

This means that B(1)(z) = B(2)(z), z ∈ Ω. Therefore we have that

b
(1)
1 (z) = b

(2)
1 (z), b

(1)
2 (z) = b

(2)
2 (z), z ∈ Ω.

The proof of the main result is complete.
Remark 4.1. We note that B(2) is in Lp(Ω) and thus is not necessarily bounded.

Therefore we need special cares in concluding (4.35) from (4.32) by a Carleman es-
timate. For that, we used the Carleman estimate by [6], which is different from the
one in [9].

5. Concluding remarks. I. We can realize the previous arguments for the
uniqueness in order to establish the reconstruction algorithm. For higher-dimensional
cases, we refer the reader to [16]. Correspondingly to the uniqueness arguments, the
algorithm is composed of three steps:

First step. Reconstruct boundary values of TB. This is based on a uniquely
solvable linear integral equation on ∂Ω.

Second step. Reconstruct C in Ω. This step is carried out by the inverse scattering
method (see, e.g., [19], [20], [21]). See also [16].

Third step. Solve C = BeTB−TB in Ω. This solution is obtained from a Dirichlet
problem for a nonlinear ∂z̄-equation.

Every step requires verification, and we have to guarantee the unique solvability,
especially in the first and third steps. In a succeeding paper, we give the details.

II. We will show that, in the two-dimensional case, at most two functions can be
determined from the Dirichlet to Neumann map, as the following example shows.

Consider two elliptic equations in a simply connected bounded domain Ω whose
boundary ∂Ω is sufficiently smooth:

div(γ(x)∇u(1)(x)) + b
(1)
1 (x)

∂u(1)

∂x1
(x) + b

(1)
2 (x)

∂u(1)

∂x2
(x) = 0, x ∈ Ω,(5.1)
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and

∆u(2)(x) + b
(2)
1 (x)

∂u(2)

∂x1
(x) + b

(2)
2 (x)

∂u(2)

∂x2
(x) = 0, x ∈ Ω.(5.2)

Here γ, b
(j)
1 , b

(j)
2 , j = 1, 2, are in C∞(Ω) and γ(x) > γ0 > 0, x ∈ Ω, where γ0 is a

constant.
It is well known that (5.1) and (5.2) with Dirichlet boundary condition

u(j)(x) = f(x), x ∈ ∂Ω,

are uniquely solvable in C2(Ω) ∩ C1(Ω) for all f ∈ C3(∂Ω).
Then we can define the Dirichlet to Neumann maps Λ1 and Λ2 for (5.1) and (5.2)

by

(Λ1f)(x) = γ(x)
∂u(1)

∂ν
(x), x ∈ ∂Ω,

and

(Λ2f)(x) =
∂u(2)

∂ν
(x), x ∈ ∂Ω,

respectively.
For γ such that γ|∂Ω = 1, we set

b
(2)
1 (x) =

1

γ(x)

(
b
(1)
1 (x) +

∂γ

∂x1
(x)

)
,

b
(2)
2 (x) =

1

γ(x)

(
b
(1)
2 (x) +

∂γ

∂x2
(x)

)
, x ∈ Ω.

Then (5.1) coincides with (5.2). Therefore we see that

Λ1 = Λ2.

This means that we cannot determine all of b
(1)
1 , b

(1)
2 , and γ.

Moreover, we cannot determine all b1, b2, and E in the elliptic equation

∆u(x) + b1(x)
∂u

∂x1
+ b2(x)

∂u

∂x2
+ E(x)u(x) = 0, x ∈ Ω

(pp. 121–122 in [11]).

6. Appendix. For the reader’s convenience, we present an outline of the proof
for Carleman estimate (4.34) which was given in [6].

Lemma 6.1. Suppose that ϕ ∈ C2(Ω) is a real function. Then, for any u ∈
W 1,p

0 (Ω), it holds that∫
Ω

∆ϕ|u|2eϕdxdy + 4

∫
Ω

|(∂z + ∂zϕ)u|2eϕdxdy = 4

∫
Ω

|∂zu|2eϕdxdy,(6.1)

where ν = (ν1, ν2) is the outer unit normal vector to ∂Ω and ν⊥ = (−ν2, ν1).
Proof. By the Green formula and u|∂Ω = 0, we have∫

Ω

|∂zu|2eϕdxdy =

∫
Ω

∂zu∂zue
ϕdxdy = −

∫
Ω

u∂z[∂zue
ϕ]dxdy



1392 JIN CHENG AND MASAHIRO YAMAMOTO

and ∫
Ω

|(∂z + ∂zϕ)u|2eϕdxdy =

∫
Ω

(∂z + ∂zϕ)u · (∂z + ∂zϕ)ueϕdxdy

= −
∫

Ω

u∂z[(∂zu+ (∂zϕ)u)eϕ]dxdy

+

∫
Ω

(∂zϕ)u(∂zu+ (∂zϕ)u)eϕdxdy.

By these two equalities, direct calculation implies that∫
Ω

|∂zu|2eϕdxdy −
∫

Ω

|(∂z + ∂zϕ)u|2eϕdxdy =
1

4

∫
Ω

∆ϕ|u|2eϕdxdy.

The proof is completed.
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Pure Math. 43, F. Trèves, ed., AMS, Providence, RI, 1985, pp. 45–70.

[4] L. Bers, Theory of Pseudo-Analytic Functions, Institute for Mathematics and Mechanics, New
York University, New York, 1953.

[5] R. M. Brown and G. A. Uhlmann, Uniqueness in the inverse conductivity problem for nons-
mooth conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997),
pp. 1009–1027.

[6] A. L. Bukhgeim, Extension of solutions of elliptic equations from discrete sets, J. Inverse
Ill-posed Problems, 1 (1993), pp. 17–32.

[7] A. P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis
and its Applications to Continuum Physics, Soc. Brasileira de Matematica, Rio de Janeiro,
Brazil, 1980, pp. 65–73.

[8] M. Cheney, A review of multidimensional inverse potential scattering, in Inverse Problems
in Partial Differential Equations, Proc. Appl. Math. 42, D. Colton, R. Ewing, and W.
Rundell, eds., SIAM, Philadelphia, 1990, pp. 37–49.
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NEURONAL OSCILLATIONS IN THE VISUAL CORTEX:
Γ-CONVERGENCE TO THE RIEMANNIAN MUMFORD–SHAH

FUNCTIONAL∗
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Abstract. The aim of this paper is to provide a formal link between an oscillatory neural
model, whose phase is represented by a difference equation, and the Mumford and Shah functional.
A Riemannian metric is induced by the pattern of neural connections, and in this setting the difference
equation is studied. Its Euler–Lagrange operator Γ-converges as the dimension of the grid tends to 0
to the Mumford and Shah functional in the same Riemannian space. Correspondingly, the solutions
of the phase equation converge to a BV function, which is interpreted as the flow associated with
the Mumford and Shah functional. In this way we provide a biological motivation to this celebrated
functional.

Key words. neural oscillators, Cauchy problem for a difference equation, variational problems,
Riemannian metrics, Γ-convergence, Mumford and Shah functional

AMS subject classifications. 49J45, 65K10, 39A70, 92C20
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1. Introduction. An intriguing issue that has to be dealt with in the mam-
malian visual system is how the information distributed in the visual cortex gets
bound together into coherent object representations. Along the path going from the
physical object to the observer, radiations are completely independent one of the
other. The retina is constituted in its turn by a mosaic of histologically separated
elements. At the end of this chain, during which the unity of the original object is
completely lost, the object shows up again at the perceptual level as a unit. In which
way is it possible to reconstruct at the perceptual level the unity of the physical ob-
ject? This process is known as “binding” or “perceptual grouping,” and it has been
extensively studied at least from two different points of view: From one side it has
been the subject of research in the experimental psychology of Gestalt, oriented to
infer the phenomenological laws of perceptual organization [33]. On the other side,
neurophysiological studies have been focused on the determination of biological func-
tionalities underlying grouping. In this paper we prove a formal relation between two
of these models: a difference equation describing the phase of neuronal oscillators in
the visual cortex, and the celebrated Mumford and Shah functional, first introduced
as a phenomenological model. The family of discrete Euler–Lagrange functionals as-
sociated with the phase equation Γ-converges as the length of the grid tends to 0 to
the Mumford and Shah functional in a BV space related to a Riemannian metric.

1.1. A phenomenological model. Mumford and Shah in their celebrated pa-
per [36] proposed to obtain the segmentation of a given image u0 as a minimum of
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the following functional:

E(u,K) = α

∫
Rn\K

|∇u|2dx+ βdHn−1(K) +

∫
Rn

|u− u0|2dx,

where K is closed, and u ∈W 1,2(Ω \K). This functional has been deeply studied in
the weak formulation, provided by De Giorgi, Carriero, and Leaci in [20], who allow
u to be a SBV function and K its jump set:

MS(u) = α

∫
Rn

|∇u|2dx+ βdHn−1(S(u)) +

∫
Rn

|u− u0|2dx.(1.1)

In the same paper [20] the existence of minima has been proved; their lower semiconti-
nuity has been proved by Ambrosio [1]. The main properties of the minima have been
established by Ambrosio and Pallara [3], Ambrosio, Fusco, and Pallara [4], Bonnet
[8], David [18], and Bonnet and David [9].

It has also been deeply studied in the problem of Γ-approximation of the func-
tional MS, with elliptic functionals. Different families of approximating functionals
have been proposed by Ambrosio and Tortorelli [5], Braides and Dal Maso [13], and
Gobbino [28], who proved a conjecture of De Giorgi. We are interested in this last
result, since it is an approximation of the MS functional with discrete functionals:

1

εn+1

∫
Ω×Ω

arctan

(
(u(x+ ξ) − u(x))2

|ξ|
)
e−

|ξ|2
ε dxdξ.(1.2)

Similar approximation problems have also been studied in [10, 11, 12, 14] in order to
investigate the relation between the finite difference expression of the energy of elastic
media and its continuous counterpart.

Here we will study the difference equation satisfied by the phase of neural oscilla-
tors with a technique similar to the one introduced in [28] and prove that it naturally
leads to a nonisotropic version of the Mumford and Shah functional. A different ap-
proximation of nonisotropic functionals, analogous to [13], had already been provided
by Cortesani [17]. Properties of minima of general anisotropic functionals of MS type
have been established by Fonseca and Fusco [26], Trombetti [40], and Fusco, Mingione,
and Trombetti [27]. We also refer the reader to Baldi for a degenerate functional of
this type [6].

1.2. A neurophysiological model. From the neurological point of view there
is a large amount of experimental evidence that grouping is represented in the brain
with a temporal coding, meaning that semantically homogeneous areas in the im-
age would be encoded in the synchronization (phase locking) of oscillatory neural
responses [22]. Shuster and Wagner [38, 39] described the emergence of oscillations in
the visual cortex by modelling every cortical column by densely connected Wilson–
Cowan neurons [41]. The appropriate mean field equations for the cluster of neurons
show that every column can be interpreted as an oscillator. The visual cortex is then
modelled as a collection of oscillators coupled with long range sparse interactions,
represented by the reduced phase equation, on a grid of length 1:

∂tu(t) = ∆−ξ
(
φ
(
∆ξu

))
(x),(1.3)

where ∆ξ is the difference operator which acts as follows on each function f :

∆ξf(x) = f(x+ ξ) − f(x).
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The function φ is continuous, odd, and periodic of period 2π so that φ(π) = φ(−π) =
0.

The same equation can be adapted to a grid of arbitrary length. Since the function
u represents the phases of the oscillators, we can assume that ∆ξu takes its values in
the interval [−π, π] and φ = 0 in R\[−π, π]. If p > 0, we call

φ|ξ|(z) =
1

|ξ|1−1/p
φ
(|ξ|1/pz), |ξ| �= 0,(1.4)

and a suitable rescaling of the function u is a solution of the equation

∂tu(t) =
1

|ξ|∆−ξ

(
φ|ξ|

(
∆ξu

|ξ|
))

(x).

This finite difference degenerate parabolic equation has been extensively studied in
one dimension in [34, 35]. Its ability to reach phase locking solutions and to present
phase discontinuities has been outlined.

In higher dimension Shuster and Wagner also proposed to convolve with a Gaus-
sian kernel, which expresses the probability that an oscillator is connected to another.
They obtain the equation

∂tu(t) =

∫
Rn

e−
|ξ|
ε

1

|ξ|∆−ξ

(
φ|ξ|

(
∆ξu

|ξ|
))

dξ

εn
(1.5)

with the change of variable η = ξ/ε

=

∫
Rn

1

ε|η|∆−εη

(
e−|η|φε|η|

(
∆εηu

ε|η|
))

dη.

In this study we consider (1.5) in the n-dimensional space and with space variant
anisotropic connections. Indeed, several neurophysiological studies show that the
association field between cortical columns are space variant and strongly anisotropic
[25]. Riemannian metric is directly induced by the coupling strength between cortical
columns.

A Riemannian metric is defined in R
n if at every point there is defined a matrix

gij positive defined and continuous. In this case we call the Riemannian norm |η|g =
gijηiηj and the Riemannian difference quotient

Dε
gηu(x) :=

{ (∆εηu(x))mod(2π)
ε|η|g if ε|η|g �= 0,

0 if ε|η|g = 0.

(1.6)

If g is the identity, this difference quotient reduces to the standard one, and we denote
it Dε

ηu.

The resulting equation is then

∂tu(t) =

∫
Rn

D−ε
η

(
|η|
|η|g e

−|η|gφε|η|g
(
D−ε
gη u

)
h

)
dη,(1.7)

for a continuous function h, where φε|η|g is defined in (1.4).
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1.3. Relation between the stated models. In this paper we prove a first
relation between the stated models, and we provide a biological motivation for the
Mumford and Shah functional. We prove the existence of a solution uε of the Cauchy
problem associated with (1.7), defined for all t ≥ 0, and we prove that it Γ-converges
as ε goes to 0 to the gradient flow relative to the Mumford and Shah functional in
the Riemannian space with metric gij .

Precisely the Euler–Lagrange functional associated with (1.7) is

Fε(u) =

∫
Rn

(∫
Rn

e−|η|gϕε|η|g

(
Dε
gηu

)
h(x)dx

)
dη,(1.8)

where ϕε|ξ| is a primitive of the function φε|ξ| defined in (1.4) and the following theorem
holds.

Theorem 1.1. Assume as before that φ is continuous, it is odd, φ > 0 in [0, π[,
and φ = 0 on [π,∞[. Let us call β the constant value assumed by the primitive ϕ of
φ on the interval [π,∞[, and assume that there exist constants α > 0 and p > 1 such
that

ϕ(z)

zp
→ α �= 0 as z → 0+.(1.9)

Then the family Fε defined in (1.8) Γ-converges in L1
loc(R

n,R/2πZ) to the Mumford
and Shah functional

MS(u,Rn) = α cnp

∫
Rn

|∇gu|pg
h(x)√
g(x)

dx+ β cn1

∫
S(u)

|νg|g h(x)√
g(x)

dHn−1(1.10)

if u ∈ SBV , MS(u,Rn) = +∞ otherwise. S(u) is the jump set of u, νg is the
normal to S(u) in the Riemannian metrics, g = det (gij), and cnp and cn1 are dimen-
sional constants, defined in (2.2). (We refer the reader to section 2, where the formal
definitions of the jump set and the metric are recalled).

Remark 1.1. The Riemannian Mumford and Shah functional is obtained for
h = g and p = 2:

MS(u,Rn) = α cn2

∫
Rn

|∇gu|2g
√
gdx+ β cn1

∫
S(u)

|νg|g√gdHn−1.

In the limit case p = 1, the functional MS becomes the total variation functional, and
an approximation result can be obtained with a modification of the technique used here
as in [30].

The functional Fε is a generalization of a Riemannian setting of the functional
studied in [28]. The proof in this last paper is based on the slicing method and uses
in full strength the isotropy of the functional. The main idea of our proof is the
adaptation of the known technique to an anisotropic setting. Indeed, we first note
that any Riemannian metric admits a representation of the form

gijξiξj = cn2

∫
Rn

e−|η|g (〈ξ, η〉)2
|η|2g

√
gdη,(1.11)

where cn2 is a constant, depending on the dimension of the space (see Proposition
2.5). This representation allows us to write g in terms of an isotropic scalar product
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and to extend to an anisotropic situation a convergence result known in the isotropic
case.

As an application of the Γ-convergence Theorem 1.1, we prove an approximation
result for minima of the MS functional.

Theorem 1.2. Let 1 ≤ q < +∞, and let g ∈ Lq(Rn,R/2πZ). Then for every
ε > 0 there exists a solution (uε) of the minimum problem

mε = min

{
Fε(u) +

∫
Rn

|u− g|qdx : u ∈ BV (Rn,R/2πZ), |Du|(Rn) ≤ 1

ε

}
.

Moreover, for every sequence (εj) with εj → 0 the family (uεj ) has a subsequence
converging in L1

loc to a solution of the minimum problem

m0 = min

{
MS(u,Rn) +

∫
Rn

|u− g|qdx, u ∈ SBV (Rn,R/2πZ)

}
.(1.12)

Finally, mε → m0 as ε→ 0.
The proof is mainly based on a compactness result for a family of functions uε such

that Fε(uε) is bounded. Indeed, since for every ε the functional Fε has a minimum,
by the compactness result, all the minima belong to the same compact subset of BV .
Once this is established, the existence of the minimum point for MS follows from a
general property of the Γ-convergence.

Then we apply the Γ-convergence result to the difference equation (1.7). For a
fixed function u0 ∈ BV (R,R/2πZ), we consider a piecewise constant approximating
family (u0ε) and for every ε > 0 the problem

{ ∂tuε(t) = −∇Fε(uε(t)), t ≥ 0,

uε(0) = u0ε.
(1.13)

We prove that the solution (uε) is defined for every t > 0 and belongs to C([0,+∞[;
Lploc(R

n,R/2πZ)).
It converges in BV to a function u ∈ C([0,+∞[;Lploc(R

n,R/2πZ)), which will then
be interpreted as the flow associated with the Mumford and Shah functional, with
initial datum u0. This function u is a natural candidate for the flow associated with
the Mumford and Shah functional. By now we can give only a characterization for u
under the additional assumption that p = 2 and out of the jump set (see Corollary
5.5 below). The problem of the behavior of the jump set is still open, even in the
Euclidean situation.

This paper is organized as follows. In section 2 we give some preliminary defini-
tions of Γ-convergence and of Riemannian manifold. In sections 3 and 4, respectively,
we prove Theorems 1.1 and 1.2. Finally, in section 5 we describe the behavior of the
flow.

2. Preliminary definitions and notations.

2.1. BV functions and Γ-convergence. In this section we recall the defini-
tions of functions of bounded variation and of Γ-convergence of functionals.

The class of BV functions is a class of functions whose distributional derivative
is a nonnegative measure. We recall here the definition and refer the reader to [24] or
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[23], where these notions are presented in full details. See also [21], where the set of
BV functions with values in R/2πZ is studied.

Definition 2.1. Let Ω ⊂ R
n be an open set. We denote M(Ω) the set of all

signed Radon measures on Ω with bounded total variation. We say that a function
u ∈ L1(Ω,R/2πZ) is a function of bounded variation, and we write u ∈ BV (Ω,R/2πZ)
if all its distributional derivatives Diu, i = 1, . . . , n, belong to M(Ω). It is well known
that the following relation is satisfied almost everywhere:

lim
ρ→0

ρ−n
∫
Bρ(x)

|u(y) − z|dy = 0

for some z ∈ R, and all points x satisfying this relation are called Lebesgue points.
The jump set S(u) is the complementary of the set of Lebesgue points of u. If u ∈
BV (Ω,R/2πZ), then the set S(u) has Hausdorff measure at most n − 1. Moreover,
for Hn−1 in almost every x ∈ S(u) it is possible to find a, b ∈ R/2πZ and a unitary
vector ν such that

lim
ρ→0

ρ−n
∫
Bνρ (x)

|u(y) − a|dy = 0, lim
ρ→0

ρ−n
∫
B−ν
ρ (x)

|u(y) − b|dy = 0,

where Bνr (x) is the half sphere {y ∈ Br(x) : 〈y − x, ν〉 > 0}. The triplet (a, b, ν) is
uniquely determined up to a change of sign, and it will be denoted (u+(x), u−(x), νu(x)).

The distributional derivative Du admits the following decomposition:

Du = Dau+Dju+Dcu,

where Dau = ∇uLn is absolutely continuous with respect to the Lebesgue measure
Ln,

Dju =
(
u+(x) − u−(x)

)
νuH

n−1�S(u)

is the jump part, and Dcu is the Cantor part of Du.
A BV function u is a special function of bounded variation if Dcu = 0 and the

set of these functions is denoted SBV (Ω). A function u belongs to SBVloc(Ω,R/2πZ)
if u ∈ SBV (A,R/2πZ) for all A ⊂⊂ Ω.

Let us now recall the De Giorgi definition of Γ-convergence.
Definition 2.2. If (X, d) is a metric space, a family Fj : X → R of functionals

Γ-converges to F as j → ∞ if the following two conditions are satisfied:
(i) for every u in X and any sequence (uj) converging to u in X,

F (u) ≤ lim inf
j

Fj(uj);

(ii) for every u ∈ X there exists a sequence (uj) converging to u in X such that

F (u) ≥ lim sup
j

Fj(uj).

This notion of convergence captures the behavior of minimizers in the sense of
the following theorem.

Theorem 2.3. Let us suppose that the family Fj of functionals Γ-converges to
F as j → +∞ and that there exists a compact set K such that Fj takes its minimum
on K for every j ∈ N . Then F has a minimum.

We also refer the reader to [19], where these notions are introduced and described.
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2.2. Riemannian metrics. In this subsection we recall the definition of Rie-
mannian metric and refer the reader to [32] for a detailed presentation.

Definition 2.4. A Riemannian metric on a differentiable manifold M is given
by a scalar product on each tangent space TqM , q ∈ M , which depends smoothly on
the point q.

Thus, if M has dimension n and x = (x1, . . . , xn) are local coordinates of M , then
a metric can be represented by a positive definite, symmetric matrix G(x) = (gij(x))i,j
whose coefficients depend smoothly on x. Besides, the scalar product of two tangent
vectors v, w ∈ TqM is 〈v, w〉g = gij(x)v

iwj , and the norm is |v|2g = gij(x)v
ivj . We

remark that a Riemannian metric induces a metric on the cotangent bundle T ∗M =
∪q∈MT ∗

qM defined as follows: if ζ, η ∈ T ∗
qM , then

〈ζ, η〉g = gij(x(q))ηiζj ,

where G−1 = (gij)ij is the inverse matrix of G. If a metric gij is defined on an open
set Ω in R

n and u ∈ BV (Ω,R/2πZ), the Riemannian gradient is the vector

∇gu = G−1∇u,
and its norm in the metric (gij) is

|∇gu|g = (gij∂iu∂ju)
1/2.

Analogously, if νu is the normal to the set S(u), defined at the end of Definition 2.1,
the normal vector with respect to the metric g is

νg = G−1νu,(2.1)

and its norm is |νg|g = (gij(νu)i(νu)j)
1/2 (see [7]).

Finally, we prove a duality relation between the norm on the tangent space and
the cotangent.

Proposition 2.5. Let v ∈ R
n, and let us call vg = G−1v, as in the definition of

the Riemannian gradient or Riemannian normal vector. Then

(|vg|g)p = cnp

∫
Rn

e−|η|g |〈v, η〉|p
|η|pg

√
gdη(2.2)

and

〈vg, wg〉g = cn2

∫
Rn

e−|η|g 〈v, η〉〈w, η〉
|η|2g

√
gdη(2.3)

for suitable constants cnp, depending on the dimension of the space and p.
Proof. We fix a vector w of Euclidean length 1 and note that∫

Rn

e−|ξ| |〈w, ξ〉|p
|ξ|p dξ =

1

cnp

is a constant independent of w. Denoting A = (aij)ij the square root of G, with
the change of variable ξ = ηA we have

∑
s(ξs)

2 = ηkηhgkh = |η|2g. Then the second
member of (2.2) can be computed:∫

Rn

e−|η|g |〈v, η〉|p
|η|pg

√
gdη =

∫
Rn

e−|ξ| |〈vA−1, ξ〉|p
|ξ|p dξ
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=
1

cnp
|vA−1|p =

1

cnp
|vg|pg.

The first assertion is proved.
In order to prove the second one, we first note that

δij = cn2

∫
Rn

e−|ξ| ξiξj
|ξ|2 dξ,

where δij is the Kronecker delta. On the other hand, if we denote A−1 = (aij)ij ,

〈vg, wg〉g = ghkvhwk = ahiδija
jkvhwk = cn2

∫
Rn

e−|ξ| vha
hiξiξja

jkwk
|ξ|2 dξ

= cn2

∫
Rn

e−|ξ| 〈ξA−1, v〉〈ξA−1, w〉
|ξ|2 dξ.

Then, with the same change of variable as before, η = ξA−1, we get the thesis.

3. Γ-convergence results: Proof of Theorem 1.1. In this section we first
recover formally the expression of the Euler–Lagrange functionals Fε; then we prove
the Γ-convergence of the family Fε to the Mumford and Shah functional

MS(u,Rn) =

⎧⎪⎨
⎪⎩

α cnp
∫

Rn
|∇gu|pg h(x)√

g(x)
dx+ β cn1

∫
S(u)

|νg|g h(x)√
g(x)

dHn−1 if u ∈ SBV,

+∞ otherwise.

The proof of Theorem 1.1 is based on the slicing method, a general integral-geometric
technique which allows us to represent the functional Fε(u) in terms of its one-
dimensional sections. In this way it is possible to reduce the dimension of the problem
to one and recover the Γ-limit result through the study of the one-dimensional prob-
lem. The method we use is a combination of the techniques in [28] and [10], where
similar convergence results are provided.

3.1. An approximating family of discrete functionals. Let us first formally
write the expression of the Euler–Lagrange functional for (1.7), giving the definition
of the space where the problem will be studied.

The equation is defined in terms of a metric (gij)ij such that gij are continuous
functions on Rn and that there are two positive constants λ and Λ such that

λ|η|2 ≤ gij(x)η
iηj ≤ Λ|η|2 ∀x, η ∈ R

n.(3.1)

Let us call h : R
n → R a continuous function such that

λ ≤ h(x) ≤ Λ ∀x ∈ R
n.

Let us recall here the assumptions required in Theorem 1.1. The function φ :
R → R is continuous, it is odd, φ > 0 in [0, π[, and φ = 0 on [π,+∞[. If ϕ : R → R is
a primitive function of φ null in 0, ϕ is obviously of class C1([0,+∞[) and constantly
assumes a value β in [π,+∞[. Moreover, we require that (1.9) holds. A primitive ϕε
of the rescaled function φε defined in (1.4) is ϕε(t) = 1

εϕ(ε1/pt).



1402 GIOVANNA CITTI, MARIA MANFREDINI, ALESSANDRO SARTI

We consider the following functional:

Fε : Lp → R Fε(u) =

∫
Rn

∫
Rn

e−|η|gϕε|η|g
(
Dε
gηu(x)

)
h(x)dx dη,(3.2)

where Dε
gηu is defined in (1.6).

Remark 3.1. Fε(u) < +∞ for every u ∈ Lp. Indeed, by the assumption (1.9) on
ϕ there exists δ > 0 such that

ϕ(z) ≤ c1z
p ∀z ∈ [0, δ](3.3)

for a suitable constant c1. Here and in what follows we will denote ci any constant
depending only on the data of the problem. On the other hand, since φ is nonnegative,
ϕ is increasing and takes its maximum at π. It then follows that

ϕ(z) ≤ β ≤ c1z
p ∀z ≥ δ.(3.4)

Analogous inequalities hold for ϕε, with the same constant, so that

Fε(u) ≤ cε

∫
Rn

∫
Rn

e−|η|g ∣∣Dε
gηu(x)

∣∣pdx dη ≤ cεp

∫
Rn

∫
Rn

e−|η|g ∣∣u(x)∣∣pdx dη,
and this is finite if u ∈ Lp(Rn,R/2πZ). In particular, due to (3.3) and (3.4) we also
have the following: there exist positive constants c1, c2 such that

c1 min{αzp, β} ≤ ϕ(z) ≤ c2 min{αzp, β}.(3.5)

In order to recognize that Fε is the Euler–Lagrange functional of the discrete
phase equation, we will work in the following set of piecewise constant functions:

PCpε = {u ∈ Lp(Rn,R/2πZ) : u is constant on the cube εz + [0, ε]n ∀z ∈ Z
n}.

Proposition 3.1. Let ε > 0. Then we have the following:
(i) for every u ∈ PCpε the gradient of Fε in u is given by

(∇Fε(u))(x) = −
∫

Rn

D−ε
η

(
he−|η|g |η|

|η|g φε|η|g
(
Dε
gηu
))

(x)dη,

where we simply denote Dε
η the difference quotient when the metric g is the Euclidean

metric;
(ii) ∇Fε is a Lipschitz continuous function on PCpε .
Proof. In order to prove (i) we calculate the Gâteaux derivative along a direction

v ∈ PC
p
p−1
ε :

lim
δ→0

Fε(u+ δv) − Fε(u)

δ

= lim
δ→0

1

δ

∫
Rn

∫
Rn

h(x) e−|η|g
(
ϕε|η|g

(
Dε
gηu(x) + δDε

gηv(x)
)− ϕε|η|g

(
Dε
gηu(x)

))
dx dη

=

∫
Rn

∫
Rn

he−|η|gφε|η|g
(
Dε
gηu
) |η|
|η|gD

ε
ηv dx dη

formally integrating by parts the difference quotient

= −
∫

Rn

∫
Rn

D−ε
η

(
h(x)e−|η|g |η|

|η|g φε|η|g
(
Dε
gηu
))

(x)v(x) dx dη.

Finally, ∇Fε is Lipschitz continuous because it is compositions of Lipschitz continuous
functions.
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3.2. The one-dimensional case. Let us start with studying the simplest op-
erator of the form (1.8) in R:∫

R

f(x)ϕε|η|g
(
Dε
gηu(x)

)
dx,(3.6)

where η ∈ R, f : R → R, is a continuous function such that

λ ≤ f(x) ≤ Λ ∀x ∈ R,

with λ, Λ positive constants. A metric in R is simply defined by a continuous function
b such that for every η,

|η|g(x) = b(x)|η|.
Moreover, by simplicity in dimension 1 we will always assume that η = 1 so that the
functional on an interval I reduces to

F̂ε,1,f,b(u, I) =

∫
I

f(x)ϕεb(x)

(Dεu(x)

b(x)

)
dx,(3.7)

where Dε = Dε
1 is the difference quotient with respect to the Euclidean metric.

We will give sufficient conditions for the Γ-convergence of the functional F̂ε,1,f,b(·, I)
to the Mumford and Shah functional

MSf,b(u, I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α
∫
I
f(x)

(
|u′(x)|
b(x)

)p
dx+ β

∫
I∩S(u)

f(x)
b(x) dH

0(x)

if ∈ SBV (I),

+∞ otherwise,

(3.8)

where α is defined in (1.9) and β = ϕ(π).
We recall the following regularity result, which is proved, for example, in Theorem

2.6 in [10].
Theorem 3.2. The functional MSf,b(u, I) is lower semicontinuous in L1

loc(I).
In order to prove the Γ-convergence result in L1

loc(R,R/2πZ), we need an approx-
imation lemma for sequences converging in L1

loc(R,R/2πZ); see [10].
Lemma 3.3. Let uε → u in L1

loc(R,R/2πZ). We call T εyv(x) a function whose
values on the interval [y+ε(k, k+1)], k ∈ Z, are between uε(y+kε) and uε(y+(k+1)ε).
Then, for almost every y ∈ (0, ε) and all choices of functions T εyv(x), the family T εyv(x)
converges to u in L1

loc(R).

Lemma 3.4. Let us first assume that there are two positive constants α̃ and β̃
such that

ϕ(z) = min
{
α̃zp, β̃

}
.(3.9)

Then for every u ∈ L1
loc(R,R/2πZ), for every sequence uj → u in L1

loc(R,R/2πZ)
there exists a sequence εj → 0 such that

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥MSf,b(u,R).

Proof. By simplicity of notation in the proof we will always denote MS(u, I)
instead of MSf,b(u, I), F̂ε(u, I) instead of F̂ε,1,f,b(u, I), and Dε instead of Dε

1.
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We will call s ∈ R such that ϕ is constant in [s,+∞[.
First we assume that I is a bounded open interval of R. Let uj → u in L1(I,R/2πZ)

and show that

lim inf
j

F̂εj (uj , I) ≥MS(u, I).

Let δ > 0 be fixed. Arguing as in Braides [10, p. 82], we can assume that there exists
a subsequence, always denoted εj , and a sequence (yj), with yj ∈ (0, εj) satisfying the
thesis of Lemma 3.3 such that

F̂εj (u, I) + δ ≥ εj
∑
k∈Jj

f(kεj + yj)ϕεjb

(Dεju(kεj + yj)

b(kεj + yj)

)
,

where we have denoted

Jj = {k ∈ Z :]εjk + yj , εj(k + 1) + yj [⊂ I}.

This is a particular version of the mean value theorem for integrals, where we have
only one inequality, since we are not free to choose yj in an arbitrary way but only
almost everywhere.

Since Jj is finite, we can write

Jj = {kj1, . . . , kjNj}

and denote

J1
j =

{
k ∈ Jj :

|(uj((k + 1)εj + yj) − uj(kεj + yj))mod 2π|
εjb(kεj + yj)

≤ sε
−1/p
j

}
, J2

j = Jj\J1
j .

Then we define vj = T
εj
y uj as follows:

⎧⎪⎪⎨
⎪⎪⎩

(
t−yj
εj

− k

)
uj(εj(k + 1) + yj) +

(
(k + 1) − t−yj

εj

)
uj(kεj + yj), t ∈ yj + εj ]k, k + 1[, k ∈ J1

j ,

uj(kεj + yj), t ∈ yj + εj ]k, k + 1[, k ∈ J2
j ,

uj(k
1
0εj + yj) if t ≤ yj + kj1εj ,

uj((k
k
Nj

+ 1)εj + yj) if t ≥ yj + (kjNj
+ 1)εj .

The choice of yj is made, according to Lemma 3.3, in such a way that vj → u in
L1(I).

With this notation the estimate of F̂ε becomes

F̂εj (u, I) + δ ≥ εj
∑
k∈Jj

f(kεj + yj)ϕεjb

(Dεju(kεj + yj)

b(kεj + yj)

)

= α̃
∑
k∈J1

j

εjf(kεj + yj)
∣∣∣Dεju(kεj + yj)

b(kεj + yj)

∣∣∣p + β̃
∑
k∈J2

j

f(kεj + yj)

b(kεj + yj)

= α̃

∫
I

f(x)

∣∣∣∣v′j(x)b(x)

∣∣∣∣
p

dx+ β̃
∑

x∈S(vj)∩I

f(x)

b(x)
.
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The sequence vj converges to u by its choice. On the other hand, the operator MS
is lower semicontinuous so that

lim inf
j→+∞

F̂εj (uj , I) ≥MS(u, I) − δ.

The arbitrariness of δ > 0 gives the thesis in the case where I is a bounded open
interval. The result is still valid for R approximating from the interior by bounded
and open interval I.

In order to deal with the general case, we recall the following theorem about
supremum of family of positive measures, which can be found in [10].

Proposition 3.5. Let Ω be an open set and A(Ω) be the family of its open
subsets. Let µ1 : A(Ω) → [0,+∞[ be an open set function, superadditive on open sets
with disjoint compact closures. Let µ be a positive measure, let ψi be positive Borel
functions such that µ1(A) ≥ ∫

A
ψidµ for all A ∈ A(Ω), and let ψ(x) = supψi(x).

Then µ1(A) ≥ ∫
A
ψdµ for all A ∈ A(Ω).

Theorem 3.6. Let φ and ϕ satisfy the assumptions stated in Theorem 1.1. Then
for every u ∈ L1

loc(R,R/2πZ), for every sequence uj → u in L1
loc(R,R/2πZ) there

exists a sequence εj → 0 such that

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥MSf,b(u,R).

Proof. Let ai and bi be sequences of positive real numbers such that supi ai = α,
supi bi = β, and

ϕi(z) = min

{
aiz

pbi

}
≤ ϕ(z) ∀ t ≥ 0(3.10)

by Remark 3.1. Note that we do not require any monotonicity property on ai and bi
so that their existence is ensured. From Lemma 3.4 we have

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥ ai

∫
I

f(x)

( |u′(x)|
b(x)

)p
dx+ bi

∫
I∩S(u)

f(x)

b(x)
dH0(x)

for every i. In order to apply Proposition 3.5 we set

µ = L1 +
∑

x∈S(u)

δx,

where L1 is the Lebesgue measure and δx is the Dirac measure. We also set

ψi(x) =

⎧⎪⎨
⎪⎩

aif(x)
(

|u′(x)|
b(x)

)p
on I\S(u),

bi
f(x)
b(x) on S(u)

so that

ψ(x) = supψi(x) =

⎧⎪⎨
⎪⎩

αf(x)
(

|u′(x)|
b(x)

)p
on I\S(u),

β f(x)b(x) on S(u).
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By Proposition 3.5 we deduce

lim inf
j→+∞

F̂εj ,1,f,b(uj ,R) ≥ α

∫
I

f(x)

( |u′(x)|
b(x)

)p
dx+ β

∫
I∩S(u)

f(x)

b(x)
dH0(x).

This is the thesis.
The opposite inequality is simpler. We start with a simple remark.
Remark 3.2. Let I be a real interval, not necessarily bounded, and let u ∈

BV (R,R/2πZ) such that MSf,b(u, I) < +∞. Then there exists a constant c1 inde-
pendent of ε such that for every

A ⊂ {x ∈ I : [x, x+ ε] ∩ S(u) �= ∅},(3.11)

∫
A

|Dεu(x)|pdx ≤ c1

∫
Ãε

|u′(x)|pdx,(3.12)

where Ãε = ∪x∈A[x, x+ ε].
Indeed,

∫
A

|Dεu(x)|pdx =

∫
A

∣∣∣∣∣
∫ 1

0

u′(x+ εs)ds

∣∣∣∣∣
p

dx ≤ c1

∫
A

∫ 1

0

|u′(x+ εs)|pdsdx

(with the change of variable y = x+ εs)

≤ c1

∫ 1

0

∫
Ãε

|u′(x)|pdxds = c1

∫
Ãε

|u′(x)|pdx.

Theorem 3.7. Let φ and ϕ satisfy the assumptions stated in Theorem 1.1. Then
for every u ∈ L1

loc(R,R/2πZ),

lim sup
ε→0+

F̂ε,1,f,b(u,R) ≤MSf,b(u,R).

Proof. Let us fix δ > 0. We can obviously assume that MSf,b(u,R) < +∞, which
implies that u has only a finite number of jumps. Then there exists M > 0 such that
u has no jumps in I\[−M,M ]. Since u′ ∈ Lp, by the previous remark we can also
assume that M is chosen in such a way that for every ε,∫

I\[−M,M ]

(|Dεu|p + |u′|p)dx ≤ δ.(3.13)

From the previous remark it also follows that there exists σ > 0 independent of ε
such that, for every ε, for every A satisfying (3.11), A ⊂ [−M,M ] and with Lebesgue
measure |A| < σ, the following estimate holds:∫

A

(|Dεu|p + |u′|p)dx ≤ δ.(3.14)

In particular, if we call

Ikε = {x ∈ [−M,M ] : [x, x+ ε] ∩ S(u) �= ∅, |Dεu(x)| > k},
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then, always for the previous remark,

|Ikε| ≤ 1

kp

∫
Ikε

|Dεu|pdx ≤ 1

kp

∫
I\S(u)

|u′(x)|pdx→ 0

as k → +∞, uniformly in ε. Then by (3.14) we can fix k > 0 such that for every ε,∫
Ikε

|Dεu|pdx ≤ δ.(3.15)

Let us denote {x1, . . . , xs} the set of jumps of u, and let us call

J = {x ∈ [−M,M ] : [x, x+ ε] ∩ S(u) = Ω, |Dεu(x)| ≤ k}, IS =
⋃
j

[xj − ε, xj ].

By (3.15) and (3.13) and the fact that ϕε(z) ≤ c2z
p for every z ∈ R, with c2 indepen-

dent of ε, the discrete functional can be estimated as

F̂ε,1,f,b(u, I) = 2c2δ +
∑
j

∫ xj

xj−ε
f(x)ϕεb

(Dεu(x)

b(x)

)
dx(3.16)

+

∫
J

f(x)ϕεb

(Dεu(x)

b(x)

)
dx.

Each of the integrals in the first sum can be estimated using the definition of ϕε and
the fact that maxϕ = β:∫ xj

xj−ε
f(x)ϕεb

(Dεu(x)

b(x)

)
dx ≤ β

ε

∫ xj

xj−ε

f(x)

b(x)
dx→ β

f(xj)

b(xj)
(3.17)

as ε tends to 0.
In the last integral of (3.16) we use the fact that Dεu(x) takes values in the

compact set [−k, k] and punctually tends to u′, while ϕεb(x)(z) → α |z|p
bp(x) uniformly if

(x, z) belong to a compact set. Hence

ϕεb

(Dεu(x)

b(x)

)
→ α

|u′(x)|p
bp(x)

almost everywhere. Using again the fact that Dεu(x) is bounded by k we can apply
Lebesgue’s dominate convergence theorem on the bounded set [−M,M ]\S(u) and
obtain ∫

J

f(x)ϕεb

(Dεu(x)

b(x)

)
dx→ α

∫
[−M,M ]\S(u)

|u′(x)|p
bp(x)

dx.(3.18)

Putting together (3.16), (3.17), and (3.18) we obtain

lim sup
ε→0+

F̂ε,1,f,b(u,R) ≤ 2c2δ +MSf,b(u,R),

and this implies the thesis, since δ is arbitrary.
Finally, from Lemma 3.4, Theorem 3.6, and (3.5) we have the following corollary.
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Corollary 3.8. Let φ and ϕ satisfy the assumptions stated in Theorem 1.1.
Then

Γ − lim
ε→0

F̂ε,1,f,b(u,R) = MSf,b(u,R) in L1
loc(R,R/2πZ),

limε→0F̂ε,1,f,b(u,R) = MSf,b(u,R) for every u ∈ SBV (R,R/2πZ),

and

F̂ε,1,f,b(u,R) ≤ C MSf,b(u,R) for every u ∈ L1(R,R/2πZ),

with C a positive constant.

3.3. The n-dimensional case. In this section we will deduce the general n-
dimensional case from the one-dimensional result, using the slicing method already
used in the nonperiodic, isotropic case by Braides [10].

This procedure is formally similar to a standard reduction in the integral so that
we fix η ∈ R

n\{0} and denote 〈η〉⊥ = {z ∈ R
n : 〈η, z〉 = 0} the orthogonal space to η

with respect to the Euclidean metrics. For every y ∈ 〈η〉⊥ consider the function uηy
defined by

uηy(t) = u
(
y + t

η

|η|
)
, t ∈ R.

With these notations the operator Fε defined in (3.2) becomes

Fε(u,R
n) =

∫
Rn

∫
Rn

h(x)e−|η|gϕε|η|g
(
Dε
gηu(x)

)
dxdη(3.19)

=

∫
Rn

∫
〈η〉⊥

F̂ε,η,f,b(uηy,R)dydη,

where

f(t) =
(
he−|η|g |η|

|η|g
)
ηy

(t), b(t) =
|η|g(y + t η|η| )

|η| ,(3.20)

and

F̂ε,η,f,b(uηy(t),R) =

∫
R

f(t)ϕεη

(Dε
|η|uηy(t)

b(t)

)
dt.

In this way the functional Fε is represented in terms of one-dimensional sections.
Also the functional MS, defined in (1.10), can be represented in terms of its

sections, and the function u belongs to BV if and only if its sections uηy belong to
BV (R).

Theorem 3.9. (i) Let u ∈ SBV (Rn,R/2πZ). Then for all η ∈ R
n we have

uηy ∈ SBV (R,R/2πZ) for almost everywhere y ∈ 〈η〉⊥ and, moreover,

u′ηy(t) =
〈
∇u
(
y + t

η

|η|
)
,
η

|η|
〉

for a. e. t ∈ R,
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S(uηy) =

{
t ∈ R : y+t

η

|η| ∈ S(u)

}
, u+

ηy(t) = u+
(
y+t

η

|η|
)
, u−ηy(t) = u−

(
y+t

η

|η|
)
,

where u+ and u− are defined at the end of Definition 2.1.
(ii) Let u ∈ L1

loc(R
n,R/2πZ), and let MSf,b be the operator defined in (3.8). If∫

〈η〉⊥
MSf,b(uηy,R)dy < +∞

for every η ∈ B, B a basis of vector space R
n, then u ∈ SBV (Rn,R/2πZ).

We refer to Ambrosio [1] for the proof.
Applying the previous result we get the expression of our Mumford and Shah

functional.
Theorem 3.10. For every function u ∈ L1

loc(R
n,R/2πZ) we have that

∫
Rn

(∫
〈η〉⊥

MSf,b(uηy,R)dy

)
dη = MS(u,Rn).

Proof. We can assume that u ∈ SBV (Rn). In this case by Theorem 3.9 we have
that ∫

〈η〉⊥
MSf,b(uηy,R)dy

= α

∫
〈η〉⊥

∫
R

f(t)
( |u′ηy(t)|

b(t)

)p
dtdy + β

∫
〈η〉⊥

∫
S(uηy)

f(t)

b(t)
dH0(t)dy

by Theorem 3.9 and by definition (3.20)

= α

∫
Rn

h(x)e−|η|g
∣∣∣〈∇u(x), η

|η|g
〉∣∣∣pdx+ β

∫
S(u)

h(x)e−|η|g
∣∣∣∣〈ν, η

|η|g
〉∣∣∣∣ dHn−1(x),

where the equality follows from [10] for the second integral. Integrating in η the
preceding equality we get ∫

Rn

∫
〈η〉⊥

MSf,b(uηy,R)dydη

= α

∫
Rn

h(x)

(∫
Rn

e−|η|g
∣∣∣〈∇u(x), η

|η|g
〉∣∣∣pdη

)
dx

+β

∫
S(u)

h(x)

(∫
Rn

e−|η|g
∣∣∣∣〈ν, η

|η|g
〉∣∣∣∣ dη

)
dHn−1(x)

(by Proposition 2.5)

= αcnp

∫
Rn

h(x)√
g(x)

|∇gu(x)|pgdx+ β cn1

∫
S(u)

h(x)√
g(x)

|νg|gdHn−1(x).
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Proof of Theorem 1.1. We sketch the proof which follows from the convergence
Corollary 3.8 and the representation of the limit functional provided in Theorem 3.10.
Let u, uj ∈ L1

loc(R
n,R/2πZ), uj → u in L1

loc(R
n,R/2πZ), let εj → 0, and let us prove

that

lim inf
j→+∞

Fεj (uj) ≥MS(u,Rn).

Indeed, by (3.19) and the Fatou lemma

lim inf
j→+∞

Fεj (uj) ≥
∫

Rn

∫
〈η〉⊥

lim inf
j→+∞

F̂εj ,η,f,b((uj)ηy,R)dydη

(by Corollary 3.8)

≥
∫

Rn

∫
〈η〉⊥

MSf,b((uj)ηy,R)dydη = MS(u,Rn)

by Theorem 3.10. Finally, the dominated convergence asserted in Corollary 3.8 ensures
that MS(u) = limεFε(u) for every u, and this proves the second requirement in the
definition of Γ-convergence.

4. Existence of a minimum for the Mumford and Shah functional. We
will give here an approximation result of the minimization problem for the Riemannian
Mumford and Shah functional. It is based on the existence of the minimum for every
Fε, on the Γ-convergence property, and on a suitable compactness result.

4.1. An embedding theorem. In this section we will prove an embedding
theorem which extends the classical compactness result in the space BV . Indeed,
due to the particular expression of the functional Fε, we will deal with family (uε) of
functions such that the quantity

N(uε) =

∫
Ω

|uε|dx+

∫
Rn

e−|η|g
∫

Ω

|Dε
ηuε(x)|dx dη(4.1)

is bounded if Ω is bounded.
Theorem 4.1. Let (uε) be a family of functions in L1

loc(R
n,R/2πZ) such that for

every bounded set Ω, N(uε) is bounded. Then there exists a sequence εj convergent to
0 and a function u in BVloc such that uεj converges to u in L1

loc(R
n,R/2πZ).

Proof. Let us choose a nonnegative radially symmetric cut off function η of class
C∞

0 (Rn), supported in the unitary sphere, and with integral 1. For every ε > 0 we set

uεε(x) =

∫
Rn

η(ξ)uε(x+ εξ)dξ.

Then we have for Ω bounded∫
Ω

|uεε(x)|dx ≤
∫

Ω

(∫
Rn

η(ξ)uε(x+ εξ)dξ

)
dx < c1,

since η is bounded in L∞ and (uε) in L1
loc. By definition the gradient of (uεε) is

∇uεε(x) =
1

ε

∫
Rn

∇η(ξ)uε(x+ εξ)dξ
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since η is radially symmetric

=

∫
Rn

∇η(ξ)
(uε(x+ εξ) − uε(x)

ε

)
dξ.

Then for any bounded Ω∫
Ω

|∇uεε(x)|dx ≤
∫
|ξ|≤1

∫
Ω

|Dε
ξuε(x)|dxdξ < c2

by the assumption on Nε. By the standard compactness theorem in BVloc it follows
that (uεε) has a subsequence (u

εj
εj ) converging in L1

loc to a BVloc function u. On the
other side,

(uεj − uεjεj )(x) =

∫
Rn

η(ξ)
(
uεj (x+ εjξ) − uεj (x)

)
dξ ≤ εj

∫
|ξ|≤1

∣∣∣Dεj
ξ uεj (x)

∣∣∣dξ.
Integrating over Ω we get∫

Ω

|uεj − uεjεj |(x)dx ≤ εj

∫
|ξ|≤1

∫
Ω

∣∣∣Dεj
ξ uεj (x)

∣∣∣dxdξ ≤ c3εj .

It immediately follows that uεj has the same limit as u
εj
εj in L1

loc.

4.2. A compactness result. Let us now prove a compactness result for a family
(uε) of functions such that Fε(uε) is bounded. Since the argument of the function ϕε
in the expression of Fε is the difference quotient and the functions we are interested
in have a different behavior when the argument is small or big, we will also denote

the following: Dε,+
gξ uε(x) = Dε

gξuε(x) if |Dε
gξuε(x)| > π(ε|ξ|)− 1

p and Dε,+
gξ uε(x) = 0

otherwise, and we will call

I+
εξ = {x ∈ R

n|Dε,+
gξ uε(x) �= 0}.(4.2)

This notation will be useful when studying the limit for ε → 0, since the term
Dε,−
gξ uε(x) will recover the gradient of u, while Dε,+

gξ uε(x) will describe the jump
set of the function.

Theorem 4.2. Let (uε) be a family of functions in L1
loc(R

n,R/2πZ) such that
Fε(uε) is bounded; then Nε(uε) is bounded.

Proof. Let us call c1 a constant such that

ϕε(z) ≥ c1z
p(4.3)

for all z such that ε1/pz ≤ π. Note that c1 is independent of ε. Let us now fix an
open set Ω ⊂⊂ R

n and estimate separately the integral on I+
εξ and the complement

set. Since uε takes values in [−π, π], we have∫
Rn

e−|ξ|g
∫
I+
εξ
∩Ω

|Dε
gξuε(x)|dxdξ ≤ c2

∫
Rn

e−|ξ|g
∫
I+
εξ
∩Ω

1

ε|ξ|g dxdξ(4.4)

(since ϕ takes constantly the value β in [π,+∞])

≤ c2
β

∫
Rn

e−|ξ|g
∫
I+
εξ
∩Ω

ϕε|ξ|
(
Dε
gξuε

)
dxdξ ≤ c3Fε(uε).
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By condition (4.3) and the assumption (3.1) on (gij)ij ,∫
Rn

∫
Rn\I+

εξ

e−|ξ|∣∣Dε
gξuε(x)

∣∣p dxdξ ≤ c4

∫
Rn

∫
Rn\I+

εξ

e−|ξ|gϕε|ξ|
(
Dε
gξuε(x))dxdξ

≤ c4Fε(uε).

Consequently,∫
Rn

e−|ξ|g
∫

Ω

|Dε
gξuε(x)|dxdξ =

∫
Rn

e−|ξ|g
(∫

Ω\I+
εξ

+

∫
Ω∩I+

εξ

)
|Dε

gξu(x)|dxdξ

by (4.4) and Hölder inequality

≤ c3Fε(uε) +

∫
Rn

e−|ξ|g
(∫

Ω\I+
εξ

|Dε
gξuε(x)|pdx+ c5|Ω|

)
dξ

≤ (c3 + 1)Fε(uε) + c6|Ω|
for suitable constants ci. Here | · | indicate the Lebesgue measure in R

n.
Then lemma is proved.

4.3. Approximation of the minima for the Riemannian Mumford and
Shah functional. Let us first modify the functional Fε in such a way that its mini-
mum is a BV function.

Lemma 4.3. Let g ∈ Lq(Rn,R/2πZ) and for every ε > 0 let us denote

Gε(u) =

{
Fε(u) +

∫
Rn

|u− g|qdx if u ∈ BV (Rn,R/2πZ), |Du|(Rn) ≤ 1
ε ,

+∞ otherwise.
(4.5)

Then the family Gε(u) Γ-converges as ε→ 0 in L1
loc(R

n,R/2πZ) to the functional

G0(u) = MS(u,Rn) +

∫
Rn

|u− g|qdx.

Proof. The lim inf-inequality follows from the Γ-convergence of (Fε). The lim sup
follows from the pointwise convergence of (Fε) if u ∈ SBV and by a truncation
argument for all u.

Proof of Theorem 1.2. Since the functional Gε is lower semicontinuous in
L1
loc(R

n) and the set

{u ∈ BV (Rn,R/2πZ) : |Du|(Rn) ≤ 1/ε}
is compact in L1

loc(R
n), the existence of minimizers for Gε follows from the direct

method of the calculus of variations.
We then prove that all the minimizers belong to the same compact set K. Let

(uε) be a family of minimizers. Since

Gε(uε) ≤ Gε(0) ≤ |g|qLq(Rn),

we can apply Theorems 4.1 and 4.2 and deduce that the family (uε) is relatively
compact in L1

loc and has a limit in BV .
Finally, by the general property of Γ-convergence stated in Theorem 2.3, any limit

point of (uε) is a minimizer for the problem (1.12) and mε → m0 as ε→ 0.
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5. The evolution problem. In this chapter we fix a function u0 ∈ BV , ap-
proximate it by a piecewise constant function, and for every ε study the solution (uε)
of problem (1.13) in section 1. Then we establish the properties of the limit of this
family as ε→ 0.

We now define the space

X = {u ∈ SBVloc(R
n,R/2πZ) : MS(u,Rn) < +∞}.

Let u0 ∈ X be an initial datum for the parabolic problem. Since the functional Fε
is defined on piecewise constant functions, we consider an approximation of u0 in the
space PCpε (R

n,R/2πZ) defined in section 2.
Proposition 5.1. If u0 ∈ X, there exists a family (u0ε) ∈ PCpε (R

n,R/2πZ)
such that

u0ε → u0 in Lploc(R
n,R/2πZ),

lim
ε→0

Fε(u0ε) = MS(u0,R
n),

and

sup
ε>0

{Fε(u0ε)} < +∞

(see [29, p. 167] for the proof).
Then we consider the evolution problem in (1.13). By the standard Cauchy–

Lipschitz existence result (cf. [31]), we have the following theorem.
Theorem 5.2. For every ε > 0 the initial value problem (1.13) has a unique

solution uε ∈ C1([0,+∞[, PCpε ) which depends continuously on the initial datum.
Let us now study the limit of the family (uε).
Lemma 5.3. Let Ω be a compact set in R

n, and let (uε) be the family of solu-
tions of the initial value problem found in Theorem 5.2. There exists a sequence (εk)
convergent to 0 such that (uεk) is relatively compact in C([0,+∞[;Lploc(R

n,R/2πZ))
and has a limit u ∈ C([0,+∞[;Lploc(R

n,R/2πZ)) such that u(t) ∈ BV (Ω) for every
t ∈ [0,+∞[.

Proof. We first note that the function t→ Fε(uε(t)) is nonincreasing. Indeed,

d

dt
Fε(uε(t)) = 〈∇Fε(uε(t)), u′ε(t)〉L2(Rn)(5.1)

= −||u′ε(t)||L2(Rn) = −||∇Fε(uε(t))||L2(Rn).

This implies that

Fε(uε(t)) ≤ Fε(u0ε) ≤ sup
ε>0

Fε(u0ε) < +∞

by the choice of the family (u0ε) in Proposition 5.1. By Theorems 4.1 and 4.2, this
implies that the family (uε(t)) is relatively compact in L1

loc(R
n), and for every t the

limit u(t) belongs to BV .
We have to prove the continuity of this limit. Since the functions (uε) take values

in [−π, π], the compactness in L1
loc implies compactness in Lploc for every p. Moreover,

||uε(t1) − uε(t2)||L2(Rn) ≤
∫ t2

t1

||u′ε(t)||L2(Rn)dt ≤
(∫ t2

t1

||u′ε(t)||2L2(Rn)dt

) 1
2

|t1 − t2| 12
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≤ (Fε(u0ε(t)))
1
2 |t1 − t2| 12 ≤ c |t1 − t2| 12

for any ε > 0. Letting ε go to 0, we obtain the continuity of u.
Remark 5.1. Let us note that if

φ(z)

z
→ 2α as t→ 0,(5.2)

then condition (1.9) is satisfied with p = 2, and all the previous results hold true.
Moreover, if φ is of class C2, there exists a constant c such that

|φε|ξ|(z) − αz| ≤ c
√
ε(ϕε|ξ|(z) + |ξ|2) when |z| ≤ π(ε|ξ|)− 1

2 .(5.3)

Let us prove the following theorem, where we will assume p = 2.
Theorem 5.4. Assume as before that φ is continuous, it is odd, φ > 0 in [0, π[,

φ = 0 on [π,+∞[, and assume that assumptions (5.2) and (5.3) are satisfied. If uε is
the solution of problem (1.13) and u its limit, then

∂tuε → 2α cn2 div

(
gij√
g
∂ju

)
weakly in L2

loc([0,+∞[×R
n,R).

Proof. Let us fix a bounded set Ω. By assumption we have∫ T

0

∫
Rn

∫
Ω∩I+εη

φε|η|g
(
Dε
gηuε(x)

)
dxdηdt = 0,

where I+
εη is defined in (4.2). If U ⊂⊂ R

n is bounded, by (5.3)

∫ T

0

∫
U

∫
Ω\I+εη

∣∣∣φε|η|g(Dε
gηuε(x)

)− αDε
gηuε(x)

∣∣∣dxdηdt ≤ √
ε(Fε(uε) + c1) → 0

as ε→ 0.
This means that

φε|η|g
(
Dε
gηuε(x)

)− αDε
gηuε(x) → 0 in L1

loc([0, T ] × R
n × Ω) as ε→ 0.(5.4)

On the other side, by Lemma 3.6 in [29]

Dε
ηuε(x) →

〈
∇u, η|η|

〉
weakly ∗ in L1

loc([0, T ] × R
n × Ω)

so that

φε|η|g
(
Dε
gηuε(x)

)→ 〈
∇u, η|η|

〉
weakly ∗ in L1

loc([0, T ] × R
n × Ω).(5.5)

Now let Φ ∈ C∞
0 (]0,+∞[×R

n). Since uε is a solution of the evolution equation, we
have ∫ ∞

0

∫
Rn

uε
∂Φ

∂t
dxdt

=

∫ +∞

0

∫
Rn

(∫
Rn

h e−|η|gφε|η|g
(
Dε
gηuε(x)

)
Dε
gηΦ(x, t)dη

)
dxdt
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by (5.5) and the uniform convergence of Dε
gηΦ to 〈∇Φ, η

|η|g 〉 as ε→ 0

→ α

∫ +∞

0

∫
Rn

∫
Rn

h e−|η|g
〈
∇u, η

|η|g

〉〈
∇Φ,

η

|η|g

〉
dηdxdt

by Proposition 2.5

= α cn2

∫ +∞

0

∫
Rn

ghk(x)√
g

∂hu∂kΦdxdt.

On the other side, ∂tuε is bounded in L2
loc([0,+∞[×R

n,R), and the thesis is
proved.

Corollary 5.5. Under the assumptions of Theorem 5.4 the function u belongs to
C([0,+∞[;L2

loc(R
n,R/2πZ)) and satisfies the following: u(0) = u0, MS(u(t),Rn) ≤

MS(u0,R
n), for every t ≥ 0. Moreover, the function u = u(x, t) is a distributional

solution in ]0,+∞[×R
n of the equation

∂u

∂t
= 2α cn2D

(
gij√
g
∇u
)
,

where D is the distributional x-derivative, out of the jump set of u.
Proof. It is a consequence of the results we have proved on the function u in the

previous theorems.

6. A numerical example. We consider here a simple numerical example show-
ing how the phase equation (1.5) is able to segment an object by reaching phase locking
in semantically homogeneous areas of an image and by decoupling phases between ob-
ject and background. We will consider the figure completion of the well-known square
of Kanizsa (Figure 6.1). In this example we consider an image (x1, x2) → I(x1, x2)
as a real positive function defined in a rectangular domain Ω ⊂ R

2. Following [37],
we suppose that the image induces a local change of the connectivity e in proximity
of its discontinuities in such a way that hypercolumns appear decoupled across the
boundaries of a figure. We choose a simple edge indicator as the connectivity function,
namely

s(x1, x2) =
1

1 + (|∇Gσ(x1, x2) � I(x1, x2)|/c)2 ,(6.1)

where

Gσ(x1, x2) =
exp(−(|(x1, x2)|/σ)2)

σ
√
π

,(6.2)

and � denotes the convolution. The denominator is the gradient magnitude of a
smoothed version of the initial image. Thus, the value of s is closer to 1 in flat areas
(|∇I| → 0) and closer to 0 in areas with large changes in image intensity, i.e., the
local edge features. The minimal size of the details that are detected is related to
the size of the kernel, which acts like a scale parameter. By viewing s as a potential
function, we note that its minima denote the position of edges, as depicted in Figure
6.1.

The edge indicator s also induces a metric gδij , where g = 1
s2 and δij is the

Kronecker function. Since this metric is conformal, we get

|η|g = g|η|, Dε
gηu =

1√
g
Dε
ηu,
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Fig. 6.1. The Kanizsa square (left) with the connectivity map g (right).

and, in order to study a curvature equation, we will choose

h = g.

The phase equation (1.7) becomes

∂tu(t) = −
∫

Rn

D−ε
η

(
e−

√
g|η|φε|η|g

(
Dε
gηu
)√

g

)
dη

(using the definition of difference quotient)

= −
∫

Rn

(
e−

√
g|η|

(ε|η|)3/2φ
(u(x) − u(x− εη)√

ε|η|g
)
− e

√
g|η|

(ε|η|)3/2φ
(u(x+ εη) − u(x)√

ε|η|g
))

dη

since φ is odd

= 2

∫
Rn

e−
√
g|η|

(ε|η|)3/2φ
(u(x+ εη) − u(x)√

ε|η|g
)
dη.

We note that the exponential kernel e−
√
g|η| can be substituted by a compactly

supported kernel χ = χ(
√
g|η|). The new equation and the corresponding functional

Fε satisfy the same convergence results as before. We will assume that χ is the
indicatrix function of the square [−1, 1]2 so that in the numerical simulations the
integral will be approximated with the sum on the vectors

η = (i, j), i, j ∈ {0, 1,−1}.

According to the introduction, the function φ will be the sin function, extended
with zero, outside of the interval [−π, π]. To perform numerical simulations the phase
equation has been approximated by forward differences in time:

un+1
l,m = unl,m+2∆t

∑
(i,j)∈{0,−1,1}

1

ε3/2(i2 + j2)3/4
sin
( un(l + i,m+ j) − un(l,m)√

ε(i2 + j2)1/2g(l + i/2,m+ j/2)

)
,

where ε = 0.03 is the space increment and ∆t = 0.01 is the time discretization. As
in [37], the initial condition is given by a function u0 = D that is proportional to
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Fig. 6.2. Evolution of the phase equation towards the phase locking solution segmenting the
Kanizsa square.

the distance from a point internal to the object. We impose Neumann boundary
conditions.

During the flow, the surface evolves towards the piecewise constant solution by
continuation and closing of the boundary fragments and the filling in of the homo-
geneous regions (Figure 6.2). In regions of the image where edge information exists,
the level sets of the surface get attracted to the edges and accumulate. Consequently,
the spatial gradient increases, and the surface begins to develop a discontinuity. In
the regions of the image corresponding to subjective contours (i.e., contours that are
perceived without any existing discontinuity in the image) discontinuities of u are
propagated from existing edge fragments (Figure 6.2).
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(2001).

[10] A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Math. 1694,
Springer-Verlag, Berlin, 1998.

[11] A. Braides and M. S. Gelli, From Discrete to Continuum: A Variational Approach, Lecture
Notes, SISSA, Trieste, 2000.

[12] A. Braides and M. S. Gelli, Continuum limits of discrete systems without convexity hypothe-
ses, Math. Mech. Solids, 7 (2002), pp. 41–66.

[13] A. Braides and G. Dal Maso, Non-local approximation of the Mumford-Shah functional,
Calc. Var. Partial Differential Equations, 5 (1997), pp. 293–322.

[14] A. Braides, G. Dal Maso, and A. Garroni, Variational formulation of softening phenomena
in fracture mechanics: The one-dimensional case, Arch. Ration. Mech. Anal., 146 (1999),
pp. 23–58.

[15] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional, M2AN
Math. Model. Numer. Anal., 33 (1999), pp. 261–288.

[16] A. Chambolle and G. Dal Maso, Discrete approximation of the Mumford-Shah functional
in dimension two, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 651–672.

[17] G. Cortesani, Sequences of non-local functionals which approximate free-discontinuity prob-
lems, Arch. Rational Mech. Anal., 144 (1998), pp. 357–402.

[18] G. David, C1-arcs for minimizers of the Mumford–Shah functional, SIAM J. Appl. Math., 56
(1996), pp. 783–888.

[19] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser Boston, Boston, 1993.
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DESTABILIZATION OF FRONTS IN A CLASS OF BISTABLE
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Abstract. In this article, we consider a class of bistable reaction-diffusion equations in two
components on the real line. We assume that the system is singularly perturbed, i.e., that the
ratio of the diffusion coefficients is (asymptotically) small. This class admits front solutions that
are asymptotically close to the (stable) front solution of the “trivial” scalar bistable limit system
ut = uxx+u(1−u2). However, in the system these fronts can become unstable by varying parameters.
This destabilization is caused by either the essential spectrum associated to the linearized stability
problem or by an eigenvalue that exists near the essential spectrum. We use the Evans function to
study the various bifurcation mechanisms and establish an explicit connection between the character
of the destabilization and the possible appearance of saddle-node bifurcations of heteroclinic orbits
in the existence problem.
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bility analysis, Evans functions
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1. Introduction. The class of bistable reaction-diffusion equations we consider
in this paper is given by{

Ut = ε2Uxx + (1 + V − U2)U,
τVt = Vxx + F (U2, V ; ε),

(1.1)

where F (U2, V ; ε) is a smooth function of U2, V , and ε such that F (1, 0; ε) ≡ 0 and
limε→0 F (U2, V ; ε) exists; τ > 0 is a parameter. Thus, the system is such that the
background state (U, V ) ≡ (±1, 0) is always a solution. We furthermore assume that
the ratio of the two diffusion coefficients, ε2, is asymptotically small; thus, the prob-
lem has a singularly perturbed nature. We consider the system on the (unbounded)
line, i.e., (U, V ) = (U(x, t), V (x, t)) with (x, t) ∈ R × R

+. Note that (1.1) is (by
construction) symmetric under

U → −U.(1.2)

To motivate the structure of (1.1) we introduce the fast variable

ξ =
x

ε
(1.3)
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so that (1.1) can be written in its equivalent “fast” form,

{
Ut = Uξξ + (1 + V − U2)U,

ε2τVt = Vξξ + ε2F (U2, V ; ε).
(1.4)

Since U(x, t) and V (x, t) are a priori supposed to be bounded on the entire domain
R × R

+, we find in the natural (fast reduced) limit, i.e., ε → 0 in (1.4), that V ≡ V0

and that U is a solution of the well-studied, scalar (standard) bistable or Nagumo
equation,

Ut = Uξξ + (1 + V0 − U2)U.(1.5)

In this paper we interpret the original system, (1.1) or (1.4), as a scalar bistable
Nagumo equation (1.5) in which the coefficient of the linear term is allowed to evolve
by reaction and diffusion on a long, or slow, spatial scale. Note that the (slow)
dynamics of the V -component are allowed to be completely general, except that it is
assumed that the full system conserves the symmetry (1.2) and the background states
U ≡ ±1, at V ≡ 0, of the scalar limit (see also Remark 1.1). A priori, one expects that
the V -component of front-like solutions will remain small (O(ε)) due to the “boundary
conditions” V = 0 at ±∞ so that the effect of the slowly varying V (x, t)-component
cannot have a significant influence on the (well-understood) dynamics of the scalar
Nagumo equation. An important motivation of the research in this paper is to find
out whether or not this intuition is correct.

We will focus completely on the existence and stability issues associated to the per-
sistence of the asymptotically stable stationary front solutions of the bistable equation
(1.5) with V0 = 0. In fact, this paper can also be seen as a first step towards analyzing
the dynamics (and possibly defects) of striped patterns in a class of relatively sim-
ple bistable reaction-diffusion equations, i.e., (1.1) for (U, V ) = (U(x, y, t), V (x, y, t))
with (x, y) ∈ R

2. The methods and techniques developed in this paper are supposed
to carry over to the analysis of the existence and stability of spatially periodic solu-
tions of (1.1) and their two-dimensional counterparts (the planar fronts and the stripe
patterns). See also section 5.

The problem of the persistence of the stable front solution of the scalar bistable
equation (1.5) is quite subtle, as can be expected in light of recent results on the
stability of pulses in singularly perturbed reaction-diffusion equations of the Gray–
Scott and Gierer–Meinhardt type [4, 5]. Such systems can also be written in the
form (1.4); however, the scalar limit systems are monostable, i.e., in essence of the
form Ut = Uξξ − U + U2. The pulses correspond in this (fast reduced) limit to the
stationary homoclinic solution of uξξ − u+ u2 = 0. Thus, one would expect that the
pulses of the full system cannot be stable, since the stability problem associated to
the homoclinic solution has an O(1) unstable eigenvalue. Nevertheless, stable pulses
of this type do exist in the Gray–Scott and the Gierer–Meinhardt equation [4, 5]. On
the other hand, the stability of the pulses in these monostable equations is strongly
related to the freedom one has in these systems to scale the magnitude of the pulses;
i.e., the amplitude of the stable pulses is asymptotically large in ε in these monostable
systems. Such scalings are not possible for the fronts in the bistable case, since the
background states (±1, 0) are fixed (and O(1)).

In the analysis of the front solutions, we will find that it is natural to decompose
F (U2, V ; ε) into a component that has a factor of (1+V −U2) and a rest term G(V ; ε)
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that does not depend on U2. Hence, we write (1.1) as{
Ut = ε2Uxx + (1 + V − U2)U,
τVt = Vxx + (1 + V − U2)H(U2, V ; ε) +G(V ; ε),

(1.6)

with G(0, ε) ≡ 0. Note that this decomposition induces no restriction on F (U2, V ; ε)
since we have assumed that F is smooth. In fact,

G(V ) = F (1 + V, V ) and (1 + V − U2)H(U2, V ) = F (U2, V ) − F (1 + V, V ).

We will find that the quantities ∂G
∂V (0; ε) and H(1, 0; ε) have a crucial impact on the

structure and the dynamics of the front-like solutions. Therefore, we define

G1(ε) =
∂G

∂V
(0; ε) and H0 = H(1, 0; ε);(1.7)

G1 is the main bifurcation parameter used in this paper. Throughout this paper we
assume that H(U2, V ) is nondegenerate, i.e., that H(1 + V, V ) is not identically 0,
and that τ = O(1) (see Remark 4.13).

In section 2 we will show that as long as G1 < 0 and O(1), the front solutions
of (1.5) with V0 = 0 persist in a regular fashion, in the sense that the system (1.1)
has a front solution with U -components that are asymptotically and uniformly close
to a front in (1.5) with V0 = 0 and with V -components that are asymptotically and
uniformly small (Theorem 2.1). However, if G1 becomes O(ε2), these fronts become
truly singular, in the sense that V becomes O(1), while the U -component is close to a
front of (1.5) with V0 �= 0 on the fast spatial scale (and it converges to U = ±1 on the
slow spatial scale). Moreover, the front solutions are no longer uniquely determined;
there can be several types of heteroclinic front solutions if G1 = O(ε2) that may or
may not merge in saddle-node bifurcations of heteroclinic orbits when G1 is varied
(Theorems 2.3 and 2.5). It should be noted here that for simplicity we consider
G(V ) = −ε2γV in (1.1) in the singular limit G1 = O(ε2) throughout this paper—see
Remark 2.4. We refer to Figure 1.1 for a numerical representation of a regular front
(Figure 1.1(a)) and a singular front (Figure 1.1(b)). The magnitude of G1 is also
extremely relevant in the stability analysis. It can be shown that the (regular) front
solutions are asymptotically stable as long as G1 < 0 and O(1) and H0 +G1 − 2τ < 0
and O(1)—see Theorem 4.3. It seems, at leading order, that the destabilization of
the front is caused by the essential spectrum, σess, associated to the stability of the
front (σess reaches the imaginary axis exactly at G1 = 0 or at H0 +G1 − 2τ = 0—see
Lemma 3.1). However, the analysis also shows that there can be eigenvalues near
the “tips” of σess and that it is possible that the destabilization is caused by such an
eigenvalue, i.e., by an element of the discrete spectrum and not by σess. These “new”
eigenvalues do not have counterparts in the (scalar) fast reduced limit problem; they
have a singular slow-fast nature and may appear through edge bifurcations from the
essential spectrum.

In section 4 we study in detail the nature of the destabilization as G1 < 0 in-
creases towards 0. In this section it becomes clear that there is an intimate relation
between the geometrical character of the singularly perturbed existence problem and
the character of the destabilization of the front. This is a natural and frequently
encountered relation—see, for instance, [14] and the references therein. We establish
that a front solution destabilizes at a critical value of G1 = −ε2γdouble < 0 by an
eigenvalue if and only if it merges with another front solution in a saddle-node bifur-
cation of heteroclinic orbits. Moreover, we are able to determine the explicit value
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-1

1

x

(a) Regular front, G1 = −1.0.

-1

1

x

(b) Singular front, G1 = −2ε2.

Fig. 1.1. Two stable front solutions of (1.1)/(1.6) plotted on the slow spatial scale x (by a
numerical simulation). Here H(U2, V ) = H0U2, G(V ) = G1V , ε = 0.1, and H0 = 1. The solid
curves represent the U-coordinates, and the dotted curves represent the V -coordinates.

of this bifurcation value to be γdouble > 0. If the front does not “encounter” such a
saddle-node as G1 increases to 0, the front will be destabilized by σess at G1 = 0—see
Theorems 4.6 and 4.10.

Another way to motivate the analysis of this paper is as follows. In this paper we
show that the technique of decomposing the Evans function associated to the stability
of a “localized structure” (a (traveling) pulse or front) into the product of an analytic
“fast” and a meromorphic “slow” transmission function [4, 5] can be extended to a
class of bistable equations. We show that the slow transmission function (t2(λ, ε)) is a
natural tool for analyzing the existence or appearance of eigenvalues near or from the
essential spectrum and that such eigenvalues play a crucial role in the stability of the
front. Note that in this sense the theme of this paper is similar to that of [15], where
Evans function techniques are developed to study eigenvalues near σess in a class of
nearly integrable systems.

The paper is organized as follows. The existence problem is studied in section
2. In section 3 the basic properties of the linearized stability problem are studied
and (the decomposition of) the Evans function is introduced. Section 4 is the main
section of the paper; in it we develop an approach by which the (possible) location and
existence of “slow-fast eigenvalues” near the essential spectrum can be studied. This
section is split into three parts: a subsection on the regular problem, a subsection in
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which we study an explicit example (G(V ) = −ε2γ, H(U2, V ) = H0U
2) in full detail,

and a subsection in which we study the “fate” of the regular front as G1 approaches
0 in the general case. In section 5 we present simulations which clearly exhibit the
impact of the distinction between a destabilization by the discrete or by the essential
spectrum. Moreover, we discuss some related issues and topics of future research.

Remark 1.1. Large parts of the theory developed in this paper can be generalized
to systems of the type (1.1)/(1.4) in which the fast reduced limit system is of the type
Ut = Uξξ+B(U2;V0)U for some function B, i.e., to bistable systems of a more general
nature. We focused on the standard case, i.e., B = 1 + V0 − U2, since the analysis is
more transparent. If one drops the condition on the symmetry (1.2), the fronts will,
in general, travel with a certain (nonzero) speed. Although the symmetry is used
throughout this paper, there is no reason to expect that such asymmetric systems
cannot be studied along the lines of the methods presented here.

Notation and definitions. Let ρ(ε) be a function of ε ≥ 0 that is smooth and
positive for ε > 0 such that limε↓0 ρ(ε) = 0 (ρ(ε) is called an order function [8]). Let
R(z; ε) ∈ R

m or ∈ C
m (m ≥ 1) be a certain expression that depends on ε (among

other variables or parameters z ∈ R
p,Cp for some p ≥ 0) such that the limit ε ↓ 0

exists, i.e., limε↓0R(z; ε)
def
= R0(z). Throughout this paper, the following notation

will be used to describe the rate of convergence of R(z; ε) to R0(z):

R(z; ε) = R0(z) + O(ρ(ε)).

By definition, this is equivalent to the statement that there exists a constant C > 0,
which is independent of ε, and an ε0 > 0 such that ‖R(z; ε) − R0(z)‖ < Cρ(ε)
for 0 < ε < ε0 (here ‖.‖ is the standard Euclidean norm). Note that both C and
ε0 may be z-dependent. As is usual in (singular) perturbation theory, the precise
structure of ρ(ε) is crucial at many steps in the forthcoming analysis. If this is not
the case, R(z; ε) is often said to be “asymptotically close” to R0(z), or, equivalently,
‖R(z; ε)−R0(z)‖ 	 1, which implies only that there exists an (unspecified) ρ(ε) such
that R(z; ε) = R0(z) + O(ρ(ε)), i.e., that limε↓0R(z; ε) = R0(z).

In this paper, the expression R(z; ε) is said to be O(1) with respect to ε if there
are constants C± > 0 and ε0 > 0 such that C− < ‖R(z; ε)‖ < C+ for 0 < ε < ε0. We
refer the reader to [8] for more details on order functions (including the definitions of
“
” and O( 1

ρ(ε) )).

2. The existence problem. We analyze the existence of stationary one-
dimensional patterns through geometric singular perturbation theory [9, 12] using
the methods developed in [6, 5]. Therefore, we write the ODE associated to (1.6) as
a dynamical system in R

4,⎧⎪⎪⎨
⎪⎪⎩

u̇ = p,
ṗ = −(1 + v − u2)u,
v̇ = εq,
q̇ = ε

[−(1 + v − u2)H(u2, v; ε) −G(v; ε)
]
,

(2.1)

where ˙ denotes the derivative with respect to the spatial variable ξ (1.3) (i.e., ξ “plays
the role of time”). Note that this system inherits two symmetries of (1.6),

ξ → −ξ, p→ −p, q → −q and u→ −u, p→ −p.(2.2)
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We consider the “superslow” case in which G1(ε) = O(ε2) separately in sections 2.2
and 2.3. Note that in the fast reduced limit, i.e., ε → 0 in (2.1), the monotonically
increasing heteroclinic front solution is given by (u0, p0, v0, q0), where

(u0(ξ; v0), p0(ξ; v0)) =

(
√

1 + v0 tanh

(√
1 + v0

2
ξ

)
,
1 + v0√

2
sech2

(√
1 + v0

2
ξ

))
,

(2.3)

and v0 and q0 are constants.

2.1. The regular case. The main result of this section is the following theorem.
Theorem 2.1. Let G1(ε) (1.7) be O(1) and negative. Then, for ε > 0 small

enough, system (2.1) has a symmetric pair of heteroclinic orbits: Γ+
h (ξ; ε) = (uh(ξ; ε),

ph(ξ; ε), vh(ξ; ε), qh(ξ; ε)) and Γ−
h (ξ; ε) = (−uh(ξ; ε),−ph(ξ; ε), vh(ξ; ε), qh(ξ; ε)), with

limξ→±∞ Γ+
h (ξ; ε) = (±1, 0, 0, 0) and limξ→±∞ Γ−

h (ξ; ε) = (∓1, 0, 0, 0); uh(ξ; ε) and
qh(ξ; ε) are odd and monotonic as functions of ξ, and vh(ξ; ε) and ph(ξ; ε) are even.
Moreover, |uh(ξ; ε) − u0(ξ; 0)| = O(ε) (2.3) and |vh(ξ; ε)|, |qh(ξ; ε)| = O(ε), both uni-
formly on R; vh(0; ε) is the extremal value of vh(ξ; ε), with

vh(0; ε) =
ε

2
√−G1(0)

∫ ∞

−∞

(
1 − u2

0(ξ; 0)
)
H(u2

0(ξ; 0), 0)dξ + O(ε2).(2.4)

The orbits Γ±(ξ; ε) correspond to the (stationary) front patterns (±Uh(ξ; ε), Vh(ξ; ε))
of (1.6) with Uh(ξ; ε) = uh(ξ; ε) odd as a function of ξ, Vh(ξ; ε) = vh(ξ; ε) = O(ε)
even, limξ→±∞ Uh(ξ; ε) = ±1, and limξ→±∞ Vh(ξ; ε) = 0.

Proof. As the system is singularly perturbed, we also consider (2.1) with the slow
scaling x = εξ; equation (2.1) is given by⎧⎪⎪⎨

⎪⎪⎩
εu′ = p,
εp′ = −(1 + v − u2)u,
v′ = q,
q′ =

[−(1 + v − u2)H(u2, v; ε) −G(v; ε)
]
,

(2.5)

where ′ refers to differentiation with respect to x. System (2.5) is referred to as the
slow system. We begin by finding the locally invariant manifolds of (2.5) in the limit
ε→ 0. In this limit, the first two equations of (2.5) will reduce to

p = 0 , −(1 + v − u2)u = 0 .(2.6)

The manifold given by (u, p, v, q) = (0, 0, v, q) is not normally hyperbolic and will
not be considered. However, the manifolds, denoted M±

0 , determined by (u, p, v, q) =
(±√

1 + v, 0, v, q) are normally hyperbolic and thus, by [9, 12], equation (2.5) possesses
locally invariant manifolds M±

ε , which are O(ε) close to M±
0 . We now determine the

leading order correction to these manifolds. Let the manifold M±
ε be given by

M±
ε = {u = ±√

1 + v + εU±(v, q; ε), p = εP±(v, q; ε), v, q} .(2.7)

To obtain successive approximations of M±
ε , we can expand U± = u±1 + εu±2 + · · · ,

and P± = p±1 + εp±2 + · · · . Using the first two lines of (2.5) we find

p±1 =
q

2
√

1 + v
, p±2 =

∂u±1
∂v

q − ∂u±1
∂q

G(v; ε),

(2.8)

u±1 = 0, u±2 = ∓ q2

4(1 + v)5/2
∓ G(v; ε)

(1 + v)3/2
.
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Hence, the (slow) flow on the slow manifold is given by

v′′ = −G(v; ε) + O(ε2) .(2.9)

To leading order, this flow is integrable. The point (v, q) = (0, 0), which corresponds
to (±1, 0, 0, 0), is a critical point on M±

ε . Since G1 < 0, (0, 0) is a saddle on M±
ε with

unstable direction (1,
√−G1) and stable direction (−1,

√−G1).
A heteroclinic orbit Γ±

h from (∓1, 0, 0, 0) to (±1, 0, 0, 0) is both an element of
Wu(M∓

ε ) and of W s(M±
ε ). Here we will consider only Γ+

h . The existence of Γ−
h

follows from the symmetry (2.2). The orbit Γ+
h remains exponentially close to

Wu(−1, 0, 0, 0)|M−
ε

before it “takes off” and makes a “jump” through the fast field,
i.e., the region in phase space in which (uξ, pξ) = O(1). After that, it “touches down”
on M+

ε and remains exponentially close to it (and to Wu(1, 0, 0, 0)|M+
ε
)—see Figure

2.1. The change in q by the passage through the fast field is O(ε) (2.1); therefore
Γ+
h must take off from M−

ε and touch down on M+
ε with a q-coordinate that is

O(ε). Since Γ+
h is asymptotic to the saddle points (0, 0) ∈ M±

ε , it follows that the
v-coordinate of Γ+

h must also be O(ε). Note that we have used here implicitly that
G1 = O(1).

We will determine whether such a trajectory, as Γ+
h , is possible using a Melnikov

method. Both Wu(M−
ε ) and W s(M+

ε ) are O(ε) close to the family of heteroclinic
orbits in the fast reduced limit of (2.1) given in (2.3). The leading order distance
between Wu(M−

ε ) and W s(M+
ε ) can be determined by a Melnikov function for slowly

varying systems [19]. Both Wu(M−
ε ) and W s(M+

ε ) intersect the hyperplane {u =
0} transversally. Note that W s,u(M±

ε ) ∩ {u = 0} is two-dimensional; thus, since
{u = 0} is three-dimensional, one expects a one-dimensional intersection Wu(M−

ε )∩
W s(M+

ε ) ∩ {u = 0}. The separation between Wu(M−
ε ) and W s(M+

ε ) is, at leading
order, measured by the integral,

∆ =

∫ ∞

−∞

(
p(ξ)

u(ξ) + u3(ξ) − u(ξ)v0

)
∧
(

0

−u(ξ)∂q∂δ (ξ)
)
dξ .(2.10)

Here the wedge product refers to the scalar cross product, and ∂q
∂δ solves the differential

equation, d
dξ (

∂q
∂δ ) = q0ξ,

∂q
∂δ (0) = 0. Substituting (2.3) into (2.10) results in the

following expression for the leading order splitting distance:

∆ = −
∫ ∞

−∞

qξ√
2

tanh

(
ξ√
2

)
sech2

(
ξ√
2

)
dξ = −q0

√
2 .

Thus, Wu(M−
ε )∩W s(M+

ε )∩{u = 0} must be O(ε) close to q = 0. By the symmetries
(2.2), we conclude that Wu(M−

ε ) ∩ W s(M+
ε ) ∩ {u = 0} must be identically q =

0. Hence, again by (2.2), any solution that connects M−
ε to M+

ε must have a u
component that is odd with respect to ξ and a v component that is even with respect
to ξ.

We are now ready to determine the take off (touch down) curves T−
o ⊂ M−

ε

(T+
d ⊂ M+

ε ) [6, 5]. These curves represent the points at which the one-dimensional
family of orbits in Wu(M−

ε ) ∩W s(M+
ε ) leave (land on) M±

ε . Let the elements of
this family be denoted γ(ξ; p), where the parameter p > 0 corresponds to the p-
component of γ(ξ; p) as it crosses through {u = q = 0}. Note that the γ-family forms
the Fenichel fibering ofWu(M−

ε )∩W s(M+
ε ) [9] and that each γ(ξ; p) is asymptotically

close to an unperturbed orbit given in (2.3). To each γ(ξ; p) we associate two orbits,
γM−

ε
(ξ; p) ⊂ M−

ε and γM+
ε
(ξ; p) ⊂ M+

ε , by the fact that ||γ(ξ; p) − γM±
ε
(ξ; p)|| is
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exponentially small if ±ξ > O(ε−1). We define T−
o and T+

d as the collections of base
points of the Fenichel fibers on M−

ε and on M−
ε ,

T−
o =

⋃
p>0

γM−
ε
(0; p) , T+

d =
⋃
p>0

γM+
ε
(0; p) .(2.11)

We can compute the leading order structure of T−
o and T+

d by considering the effect
of the journey through the fast field on the slow variables v and q. Since vξ = εq
and q = O(ε) it follows that the change in v through the fast field is of higher order,
i.e., O(ε2). By construction, q will be an odd function of ξ; thus, the value of q for a
given v on T−

o must be − 1
2∆q(v), where ∆q(v) is the change in q due to one full pass

through the fast field (during which v remains (at leading order) constant, v = v0).
Similarly, the value of q on T−

d must be 1
2∆q(v). Since we already know that both v

and q must be O(ε) in this regular case, we compute ∆q(0) (by (2.1), (2.3)):

∆q(0)=

∫ ∞

−∞
q̇|v=0 dξ = −ε

∫ ∞

−∞

[
1 − tanh2

(
ξ√
2

)]
H

(
tanh2

(
ξ√
2

)
, 0

)
dξ + O(ε2).

To establish the existence of the heteroclinic orbit Γ+
h (ξ), we consider the intersec-

tion T−
o ∩ Wu(−1, 0, 0, 0)|M−

ε
on M−

ε , O(ε) close to (−1, 0, 0, 0). Thus, T−
o and

Wu(−1, 0, 0, 0)|M−
ε

are given by {q = − 1
2∆q(0) +O(ε2)} and {q =

√−G1v+O(ε2)}.
Figure 2.1 shows the superposition of T−

o with Wu(−1, 0, 0, 0)|M−
ε

and of T+
d with

W s(1, 0, 0, 0)|M+
ε
. The v-coordinate of T−

o ∩ Wu(−1, 0, 0, 0)|M−
ε

is given in (2.4).

Thus, we have established the existence of an orbit Γ+
h ∈ Wu(M−

ε ) ∩W s(M+
ε ) that

is asymptotic to (−1, 0, 0, 0) ∈ M−
ε . Since Γ+

h passes through {u = 0, q = 0} during
its jump through the fast field, it follows by the symmetries (2.2) that Γ+

h is indeed the
orbit described in the statement of the theorem. As already mentioned, the existence
of Γ−

h also follows immediately from (2.2).

vv

qq

W s(1, 0, 0, 0)|M+
ε

Wu(−1, 0, 0, 0)|M−
ε

T−
o

T+
d

M+
εM−

ε

Fig. 2.1. Superposition of the take off and touch down curves T±
o,d with W s,u(±1, 0, 0, 0)|M±

ε
.

The intersections T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
and T+

d ∩W s(1, 0, 0, 0)|M+
ε

determine the heteroclinic

front solution Γ+
h (ξ; ε). The dotted arrows indicate the orbit Γ+

h (ξ) “taking off” and “touching
down.”

Remark 2.2. We note that if G1 = O(εσ) for some σ ∈ [0, 2), then the intersection

of T−
o and Wu(−1, 0, 0, 0)|M−

ε
will result in a value of v0 of O(ε1−

1
2σ) 	 1 (2.4); thus

Γ+
h (ξ) will still be a regular perturbation of the orbit in the scalar limit. Moreover,

this argument also shows that singular orbits may exist for G1 = O(ε2).
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2.2. The superslow limit: An example. In this section we consider the “sig-
nificant degeneration” G1(ε) = O(ε2). For simplicity, we consider only the case in

which the flow on the slow manifolds M±
ε is linear, i.e., G(v; ε) = ε2G1(ε)v

def
= −ε2γv,

where γ does not depend on ε. Moreover, we first consider an explicit expression for
H(u2, v; ε), H(u2, v; ε) = H0u

2. The case of a general H(U2, V ) will be considered in
the next subsection. We refer the reader to Remark 2.4 for a brief discussion of the
case of a general function G(V ). System (2.1) reduces to⎧⎪⎪⎨

⎪⎪⎩
u̇ = p,
ṗ = −(1 + v − u2)u,
v̇ = εq,
q̇ = ε

[−(1 + v − u2)H0u
2 + ε2γv

]
.

(2.12)

This system has various types of (singular) heteroclinic orbits.
Theorem 2.3. Assume that G(V ) = −ε2γV , that H(U2, V ) = H0U

2, and that
ε is small enough.

(i) H0 > 0. If γ > γdouble, where γdouble = 3
2H

2
0 + O(ε), equation (2.12) has

two pairs of heteroclinic orbits, Γ+,j
h (ξ; ε) = (ujh(ξ), p

j
h(ξ), v

j
h(ξ), q

j
h(ξ)), j = 1, 2,

and their symmetrical counterparts Γ−,j
h (ξ; ε) = (−ujh(ξ),−pjh(ξ), vjh(ξ), qjh(ξ)), with

limξ→±∞ Γ+,j
h (ξ; ε) = (±1, 0, 0, 0). In the fast field ujh(ξ) (resp., vjh(ξ)) is asymptoti-

cally and uniformly close to u0(ξ; vj) (2.3) (resp., vj); the constants vj are the zeros of√
γv = 2

3

√
2H0(v+ 1)3/2 so that 0 < v1 < 2 < v2 (at leading order). In the slow field,

Γ+,j
h (ξ; ε) is exponentially close to Wu,s(±1, 0, 0, 0)|M±

ε
⊂ M±

ε . The orbits Γ±,1
h (ξ; ε)

and Γ±,2
h (ξ; ε) merge in a saddle-node bifurcation of heteroclinic orbits as γ ↓ γdouble.

There are no heteroclinic orbits for γ < γdouble.
(ii) H0 < 0. The relation

√
γv = 2

3

√
2H0(v+1)3/2 has a unique zero for all γ > 0,

and there is one pair of heteroclinic orbits Γ±
h (ξ; ε) for all γ > 0. These orbits have

the same structure as described in (i).

The orbits Γ
±(,j)
h (ξ; ε) correspond to the front solutions (U

±(,j)
h (ξ; ε), V

±(,j)
h (ξ; ε))

of (1.6) with U
±(,j)
h (ξ; ε) = ±ujh(ξ; ε) odd and V

±(,j)
h (ξ; ε) = vjh(ξ; ε) even as functions

of ξ.
Proof. The essence of the analysis of the superslow system is similar to that of the

regular case. The important difference is that, although the change in q by a “jump”
through the fast field is still O(ε), the v-coordinate of the heteroclinic orbit may now
be O(1), due to the superslow character of the flow on M±

ε . It is this difference that
will cause the bifurcation and the formation of the second orbit in case (i). The flow
on the slow manifold is now O(ε2), i.e., superslow, and is at leading order governed by

v′′ = ε2γv .(2.13)

Since the right-hand side of this equation is O(ε2), one might expect that one needs
to incorporate the higher order corrections to the approximation of M±

ε (2.8) to
determine the leading order flow on M±

ε . However, the O(ε2) correction contains a
term with a q2 factor and a term with G(v) (2.8). Since we consider q = O(ε) on M±

ε

and since G(v) = O(ε2), the resulting correction will not be of leading order.
Again the equilibria on M±

ε are saddles, with stable and unstable directions,
(±1, ε

√
γ). As in Theorem 2.1 we consider only the orbit that jumps from M−

ε to M+
ε

(the others follows from the symmetry (2.2). We repeat the Melnikov calculations and
again conclude that Wu(M−

ε )∩W s(M+
ε )∩{u = 0} must be identically q = 0. Hence,
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again by (2.2), any solution that connects M−
ε to M+

ε must have a u component that
is odd with respect to ξ and a v component that is even with respect to ξ.

We define the take off, T−
o , and touch down, T+

d , curves as in (2.11). We find the
leading order behavior of T+

d and T−
o by calculating the change in q as we traverse

the fast field. As in the regular case, v remains a constant up to O(ε2), and the value
of q on the take off (touch down) curve must be − 1

2∆q(v0) ( 1
2∆q(v0)), where v0 is

the (leading order) constant value of the v-coordinate of the orbit that is heteroclinic
to M+

ε in the fast field. The calculation of the change in q is similar to that of the
regular case except that v0 now effects the leading order term (2.3),

∆q(v0) = −εH0(1 + v0)
2

∫ ∞

−∞

[
1 − tanh2

(√
v0+1

2 ξ
)]

tanh2
(√

v0+1
2 ξ
)
dξ + O(ε2)

= −ε 2
√

2
3 H0(v0 + 1)3/2 + O(ε2) .

The heteroclinic orbits are again determined by T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
, where T−

o =

{q = − 1
2∆q(v0) + O(ε2)} and Wu(−1, 0, 0, 0)|M−

ε
= {q = ε

√
γv + O(ε2)},

1

3

√
2H0(v0 + 1)3/2 =

√
γv0 ;(2.14)

see Figure 2.2. Thus, in the superslow case, a heteroclinic orbit may leave M−
ε with

a v-coordinate of O(1). Now if H0 > 0 and γ > γdouble = 3
2H

2
0 + O(ε), (2.14) has

two possible solutions, v0 = vj , j = 1, 2, with 0 < v1 < 2 < v2 (at leading order).

These intersections correspond to the heteroclinic orbits Γ+,j
h (ξ). For γ < γdouble,

there are no solutions to (2.14), and thus no heteroclinic connections exist: the orbits
Γ+,1
h (ξ) and Γ+,2

h (ξ) have coalesced at γ = γdouble. In the case that H0 < 0, (2.14)
has a unique solution for all values of γ > 0; there is only one pair of heteroclinic
orbits.

M−
ε

q

v

(a)

M−
ε

q

v

(b)

Fig. 2.2. Superposition of T−
o with Wu(−1, 0, 0, 0)|M−

ε
in the superslow case with H0 > 0 for

γ > γdouble (a) and γ < γdouble (b).

Remark 2.4. If G(V ) is not linear in the singular limit (i.e., G1 = O(ε2)), then
the analysis becomes more involved, but there are no essentially new phenomena. In
this case, the magnitude (with respect to ε) of the second derivative of G(v) at v = 0
will start to play a role comparable to G1. Moreover, the flow on M±

ε is nonlinear
so that Wu,s(±1, 0, 0, 0)|M−

ε
is no longer a straight line (at leading order); therefore,

many “new” intersections of T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
, and thus “new” heteroclinic

orbits, may appear.

2.3. The superslow limit: The general case. We now consider the general
superslow problem; i.e., H(U2, V ) is a general (smooth) function of U2 and V in this
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section. As in section 2.2 and motivated in Remark 2.4, we choose to consider only
the case of G(V ; ε) linear; i.e., G(v; ε) = −ε2γv in (2.1). The treatment of the gen-
eral superslow case and (2.12) is in essence identical to that of the previous section.
However, the statement of the main results cannot be formulated as explicitly as in
Theorem 2.3, as long as there is no explicit expression given for H(U2, V ). Neverthe-
less, the character of the existence result is similar to that of Theorem 2.3; there can
be various kinds of heteroclinic orbits that might coalesce in saddle-node bifurcations.

As in the proofs of Theorems 2.1 and 2.3, the existence of the heteroclinic orbits
is established by the intersection of T−

o and Wu(−1, 0, 0, 0)|M−
ε
, i.e., by the solution

v0 of

√
γv0 =

1

2

∫ ∞

−∞

[
1 + v0 − u2

0(ξ; v0)
]
H(u2

0(ξ; v0), v0)dξ,(2.15)

at leading order. Note that the right-hand side equals − 1
2∆q(v0), i.e., half the accu-

mulated change in q during a circuit through the fast field, and that we have used
(2.3).

Theorem 2.5. Assume that G(V ) = −ε2γV and that ε is small enough. System
(2.1) has n ≥ 0 pairs of heteroclinic orbits, Γ±,j

h (ξ; ε) = (±u±,jh (ξ),±p±,jh (ξ), v±,jh (ξ),

q±,jh (ξ)), where j = 1, . . . , n, with limξ→±∞ Γ+,j
h (ξ; ε) = (±1, 0, 0, 0). The number

n = n(γ) is given by the number of solutions vj of (2.15). In the fast field ujh(ξ) (resp.,

vjh(ξ)) is asymptotically and uniformly close to u0(ξ; vj) (2.3) (resp., vj), where the

constant vj is the jth zero of (2.15). In the slow field, Γ+,j
h (ξ; ε) is exponentially close

to Wu,s(±1, 0, 0, 0)|M±
ε
⊂ M±

ε .

Two orbits Γ±,j
h (ξ; ε) and Γ±,j+1

h (ξ; ε) coalesce in a saddle-node bifurcation of

heteroclinic orbits at a certain value γ = γjdouble if the zeros vj ≤ vj+1 of (2.15)
merge, i.e., if the intersection T−

o ∩Wu(−1, 0, 0, 0)|M−
ε

is nontransversal.

The orbits Γ±,j
h (ξ; ε) correspond to the front solutions (U±,j

h (ξ; ε), V ±,j
h (ξ; ε)) of

(1.6) with U±,j
h (ξ; ε) = ±ujh(ξ; ε) odd and V ±,j

h (ξ; ε) = vjh(ξ; ε) even as functions of ξ.
The proof of this result is in essence identical to that of Theorem 2.3. In Figure

2.3 two examples of the possible richness of the intersection T−
o ∩Wu(−1, 0, 0, 0)|M−

ε

are given.

v

q

(a)

v

q

(b)

Fig. 2.3. Two examples of the possible character of the intersection T−
o ∩Wu(−1, 0, 0, 0)|M−

ε

for a given H(U2, V ); (a) there are 3 different singular heteroclinic orbits and (b) 4 heteroclinic
orbits.
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3. The stability of fronts.

3.1. The essential spectrum. The essential spectrum associated to the sta-
bility of the front patterns (U, V ) = (Uh(ξ; ε), Vh(ξ; ε)) is fully determined by the
spectrum of the linear stability problem for the (trivial) background states (at ±∞)
(U, V ) ≡ (±1, 0) [11]. Therefore, we introduce k ∈ R and α, β, λ ∈ C by

U(x, t) = ±1 + αeikξ+λt, V (x, t) = βeikξ+λt

and substitute this expression into (1.6) (using (1.3)). This yields the matrix equation(−k2 − 2 ±1
∓2ε2H0 −k2 + ε2(H0 +G1)

)(
α
β

)
= λ

(
α

ε2τβ

)
,

where G1 and H0 have been introduced in (1.7). Thus, λ = λ(k2) is a solution of the
characteristic equation

Q(λ, k) = (λ+ k2 + 2)(ε2τλ+ k2 − ε2(H0 +G1)) + 2ε2H0 = 0.(3.1)

Note that this equation holds for both background states (±1, 0), due to the symmetry
(1.2). We may conclude the following lemma.

Lemma 3.1. The essential spectrum σess associated to (3.3) is given by the solu-
tions λ = λ(k2) of (3.1) with k ∈ R; σess is stable, i.e., σess ∈ {Re(λ) < 0}, if G1 < 0
and H0 +G1 − 2τ < 0.

Proof. The two conditions in this lemma are obtained directly from

λ1 + λ2 = 1
ε2τ

[
ε2(H0 +G1 − 2τ) − k2(1 + ε2τ)

]
< 0 ∀ k,

λ1λ2 = 1
ε2τ

[
k4 + k2(2 − ε2(H0 +G1)) − 2ε2G1

]
> 0 ∀ k.(3.2)

Both relations attain their extremal value at k = 0.
However, we need to have more information on the essential spectrum than just

this stability result. In section 4 we will see that the appearance of edge bifurcations
is closely related to the structure of σess. We focus on the stable case G1 < 0 and
H0+G1−2τ < 0. It is straightforward to check that (3.1) has two solutions λ1,2(k) ∈ R

for all k ∈ R if H0 < 0. As H0 passes through zero two k-intervals, (−k+,−k−) and
(k−, k+), (0 < k− < k+) appear in which λ1,2(k) are complex valued. These intervals
merge (i.e., k− ↓ 0) as H0 approaches (

√
2τ −√−G1)

2. For (
√

2τ −√−G1)
2 < H0 <

2τ −G1 (which is a nonempty region), λ1,2(k) ∈ C if −k+ < k < k+. See Figure 3.1.

3.2. The linearized stability problem. With a slight abuse of notation we
(re-)introduce u(ξ) and v(ξ) by

U(ξ, t) = Uh(ξ; ε) + u(ξ)eλt, V (ξ, t) = Vh(ξ; ε) + v(ξ)eλt,

substitute this into (1.6), and linearize

uξξ + (1 + Vh − 3U2
h − λ)u = −Uhv

vξξ = ε2
{
2
[
H(U2

h , Vh) − (1 + Vh − U2
h) ∂H∂U2 (U2

h , Vh)
]
Uhu

− [H(U2
h , Vh) − (1 + Vh − U2

h)∂H∂V (U2
h , Vh) + ∂G

∂V (Vh) − τλ
]
v
}
.

(3.3)

Note that the front pattern (Uh(ξ), Vh(ξ)) corresponds to any of the regular or singu-
lar heteroclinic orbits Γ±,j

h (ξ) of Theorems 2.1, 2.3, and 2.5. In the stability analysis
of forthcoming sections we will consider only the front patterns of +-type, i.e., those



1432 ARJEN DOELMAN, DAVID IRON, AND YASUMASA NISHIURA

x

x

(a) Re(λ) vs. k with H0 < 0.

x x

(b) Re(λ) vs. Im(λ) with H0 < 0.

x
x

(c) H0 = 0.

x x

(d) H0 = 0.

x

x
o o

(e) H0 ∈ (0, (
√

2τ −√−G1)2).

o oo o xx

(f) H0 ∈ (0, (
√

2τ −√−G1)2).

o o
x

(g) H0 = (
√

2τ −√−G1)2.

xo

(h) H0 = (
√

2τ −√−G1)2.

x
o o

(i) H0 ∈ ((
√

2τ −√−G1)2, 2τ −G1).

o

x

o

x

x

(j) H0 ∈ ((
√

2τ −√−G1)2, 2τ −G1).

Fig. 3.1. The five possible different structures of the stable essential spectrum. On the left we
plot Re(λ) vs. k and on the right Re(λ) vs. Im(λ).
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fronts for which limξ→±∞ Uh(ξ; ε) = ±1. Thus, we do not explicitly consider their
symmetric counterparts. Due to the symmetry (1.2) this is, of course, also not nec-
essary. The coupled system of second order equations (3.3) is equivalent to a linear
system in C

4,

φξ = A(ξ;λ, ε)φ with φ(ξ) = (u(ξ), p(ξ), v(ξ), q(ξ)),(3.4)

where A(ξ;λ, ε) is a 4 × 4 matrix with Tr(A(ξ;λ, ε) ≡ 0, and uξ = p, vξ = εq. It
follows that

lim
ξ→±∞

A(ξ;λ, ε)
def
= A±

∞(λ, ε) =

⎛
⎜⎜⎝

0 1 0 0
2 + λ 0 ∓1 0

0 0 0 ε
±2εH0 0 −ε(H0 +G1 − τλ) 0

⎞
⎟⎟⎠ ;(3.5)

see (1.7). The matrices A±
∞ have the same set of eigenvalues Λi(λ, ε), i = 1, 2, 3, 4,

Λ2
1,4(λ, ε) = λ+ 2 + O(ε2), Λ2

2,3(λ, ε) = ε2
τλ2 − λ(G1 +H0 − 2τ) − 2G1

λ+ 2
+ O(ε4).

(3.6)

Note that both expansions break down as λ approaches −2 (see Remark 3.2). We
define a branch cut such that for z ∈ C arg(

√
z) ∈ (− 1

2π,
1
2π] so that the Λi’s can be

ordered

Re(Λ4(λ, ε)) < Re(Λ3(λ, ε)) < 0 < Re(Λ2(λ, ε)) < Re(Λ1(λ, ε)).(3.7)

This ordering, of course, breaks down if λ ∈ σess, the essential spectrum associated to
(3.3)/(3.4), since σess coincides with values of λ for which either Re(Λ1,4(λ, ε)) = 0 or
Re(Λ2,3(λ, ε)) = 0 [11]; see also section 3.1. The eigenvectors E±

i (ε, λ) of the matrices
A±

∞(ε, λ) associated to Λi(λ, ε) are given by

E±
1,4(ε, λ) =

⎛
⎜⎜⎝

1
Λ1,4(λ, ε)
O(ε2)

± 2H0

Λ1,4(λ,ε)
ε+ O(ε3)

⎞
⎟⎟⎠ , E±

2,3(ε, λ) =

⎛
⎜⎜⎝

± 1
λ+2 + O(ε2)

O(ε2)
1

1
εΛ2,3(λ, ε)

⎞
⎟⎟⎠(3.8)

(for λ+ 2 
 ε—see Remark 3.2).
Remark 3.2. The expansions (3.6) and (3.8) are valid only for λ + 2 
 ε. It

is straightforward to check that Λ2
1,4(λ, ε) = O(ε) = Λ2

2,3(λ, ε) if λ + 2 = O(ε) and
that, in general, when λ + 2 = O(εσ) for some σ ∈ [0, 1], Λ2

1,4(λ, ε) = O(εσ) and
Λ2

2,3(λ, ε) = O(ε2−σ). Thus, Λ1,4 cannot be assumed to be large/fast compared to Λ2,3

if λ+2 = O(ε). Since λ = −2+O(ε) is way into the stable region, we do not consider
this degeneration further and assume throughout this paper that |Λ2,3| 	 |Λ1,4|.

3.3. The Evans function. The use of the Evans function in the analysis of
linear systems associated to the stability of traveling waves is by now well established.
Here, we give a brief exposition of the characteristics of the Evans function in reaction-
diffusion systems. We refer the reader to [1, 18, 10, 4, 5] for the full analytic details
of the statements in this section.

We define the complement of the essential spectrum by

Ce = C\σess.(3.9)

For λ ∈ Ce the ordering (3.7) holds so that we have the following lemma.
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Lemma 3.3. For all λ ∈ Ce there exist two two-dimensional families of solutions
Φ−(ξ;λ, ε) and Φ+(ξ;λ, ε) to (3.4) such that limξ→±∞ φ±(ξ;λ, ε) = (0, 0, 0, 0)t for all
φ±(ξ;λ, ε) ∈ Φ±(ξ;λ, ε); Φ±(ξ;λ, ε) depend analytically on λ.

An eigenfunction of (3.4) must be in the intersection of Φ−(ξ;λ, ε) and Φ+(ξ;λ, ε).
We define the Evans function D(λ, ε) by

D(λ, ε) = det[φ1(ξ;λ, ε), φ2(ξ;λ, ε), φ3(ξ;λ, ε), φ4(ξ;λ, ε)],(3.10)

where {φ1, φ2} (resp., {φ3, φ4}) span the space Φ−(ξ;λ, ε) (resp., Φ+(ξ;λ, ε)). Since
Tr(A) ≡ 0, it follows by Abel’s theorem that D(λ, ε) is independent of ξ. Moreover,
D(λ, ε) = 0, by construction, at an eigenvalue, since an eigenfunction must be in
Φ+(ξ;λ, ε)∩Φ+(ξ;λ, ε). The Evans function is analytic in λ ∈ Ce, and its zeros corre-
spond one-to-one with eigenvalues of (3.4), counting multiplicities [1, 18]. Of course,
this definition does not determine D(λ) uniquely. However, this can be achieved by
choosing φ1(ξ) and φ2(ξ) as follows.

Lemma 3.4. For all λ ∈ Ce there is a unique solution φ1(ξ;λ, ε) ∈ Φ−(ξ;λ, ε) of
(3.4) such that

lim
ξ→−∞

φ1(ξ;λ, ε)e
−Λ1(λ,ε)ξ = E−

1 (λ, ε);

see (3.6), (3.8). There exists an analytic transmission function t1(λ, ε) such that

lim
ξ→∞

φ1(ξ;λ, ε)e
−Λ1(λ,ε)ξ = t1(λ, ε)E

+
1 (λ, ε).

For λ ∈ Ce such that t1(λ, ε) �= 0 there is a unique solution φ2(ξ;λ, ε) ∈ Φ−(ξ;λ, ε) of
(3.4), which is independent of φ1(ξ;λ, ε), that satisfies

lim
ξ→−∞

φ2(ξ;λ, ε)e
−Λ2(λ,ε)ξ = E−

2 (λ, ε) and lim
ξ→∞

φ2(ξ;λ, ε)e
−Λ1(λ,ε)ξ = (0, 0, 0, 0)t.

There exists a second meromorphic transmission function t2(λ, ε) that is determined
by

lim
ξ→∞

φ2(ξ;λ, ε)e
−Λ2(λ,ε)ξ = t2(λ, ε)E

+
2 (λ, ε).

The solutions φ3,4(ξ;λ, ε) ∈ Φ+(ξ;λ, ε) of (3.4) can be defined likewise. Since∑4
i=1 Λi(λ, ε) ≡ 0 (3.6),

D(λ, ε) = det[φ1(ξ)e
−Λ1ξ, φ2(ξ)e

−Λ2ξ, φ3(ξ)e
−Λ3ξ, φ4(ξ)e

−Λ4ξ]

so that D(λ, ε) can be decomposed into a product of t1(λ, ε) and t2(λ, ε) by taking
the limit ξ → +∞.

Lemma 3.5. Let λ ∈ Ce; then

D(λ, ε) = t1(λ, ε)t2(λ, ε) det
[
E+

1 (λ, ε), E+
2 (λ, ε), E+

3 (λ, ε), E+
4 (λ, ε)

]
.(3.11)

We conclude that the eigenvalues of (3.4) correspond to zeros of the transmission
functions t1(λ, ε) and t2(λ, ε). However, we will see that a zero of t1(λ, ε) does not
necessarily correspond to a zero of D(λ, ε), since t2(λ, ε) can have poles (see section
4.1 and [4, 5]).
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3.4. The fast eigenvalues. The next section will be devoted to the analysis
of (the zeros of) t2(λ, ε); here we consider the zeros of the fast transmission function
t1(λ, ε). In order to do so, we first consider the stability problem associated to the
front solution Uf (ξ;V0), with Uf (ξ;V0) → ±√

1 + V0 as ξ → ±∞, of the scalar fast
reduced limit problem (1.5),

wξξ + (1 + V0 − 3u2
0(ξ;V0) − λ)w = 0,(3.12)

since Uf (ξ;V0) = u0(ξ;V0) (2.3). This system can be written as a linear system in
C

2,

ψξ = B(ξ;λ)ψ with ψ(ξ) = (u(ξ), p(ξ)),(3.13)

where B(ξ;λ) is a 2 × 2 matrix of which the coefficients are by construction O(ε)
close (uniformly in ξ) to those of the 2× 2 block in the upper left corner of the 4× 4
matrix A±(ξ;λ, ε) defined in (3.4), if we set V0 = Vh(0). The Evans function associ-
ated to this problem can be written as Df (λ) = det[ψ1(ξ, λ), ψ4(ξ, λ)], in which ψ1(ξ)

and ψ4(ξ) are solutions of (3.4) determined by limξ→−∞ ψ1(ξ)e
−√

λ+2ξ = (1,
√
λ+ 2)t

and limξ→∞ ψ4(ξ)e
√
λ+2ξ = (1,−√

λ+ 2)t (where ±√
λ+ 2 and (1,±√

λ+ 2)t are
the eigenvalues and eigenvectors of the matrix B∞(λ) = limξ→±∞B(ξ;λ) (compare
to (3.6), (3.8))). As for the full system, we can define an analytic fast reduced trans-

mission function tf (λ) by limξ→∞ ψ1(ξ)e
−√

λ+2ξ = tf (λ)(1,
√
λ+ 2)t so that

Df (λ)= lim
ξ→∞

det[ψ1(ξ), ψ4(ξ)]=det[tf (λ)(1,
√
λ+2)t, (1,−√

λ+2)t]=−2tf (λ)
√
λ+ 2.

The transmission function t1(λ) is, by construction, asymptotically close to its fast
reduced limit tf (λ).

Lemma 3.6. For all λfi ∈ Ce such that tf (λ
f
i ) = 0, there is a uniquely determined

λi(ε) with limε→0 λi(ε) = λfi such that t1(λi(ε), ε) = 0; t1(λ, ε) �= 0 for λ �= λi(ε).
The (quite technical) proof of this lemma is analogous to the proofs of similar

statements in [1, 10, 4, 5] and is based on the “elephant trunk” procedure [1, 10]—see
especially the proof of Corollary 3.9 (and thus of Theorem 3.7) in [4] for a complete
and detailed analysis.

Thus, by Lemma 3.6, we can find (the leading order behavior of) the zeros of
t1(λ, ε) by computing the spectrum of (3.12). By (2.3) and by introducing η =√

1
2 (1 + V0) we can write (3.12) as

wηη +

(
6

cosh2 η
− P 2

)
w = 0 with P 2 =

2λ

1 + V0
+ 4,

which is a well-studied problem of Schrödinger/Sturm–Liouville type (see, for in-
stance, [21, 5]). It has discrete spectrum at P = 1 and P = 4 and essential spectrum
for P ∈ iR. We conclude that the eigenvalues of (3.12), and thus the leading order
approximations of the zeros of t1(λ), are given by

λf1 = 0, λf2 = −3

2
(1 + V0) < 0.(3.14)

The essential spectrum of (3.12) is given by

σfess = {λ ≤ −2(1 + V0)}.(3.15)

We conclude this subsection by stating two simple, but useful results.
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Lemma 3.7. Let (u(ξ; ε), v(ξ; ε)) be a pair of eigenfunction solutions of (3.3)
associated to a simple eigenvalue λ(ε); then either u(ξ) is even as a function of ξ and
v(ξ) odd, or u(ξ) is odd and v(ξ) even.

Proof. We write (3.3) in the following way:

vξξ = ε2[Fo(ξ)u+ Fe(ξ)v] .(3.16)

By construction, Uh is an odd function of ξ and Vh is an even function of ξ. It
thus follows that the above functions, Fo and Fe, must be odd and even functions
of ξ, respectively. Let (u, v) be an eigenfunction associated to the eigenvalue λ. We
decompose (u, v) into odd and even components, u = uo + ue, v = vo + ve, where uo,
vo are odd and ue, ve are even. By the parity of the functions Uh, Vh, Fo, and Fe
it is clear that (uo, ve) and (ue, vo) form two independent solutions of the eigenvalue
problem associated to the eigenvalue λ. Since we have assumed that λ is simple, we
have a contradiction.

Lemma 3.8. Assume that the eigenfunction solution v(ξ) of (3.3) with eigenvalue
λ(ε) is odd; then λ(ε) ≡ 0 so that (u(ξ), v(ξ)) = (Uh,ξ(ξ; ε), Vh,ξ(ξ; ε)).

We will see in section 4 that there can be several eigenvalues for which u(ξ) is
odd and v(ξ) even.

Proof. It is clear that there is an eigenvalue λ = 0 associated to the derivative of
the front (u(ξ), v(ξ)) = (Uh,ξ(ξ; ε), Vh,ξ(ξ; ε)). We assume there is another eigenfunc-
tion with v odd. Since vξξ is O(ε2) and v is odd, it follows that |v| 	 1 on the fast
spatial scale. Hence, the equation for the u-component is to leading order homoge-
neous and given by (3.12) (with w replaced by u). Lemma 3.7 implies that u is even.
Since the only even eigenfunction of (3.12) is Uh,ξ with eigenvalue 0, it follows that
the leading order behavior of u is given by Uh,ξ and that λ is asymptotically close to
0. We thus write

u = Uh,ξ + δ(ε)u1 , v = Vh,ξ + δ(ε)v1 , λ = δ(ε)λ̂(ε) ,(3.17)

where δ(ε) → 0 as ε → 0 and λ̂(0) �= 0 (i.e., λ̂(ε) = O(1), δ(ε) represents the leading
order magnitude of λ). We substitute (3.17) into (3.3) to get the following equation
for u1:

u1,ξξ + (1 − 3U2
h)u1 = λ̂Uh,ξ − Uhv1 .

Note that this equation implies that u1 is O(1), i.e., that the scaling chosen for
u−Uh,ξ in (3.17) is indeed the correct one. This equation has the solvability condition,∫∞
−∞(λ̂Uh,ξ − Uhv1)Uh,ξ dy = 0. Now, since also v1,ξξ is O(ε2) (3.3) and odd, it again

follows that |v1| 	 1 on the fast spatial scale. Thus, we observe by the fast exponential
decay of Uh(ξ) that

∫∞
−∞ UhUh,ξv1 dy → 0 as ε → 0. Hence, we conclude from the

solvability condition that limε→0 λ̂(ε) = 0, which contradicts the assumption that

λ̂(ε) = O(1). So the only possible eigenfunctions with v odd must correspond to a 0
eigenvalue, and hence (u, v) = (Uh,ξ, Vh,ξ).

4. Slow-fast eigenvalues and edge bifurcations. The “slow-fast eigenval-
ues” are the eigenvalues that exist due to the interaction of the fast U -equation and
the slow V -equation in (1.6); thus, these eigenvalues do not have a counterpart in the
fast reduced scalar limit problem (1.5). The slow-fast eigenvalues correspond to the
zeros of the t2(λ; ε), since this transmission function is based on a balance between
slow and fast effects. See also Remark 4.5.
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In order to study the combined effect of slow and fast terms, we need to define
the region in which the fast ξ-jump takes place more accurately:

If =

{
ξ ∈
(
− 1√

ε
,

1√
ε

)}
or {x ∈ (−√

ε,
√
ε)};(4.1)

see (1.3). Note that the exact choice of the boundaries of If is not relevant; any choice
will be suitable as long as it is in the transition zone between x and ξ (i.e., on the
boundary of If we must have |x| 	 1 and |ξ| 
 1).

4.1. The regular case. Again, we first consider the case G1 = O(1) (1.7). In
the slow coordinate x (1.3), i.e., outside the region If , the equation for u reads

(1 − 3U2
h − λ+ O(ε))u = −Uhv + O(ε2uxx)(4.2)

(see (3.3)), since Vh(ξ) = O(ε) on R (Theorem 2.1). Thus, u can be expressed in
terms of v outside the fast ξ-region If (4.1). Using that U2

h(ξ; ε) = 1 + O(ε) outside
If (Theorem 2.1), we find for the v-equation of (3.3) on the slow x-scale

vxx = [2H(1, 0)Uh + O(ε)]u− [H(1, 0) + ∂G
∂V (0) − τλ+ O(ε)

]
v

=
[

2H0

λ+2 −H0 −G1 + τλ+ O(ε)
]
v + O(ε2vxx);

see (1.7). Hence, outside If ,

vxx =

[−H0λ+ λ(λ+ 2)τ −G1(λ+ 2)

λ+ 2
+ O(ε)

]
v,(4.3)

uniformly in ξ. The v-equation is thus at leading order of constant coefficients type.
By (3.1) and (3.6) we have on the ξ-scale

vξξ =

[
Q(λ; 0)

λ+ 2
+ O(ε3)

]
, v =

[
Λ2

2,3(λ, ε) + O(ε3)
]
v.(4.4)

In order to determine an expression for t2(λ, ε), we need to control the solution
φ2(ξ;λ, ε) (Lemma 3.4) of (3.4). This is done in the following lemma.

Lemma 4.1. For all λ ∈ Ce such that t1(λ, ε) �= 0 there exist O(1) constants
C−, C+ > 0 and a third meromorphic transmission function t3(λ, ε) such that

φ2(ξ;λ, ε)=

{ [
E−

2 (λ) + O(ε)
]
eΛ2(λ)ξ + O(eC−ξ) for ξ < − 1√

ε
,

t2(λ)E+
2 (λ)eΛ2(λ)ξ + t3(λ)E+

3 (λ)eΛ3(λ)ξ + O(e−C+ξ) for ξ > 1√
ε
.

(4.5)

Moreover, there exists an O(1) constant Cf such that ||φ2(ξ)|| ≤ Cf for ξ ∈ If . The
v-coordinate of φ2(ξ) satisfies v(ξ) = 1 + O(

√
ε) on If so that

t2(λ, ε) + t3(λ, ε) = 1 + O(
√
ε).(4.6)

Proof. It follows from the above analysis that the (leading order) behavior of
φ2(ξ) outside If is determined by equations with constant coefficients. In other words,
outside If , the matrix A(ξ;λ, ε) of (3.4) can be approximated the constant coefficients
matrix A±

∞(λ, ε) of (3.5). Thus, the approximation (4.5) for ξ < −1/
√
ε follows from

the definition of φ2(ξ) (i.e., the (boundary) conditions on φ2(ξ) as ξ → −∞; see
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Lemma 3.4). This same lemma establishes the leading order term in (4.5) for ξ → ∞.
The transmission function t3(λ, ε) measures the component of φ2(ξ) that decays on
the slow spatial scale x. Inside If , vξξ = O(ε2) (3.3) and Λ2

2,3(λ, ε) = O(ε2) (3.6) so
that (4.6) follows. As in section 3.3 we refrain from giving the full analytic details of
this result, since these are essentially the same as in [10, 4, 5].

The transmission function t2(λ, ε) can be determined by the methods originally
developed in [3]. We deduce from Lemma 4.1 and (4.4) that the total change in vξ
over If is given by

∆slowvξ = 2ε(t2(λ) − 1)

√
Q̃(λ; 0)

λ+ 2
+ O(ε

√
ε),(4.7)

where Q̃(λ; 0) = O(1) is defined by Q(λ; 0) = εQ̃(λ; 0) (3.1). This change in vξ must
be an effect of the evolution on the fast ξ-scale, that is, given by

∆fastvξ =

∫ 1√
ε

− 1√
ε

vξξ|{u=uin,v=1}dξ + O(ε2
√
ε),(4.8)

where uin(ξ;λ) is a bounded solution of the inhomogeneous problem

uξξ + (1 − 3U2
h(ξ; 0) − λ)u = −Uh(ξ; 0)(4.9)

(recall that v(ξ) = 1+O(
√
ε) in If ). The transmission function t2(λ; ε) is determined

by combining (4.7) and (4.8). Since, a priori ∆slowvξ = O(ε) and ∆fastvξ = O(ε
√
ε)

we are led to the conclusion that t2(λ)− 1 must be O(
√
ε) for λ not close to a zero of

∆slowvξ or a singularity of ∆fastvξ.
Lemma 4.2. Consider λ ∈ Ce ∩ {Re(λ) > −2 + δ} for some δ > 0 independent of

ε. Let λf2 = − 3
2 be the second eigenvalue of the limit system (3.12) with V0 = 0 (3.14),

and let λ+(0) and λ−(0) be the solutions of Q(λ, 0) = 0 (3.1). Then t2(λ) = 1+O(
√
ε)

if |λ− λf2 |, |λ− λ+(0)|, |λ− λ−(0)| = O(1); t2(λ) = 1 +O(ε
1
2−σ) if |λ− λf2 | = O(εσ),

|λ− λ+(0)| = O(ε2σ), or |λ− λ−(0)| = O(ε2σ) for some σ ∈ (0, 1
2 ).

Thus, this lemma establishes that t2(λ, ε) can only be zero in {Re(λ) > −2} if

λ ∈ Ce is O(
√
ε) close to λf2 or O(ε) close to λ+(0) or λ−(0), so we have to study

only λ near these three points to determine the slow-fast eigenvalues of (3.4). Note

that the fast reduced (scalar) limit problem has an eigenvalue λf2 = − 3
2 ((3.14), since

V0 = Vh(0) → 0 as ε → 0 (Theorem 2.1)). We will prove below that t2(λ) has a

(simple) zero close to λf2 , i.e., that the fast reduced eigenvalue λf2 persists.
However, before going further into the details of the (possible) existence of eigen-

values near λf2 , λ+(0) or λ−(0), we formulate a result that is an immediate conse-
quence of Lemma 4.2 and that establishes the stability of the wave for values of G1 and
H0 such that the essential spectrum, and hence λ+(0) and λ−(0), is in the negative
half-plane and not too close to the imaginary axis (see Lemma 3.1).

Theorem 4.3. Let ε > 0 be small enough, and let G1 < 0 and H0 + G1 −
2τ < 0 be such that |G1|, |H0 + G1 − 2τ | 
 ε. The spectrum of the eigenvalue
problem (3.3) associated to the stability of the solution (Uh(ξ; ε), Vh(ξ; ε)) consists of
a (simple) eigenvalue at λ = 0 and a part that is embedded in the region {Re(λ) < −ε}.
Therefore, (Uh(ξ; ε), Vh(ξ; ε)) is (spectrally) stable.

Note that the operator defined by (3.3) is clearly sectorial in this case (see section
3.1) so that the nonlinear (orbital) stability of (Uh(ξ; ε), Vh(ξ; ε)) follows by standard
arguments (see, for instance, [11]).
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Proof of Lemma 4.2. We first note that indeed ∆fastvξ = O(ε
√
ε) and ∆slowvξ =

O(ε), and thus t2(λ) = 1+O(
√
ε), for λ ∈ Ce that are not asymptotically close to the

possible degenerations of (4.8) and (4.7).

The solution uin(ξ;λ) of the inhomogeneous problem (4.9) may become unbound-

ed as λ approaches an eigenvalue, λf1 = 0 or λf2 = − 3
2 , or the essential spectrum σfess

(3.15) of the linear problem associated to the fast reduced limit (3.12) with V0 = 0 (i.e.,
the homogeneous part of (4.9)). To avoid irrelevant technicalities near σfess we assume

that λ ∈ Ce ∩ {Re(λ) > −2 + δ}. The eigenfunction associated to λf1 , i.e., Uh,ξ(ξ; 0),
is odd, which implies that the inhomogeneous (and even) term Uh(ξ; 0) satisfies the
solvability condition associated to (4.9) at λ = 0. Hence, uin(ξ;λ) remains bounded as
λ→ 0 so that t2(λ) = 1 +O(

√
ε) also near λ = 0 [4, 5]. The eigenfunction associated

to the second eigenvalue of the homogeneous part of equation (4.9), λf2 , is even; thus,

the solution uin(ξ;λ) of (4.9) grows as 1/(λf2 − λ) as λ → λf2 [21, 4, 5]. Since uin

appears in ∆fastvξ (4.8), we conclude that t2(λ, ε)− 1 = O(ε
1
2−σ) if |λ− λf2 | = O(εσ)

for some σ ∈ (0, 1
2 ).

The behavior of t2(λ) near the degenerations of (4.7), i.e., the zeros λ±(0) of
Q(λ; 0), follows from observing that ∆slowvξ = (t2 − 1)×O(ε1+σ) if λ is O(ε2σ) close
to λ+(0) or to λ−(0) for some σ ∈ (0, 1

2 ).

Although it is not essential for the forthcoming analysis, we note that we may also
conclude from the proof of this lemma that t2(λ) indeed has a (simple) pole that ap-

proaches λf2 as ε→ 0. This pole is generated by the solution uin(ξ;λ) of the inhomoge-
neous problem (4.9) that appears in the expression for ∆fastvξ (4.8). This solution nec-

essarily develops a singularity near λf2 , an eigenvalue of the homogeneous part of (4.9).
Since the Evans function D(λ) is analytic as function of λ, it follows that t2(λ) can

only have its pole exactly at the zero λ2(ε) of t1(λ) (that is also asymptotic to λf2—see
Lemma 3.6). Note that this is fully consistent with Lemma 3.4, in which the existence
of t2(λ) can only be proved for λ such that t1(λ) �= 0. Nevertheless, it can be shown,

by a (standard) winding number argument [1, 4, 5], that the eigenvalue λf2 persists as
an eigenvalue of the full system (3.3) if it is not embedded in the essential spectrum.

Lemma 4.4. Let G1 and H0 be such that σess does not intersect an O(εσ) neigh-

borhood of λf2 for some σ < 1
2 . Then there is an eigenvalue λ2(ε) of (3.3) with

limε→0 λ2(ε) = λf2 = − 3
2 .

Proof. By the assumptions in the lemma, there exists a contour K in the complex
λ-plane, which does not intersect σess, that encircles an O(εσ) neighborhood of λf2
and that is O(εσ) close to λf2 . It follows from Lemma 4.2 that t2(λ) = 1 + O(ε

1
2−σ)

for λ ∈ K; thus, the winding number of t2(λ) over K is 0. However, t2(λ) must have
a (simple) pole in the interior of K, as observed above. We conclude that t2(λ) must
also have a (simple, real) zero in the interior of K.

The possible existence of slow-fast eigenvalues near λ+(0) or λ−(0) is much more
subtle. Since such eigenvalues become relevant only to the stability of the solution
(Uh(ξ; ε), Vh(ξ; ε)) as G1 (orH0+G1−2τ) approaches 0 (Theorem 4.3) we will consider
this issue in forthcoming sections.

Remark 4.5. The eigenvalues λ1(ε) = 0 and λ2(ε) → − 3
2 as ε → 0 can be

interpreted as “fast” eigenvalues, since they correspond to eigenvalues of the fast
reduced limit problem. However, strictly speaking, both eigenvalues also have the
slow-fast structure described in the beginning of this section.

First, we of course know that λ1(ε) = 0 is an eigenvalue—see also Lemma 3.8.
Thus, it is a zero of D(λ, ε). Since t2(λ) = 1 + O(

√
ε) for λ near 0 (see the proof
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of Lemma 4.2), we conclude that t1(0; ε) ≡ 0 (note that this (in a sense) obvious
result does not follow directly from Lemma 3.6). Thus, the solution φ1(ξ; 0, ε) of (3.4)
that by construction has a purely fast structure for ξ 	 −1 does not blow up as
eΛ1(0,ε)ξ as ξ → ∞ (Lemma 3.4). Nevertheless, the eigenfunction associated to λ = 0,
(Uh,ξ(ξ), Vh,ξ(ξ)), has a clear slow-fast structure that it inherits from (Uh(ξ), Vh(ξ))
(Theorem 2.1). Hence, φ1(ξ; 0, ε) is not the eigenfunction associated to λ = 0. Neither
is φ2(ξ; 0, ε), since t2(0) �= 0. It follows that the eigenfunction associated to λ = 0
must be a linear combination of φ1(ξ; 0, ε) and φ2(ξ; 0, ε), and thus that φ1(ξ; 0, ε)
does not decay as ξ → ∞, but instead grows exponentially (and slowly), as eΛ2(0,ε)ξ

(like φ2(ξ; 0, ε)). The linear combination is such that the two growth terms eΛ2(0,ε)ξ

(for ξ → ∞) cancel.
Second, λ2(ε) is not a zero of t1(λ), although it is asymptotically close to such

a zero, but it is a zero of t2(λ). Thus, φ2(ξ;λ2(ε), ε) is the eigenfunction of (3.4) at
λ = λ2(ε) (and φ1(ξ;λ2(ε), ε) blows up fast, as eΛ1(λ2(ε),ε)ξ).

4.2. The superslow case: An example. In the previous section we have seen
that the front might destabilize as G1 approaches 0 (if we assume that H0+G1−2τ <
0). In this case, Theorem 2.1 can no longer be used to establish the existence of the
front (Uh(ξ), Vh(ξ)). Thus, the question about the stability of the front is closely
related to the characteristics of the existence problem (as is usual in the analysis of
(traveling) waves; see also [14]). In this section we consider the bifurcation as G1

approaches 0. Therefore, we assume that H0 − 2τ < 0 and O(1) with respect to ε.
As in section 2 we consider in the superslow case the simplified system in which the
general function G(V ) is replaced by a linear expression: G(V ) = G1V = −ε2γV (see
Remark 2.4). Note that Theorem 4.3 a priori predicts a possible destabilization as
G1 becomes O(ε), i.e., already before G1 = −γε2, but it will be shown in the next
section that the estimate in Theorem 4.3 is not sharp, in the sense that a bifurcation
occurs only as G1 decreases to O(ε2).

One of the main differences between the analysis in this section and that of the
regular case is the fact that Vh(ξ) is no longer O(ε); i.e., Vh(ξ) does not contribute only
to the higher order terms in the stability analysis of the front solutions. Nevertheless,
we follow the approach of the previous section and express the solution u of (3.3) in
terms of v, outside If (see (4.2)):

u = − Uh
1 + Vh − 3U2

h − λ
v + O(ε2uxx) =

[
Uh

2(1 + Vh) + λ
+ O(ε4)

]
v + O(ε2vxx)

(4.10)

since 1 + Vh(ξ; ε)− U2
h(ξ; ε) = O(ε4) (see (2.8); recall that q2 and G are O(ε2) in the

superslow case). This yields that

vxx =
{
2
[
H(U2

h , Vh) + O(ε4)
]
Uhu− [H(U2

h , Vh) + O(ε4) − ε2γ − τλ
]
v
}

=
{

2H(U2
h,Vh)U2

h

2(1+Vh)+λ −H(U2
h , Vh) + τλ+ ε2γ + O(ε4)

}
v + O(ε2vxx)

=
{
λ
[
τ − H(1+Vh,Vh)

2(1+Vh)+λ

]
+ ε2γ + O(ε4)

}
v + O(ε2vxx).

(4.11)

It follows from section 3.1 that one of the “tips” of σess, λ
+(0), is O(ε2) if G1 = O(ε2)

(and H0 − 2τ < 0), while the other one, λ−(0), is O(1) and negative (3.2). Thus, the
destabilization of the front will be caused by either σess at G1 = 0 = γ or possibly by
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a slow-fast eigenvalue λ that is close to λ+(0) (Lemma 4.2). Therefore, we introduce
λ̃ by

λ = ε2λ̃,(4.12)

which implies that (4.11) can also be written as a superslow system,

vxx = ε2
{
λ̃

[
τ − H(1 + Vh, Vh)

2(1 + Vh)

]
+ γ + O(ε2)

}
v.(4.13)

As in section 2.2, we first consider the explicit example in which H(U2, V ) = H0U
2.

Thus, the existence of (several kinds of) front solutions is established by Theorem 2.3.
In this case, the equation for v is, on the ξ-scale, given by

vξξ = ε4
[
λ̃

(
τ − 1

2
H0

)
+ γ + O(ε2)

]
v =

[
Λ2

2,3(λ, ε) + O(ε6)
]
v;(4.14)

see (3.6). Note that this equation is of constant coefficients type, and, at leading
order, the same as in the equation for vξξ in the regular case (4.4). Hence, we can
copy the arguments leading to Lemma 4.1 and conclude that the fundamental solution
φ2(ξ; ε

2λ̃, ε) of (3.4) can again be expressed as in (4.5) outside the region If . Moreover,

as in Lemma 4.1, we may conclude that t2(λ̃, ε) + t3(λ̃, ε) = 1 + O(
√
ε) (4.6).

We may now proceed as in the preceding section (and as in [4, 5]) and determine
t2(λ̃) by measuring the change in the q = vξ-coordinate of φ2(ξ) over the fast field. It
follows from (4.14) that

∆slowvξ = 2ε2(t2(λ̃) − 1)

√
λ̃

(
τ − 1

2
H0

)
+ γ + O(ε2

√
ε).(4.15)

Note that we have to assume that λ̃(τ − 1
2H0) + γ > 0, i.e., Λ2

2,3(λ, ε) > 0, which is a
natural assumption, since

λ̃tip = λ̃+(0) = − 2γ

2τ −H0
< 0(4.16)

determines the “tip” of σess (recall that H0 − 2τ < 0); i.e., t2(λ̃) is not defined if
λ̃ ≤ λ̃tip. By definition, ∆fastvξ is given by (4.8). Since, at leading order Vh(ξ) =
Vh(0) = v0 and Uh(ξ) = u0(ξ; v0) (uniformly) in If (Theorem 2.3), and since u0(ξ; v0)
decays exponentially fast on the (fast) ξ-scale, it follows that

∆fastvξ=ε2H0

∫ ∞

−∞

{
2
[
2u2

0(ξ; v0)−1−v0
]
u0(ξ; v0)uin(ξ; v0) − u2

0(ξ; v0)
}
dξ + O(ε2

√
ε),

(4.17)

where uin(ξ; v0) = uin(ξ;λ = 0; v0) is the (uniquely determined) bounded solution of
the inhomogeneous problem

uξξ + (1 + v0 − 3u2
0(ξ; v0))u = −u0(ξ; v0).

Since we already know one solution of the homogeneous problem, u(ξ) = u0,ξ(ξ; v0),
we can determine uin(ξ; v0) explicitly:

uin(ξ; v0) =
1

2(1 + v0)
(u0(ξ; v0) + ξu0,ξ(ξ; v0)) .(4.18)
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Thus, by (2.3), ∆fastvξ can be computed explicitly (at leading order):

∆fastvξ = −ε2H0

√
2
√

1 + v0 + O(ε2
√
ε).

Combining this with (4.15) yields an explicit expression for t2(λ̃),

t2(λ̃, ε) = 1 −H0

√
2(1 + v0)

λ̃(τ − 1
2H0) + γ

+ O(
√
ε),(4.19)

for λ̃ > λ̃tip (4.16). It follows that t2(λ̃) ≥ 1+O(
√
ε) forH0 ≤ 0 and t2(λ̃) < 1+O(

√
ε)

for H0 > 0. Hence, t2(λ̃) cannot have zeros if H0 ≤ 0. In other words, there cannot
be an eigenvalue near the tip of the essential spectrum in case (ii) of Theorem 2.3.
On the other hand, t2(λ̃) can be 0 for H0 > 0; i.e., in case (i) of Theorem 2.3 there
indeed is a “new” slow-fast eigenvalue of (3.3); it is given by

λedge = ε2λ̃edge =
−2γ +H2

0 (1 + v0)

2τ −H0
ε2 + O(ε2

√
ε) > ε2λ̃tip = λtip;(4.20)

see (4.16). Note that the eigenvalue λedge merges with λtip and thus with σess as
H0 ↓ 0. This is, of course, a leading order result; the accuracy of our analysis allows
us only to conclude that |λtip − λedge| ≤ O(ε2

√
ε) as H0 ↓ 0 and that λedge does not

exist for H0 < 0. Nevertheless, we conclude that λedge appears from the essential
spectrum as H0 increases through 0. In other words, λedge is created, or annihilated,
by an edge bifurcation. Note that the new eigenvalue appears exactly as σess becomes
complex valued (see Figure 3.1).

The existence or nonexistence of λedge is crucial to the character of the destabiliza-
tion (see also the numerical simulations in section 5). For H0 < 0, the front solution
(Uh(ξ), Vh(ξ)) destabilizes as γ, or equivalently G1, crosses through 0. The desta-
bilization is due to the essential spectrum, which implies that also the “background
states” (U(x, t), V (x, t)) ≡ (±1, 0) destabilize at γ = 0. However, in the case H0 > 0
the eigenvalue is λedge is ε2H2

0 (1 + v0)/(2τ − H0) ahead of σess (4.20), in the sense
that it reaches the axis Re(λ) = 0 before σess as γ > 0 decreases to 0. Thus, if H0 > 0
the front solution (Uh(ξ), Vh(ξ)) destabilizes by an element of the discrete spectrum of
(3.3) at γ = γdouble, defined as the solution of γ = 1

2H
2
0 (1+ v0(γ))+O(

√
ε) (> 0). As

a consequence, the background states (±1, 0) remain stable as (Uh(ξ), Vh(ξ)) destabi-
lizes for H0 > 0, contrary to the case H0 < 0. The bifurcation at γdouble is associated
to the saddle-node bifurcation of heteroclinic orbits described in Theorem 2.3.

Theorem 4.6. Assume that G(V ) = −ε2γV , that H(U2, V ) = H0U
2, that

H0 − 2τ < 0 and O(1), and that ε > 0 is small enough.
(i) Let (U+,1

h (ξ), V +,1
h (ξ)) and (U+,2

h (ξ), V +,2
h (ξ)) be the two types of heteroclinic

front solutions that exist for H0 > 0 and γ ≥ γdouble = 3
2H

2
0 + O(

√
ε) with, at

leading order, 0 < V +,1
h (0) = v1 ≤ 2 ≤ v2 = V +,2

h (0) (Theorem 2.3). The front

solution (U+,1
h (ξ), V +,1

h (ξ)) is (nonlinearly) stable for γ > γdouble, and the front

(U+,2
h (ξ), V +,2

h (ξ)) is unstable; (U+,1
h (ξ), V +,1

h (ξ)) destabilizes by an element of the

discrete spectrum, λedge, at γ = γdouble and merges with (U+,2
h (ξ), V +,2

h (ξ)) in a
saddle-node bifurcation of heteroclinic orbits.

(ii) Let (U+
h (ξ), V +

h (ξ)) be a heteroclinic front solution that exists for H0 < 0 and
(all) γ > 0 (Theorem 2.3); (U+

h (ξ), V +
h (ξ)) is (nonlinearly) stable for all γ > 0; it is

destabilized at γ = 0 by the essential spectrum σess.
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Remark 4.7. As in the regular case, spectral stability implies nonlinear orbital
stability in this superslow case, since the linear operator associated to the stability
problem remains sectorial as long as ε > 0.

Proof of Theorem 4.6. We first note that the condition H0 − 2τ < 0 and O(1)
determines that σess can only cross, or come close to, the Re(λ) = 0-axis at λ = 0
(Lemma 3.1 with G1 = O(ε2)).

(i) The eigenvalue “in front of” σess, λ
1,2
edge(v1,2), is given by (4.20), where v0 > 0

is a solution of 9γv2 = 2H2
0 (1 + v)3, and v0 = v1 ≤ 2 (at leading order) for

(U+,1
h (ξ), V +,1

h (ξ)), while v0 = v2 ≥ 2 (at leading order) for (U+,2
h (ξ), V +,2

h (ξ))
(Theorem 2.3). Thus, by (4.20), λ1

edge(v1) < 0 and λ2
edge(v2) > 0 if γ < γdouble =

3
2H

2
0 + O(

√
ε). As a consequence, λ1

edge(v1) ↑ 0 and λ2
edge(v2) ↓ 0 as γ ↓ γdouble, at

which the saddle-node bifurcation takes place.
(ii) We have already shown that there can be no eigenvalues in front of the tip of

σess. Therefore, the statement of the theorem follows.
Remark 4.8. Since t2(λ) = 0, the slow-fast eigenfunction associated to the bifur-

cation at γ = γdouble is given by φ2(ξ). It follows from Lemmas 3.7 and 3.8 that the
u-component of φ2 is odd, and the v-component even, as functions of ξ.

4.3. Bifurcations in the general superslow problem. We now consider the
stability of a front solution in the general superslow limit. Thus, we assume that we
have established the existence of a front (Uh(ξ), Vh(ξ)) for a certain given function
H(U2, V ) (Theorem 2.5). To analyze its stability, we again try to determine t2(λ) by
measuring ∆fastvξ and ∆slowvξ.

In order to determine ∆slowvξ we follow the derivation of (4.13) in the previous
section. Hence, we again conclude that nontrivial eigenvalues near 0 are possible only
for λ = O(ε2); thus, we again introduce λ̃ (4.12) (see also the proof of Theorem 4.10
for more details on the necessity of this scaling). Note that both G1 and λ are now
O(ε2); thus, we can immediately obtain a leading order expression for ∆fastvξ in terms
of H(U2, V ),

∆fastvξ = ε2
∫ ∞

−∞

{
2
[
H(u2

0, v0) − (1 + v0 − u2
0)

∂H
∂U2 (u2

0, v0)
]
u0uin

− [H(u2
0, v0) − (1 + v0 − u2

0)
∂H
∂V (u2

0, v0)
]}
dξ + O(ε2

√
ε)

(4.21)

(see (3.3)), where uin(ξ) is given in (4.18)—recall that v = 1+O(
√
ε) in If . As in the

previous section, we have approximated Uh(ξ) by u0(ξ; v0) (2.3), Vh(ξ) by v0, and If
by R (Theorem 2.5). Note that the integral converges and that ∆fastvξ is (at leading

order) independent of γ and λ̃.
It is in principle possible to determine ∆slowvξ in terms of t2(λ) from (4.13);

however, this equation is in general not of constant coefficients type (unlike for the
example problem in section 4.2). If we introduce the superslow coordinate X by
X = εx = ε2ξ, we can write (4.13) as

vXX =

{
λ̃

[
τ − H(1 + Vh(X), Vh(X))

2(1 + Vh(X))

]
+ γ + O(ε2)

}
v;(4.22)

i.e., the functions Vh(X) introduce explicit X-dependent terms in the equation (in
section 2.3, Vh(X) behaves as e∓

√
γX on M±

ε ). Nevertheless, we can in principle
determine the v-components of the solution φ2(ξ) of (3.4) outside the fast region If .
However, the analysis is much less transparent. For instance, the decomposition (4.5)
as in Lemma 4.1 now holds only for X 
 1; therefore the relation between t3(λ̃) and
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t2(λ̃) that is obtained from the value of v in If will in general be more complicated

than in (4.6). Moreover, λ̃[τ − H(1+Vh(X),Vh(X))
2(1+Vh(X)) ] + γ might change sign as a function

of X so that the solution v(X) of (4.22) can have oscillatory parts.
Thus, we conclude that it is not a straightforward extension of the approach in

the previous section to determine t2(λ̃) for general values of λ̃. It should also be noted
that a similar problem occurs in the regular case in the study of possible eigenvalues
near λ±(0) (Lemma 4.2). If one introduces λ̃± by λ = λ±(0) + ελ̃± and derives
the leading order equation for vxx (4.3) in this case, then one finds an equation like
(4.22), i.e., an equation with spatially dependent coefficients (these x-dependent terms
originate from the O(ε) corrections corresponding to Vh(x) = O(ε) in (4.2) and (4.3)).
Hence, at this point it is not yet possible to determine in full detail whether or not
eigenvalues exist near the tips of σess for general nonlinearities H(U2, V ) and general
λ. Moreover, it is also not possible to explicitly describe how and when eigenvalues
appear from, or disappear into, σess. On the other hand, it is clear from (4.21) and
(4.22) that the number of zeros of t2(λ̃) depends (for instance) on H0. It thus follows
that eigenvalues will be created/annihilated near the tip of σess in the general case (as
in the example system considered in the previous section). The analysis of eigenvalues
near the tip of σess is therefore a continuing subject of research in progress; see also
section 5.

Nevertheless, the value λ = λ̃ = 0 is, of course, especially relevant for the stability
analysis of the front, and (4.22) is again of constant coefficients type at leading order
for this special value of λ. Hence, for λ = 0 we can obtain the equivalent of Lemma
4.1 so that it follows that

∆slowvξ|λ=0 = 2ε2(t2(0) − 1)
√
γ + O(ε2

√
ε).(4.23)

Note that eventually it becomes clear at this point why the choice G1 = −ε2γ is the
most relevant scaling of G1. With this scaling the “jumps” ∆slowvξ and ∆fastvξ (4.21)
are of the same magnitude in ε at λ = 0. Therefore, t2(0, ε) is asymptotically close
to 1 for all G1 with |G1| 
 ε2—see Lemma 4.2 and its proof. Thus, the stability
problem (3.3) can only have a double eigenvalue at 0 if G1 = O(ε2). This establishes
a significant link between the stability analysis and the existence analysis of section
2, since it is clear from the analysis there that the scaling G1 = O(ε2) is also the most
relevant scaling for the (superslow) existence problem (Remark 2.2). Moreover, this
link is even much more explicit.

Theorem 4.9. Assume that G(V ) = −ε2γV , that H0 − 2τ < 0 and O(1), and
that ε > 0 is small enough. Let the front solution (Uh(ξ; ε), Vh(ξ; ε)) be a heteroclinic
solution that corresponds to an intersection T−

o ∩ Wu(−1, 0, 0, 0)|M−
ε

as described
in Theorem 2.5. The stability problem associated to the front solution has a double
eigenvalue at λ = 0 if and only if the intersection T−

o ∩Wu(−1, 0, 0, 0)|M−
ε

is non-

transversal. If the intersection T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
is a second order contact,

then the front bifurcates at

0<γdouble = 1
4(1+v0)2

[∫ ∞

−∞
(1 + v0 − u2

0)H(u2
0, v0)dξ

+ 2

∫ ∞

−∞
(1 + v0 − u2

0)[u
2
0
∂H
∂U2 (u2

0, v0)+(1 + v0)
∂H
∂V (u2

0, v0)]dξ

]2
(4.24)

by merging with another front solution in a saddle-node bifurcation of heteroclinic
orbits.



FRONT DESTABILIZATION 1445

Proof. First, we recall from section 2.3 that a heteroclinic connection that corre-
sponds to the intersection of Wu(−1, 0, 0, 0)|M−

ε
= {q = ε

√
γv} and T−

o is determined
by (2.15). This is, of course, a leading order approximation. In the proof of this theo-
rem we refrain from mentioning this obvious fact at several places. To determine the
v0-dependence of the right-hand side of this relation, we define w0(ξ) as the (mono-
tonically increasing) heteroclinic solution of ẅ + (1 − w2)w = 0. It follows that

u0(ξ; v0) =
√

1 + v0w0(
√

1 + v0ξ), w0(t) = tanh

√
1

2
t;(4.25)

see (2.3). Replacing u0(ξ; v0) by w0(t) in (2.15) yields

√
γv0 =

1

2

√
1 + v0

∫ ∞

−∞
(1 − w2

0)H((1 + v0)w
2
0, v0)dt.(4.26)

Thus, T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
is nontransversal if (2.15) holds and

√
γ = 1

2
∂
∂v0

{√
1 + v0

∫ ∞

−∞
(1 − w2

0)H((1 + v0)w
2
0, v0)dt

}

= 1
4
√

1+v0

∫ ∞

−∞
(1 − w2

0)H((1 + v0)w
2
0, v0)dt

+ 1
2

√
1 + v0

∫ ∞

−∞
(1 − w2

0)[w
2
0
∂H
∂U2 ((1 + v0)w

2
0, v0) + ∂H

∂V ((1 + v0)w
2
0, v0)]dt

= 1
2(1+v0)

∫ ∞

−∞
(1 + v0 − u2

0)H(u2
0, v0)dξ

1
1+v0

∫ ∞

−∞
(1 + v0 − u2

0)[u
2
0
∂H
∂U2 (u2

0, v0) + (1 + v0)
∂H
∂V (u2

0, v0)]dξ

(4.27)

by reintroducing u0(ξ; v0). Note that (4.24) follows from this equation. The expression
for t2(0, ε) is determined by (4.21), (4.23), and (4.18):

t2(0, ε) = 1 − I1 + I2 + I3

2
√
γ(1 + v0)

+ O(
√
ε),

where

I1 =

∫ ∞

−∞
(1 + v0 − u2

0)H(u2
0, v0)dξ,

I2 =

∫ ∞

−∞
(1 + v0 − u2

0)[u
2
0
∂H
∂U2 (u2

0, v0) + (1 + v0)
∂H
∂V (u2

0, v0)]dξ,

I3 =

∫ ∞

−∞
[(1 + v0 − u2

0)
∂H
∂U2 (u2

0, v0) −H(u2
0, v0)]ξu0u0,ξdξ.

(4.28)

We find by partial integration that

I3 =

∫ ∞

−∞

1

2
ξ
∂

∂ξ
[(1 + v0 − u2

0)H(u2
0, v0)]dξ = −1

2
I1,

which implies that

t2(0, ε) = 1 − I1 + 2I2

4
√
γ(1 + v0)

+ O(
√
ε),



1446 ARJEN DOELMAN, DAVID IRON, AND YASUMASA NISHIURA

so that we can conclude by (4.28) that t2(0, ε) = 0 is equivalent to the nontransver-
sality condition (4.27). Hence, a double eigenvalue of (3.3) coincides with a saddle-
node bifurcation of heteroclinic orbits, unless the tangency between T−

o and
Wu(−1, 0, 0, 0)|M−

ε
is degenerate.

Finally, we can turn to the question about the character of the destabilization
of the regular front solution, which has been studied in sections 2.1 and 4.1, as G1

approaches 0. In order to do so, we first note that the existence problem for the regular
case can be recovered from that of the singular limit by reintroducing G1 = −γε2 in
the existence condition (2.15). This implies that v0 must become O(ε) and that

√
−G1v0 = ε

1

2

∫ ∞

−∞
(1 − u2

0)H(u2
0, 0)dξ + O(ε

√
ε),(4.29)

which is equivalent to (2.4) in Theorem 2.1. Thus, the structure of the front
(Uh(ξ), Vh(ξ)) as a function of G1 ↑ 0 can be determined by tracing the intersection
T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
in the superslow limit as Wu(−1, 0, 0, 0)|M−

ε
= {q = ε

√
γv}

goes down from being almost vertical (G1 = O(1), γ = O(1/ε2)) to horizontal
(G1 = γ = 0). Note that this process determines a unique “regular” element in the
intersection T−

o ∩Wu(−1, 0, 0, 0)|M−
ε
; all other elements of T−

o ∩Wu(−1, 0, 0, 0)|M−
ε

do not persist in the regular limit γ = O(1/ε2) (here, we do not pay attention to pos-
sible heteroclinic connections that have v0 
 1 as γ 
 1). It depends on the sign of
1
2

∫∞
−∞(1 − u2

0)H(u2
0, 0)dξ whether v0 will be positive or negative (4.29), i.e., whether

the regular intersection T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
travels through the first or through

the third quadrant of the (v, q)-plane as γ decreases. Since H(U2, V ) is smooth, we
can make a distinction between two different types of behavior:

Type D: The regular element of T−
o ∩ Wu(−1, 0, 0, 0)|M−

ε
merges at a certain

critical value of G1 = −ε2γ < 0 with another element of T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
in

a saddle-node bifurcation of heteroclinic orbits.
Type E: The regular element of T−

o ∩Wu(−1, 0, 0, 0)|M−
ε

exists up to the limit
G1 = 0.
Note that T−

o approaches (−1, 0) as v0 ↓ −1 (4.26) so that an element of T−
o ∩

Wu(−1, 0, 0, 0)|M−
ε

can only reach the singular region {v0 ≤ −1} at γ = 0, which
indeed implies that there can only be orbits of Type D and E in the third quadrant.
We can now describe the destabilization of the regular fronts as G1 approaches 0.

Theorem 4.10. Assume that G(V ) = −ε2γV , that H0 − 2τ < 0 and O(1), and
that ε > 0 is small enough. Consider the heteroclinic front solution (Uh(ξ), Vh(ξ))
determined in Theorem 2.1 for G1 < 0 and O(1) and in Theorem 2.5 for G1 = O(ε2).
If the front is of Type D as G1 becomes O(ε2), then it is asymptotically stable up to
G1 = −ε2γdouble < 0 (4.24) and is destabilized by a (discrete) eigenvalue through a
saddle-node bifurcation of heteroclinic orbits. A front solution of Type E is stable up
to G1 = 0 and is destabilized by the essential spectrum.

Thus, the destabilization of a regular front solution in the limit G1 ↑ 0 is com-
pletely determined by the geometrical structure of T−

o ∩Wu(−1, 0, 0, 0)|M−
ε

in the
superslow limit. Note that Figure 2.3 presents examples of Type D and Type E
behavior.

Proof. The proof of this theorem is a bit more subtle than a priori might be
expected, since in general we do not have control over the eigenvalues of (3.3) near the
tip of σess (see also Remark 4.11), except that these eigenvalues must be O(ε2) close
to σess (see also below). Thus, for instance, the following scenario for a Type D orbit
might be possible as γ decreases to γdouble: two eigenvalues bifurcate (subsequently)
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from σess (as real eigenvalues), merge, and become a pair of complex eigenvalues. This
pair crosses through the Re(λ) = 0 axis at γHopf > γdouble and touches down again
on the real axis. At γdouble one of these eigenvalues returns to Re(λ) = 0. Thus, in
this scenario, there already exists an unstable eigenvalue at γ = γdouble; moreover,
the front destabilizes by a Hopf bifurcation at γHopf > γdouble.

Let us first note that a destabilization by a Hopf bifurcation is the only alternative
to the statements of the theorem, since eigenvalues move through either 0 or (in pairs)
through the Re(λ) = 0 axis. If we can show that a Hopf bifurcation cannot occur
for γ > γdouble, then it is clear that for Type D orbits λedge < 0 for γ > γdouble

and that there is no unstable spectrum at γ = γdouble (this follows from Theorem
4.3: if γ is 
 O(1/ε), all nontrivial eigenvalues must be in {Re(λ) < −ε}; hence, by
decreasing γ, there is one eigenvalue, λedge, that is the first to reach 0; this happens
at the saddle-node bifurcation (Theorem 4.9), i.e., at γ = γdouble). Thus, the front is
stable for γ > γdouble. The same argument can be used to establish the nonexistence
of unstable spectrum for Type E orbits if there are no Hopf bifurcations possible.

To show that there cannot be Hopf bifurcations (for H0 − 2τ < 0 and O(1),
see section 5), we first ascertain that λ must be O(ε2), i.e., that (4.12) is the cor-
rect scaling. This follows by the same arguments as in the proof of Lemma 4.2. If
∆slowvξ 
 ∆fastvξ, then there cannot be an eigenvalue. Thus, it follows from (4.11)
that |λ| must indeed be O(ε2) near λ+(0). Hence, even if there is a Hopf bifurcation,
it will be O(ε2) close to 0. Next, we realize that this situation is covered by (4.21) for
the jump through the fast field; thus, ∆fastvξ is real (at leading order), independent of

λ̃. However, it follows from (4.22) that ∆slowvξ cannot be real if λ̃ is complex valued.
Hence, there cannot be a Hopf bifurcation O(ε2) close to λ = 0.

Remark 4.11. By the same geometrical arguments (that are based on Theorem
4.9) we can describe the character of the bifurcations as function γ in the stability
problem associated to a heteroclinic orbit that corresponds to a nonregular element of
T−
o ∩Wu(−1, 0, 0, 0)|M−

ε
. However, it should be noted that, in general, we do not have

enough information on the spectrum of (3.3) to establish the stability of such a front,
since we did not determine all possible eigenvalues. In general, we cannot exclude
the possibility that various eigenvalues have bifurcated from the essential spectrum
for these fronts (in fact, the possible oscillatory character of a solution v(X) of (4.22)
strongly suggests that this can happen). Nevertheless, we may, for instance, conclude
that if the regular orbit is of Type D, then it merges with a nonregular orbit at γdouble

that is unstable for any γ > γdouble for which it exists.

Remark 4.12. The most simple example one can consider is H(U2, V ) ≡ H0.
This corresponds to the case in which the function F (U2, V ) in (1.1) is (the most
general) linear function of U2 and V with parameters G1 and H0 (i.e., F (U2, V ) =
H0 +(H0 +G1)V −H0U

2; recall that F (1, 0) must be 0). In this case, T−
o is given by

{q = 2εH0

√
1 + v0 + O(ε2)} so that Wu(−1, 0, 0, 0)|M−

ε
can never be tangent to T−

o .
Hence, in this case, there is a uniquely determined front solution of Type E for any
H0 �= 0 and G1 < 0; i.e., the front solution is stable up to G1 = 0 and is destabilized
by the essential spectrum.

Remark 4.13. We did not consider the degenerate case in which H(U2, V ) is such
that H(1 + V, V ) ≡ 0 (section 1), i.e., functions H such that H(U2, V ) = (1 + V −
U2)H̃(U2, V ) for some smooth function H̃. In a sense, this is a much more simple
problem, for instance, since in the superslow limit, the stability problem in the slow
field is automatically of constant coefficients type (at leading order); see (4.11), (4.22).
Moreover, it is also clear from these same relations that we can find O(1) instead of
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O(ε2) eigenvalues in this case if τ = O(ε2). In fact, the situation is very much like the
stability analysis of (homoclinic) pulses in monostable systems in [4, 5]. For instance,
as in [4, 5], potential eigenvalues are no longer “slaved” to the tips of the essential
spectrum or to the eigenvalues of the fast reduced limit (Lemma 4.2). Moreover, the
“natural” persistence result of Lemma 4.4 is also not valid in this case, in general.

5. Simulations and discussion.

5.1. Simulations. We now examine numerically the difference between the two
types of bifurcations discussed in Theorems 4.6 and 4.10. We consider the example
system of sections 2.2 and 4.2 for H0 > 0 (case (i), Type D) and H0 < 0 (case (ii),
Type E). First, we note that in both cases the simulations confirm that the fronts are
asymptotically stable up to the analytically determined bifurcation values. In case (i)
the front destabilizes at γ < γdouble due to an eigenvalue in the discrete spectrum. The
eigenfunction associated to this type of destabilization is localized to a neighborhood
of the front, as can be seen in Figure 5.1. In this case the front becomes unstable
and blows up in finite time, while the background states remain stable. In case (ii),
the tip of the essential spectrum becomes positive and the background states become
unstable as γ passes through 0. As can be seen in Figure 5.2, this destabilization
causes the front to collapse. The U component then tends to 0 on the entire real line,
and the V component grows according to Vt = Vxx + ε2|γ|V . Thus, we may conclude
that Type D or Type E orbits indeed exhibit significantly different behavior at the
destabilization. These simulations were performed using SPMDF [2], with Neumann
boundary conditions at x = ±50. The initial conditions used in Figure 5.1 are given

by U(x, 0) = u0(x, ε; v1) (2.3) and V (x, 0) = v1e
−ε

√
|γ|x| (as described in Theorem

2.3).

-3

-2
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0

1

2

3

(a) U -component

-1

0

1

2

3

4

5

6

(b) V -component

Fig. 5.1. Numerical simulation of destabilization caused by the discrete spectrum; both compo-
nents blow up in finite time (H0 = 1, γ = 1.4, τ = 1, and ε = 0.1).

5.2. Hopf bifurcations. As we have seen in section 4.1, in general there can
be (complex) eigenvalues near the endpoints λ±(0) of σess. Thus, if we keep G1 < 0
fixed at an O(1) value and increase H0 such that H0 + G1 − 2τ approaches 0, we
encounter a similar issue as was studied in the previous section: Will the front be
destabilized by σess at H0 = 2τ − G1, or (just) before that, by an eigenvalue? In
this case, the bifurcation is of Hopf type, and it is not associated to the existence
problem. This problem can in principle be analyzed by the methods developed here,
i.e., by determining t2(λ, ε) through ∆slowvξ and ∆fastvξ. We have already mentioned
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Fig. 5.2. Numerical simulation of destabilization caused by the essential spectrum; U → 0 and
|V | grows slowly and exponentially (H0 = −1, γ = −0.1, τ = 1, and ε = 0.1).

the new features of the measuring the slow “jump” ∆slowvξ in section 4.3. Moreover,
since the bifurcation does not occur near λ = 0, we do not have an explicit formula
for uin(ξ), like (4.18), and it is thus not immediately clear whether it is possible to
determine ∆fastvξ. Note that this latter issue is solvable with the hypergeometric
functions method developed in [3, 5]. Nevertheless, we do not go deeper into this
subject here.

5.3. Planar fronts and stripes. A next step in the study of (planar) stripes,
as mentioned in the introduction, is the stability analysis of planar fronts, i.e., the
analysis of the stability of the fronts (Uh(ξ), Vh(ξ)) with respect to two-dimensional
perturbations (thus, (Uh(ξ), Vh(ξ)) represents a planar front that has a trivial struc-
ture in the y-direction). The methods developed here can be used to study this
problem (as is also suggested by [7] in which a similar problem has been studied in a
monostable Gierer–Meinhardt context). It should be noted here that there are sev-
eral papers in the literature that consider the question of the (non-)persistence of the
stability of one-dimensional fronts as two-dimensional planar fronts (see, for instance,
[17, 20, 13, 16]). The analysis in [20, 16] of a class of singularly perturbed bistable
systems shows that the planar fronts considered there cannot be stable, while it is
shown that planar fronts can be stable in a more regular context in [13]. Thus, this is
a nontrivial issue. Preliminary analysis of the front solutions considered in this paper
indicates that these solutions remain stable as planar fronts in the regular case (i.e.,
as long as G1 < 0 and O(1)). The analysis of the planar fronts and their spatially
periodic counterparts, the stripe patterns, is the subject of a work in progress.
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Abstract. The steady-state nonlinear compressible viscous Navier–Stokes system with nonzero
boundary conditions is considered on a polygon D. It is shown that the leading corner singularities
for the velocity are the same as those of the Lamé system and the leading corner singularity for
the temperature is the same as that of the Laplacian. If P is a concave vertex of D with interior
angle ω, the velocity u and temperature σ can be split into singular and regular parts near the
vertex P . The regular functions are uR = u − χ[C1rλ1T1(θ) + C2rλ2T2(θ)] ∈ H2,q and σR =
σ − χC3rπ/ω sin[(π/ω)θ] ∈ H2,q with 2 < q < 1/(1 − λ1), where the numbers λi (i = 1, 2) satisfy
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< λ1 < π/ω < λ2 < 1, the Ti are trigonometric vector functions, χ is a cutoff function, Ci
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1. Introduction and main results. Our concern is with the compressible
Navier–Stokes system. Among the many open problems associated with this sys-
tem is to give a description of the singularities of a solution caused by a corner or
edge of the boundary. In addition to the intrinsic mathematical interest in these sin-
gularities, such information might have application to certain physical problems. For
instance, imagine a high speed flow over a body where a wall of the body is turned
downward (or upward) at the corner through a deflection angle [2]. If the flow is
in high speed, say, supersonic or hypersonic, then at the corner the flow properties
may change drastically. In addition, when a solution domain is composed of different
materials, corner singularities may occur at the intersections of their internal inter-
faces. A further understanding of fluid behavior at such corners may be an essential
ingredient in such related physical situations.

The purpose of this paper is to study the steady-state compressible Navier–Stokes
system in two dimensions in a polygonal domain with nonzero boundary conditions.
In particular there is given a decomposition of the velocity and the temperature into
singular and regular parts near concave vertices of the polygon.

The equations to be considered are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−µ∆u − (µ+ ν)∇divu + ρ(u · ∇)u + ∇p = 0 in D,
div(ρu) = 0 in D,

−γ∆σ + cvρu · ∇σ + σpσdivu = ψ(u,u) in D,
u = u0, σ = σ0 on ∂D,
p = p0 on ∂Din,

(1.1)

where D is an open bounded domain in the plane with polygonal boundary ∂D,
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u = [u1, u2] is the unknown velocity vector, and p is the unknown pressure; σ is the
unknown temperature; ρ = ρ(p, σ) is a given positive function, strictly increasing in
the first variable, that provides density as a function of pressure and temperature;
u0 = [u0, v0] with u0 > 0, p0, and σ0 > 0 are the given boundary values; µ, ν are the
constant coefficients of viscosity with µ > 0 and µ+ν > 0, γ is the constant coefficient
of conductivity with γ > 0, and cv is a positive constant. The number ν, the “bulk”
viscosity, is often taken to be − 2

3µ [3, Chapter 3] as suggested by Stokes (see [2,
Chapter 15]). The three differential equations in (1.1) represent the conservation of
momentum, mass, and energy, respectively. In the energy equation

ψ(u,u) = γ0

2∑
i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2

+ γ1(divu)2,(1.2)

where γ0 and γ1 are positive constants, it is assumed that the boundary data u0, ρ0,
and σ0 are given by functions defined on all of D̄. The inflow and outflow boundaries,
∂Din and ∂Dout, are defined by

∂Din = {(x, y) ∈ ∂D : u0 · n < 0},
∂Dout = {(x, y) ∈ ∂D : u0 · n ≥ 0},(1.3)

where n denotes the unit outward pointing normal to ∂D. The function ρ(p, σ)
is assumed to have Lipschitz continuous first order partial derivatives ρp, ρσ, with
gradient

∇ρ = ρp∇p+ ρσ∇σ.(1.4)

In [14] the stationary barotropic compressible Navier–Stokes equations were in-
vestigated in a plane domain with corners of angle less than π. In [13] we analyzed
the barotropic compressible Navier–Stokes system on a nonconvex polygonal domain
with the further simplification that ν = −µ. We showed that the lowest order corner
singularity comes from the Laplace operator; the continuity equation does not have
an effect on this lowest order singularity. In this paper a similar result is obtained; the
lowest order singularity in the velocity comes from the Lamé system, and the lowest
order singularity in the temperature comes from the Laplace operator. The analysis
follows that of [13], but complications arise from the presence of the Lamé system in
the momentum equations and the presence of the energy equation in the system.

Let ū = u− u0, p̄ = p− p0, and σ̄ = σ − σ0. Inserting [u, p, σ] = [ū + u0, p̄+ p0,
σ̄ + σ0] into system (1.1), rearranging the resulting system for the unknown variable
[ū, p̄, σ̄] and setting [ū, p̄, σ̄] = [u, p, σ] again, system (1.1) becomes

−µ∆u − (µ+ ν)∇divu + ρ(u + u0) · ∇u + ∇p = f ,

divu + κ1(u + u0) · ∇p+ κ2(u + u0) · ∇σ = g,(1.5)

−γ∆σ + cvρ(u + u0) · ∇σ + σpσdivu = h,

with [u, p, σ] satisfying zero boundary conditions, where κ1 = ρp/ρ, κ2 = ρσ/ρ, and

f0 := µ∆u0 + (µ+ ν)∇divu0 − ρu0 · ∇u0 −∇p0,

g0 := −divu0 − κ1u0 · ∇p0 − κ2u0 · ∇σ0,

h0 := γ∆σ0 − cvρu0 · ∇σ0 − σ0pσdivu0,

f(u, p, σ) = f0 − ρu · ∇u0,(1.6)

g(u, p, σ) = g0 − κ1u · ∇p0 − κ2u · ∇σ0,

h(u, p, σ) = h0 − cvρu · ∇σ0 + pσ(σ0divu − σdivu0)

+ ψ(u + u0,u + u0).
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Note that system (1.5) with zero boundary condition is equivalent to (1.1).
In order to state the main result of this paper we give some notation concerning the

polygon D and some numbers concerning the singular functions. Let the vertices of D
be denoted by Pn, n = 1, . . . , N . Let ωn be the interior angle of the vertex Pn. Let λ1,n

and λ2,n be the first and second leading singular exponents for the Lamé system (1.12)
corresponding to each concave vertex Pn so that 1

2 < λ1,n < λ2,n < 1 (see [9]). Let
q∗2 = minn{2/(2−λ1,n) : Pn is a concave vertex}, and let I∗ = {n : 2/(2−λ1,n) ≥ q∗2}.
We define

q∗1 = min
n∈I∗

{
2

1 − λ1,n
: Pn is a concave vertex

}
.

Our main result, which will be shown in section 5, is the following theorem.
Theorem 1.1. Suppose that µ and γ are sufficiently large. Let D be concave,

and let 2 < q < 1
2q

∗
1 . Let u0 ∈ H2,q(D), p0 ∈ H1,q(D), and σ0 ∈ H2,q(D). Suppose

the vector field u0 satisfies the conditions (A2)–(A4) stated in section 2. For any
constant K1, there is a constant K2 such that if ‖[u0, σ0]‖2,q,D + ‖p0‖1,q,D ≤ K1 and
‖[∇u0,∇σ0]‖1,q,D + ‖∇p0‖1,q,D + |σ0|∞ ≤ K2, there is a unique solution [u, p, σ] ∈
H1,q(D) × H1,q(D) × H1,q(D) of system (1.1). Furthermore, the solution has the
following properties. For each n ∈ I∗ let (rn, θn) be the polar coordinates based on
the concave vertex Pn, arranged so that θ0 = 0 on one side of Pn, and let un,s =
χn(C1,nΦ1,n + C2,nΦ2,n) and σn,s = χnC3,nφn, where C1,n, C2,n, and C3,n are the
constants given in (3.31), (3.62), and (3.51), respectively, Φi,n and φn are given in
(2.11) and (2.4), respectively, and χn is a smooth cutoff function which is 1 near Pn
and zero outside a small neighborhood of Pn. Then the solution [u, σ] may be split
into singular and regular parts

[u, σ] =
∑
n∈I∗

[un,s, σn,s] + [uR, σR], [uR, σR] := [u, σ] −
∑
n∈I∗

[un,s, σn,s]

with the property [uR, p, σR] ∈ H2,q(D)×H1,q(D)×H2,q(D). Also there is a constant
K3 = C(K1,K2, D) such that

‖[uR − u0, σR − σ0]‖2,q,D + ‖[u − u0, σ − σ0]‖1,q,D + ‖p− p0‖1,q,D ≤ K3.

If D is convex and q > 2, then [u, σ] = [uR, σR] satisfies the above inequality.
Note that in Theorem 1.1, the large condition on the conductivity γ is only needed

for defining the solution operator E (see (1.14)).
In order to prove Theorem 1.2 we linearize system (1.5) and analyze it on D.

To do this, let w, η, and τ be given functions with w = 0 on ∂D, η = 0 on ∂Din,
and τ = 0 on ∂D, respectively. Let U = w + u0, f = f(w, η, τ), g = g(w, η, τ), and
h = h(w, η, τ). Our linearized system for (1.5) is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−µ∆u − (µ+ ν)∇divu + ρ (U · ∇)u + ∇p = f in D,
divu + κ1U · ∇p+ κ2U · ∇σ = g in D,

−γ∆σ + ρ̃U · ∇σ + τ̃ divu = h in D,
u = 0, σ = 0 on ∂D,
p = 0 on ∂Din,

(1.7)

where ρ = ρ(η + p0, τ + σ0), κ1 = ρp(η + p0, τ + σ0)/ρ, κ2 = ρσ(η + p0, τ + σ0)/ρ,
ρ̃ = ρcv, and τ̃ = τpσ with pσ = pσ(ρ + ρ0, τ + σ0). In studying (1.7) it is assumed
that U = [U, V ], ρ, κ1, τ are given functions.
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To analyze (1.7) on the bounded polygon D and for an ease of description, some
restrictions are needed on the vector field U and the polygon D (see Assumption A
in section 2). From Assumption A, it is possible to construct a finite open covering
{Ωi} such that each open set Ωi is a polygon having at most one vertex of D, the
remaining vertices being convex (see section 4). Also, Ωi satisfies (A4). Thus it
suffices to analyze the behavior of the solution in a polygon Ω having one concave
vertex P . Without loss of generality assume that the vertex P is placed at the origin
(0, 0). Let χ ∈ C∞

0 (R2) be a smooth cutoff function which is identically 1 near the
origin (0, 0) and which satisfies

χ(x, y) ≡ 0 outside a neighborhood of (0, 0).(1.8)

Using (1.7) and (1.8), the behavior of the solution near the origin (0, 0) can be inves-
tigated by considering the following generalized compressible Stokes system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−µ∆(χu) − (µ+ ν)∇div(χu) + ρ(U · ∇)(χu) + ∇(χp)
= χ f − 2µ∇χ · ∇u − (µ+ ν)(∇χdivu + ∇χ∇u)

+ u(−µ∆χ− (µ+ ν)∇2χ+ ρU · ∇χ) + p∇χ in Ω,

div(χu) + κ1 U · ∇(χp) + κ2 U · ∇(χσ)
= χ g + u · ∇χ+ (pκ1 + σκ2)U · ∇χ in Ω,

−γ∆(χσ) + ρ̃(U · ∇)(χσ) + τ̃div(χu)
= χh− 2 γ∇χ · ∇σ + σρ̃U · ∇χ+ τ̃∇χ · u in Ω,

χu = 0 on Γ, χσ = 0 on Γ,
χp = 0 on Γin,

(1.9)

where Γ is the boundary of Ω and Γin is the inflow boundary of Γ. One finds that
[χu, χp, χσ] is a weak solution of (1.9). Applying this to each set Ωi in the open cover
{Ωi}, we will see that the solution [u, p, σ] of (1.7) may be expressed in a sum of the
local functions:

u =

N∑
n=1

un, p =

N∑
n=1

pn, σ =

N∑
n=1

σn.(1.10)

Here the triple [un, pn, σn], 1 ≤ n ≤ N, is the weak solution of (1.9) corresponding to
the vertex Pn of D. Hence, from (1.9) it suffices to consider the equations⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−µ∆u − (µ+ ν)∇divu + ρ (U · ∇)u + ∇p = f in Ω,
divu + κ1 U · ∇p+ κ2 U · ∇σ = g in Ω,

−γ∆σ + ρ̃U · ∇σ + τ̃divu = h in Ω,
u = 0, σ = 0 on Γ,
p = 0 on Γin.

(1.11)

The problem (1.11) will be discussed in section 3. For the existence of a solution, see
Lemma 2.9. In section 3 we will show that the velocity and the temperature of the
solution [u, p, σ] of (1.11) may be decomposed into singular and regular parts near
the concave vertex.

We next state a result for the linearized problem (1.7), which will be shown in
section 4. In doing so, we give some notation. Set qλ2 = minn{2/(s − λ1,n) : Pn is a
concave vertex} and define a set

I∗
s = {n : 2/(s− λ1,n) ≥ qλ2 }.
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Theorem 1.2. Let D be a concave polygon. Suppose Assumption A given in
section 2 holds. Let q > 2 be sufficiently close to 2 and s ≥ 1. Assume that [f , g, h] ∈
Hs−2,q(D) × Hs−1,q(D) × Hs−2,q(D). Suppose that µ and γ are sufficiently large.

(a) If

s < min
n∈I∗

s

{λ1,n} + 1 + 2/q,

there is a unique solution [u, p, σ] ∈ Hs−1,q(D) × Hs−2,q(D) × Hs−1,q(D) of (1.7).
(b) Let I∗

s �= ∅. If s is given with

max
n∈I∗

s

{λ2,n} + 2/q < s ≤ 2,

then the solution [u, σ] may be split into singular and regular parts

[u, σ] =
∑
n∈I∗

s

[un,s, σn,s] + [uR, σR], [uR, σR] = [u, σ] −
∑
n∈I∗

s

[un,s, σn,s]

with [uR, p, σR] ∈ Hs,q(D) × Hs−1,q(D) × Hs,q(D) and

[un,s, σn,s] = [C1,nΦ1,n + C2,nΦ2,n, C3,nφn],

where Cn = [C1,n, C2,n, C3,n] is constructed in Steps 1, 2, and 3 in section 3. Further-
more, there is a constant K = C(C0, ‖UR‖2,q,D +

∑
n∈I∗

s
|dn|) with a given constant

vector dn = [d1,n, d2,n, d3,n] such that

‖[uR, σR]‖s,q,D +
∑
n∈I∗

s

|Cn| + ‖p‖s−1,q,D

≤ K
(‖[f , h]‖s−2,q,D + ‖B(κ−1g)‖s−1,q,D

)
.

(c) If D is convex, then [u, σ] = [uR, σR] satisfies the above inequality.
To apply to our problem (1.7) known results for elliptic problems on the polygonal

domain we define some solution operators corresponding to differential equations as
follows. We will consider the Lamé system

Lu := −∆u − ν1∇divu = f in D,
u = 0 on ∂D,

(1.12)

where the parameter ν1 > 0. We define Aν1 : f 	→ u to be the solution operator to
this system. An energy argument shows that if f ∈ L2(D) (or H−1(D)), there is a
unique solution u = Aν1f ∈ H1

0(D) to (1.12). Using the operator Aν1 and setting
ν1 = 1 + ν/µ, we define an operator M as follows:

M =
(
I + µ−1Aν1(ρU · ∇)

)−1

Aν1 .(1.13)

The operator M will be used in analyzing the momentum equations in (1.7). If
u = µ−1MF, then u satisfies the following problem: Lβu := −µ∆u− (µ+ν)∇divu+
ρU · ∇u = F in D, u = 0 on ∂D.

In a similar manner, we define A : L2(D) (or H−1(D)) −→ H1
0(D) by σ := Ah,

where σ is the solution of −∆σ = h in D, σ = 0 on ∂D. Using A, we define an
operator E as follows:

E =
(
I + γ−1A(ρ̃U · ∇)

)−1

A.(1.14)



1456 JAE RYONG KWEON AND R. BRUCE KELLOGG

The operator E will be used in analyzing the energy equation in (1.7). If σ = γ−1EH,
then σ satisfies Eσ := −γ∆σ + ρ̃U · ∇σ = H in D, σ = 0 on ∂D.

For 1 < q <∞ and 1 ≤ s ≤ 2 we let

Qs,q(D) := {χ ∈ Hs−1,q(D) : ‖χ‖Qs,q(D) <∞}
with ‖χ‖Qs,q(D) := ‖χ‖s−1,q,D + ‖U · ∇χ‖s−1,q,D and Q = Qs,q if s = 1. We define
the solution operator B : Hs−1,q(D) −→ Qs,q(D) by χ := BG, where χ is the solution
of {

U · ∇χ = G in D,
χ = 0 on ∂Din,

(1.15)

where the inflow boundary is ∂Din = {(x, y) ∈ Γ : U · n < 0}.
In considering the Lamé system (1.12) on a sector S, we recall the following. Let

S be a sector in the plane with angle ω and placed at the origin. Consider

Lu = f in S, u = 0 on Γ := ∂S.(1.16)

Let us consider the transcendental equations in [9, (3.1.22)–(3.1.23)]:

(1 + 2ν−1
1 ) sin(λω) − λ sinω = 0,(1.17)

(1 + 2ν−1
1 ) sin(λω) + λ sinω = 0.(1.18)

Note that the roots to (1.17) and (1.18) are, in general, complex, but the first several
ones are real, depending on the angle of the vertex (for details, see section 2 and [9,
Theorem 3.1.2]). From [9] we can see that if λ := λ(ω, ν1) solves either (1.17) or
(1.18), then there are vector valued trigonometric functions T1, T2, T3 (see [9, (3.128)–
(3.129)]) such that (i) if 0 < ω < π, then 1 < λ1 < π/ω, where λ1 is the unique simple
real root of (1.17), and

Φ = rλ1T1(θ)(1.19)

satisfies LΦ = 0 and T1 = 0 at θ = 0, ω, and (ii) if π < ω < 2π, then 1/2 < λ1 <
π/ω < λ2 < 1 < λ3 < 2π/ω, where λ1 is the real root of (1.18) and λ2, λ3 are the real
roots of (1.17), and

Φi = rλiTi(θ)(1.20)

satisfies LΦi = 0 and Ti = 0 at θ = 0, ω for i = 1, . . . , 3. Note that if ν1 = 0, then
λj = jπ/ω and Φj = rλj sin(λjθ)C with C = [1, 1].

Considering the above facts we can give a result for the Lamé system (1.16) on
the concave sector S, which can be derived from [5, 9]: Let q ≥ 2. (a) For each
i = 1, . . . , 3, there is a linear functional Λi,ν1 such that Λi,ν1 is bounded on Hs−2,q(S)
for s > λi+2/q but not for s ≤ λi+2/q. (b) If f ∈ Hs−2,q(S), and u = Aν1f = L−1f

is the solution of (1.16) with u ≡ 0 for r =
√
x2 + y2 > 1, then, for i = 1, . . . , 3, if

λi + 2/q < s < λi+1 + 2/q with λ4 = 2π/ω, then

uR,i := uR,i−1 − χΛi,ν1(f)Φi ∈ Hs,q(S)

with ‖uR,i‖s,q,S ≤ C‖f‖s−2,q,S , where uR,0 = u.
In what follows, we denote by Lq(D) the space of all measurable functions u

defined on D for which ‖u‖0,q,D := (
∫
D
|u(x)|q dx)1/q < ∞. If q = 2, we let ‖u‖0,D
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denote the norm in L2(D). If q = ∞, we define the norm of L∞(D) by ‖u‖∞ :=
sup{|u(x)| : x ∈ D}. For k a positive integer, the Sobolev space is defined as follows:

Hk,q(D) =

{
v ∈ Lq(D) : ‖v‖k,q,D :=

( ∑
|α|≤k

‖∇αv‖q0,q,D
)1/q

<∞
}
.

If q = 2, we denote by Hk,q(D) = Hk(D) and write ‖v‖k,q,D = ‖v‖k,D. For s ≥ 0 we
denote by Hs,q(Ω) the space of all functions u defined in Ω such that ‖u‖s,q,Ω < ∞,
where s = l + σ with l = �s and 0 ≤ σ < 1. The norm is defined by

‖u‖s,q,Ω =

{
‖u‖ql,q,Ω +

∑
|η|=l

∫∫
Ω×Ω

|Dηu(x) −Dηu(y)|q
|x − y|2+qσ dxdy

}1/q

.

We set Hs,q
0 (D) = Hs,q(D)∩H1

0(D). We denote by H−1,q(D) the dual space of H1,q′
0 (D)

with norm

‖f‖−1,q,D = sup
0 �=v∈H1,q′

0 (D)

〈f, v〉
‖v‖1,q′,D

,

where 〈 , 〉 denotes the duality pairing. In a similar manner, for 0 < s < 1 we denote

by H−s,q(D) the dual space of Hs,q′
0 (D) with norm

‖f‖−s,q,D = sup
0 �=v∈Hs,q

′
0 (D)

〈f, v〉
‖v‖s,q′,D .

In this paper we will use the Sobolev imbedding theorems, H1,q(D) ↪→ L∞(D)
(q > 2) and H1(D) ↪→ L4(D), and the trace theorem, H1,q(D) ↪→ Lq(∂D) (1 ≤ q <
∞). Finally, we shall denote by the boldface Hs,q(D) = Hs,q(D)×Hs,q(D) and often
use the following notation: ‖[w, χ]‖s,q,D = ‖w‖s,q,D + ‖χ‖s,q,D.

2. Preliminary results. Our purpose in this section is to give some preliminary
results concerning the elliptic and hyperbolic parts of the system (1.7). We first
give some basic information concerning corner singularities for the Lamé operator,
the Laplace operator, and the corresponding convection diffusion operators of (1.7).
We then formulate some hypotheses concerning the vector field U, we construct the
resulting streamlines of U, and we discuss the solution of the second equation in (1.7).
Finally, we give a basic existence result for the system (1.7).

We need some notation concerning the geometry of D. Let {Pn}, n = 1, . . . , N ,

denote the N vertices of D, with Pn = (xn, yn). Let rn = [(x − xn)
2 + (y − yn)

2]
1
2

denote the distance of a point to Pn. With the vertex Pn we associate two numbers
ωn,1 and ωn,2, satisfying ωn,1 < ωn,2 < ωn,1 + 2π. The two sides of D at Pn lie along
the rays (xn+ t cosωn,1, yn+ t sinωn,1) and (xn+ t cosωn,2, yn+ t sinωn,2), t ≥ 0. Let
Γn,l, l = 1, 2, denote these two sides, and let Γn := Γn,1 ∪ Γn,2. Thus ∂D =

⋃
n Γn is

the boundary of D. For l = 1, 2, let nn,l denote the outward pointing normal to the
side Γn,l. Thus, nn,l = (−1)l[− sinωn,l, cosωn,l]

T . The interior angle of D at Pn is
ωn = ωn,2 − ωn,1. We define the following notation: for s > 1,

q1(t) =

{
2

s−1−t if t < s− 1,

∞ if t ≥ s− 1
and q2(t) =

{
2
s−t if t < s,

∞ if t ≥ s.
(2.1)
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We shall need some information concerning the corner singularity expansion of the
two elliptic boundary value problems that are imbedded in the system (1.7). We
first give some notation which will also be used later. Let χn be a suitable smooth
cutoff function which is 1 near the vertex Pn and which vanishes outside a small
neighborhood of Pn. Let

αn = π/ωn, αi,n = iαn, s̄i,n = iαn + 2/q,

qα1 = min
n

{q1(αn)}, qα2 = min
n

{q2(αn)},
J = {(i, n) : q2(αi,n) ≥ qα2 }.

We start with the following result for the Laplace problem, which is proved in [5].
Lemma 2.1. Suppose 1 < q < qα1 . Let s ≥ 1 and h ∈ Hs−2,q(D). Let σ = Ah.
(a) If 1 ≤ s < min{s̄1,n}, then A is a bounded operator from Hs−2,q(D) to

Hs,q(D) and ‖σ‖s,q,D ≤ C‖h‖s−2,q,D.
(b) If J �= ∅, there is a bounded linear functional Λi,n on Hs−2,q(D), s > s̄i,n

and a singular function φi,n /∈ Hs̄i,n,q(D) such that

σR := σ −
∑

(i,n)∈J
Λi,n(h)φi,n ∈ Hs,q(D)(2.2)

with ‖σR‖s,q,D ≤ C‖h‖s−2,q,D and∑
(i,n)∈J

|Λi,n(h)| ≤ C‖h‖s−2,q,D.(2.3)

The singular function φi,n is given by the formula

φi,n(x, y) = χn r
iαn
n sin[iαn(θ − ωn,1)].(2.4)

(c) If J = ∅, then σ = σR ∈ Hs,q(D) and satisfies ‖σ‖s,q,D ≤ C‖h‖s−2,q,D.
We next consider the convection diffusion problem in the energy equation of (1.7):

Eσ := −γ∆σ + ρ̃U · ∇σ = H in D,
σ = 0 on ∂D.

(2.5)

Using the operator E defined in (1.14), the solution σ of (2.5) is given by σ = γ−1E H.
We associate with (2.5) the linear functional

Λi,n,E(H) = γ−1Λi,n(H − ρ̃U · ∇σ).(2.6)

If the operator E is well defined, then in the right-hand side of (2.6) σ may be replaced
by γ−1E H so Λi,n,E is indeed a function of H. The problem (2.5) is a special case of
the system [13, (2.3)], and the following result is contained in [13, Theorem 2.1].

Theorem 2.2. Let 1 < q < qα1 . Suppose that either γ is large or |ρ̃U|∞ is small.
(a) If 1 ≤ s < min{s̄1,n} (or if q < qα2 ), then E is a bounded operator from

Hs−2,q(D) to Hs,q(D) and σ = γ−1EH ∈ Hs,q(D) satisfies ‖σ‖s,q,D ≤ Cγ−1 ×
‖H‖s−2,q,D.

(b) If J �= ∅, the linear functional Λi,n,E defined by (2.6) is bounded on Hs−2,q(D)
for s > s̄i,n, the singular function φi,n given by (2.4) satisfies φi,n /∈ Hs̄i,n,q(D), and

σR := σ −
∑

(i,n)∈J
Λi,n,E(H)φi,n ∈ Hs,q(D)(2.7)



COMPRESSIBLE FLOW 1459

with ‖σR‖s,q,D ≤ Cγ−1‖H‖s−2,q,D and∑
(i,n)∈J

|Λi,n,E(H)| ≤ C‖H‖s−2,q,D.(2.8)

(c) If J = ∅, then σ = σR ∈ Hs,q(D) and satisfies ‖σ‖s,q,D ≤ Cγ−1‖H‖s−2,q,D.
Next we describe the formulas of the singular functions for the Lamé system

(1.12) and define numbers for the regularities of the singular functions. To describe
these formulas, consider the following transcendental equations given in [9, (3.1.22)–
(3.1.23)]:

(1 + 2ν−1
1 ) sin(λωn) − λ sinωn = 0,(2.9)

(1 + 2ν−1
1 ) sin(λωn) + λ sinωn = 0.(2.10)

Equations (2.9) and (2.10) have an infinite number of complex solutions. Ordering
these solutions with nondecreasing real part, we get a nondecreasing sequence of
numbers λi,n, i = 1, 2, . . . . The numbers si,n are given by si,n = Reλi,n + 2/q,
i = 1, 2, . . . . The singular function Φi,n has the form

Φi,n = χn r
λi,n
n Ti,n(θ),(2.11)

where Ti,n(θ) is a vector of trigonometric functions.
Some more information is available concerning the numbers λi,n [9]. If the vertex

Pn is convex, so ωn < π, then λ1,n is real and 1 < λ1,n < αn. Hence if q > 2 and
q is sufficiently close to 2, then s1,n > 2. If the vertex Pn is concave, so ωn > π,
then the first 3 roots, λi,n for i = 1, 2, 3, are real and satisfy the inequalities 1

2 <
λ1,n < αn < λ2,n < 1 < λ3,n < 2αn. Hence if q > 2, 3

2 < s1,n < s̄1,n < s2,n < 2.
Furthermore, if q is sufficiently close to 2, then s3,n > 2. In this paper, our goal is
to obtain enough terms of a corner singularity expansion so that the remainder is in
H2,q for some number q > 2. It follows that we will not need any singular functions
corresponding to a convex vertex, and we will need two “velocity” singular functions
and one “temperature” singular function corresponding to each concave vertex.

We now state a result for the Lamé system (1.12), which can be derived from
[5, 9]. We give some notation which will also be used later:

qλ1 = min
n

{q1(λ1,n)}, qλ2 = min
n

{q2(λ1,n)},
I = {(i, n) : q2(λi,n) ≥ qλ2 }.

Lemma 2.3. Suppose 1 < q < qλ1 . Let f ∈ Hs−2,q(D).
(a) If s < min{s1,n}, then Aν1 is a bounded operator from Hs−2,q(D) to Hs,q(D)

and u = Aν1f ∈ Hs,q(D) satisfies ‖u‖s,q,D ≤ C‖f‖s−2,q,D.
(b) If I �= ∅, there is a bounded linear functional Λi,n,ν1 on Hs−2,q(D), s > si,n,

and a singular function Φi,n /∈ Hsi,n,q(D) such that

uR := u −
∑

(i,n)∈I
Λi,n,ν1(f)Φi,n ∈ Hs,q(D)(2.12)

with ‖uR‖s,q,D ≤ C‖f‖s−2,q,D.
(c) If I = ∅, then u = uR ∈ Hs,q(D) and satisfies ‖u‖s,q,D ≤ C‖f‖s−2,q,D.
We now investigate the behavior of weak solutions of the boundary value problem

Lβu := −µ∆u − (µ+ ν)∇divu + ρU · ∇u = F in D,
u = 0 on ∂D.

(2.13)
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If u solves the problem (2.13) we write u = µ−1MF. The next lemma shows that
with some conditions on the coefficients of (2.13), the operator M is well defined and
bounded in appropriate norms.

Lemma 2.4. Suppose 1 < q < qλ1 (or 1 ≤ s < λ1,n+1+2/q). If µ is large enough
or if |ρU|∞ is small enough, then the operator M is a well-defined bounded map from
Hs−3,q(D) to Hs−1,q

0 (D). In addition, ‖M‖ ≤ Cµ−1 uniformly for large µ.
Proof. The equation Lβu = F may be written −∆u− (1 + µ−1ν)divu = µ−1F−

µ−1ρU · ∇u. Set ν1 = 1 + µ−1ν. If µ is large, then 0 < ν1 < ν∗ for some number
ν∗ and for each number ν1 the map Aν1 is a bounded operator from Hs−3,q(D)
to Hs−1,q(D) for the Lamé system (1.12). If u ∈ Hs−1,q

0 (D) is a weak solution
of (2.13), we have u = µ−1Aν1(F − ρU · ∇u). Hence, if F ∈ Hs−3,q(D), then
‖u‖s−1,q,D ≤ Cµ−1‖F‖s−3,q,D + Cµ−1|ρU|∞‖u‖s−2,q,D. If µ is large enough, or if
|ρU|∞ is small enough, we obtain a bound for ‖u‖s−1,q,D. A fixed point argument
then gives the existence of a weak solution for any F.

We associate with (2.13) the following linear functionals:

Λi,n,L(F) = µ−1Λi,n,ν1(F − ρU · ∇u),(2.14)

where ν1 = 1 + µ−1ν. In the formula for Λi,n,L(F), u is regarded as a solution of
(2.13), and in this way the functional is regarded as a linear function on F. It is used
in the corner singularity expansion associated with the problem (2.13).

Theorem 2.5. Assume that the coefficients of Lβ satisfy the hypotheses of
Lemma 2.4. Suppose 1 < q < qλ1 . Let F ∈ Hs−2,q(D).

(a) If 1 ≤ s < min{s1,n}, then M is a bounded operator from Hs−2,q(D) to
Hs,q(D) and u = µ−1MF ∈ Hs,q(D) satisfies ‖u‖s,q,D ≤ Cµ−1‖F‖s−2,q,D.

(b) If I �= ∅, there is a bounded linear functional Λi,n,L on Hs−2,q(D), s > si,n,
and a singular function Φi,n /∈ Hsi,n,q(D) such that

uR := u −
∑

(i,n)∈I
Λi,n,L(F)Φi,n ∈ Hs,q(D)(2.15)

with ‖uR‖s,q,D ≤ Cµ−1‖F‖s−2,q,D and∑
(i,n)∈I

|Λi,n,L(F)| ≤ C‖F‖s−2,q,D.(2.16)

(c) If I = ∅, then u = uR ∈ Hs,q(D) and satisfies ‖u‖s,q,D ≤ Cµ−1‖F‖s−2,q,D.
Proof. If s < min{s1,n}, then u ∈ Hs,q(D), so f = µ−1(F − ρU · ∇u) belongs to

Hs−2,q(D). Since u = Aν1f , the result follows from Lemma 2.4.
By a streamline of the vector field U we mean a curve (x, k(x)), where the function

k satisfies k′(x) = U(x, k(x))−1V (x, k(x)). We now make some assumptions on the
vector field U that will be used in the linear analysis.

Assumption A.
(A1) The vector field U = [U, V ] is of the form U =

∑
(i,n)∈I di,nΦi,n + UR, with

UR ∈ H2,q(D) and di,n given numbers, and is continuous on D̄, Lipschitz
continuous at each point of D̄ with the exception of the vertices.

(A2) There is a constant C0 > 0 such that U > C0.
(A3) For each i = 1, . . . , N and l = 1, 2, the quantity

(−1)l[−U(ri cosωi,l, ri sinωi,l) sinωi,l + V (ri cosωi,l, ri sinωi,l) cosωi,l]

is nonnegative and in absolute value bounded below by C0.
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(A4) Each streamline generated by U intersects the boundary of D at only two
points, and at most one of these points is a vertex.

Because of (A1), the streamlines of U are well-defined curves. (A2) implies that the
streamlines may be parametrized by x. (A3) means that the vector field U is either
always tangent to Γi,l or never tangent to Γi,l, l = 1, 2. If the quantity in (A3) is
negative for all ri > 0, we say that Γi,l is an incoming side. We write ∂Din for the
union of the incoming sides of D. For convenience we will assume that the curve ∂Din

is given by a piecewise linear function x = δ(y) with δ an increasing function of y.
We study the first order partial differential equation{

U · ∇p = G in D,
p = 0 on ∂Din.

(2.17)

The solution to problem (2.17) is obtained by integrating along the streamlines of
the vector field U = [U, V ]. These streamlines may be written (x, k(x, ȳ)), where k
satisfies the differential equation

kx(x, ȳ) = U−1V (x, k) and k(δ(ȳ), ȳ) = ȳ.(2.18)

Thus (x, k(x, ȳ)) gives the streamline emanating from the point (δ(ȳ), ȳ) on ∂Din.
From the theory of differential equations, if the functions U and V are Lipschitz
continuous, the solution k to (2.18) exists, is unique, and is continuously differentiable
in x and continuous in ȳ. Also by (A3), the vector field U is not tangent to the curve
x = δ(y), so k is a strictly monotone function of ȳ. Hence for fixed x the equation
y = k(x, ȳ) has a well-defined solution, which we write ȳ = ξ(x, y).

In the situation considered in this paper, the vector field U comes from the vector
field u, and therefore the Lipschitz continuity may be a concern. In particular, we
expect that u may have a singularity at the vertices. However, from Lemma 2.3 we
expect or hope that this singularity has a well-defined character. This is the reason
for the particular form of U that is specified in (A1). The next lemma gives some
properties of the streamlines under what will turn out to be appropriate hypotheses
on the vector field. The proof is given in [13, Lemma 2.3].

Lemma 2.6. If 1 < q < qλ2 , let U ∈ H2,q(D). If I �= ∅, let U =
∑

(i,n)∈I Ui,n+

UR, with Ui,n = di,nΦi,n, where UR ∈ H2,q(D) (2 < q < qλ1 ), di,n is given, and
Φi,n is given in (2.11). Then the functions k and ξ are well defined and continuously
differentiable on the polygon D. Furthermore, k, ξ, and the first derivatives of k
and ξ are bounded by a constant that depends only on D, C0, and ‖UR‖2,q,D +∑

(i,n)∈I |di,n|.
Using the function k(x, ȳ) and its inverse function ξ(x, y) the solution of (2.17) is

given by the formula

p(x, y) =

∫ x

δ(ξ(x,y))

Ḡ(s, k(s, ξ)) ds,(2.19)

where Ḡ = U−1G. The formula (2.19) defines the solution operator B : G 	→ BG
of (2.17). In the next lemma the map B is shown to be bounded on Hs,q(Ω) for
0 ≤ s ≤ 1.

Lemma 2.7. Let 1 ≤ q < ∞ and 0 ≤ s ≤ 1. Assume G ∈ Hs,q(D). Then
p = BG satisfies

‖BG‖s,q,D ≤ C‖G‖s,q,D,(2.20)
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where C = C(D,C0, ‖UR‖2,q,D +
∑

(i,n)∈I |di,n|).
Proof. This result is given in [13, Lemma 2.4] in the cases s = 0 and s = 1. For

the intermediate values of s it follows by interpolation.
Lemma 2.8. Suppose I �= ∅. Set us =

∑
(i,n)∈I Ci,nΦi,n with given numbers

Ci,n. Suppose the regularity exponent s satisfies

s ≤ min
{

2, 1/q + 1 + min
n

{λ1,n}
}
.

Then ∇B(κ−1
1 ∇us) ∈ Hs−2,q(D) and satisfies the following inequality:

‖B(κ−1
1 ∇us)‖s−1,q,D ≤ K

∑
(i,n)∈I

|Ci,n|,(2.21)

where K = C(C0, ‖κ−1
1 ‖1,q,D, ‖UR‖2,q,D +

∑
(i,n)∈I |di,n|).

Proof. Set gs = ∇us and Gs = κ−1
1 ∇us for simplicity. Using (1.15) and (2.18)

we have

(BGs)(x, y) =

∫ x

δ(ξ(x,y))

U−1Gs(s, k(s, ξ)) ds.(2.22)

Obviously,

‖BGs‖0,q,D ≤ C|κ−1
1 |∞

∑
(i,n)∈I

|Ci,n|.

Next the derivative of the function BGs with respect to the y variable is

(∇yBGs)(x, y) =

∫ x

δ(ξ)

[∇y(κ
−1
1 )U−1gs(s, k(s, ξ))

+ κ−1
1 ∇y(U

−1) gs(s, k(s, ξ)) + (κ1U)−1∇ygs(s, k(s, ξ))
]
ds

+ (κ1U)−1gs(δ(ξ), ξ) δ
′(ξ) ξy(x, y)

= I + II + III + IV.(2.23)

One has to be careful in estimating ‖I‖0,q,D. So

|I| ≤ C0

(∫ x

δ(ξ)

|∇yκ
−1
1 (s, k(s, ξ))|qds

) 1
q
(∫ x

δ(ξ)

|gs(s, k(s, ξ))|q′ds
) 1
q′
.(2.24)

If we set ȳ = ξ(x, y) and t = s/ȳ, then, near each vertex Pn = (xn, yn),∫ x

δ(ξ)

|∇yΦ1,n(s, h(s, ξ))|q′ds ≤ C

∫ x

δ(ȳ)

(
s2 + k(s, ȳ)2

) q′(λ1,n−1)

2 ds

≤ C ȳq
′(λ1,n−1)+1

∫ x/ȳ

δ(ȳ)/ȳ

(
t2 + k(tȳ, ȳ)2/ȳ2

) q′(λ1,n−1)

2 dt

≤ C ȳq
′(λ1,n−1)+1

∫ x/ȳ

δ(ȳ)/ȳ

tq
′(λ1,n−1) dt

≤ C
(
xq

′(λ1,n−1)+1 − δ(ȳ)q
′(λ1,n−1)+1

)
<∞,
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because q′(λ1,n − 1) + 1 > 0. So integrating both sides of (2.24), we have

‖I‖0,q,D ≤ C‖∇yκ
−1
1 ‖0,q,D

∑
(i,n)∈I

|Ci,n|.(2.25)

Similarly,

‖II‖0,q,D ≤ C|κ−1
1 |0,∞

(
‖UR‖2,q,D +

∑
(i,n)∈I

|di,n|
) ∑

(i,n)∈I
|Ci,n|.(2.26)

Applying the same procedures as given in [12, Lemma 2.5] near each vertex Pn, we
have

|III| ≤ C|κ−1
1 |∞

∑
(i,n)∈I

|Ci,n|(|x|λ1,n−1 + |ξn(x, y)|λ1,n−1).(2.27)

Integrating both sides of (2.27) on D, we have

‖III‖0,q,D ≤ C
∑

(i,n)∈I
|Ci,n|

[
|Ωn|1/q +

(∫∫
Ωn

|ξn(x, y)|(λ1,n−1)q dxdy

)1/q
]

(letting ȳ = ξn(x, y) and dy = kn,ȳ dȳ)

≤ C
∑

(i,n)∈I
|Ci,n|

[
|Ωn|1/q +

(∫ 1

ȳ=0

|ȳ|(λ1,n−1)q dȳ

)1/q
]

≤ C
∑

(i,n)∈I
|Ci,n|,(2.28)

where C = C(‖κ−1
1 ‖1,q,D, ‖UR‖2,q,D +

∑
(i,n)∈I |di,n|). It is clear that ‖IV ‖0,q,D ≤

C
∑

(i,n)∈I |Ci,n|. A similar argument is valid for the quantity ‖∇x(BGs)‖0,q,D.

Consequently, ‖∇BGs‖0,q,D is estimated by the right-hand side of (2.28). Since
‖BGs‖s−1,q,D ≤ C‖BGs‖1,q,D, (2.21) follows.

Finally, we discuss system (1.7) on the bounded (convex or nonconvex) polygonal
domain D. To do this, first we define bilinear forms a(v,w) on H1

0 × H1
0 and e(σ, η)

on H1
0 × H1

0 and bilinear forms b(χ,v) and b̃(χ,v) on L2 × H1
0 as follows:

a(u,v) =

∫
D

µ∇u · ∇v + (µ+ ν)divudivv dx +

∫
D

ρU · ∇uv dx,

b(χ,v) = −
∫
D

χdivv dx,

e(σ, η) =

∫
D

γ∇σ · ∇η dx +

∫
D

ρ̃U · ∇σ η dx,

b̃(χ,v) =

∫
D

τ̃ χdivv dx.

Using these forms, the first and third equations in (1.7) imply

a(u,v) + b(p,v) = 〈f ,v〉 ∀v ∈ H1
0(D),(2.29)

e(σ, η) + b̃(η,u) = 〈h, η〉 ∀η ∈ H1
0(D).(2.30)
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Second, using the solution operator B, the second equation in (1.7) implies

p = Bḡ −B(κ−1
1 divu) −B(Ū · ∇σ),(2.31)

where ḡ = κ−1
1 g and Ū = κ−1

1 κ2U. In addition, using the solution operator E defined
in (1.14), the solution σ of (2.30) is

σ = γ−1E(h− τ̃ divu).(2.32)

Combining (2.31) and (2.32) we have

p = Bg∗ −B(κ−1
1 divu) + γ−1B[Ū · ∇E(τ̃divu)],(2.33)

where g∗ = ḡ − γ−1Ū · ∇Eh. This formula may be used to eliminate p from (2.29).
We obtain

ã(u,v) := a(u,v) − b(B(κ−1
1 divu),v) + γ−1b(Bũ,v)(2.34)

= 〈f ,v〉 − b(Bg∗,v),

where ũ := Ū · ∇E(τ̃divu). We define a weak solution [u, p, σ] to the problem (1.7)
to be a function u ∈ H1

0(D) satisfying

ã(u,v) = 〈f ,v〉 − b(Bg∗,v) ∀v ∈ H1
0(D)(2.35)

and a function p ∈ L2(D) satisfying (2.33) and a function σ ∈ H1
0(D) satisfying (2.32).

Note that if [u, p, σ] is a weak solution of (1.7), then the second equation of (1.7) holds.
In the next lemma we establish the unique solvability of the problem (1.7), pro-

vided µ is large enough. Furthermore, we show that the solution has a regularity
dictated by the largest angle of the vertices of D and the ratio µ−1ν, and we give an
inequality corresponding to this regularity.

Lemma 2.9. Let 1 ≤ s < min{s1,n} and s ≤ 2. Suppose that µ and γ are
sufficiently large. Then there is a unique solution [u, p, σ] ∈ Hs,q(D) × Hs−1,q(D) ×
Hs,q(D) of (1.7). Furthermore, there exists a constant K remaining finite for large µ
such that if [f , h] ∈ Hs−2,q(D) × Hs−2,q(D) and g ∈ Hs−1,q(D), then

‖[u, σ]‖s,q,D + ‖p‖s−1,q,D ≤ K
(‖[f , h]‖s−2,q,D + ‖B(κ−1

1 g)‖s−1,q,D

)
.(2.36)

Proof. Using the operator M, the solution u of (2.29) is given by

u = µ−1M(f −∇p).
Replacing the function p by (2.33) we have

(I − µ−1M1)u = µ−1M(f −∇Bg∗),(2.37)

where g∗ = ḡ − γ−1Ū · ∇Eh and

M1 := M∇[
B(κ−1

1 ∇·) − γ−1B(Ū · ∇E(τ̃∇·))].(2.38)

Using Lemma 2.7, Theorem 2.2, and Theorem 2.5 it follows that the mappings in the
following two sequences are bounded, provided s < min{s1,n}:

Hs,q τ̃∇·−→ Hs−1,q E−→ Hs,q Ū·∇−→ Hs−1,q B−→ Hs−1,q ∇−→ Hs−2,q M−→ Hs,q,

Hs,q κ
−1
1 ∇·−→ Hs−1,q B−→ Hs−1,q ∇−→ Hs−2,q M−→ Hs,q.
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So M1 is a bounded mapping from Hs,q to Hs,q. If µ is large enough, then I−µ−1M1

is invertible and using (2.32) we have

u = µ−1M∗
1M(f −∇Bg∗)

= µ−1M∗
1M[f −∇Bḡ − γ−1∇B(Ū · ∇E)h],(2.39)

which belongs to H1,q(D), where M∗
1 := (I − µ−1M1)

−1. Using this, the functions p
and σ are determined by (2.33) and (2.32), respectively. On the other hand, since

‖Bg∗‖s−1,q,D ≤ ‖B(κ−1
1 g)‖s−1,q,D + γ−1‖BŪ · ∇E‖‖h‖s−2,q,D,

we have

µ‖u‖s,q,D ≤ c1(‖f‖s−2,q,D + ‖B(k−1
1 g)‖s−1,q,D) + c2‖h‖s−2,q,D

≤ max{c1, c2}
(‖[f , h]‖s−2,q,D + ‖B(k−1

1 g)‖s−1,q,D

)
,(2.40)

where c1 = max{‖M∗
1M‖, ‖M∗

1M∇‖} and c2 = γ−1c1‖BŪ · ∇E‖. Also it follows
from (2.32)–(2.33) that

‖p‖s−1,q,D ≤ c3‖divu‖s−1,q,D + ‖Bḡ‖s−1,q,D + c4‖h‖s−2,q,D,(2.41)

‖σ‖s,q,D ≤ c5‖τ̃divu‖s−2,q,D + γ−1‖E‖‖h‖s−2,q,D

≤ c5‖τ̃divu‖0,q,D + γ−1‖E‖‖h‖s−2,q,D

≤ c6‖u‖1,q,D + γ−1‖E‖‖h‖s−2,q,D

≤ c6‖u‖s,q,D + γ−1‖E‖‖h‖s−2,q,D,(2.42)

where c3 = C(‖κ−1
1 ‖1,q,D‖B‖ + γ−1|τ̃ |∞‖BŪ · ∇E‖), c4 = γ−1‖BŪ · ∇E‖, c5 =

Cγ−1‖E‖, and c6 = Cγ−1‖E‖|τ̃ |∞. Combining (2.40)–(2.42) the inequality (2.36)
follows.

In Lemma 2.9, the condition s ≤ 2 is automatically satisfied if there is at least
one concave vertex.

3. A polygon with one concave vertex. In this paper, our goal is to obtain
enough terms of a corner singularity expansion so that the remainder is in H2,q for
some number q > 2 and close to 2. If the polygon is convex, Lemma 2.9 shows that
the velocity and temperature are already in H2,q, so no corner singularity expansion
is needed. Our discussion of the numbers s1,n and s̄1,n suggests that for each concave
vertex, two velocity singular functions and one temperature singular function must
be subtracted from the solution in order to achieve a remainder with the desired
regularity. In this section we discuss a polygon with exactly one concave vertex. We
denote the concave vertex Pn and suppose without loss of generality that Pn = (0, 0).
On the basis of Theorems 2.2 and 2.5 we split the solution of (1.7) into singular and
regular parts and investigate its behavior in a neighborhood of the vertex Pn. The
general polygon is considered in the next section.

In this section we refer to λ1, λ2, and λ3 instead of λ1,n, λ2,n, and λ3,n, respec-
tively. Note that they satisfy

1

2
< λ1 < α < λ2 < 1 < λ3 < 2α.

We consider three steps to subtract the leading singular functions of the Lamé system
and the Laplace equation from the exact solution [u, p, σ].
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Step 1. λ1 + 2/q < s < α + 2/q. In this step we split the first leading singular
function of the Lamé system from the velocity u as follows:{

u = C1Φ1 + uR,1, Φ1 = χ rλ1T1(θ),
p = ps,1 + pR,1,

(3.1)

where χ = χn, T1 = T1,n, C1 is a parameter to be constructed later, and ps,1 will be
constructed shortly.

We first define the pressure singular function ps,1 corresponding to the velocity
singular functions C1Φ1:{

κ1U · ∇ps,1 = −C1divΦ1 in Ω,
ps,1 = 0 on Γin.

(3.2)

The function ps,1 is given by ps,1 = −C1B(κ−1
1 divΦ1), which belongs to Hs−1,q(Ω) for

s < λ1 + 1 + 1/q by Lemma 2.8. With C1 given and uR,1 defined by (3.1), [uR,1, p, σ]
is the solution of the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−µ∆uR,1 − (µ+ ν)∇divuR,1 + ρU · ∇uR,1 + ∇p = f + fs,1 in Ω,
divuR,1 + κ1U · ∇p+ κ2U · ∇σ = g + gs,1 in Ω,

−γ∆σ + ρ̃U · ∇σ + τ̃divuR,1 = h+ hs,1,
uR,1 = 0, σ = 0 on Γ = ∂Ω,
p = 0 on Γin,

(3.3)

where

fs,1 = C1(µ∆Φ1 + (µ+ ν)∇divΦ1 − ρU · ∇Φ1),

gs,1 = −C1divΦ1,(3.4)

hs,1 = −C1τ̃divΦ1.

We want to select C1 so that uR,1 ∈ Hs,q(Ω) and σ ∈ Hs,q(Ω). If g ∈ Hs−1,q(Ω), then
using Lemmas 2.7 and 2.8,

‖p‖s−1,q,Ω ≤ ∥∥B[κ−1
1 (g − divuR,1 − κ2U · ∇σ)]

∥∥
s−1,q,Ω

+ ‖Bḡs,1‖s−1,q,Ω

≤ C
(‖[uR,1, σ]‖s,q,Ω + ‖Bḡ‖s−1,q,Ω

)
+K1|C1|,

where ḡs,1 = κ−1
1 gs,1, ḡ = κ−1

1 g, and K1 = C|κ−1
1 |∞‖B‖.

We use the operators M, B, and E to express the solution [uR,1, p, σ] of (3.3) as
follows:

uR,1 = µ−1M(f + fs,1 −∇p) ∈ Hs,q(Ω),(3.5)

p = B[κ−1
1 (g + gs,1 − divuR,1 − κ2U · ∇σ)] ∈ Hs−1,q(Ω),(3.6)

σ = γ−1E(h+ hs,1 − τ̃divuR,1) ∈ Hs,q(Ω).(3.7)

Considering the momentum equation in (3.3) and the point of view of Theorem 2.5,
to achieve an increased regularity for uR,1 we must pick the unknown constant C1 so
that

Λ1,ν1(f + fs,1 − ρU · ∇uR,1 −∇p) = 0,(3.8)

where Λ1,ν1 := Λ1,n,ν1 with ν1 = 1+µ−1ν is the linear functional defined in Lemma 2.3.
We will show that (3.8) gives a well-defined algebraic equation for the parameter C1

and that this equation has a solution (see Lemma 3.4 below).
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Applying the divergence operator to uR,1 given in the formula (3.5) and inserting
it into the formula (3.6), the solution p is expressed in the form

(I − µ−1R)p =
1

µ
B(µ ḡs,1 − Π1divMfs,1 − µγ−1Ū · ∇Ehs,1 +G1),(3.9)

where Π1 := κ−1
1 − γ−1Ū · ∇E τ̃ and

R := B[κ−1
1 divM∇− γ−1(Ū · ∇)E τ̃divM∇],

G1 := µḡ − Π1divMf − µγ−1Ū · ∇Eh.
Then

p = µ−1B∗B(µḡs,1 − Π1divMfs,1 − µγ−1Ū · ∇Ehs,1 +G1),(3.10)

where B∗ is defined by

B∗ = (I − µ−1R)−1,(3.11)

which exists and is bounded (to be shown in Lemma 3.1), and the solution formula p
of (3.10) is well defined. On the other hand, substituting the function p of the formula
(3.6) into the formula (3.5) and letting S = M∇B(κ−1

1 div − γ−1(Ū · ∇)E τ̃div), the
function uR,1 is given by

(I − µ−1 S)uR,1

=
1

µ
M{fs,1 −∇B[ḡs,1 − γ−1(Ū · ∇)Ehs,1] + F1},(3.12)

where F1 := f −∇B(ḡ − γ−1(Ū · ∇)Eh). So

uR,1 =
1

µ
M∗M{fs,1 −∇B[ḡs,1 − γ−1(Ū · ∇)Ehs,1] + F1},(3.13)

where M∗ = (I−µ−1 S)−1, which exists and is bounded (to be shown in Lemma 3.1).
Thus, the function uR,1 is well defined. Finally, using (3.7) and (3.13) the temperature
function σ is expressed in the form

σ = µ−1[Π3hs,1 − Π2(fs,1 −∇Bḡs,1) +H1],(3.14)

where H1 = Π3h− Π2(f −∇Bg) and

Π2 = γ−1E τ̃divM∗M,(3.15)

Π3 = γ−1E [µ− γ−1τ̃divM∗M∇B(Ū · ∇)E ].(3.16)

If the parameter C1 is constructed, the solution [uR,1, p, σ] of (3.3) can be ex-
pressed.

Lemma 3.1. Let 1 ≤ s < λ1 + 2/q. Let M, B, and E be the solution operators
defined in (1.13)–(1.15), respectively.

(a) Then the following norms are bounded:

‖M∇B∇ · ‖ = sup
0 �=v∈Hs,q(Ω)

‖M∇B∇ · v‖s,q,Ω
‖v‖s,q,Ω <∞,(3.17)

‖B∇ ·M∇‖ = sup
0 �=χ∈Qs,q(Ω)

‖B[∇ · (M∇χ)]‖Qs,q(Ω)

‖χ‖Qs,q(Ω)
<∞.(3.18)
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(b) If µ is large enough, then the operator M∗ of (3.13) is a well-defined bounded
operator on Hs,q(Ω), and the operator B∗ of (3.11) is a well-defined bounded operator
on Qs,q(Ω). In addition, ‖M∗‖ and ‖B∗‖ are bounded uniformly in µ for large µ.
Furthermore, the following formulas give the solution of (3.3):

uR,1 =
1

µ
M∗M

{
fs,1 −∇B

[
ḡs,1 − 1

γ
(Ū · ∇)Ehs,1

]
+ F1

}
,(3.19)

p =
1

µ
B∗B

{
µḡs,1 − Π1∇ ·Mfs,1 − µ

γ
(Ū · ∇)Ehs,1 +G1

}
,(3.20)

σ =
1

µ
[Π3hs,1 − Π2(fs,1 −∇Bgs,1) +H1],(3.21)

where F1, G1, and H1 are defined in (3.12), (3.9), and (3.14), respectively.
Proof. First, (3.17)–(3.18) follow from the following two diagrams:

Hs,q div−→ Hs−1,q B−→ Qs,q ∇−→ Hs−2,q′ M−→ Hs,q,

Qs,q ∇−→ Hs−2,q′ M−→ Hs,q div−→ Hs−1,q B−→ Qs,q.

Next we claim that the operator B∗ exists and is also bounded. For any function
g ∈ C∞

0 (Ω) we let [u, p, σ] solve⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−µ∆u − (µ+ ν)∇divu + ρU · ∇u + ∇p = 0 in Ω,
divu + κ1 U · ∇p+ κ2 U · ∇σ = κ1 U · ∇g in Ω,

−γ∆σ + ρ̃U · ∇σ + τ̃divu = 0 in Ω,
u = 0, σ = 0 on Γ,
p = 0 on Γin.

(3.22)

From Lemma 2.9 and the second equation of (3.22) one easily has

‖p‖Qs,q(Ω) ≤ C‖g‖Qs,q(Ω).(3.23)

From the first and third equations of (3.22) and using the operators M and E , one
has u = −µ−1M∇p and σ = −γ−1E τ̃divu. Considering this and the second equation
of (3.22),

p− g = −B(κ−1
1 divu + Ū · ∇σ)

= µ−1B[κ−1
1 divM∇− γ−1(Ū · ∇)E τ̃divM∇]p.(3.24)

From the definition of the operator R we have p − µ−1Rp = g, so p = B∗g. Since
C∞

0 (Ω) is dense in the space Qs,q(Ω), the operator B∗ is a well-defined bounded
operator on Qs,q(Ω) (by (3.23)). Similarly, it can be shown that the operator M∗

exists and is bounded on Hs,q(Ω).
We now go back to the linear equation (3.8). Using (3.19)–(3.20) we have

ρU · ∇uR,1 + ∇p = µ−1(Kfs,1 + Lḡs,1 + Jhs,1) + µ−1Z,(3.25)

where

K = ρU · ∇M∗M−∇B∗B(Π1divM),

L = µ∇B∗B − ρU · ∇M∗M∇B,(3.26)

J = γ−1ρU · ∇M∗M∇B(Ū · ∇)E − µγ−1∇B∗BŪ · ∇E ,
Z = ρU · ∇M∗MF1 + ∇B∗BG1.
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So

fs,1 − ρU · ∇uR,1 −∇p
= fs,1 − µ−1(Kfs,1 + Lgs,1 + Jhs,1) − µ−1Z

= (I − µ−1K)fs,1 − µ−1(Lgs,1 + Jhs,1) − µ−1Z.(3.27)

Using (3.4), (3.27), and (3.8), we obtain an algebraic equation for the unknown C1:

X1C1 = Y1,(3.28)

where

X1 = Λ1,ν1 [(I − µ−1K)α1] + µ−1Λ1,ν1 [L(divΦ1) + J(τ̃divΦ1)],

Y1 = −Λ1,ν1(f − µ−1Z),(3.29)

α1 = µ∆Φ1 + ν∇divΦ1 − ρU · ∇Φ1.

In order to show that the coefficient X1 is well defined, it is enough to show the
following lemma.

Lemma 3.2. Let Φ = Φ1(or Φ2 given in Step 3) be given above. Let 1 ≤ s ≤
min{2, λ1+1+2/q}. Then the values of the operators ∇B∗B (or ∇B), ∇B∗B(Ū·∇)E,
(U · ∇)MM∗∇B evaluated at the functions

α0 := µ∆Φ + (µ+ ν)∇∇ · Φ, Π1∇ ·Mα0,
Π1∇ ·M(U · ∇)Φ, ∇ · Φ,(3.30)

belong to Hs−2,q(Ω).
Proof. We have Φ = χ rλT (θ), where λ = λ1 (or λ2) and T = T1 (or T2). Hence we

have |∇Φ(x, y)| ≤ Crλ−1 for all (x, y) ∈ Ω. From Lemma 2.8, B∇(κ−1Φ) ∈ Hs−1,q(Ω)
and ∇B∇(κ−1Φ) ∈ Hs−2,q(Ω). So we have M∇B(κ−1∇Φ) ∈ Hs−1,q(Ω). Since M∗

and B∗ are bounded operators by Lemma 3.1, the required property follows. Fur-
thermore, the function ∇B∗B[κ−1∇M(µ∆Φ + (µ+ ν)∇divΦ)] belongs to Hs−1,q(Ω)
because µ∆Φ + (µ+ ν)∇divΦ ≡ 0 near the origin.

Using Lemma 3.2, we show that X1 and Y1 are well-defined coefficients.
Lemma 3.3. (a) The number ν1 := 1 + µ−1ν > 0, which is close to 1 for a large

value µ and a fixed value ν.
(b) If µ is large enough, then X1 �= 0 and is finite.
(c) If [f , h] ∈ Hs−2,q × Hs−2,q and g ∈ Hs−1,q, then Y1 is finite and estimated by

|Y1| ≤ C
(‖[f , h]‖s−2,q,Ω + ‖B(κ−1g)‖s−1,q,Ω

)
.

Proof. (a) follows from µ > 0 and µ+ν > 0. (b) The finiteness of X1 follows from
Lemma 3.2. Using Lemmas 2.4 and 3.1, it is seen that the operators (U ·∇)M∗M∇B
and ∇B∗B are bounded maps from Hs−1,q(Ω) to Hs−2,q(Ω), and (U · ∇)M∗M is a
bounded map from Hs−2,q(Ω) to Hs−2,q(Ω). To prove the finiteness of Y1 it is enough
to show that the mapping ∇B∗B(κ−1

1 divM), which is one of the main difficult terms,
is bounded from Hs−2,q(Ω) to Hs−2,q(Ω). For this, let f ∈ Hs−2,q(Ω). For s < s1,n =
λ1 + 2/q, Mf ∈ Hs,q(Ω) with ‖Mf‖s,q,Ω ≤ C‖f‖s−2,q,Ω. Then divMf ∈ Hs−1,q(Ω).
So, from Lemma 2.7 B(κ−1

1 divMf) ∈ Hs−1,q(Ω) with the corresponding norm in-
equality. For λ1 +2/q < s < α+2/q, Theorem 2.5 gives Mf = Λ1,ν1(f)Φ1 +uR,1 with
uR,1 ∈ Hs,q(Ω) and |Λ1,ν1(f)| + ‖uR,1‖s,q,Ω ≤ C‖f‖s−2,q,Ω. Then B(κ−1

1 divMf) =
Λ1,ν1(f)B(κ−1

1 divΦ1) + B(κ−1
1 divuR,1). Applying Lemmas 2.4 and 2.7, we obtain
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B(κ−1
1 divMf) ∈ Hs−1,q(Ω) with the corresponding norm inequality. Using Lemma

3.1(b), B∗B(κ−1
1 divMf) ∈ Hs−1,q(Ω) and ∇B∗B(Π1divMf) ∈ Hs−2,q(Ω). In a simi-

lar way the other mappings can be handled. Thus the assertion follows.
Suppose µ is large enough. Then X1 �= 0. Indeed, note that ‖M∗‖ and ‖B∗‖ are

bounded uniformly in µ by Lemma 3.1(b) and ‖M‖ ≤ Cµ−1 for large µ by Lemma 2.4.
Also note that B is independent of µ. So from (3.26), we see that ‖K‖ ≤ C and
µ−1‖L‖ ≤ C. On the other hand, letting ν1 = 1+µ−1ν, αν1 := ∆Φ1 + ν1∇divΦ1 and
Φ1,β := ρU · ∇Φ1, we have

X1 = µΛ1,ν1(αν1) − Λ1,ν1(Kαν1) + Λ1,ν1 [Φ1,β − µ−1KΦ1,β ]

+ µ−1Λ1,ν1 [L(divΦ1) + J(τ̃divΦ1)]

= O(µ) +O(µ−1) +O(1), if Λ1,ν1(αν1) �= 0.

From Lemma 2.3, we know that Λ1,ν1(αν1) �= 0 for any number ν1 > 0 (note that
ν1 = 1/3 for ν = −2µ/3). So Λ1,ν1(αν1) �= 0 for any number ν1 = 1 + µ−1ν > 0. So
if µ is large enough, X1 �= 0.

(c) Recall that F1 and G1 are defined in (3.12) and (3.9), respectively. Since
‖Z‖s−2,q,Ω ≤ C(‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω), and using (3.30), we have

|Y1| ≤ C‖f − µ−1Z‖s−2,q,Ω

≤ C
(‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω

)
,

where C = C(‖κ−1
1 ‖∞). Hence |C1| ≤ C(‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω).

We are now ready to determine the constant parameter C1 in (3.1) so that the
velocity u of (1.7) is split into singular and regular parts. Hence using the algebraic
equation (3.28) and Lemma 3.3(c) we deduce the following lemma.

Lemma 3.4. Equation (3.8) holds if and only if the number C1 in (3.1) is deter-
mined so that

C1 = Y1/X1.(3.31)

With this choice,

|C1| ≤ C
(
‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω

)
.(3.32)

Finally, with respect to Step 1 we establish a regularity result for the regular
part uR,1 of the velocity function and the corresponding pressure and temperature
functions.

Theorem 3.5. Let s ∈ (λ1 + 2/q, α + 2/q). Let [f , g, h] ∈ Hs−2,q(Ω) ×
Hs−1,q(Ω) × Hs−2,q(Ω). Suppose that µ and γ are sufficiently large. Let [u, p, σ]
be, in the sense of (2.35), (2.32)–(2.33), a weak solution of (1.7). Let C1 be given
by (3.31). Then the pair [uR,1, p, σ] is the solution of (3.3). Furthermore, if µ∗ :=
µ − C‖M‖‖B‖(1 + γ−1‖E‖) > 0, then [uR,1, p, σ] ∈ Hs,q(Ω) × Hs−1,q(Ω) × Hs,q(Ω)
and satisfies

‖[µuR,1, σ]‖s,q,Ω + ‖p‖s−1,q,Ω ≤ K
(‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω

)
,(3.33)

where K = C(1 + µ−1
∗ ).

Proof. It is obvious that the pair [uR,1, p, σ] given in (3.19)–(3.21) satisfies (3.3).
Using Lemma 2.8, we have ‖B(κ−1

1 gs,1)‖s−1,q,Ω ≤ C|C1| for s < λ1,n + 1 + 1/q, and
using Lemma 2.7, we have ‖B(Ū · ∇σ)‖s−1,q,Ω ≤ C‖B‖‖σ‖s,q,Ω. Using (3.6),

‖p‖s−1,q,Ω ≤ C‖B‖‖[uR,1, σ]‖s,q,Ω + r.h.s.,(3.34)
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where C = C(‖κ−1
1 ‖1,q,D) and r.h.s. = C(‖[f , h]‖s−2,q + ‖Bḡ‖s−1,q). Also note that

the inequality ‖hs,1‖s−2,q,Ω ≤ C|C1| is true for s < λ1,n + 1 + 2/q. Using (3.7)
and (3.32),

‖σ‖s,q,Ω ≤ Cγ−1‖E‖‖uR,1‖s−1,q,Ω + r.h.s.(3.35)

for C = C(|τ̃ |∞). Combining (3.34) and (3.35),

‖p‖s−1,q,Ω ≤ C‖B‖(1 + γ−1‖E‖)‖uR,1‖s,q,Ω + r.h.s.,(3.36)

where C = C(‖κ−1
1 ‖1,q,Ω, |τ̃ |∞). Since ‖fs,1‖s−2,q,Ω ≤ C|C1| for s < λ1,n + 1 + 2/q,

and using (3.5) and (3.32),

‖uR,1‖s,q,Ω ≤ µ−1‖M‖‖p‖s−1,q + r.h.s.(3.37)

Combining (3.37) with (3.36) and using the condition µ∗ > 0,

µ‖uR,1‖s,q,Ω ≤ Cµ−1
∗ r.h.s.(3.38)

Using (3.38), (3.35), and (3.36), we show (3.33).
Step 2. α + 2/q < s < λ2 + 2/q. In this second step, we split the first leading

singular function for the Laplace problem from the temperature σ of (1.7) as follows:{
σ = σs + σR, σs = C∗φ,
p = ps,1 + ps,2 + pR,2,

(3.39)

where φ = χ rα sin[α(θ − ω1)] with χ = χn, α = π/ω, C∗ will be determined later,
and ps,2 will be constructed shortly. As with the function ps,1 of Step 1, let ps,2 =
−B(Ū ·∇σs) ∈ Hs−1,q(Ω) with Ū = κ−1

1 κ2U. With C∗ given and σR = σ−σs defined
above, [uR,1, p, σR] is the solution of the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−µ∆uR,1 − (µ+ ν)∇divuR,1 + ρU · ∇uR,1 + ∇p = f + fs,1 in Ω,
divuR,1 + κ1U · ∇p+ κ2U · ∇σR = g + gs,2 in Ω,

−γ∆σR + ρ̃U · ∇σR + τ̃divuR,1 = h+ hs,2,
uR,1 = 0, σR = 0 on Γ = ∂Ω,
p = 0 on Γin,

(3.40)

where gs,2 = gs,1 − C∗κ2U · ∇φ and hs,2 = hs,1 + C∗(γ∆φ − ρ̃U · ∇φ). Using the
energy equation in (3.40) and Theorem 2.2 to obtain an increased regularity for σR,
we need to pick the parameter C∗ so that

Λ(h+ hs,2 − ρ̃U · ∇σR − τ̃divuR,1) = 0,(3.41)

where Λ := Λ1,n is defined in Lemma 2.1. As in Step 1, using (3.41), we derive a
well-defined algebraic equation for C∗ and show that it is solvable. As in (3.19)–(3.21)
one can derive the solution formula for (3.40) as follows:

uR,1 =
1

µ
M∗M

{
fs,1 −∇B

[
ḡs,2 − 1

γ
(Ū · ∇)Ehs,2

]
+ F1

}
,(3.42)

p =
1

µ
B∗B

{
µḡs,2 − Π1∇ ·Mfs,1 − µ

γ
(Ū · ∇)Ehs,2 +G1

}
,(3.43)

σR =
1

µ
[Π3hs,2 − Π2(fs,1 −∇Bgs,2) +H1],(3.44)
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where ḡs,2 = κ−1
1 gs,2 and F1, G1, H1 are defined in (3.12), (3.9), and (3.14), respec-

tively. Furthermore,

ρ̃U · ∇σR + τ̃divuR,1

= γ−1ρ̃U · ∇E(h+ hs,2) − (ρ̃γ−1U · ∇E − I)τ̃divuR,1

= µ−1[K̄fs,1 + L̄gs,2 + J̄hs,2] + µ−1Z̄,(3.45)

where

K̄ = (I − γ−1ρ̃U · ∇E)τ̃divM∗M,

L̄ = (γ−1ρ̃U · ∇E − I)τ̃divM∗M∇Bκ−1
1 ,

J̄ = µγ−1ρ̃U · ∇E − γ−1(γ−1ρ̃U · ∇E − I)τ̃divM∗M∇B(Ū · ∇)E ,
Z̄ = γ−1ρ̃U · ∇Eh− µ−1(γ−1ρ̃U · ∇E − I)τ̃divM∗MF1.

So

hs,2 − ρ̃U · ∇σR − τ̃divuR,1

= hs,2 − µ−1[K̄fs,1 + L̄gs,2 + J̄hs,2] − µ−1Z̄

= −µ−1[K̄fs,1 + L̄gs,2] + (I − µ−1J̄)hs,2 − µ−1Z̄

= C∗
{
µ−1[L̄(κ2U · ∇φ)] + (I − µ−1J̄)(γ∆φ− ρ̃U · ∇φ)

}
(3.46)

− µ−1[K̄fs,1 + L̄gs,1] + (I − µ−1J̄)hs,1 − µ−1Z̄.

Using (3.41) the algebraic equation for the parameter C∗ is given by

X∗C∗ = Y∗,(3.47)

where

X∗ = Λ
[
(I − µ−1J̄)α∗ + µ−1[L̄(κ2U · ∇φ)]

]
,(3.48)

Y∗ = Λ
[
µ−1(K̄fs,1 − L̄gs,1) − (I − µ−1J̄)hs,1 + µ−1Z̄ − h

]
,(3.49)

α∗ := γ∆φ− ρ̃U · ∇φ.(3.50)

We next show that the coefficients X∗ and Y∗ are well defined and C∗ is also
determined.

Lemma 3.6. (a) If µ is large enough, then X∗ �= 0 and is finite.
(b) If [f , h] ∈ Hs−2,q ×Hs−2,q and g ∈ Hs−1,q, then Y∗ is finite and estimated by

|Y∗| ≤ C
(‖[f , h]‖s−2,q,Ω + ‖B(κ−1

1 g)‖s−1,q,Ω

)
.

(c) The constant is given by

C∗ = Y∗/X∗(3.51)

and satisfies

|C∗| ≤ C
(
‖[f , h]‖s−2,q,Ω + ‖B(κ−1

1 g)‖s−1,q,Ω

)
,(3.52)

where C = C(X∗).
Proof. The proof is similar to that of Lemmas 3.3 and 3.4.
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As in Step 1, with respect to Step 2 a regularity result can be given for the regular
part [uR,1, σR,1] of the velocity and temperature functions and the corresponding
pressure function p.

Theorem 3.7. Let s ∈ (α+2/q, λ2+2/q). Let [f , g, h] ∈ Hs−2,q(Ω)×Hs−1,q(Ω)×
Hs−2,q(Ω). Suppose that µ and γ are sufficiently large. Let [u, p, σ] be, in the sense of
(2.35), (2.32)–(2.33), a weak solution of (1.7). Let C∗ be given in Lemma 3.6. Then
the pair [uR,1, p, σR] given in (3.42)–(3.44) is the solution of (3.40) and if the number
µ∗ given in Theorem 3.5 is positive, then [uR,1, p, σR] ∈ Hs,q(Ω)×Hs−1,q(Ω)×Hs,q(Ω),
satisfying

‖[µuR,1, σR]‖s,q,Ω + ‖p‖s−1,q,Ω ≤ K
(‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω

)
,(3.53)

where K = C(1 + µ−1
∗ ).

Proof. The proof is similar to the proof of Theorem 3.5.
Step 3. λ2 + 2/q < s ≤ 2. In the third step we split the second leading singular

function of the Lamé system from the solution uR,1 of (3.3) as follows:{
u = C1Φ1 + C2Φ2 + uR, Φ2 = χ rλ2T2(θ),
p = ps,1 + ps,2 + ps,3 + pR,

(3.54)

where λ2 = λ2,n, T2 = T2,n, C1 is given by (3.31), C2 is the unknown parame-
ter, and ps,3 is constructed shortly. Likewise, the function ps,3 is given by ps,3 =
−C2B(κ−1

1 divΦ2), which is in Hs−1,q(Ω) for s < λ3 + 1 + 1/q. Then [uR, p, σR] is the
solution of the problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−µ∆uR − (µ+ ν)∇divuR + ρU · ∇uR + ∇p = f + fs in Ω,
divuR + κ1 U · ∇p+ κ2 U · ∇σR = g + gs in Ω,

−γ∆σR + ρ̃U · ∇σR + τ̃divuR = h+ hs in Ω,
uR = 0, σR = 0 on Γ = ∂Ω,
p = 0 on Γin,

(3.55)

where

fs = fs,1 + C2(µ∆Φ2 + (µ+ ν)∇divΦ2 − ρU · ∇Φ2),

gs = gs,2 − C2divΦ2,(3.56)

hs = hs,2 − C2τ̃divΦ2.

As with (2.19)–(2.21) the solution [uR, p, σR] of (3.55) is given by

uR = µ−1 M∗M{fs −∇B[ḡs − γ−1(Ū · ∇)Ehs] + F1},
p = µ−1B∗B[µḡs − Π1∇ ·Mfs − µγ−1(Ū · ∇)Ehs +G1],(3.57)

σR = µ−1[Π3hs − Π2(fs −∇Bgs) +H1],

where F1, G1, and H1 are defined in (3.12), (3.9), and (3.14), respectively.
It would seem natural in Step 3 to use the inequality s < λ3 + 2/q instead of the

inequality s ≤ 2, because s3,n = λ3 + 2/q is the value of the third velocity regularity
index. If q > 2 is sufficiently close to 2, then s3,n > 2. However, we have only
established the boundedness of B on Ht,q(Ω) for t ≤ 1, so we cannot establish the
regularity of uR beyond H2,q(Ω).

Considering the momentum equation in (3.55) and Theorem 2.5, to achieve an
increased regularity for uR we must pick the parameter C2 so that

Λ2,ν1(f + fs − ρU · ∇uR −∇p) = 0,(3.58)
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where Λ2,ν1 := Λ2,n,ν1 with ν1 = 1 + µ−1ν. Using (3.57),

ρU · ∇uR + ∇p = µ−1(Kfs + Lḡs + Jhs) + µ−1Z,(3.59)

where K, L, J, and Z are given in (3.26). So

fs − ρU · ∇uR −∇p
= fs − µ−1(Kfs + Lgs + Jhs) − µ−1Z

= (I − µ−1K)fs − µ−1(Lgs + Jhs) − µ−1Z

= C2

{
(I − µ−1K)α2 + µ−1[L(divΦ2) + J(τ̃divΦ2)]

}
+ (I − µ−1K)fs,1 − µ−1(Lgs,2 + Jhs,2) − µ−1Z.(3.60)

From (3.58) and (3.60) the algebraic equation for the parameter C2 is

X2C2 = Y2,(3.61)

where α2 = µ∆Φ2 + (µ+ ν)∇divΦ2 − ρU · ∇Φ2 and

X2 = Λ2,ν1 [(I − µ−1K)α2] + µ−1Λ2,ν1 [L(divΦ2) + J(τ̃divΦ2)],

Y2 = Λ2,ν1 [−(I − µ−1K)fs,1 + µ−1(Lgs,2 + Jhs,2) + µ−1Z]

− Λ2,ν1(f).

The next lemma shows that X2 and Y2 are well-defined coefficients and C2 is also
determined.

Lemma 3.8. (a) If µ is large enough, then X2 �= 0 and is finite.
(b) If [f , h] ∈ Hs−2,q ×Hs−2,q and g ∈ Hs−1,q, then Y2 is finite and estimated by

C(‖[f , h]‖s−2,q,Ω + ‖B(κ−1
1 g)‖s−1,q,Ω).

(c) The unknown number C2 is determined by

C2 = Y2/X2,(3.62)

satisfying

|C2| ≤ C
(
‖[f , h]‖s−2,q,Ω + ‖B(κ−1

1 g)‖s−1,q,Ω

)
,(3.63)

where C = C(X2).
Proof. The proof is similar to that of Lemmas 3.3 and 3.4.
As in Step 2, using the same procedures given in the proof of Theorem 3.5, one

can obtain a regularity result for the regular part [uR, σR] of the velocity function,
the temperature function, and the corresponding pressure function.

Theorem 3.9. Let s ∈ (λ2 + 2/q, 2]. Let [f , g, h] ∈ Hs−2,q(Ω) × Hs−1,q(Ω) ×
Hs−2,q(Ω). Suppose that µ and γ are sufficiently large. Let [u, p, σ] be, in a sense of
(2.35), (2.32)–(2.33), a weak solution of (1.7). Let C2 be given in (3.62). Then the
function [uR, p, σR] given in (3.57) is the solution of (3.55). Moreover, if the number
µ∗ given in Theorem 3.5 is positive, then [uR, p, σR] ∈ Hs,q(Ω)×Hs−1,q(Ω)×Hs,q(Ω)
with

‖[µuR, σR]‖s,q,Ω + ‖p‖s−1,q,Ω ≤ K
(‖[f , h]‖s−2,q,Ω + ‖Bḡ‖s−1,q,Ω

)
,(3.64)

where K = C(1 + µ−1
∗ ).
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Proof. The same procedures as used in the proof of Theorem 3.5 can be ap-
plied.

Combining Theorems 3.5, 3.7, and 3.9 we obtain the following result.
Theorem 3.10. Let Ω be a polygon with one concave vertex. Let the vector field

U satisfy Assumption A. Suppose the concave vertex is placed at the origin and has
interior angle ω. Let q > 2 be sufficiently close to 2. Let s ∈ (λ2 + 2/q, 2]. Let
[f , g, h] ∈ Hs−2,q(Ω) × Hs−1,q(Ω) × Hs−2,q(Ω). Suppose that µ and γ are sufficiently
large. Let [u, p, σ] be the solution of (1.7) in the sense of (2.35), (2.32)–(2.33). Then
the pair [u, σ] can be split into the singular and regular parts, [us, σs] and [uR, σR]
near the origin:

u = us + uR, us = C1Φ1 + C2Φ2, uR := u − us,

σ = σs + σR, σs = C3φ, σR := σ − σs,

and [uR, p, σR] ∈ Hs,q(Ω) × Hs−1,q(Ω) × Hs,q(Ω), where C = [C1, C2, C3] has been
constructed in Steps 1, 2, and 3, with C3 = C∗. In addition, there is a constant
C = C(Ω, C0, ‖UR‖2,q,Ω + |d|) with a given constant vector d = (d1, d2, d3) such that

|C| + ‖[µuR, σR]‖s,q,Ω + ‖[u, σ]‖s−1,q,Ω + ‖p‖s−1,q,Ω

≤ C
(‖[f , h]‖s−2,q,Ω + ‖B(κ−1g)‖s−1,q,Ω

)
.(3.65)

Proof. The proof follows from Theorems 3.5, 3.7, and 3.9.

4. Bounded polygon (q < 1
2
qλ
1 ). In this section we discuss the system (1.7)

on any bounded polygon D. The vector field U is assumed to satisfy Assumption A.
In contrast to the situation in section 3, there may be many vertices Pn such that
q2(λ1,n) ≥ qλ2 . A localization and a partition of unity enable us to apply the results
of sections 2 and 3. Because of the quasi-hyperbolic character of the system (1.7), the
partition of unity must be constructed using the streamlines of U. We recall that the
streamlines are given by curves (x, k(x, ȳ)), where the function k satisfies (2.18).

For each vertex Pn = (xn, yn), n = 1, . . . , N , we construct an open set Wn ⊂ D
and a function χn ∈ C∞

0 (R2) satisfying the following conditions:
(i) the vertex Pn lies on ∂Wn and is the only vertex on ∂Wn.

(ii)
⋃N
n=1Wn = D.

(iii) 0 ≤ χn ≤ 1 on Wn, χn ≡ 0 on D\W̄n,
∑N
n=1 χn ≡ 1 on D,

U · ∇χn ≡ 0 on D.
We now construct the sets Wn and functions χn. Suppose the vertices are numbered
so that y1 < y2 < · · · < yN . (The polygon can be rotated a little to achieve this.)
For each n = 1, . . . , N , define a number ȳn as follows. If Pn ∈ ∂Din, let ȳn = yn.
If Pn /∈ ∂Din, let ȳn = ξ(xn, yn). Thus, Pn lies on the streamline emanating from
the point (δ(ȳn), ȳn). Define dn := |ȳn − ȳn+1|. For each n = 1, . . . , N let yn∗ =
ȳn − 3

4dn−1 and y∗n = ȳn + 3
4dn. Then the open sets are constructed as follows:

W1 := {(x, y) ∈ D : y = k(x, ȳ), ȳ < y∗1} and WN := {(x, y) ∈ D : y = k(x, ȳ),
ȳ > yN∗} and for n = 2, . . . , N − 1,

Wn := {(x, y) ∈ D : y = k(x, ȳ), yn∗ < ȳ < y∗n}.(4.1)

We see that Pn ∈ ∂Wn and D =
⋃N
n=1Wn.

To define the functions χn, we start with the following two functions: α+(y) =
exp(−y−2) if y > 0, α+(y) = 0 if y ≤ 0; and α−(y) = 0 if y ≥ 0, α−(y) = exp(−y−2)
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Fig. 1. The polygon D with the region W3 (dashed curves) and the polygon Ω3 (dotted lines).

if y < 0. Using these functions, we define the functions χi as follows: χ̃1(x, y) :=
α−(y − k(x, y∗1)), for n = 2, . . . , N − 1,

χ̃n(x, y) :=

{
α+(y − k(x, yn∗)), y > k(x, yn∗),
α−(y − k(x, y∗n)), y < k(x, y∗n),

(4.2)

and χ̃N (x, y) := α+(y−k(x, yN∗)). From this construction, we see that U·∇χ̃n(x, y) =

0 for all n and
∑N
n=1 χ̃n(x, y) �= 0 on D. Define χn(x, y) = χ̃n(x, y)/

∑N
n=1 χ̃i(x, y).

Then the required properties for χn follow.
The open sets Wn are not, in general, polygonal domains. In order to apply the

results in sections 3 and 4, we pick a bounded polygon Ωn containing Wn, obtained
by extending the sides of ∂D ∩ ∂Wn suitably, joining their end points with a broken
straight line lying outside of Wn and so that each streamline by U intersects the
boundary of Ωn at only two points such that at most one of these points can be
a vertex. Furthermore, the broken polygonal lines are constructed to have interior
angles that are < π. In this way, either the polygon Ωn is convex or it has exactly
one concave vertex, the vertex Pn. The function χn vanishes in a neighborhood of
the part of ∂Ωn that does not lie on ∂D. Figure 1 illustrates this construction.

Let [f , g, h] ∈ Hs−2,q(D) × Hs−1,q(D) × Hs−2,q(D), and let [u, p, σ] ∈ Hs,q(D) ×
Hs−1,q(D) × Hs,q(D) (s < min{s1,n}) be the solution of (1.7) given by Lemma 2.9.
Using the functions χn, set un = χnu, pn = χnp, and σn = χnσ. Then un = 0 on
∂Ωn, pn = 0 on ∂Ωn,in, and σn = 0 on ∂Ωn. So [un, pn, σn] satisfies the problem (1.7)
on the polygon Ωn, with the right-hand sides fn and gn given by

fn := χn f − 2µ∇χn · ∇u − (µ+ ν)(∇χn divu + ∇χn∇u)

+ u(−µ∆χn − (µ+ ν)∇divχn) + p∇χn,
gn := χn g + u · ∇χn,
hn := χnh− 2 γ∇χn · ∇σ + ρ̃ σU · ∇χn + τ̃∇χn · u.

Note that the trouble term (κ1p + κ2σ)U · ∇χn is not in the function gn because
U · ∇χn = 0. Using this fact and Lemma 2.9 we have the following inequality:

‖[fn, hn]‖s−2,q,D + ‖B(κ−1gn)‖s−1,q,D(4.3)

≤ C
(‖[f , h]‖s−2,q,D + ‖B(κ−1g)‖s−1,q,D

)
.

If Pn is a vertex with q2(λ1,n) < q < 1
2q1(λ1,n), we apply Theorem 3.10. (This is

possible because, by our construction, Pn is the only vertex of Ωn with q2(λ1,n) <
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q < 1
2q1(λ1,n).) We write

un = un,s + un,R, un,s = C1,nΦ1,n + C2,nΦ2,n,

σn = σn,s + σn,R, σn,s = C3,nφn,

where Φi,n (i = 1, 2) and φn are the singular functions. Using (4.3) we have the
inequality

|Cn| + ‖[un,R, σn,R]‖s,q,Ωn + ‖pn‖s−1,q,Ωn(4.4)

≤ C
(‖[f , h]‖s−2,q,D + ‖B(κ−1g)‖s−1,q,D

)
.

If Pn is a vertex with q < q2(λ1,n), we apply Lemma 2.9 to obtain

‖[un, σn]‖s,q,Ωn + ‖pn‖s−1,q,Ωn ≤ C
(‖[f , h]‖s−2,q,D + ‖B(κ−1g)‖s−1,q,D

)
.(4.5)

To assemble these results into a result for the entire polygon it is convenient to
recall the following notation: qλ2 = minn{2/(s − λ1,n) : Pn is a concave vertex} and
I∗
s = {n : 2/(s−λ1,n) ≥ qλ2 } for s ≥ 1. Define the regular part [uR, σR] of the solution

[u, σ] by the formula

[uR, σR] =
∑
n∈I∗

s

[un,R, σn,R] +
∑
n/∈I∗

s

[un, σn].

Using (4.4), (4.5), and the triangle inequality we obtain the following theorem.
Theorem 4.1. Let D be a concave polygon. Suppose Assumption A holds. Let

q > 2 be sufficiently close to 2 and s ≥ 1. Assume that [f , g, h] ∈ Hs−2,q(D) ×
Hs−1,q(D) × Hs−2,q(D). Suppose that µ and γ are sufficiently large.

(a) If

s < min
n∈I∗

s

{λ1,n} + 1 + 2/q,

then there is a unique solution [u, p, σ] ∈ Hs−1,q(D)×Hs−2,q(D)×Hs−1,q(D) of (1.7).
(b) Let I∗

s �= ∅. If s is given with

max
n∈I∗

s

{λ2,n} + 2/q < s ≤ 2,

the solution [u, σ] may be split into singular and regular parts

[u, σ] =
∑
n∈I∗

s

[un,s, σn,s] + [uR, σR](4.6)

with [uR, p, σR] ∈ Hs,q(D) × Hs−1,q(D) × Hs,q(D) and

[un,s, σn,s] = [C1,nΦ1,n + C2,nΦ2,n, C3,nφn],

where we denote by Cn = [C1,n, C2,n, C3,n], constructed in Steps 1, 2, and 3 in
section 3. Also there is a constant K = C(C0, ‖UR‖2,q,D +

∑
n∈I∗

s
|dn|) with a given

constant vector dn = [d1,n, d2,n, d3,n] such that

‖[uR, σR]‖s,q,D +
∑
n∈I∗

s

|Cn| + ‖p‖s−1,q,D(4.7)

≤ K
(‖[f , h]‖s−2,q,D + ‖B(κ−1g)‖s−1,q,D

)
.
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(c) If D is convex, then [u, σ] = [uR, σR] satisfies the inequality (4.7).
Note that 1 + 2/q + minn{λ1,n} > 2 for q < 4 because λ1,n > 1

2 . For solving
the nonlinear problem (1.1) we will restrict the regularity exponent s to s = 2, and
we will also require q ∈ (2, 1

2q
∗
1). As a minimal condition of the exponent q for the

solution to be split, we first define the number

q∗2 = min
n

{
2

2 − λ1,n
: Pn is a concave vertex

}
,(4.8)

where the number λ1,n ∈ ( 1
2 , 1) is the first leading singular exponent for the Lamé

system (1.12). Let

I∗ =

{
n :

2

2 − λ1,n
≥ q∗2

}
.(4.9)

The number q∗1 is defined in this way:

q∗1 = min
n∈I∗

{
2

1 − λ1,n
: Pn is a concave vertex

}
.(4.10)

5. Nonlinearity (2 < q < 1
2
q∗
1). In order to solve the problem (1.1) we take

s = 2 and choose the exponent q ∈ (2, 1
2q

∗
1). The data [u0, p0, σ0] are assumed to

be smooth functions. It is assumed that the vector field u0 satisfies the assumptions
(A2)–(A4). Finally, it is assumed that the data [u0, p0, σ0] are sufficiently close to
constant; that is, K0 := ‖[∇u0,∇σ0]‖1,q,D + ‖∇p0‖1,q,D + |σ0|∞ is sufficiently small.
If K0 is small, this means that σ0 is small, not just close to a constant.

We require some notation. Let m be the number of elements of I∗ = {n :
q > min{q2(λ2,n)}}. Let Φ = [Φ1, . . . ,Φm]t and φ = [φ1, . . . , φm], where Φn =
[Φ1,n,Φ2,n]

t and φn are the leading singular functions of the Lamé system and the

Laplace equation at Pn, n ∈ I∗. For convenience let Φ̃ = [Φ̃1, . . . , Φ̃m], where Φ̃n =
[Φ1,n,Φ2,n, φn]. We write C = [C1, . . . ,Cm]t ∈ R2m with Cn = [C1,n, C2,n]

t, Ce =
[C3,1, . . . , C3,m]t ∈ Rm, and d = [d1, . . . ,dm]t ∈ R2m with dn = [d1,n, d2,n]

t, de =

[d3,n, . . . , d3,m]t ∈ Rm. For convenience let C̃ = [C̃1, . . . , C̃m] ∈ R3m with C̃n =

[Cn, C3,n] and d̃ = [d̃1, . . . , d̃m] ∈ R3m with d̃n = [dn, d3,n]. We denote the product

of C̃ and Φ̃ by

C̃Φ̃ := [CΦ,Ceφ] =
∑
n∈I∗

[C1,nΦ1,n + C2,nΦ2,n, C3,nφn]

and similarly for d̃Φ̃.
We use two Banach spaces: Y = H1,q(D)×Lq(D)×H1,q(D) and X = H2,q(D)×

H1,q(D)×H2,q(D)×R3m. We will use a bounded map E : X → Y defined as follows:
E[uR, p, σR, C̃] = [uR + CΦ, p, σR + Ceφ]. Let BK ⊂ X be the ball of radius K, i.e.,

BK =

{
[wR, η, τR, d̃] ∈ X : ‖[wR, τR]‖2,q,D + ‖η‖1,q,D +

∑
n∈I∗

|d̃n| ≤ K

}
.

For fixed data [u0, p0, σ0] and K sufficiently small we define a map T : BK → X as
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follows. Let [wR, η, τR, d̃] ∈ BK . Let

U = w + u0, w = wR + dΦ, τ = τR + deφ,

ρ = ρ(p0 + η, σ0 + τ), κi = κi(p0 + η, σ0 + τ) (i = 1, 2),

ρ̃ = ρcv, τ̃ = τpσ, pσ = pσ(ρ+ ρ0, τ + σ0),

f0 := µ∆u0 + (µ+ ν)∇divu0 − ρu0 · ∇u0 −∇p0,

g0 := −divu0 − κ1u0 · ∇p0 − κ2u0 · ∇σ0,(5.1)

h0 := γ∆σ0 − cvρu0 · ∇σ0 − σ0pσdivu0,

f(w, η, τ) = f0 − ρw · ∇u0,

g(w, η, τ) = g0 − κ1w · ∇p0 − κ2w · ∇σ0,

h(w, η, τ) = h0 − cvρw · ∇σ0 + pσ(σ0divw − τdivu0)

+ ψ(w + u0,w + u0).

With [wR, η, τR, d̃] ∈ BK , the functions ρ, κi, pσ are bounded functions in D with
bound depending on K and K0. If K is sufficiently small, U is so close to u0 that U
satisfies Assumption A. With this restriction on K, let [u, p, σ] be the weak solution
to the linear problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−µ∆u − (µ+ ν)∇divu + ρ (U · ∇)u + ∇p = f in D,
divu + κ1U · ∇p+ κ2U · ∇σ = g in D,

−γ∆σ + ρ̃U · ∇σ + τ̃ divu = h in D,
u = 0, σ = 0 on ∂D,
p = 0 on ∂Din.

(5.2)

We apply Theorem 4.1 to obtain the decomposition u = CΦ+uR and σ = Ceφ+σR.
From Theorem 4.1, [uR, p, σR, C̃] ∈ X . Set T [wR, η, τR, d̃] = [uR, p, σR, C̃].

Lemma 5.1. If K0 and K are small enough, then T (BK) ⊂ BK .
Proof. Let [w, η, σ] ∈ BK . From the formulas for f , g, and h one sees that

‖f‖0,q,D ≤ C(‖∇u0‖1,q,D + ‖∇p0‖0,q,D)(1 + ‖w‖0,q,D) ≤ CK0(1 +K),

‖g‖1,q,D ≤ C
(‖[∇p0,∇σ0]‖1,q,D(‖w‖1,q,D + ‖∇u0‖1,q,D) + ‖∇u0‖1,q,D

)
≤ CK0(‖wR‖1,q,D + |d|) + C(K2

0 +K0)

≤ C(K0K +K2
0 +K0).

Next we compute ‖h‖0,q,D. To do this, first note that |ψ(w + u0,w + u0)| ≤
C(γ0 + γ1)(|∇w|2 + |∇u0|2). Second, we shall use the inequality q < 1

2q
∗
1 in esti-

mating ‖|∇Φ|2‖0,q,D so that ‖ψ(w + u0,w + u0)‖0,q,D can be bounded. Third, we
will use the Sobolev imbedding theorem: H1,q(D) ↪→ L∞(D). Now

‖h‖0,q,D ≤ ‖h0‖0,q,D + C‖w · ∇σ0‖0,q,D + |pσ|∞‖σ0divw − σdivu0‖0,q,D

+ ‖ψ(w + u0,w + u0)‖0,q,D

≤ CK0(1 + ‖w‖1,q,D + ‖σ‖0,q,D) + C‖|∇w|2 + |∇u0|2‖0,q,D

≤ CK0(1 + |d̃| + ‖wR‖1,q,D + ‖σR‖0,q,D)

+ C(|d|2‖|∇Φ|2‖0,q,D + ‖|∇wR|2 + |∇u0|2‖0,q,D)

≤ CK0(1 + |d̃| + ‖wR‖1,q,D + ‖σR‖0,q,D)

+ C(|d|2 + ‖|wR‖2
2,q,D + ‖∇u0‖2

1,q,D)

≤ CK0(1 +K) + C(K2 +K2
0 ).
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Hence ‖[f , h]‖0,q,D and ‖g‖1,q,D can be made arbitrarily small by making K0 and K

small enough. Using (4.7) we see that if K0 and K are small enough, [uR, p, σR, C̃] ∈
BK .

Lemma 5.2. If K0 and K are small enough, there is an a ∈ (0, 1) such that for
[wR, η, τR, d̃] and [w∗

R, η
∗, τ∗R, d̃

∗] in BK ,

‖ET [wR, η, τR, d̃] − ET [w∗
R, η

∗, τ∗R, d̃
∗]‖Y(5.3)

≤ a‖E[wR, η, τR, d̃] − E[w∗
R, η

∗, τ∗R, d̃
∗]‖Y .

Proof. For fixed data [u0, p0, σ0], consider ET [wR, η, τ, d̃] = [u, p, σ] and
ET [w∗

R, η
∗, τ∗, d̃∗] = [u∗, p∗, τ∗], where [u, p, σ] and [u∗, p∗, σ∗] are the solutions of

(5.2). Let ρ = ρ(η + p0, τ + σ0), ρ
∗ = ρ(η∗ + p0, τ

∗ + σ0), κi = κi(η + p0, τ + σ0),
κ∗i = κi(η

∗ + p0, τ
∗ + σ0), τ̃ = τpσ(ρ + ρ0, τ + σ0), and τ̃∗ = τ∗pσ(ρ∗ + ρ0, τ

∗ + σ0).
Then we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−µ∆(u − u∗) − (µ+ ν)∇div(u − u∗) + ρ (U · ∇)(u − u∗) + ∇(p− p∗) = F,
div(u − u∗) + κ1U · ∇(p− p∗) + κ2U · ∇(σ − σ∗) = G in D,

−γ∆(σ − σ∗) + ρ̃U · ∇(σ − σ∗) + τ̃div(u − u∗) = H,
u − u∗ = 0, σ − σ∗ = 0 on ∂D,
p− p∗ = 0 on ∂Din,

(5.4)

where U = dΦ + wR + u0, U∗ = d∗Φ + w∗
R + u0, p

∗
σ = pσ(ρ

∗ + ρ0, τ
∗ + σ0), and

F = f0 − f∗0 + (ρ∗ − ρ)[U · ∇u∗ + w∗ · ∇u0]

+ (w∗ − w) · [ρ∇u0 + ρ∗∇u∗],
G = g0 − g∗0 + w∗ · [(κ∗1 − κ1)∇p0 + (κ∗2 − κ2)∇σ0]

+ (w∗ − w) · [κ1∇p0 + κ2∇σ0 + κ1∇p∗ + κ2∇σ∗](5.5)

+ U∗ · [(κ∗1 − κ1)∇p∗ + (κ∗2 − κ2)∇σ∗],
H = h0 − h∗0 + cv[(ρ

∗ − ρ)w∗ · ∇σ0 + ρ(w∗ − w) · ∇σ0]

+ (pσ − p∗σ)[σ0divw − τ∗divu0] + σ0p
∗
σdiv(w − w∗)(5.6)

+ (τ∗ − τ)pσdivu0 + ψ(U,U) − ψ(U∗,U∗)
+ (ρ̃∗ − ρ̃)U · ∇σ∗ + ρ̃∗(U∗ − U) · ∇σ∗

+ (τ̃∗ − τ̃)divu∗.

Applying to (5.4) the inequality (2.36) given in Lemma 2.9,

‖[u − u∗, σ − σ∗]‖1,q,D + ‖p− p∗‖0,q,D(5.7)

≤ C
(‖[F, H]‖−1,q,D + ‖B(κ−1G)‖0,q,D

)
.

We first compute ‖F‖−1,q,D. In doing this, one has to be careful in estimating the
following term: ‖(ρ−ρ∗)U ·∇u∗‖−1,q,D. For u∗ = u∗

R+C∗Φ, it will be enough if one
can estimate the quantity ‖(ρ− ρ∗)∇Φ‖−1,q,D. Using the Hölder inequality, we have

‖(ρ− ρ∗)∇Φ‖−1,q,D ≤ C‖ρ− ρ∗‖0,q,D(5.8)

·
∑
n∈I∗

sup
v∈H1,q′

0

1

‖v‖1,q′,D

{∫
D

|χn v|q′
|rn(x, y)|q′(1−λ1,n)

dx

}1/q′

,



COMPRESSIBLE FLOW 1481

where rn(x, y) =
√

(x− xn)2 + (y − yn)2 is the distance function to the concave ver-
tex Pn and χn is a smooth cutoff function having support near the concave vertex
Pn. From the Hardy’s inequality [6, Theorem 330], for q′ �= 2,∫ ∞

0

r1−q
′

n [χnv(rn cos θn, rn sin θn)]
q′drn ≤ C

∫ ∞

0

|∇v|q′rndrn.

Integrating over θn, ∫
D

(χnv)
q′

rq
′
n

dx ≤ C‖v‖q′1,q′,D.

Using this result we get

‖(ρ− ρ∗)∇Φ‖−1,q,D ≤ C‖ρ− ρ∗‖0,q,D(5.9)

≤ C(|ρp|∞, |ρσ|∞)(‖τ − τ∗‖0,q,D + ‖η − η∗‖0,q,D).

So

‖(ρ− ρ∗)U · ∇u∗‖−1,q,D ≤ C
∥∥(ρ− ρ∗)(|∇u∗

R| + |C∗| |∇Φ|)∥∥−1,q,D

≤ C(‖u∗
R‖2,q,D + |C∗|)‖[τ − τ∗, η − η∗]‖0,q,D,(5.10)

where C = C(‖ρ′‖∞, ‖U∗‖∞). Hence we conclude that

‖F‖−1,q,D ≤ C(K +K0)(‖w − w∗‖1,q,D + ‖[τ − τ∗, η − η∗]‖0,q,D),(5.11)

where, using Lemma 5.1, we note that ‖u∗
R‖2,q,D + |C∗| + ‖u∗‖1,q,D + ‖∇u0‖1,q,D ≤

C(K +K0).
Second, we estimate ‖B(κ−1G)‖0,q,D. For this, the main difficulty is to estimate

B[κ−1
1 U∗·[(κ1−κ∗1)∇p∗]. Since U∗·∇p∗ = (κ∗1)

−1(g∗−C∗divΦ−divu∗
R−C∗

eκ
∗
2U

∗·∇φ−
κ∗2U

∗ · ∇σ∗
R), it is enough to estimate

B[τ1(κ1 − κ∗1)(C
∗divΦ + C∗

eκ
∗
2U

∗ · ∇φ)],

where τ1 := (κ1 κ
∗
1)

−1. So

|B[τ1 (κ∗1 − κ1)(C
∗divΦ + C∗

eU
∗ · ∇φ)](x, y)|

≤ C
∑
n∈I∗

|C̃∗
n|

∫ x

δ(ξ)

|κ∗1 − κ1|
∣∣(∇Φ + ∇φ)(s, h(s, ξ))

∣∣ ds
≤ C

∑
n∈I∗

|C̃∗
n|

∫ x

δ(ξ)

|κ∗1 − κ1| [s2 + h2(s, ξ)]
λ1,n−1

2 ds

(using the Hölder inequality and 1/q + 1/q′ = 1)

≤ C
∑
n∈I∗

|C̃∗
n|
(∫ x

δ(ξ)

|κ∗1 − κ1|q ds
) 1
q
(∫ x

δ(ξ)

[s2 + h2(s, ξ)](
λ1,n−1

2 )q′ ds

) 1
q′

(noting that 1
λ1,n

< 2 < q for the concave vertex Pn)

≤ C|C̃∗|
(∫ x

δ(ξ)

|κ∗1 − κ1|q ds
) 1
q

,(5.12)
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where C = C(‖τ‖∞). Using (5.12) and κ∗1−κ1 = κ1p(ξ1, ξ2)(η−η∗)+k1σ(ξ1, ξ2)(τ−τ∗)
for some [ξ1, ξ2] we have

‖B[κ−1
1 (κ1 − κ∗1)U

∗ · ∇p∗]‖0,q,D ≤ CK‖[η − η∗, τ − τ∗]‖0,q,D,(5.13)

where, using Lemma 5.1, we note that ‖g∗‖1,q,D + |C̃∗| + ‖[u∗
R, σ

∗
R]‖2,q,D ≤ CK.

Similarly, the term B[κ−1
1 U∗ · [(κ2 − κ∗2)∇σ∗] can be bounded by the right-hand

side of (5.13). Using (5.5) and ‖[p∗, σ∗]‖1,q,D + ‖[∇p0,∇σ0]‖1,q,D ≤ C(K + K0) by
Lemma 5.1, we have

‖B(κ−1
1 G)‖0,q,D ≤ CK1(‖w − w∗‖1,q,D + ‖[η − η∗, τ − τ∗]‖0,q,D),(5.14)

where K1 := K +K0 and C = C(|∇κ1|∞).
Third, we estimate ‖H‖−1,q,D. Since

|ψ(U,U) − ψ(U∗,U∗)| ≤ C(|∇(w + w∗)| + |∇u0|)|∇(w − w∗)|
with C = C(γ0 + γ1), and replacing ρ − ρ∗ in (5.8) by |∇(w − w∗)|, following the
same procedures used there, we have

‖ψ(U,U) − ψ(U∗,U∗)‖−1,q,D

≤ C(‖∇wR + ∇w∗
R‖∞ + |∇u0|∞)‖∇(w − w∗)‖0,q,D

+ C(|d| + |d∗|)‖∇(w − w∗)‖0,q,D

≤ C(K +K0)‖w − w∗‖1,q,D.

So the following inequality can be easily obtained:

‖h− h∗‖−1,q,D ≤ C(K0 +K)‖[η − η∗, τ − τ∗]‖0,q,D

+ C(K0 + |σ0p
∗
σ|∞)‖w − w‖1,q,D(5.15)

+ C(K0 +K)‖w − w∗‖1,q,D.

Furthermore,

‖(ρ̃∗ − ρ̃)U · ∇σ∗‖−1,q,D ≤ C(|C∗
e| + ‖σ∗

R‖2,q,D)‖ρ∗ − ρ‖0,q,D,

‖ρ̃∗(w∗ − w) · ∇σ∗‖−1,q,D ≤ C‖σ∗‖1,q,D‖w − w∗‖1,q,D.(5.16)

Also, replacing ρ− ρ∗ in (5.8) by p∗σ − pσ, we have

‖(τ̃∗ − τ̃)divu∗‖−1,q,D ≤ C|C∗|‖(p∗σ − pσ)divΦ‖−1,q,D

+ C‖u∗
R‖2,q,D‖p∗σ − pσ‖0,q,D + C‖u∗‖1,q,D‖τ − τ∗‖1,q,D

≤ C(|C∗| + ‖u∗
R‖2,q,D)‖[η − η∗, τ − τ∗]‖0,q,D(5.17)

+ CK‖τ − τ∗‖1,q,D.

Combining (5.6) and (5.15)–(5.17) we have

‖H‖−1,q,D ≤ C(K +K0)‖[w − w∗, τ − τ∗]‖1,q,D

+ CK‖η − η∗‖0,q,D.(5.18)

Consequently, using (5.11), (5.14), and (5.18), we obtain

‖[u − u∗, σ − σ∗]‖1,q,D + ‖p− p∗‖0,q,D(5.19)

≤ a
(‖[w − w∗, τ − τ∗]‖1,q,D + ‖η − η∗‖0,q,D

)
,



COMPRESSIBLE FLOW 1483

where a := C(K +K0). If K +K0 is small enough, (5.3) follows.
Proof of Theorem 1.2. Let X0 ∈ BK be given. Define Xj = TXj−1 for

j = 1, 2, . . . . Let Y j = EXj . From (5.3), ‖Y j − Y j−1‖Y = ‖EXj − EXj−1‖Y =
‖ETXj−1 − ETXj−2‖Y ≤ a‖EXj−1 − EXj−2‖Y = a‖Y j−1 − Y j−2‖Y ≤ a2 ×
‖Y j−2 − Y j−3‖Y ≤ · · · ≤ aj−1‖Y 1 − Y 0‖Y . Hence, if j < k,

‖Y k − Y j‖Y ≤
k−1∑
l=j

‖Y l+1 − Y l‖Y

≤
(
k−1∑
l=j

al

)
‖Y 1 − Y 0‖Y

≤ aj

1 − a
‖Y 1 − Y 0‖Y

→ 0 as j, k → ∞.

Therefore the sequence {Y j} is a Cauchy sequence in Y. Hence there is a Y ∈ Y such
that ‖Y − Y j‖Y → 0.

Set Xj = [wj
R, η

j , τ jR, d̃
j ], Y j = [wj , ηj , τ j ]. We have

[a] [wj , τ j ] → [w, τ ] ∈ H1,q(D) × H1,q(D), with the convergence in the topology
of H1,q(D) × H1,q(D);

[b] ηj → η ∈ Lq(D), with the convergence in the topology of Lq(D).
Since {Xj} is a bounded sequence in X , using various compact embeddings we may
pick a subsequence {Xjl} such that in addition to the above convergences the following
holds:

[c] [wjl
R , τ

jl
R ] converges weakly in the topology of H2,q(D)×H1,q(D) to a function

[wR, τR] ∈ H2,q(D) × H1,q(D);
[d] [wjl

R , τ
jl
R ] and [∇wjl

R , τ
jl
R ] converge uniformly as sequences of continuous func-

tions to [wR, τR] and [∇wR,∇τR], respectively;
[e] ηjl converges uniformly as a sequence of continuous functions to η;
[f] the vectors d̃jl converge to a vector, call it d̃. Furthermore, w = wR + dΦ

and τ = τR + deφ. From [d], the sequence of functions τ jl = τ jlR + djle φ converges
uniformly to τ .

The weak limits [wR, τR] and the limits d̃ are the same for any subsequences.
For if two subsequences give rise to two limits, [wR, τR, d̃] and [w∗

R, τ
∗
R, d̃

∗], we have
w = wR + Φd = w∗

R + Φd∗, τ = τR + φde = τ∗R + φd∗
e. Therefore wR − w∗

R =
Φ(d∗ − d) ∈ H2,q(D), τR − τ∗R = φ(de − d∗

e) ∈ H2,q, which is impossible unless

d̃ = d̃∗.
Define ρ, κi, pσ,U, f , g, h by (5.1), and define ρjl , κjli , p

jl
σ ,U

jl , f jl , gjl by (5.1) with

appropriate superscripts jl attached. From [e] and [f], ρjl → ρ, κjli → κi, and pjlσ → pσ
uniformly as continuous functions. Also, from [d], and using the theory of initial value
problems for ordinary differential equations, the functions kjl(x, ȳ) converge uniformly
to k(x, ȳ), and Bjl → B as operators on Lq(D) or H1,q(D).

We now show that [f jl , gjl , hjl ] → [f , g, h] in the topology of Lq(D) × H1,q(D) ×
Lq(D). The terms in f jl are uniformly convergent, so the sequence f jl converges to
f in Lq(D). To show the convergence of gjl in H1,q(D) we must consider the terms
κjl1 wjl · ∇p0 and κjl2 wjl · ∇σ0. Write

κ1w · ∇p0 − κjl1 wjl · ∇p0 = (κ1 − κjl1 )w · ∇p0 + κjl1 (w − wjl) · ∇p0 := Ijl + IIjl .

Evidently, ‖Ijl‖0,q,D ≤ C‖κ1−κjl1 ‖∞,D‖w‖0,q,D → 0, ‖IIjl‖0,q,D ≤ C‖w−wjl‖0,q,D →
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0, so we have convergence in Lq(D). To show convergence of the derivatives, let D
denote any first order derivative. A typical term in DIjl is (κ1 −κjl1 )Dw ·∇p0. Using

[d] and [e] one sees that the sequence of continuous functions κjl1 converges uniformly
to κ1. Hence∫

D

|(κ1 − κjl1 )Dw · ∇p0|qdx ≤ max
x∈D

|κ1 − κjl1 |q
∫
D

|Dw · ∇p0|qdx → 0.

The other terms in ∇gjl are handled in the same way. All the terms except one
in hjl are treated similarly. To establish the convergence of ψjl to ψ in Lq(D) we
note that ψjl = ψ(wjl

R + djlΦ + u0,w
jl
R + djlΦ + u0) contains products of the terms

Dwjl
R , djlDΦ, and Du0, where D is an arbitrary first derivative. From [d], Dwjl

R

converges uniformly to DwR, and from [f], djl → d. The convergence of ψjl follows,
provided |DΦ|2 ∈ Lq(D). Since DΦ behaves like rλ1,n−1 at vertex Pn, we must have
q < 1/(1− λ1,n) for each concave vertex Pn. Since λ1,n >

1
2 , this gives the restriction

q < min

{
1

1 − λ1,n
: Pn is a concave vertex

}
,(5.20)

which is equivalent to the inequality q < 1
2q

∗
1 . With (5.20), hjl converges to h in

Lq(D).
Let [u, p, σ] be the solution of (5.2) given by Lemma 2.9. Similarly, attach super-

scripts jl to the appropriate terms of (5.2), and let [ujl , pjl , σjl ] be the solution of the
resulting equation given by Lemma 2.9. Thus, [ujl , pjl , σjl ] = [wjl+1, ηjl+1, τ jl ]. We
now ask whether [ujl , pjl , σjl ] converges to [u, p, σ] in the topology of Y. For this we
recall the definition of weak solution given in section 2. Letting ajl , ãjl , bjl , Bjl , Ejl be
the bilinear operators and operators corresponding to index jl, [ujl , pjl , σjl ] satisfies
(2.35), (2.32), and (2.33) with indices jl attached. One has

ajl(v1,v2) → a(v1,v2), v1,v2 ∈ H1
0(D),

bjl(p,v) → b(p,v), p ∈ Lq(D), v ∈ H1
0(D),

bjl(Bjl(κjl1
−1divv1),v2) → b(B(κ−1

1 divv1),v2), v1,v2 ∈ H1
0(D),

bjl(BjlSjlv1,v2) → b(BSv1,v2), v1,v2 ∈ H1
0(D),

where Sjl := Ūjl · ∇Ejl(τ jldiv), and

ãjl(v1,v2) → ã(v1,v2), v1,v2 ∈ H1
0(D),

ejl(σ, η) → e(σ, η), σ, η ∈ H1
0(D),

b̃jl(χ,v) → b̃(χ,v), χ ∈ Lq(D), v ∈ H1
0(D).

Considering (2.35), (2.32), and (2.33), one sees that [ujl , σjl ] → [u, σ] in the topology
of H1,q(D)×H1,q(D) and pjl → p in the topology of Lq(D). Furthermore, [u, p, σ] is a
weak solution of (5.2). Since the coefficients and right-hand side of (5.2) are indepen-
dent of the subsequence chosen, the pair [u, p, σ] is independent of the subsequence
chosen.

We now show that ETXj → [u, p, σ] in the topology of Y. Suppose the contrary.
Then there is a number a > 0 and a subsequence Xjl such that ‖ETXjl−[u, p]‖Y ≥ a.
By the above argument there is a subsequence of this subsequence, which we again
denote by jl, such that the convergence assertions [a]–[f] hold, which is a contradiction.
Hence ‖ETXj − [u, p, σ]‖Y → 0.
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Since [uj , pj , σj ] = ETXj = [wj+1, ηj+1, τ j+1], we have [wj , ηj , τ j ] → [u, p, σ] in
the topology of Y. From [d] and [f], [wj

R, τ
j
R] → [wR, τR] = [uR, σR] in the topology

of (C1(D̄))3 and d̃j → d̃ = C̃. Hence [u, p, σ] solves (1.5), so [u + u0, p+ p0, σ + σ0]
solves (1.1).

Acknowledgments. We thank the anonymous referees for several kind com-
ments.
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[6] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press,
Cambridge, UK, 1973.

[7] J. Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary
is similar to that of a convex domain, Czechoslovak Math. J., 89 (1964), pp. 386–393.

[8] R. B. Kellogg and J. E. Osborn, A regularity result for the Stokes problem in a convex
domain, J. Funct. Anal., 21 (1976), pp. 397–431.

[9] V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Spectral Problems Associated with Corner
Singularities of Solutions to Elliptic Equations, AMS, Providence, RI, 2001.

[10] J. R. Kweon and R. B. Kellogg, Compressible Navier–Stokes equations in a bounded domain
with inflow boundary condition, SIAM J. Math. Anal., 28 (1997), pp. 94–108.

[11] J. R. Kweon and R. B. Kellogg, Smooth solution of the compressible Navier-Stokes equations
in an unbounded domain with inflow boundary condition, J. Math. Anal. Appl., 220 (1998),
pp. 657–675.

[12] J. R. Kweon and R. B. Kellogg, Compressible Stokes problem on non-convex polygon, J.
Differential Equations, 176 (2001), pp. 290–314.

[13] J. R. Kweon and R. B. Kellogg, Regularity of solutions to the Navier-Stokes equations
for compressible barotropic flows on a polygon, Arch. Ration. Mech. Anal., 163 (2002),
pp. 35–64.

[14] S. A. Nazarov, A. Novotny, and K. Pileckas, On steady compressible Navier-Stokes equa-
tions in plane damains with corners, Math. Ann., 304 (1996), pp. 121–150.



STABLE PULSE SOLUTIONS FOR THE NONLINEAR
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Abstract. The evolution of optical pulses in fiber optic communication systems with strong,
higher order dispersion management is modeled by a cubic nonlinear Schrödinger equation with
periodically varying linear dispersion at second and third order. Through an averaging procedure, we
derive an approximate model for the slow evolution of such pulses and show that this system possesses
a stable ground state solution. Furthermore, we characterize the ground state numerically. The
results explain the experimental observation of higher order dispersion managed solitons, providing
theoretical justification for modern communication systems design.

Key words. higher order dispersion management, homogenization, periodic media, solitary
waves, stability, nonlinear Schrödinger equation
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1. Introduction.

1.1. Conventional dispersion management. The technique of dispersion
management (DM), introduced in the early 1980s [16] and refined during the past
decade [27], has emerged as the dominant technology for high bandwidth data trans-
mission through optical fibers. In a dispersion managed fiber link, short sections of
fiber with opposite linear dispersion characteristics are joined together in a periodi-
cally repeated structure, forming a fiber whose linear dispersion is effectively canceled
out over each period of DM. In such a system, the characteristic length of local dis-
persion is much shorter than that of nonlinearity or average dispersion so that on the
scale of a typical DM segment the effects of nonlinearity and average dispersion can
be made small relative to those of the local dispersion. In this regime, destabilizing
effects such as four-wave mixing [2, 5, 22] and Gordon–Haus jitter [14, 36] are mini-
mized.

In the case of DM at second order, the propagation equation for the wave envelope
can be written in the dimensionless form

iuz + d2(z)utt + ε|u|2u = 0(1.1)

with the dispersion coefficient d2(z) decomposed into its varying and average compo-
nents

d2(z) = d̃2(z) + εα2,
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where
∫ 1

0
d̃2(z

′)dz′ = 0. Typically, d2(z) is piecewise constant and periodic, and
the parameter ε corresponds to the ratio of the characteristic length scales of local
dispersion to that of nonlinearity and average dispersion [1, 10].

The system performance of dispersion managed fiber links is truly remarkable
[8, 25]. Not only are stable pulse structures observed for α2 > 0, the focusing (anoma-
lous) regime for the nonlinear Schrödinger (NLS) equation [9], but also for the case
when α2 ≤ 0 [14, 28]. These DM solitons are characterized by nearly Gaussian central
peaks and rapidly decaying secondary peaks which comprise the tails [20, 28]. Also,
in contrast to the soliton solutions for the NLS equation, the DM solitons possess a
nontrivial quadratic phase component, namely, chirp [10].

The energy of the DM soliton is higher than that of the corresponding NLS soliton
with the same full width at half maximum (FWHM) and average dispersion [29, 37].
This makes DM solitons more resistant to the effects of spontaneously emitted am-
plifier noise, giving dispersion managed systems a higher signal to noise ratio than
traditional soliton based systems [34]. Also, this energy enhancement can be exploited
to reduce energy variation per channel in wavelength division multiplexing (WDM)
systems operating near zero average dispersion [29].

The first analytical results for DM solitons were obtained in the late 1990s, when
an averaged equation describing the slow evolution of solutions to (1.1) was derived
in [10] through path averaging and in [1] through multiple scales expansion. A rig-
orous justification for this averaged equation was given in [38], where, moreover, it
was shown that for α2 > 0 the Hamiltonian corresponding to the averaged equa-
tion possesses a ground state solution in the class of functions Aλ = {u :

∫
R
|u|2 =

λ,
∫

R
|ut|2 < ∞}. These results indicate the existence of a stable, stationary solution

to the averaged equation that propagates nearly periodically for (1.1) on time scales
up to O( 1

ε ). The existence of a standing wave solution for the averaged equation in
this regime was also established in [12] by means of a general theorem on bifurcation
of solutions from the essential spectrum. Furthermore, the existence of a ground state
for the case α2 = 0 was recently demonstrated [13].

1.2. Higher order dispersion management. Waves of the form exp(iD(ω)z−
iωt) traveling through an optical fiber satisfy the dispersion relation

D(ω) =
n(ω)ω

c
,

where D(ω) is termed the propagation constant, n(ω) is the index of refraction, ω is
the frequency, and c is the speed of light in a vacuum [3]. Thus, in general, the prop-
agation constant is a complicated function of frequency. Explicit formulae for D(ω)
are generally unknown, and in the derivation of the evolution equation for the electric
field’s slowly varying amplitude D(ω) is approximated by its Taylor polynomial in a
neighborhood of the carrier frequency:

D(ω) � d0 + d1(ω − ω0) + d2(ω − ω0)
2 + · · · ,

where dn = D(n)(ω0)
n! . In the derivation of the conventional DM model (1.1), one

assumes that pulses are sufficiently narrow in the frequency domain, |ω − ω0| � 1,
so that D(ω) is accurately approximated by its quadratic Taylor polynomial, and the
effects of changes in the values of d2 in a neighborhood of ω0 are neglected. However,
for the propagation of pulses which are broader in the frequency domain, the inclusion
of the cubic term in the Taylor approximation is necessary, with the resulting model
taking into account variations in d2.
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This additional term in the Taylor series gives rise to a third order linear disper-
sive term in the governing NLS-type equation for the electric field’s slowly varying
envelope [3]. In single channel systems, third order dispersion generally causes an
asymmetric broadening of pulses. Moreover, in WDM systems, which utilize many
optical channels separated in the frequency domain, third order dispersion can pre-
vent conventional dispersion compensation across neighboring channels.

A natural way to surmount these difficulties is to manage dispersion at both
second and third order. By utilizing this technique of higher order dispersion man-
agement (HODM), the asymmetric broadening that takes place for ultrashort optical
pulses in single channel systems with conventional DM is almost exactly compen-
sated for. Furthermore, in WDM systems, HODM makes it possible to compensate
for dispersion over many neighboring frequency channels simultaneously. In fact, ad-
vances in fiber manufacturing techniques [18] have made it possible to incorporate this
idea into new optical fibers, termed dispersion slope compensating fibers, and recent
experiments have yielded impressive results [7, 11, 19, 23, 26].

The evolution of optical pulses in a fiber with DM at second and third order is
governed by the following dimensionless NLS-type equation [24]:

iuz + d2(z)utt + id3(z)uttt + εnl|u|2u = 0,

with

dj(z) = d̃j(z) + εjαj

and ∫ 1

0

d̃j(z
′)dz′ = 0.

Here the αj , j = 2, 3, are order one measures of average dispersion at second and third
order, respectively, εnl is a small parameter representing the ratio of characteristic
lengths of the local dispersions to the nonlinearity, and the εj are small parameters
representing the ratio of characteristic lengths of the local dispersions to the average
dispersions. The dispersion coefficients dj(z), j = 2, 3, are piecewise constant and,
due to the manufacture process, periodic with the same period, here normalized to
be 1. In the operating regimes we consider, the parameters satisfy ε3 � εnl ∼ ε2, so
we set ε = εnl = ε2, neglect the effects of average third order dispersion by setting
α3 = 0, and consider the equation

iuz + d2(z)utt + id3(z)uttt + ε|u|2u = 0,

d2(z) = d̃2(z) + εα2,(1.2)

d3(z) = d̃3(z).

We develop an averaging theory for (1.2) and show that for the case α2 > 0 the
corresponding averaged equation possesses a ground state solution which propagates
nearly periodically for the full equation. Furthermore, we solve the Euler–Lagrange
equation numerically, revealing the structure of this new DM soliton. We also report
that analysis for the case α2 = 0 will appear elsewhere.

2. Averaging. Solutions of (1.2) evolve on two distinct spatial scales, which
suggests performing an averaging procedure. We note that the analysis in this section
does not require the condition α3 = 0, but it is necessary later when proving the
existence of ground states.
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2.1. Averaged equation. We first perform the transformation u(z, t) =
L(z){v(z, t)}, where L{·} is the unitary semigroup for the linear evolution equation

iuz + d̃2(z)utt + id̃3(z)uttt = 0.(2.1)

The operator is easily computed via Fourier transform:

L(z){v(0, t)} =
1√
2π

∫
R

θ(z, k)v̂(0, k) exp(ikt)dk,(2.2)

where

θ(z, k) = exp

∫ z

0

−i[k2d̃2(τ) − k3d̃3(τ)]dτ.

We observe that L(z) is an isometry on Hs(R) for all s ∈ R. Moreover, due to the
periodicity of d̃2(z) and d̃3(z), both θ(z, k) and L(z) are periodic in z. For ease of
notation, we henceforth suppress the variable dependencies of v.

Using

∂u

∂z
=
∂
(L(z){v})

∂z
= L(z)

{
∂v

∂z

}
+ id̃2(z)

∂2
(L(z){v})
∂t2

− d̃3(z)
∂3
(L(z){v})
∂t3

we obtain by direct substitution into (1.2) the evolution equation for v:

i
∂v

∂z
+ ε

(
α2
∂2v

∂t2
+ C(z){v}

)
= 0,(2.3)

where

C(z){v} = L(−z){|L(z){v}|2L(z){v}}.(2.4)

Formally, the averaged equation is

i
∂v

∂z
+ ε

(
α2
∂2v

∂t2
+ 〈C〉{v}

)
= 0,(2.5)

where

〈C〉{v} =

∫ 1

0

L(−z′){|L(z′){v}|2L(z′){v}}dz′.(2.6)

In Fourier space, (2.5) takes the form

i
∂v̂

∂z
+ ε(−k2α2v̂ + 〈Ĉ〉{v}) = 0(2.7)

with

(2.8)

〈Ĉ〉{v} =

∫ 1

0

∫
R3

δ(k − k1 + k2 − k3)Θ(z′, k, k1, k2, k3)v̂1(z) ¯̂v2(z)v̂3(z)dk1dk2dk3dz
′.

Here v̂i(z) = v̂(z, ki) and

Θ(z′, k, k1, k2, k3) = exp

∫ z′

0

i{−d̃2(τ)[k
2
1 − k2

2 + k2
3 − k2] + d̃3(τ)[k

3
1 − k3

2 + k3
3 − k3]}dτ.
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Performing the integration over z′ in (2.8) gives

〈Ĉ〉{v} =

∫
R3

δ(k − k1 + k2 − k3)Θl(k, k1, k2, k3)v̂1(z) ¯̂v2(z)v̂3(z)dk1dk2dk3,(2.9)

where

Θl(k, k1, k2, k3) =

∫ 1

0

Θ(z′, k, k1, k2, k3)dz
′(2.10)

is a bounded function on R
4. The averaged equation (2.5) corresponds to the varia-

tional equation

uz = J∇〈H〉,
where J = −i is a skew-symmetric operator, ∇ is the Fréchet derivative, and 〈H〉 is
the Hamiltonian

〈H〉(v) = α2

∫
R

|vt|2dt− 1

2

∫ 1

0

∫
R

|L(z′){v}|4dtdz′.(2.11)

We note that 〈H〉(v) is a bounded functional on H1(R), as

||L{v}||4L4 ≤M

∣∣∣∣∣
∣∣∣∣∣∂
(L{v})
∂t

∣∣∣∣∣
∣∣∣∣∣
L2

· ||L{v}||3L2

= M ||L{vt}||L2 · ||L{v}||3L2

= M ||vt||L2 · ||v||3L2 ,

where we have used the Gagliardo–Nirenberg inequality [4] and the fact that L(z) is
an isometry on any space Hs(R).

We comment briefly on the regularity of the averaged operator 〈C〉. We will first
show that 〈C〉{·} is bounded on Hs(R) for s > 1

2 . Now

|〈Ĉ〉{v}| =

∣∣∣∣
∫

R3

δ(k − k1 + k2 − k3)Θl(k, k1, k2, k3)v̂(k1)¯̂v(k2)v̂(k3)dk1dk2dk3

∣∣∣∣
≤ ||Θl||L∞(R4)

∫
R3

δ(k − k1 + k2 − k3)|v̂(k1)¯̂v(k2)v̂(k3)|dk1dk2dk3

≤ ||Θl||L∞(R4)

∫
R2

|v̂(k1)||¯̂v(k2)||v̂(k − k1 + k2)|dk1dk2.

If we denote Î{v} =
∫

R2 |v̂(k1)||¯̂v(k2)||v̂(k−k1+k2)|dk1dk2, then by the above estimate
it suffices to show that

||I{v}||Hs(R) ≤ ||v||3Hs(R).

Now for any u and w ∈ Hs(R), we have that

||uw||Hs(R) ≤ ||u||Hs(R)||w||Hs(R),(2.12)

or, equivalently, in Fourier domain,

||û ∗ ŵ||L2
w(R) ≤ ||û||L2

w(R)||ŵ||L2
w(R),(2.13)
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where ∗ is the convolution operator and

||u||L2
w(R) = ||(1 + |k|2) s2 û||L2(R).

If we denote

F̂ (k + k2) =

∫
R

|v̂(k1)||v̂(k − k1 + k2)|dk1 = |v̂| ∗ |v̂|,

then (2.12) and (2.13) applied to û = ŵ = |v̂| ∈ L2
w yield

||(|v̂| ∗ |v̂|)̌ ||Hs(R) ≤ ||(|v̂|)̌ ||2Hs(R) = ||v||2Hs(R),

whereˇdenotes the inverse Fourier transform. Now

Î{v} =

∫
R

|v̂(k2)|F̂ (k + k2)dk2 = |v̂| ∗ F̂ ,

so we apply the above argument to û = |v̂|, ŵ = F̂ to conclude that

||I{v}||Hs(R) ≤ ||v||3Hs(R).

A standard extension of this argument shows that 〈C〉{·} is locally Lipschitz on Hs(R)
for s > 1

2 :

||〈C〉{u− v}||Hs(R) ≤M ||u− v||Hs(R),

where M depends on ||u||Hs(R) and ||v||Hs(R).

2.2. Well posedness. The averaged equation (2.5) is similar in form to the
focusing NLS equation, and local well posedness is a straightforward application of
semigroup theory.

Theorem 2.1. If v0 ∈ Hs(R), s > 1
2 , then there exists zmax > 0 and a unique

solution v(z, t) ∈ C([0, zmax), H
s(R)) for (2.5) with initial data v0, with the property

that either zmax = ∞ or zmax <∞ and limz→zmax ||v(z)||Hs = ∞.
Proof. The linear part can be solved via Fourier transform, generating a C0

group of unitary operators S(z) on Hs(R) for z ∈ R. Since 〈C〉{·} is locally Lipschitz
from Hs(R) → Hs(R), local existence follows [33].

To prove a global existence theorem, a priori estimates on solutions of (2.5) of the
form ||v(z)||Hs(R) < C(z) for any z ∈ R

+ are needed. This is possible for initial data
in Hs(R), s ≥ 1, using conservation of the L2 norm, conservation of the Hamiltonian,
and regularity of the operator 〈C〉.

Theorem 2.2. If v0 ∈ Hs(R), s ≥ 1, then there exists a unique solution v(z, t) ∈
C([0,∞), Hs(R)) for (2.5) with initial data v0.

Proof. Multiplying (2.7) by ¯̂v, its conjugate by v̂, subtracting, and integrating
over R yield

∂z

∫
R

|v̂|2dk = −2Im

∫
R

¯̂v〈Ĉ〉{v}dk,

where∫
R

¯̂v〈Ĉ〉{v}dk =

∫
R

ˆ̄v

∫
R3

δ(k − k1 + k2 − k3)Θl(∆2,∆3)v̂1¯̂v2v̂3dk1dk2dk3dk
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=

∫
R

∫
R3

δ(k − k1 + k2 − k3)Θl(∆2,∆3)¯̂vv̂1¯̂v2v̂3dk1dk2dk3dk

with

∆2 = k2
1 − k2

2 + k2
3 − k2,

∆3 = k3
1 − k3

2 + k3
3 − k3.

Since Θl(∆2,∆3) = Θl(−∆2,−∆3), making the change of variables k → k3, k1 → k2

we see that∫
R

∫
R3

δ(k − k1 + k2 − k3)Θl(∆2,∆3)¯̂vv̂1(z)¯̂v2(z)v̂3(z)dk1dk2dk3dk

=

∫
R

∫
R3

δ(k − k1 + k2 − k3)Θl(∆2,∆3)¯̂vv̂1(z)¯̂v2(z)v̂3(z)dk1dk2dk3dk

so that

∂z

∫
R

|v|2 = ∂z

∫
R

|v̂|2dk = 0

and the L2 norm is conserved.
By conservation of the Hamiltonian,

〈H〉(v0) = α2

∫
R

∣∣∣∣∂v0∂t
∣∣∣∣
2

dt− 1

2

∫ 1

0

∫
R

|L(z′){v0}|4dtdz′

= 〈H〉(v) = α2

∫
R

∣∣∣∣∂v∂t
∣∣∣∣
2

dt− 1

2

∫ 1

0

∫
R

|L(z′){v}|4dtdz′.

Thus ∫
R

∣∣∣∣∂v∂t
∣∣∣∣
2

dt =
〈H〉(v0)
α2

+
1

2α2

∫ 1

0

∫
R

|L(z′){v}|4dtdz′

≤ 〈H〉(v0)
α2

+
M

2α2
||v||3/2L2(R) ·

∣∣∣∣
∣∣∣∣∂v∂t

∣∣∣∣
∣∣∣∣
L2(R)

by the Sobolev inequality. From standard estimates [35],

∫
R

∣∣∣∣∂v∂t
∣∣∣∣
2

dt ≤M ′.

At this point we note that the boundedness of ||v(z)||H1 implies the boundedness of
||v(z)||Lp for p ≥ 2.

We complete the proof by demonstrating that ||v(z)||Hs(R) < M(z). We start
with the integral formulation of (2.5):

v(z, t) = S(z){v0} −
∫ z

0

S(z − z′){〈C〉{v(z′)}}dz′(2.14)

so that, for s ≥ 1,
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||v(z)||Hs(R) ≤ ||S(z){v0}||Hs(R) +

∫ z

0

||S(z − z′){〈C〉{v(z′)}}||Hs(R)dz
′

= ||v0||Hs(R) +

∫ z

0

||〈C〉{v(z′)}||Hs(R)dz
′

≤ ||v0||Hs(R) +

∫ z

0

||v(z′)||3Hs(R)dz
′

≤ ||v0||Hs(R) +

∫ z

0

||v(z′)||2L∞(R)||v(z′)||Hs(R)dz
′

≤ ||v0||Hs(R) +M ′
∫ z

0

||v(z′)||Hs(R)dz
′.

Gronwall’s inequality gives that ||v(z)||Hs(R) is bounded on [0, z), and this, in combi-
nation with the local well posedness result, gives global existence [30].

2.3. Averaging theorem. For this section it is most convenient to rescale z →
z
ε in the transformed and averaged equations (2.3) and (2.5) so that

i
∂vε

∂z
+ α2

∂2vε

∂t2
+ C

(z
ε

)
{vε} = 0(2.15)

and

i
∂v

∂z
+ α2

∂2v

∂t2
+ 〈C〉{v} = 0.(2.16)

The validity of the averaging procedure is addressed in the following theorem.
Theorem 2.3. Let v(z, t) ∈ C0([0, z∗], Hs(R)) be a solution of (2.16) on the time

interval [0, z∗] for any z∗ > 0 and s > 7
2 . Then for ε sufficiently small there exists

vε(z, t) a solution of (2.15) with initial data v(0, t) such that
||vε − v||L∞([0, z

∗
ε ],Hs−3(R)) < Cε.

Remark. We note that since u = L{vε}, the standard averaging result

||u− L{v}||L∞([0, z
∗
ε ],Hs−3(R)) < ε

follows immediately by isometry.
Proof. The proof is similar in spirit to classical averaging results in finite dimen-

sions [32] and follows closely the method of [38]. We first split C( zε ){v} into its average
and varying components:

C
(z
ε

)
{v} = 〈C〉{v} + R

(z
ε

)
{v},

where

R̂
(z
ε

)
{v} =

∫
R3

δ(k − k1 + k2 − k3)A
(z
ε
, k, k1, k2, k3

)
v̂(z, k1)¯̂v(z, k2)v̂(z, k3)dk1dk2dk3

and

A
(z
ε
, k, k1, k2, k3

)
= Θ

(z
ε
, k, k1, k2, k3

)
− Θl(k, k1, k2, k3).
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The function A is bounded in its spatial variables, uniformly in z and ε. Now consider

Bε(z, k, k1, k2, k3) =

∫ z

0

A
(τ
ε
, k, k1, k2, k3

)
dτ = ε

∫ z
ε

0

A(τ ′, k, k1, k2, k3)dτ
′,

where τ ′ = τ
ε . Since the integrand is 1-periodic with zero mean, we may write

ε

∫ z
ε

0

A(τ ′, k, k1, k2, k3)dτ
′ = ε

∫ z′′

0

A(τ ′, k, k1, k2, k3)dτ
′,

where z′′ = z
ε − [ zε ] ∈ [0, 1), with [·] denoting the greatest integer function. Thus

||Bε||L∞(R5) ≤ ε

∫ z′′

0

||A||L∞(R5) ≤ εz′′||A||L∞(R5) ≤Mε,

where M is independent of z.
We define the local average ṽ = v + v1, where

v̂1(z, k) = i

∫
R3

δ(k − k1 + k2 − k3)Bε(z, k, k1, k2, k3)v̂(z, k1)¯̂v(z, k2)v̂(z, k3)dk1dk2dk3.

By direct estimation

|v̂1(z, k)| =

∣∣∣∣i
∫

R3

δ(k − k1 + k2 − k3)Bε(z, k, k1, k2, k3)v̂(z, k1)¯̂v(z, k2)v̂(z, k3)dk1dk2dk3

∣∣∣∣
≤ ||Bε||L∞(R5)

∣∣∣∣
∫

R3

δ(k − k1 + k2 − k3)|v̂(z, k1)||¯̂v(z, k2)||v̂(z, k3)|dk1dk2dk3

∣∣∣∣ .
Repeating the arguments for regularity of 〈C〉 in section 2.1, we have that for every
σ > 1

2 ,

‖v1(z)‖Hσ ≤Mε‖v(z)‖3
Hσ .

Moreover, by the energy estimate in the well posedness theorem, Theorem 2.2, the
bound is uniform in z for s ≥ 1:

sup
0≤z≤z∗

||v1(z)||Hσ ≤Mε sup
0≤z≤z∗

‖v(z)‖3
Hσ ≤M ′ε.

We directly compute

i
∂v̂1
∂z

= R̂′ − R̂,

where

R̂′ = i

∫
R3

δ(k − k1 + k2 − k3)Bε(z, k, k1, k2, k3)∂z{v̂(z, k1)¯̂v(z, k2)v̂(z, k3)}dk1dk2dk3.

Using equation (2.5), we estimate

‖R′‖Hs−3 ≤Mε.

The local average ṽ satisfies

i
∂ṽ

∂z
+ α2

∂2ṽ

∂t2
+ C

(z
ε

)
{ṽ} = R′′,
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where

R′′ = C
(z
ε

)
{ṽ} − C

(z
ε

)
{v} + R′ + α2

∂2v1
∂t2

.

By continuity of C( zε ){·},∥∥∥∥C (zε
)
{ṽ} − C

(z
ε

)
{v}
∥∥∥∥
Hs

≤Mε

for all s > 1
2 , and so

‖R′′‖Hs−3 ≤Mε.

Finally, we consider

fε = vε − ṽ,

which satisfies

i
∂fε
∂z

+ α2
∂2fε
∂t2

+ C
(z
ε

)
{ṽ + fε} − C

(z
ε

)
{ṽ} = −R′′.(2.17)

Again by continuity of C( zε ){·},∥∥∥C (z
ε

)
{ṽ + fε} − C

(z
ε

)
{ṽ}
∥∥∥
Hs−3

≤M‖fε‖Hs−3 .

Writing (2.17) in Fourier space, multiplying the equation by (1 + |k|2)s−3f̂ε, its con-
jugate by (1 + |k|2)s−3fε, subtracting, and integrating over k, one obtains

∂

∂z
‖fε‖2

Hs−3 ≤Mε‖fε‖2
Hs−3 +M‖fε‖4

Hs−3 .

Since ‖fε‖2
Hs−3 < M , we can write the estimate

∂

∂z
‖fε‖2

Hs−3 ≤M2ε+M2‖fε‖2
Hs−3 .

Now using the fact that ‖fε(0)‖2
Hs−3 = 0 and applying Gronwall’s inequality we have

‖fε(z)‖Hs−3 ≤ eM
2εzM2ε ≤ eKM2ε,

where K is a time-independent constant for z ∼ O( 1
ε ), so

sup
0≤z≤ z∗

ε

‖fε‖Hs−3 ≤M ′ε.

Overall, we have

sup
0≤z≤ z∗

ε

‖vε − v‖Hs−3 ≤ sup
0≤z≤ z∗

ε

‖vε − ṽ‖Hs−3 + sup
0≤z≤ z∗

ε

‖ṽ − v‖Hs−3

= sup
0≤z≤ z∗

ε

‖fε‖Hs−3 + sup
0≤z≤ z∗

ε

‖v1(z)‖Hs−3 ≤Mε.
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3. Existence of a ground state. Here we show that for the cases α2 > 0 and
α3 = 0 the averaged Hamiltonian possesses a minimizer in the class of admissible
functions Aλ = {v :

∫
R
|v|2 = λ,

∫
R
|vt|2 < ∞}. We adapt an argument first estab-

lished for the NLS equation [6] and later adapted for the case of second order DM [38].
We first present properties of the Hamiltonian that are essential to the minimization
argument.

3.1. Properties of 〈H〉.
3.1.1. infAλ

〈H〉{v} < 0.
Proof. We first assume that the 1-periodic dispersion maps di(z), i = 2, 3, are

piecewise constant and of the following form, which is standard in optical communi-
cations:

d̃i(z) =

{
D̃i if z ∈ [0, θ) or z ∈ [1 − θ, 1),

−D̃i if z ∈ [θ, 1 − θ) .

For these dispersion profiles we define the map strength parameters si by si = θD̃i.
The Hamiltonian can be written as

〈H〉{v} = α2

∫
R

|vt|2dt

− 1

2

∫ 1

0

∫
R

∫
R4

ei(k1−k2+k3−k4)te−i∆2

∫ z
0
d2(z

′)+i∆3

∫ z
0
d3(z

′)dz′

× v̂(k1)¯̂v(k2)v̂(k3)¯̂v(k4)dk1dk2dk3dk4dtdz,

where ∆2 = k2
1 −k2

2 +k2
3 −k2

4 and ∆3 = k3
1 −k3

2 +k3
3 −k3

4. Performing the integration
in z yields

〈H〉{v} = α2

∫
R

|vt|2dt

− 1

2

∫
R

∫
R4

ei(k1−k2+k3−k4)t
(θ sin(s2∆2 + s3∆3)

s2∆2 + s3∆3

)

× v̂(k1)¯̂v(k2)v̂(k3)¯̂v(k4)dk1dk2dk3dk4dt.

Let v be an arbitrary element of Aλ, and consider the rescaled function

vγ(t) = γ
1
2 v
(
γt
)
,

which is also an element of Aλ. A scaling property of the Fourier transform gives that

v̂γ(k) = γ
−1
2 v̂

(
k

γ

)
,

and the chain rule yields

∂vγ(t)

∂t
= γ

3
2
∂v(t′)
∂t′

,
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where t′ = γt. Substituting vγ into the Hamiltonian, we have

F (γ) = 〈H〉{vγ} = α2

∫
R

∣∣∣∣γ 3
2
∂v(t′)
∂t′

∣∣∣∣
2

dt

− 1

2γ2

∫
R

∫
R4

ei(k1−k2+k3−k4)t
(θ sin(s2∆2 + s3∆3)

s2∆2 + s3∆3

)

× v̂

(
k1

γ

)
¯̂v

(
k2

γ

)
v̂

(
k3

γ

)
¯̂v

(
k4

γ

)
dk1dk2dk3dk4dt

= γ2α2

∫
R

∣∣∣∣∂v(t′)∂t′

∣∣∣∣
2

dt′

− 1

2γ3

∫
R

∫
R4

ei(
k1
γ − k2

γ +
k3
γ − k4

γ )t′
(θ sin(s2γ

2∆̃2 + s3γ
3∆̃3)

s2γ2∆̃2 + s3γ3∆̃3

)

× v̂

(
k1

γ

)
¯̂v

(
k2

γ

)
v̂

(
k3

γ

)
¯̂v

(
k4

γ

)
dk1dk2dk3dk4dt

′,

where

∆̃2 =

(
k1

γ

)2

−
(
k2

γ

)2

+

(
k3

γ

)2

−
(
k4

γ

)2

and

∆̃3 =

(
k1

γ

)3

−
(
k2

γ

)3

+

(
k3

γ

)3

−
(
k4

γ

)3

.

Making the change of variable k′j =
kj
γ , we have

F (γ) = Cγ2

− γ

2

∫
R

∫
R4

ei(k
′
1−k′2+k′3−k′4)t′

(θ sin(s2γ
2∆′

2 + s3γ
3∆′

3)

s2γ2∆′
2 + s3γ3∆′

3

)

× v̂(k′1)¯̂v(k
′
2)v̂(k

′
3)

¯̂v(k′4)dk
′
1dk

′
2dk

′
3dk

′
4dt

′

= Cγ2 − γG(v; γ, s2, s3, θ),

where ∆′
2 = (k′1)

2 − (k′2)
2 + (k′3)

2 − (k′4)
2, ∆′

3 = (k′1)
3 − (k′2)

3 + (k′3)
3 − (k′4)

3, and G
is a functional of v also depending on γ, s2, s3, and θ. At this stage, we can see that
as sj → 0 and θ → 1 we recover the exact scaling of the integrable NLS Hamiltonian
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evaluated at vγ . To show that this Hamiltonian can be made negative, we first note
that by continuity of the kernel

K(γ, θ, sj ,∆
′
j) =

(θ sin(s2γ
2∆′

2 + s3γ
3∆′

3)

s2γ2∆′
2 + s3γ3∆′

3

)
in γ, F (0) = 0. Moreover, differentiating the functional F in γ yields

F ′(γ) = 2Cγ − γG′(v; γ, s2, s3, θ) −G(v; γ, s2, s3, θ).

To compute G′, we differentiate under the integral sign and apply the chain rule. This
gives G′(v; 0, s2, s3, θ) = 0 so that

F ′(0) = −G(v; 0, s2, s3, θ) = −1

2

∫
R

∫
R4

ei(k
′
1−k′2+k′3−k′4)t′

× v̂(k′1)¯̂v(k
′
2)v̂(k

′
3)

¯̂v(k′4)dk
′
1dk

′
2dk

′
3dk

′
4dt

′

= −1

2

∫
R

|v(t′)|4dt′ < 0.

Thus for γ small enough the Hamiltonian is negative.

3.1.2. 〈H〉{v} is subadditive . If Iλ = infv∈Aλ〈H〉{v}, then Iλ1+λ2
< Iλ1

+
Iλ2 .

Claim. For θ > 1, Iθλ < θIλ
Proof of claim.

Iθλ = inf
v∈Aθλ

〈H〉{v}

= inf
w∈Aλ

〈H〉{
√
θw}

since

||w||2L2 = λ⇒ ||
√
θw||2L2 = θλ.

But

〈H〉(
√
θw) = α2

∫
R

|(
√
θw)t|2dt− 1

2

∫ 1

0

∫
R

|L(z){
√
θw}|4dtdz

= θα2

∫
R

|wt|2dt− θ2

2

∫ 1

0

∫
R

|L(z){w}|4dtdz

< θ
(
α2

∫
R

|wt|2dt− 1

2

∫ 1

0

∫
R

∫
R

|w|4dtdz)
for θ > 1. So

Iθλ = inf
w∈Aλ

〈H〉{
√
θw} < θ inf

w∈Aλ
〈H〉{w} = θIλ.

Proof of subadditivity. If we set λ1 = αλ2 with α < 1, we have

Iλ1+λ2 = Iαλ2+λ2 < (α+ 1)Iλ2 = αI(α−1λ1) + Iλ2 < Iλ1 + Iλ2 .
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3.1.3. Localization of minimizing sequences. In the minimization proof, we
used the fact that for a minimizing sequence vk(t) ∈ H1(R) there exists a subsequence
vkm(t) which remains localized. That is, for any ε > 0 there exists an R > 0 such that

∫ +R

−R
|wm(t)|2dt > λ− ε,

where wm(t) = vkm(t − tm) and λ =
∫

R
|wm(t)|2dt. To prove this result, we apply a

version of Lions’s concentration-compactness lemma [17, 38].
Lemma 3.1. If um ∈ H1(R) is a bounded sequence with ||um||L2 = λ, then there

exists a subsequence umk for which one of the following properties hold:
1. (localization) There exists a sequence tk such that for any ε > 0 there exists
R > 0 and ∫ tk+R

tk−R
|umk |2dx ≥ λ− ε.

2. (vanishing) For any R > 0

lim
k→∞

sup
y∈R

∫ y+R

y−R
|umk |2dx→ 0.

3. (splitting) There exists 0 < γ < λ such that for any ε > 0 there exist k0 and
two sequences vk, wk with compact support so that for k ≥ k0

||vk||H1 + ||wk||H1 ≤ 4 sup
k∈N

||umk ||H1 ,(3.1)

||umk − (vk + wk)||L2 ≤ 2ε,(3.2)

|||vk||L2 − γ| ≤ ε |||vk||L2 − (λ− γ)| ≤ ε,(3.3) ∣∣∣∣
∣∣∣∣∂vk∂x

∣∣∣∣
∣∣∣∣
L2

+

∣∣∣∣
∣∣∣∣∂wk∂x

∣∣∣∣
∣∣∣∣
L2

≤
∣∣∣∣
∣∣∣∣∂umk∂x

∣∣∣∣
∣∣∣∣
L2

+ ε(3.4)

and dist(supp(vk), supp(wk)) > 2ε−1.
Thus, for the minimization problem there exists a localized subsequence of the

minimizing sequence if vanishing and splitting can be ruled out.
We first rule out vanishing. Let vk be a minimizing sequence for 〈H〉{v}, and

assume that a subsequence vmk vanishes. Since vk is a minimizing sequence, for some
k we have

α2

∫
R

∣∣∣∣∂vk∂t
∣∣∣∣
2

dt− 1

2

∫ 1

0

∫
R

|L(z′){vk}|4dtdz′ < 0

so that ∫ 1

0

∫
R

|L(z′){vk}|4dtdz′ > 0.

Thus for some z∗ we have ∫
R

|L(z∗){vk}|4dt > 0.
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Applying a lemma of Cazenave [6] for arbitrary H1(R) functions∫
R

|u|4dt ≤ C||u||2H1 sup
y∈R

∫ y+1

y−1

|u|2dt

gives that

sup
y∈R

∫ y+1

y−1

|L(z∗){vk}|2dt > 0.(3.5)

Now we relate supy∈R

∫ y+1

y−1
|L(z∗){vk}|2dt to supy∈R

∫ y+1

y−1
|vk|2dt with the following

localization lemma, which is similar to the lemma of [38].
Lemma 3.2. Consider the following linear dispersive equation:

iuz + d̃2(z)utt + id̃3(z)uttt = 0(3.6)

with u ∈ H1(R), ||u||L2(R) = 1, and d̃i(z) piecewise constant. Let un(t, z) be a sequence
of solutions of (3.6), and define

εn(z) = sup
y∈R

∫ y+1

y−1

|un(t, z)|2.

If un(t, 0) is vanishing initial data (limn→∞ εn(0) = 0) with the constraint ||un||L2(R) =
1, then the sequence of the solutions un(t, z) is also vanishing (limn→∞ εn(z) = 0).

Proof. Let χm(t) be a smooth approximation to the characteristic function on
the interval [−m,m], with the property that |∂tχm| < C

m , χm(t) = 1 if |t| ≤ 1 and
χ(t) = 0 if |t| ≥ m. Multiplying (3.6) by ūχm(t), its conjugate by uχm(t), subtracting,
and integrating over t yield

d

dz

∫
R

χm|u|2dt = −2d̃2(z)Im

∫
R

χmūuttdt− 2d̃3(z)Re

∫
R

χmūutttdt.

Now

Im

∫
R

χmūuttdt = −Im

∫
R

(χmūt + χ′
mū)utdt = −Im

∫
R

χ′
mūutdt

and

Re

∫
R

χmūutttdt = −Re

∫
R

(χmūt + χ′
mū)uttdt = −Re

∫
R

χmūtuttdt− Re

∫
R

χ′
mūuttdt

=
1

2

∫
R

d|ut|2
dt

χm + Re

∫
R

(χ′′
mū+ χ′

mūt)utdt =
3

2

∫
R

|ut|2χ′
mdt+ Re

∫
R

χ′′
mūutdt.

Overall,

d

dz

∫
R

χm|u|2dt = 2d̃2(z)Im

∫
R

χ′
mūutdt− 2d̃3(z)

(
3

2

∫
R

|ut|2χ′
mdt+ Re

∫
R

χ′′
mūutdt

)
,

and integrating from 0 to z gives∫
R

χm|u(z)|2dt =

∫
R

χm|u(0)|2dt

+

∫ z

0

(
2d̃2(z

′)Im
∫

R

χ′
mūutdt + 2d̃3(z

′)

(
3

2

∫
R

|ut|2χ′
mdt + Re

∫
R

χ′′
mūutdt

))
dz′
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≤
∫

R

χm|u(0)|2dt+ Cm(||u||H1 , ||χ′
m||L∞ , ||χ′′

m||L∞ , ||d̃j ||L∞),

where Cm → 0 as m→ ∞.
Let un(t, z) denote a sequence of solutions of (3.6) with vanishing initial data,

i.e.,

εn(0) = sup
y∈R

∫ y+1

y−1

|un(t, 0)|2 → 0.

If εn(z) < εn(0), then we are done, so let εn(z) > εn(0). Choosing χmn(∗ − tn) such
that it is centered with respect to un(z, t), we have∫

R

χmn |un(t, z)|2dt ≥ εn(z)

and also ∫
R

χmn |un(t, 0)|2dt ≤ 2mnεn(0),

and taking the limit mn → ∞ with mn ∼
√

1
εn(0) gives the result.

Returning to (3.5) and applying the contrapositive of the localization lemma, we
have

sup
y∈R

∫ y+1

y−1

|vk|2dt > 0,

contradicting the assumption that a subsequence vmk vanishes.
To rule out splitting, it is enough to show that

〈H〉{vmk} > 〈H〉{wk} + 〈H〉{uk} + α(ε),

where α(ε) is independent of k and goes to 0 as ε → 0, as this causes 〈H〉{vmk} to
violate subadditivity. We directly evaluate 〈H〉{vmk}:

〈H〉{vmk} = α2

∫
R

∣∣∣∣∂(uk + wk + hk)

∂t

∣∣∣∣
2

dt

− 1

2

∫ 1

0

∫
R

|L{uk + wk + hk}|4dtdz,

where

||hk||2L2 < ε,

and we have suppressed the notation L(z).
Expanding the terms, this can be rewritten as

〈H〉{vmk} = 〈H〉{uk} + 〈H〉{wk}

+ 2α2Re

∫
R

(∂tuk∂twk + ∂tuk∂thk + ∂twk∂thk + |∂thk|2)dt
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−Re

∫ 1

0

∫
R

(|L{uk + wk}|2|L{hk}|2 +
1

2
|L{hk}|4

+ 2|L{uk + wk}|2(L{uk + wk})(L{hk}) + (L{uk + wk})2(L{hk})2
+ 2L{uk + wk}|L{hk}|2Lhk

)
dtdz

+
1

2

∫ 1

0

∫
R

(
2|L{uk}|2|L{wk}|2 + 2|L{uk}|2L{uk}L{wk}

+ (L{uk})2(L{wk})2 + 2|L{wk}|2L{uk}L{wk}
)
dtdz.

We proceed exactly as in [38]. The terms

2α2Re

∫
R

(∂tuk∂twk + ∂tuk∂thk + ∂twk∂thk + |∂thk|2)dt

can be estimated from below by −C1ε, with C1 depending only on λ and α2.
The terms

Re

∫ 1

0

∫
R

(
2|L{uk + wk}|2|L{hk}|2 +

1

2
|L{hk}|4

+ 2|L{uk + wk}|2(L{uk + wk})(L{hk}) + (L{uk + wk})2(L{hk})2
+ 2L{uk + wk}|L{hk}|2Lhk

)
dtdz

are all estimated by Holder’s inequality and the Sobolev inequality∫ 1

0

∫
R

|L(z){v}|4dtdz ≤M ||v(t)||3L2(R)||vt(t)||L2(R),

yielding a lower bound of the form −C2(ε). The remaining terms∫ 1

0

∫
R

(
2|L{uk}|2|L{wk}|2 + 2|L{uk}|2L{uk}L{wk}

+ (L{uk})2(L{wk})2 + 2|L{wk}|2L{uk}L{wk}
)
dtdz

are estimated using the boundedness of H1(R) solutions of linear Schrödinger equa-
tions in L∞(R) and the following lemma, which is a straightforward consequence of
the localization lemma, Lemma 3.2:

In the notation of the concentration-compactness lemma the following estimates
hold : ∫

|t−tk|≤tc
|L{wk}|2dt ≤ Cε,∫

|t−tk|≥tc
|L{uk}|2dt ≤ Cε,

where tc = t1+t2
2 .

Overall, we have

〈H〉{vmk} > 〈H〉{wk} + 〈H〉{uk} + α(ε),

where α(ε) is independent of k and goes to 0 as ε → 0. Thus splitting causes 〈H〉 to
violate subadditivity, a contradiction.
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3.2. Minimization theorem.
Theorem 3.3. Let α2 > 0 and α3 = 0. Then there exists a solution to the

following constrained minimization problem:
Minimize

〈H〉{v} = α2

∫
R

|vt|2dt− 1

2

∫ 1

0

∫
R

|L(z′){v}|4dtdz′

over the set of admissible functions

Aλ =

{
v ∈ H1(R),

∫
R

|v|2 = λ

}
.

Moreover, every minimizing sequence has a subsequence which converges strongly in
H1(R).

Remark. We note that the constraint
∫

R
|v|2 = λ is quite natural, as the L2 norm

of the initial data is preserved by solutions of the Euler–Lagrange equation (2.5).
Posing the problem in this way is also critical to the proof of the stability of the
ground state which is given in a later section.

Proof. We follow the arguments of [6, 38]. The idea is to first show strong conver-
gence in L2(R) by using Lions’s concentration-compactness principle. This involves
using structural properties of the Hamiltonian to rule out possible loss of compactness.
Strong convergence in L2(R), along with an appropriate Sobolev inequality, implies
convergence of the quartic term in the Hamiltonian. These results, in combination
with lower semicontinuity of the H1(R) norm, give the existence of a minimizer. We
show a posteriori that all minimizing sequences have a subsequence which converges
strongly in H1(R).

We first argue that Iλ > −∞. To prove the lower bound, we use the Sobolev
inequality [4]

||Lv||4L4 ≤ C||Lvt||L2 ||Lv||3L2 = C||vt||L2 ||v||3L2 = Cλ3/2||vt||L2 .

Integrating the inequality over z′ gives∫ 1

0

∫ +∞

−∞
|L(z)v|4dtdz ≤ Cλ3/2||vt||L2 .

Thus

〈H〉(v) ≥ ||vt||2L2 − Cλ3/2||vt||L2 =

(
||vt||2L2 − Cλ3/2

2

)2

− C2λ3

4
> −∞

for all v ∈ H1(R). Taking the infimum over v ∈ Aλ gives the desired result.
Let vk be a minimizing sequence for 〈H〉(v). By the previous inequality, ||vk||H1

must be bounded. By Alaoglu’s theorem, there exists a weakly converging subse-
quence in H1(R), vkm . We will prove strong convergence of vkm to a minimizer in
H1(R) and first establish strong convergence in L2(R).

From previous analysis, we conclude that the minimizing sequence remains local-
ized as m→ ∞. That is, for any ε > 0 there exists an R > 0 such that∫ +R

−R
|wm(t)|2dt > λ− ε,(3.7)
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where wm(t) = vkm(t − tm). Now wm ⇀ w∗ for some w∗ ∈ H1(R). For any R > 0,
the embedding H1(R) ↪→ L2([−R,R]) is compact, and we have

∫ R

−R
|w∗|2dt = lim

m→∞

∫ +R

−R
|wm|2dt.

Together with (3.7), this implies

∫ +∞

−∞
|w∗|2dt > λ− ε for any ε > 0,

and therefore ∫ +∞

−∞
|w∗|2dt = λ.

This norm convergence, along with weak convergence in L2(R), gives strong conver-
gence in L2(R).

Since wm converges weakly to w∗ and the Sobolev norm ||∗ ||H1(R) is weakly lower
semicontinuous, we have

||w∗||H1(R) ≤ lim inf
m→∞ ||wm||H1(R),

which together with wm → w∗ ∈ L2(R) implies that

||∂twm||L2(R) ≤ lim inf
m→∞ ||∂twm||L2(R).(3.8)

Now for any u∗, um ∈ H1(R), the Sobolev inequality gives

∫ +∞

−∞
|um − u∗|4dt ≤ C

∫ +∞

−∞
|∂tum − ∂tu

∗|2dt
(∫ +∞

−∞
|um − u∗|2dt

)3/2

≤ C

(∫ +∞

−∞
|um − u∗|2dt

)3/2

.

It follows that if um → u∗ in L2(R),

∫ +∞

−∞
|um − u∗|4dt→ 0.

Applying the same argument to L(z)wm and L(z)w∗, we establish that

L(z)wm → L(z)w∗in L4(R),

and so

||L(z)w∗||L4(R) = lim
m→∞ ||L(z)wm||L4(R).(3.9)

Combining (3.8) and (3.9),

〈H〉(w∗) ≤ lim inf
m→∞ 〈H〉(wm),
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which can only happen if

〈H〉(w∗) = lim
m→∞〈H〉(wm),(3.10)

so the weak limit w∗ is a minimizer. Furthermore, by (3.10)

||∂tw∗||L2(R) = lim
m→∞ ||∂twm||L2(R).

Together with weak convergence, this implies strong convergence of ∂twm in L2(R),
so wm → w∗ strongly in H1(R).

4. Properties of the ground state.

4.1. Regularity. The minimizer for the constrained minimization problem is
also a weak solution to the Euler–Lagrange equation

−ωv + α2vtt + 〈C〉{v} = 0.(4.1)

If we rewrite (4.1) in the form

vtt =
1

α2
(ωv − 〈C〉{v}) = f(v),

where f(v) ∈ H1(R) by continuity of 〈C〉{v}, we may use standard elliptic regularity
theory [15] to conclude that v ∈ H3(R). Again, by continuity of 〈C〉{v},

ωv − α2vtt = 〈C〉{v} ∈ H3(R),

forcing v ∈ H5(R). We repeat this procedure indefinitely, obtaining v ∈ Hs(R), for
every s ≥ 1, or v ∈ C∞(R). We note, however, that the Hs(R) norm of v may depend
on α2.

4.2. Stability. It is clear that the minimizer is not unique, as any translation
v(· + τ0), τ0 ∈ R, or rotation eiθv, θ ∈ R, of the minimizer is also a solution of
the constrained minimization problem. Also, it is not known that translations and
rotations give all possible minimizers. From now on we consider the class of ground
state solutions Sλ = {vg ∈ Aλ, 〈H〉(vg) = Iλ}. Using the strong convergence of
minimizing sequences and conservation laws for (2.5), one can show that the minimizer
is stable in the following orbital sense.

Theorem 4.1. Let Sλ be the set of ground states Sλ = {vg ∈ Aλ, 〈H〉(vg) = Iλ}.
For any ε > 0, there exists a δ > 0 such that if infSλ ||v − vg||H1 ≤ δ, then the
solutions of (2.5) corresponding to initial data v and vg, denoted v(z) and vg(z),
satisfy supz infSλ ||v(z) − vg(z)||H1 ≤ ε.

Proof. We argue by contradiction. Let vk(0) be a sequence of initial condi-
tions such that infSλ ||vk(0) − vg||H1 → 0, and assume that vk(z) and vg(z) satisfy
supz infSλ ||vk(z) − vg(z)||H1 ≥ ε for some ε > 0. For definiteness, let zn be the first
time that infSλ ||vk(z) − vg(z)||H1 = ε. By conservation of the L2 norm and of the
Hamiltonian, we have ∫

R

|vk(zn)|2dt =

∫
R

|vk(0)|2dt,
〈H〉{vk(zn)} = 〈H〉{vk(0)}.
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By the assumption on vk(0) and continuity of 〈H〉, we have∫
R

|vk(zn)|2dt =

∫
R

|vk(0)|2dt→ λ,

〈H〉{vk(zn)} = 〈H〉{vk(0)} → 〈H〉{vg}.

By choosing, for example, wk = λ
1
2 vk(zn)

(
∫

R
|vk(zn)|2dt) 1

2
, let wk be a sequence of H1 functions

such that

||wk − vk(zn)||H1 → 0

and
∫

R
|wk(z)|2dt = λ. By continuity of 〈H〉, wk is a minimizing sequence and must

have a subsequence wmk which converges to a ground state. But

||vk(zn) − vg(z)||H1 ≤ ||vk(zn) − wmk ||H1 + ||wmk − vg(z)||H1 ,

and taking the infimum over Sλ gives

ε = inf
Sλ

||vk(zn) − vg(z)||H1 ≤ ||vk(zn) − wmk ||H1 + inf
Sλ

||wmk − vg(z)||H1 → 0,

a contradiction. Thus the class of ground states must be orbitally stable.

5. Numerical studies.

5.1. Solution of the eigenvalue problem. In Fourier space, the Euler–Lagrange
equation (4.1) becomes

−ωv̂ − α2k
2v̂ + 〈Ĉ〉{v} = 0.(5.1)

We propose the following explicit iteration scheme:

−ωnv̂n+1 − α2k
2v̂n+1 + 〈Ĉ〉{vn} = 0

so that

v̂n+1 =
〈Ĉ〉{vn}
ωn + α2k2

.

If we multiply (5.1) by ¯̂v(k) and integrate over k, we can derive a formula for ωn+1:

ωn+1 =

∫
R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫
R
k2|v̂n+1|2dk∫

R
|v̂n+1|2dk .

This idea also suggests a definition for a relaxation factor to hasten convergence
[21, 31]:

sn+1 =
ωn+1

∫
R
|v̂n+1|2dk∫

R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫
R
k2|v̂n+1|2dk

.

The factor sn can be used to compensate the nonlinearity, and as the scheme con-
verges, sn → 1. We also note that convergence depends strongly on the initial guess,
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which is typically taken to be Gaussian. Incorporating the relaxation factor, the
overall scheme becomes

v̂n+1 = (sn)
p 〈Ĉ〉{vn}
ωn + α2k2

,

ωn+1 =

∫
R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫
R
k2|v̂n+1|2dk∫

R
|v̂n+1|2dk ,

sn+1 =
ωn+1

∫
R
|v̂n+1|2dk∫

R

¯̂vn+1〈Ĉ〉{vn+1}dk − α2

∫
R
k2|v̂n+1|2dk

,

where we use p = 1.5.
To confine our search for minimizers to a fixed level set of L2(R), we normalize

the result of each iteration so that its energy is that of the initial guess,

||vn||2L2(R) = ||v0||2L2(R) = λ.

In practice the algorithm is as follows:
1. Choose an initial profile v̂0, typically Gaussian.
2. Compute ω0 with v̂0.
3. Compute s0 with v̂0 and ω0.
4. Compute v̂1 using the scheme.
5. Rescale v̂1 so that ||v̂1||2L2(R) = ||v̂0||2L2(R).
6. Compute ω1 and s1.
7. Repeat 3, 4, and 5 until desired accuracy is reached.

5.2. Solution of evolution equations. Both the full evolution equation (1.2)
and averaged equation (2.5) can easily be solved with a version of the well-known
Fourier split-step scheme, which applies to a wide class of NLS-type equations. Given
an evolution equation of the form

iuz + L{u} + N{u} = 0,

where L is a self-adjoint operator on a Hilbert space and N is a continuous nonlinear
operator, the solution may be written formally as

u(z, t) = u(0, t)ei
∫ z
0

(L(s){u}+N (s){u})ds.(5.2)

We consider the evolution for a small propagation step ∆z so that we may approximate
(5.2) using a formal Taylor expansion:

u(∆z, t) = u(0, t)ei
∫∆z
0

(L(s){u}+N (s){u})ds

≈ u(0, t)ei
∫∆z/2
0

L(s){u}ei
∫∆z
0

N (s){u}dsei
∫∆z/2
0

L(s){u}ds,

with a local error on the order of (∆z)3. Performing the approximation for O( 1
∆z )

time steps gives a global error on the order of (∆z)2. Formally, ei
∫ z
0
L(s){u}ds is the

semigroup for the linear evolution

iuz + L{u} = 0
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and can be computed explicitly in Fourier domain. Also,

ei
∫ z
0
N (s){u}ds

is the solution operator for the evolution equation

iuz + N{u} = 0

and can be computed either by a standard ODE method such as fourth order Runge–
Kutta or, in special cases, by using conservation laws for the equation.

The overall scheme becomes the following:

1. Choose an initial profile u(0, t) and compute its Fourier transform with the
FFT.

2. In Fourier space, evolve the linear dispersive operator for ∆z/2.
3. Evolve the nonlinear operator for ∆z.
4. Evolve the linear dispersive operator for ∆z/2.
5. Repeat 3 and 4 until the final propagation step.
6. Evolve the linear dispersive operator for ∆z/2 and compute the inverse Fourier

transform with the IFFT.

5.3. Existence of nearly periodic solutions. Combining the averaging and
minimization results, we see that there exist stationary solutions for (2.5) that evolve
nearly periodically for (1.2). The ground state vg(t) for the variational problem cor-
responds to a standing wave solution for (2.5), v(z, t) = exp(iωz)vg(t). The averaging
theorem gives that

∣∣∣∣∣∣u− L
(z
ε

)
{v(z, t)}

∣∣∣∣∣∣
L∞([0, z

∗
ε ],Hs−3(R))

≤ ε

so that u(z, t) is nearly periodic on the scale of validity for the averaging theorem.
Moreover, by well posedness of the averaged equation, the same result is true for
initial data chosen close to the class of ground states infSλ ||v − vg||H1 ≤ ε.

We define a higher order dispersion managed soliton to be an element from the
class of ground states Sλ and demonstrate the existence of such solutions numerically.
Figure 5.1 shows the shape of the ground state solution for the parameters

d̃2(z
′) = d̃3(z

′) =

{
5.0 if z′ ∈ [0, .25) or z′ ∈ [.75, 1.0),
−5.0 if z′ ∈ [.25, .75)

(5.3)

and α2 = 1.0, ε = 0.1. The solution is computed on the time domain [−30, 30] with
2048 Fourier modes. The logarithm of the amplitude |v(t)| is plotted versus time on
the interval [−20, 20]. One observes a nearly Gaussian central peak, along with many
secondary peaks which decay rapidly. This is similar to the structure of the ground
states observed for DM at second order [1, 28].

From the averaging theorem, one would expect the ground state to evolve nearly
periodic for z ∼ O(10). Figure 5.2 depicts the evolution of the maximum amplitude
of the ground state for the corresponding full equation. The individual oscillations
are due to the linear compensation of dispersion, and we observe that the evolution of
the amplitude is, in fact, nearly periodic on z scales much longer than those predicted
by the averaging theorem.
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[4] H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
[5] S. K. Burtsev and I. Gabitov, Four-wave mixing in fiber links with dispersion management,

in Proceedings of the Second International Symposium on Physics and Applications of
Optical Solitons in Fibers, Kyoto, Japan, 1997, pp. 261–265.

[6] T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, UFRJ, Rio de Janeiro,
Brazil, 1993.

[7] L. du Mouza, E. Seve, H. Mardoyn, S. Wabnitz, P. Sillard, and P. Nouchi, High-order
dispersion-managed solitons for dense wavelength-division multiplexed transmissions, Opt.
Lett., 26 (2001), pp. 1128–1130.

[8] F. Favre, D. Le Guen, M. L. Moulinard, M. Henry, and T. Georges, 320Gbit/s soliton
WDM transmission over 1300 km with 100 km dispersion compensated spans of standard
fibre, Elec. Lett., 33 (1997), pp. 2135–2136.

[9] F. Favre, D. Le Guen, and T. Georges, Experimental evidence of pseudo-periodical soliton
propagation in dispersion managed link, Elec. Lett., 34 (1998), pp. 1868–1869.

[10] I. Gabitov, E. G. Shapiro, and S. K. Turitsyn, Asymptotic breathing pulse in optical trans-
mission systems with dispersion compensation, Phys. Rev. E, 55 (1995), pp. 3624–3633.

[11] E. A. Golovchenko, V. J. Mazurczyk, D. G. Duff, and S. M. Abbott, Four-wave mixing
penalties in long-haul WDM transmission links, IEEE Photon. Technol. Lett., 11 (1999),
pp. 821–823.

[12] M. Kunze, Bifurcation from the essential spectrum without sign condition on the nonlinearity,
Proc. Roy. Soc. Edinburgh, Sect. A, 131 (2001), pp. 927–943.

[13] M. Kunze, On a variational problem with lack of compactness related to the Strichartz in-
equality, Calc. Var. Partial Differential Equations, to appear.

[14] T. I. Lakoba, J. Yang, D. J. Kaup, and B. A. Malomed, Conditions for stationary pulse
propagation in the strong dispersion management regime, Opt. Comm., 149 (1998), pp.
366–375.

[15] E. H. Lieb and M. Loss, Analysis, AMS, Providence, RI, 1997.
[16] C. Lin, H. Kogelnik, and L. G. Cohen, Optical pulse equalization and low dispersion trans-

mission in single-mode fibers in the 1.3-1.7mm spectral region, Opt. Lett., 5 (1980), pp.
476–478.

[17] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally
compact case, part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), pp. 109–145.
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Abstract. We prove the diffusive scaling limits of some interacting particle systems in random
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given by equilibrium variational problems. Three related models are studied that correspond to
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1. Introduction. In this article we study the diffusive scaling limits of three
models of random walks with simple exclusion on a multidimensional lattice subject
to rapidly fluctuating jump rates determined by another system of similar walks. In
each of the three models there are two types of particles which we denote by η and ξ.
Each particle, independently of the others, waits a random, exponentially distributed
length of time and then attempts to jump to a neighboring site. The interaction
enters in two ways. If a particle attempts to jump to a site already occupied by a
particle of the same type, the jump is suppressed. This hard core interaction between
particles of the same type is called simple exclusion. The second interaction is through
a speed change. The expected waiting time for a given particle depends on the local
configuration of particles of the other type. The three models differ in the exact form
of this speed change. It is more convenient to think of this in terms of the inverse
of the expected waiting time, or the rate of jumping. In Model 1, the rate for an η
particle to jump from a site x to a neighboring site y is γ1 + ξx + ξy, where ξx and ξy
are the numbers of ξ particles at x and y, while the ξ particles all jump at rate γ2.
Here γ1 and γ2 are two positive numbers. In other words, the ξ particles perform the
symmetric simple exclusion process and the η particles perform a “simple exclusion in
a symmetric simple exclusion environment.” In Model 2, the rate for an η particle to
jump from x to the nearest neighbor y is γ1 + 1

2 (ξx+ ξy), and the rate for a ξ particle
to jump is γ2 + (1 − 1

2 (ηx + ηy)). Hence the two processes dynamically drive each
other through the interdependence of the jump rates. Models 1 and 2 are in some
sense warmups for Model 3, in which an η particle jumps from x to nearest neighbor
y at rate γ1 + ξx and a ξ particle does the same at rate γ2 + 1 − ηx.

Such models can be thought of as microscopic pursuit and evasion predator-prey
models. In Models 2 and 3, for example, the η particles represent prey and the ξ
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particles represent predators. The predators jump fast until they find a prey and then
slow down, while the prey jump slowly until they see a predator, at which time they
speed up to run away. Very little work has been done on pursuit and evasion systems,
as opposed to birth and death predator prey systems, where birth and death rates
are functions of the other species. Both types of predator-prey systems are usually
modelled by continuum equations—systems of partial differential equations—though
particle systems are more realistic. There is quite a bit of work in the probability
literature on systems of birth and death processes with random walks [1] and on
speed change models with a scalar conservation law [11] but, as far as we know,
no previous results on speed change (i.e., pursuit and evasion) systems. Parabolic
systems have much more interesting behavior than scalar parabolic equations [9] and
are more relevant to biology.

With respect to modelling in biology using parabolic systems, a question arises
as to whether one should use divergence or nondivergence form. Our models shed
some light on this issue: Microscopically they are in (discrete) nondivergence form,
but macroscopically the bulk equations take divergence form.

Another motivation for these models comes from the theory of homogenization.
Let us recall two well-known examples.

1. To each bond x, x+ e of the multidimensional integer lattice Zd is associated
an independent random variable a(x, x + e) ≥ δ > 0. We let x(t) be a continuous
time random walk on Zd with generator Lf(x) =

∑
|e|=1 a(x, x+ e)(f(x+ e)− f(x)),

and we ask for the asymptotic behavior of xε(t) = εx(ε−2t). This is the reversible
case, in which the rate of jumping from x to nearest neighbor x + e is the same as
the rate of jumping back, that is, a(x, x + e) = a(x + e, x). The uniform measure
is an invariant and reversible (unnormalized) measure, and by standard methods
of homogenization one finds that the limiting process is a Brownian motion with
covariance � · ā� = inff

∑
eE[a(0, e)(e · � + τef − f)2], the infimum ranging over

stationary processes.

2. To each site x of Zd is associated an independent random variable a(x) ≥ δ > 0,
and y(t) is a continuous time random walk with generator Lf(x) =

∑
|e|=1 a(x)(f(x+

e) − f(x)). This is the nonreversible case, in which the rate of jumping from x,
a(x) depends on x alone. Here the (unnormalized) invariant measure gives mass
a−1(x)/E[a−1] to site x. The rescaled process yε(t) = εy(ε−2t) again converges to
Brownian motion. The variance of yε(t) can be computed explicitly, and an application
of the ergodic theorem tells us that the asymptotic variance in this case is E[a−1(0)]−1.
Now in each of the two models, suppose that we replaced the static random field by
one varying in time. Similar questions can be answered in the reversible case of
example 1, but in the nonreversible case of example 2 little is known. The problem is
that in the second case there is no invariant measure.

Interacting systems with two types of particles provide examples of dynamic ran-
dom environments which can be analyzed. In particular, the speed change in our
Model 3 is of the type of the second example.

The main results of the article are scaling limits for the diffusively rescaled density
fields in the three models. The limits are coupled parabolic systems, with diffusion
matrices which can be obtained from certain variational problems. We use the non-
gradient method (see [10], [13]) and its adaptation to the mean zero nonreversible
setting [15]. The main idea is to consider the models as bounded perturbations of
symmetric simple exclusion, and for this we have to assume γ1, γ2 > 0. The work [15]
is unpublished. The only other case we know treating the nonreversible, nongradient
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case using the strong-sector estimate to bound the asymmetry in terms of the symme-
try is in [6], where a very interesting model related to vortex flow (see [7]) is studied.
The method used is the relative entropy method, which requires certain a priori reg-
ularity for solutions of the hydrodynamic equation. However, to prove this one needs
first some regularity of the diffusion coefficient as a function of the density, and this
has not been obtained for the model in [6] at the present time. Hence the proof is not
complete. For parabolic systems as considered in the present article, even some regu-
larity of the coefficients would not help, as the needed regularity results for solutions
are not available. Hence one is forced to use the method of [10], [13], [15]. Because
of the lack of references we have provided a sketch of the argument, referring to the
existing literature whenever possible.

2. The models. In each of the three models there are two types of particles
which we call η particles and ξ particles. The particles perform symmetric nearest
neighbor random walks on the multidimensional integer lattice Zd, with exclusion
within their type. In other words, each particle waits an exponential amount of time,
then attempts a jump to a neighboring site chosen with equal probabilities. The jump
is only executed if the target site is free of a particle of the same type. If we start with
at most one particle of each type at each site, it will stay so forever, so the state space

of all three models is X = ({0, 1} × {0, 1})Zd . Configurations will be denoted (η, ξ),
and for each x ∈ Zd, ηx ∈ {0, 1}, and ξx ∈ {0, 1} denote the presence or absence of a
particle at that site.

The interaction is through the expected length of the holding time, which will
depend on the local environment. Let us introduce some notation. The operations
η �→ ηx,y and ξ �→ ξx,y exchange the occupation numbers at the two sites x and y.
More precisely, they are defined as ηx,yx = ηy, η

x,y
y = ηx, and ηx,yz = ηz otherwise,

and analogously for ξ. It is convenient to use the η and ξ lattice gradients acting on
functions on X, which are given by

∇η
x,yf(η, ξ) = f(ηx,y, ξ) − f(η, ξ), ∇ξ

x,yf(η, ξ) = f(η, ξx,y) − f(η, ξ).(2.1)

We can now describe the three models (from easiest to hardest).
• Model 1. The ξ particles attempt jumps to each neighbor at rate γ2. An η

particle at x attempts to jump to nearest neighbor y at rate γ1 +
ξx+ξy

2 . The
infinitesimal generator is

L(1)f =
∑
x∼y

(
γ1 +

ξx + ξy
2

)
∇η
x,yf + γ2∇ξ

x,yf.(2.2)

The sum is over ordered nearest neighbor pairs x ∼ y.
• Model 2. A ξ particle at x attempts to jump to nearest neighbor y at rate
γ2 + 1 − ηx+ηy

2 . An η particle at x attempts to jump to nearest neighbor y

at rate γ1 +
ξx+ξy

2 . The infinitesimal generator is

L(2)f =
∑
x∼y

(
γ1 +

ξx + ξy
2

)
∇η
x,yf +

(
γ2 + 1 − ηx + ηy

2

)
∇ξ
x,yf.(2.3)

• Model 3. A ξ particle at x attempts to jump to each nearest neighbor site at
rate γ2+1−ηx. An η particle at x attempts to jump to each nearest neighbor
site at rate γ1 + ξx. The infinitesimal generator is

L(3)f =
∑
x∼y

(γ1 + ξxηx(1− ηy))∇η
x,yf + (γ2 + (1− ηx)ξx(1− ξy))∇ξ

x,yf.(2.4)
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We shall use the generic notation L for the infinitesimal generator of the three
models, unless we need to differentiate between them (especially in section 5).

Models 1 and 2 are reversible with respect to the family of product (Bernoulli)

measures πu,v = (mu ×mv)
⊗ZdN , u, v ∈ [0, 1], where mu(1) = u and mu(0) = 1 − u.

The corresponding Dirichlet forms

Du,v(f) = −Eπu,v [fLf ]

are given by

1

2

∑
x∼y

Eπu,v
[(
γ1 +

ξx + ξy
2

)
(∇η

x,yf)2 + γ2(∇ξ
x,yf)2

]
(Model 1)

and

1

2

∑
x∼y

Eπu,v
[(
γ1 +

ξx + ξy
2

)
(∇η

x,yf)2 +

(
γ2 + 1 − ηx + ηy

2

)
(∇ξ

x,yf)2
]

(Models 2,3).

We learned about Model 3 from Donatis Surgailis, who also indicated the following
key fact, which is easy to check.

Proposition 2.1 (Surgailis). The product measures πu,v, u, v ∈ [0, 1] are invari-
ant for L(3) in Model 3.

However, L(3) is not reversible with respect to the πu,v. The generator of Model
2 is nothing but the symmetric part of the generator in Model 3.

One could, of course, consider much more general speed change models, where the
holding time of a particle is a general function of the local configuration. The basic
problem then becomes one of finding the set of invariant measures, which is extremely
hard in general.

On the other hand, one can start with a family of invariant measures and con-
struct appropriate Dirichlet forms. This produces dynamics for which the measures
are guaranteed to be reversible and invariant. However, dynamics for which we can
determine a nice family of measures which are invariant but not reversible are rare, a
fact underlying the importance of Model 3.

For each of the three models one can check that for γ1, γ2 > 0 the two particle
densities are the only conserved quantities. A consequence is that on a box of side
length ε−1 with periodic or reflecting boundary conditions, once we fix the number of
η and the number of ξ particles, then the continuous time Markov chain (η(·), ξ(·)) is
ergodic and the distribution converges to the uniform distribution on configurations
with those numbers of particles.

We also have the obvious lower bound

D(f) ≥ γD(0)(f) , γ ≤ γ1 ∧ γ2,

for each of the three Dirichlet forms in terms of the Dirichlet form D(0) of two inde-
pendent copies of the symmetric simple exclusion process,

D(0)
u,v(f) =

1

2

∑
x∼y

Eπu,v [(∇η
x,yf)2 + (∇ξ

x,yf)2].

We can also rewrite the Dirichlet form as D(2)(f) =
∑
x∼y Dx,y(f), where

Dx,y(f) =
1

2
E

[(
γ1 +

ξx + ξy
2

)
(∇η

x,yf)2 +

(
γ2 + 1 − ηx + ηy

2

)
(∇ξ

x,yf)2
]
.(2.5)
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Since it is well known that on a box of side length ε−1 the spectral gap of sym-
metric simple exclusions is bounded below by some constant multiple of ε2, we im-
mediately obtain for our three Dirichlet forms the Poincaré inequalities V ar(f) ≤
Cε−2D(f) on boxes of side length ε−1, uniformly in the density. For fixed γ1, γ2 > 0
we will prove diffusive scaling limits for the joint empirical densities of particles. The
limits are coupled systems of parabolic partial differential equations. The diffusion
matrices for limits of such systems cannot in general be expected to be elementary
functions of the densities. However, we can obtain variational formulae for the diffu-
sion matrices, and these can be used to show some structure of the equations.

This is made precise by the hydrodynamic scaling limit. To avoid technicalities
we work on the torus Td instead of Rd, though it is known how to deal with infinite
systems [3]. We are given functions u0(x) and v0(x) of x ∈ Td taking values in [0, 1].
The small scaling parameter ε > 0 represents the separation between macroscopic and
microscopic pictures. To keep ourselves on the torus we assume that ε−1 is an integer.
Macroscopic space and time variables x ∈ Td and t ≥ 0 are related to microscopic
variables x ∈ Zd/ε−1Zd and t ≥ 0 by

x = 	ε−1x
, t = ε−2t.

We assume that the initial distribution µε0 of the process running on Zd/ε−1Zd

is such that the following law of large numbers holds: As ε → 0, in µε0-probability,
the empirical density fields (η�ε−1x�, ξ�ε−1x�) converge weakly to (u0(x), v0(x)), where

u0(x) and v0(x) are some nice functions on the torus. Consider P̂ε, the distributions
of

t −→ (η�ε−1x�(ε−2t)dx, ξ�ε−1x�(ε−2t)dx),(2.6)

seen as measures on D([0,∞);M(Td) × M(Td)), the Skorohod space of left-limit
and right-continuous maps from [0,∞) into M(Td) ×M(Td), the space of pairs of
probability measures with the topology of weak convergence, indexed by the scaling
parameter ε > 0.

We shall denote by L
(i)
l , for i = 0, 1, 2, 3, the restrictions of the infinitesimal

generators of the processes confined to a box Λl of size l ∈ Z+ centered at the origin.
For fixed numbers of particles m and n, we denote by Pn,m,l the product Bernoulli
measure π� conditional on the hyperplane

∑
x∈Λl

ζx = (m,n) = 	(2l + 1)d

, where
ζx = (ξx, ηx), 
 = (u, v) ∈ [0, 1] × [0, 1].

Let F be the class of local functions f on the state space {0, 1}Zd × {0, 1}Zd
satisfying the bound

En,m,l[fh] ≤ C
∑

|x−y|=1, |x|,|y|≤l′
D(0)
x,y(h),(2.7)

with a constant C > 0, uniformly over boxes of size l ∈ Z+ for functions with finite
support h (local functions). The integer l′ ≤ l stands for the largest integer such that
the box Λl′ + supp(f) be included in Λl. In particular, mean-zero local functions like
the gradients ∇ζ, the currents W0,ei and the fluctuations Lg for g local satisfy the
property.

We shall see in (3.25) that, for any 
 = (u, v) ∈ [0, 1] × [0, 1] and for i = 0, 1, 2, 3,
we can define the equivalent seminorms

〈f , f〉(i)−1,� = lim
(n(2l+1)−d ,m(2l+1)−d)→�

(2l)−dEn,m,l
[ ∑
x≤l′

τxf , (−L(i)
l )−1(τxf)

]
.(2.8)
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If N is the null space corresponding to i = 0, we denote the completion of the quotient

space F/N by H(i)
−1,�, a Hilbert space for the symmetric cases i = 0 and i = 2. The

null space is the same for all i due to the fact that L
(3)
sym = L(2) and equivalence of

the norms warranted by the strong-sector condition described in Lemma 2.5.
We need the compressibility matrix

χ(
) = χ(u, v) =

(
u(1 − u)Id 0

0 v(1 − v)Id

)
,(2.9)

where Id is the d-dimensional identity matrix.
Theorem 2.2 (Model 1). Assume γ1, γ2 > 0. Then P̂ε ⇒ δu,v, the Dirac mass

on the trajectory (u(t,x), v(t,x))dx, where (u, v) is the unique weak solution of

∂

∂t

(
u
v

)
= ∇

(
e(u, v) 0

0 γ2Id

)
∇

(
u
v

)
, x ∈ Td, t ≥ 0,(2.10)

with (u(0,x), v(0,x)) = (u0(x), v0(x)), satisfying
∫ T
0

∫
Td

[|∇u|2 + |∇v|2]dxdt < ∞.
The matrix e(u, v) is continuous in u and v and is given by the variational formula
for any r = (r1, . . . , rd) ∈ Rd:

re(u, v)r′

=
1

2u(1 − u)
inf
g∈F

Eπu,v

[
d∑
i=1

(
γ1 +

ξ0 + ξei
2

)
(ri(ηei − η0)

−∇η
0,ei

Ωg)
2 + γ2(∇ξ

0,ei
Ωg)

2

]
.

Here Ωg =
∑
x∈Zd τxg with τx the shift operator.

Theorem 2.3 (Model 2). Assume γ1, γ2 > 0. Then P̂ε are tight, and any limit
point is supported on the set of weak solutions of

∂

∂t

(
u
v

)
= ∇D(2)(u, v)∇

(
u
v

)
,

where x ∈ Td, t ≥ 0, with (u(0,x), v(0,x)) = (u0(x), v0(x)) satisfying
∫ T
0

∫
Td

[|∇u|2+

|∇v|2]dxdt <∞. The diffusion matrix D(2)(u, v) is continuous in u and v and is given
by

D(2)(u, v) =

(
(γ1 + v)Id 0

0 (γ2 + 1 − u)Id

)
(2.11)

+
1

4
[B − (u(1 − u)(γ1 + v) + v(1 − v)(γ2 + 1 − u))Id]χ

−1(u, v)

(
Id Id
Id Id

)
,

where for any r = (r1, . . . , rd),

rBr′ =
1

2
inf
g∈F

Eπu,v

[
d∑
i=1

(
γ1 +

ξ0 + ξei
2

)
(ri(ηei − η0) −∇η

0,ei
Ωg)

2

+

(
γ2 + 1 − η0 + ηei

2

)
(ri(ξei − ξ0) −∇ξ

0,ei
Ωg)

2

]
.
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Before stating the third hydrodynamic limit, we need to recall that on hyperplanes∑
ζ = (n,m) for fixed nonnegative integersm and n, the generators L

(i)
l are invertible.

Theorem 2.4 (Model 3). Assume γ1, γ2 > 0. Then P̂ε are tight, and any limit
point is supported on the set of weak solutions of

∂

∂t

(
u
v

)
= ∇D(3)(u, v)∇

(
u
v

)
, x ∈ Td, t ≥ 0,(2.12)

with (u(0,x), v(0,x)) = (u0(x), v0(x)) satisfying
∫ T
0

∫
Td

[|∇u|2 + |∇v|2]dxdt < ∞,

where D(3)(u, v) is a 2d× 2d matrix valued function continuous in u and v given by(
D(3)(u, v)

)−1

χ(
)(2.13)

= lim
(n(2l+1)−d ,m(2l+1)−d)→(u,v)

(2l)−dEn,m,l
[ ∑
x≤l′

τx∇ζ (−L(3)
l )−1(τx∇ζ)

]
.

Furthermore, there exist 2d× 2d matrices Q and V , with V symmetric, such that

D(3)(u, v)Q = D(2)(u, v)V(2.14)

and Qsym < V in the sense of quadratic forms.
A comment related to the asymmetric diffusion coefficient D(3)(u, v) is included

at the end of section 5.
Remark 1 (on uniqueness). Uniqueness of the hydrodynamic equations for Models

2 and 3 is a hard problem and we have not pursued it here.
Remark 2 (on the degenerate case). If γ1 = γ2 = 0, then Models 2 and 3 are no

longer ergodic. For example, any configuration in which every site where there is a
ξ particle is also occupied by an η particle and there are η but no ξ particles in all
nearest neighbor[ing] sites is an absorbing state for Model 3. We can construct such
configurations which have macroscopic profiles, and since every state in our systems
has bounded specific entropy, it follows that the diffusion coefficients simply vanish.
It is an interesting question whether the scaling limit could hold after removing some
bad configurations from the space, but we do not know how to answer this. On the
other hand, if only one of γ1 and γ2 vanish the situation is not so bad. One can
check, for example, in Model 2 that the spectral gap on a box of side length ε−1 is
correct, say, if γ1 = 0 but γ2 > 0, but with a factor Cvε2, where v is the density of ξ
particles, and with a factor C(1 − u)ε2 if γ1 > 0 but γ2 = 0. Analogous results hold
for Model 1. In a similar way, one can check that the diffusion matrices of Models 2
and 3 dominate (

C(γ2)vId 0
0 γ2Id

)
(2.15)

if γ1 = 0 and (
γ1Id 0

0 C(γ1)(1 − u)Id

)
(2.16)

if γ2 = 0 for some C(d) > 0 for d > 0. For the rest of the article we concentrate
exclusively on the case

γ1, γ2 ≥ γ > 0.
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Remark 3 (on the birth-death model). Let a(η, ξ), b(η, ξ) be positive local func-
tions, and

Lreactionf(η, ξ) =
∑
x

a(τxη, τxξ)(f(ηx, ξ) − b(η, ξ)) + d(τxη, τxξ)(f(η, ξx) − f(η, ξ))

with ηxx = 1 − ηx and ηxy = ηy otherwise, and analogously for ξ. Let L
(i)
ε =

ε−2L(i) + Lreaction, i = 1, 2, 3. The hydrodynamic limit is a nonlinear reaction-
diffusion equation of the form

∂

∂t

(
u
v

)
= ∇D(i)(u, v)∇

(
u
v

)
+

(
F (u, v)
G(u, v)

)
,

where F (u, v) = Eπu,v [a(η, ξ)(1 − 2η0)], G(u, v) = Eπu,v [b(η, ξ)(1 − 2ξ0)]. See [5] for
details.

The method of proof for Models 1 and 2 which are reversible, nongradient systems
is by now rather standard (in the sense that they have been worked out for the
Ginzburg–Landau model [13] and the symmetric simple exclusion process [14]). These
methods are all based on entropy and its rate of change. Fix 
 = (u, v) ∈ (0, 1)×(0, 1)
and let π� be a reference probability measure on the state space. If µ = fπ� is any
other probability measure on the state space we define its entropy as

H(f) = Eπ� [f log f ].

If µt = ftπ� denotes the marginal distribution of our process with Dirichlet form
D(f), then we have the general inequality

dH(ft)

dt
≤ −1

4
D(ft).

Changing to the macroscopic time scale t = ε−2t corresponds to multiplying the
generator, or Dirichlet form, by a factor ε−2. Hence the initial entropy bound

H(f0) ≤ K(log 4)ε−d(2.17)

with K a constant independent of ε produces the bound∫ ∞

0

D(ft)dt ≤ K(log 4)ε2−d.

The log 4 is just the maximum entropy per site in a model with 4 possible values at
each site (the constant K will take care of any arbitrary pair 
0 = (u0, v0), but we
can assume u = v = 1/2 for this purpose). Now if γ1, γ2 ≥ γ > 0 for each of the
models, the Dirichlet form of the process dominates γD(0), the Dirichlet form of the
symmetric simple exclusion. Hence we have the entropy production bound∫ ∞

0

D(0)(ft)dt ≤ γ−1(log 4)ε2−d.(2.18)

From this bound follow the key estimates for nongradient reversible systems. These
will be described in section 3 with references to the original proofs.
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Model 3 is of nongradient, nonreversible, mean-zero type. For such models, a
method was developed in Xu’s thesis [15], specifically applied to the mean-zero asym-
metric simple exclusion process. We did not have access to [15] but relied on notes
of Varadhan’s lectures on this topic at the Fields Institute [14]. Our proof follows
their ideas very closely. The main ingredient, which allows the extension of the stan-
dard reversible machinery in these types of nonreversible systems, is the following
strong-sector condition.

Lemma 2.5. There exists a constant C > 0 such that for any π = π�, 
 ∈
[0, 1] × [0, 1], f, g ∈ F , and any of our three models,∣∣∣∣

∫
fLgdπ

∣∣∣∣ ≤ C
√
D(f)

√
D(g).(2.19)

Proof. For Models 1 and 2 the result is immediate from the reversibility. We
prove it for Model 3 with γ1 = γ2 = 0. It then extends immediately to nonnegative
γ1, γ2. We rewrite the generator as L =

∑
x∼y Lx,y, where

Lx,yg(η, ξ) =
1

2
[(ξx + ξy)(g(η, ξ

x,y) − g(η, ξ)) + (ηxξx + ηyξy)(g(η
x,y, ξ) − g(η, ξx,y))].

Recall the Dirichlet form D(f) =
∑
x∼y Dx,y(f) from (2.5). We write E[fLx,yg] =

A+B, where

A =
1

2
E [(ξx + ξy)(g(η, ξ

x,y) − g(η, ξ))f(η, ξ)] ,(2.20)

B =
1

2
E [(ηxξx + ηyξy)(g(η

x,y, ξ) − g(η, ξx,y))f(η, ξ)] .(2.21)

Applying the exchange operator ξ �→ ξx,y to A and resumming we obtain

A = −1

4
E [(ξx + ξy)(g(η, ξ

x,y) − g(η, ξ))(f(η, ξx,y) − f(η, ξ))] .

Applying η �→ ηx,y and ξ �→ ξx,y simultaneously in B we obtain

B = −1

4
E [(ηxξx + ηyξy)(g(η, ξ

x,y) − g(ηx,y, ξ))(f(ηx,y, ξx,y) − f(η, ξ))] .(2.22)

We write B = B1 +B2 +B3 +B4, where

B1 =
1

4
E [(ηxξx + ηyξy)(g(η

x,y, ξ) − g(η, ξ))(f(ηx,y, ξx,y) − f(η, ξx,y))] ,

B2 =
1

4
E [(1 − ηxηy)(ηxξx + ηyξy)(g(η

x,y, ξ) − g(η, ξ))(f(η, ξx,y) − f(η, ξ))] ,

B3 =
1

4
E [(1 − ηxηy)(ηxξx + ηyξy)(g(η, ξ) − g(η, ξx,y))(f(ηx,y, ξx,y) − f(η, ξx,y))] ,

B4 =
1

4
E [(ηxξx + ηyξy)(g(η, ξ) − g(η, ξx,y))(f(η, ξx,y) − f(η, ξ))] .

Notice that in B2 and B3 we have slipped in the term 1− ηxηy, which vanishes when
the lattice gradients vanish but otherwise is 1. Now we have (ηxξx+ηyξy) ≤ (ξx+ξy),
and therefore by Schwarz’s inequality

|B1| ≤
√
Dx,y(f)

√
Dx,y(g).
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For B2 and B3 note that

(1 − ηxηy)(ηxξx + ηyξy) ≤ (ξx + ξy) ∧ ((1 − ηx) + (1 − ηy)).

Again by Schwarz’s inequality

|B2 +B3| ≤ 4
√
Dx,y(f)

√
Dx,y(g).

From (ηxξx + ηx+eξx+e) = −(1 − ηx)ξx − (1 − ηx+e)ξx+e + (ξx + ξx+e),

B4 +A = −1

4
E [((1 − ηx)ξx + (1 − ηy)ξy)(g(η, ξ) − g(η, ξx,y))(f(η, ξx,y) − f(η, ξ))] .

Since ((1 − ηx)ξx + (1 − ηy)ξy) ≤ (1 − ηx) + (1 − ηy), Schwarz’s inequality gives

|B4 +A| ≤
√

Dx,y(f)
√
Dx,y(g).

This proves that E[fLx,yg] ≤ 6
√Dx,y(f)

√Dx,y(g). Summing over nearest neighbor
pairs x and y, an application of Schwarz’s inequality completes the proof.

3. Nongradient systems. Let ζ = (η, ξ) be the vector valued occupancy num-
ber. For each ε > 0 and initial distribution µε0 our three models define Markov

processes ζ(t) with state space Xε = ({0, 1} × {0, 1})Zd/εZd . We denote by Pε the
corresponding measure on D([0,∞);Xε), the space of right-continuous paths with
left-limits, equipped with the topology of convergence at continuity points. We are
primarily interested in the comportment of ζ�ε−1x�(ε−2t)dx. Let M(Td) be the set of

nonnegative measures on Td with total mass bounded above by 1 and let P̂ε denote
the corresponding probability measure on D([0, T ];M(Td) ×M(Td)).

In any such model we have

dζx(t) =

d∑
i=1

(
Wx−ei,x(t) −Wx,x+ei(t)

)
dt+ dMx(t),(3.1)

where Wx,x+e = Wx,x+e(t), the (vector) rate of particle jumps from x to x + e, is
a local function of the form Wx,x+e = τxW0,ei = W i

x, and the Mx are martingales.
We use ei for the vector of unit length in the positive i direction on the lattice. The
precise form of W0,ei will be given later. Let φ be a smooth function on the torus
taking values in R2. We have∫

Td

(
ζ�ε−1x�(ε−2t) − ζ�ε−1x�(0)

)
φ(x)dx(3.2)

=

∫ t

0

∫
Td

∇εφ(x)ε−1W�ε−1x�(ε−2s)dxds +Mφ(t),

where (∇εφ)(x) = ε−1[φ(x + εei) − φ(x)] = ∇φ(x) + O(ε) and Mφ is a martingale
with variance

E[(Mφ(t))
2] = εd

∫ t

0

∫
Td

|∇εφ|2(x)σ2
�ε−1x�(ε

−2s)dxds,(3.3)

where σx is a (bounded) local function specific to the model. Hence the martingale
term is of order εd/2 and is negligible in the limit. The problem is therefore to show
that as ε→ 0,

ε−1W�ε−1x�(ε−2t) ⇀ D(
)∇
,(3.4)



1522 SHUI FENG, ILIE GRIGORESCU, AND JEREMY QUASTEL

where 
 = (u, v) is the weak limit of ζ�ε−1x�(ε−2t), and D = D(
) is the diffusion
matrix specific to the model. The symbol ⇀ is used to denote weak convergence. In
other words, (3.4) means that for any smooth φ(x, t),∫ t

0

∫
Td
φ(x, s)ε−1W�ε−1x�(ε−2s)dxds →

∫ t

0

∫
Td
φ(x, s)D(
(x, s))∇
(x, s)dxds

in probability.
At this point it helps to know what W0,e, the current, is in each specific model.

In Model 1 it is

W
(1)
0,e =

((
γ1 +

ξ0 + ξe
2

)
(η0 − ηe), γ2(ξ0 − ξe)

)
,(3.5)

in Model 2 it is

W
(2)
0,e =

((
γ1 +

ξ0 + ξe
2

)
(η0 − ηe),

(
γ2 + 1 − η0 + ηe

2

)
(ξ0 − ξe)

)
,(3.6)

and in Model 3 the current is the pair W
(3)
0,e = (W

(3),η
0,e ,W

(3),ξ
0,e ), where

W
(3),η
0,e = (γ1 + ξ0)η0(1 − ηe) − (γ1 + ξe)ηe(1 − η0),

W
(3),ξ
0,e = (γ2 + 1 − η0)ξ0(1 − ξe) − (γ2 + 1 − ηe)ξe(1 − ξ0).

(3.7)

We shall denote the current generically as W0,e unless we need to differentiate between
the three models. Remember that the first coordinate is the current of the η particles
and the second coordinate is the current of the ξ particles. For some of the terms
above a special simplification occurs; for example, even in Model 3 there are some
terms in the current of the form η0ξ0 − ηeξe. Since it is a difference of a shift τeh of a
function h with itself, called a gradient, a summation by parts reduces the key term
on the right-hand side of (3.2) to∫ t

0

∫
Td

∆φ(x)h�ε−1x�(ε−2s)dxds.

The difficult ε−1 is absorbed into the gradient on the test function through an inte-
gration by parts, and the much easier problem is now to show that

h�ε−1x�(ε−2t) ⇀ h̄(
),(3.8)

where h̄(
) = Eπ� [h]. A system whose currents are of this form is called a gradient
system (see [14] for a discussion of the question).

Notice that all three systems we are studying are of nongradient type. So we have
to prove (3.4). One way to do it might be to generate a microscopic variable which
we knew converged to D(
)∇
 and then show that the difference between it and the
field ε−1W�ε−1x�(ε−2t) converges weakly to zero.

The simplest candidate is the following. Let � be a positive integer and let ζ̄�x
denote the average value of ζ on a box Λ� of side length � around site x, and let

Ξ�x =

(
d∑
j=1

aij(ζ̄
�
x)(ζ̄

�
x+ej − ζ̄�x)

)
1≤i≤2d

,



SCALING LIMITS OF PARTICLE SYSTEMS 1523

where D(
) = (aij(
))1≤i,j≤d is the diffusion coefficient in the model. Then
ε−1Ξ��ε−1x�(ε

−2t) is our natural candidate. On the other hand, for a given δ > 0
it is an easy computation using Itô’s formula to show that if L is the generator of
the process and g(
, ζ) is any function continuous in the density 
 and depending

only locally on ζ, then the field ε−1Lg(ζ̄δε
−1

�ε−1x�, τ�ε−1x�ζ)(ε−2t) converges weakly to 0.

Here ζ̄δε
−1

x is just the empirical density on a box of side length δε−1 around x (the
intermediate scale between the micro- and macroscopic levels). Hence we can replace
our simple candidate by a linear combination of gradient-type terms plus a negligible
part

Ξ�,gx =

(
d∑
j=1

aij(ζ̄
�
x)(ζ̄

�
x+ej − ζ̄�x) + τxLg(ζ̄

�, ζ)

)
1≤i≤2d

(3.9)

with coefficients aij dependent on 
 = (u, v) which determine the diffusion matrix
D(
) = (aij(
))1≤i,j≤d uniquely. The problem can now be reduced to the following
three lemmas.

Lemma 3.1. There exists a sequence gn of local functions such that

ε−1
[
W�ε−1x�(ε−2t) − Ξ�,gn�ε−1x�(ε

−2t)
]
⇀ 0(3.10)

in Pε probability, as ε→ 0 followed by �→ ∞ and n→ ∞.
Lemma 3.2. The sequence of probability measures P̂ε, as defined in (2.6), is

relatively compact, and every limit point P̂ is concentrated on absolutely continuous
paths with marginal densities 
(t,x) satisfying

EP̂

[∫ T

0

∫
|∇
(t,x)|2dxdt

]
<∞.(3.11)

We recall the definition of the Hilbert space H(0)
−1,� from (2.8).

Lemma 3.3. Let P̃ε,� denote the joint distribution of the fields

(ζ�ε−1x�(ε−2t),Ξ��ε−1x�(ε
−2t))

as elements of H(0)
−1,�. The sequence is tight, and any limit measure is concentrated

on fields of the form (
,D(
)∇
).
Suppose we have a functional Fε,K depending on ε and some additional parameters

which we denote by K and we want to show that limK limε→0E
Pε [Fε,K ] = 0. We now

recall the standard machinery which reduces such problems to eigenvalue estimates.
Recall that Qε denotes the equilibrium process, with initial distribution π1/2,1/2, and

that we have the entropy bound H(Pε/Qε) ≤ (log 4)ε−d (see (2.17)).
Lemma 3.4. Suppose that Pε and Qε are probability measures with

H(Pε/Qε) =

∫
log

dPε
dQε

dPε ≤ Cε−d.

If for any λ > 0,

lim
K

lim sup
ε→0

εd logEQε
[
exp{λε−dFε,K}] ≤ 0,(3.12)
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then

lim
K

lim sup
ε→0

EPε [Fε,K ] = 0.(3.13)

Proof. This follows from the entropy inequality

EPε [F ] ≤ logEQε [expF ] +H(Pε/Qε).(3.14)

Lemma 3.5. Let Q be a Markov process ζ(s), s ≥ 0, with generator L which is in
equilibrium with invariant measure µ. Let D denote the corresponding Dirichlet form
D(f) = −Eµ[fLf ]. Let V (s, ζ) be bounded. Then

EQ
[
exp

{∫ t

0

V (s, ζ(s))ds

}]
≤ exp

{∫ t

0

λ(V (s))ds

}
,(3.15)

where λ(V ) is the principal eigenvalue of S+V , S = (L+L∗)/2, given by the Raliegh–
Ritz formula

λ(V ) = sup
f≥0,

∫
fdµ=1

{∫
V fdµ−D(

√
f)

}
.(3.16)

Proof. By the Feynman–Kac formula, u(t, ζ) = Eζ [exp{∫ t
0
V (t−s, ζ(s))ds}] solves

the equation ∂tu = [A+ V ]u with u(0, ζ) = 1. Hence

d

dt

∫
u2dµ = 2

{∫
V u2 −D(u)

}
≤ 2λ(V )

∫
u2dµ.(3.17)

Therefore

EQ
[

exp

{∫ t

0

V (t− s, ζ(s))ds

}]
(3.18)

=

∫
u(t)dµ ≤

√∫
u2(t)dµ ≤ exp

∫ t

0

λ(V (t− s, ζ(s)))ds.

In our applications t = ε−2t, and hence after rescaling the variational formula
becomes

sup
f≥0,

∫
fdµ=1

{
ε−d

∫
V fdµ− ε−2D(

√
f)

}

so that we can restrict the variational problem to f with Dε(
√
f) ≤ Cε2−d, which is

the same as (2.17).
Since all of our Dirichlet forms have a lower bound in terms of the Dirichlet form

D(0) of symmetric simple exclusions, we can use D(0) instead of the real Dirichlet
form D in the variational problem to get an upper bound. Thus the key lemmas are
reduced to eigenvalue problems for the generator of the symmetric simple exclusion
process.

Next we state the standard one and two block estimates in our context (see
Chapter 5 of [4] for a proof).
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Lemma 3.6. Suppose fε is a sequence of densities of the particle system on
Zd/ε−1Zd with respect to invariant measures π = πu,v for some fixed 0 < u < 1,
0 < v < 1 and satisfying

D0
ε (
√
fε) ≤ Cε2−d.

Let g be a local function and ḡ(
) = Eπ� [g]. Then

lim sup
�→∞

lim sup
ε→0

Efεπ
[
Avx∈Zd/ε−1Zd

∣∣Av|y−x|≤�g(τxζ) − ḡ(ζ̄�x)
∣∣] = 0.

Let F be a continuous function on [0, 1] × [0, 1]. Then

lim
δ→0
�→∞

lim
ε→0

Efεπ
[
Avx∈Zd/ε−1Zd

∣∣∣Av|y−x|≤δε−1F (ζ̄δε
−1

y ) −Av|y−x|≤�F (ζ̄�y)
∣∣∣] = 0.

Here Av denotes the average and ζ̄�x = Av|y−x|≤�ζy, the average over y in a box of
size �.

Now we return to the key replacement, which is Lemma 3.1, which in microscopic
variables takes the form

ε1+d/2
∫ ε−2t

0

∑
x∈Zd/ε−1Zd

Ωx(s)ds,

where Ωx(s) = φ(εx, ε2s)[Wx − Ξx]. Where for gradient systems the key replacement
(3.8) is a local law of large numbers, which is proved in the one/two block estimates,
for nongradient systems the key replacement is a local central limit theorem.

Let us make this more rigorous. For any vector local function g define

Ω�,gx = φ(εx, ε2s)τx

[
1

(2�′ + 1)d

∑
|y|≤�′

Wy −D(ζ̄�0)(ζ̄
�′
e − ζ̄�

′
0 ) − 1

(2�′ + 1)d

∑
|y|≤�′

τyLg

]
,

where �′ = �−| supp(g)| so that Ω�,g depends only on variables in a box of side length

2� + 1 about 0 ∈ Zd. Let L
(0)
� denote the generator of the process where the η and

ξ particles independently perform symmetric random walks with simple exclusion
on a box of side length � with reflecting boundary conditions. Let En,m,� denote
expectation with respect to the canonical measure u�n,m, the uniform distribution on
configurations on this box with n particles of type η and m of type ξ. Since the system
is ergodic when restricted to such a set of configurations and Ω�,g has mean 0, we can
define a nonnegative definite matrix

σ2
n,m,�(g) = E�,n,m[Ω�,g(−L(0)

� )−1Ω�,g].(3.19)

Let L be the generator of a Markov processXt, t ≥ 0, on a state space S, reversible
with respect to a probability measure µ and with Dirchlet form D(f) = −Eµ[fLf ].
Given a function V on S, let λ(εV ) be the principal eigenvalue of L+ εV , as in (3.16).
Let m = Eµ[V ] and

σ2(V ) = Eµ[V (−L)−1V ]

= lim
T→∞

1

2
Eµ

⎡
⎣( 1√

T

∫ T

0

V (Xt)dt

)2
⎤
⎦

= sup
f

{2Eµ[V f ] −D(f)} .
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We now make this more precise. Let γ be the spectral gap of L,

γ = inf
f

{D(f)/V ar(f)} .

The Rayleigh–Schrodinger perturbation series is

λ(εV ) = εm+ ε2σ2(V ) + · · · .
We are interested in the following result, which can be found in [13] and also in [4].

Lemma 3.7. Assume that L has a spectral gap γ > 0. Let V be bounded with
Eµ[V ] = 0. Then

0 ≤ λ(εV ) ≤ ε2

1 − 2εγ−1‖V ‖∞σ2(V ).

Returning to the setup of our problem, recall the definition (3.19) of σ2
n,m,�(g).

Lemma 3.8. To prove Lemmas 3.1 and 3.3, it suffices to prove that

inf
g

lim sup
�→∞

sup
0≤n,m≤(2�+1)d

�dσ2
n,m,�(g) = 0.(3.20)

Proof. If φ is a smooth test function, then it is clear that∫ T

0

∫
Td
φ(x)W�ε−1x�(ε−2t)dxdt and

∫ T

0

∫
Td
φ(x)W �

�ε−1x�(ε
−2t)dxdt

will have the same limit, where

W �
0 =

1

(2�′ + 1)d

∑
|y|≤�′

Wy.

Let

V �x = ε−1D(ζ̄�x)(ζ̄
�′
x+e − ζ̄�

′
x ).

By an elementary resummation
∑
x φ(εx)[V ε

−1δ
x − V �x ] = ε−1

∑
xBx∇ζx, where ∇ζx

is the vector whose ith entry is ζx+ei − ζx and

Bx = Av|y−x|≤ε−1δD(ζ̄ε
−1δ
y )ϕ(ε−1y) −Av|y−x|≤�′D(ζ̄�y)ϕ(ε−1y).

There is a very simple integration by parts formula which says that for any function
f(η, ξ), E�,n,m[(ηx+e−ηx)f(η, ξ)] = − 1

2E
�,n,m[(ηx+e−ηx)(f(ηx,x+e, ξ)−f(η, ξ))], and

analogously for ξ. Since Bx is invariant under the transformations η �→ ηx,x+ei and
ξ �→ ξx,x+ei for any c > 0 there exists a C <∞ so that

|E[Bx∇ζxf ]| ≤ CE[|Bx|2f ] + ε−2 c

2

d∑
i=1

D(0)
x,x+ei(

√
f).(3.21)

Hence for any c > 0, f , and bounded φx

εd−1E

[∑
x

φx(V
ε−1δ
x − V �x )f

]
− cεd−2D(0)(

√
f)

≤ Cεd
∑
x

E[|Bx|2f ] − c

2
εd−2D(0)(

√
f).
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From the continuity of D(
), this vanishes uniformly over densities f , in the limit
ε→ 0, followed by δ → 0, by the two-block estimate.

Remark 4. In order to use the two-block estimate from above, one needs the
continuity of the diffusive coefficient D(u, v). We refer the reader to Theorem 5.8
from [4].

By applying Lemmas 3.4 and 3.5, to prove Lemma 3.1 it suffices to verify that
for any δ > 0 and bounded φx

inf
g

lim sup
�→∞

lim sup
ε→0

sup
f

{
εd−1Eπ�

[∑
x

Ω�,gx f

]
− δεd−2D(0)(

√
f)

}
≤ 0.(3.22)

The state space here is ({0, 1} × {0, 1})Zd/ε−1Zd and the expectations are with re-
spect to a product measure with some fixed 0 < u < 1, 0 < v < 1. If we denote

D(0)
� =

∑
|x|≤�,|x+e|≤�,|e|=1 D(0)

x,x+e(
√
f), where the expectation is with respect to the

product measure π�u,v on configurations on a box of side length 2�+ 1, then we have∑
xD(0)

� (
√
τ−xf) ≤ LdD(0)(

√
f), where L = 2�+ 1, and therefore

εd−1E

[∑
x

Ω�,gx f

]
− δεd−2D(0)(

√
f)(3.23)

≤ εd−2δ

Ld

∑
x

sup
f

{
Ldε

δ
E[Ω�,gx f ] −D(0)

� (
√
f)

}
.

The expectation is with respect to π�u,v, but we could instead use the canonical measure

u�n,m. Since the product measure is just a linear combination of the latter, if we prove
it uniformly over n and m we have the result. Now by the previous lemma and the
fact that the spectral gap of the exclusion process on a box of side length L is of order
L−2,

εd−2δ

Ld

∑
x

sup
f

{
Ldε

δ
E[Ω�,gx f ] −D(0)

� (
√
f)

}
≤ Cδ−1Ldσ2

n,m,�(g).

Letting �→ ∞ we obtain the desired result.
The previous lemma reduces the proof of the hydrodynamic limit to the evaluation

of the asymptotics of certain central limit theorem variances. We now describe how to
make these computations. Note that Ω�,g is an average of shifts of local functions f of
three types: 1. the current W ; 2. the microscopic density gradients ∇ζ; 3. incoherent
fluctuations Lg. All three have the property that their expectation is zero with respect
to any canonical measure on any box containing their support. They also satisfy the
following integration by parts formulae with respect to any such measure: For any
local h, and nearest neighbors x and y, E[Wx,yh] = − 1

2E[Wx,y(h(η
x,y, ξx,y)−h(η, ξ))],

E[(ζy−ζx)h] = − 1
2E[(ζy−ζx)(h(ηx,y, ξx,y)−h(η, ξ))], and E[Lx,ygh] = − 1

2Dx,y(g, h).
In particular, each of the three functions f satisfies a bound

E[fh] ≤ C
∑

|x−y|=1,|x|,|y|≤R
D(0)
x,y(h)(3.24)

for some C,R <∞, uniformly over boxes containing |x|, |y| ≤ R and over the canonical
measures on that box. The class of local functions f satisfying a bound of type (3.24)
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was denoted by F in (2.7). Note that this corresponds to local functions for which
the asymptotic variance

〈f, f〉(0)−1,� = lim
�→∞

( n
(2�+1)d

, m
(2�+1)d

)→�

1

(2�)d
En,m,�

[ ∑
x≤�′

τxf, (−L(0)
� )−1

( ∑
|x|≤�′

τxf

)]
(3.25)

is finite. For any g, h in F we can define 〈g, h〉(0)−1,� by polarization, giving a semi-

inner product on F , and ||g||(0)−1,� = (〈g2〉(0)� )
1
2 becomes a seminorm. Let N = {g ∈

F : ||g||(0)−1,� = 0}. The completion of the quotient space F/N , denoted by H(0)
−1,�, is

thus a Hilbert space. The first part of the following result first appeared in [10]. A
complete proof can be found in [4], so we will not prove it again here. The second
part was first proved in a different context (mean-zero asymmetric simple exclusion)
by [15]. A nice review is [14, Theorem A, Varadhan’s Lecture 5, page 2, at Fields].

Theorem 3.9. For each 
 = (u, v) ∈ (0, 1) × (0, 1),

(1) the closure of L(0)F in H(0)
−1,� is a linear subspace of codimension 2d and the

orthogonal subspace is provided by the span of ∇ζ;
(2) the closure of L(i)F , i = 1, 2, 3, in H(0)

−1,� is a linear subspace of codimension
2d and a complementary subspace is provided by the span of ∇ζ.

Proof. We prove only (2). From (1), it suffices to prove the triviality of the

kernel K of the orthogonal projection from L(0)F to LF . Let g ∈ K and δ > 0. Since

g ∈ L(0)F there is an f ∈ F with ‖ g − L(0)f ‖(0)
−1,�≤ δ. From the equivalence of the

Dirichlet forms D(i), i = 0, 1, 2, 3, we have ‖ L(0)f ‖(0)
−1,�≤ (γ−1〈L(0)f, Lf〉(0)−1,�)

1/2.

Since g ∈ K, 〈L(0)f, Lf〉(0)−1,� = 〈L(0)f − g, Lf〉(0)−1,� ≤ δ. By Schwarz’s inequality,

〈L(0)f − g, Lf〉(0)−1,� ≤ δ ‖ Lf ‖(0)
−1,�. Hence ‖ L(0)f ‖(0)

−1,�≤ γ−1δ ‖ Lf ‖(0)
−1,�. By the

strong-sector condition Lemma 2.5, ‖ Lf ‖(0)
−1,�≤ C ‖ L(0)f ‖(0)

−1,�. Letting δ ↓ 0, we

have ‖ g ‖(0)
−1,�= 0.

4. Tightness. Hence the diffusion coefficient can be identified by the formula

W0,ei −D(i)(
)∇ζ ∈ L(i)F in H(0)
−1,�. In the final section we derive more explicit ex-

pressions forD. It remains only to prove compactness of the density fields, Lemma 3.2.
We start with a general lemma. For a pure jump function x(·) with a finite number of
jumps, the polygonalization x̂(·) is obtained by linearly interpolating between values
at successive jumps.

Lemma 4.1. Let {(Qε, Pε)}ε>0 be probability measures on D([0, T ];R) which are
supported on pure jump functions such that for some C1, C2 <∞, H(Qε/Pε) ≤ C1ε

−d.
If, for any 0 ≤ s < t ≤ T and any λ > 0,

EPε
[
exp{λε−d(x(t) − x(s))}] ≤ exp{C2ε

−dλ2(t− s)},(4.1)

then there exists C3 <∞ so that, for any 0 < δ ≤ T ,

lim sup
ε→0

EQε

[
sup

|t−s|<δ, 0≤s,t≤T
|x̂(t) − x̂(s)|

]
≤ C3

√
δ log δ−1.

Proof. The Garsia–Rodemich–Rumsey inequality [12] states that if x(t) is a
continuous function and ψ(x) a strictly increasing function such that ψ(0) = 0,
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limx→∞ ψ(x) = ∞, if

B =

∫ T

0

∫ T

0

ψ
(
|x(t) − x(s)|/

√
|t− s|

)
dsdt,

then

sup
|t−s|<δ 0≤s,t≤T

|x(t) − x(s)| ≤ 4

∫ δ

0

ψ−1
(
4Bu−2

)
u−1/2du.

Choosing ψ(x) = exp{ε−dx} − 1 one obtains after some computation that

4

∫ δ

0

ψ−1
(
4Bu−2

)
u−1/2du ≤ εdC4(δ)(1 + log(4B + δ2) ∨ 0),

where C4(δ) = 32
√
δ log δ−1. Applying this to the polygonalization of x(t),

EPε

[
exp

{
λε−d sup

|t−s|<δ,0≤s<t≤T
|x̂(t) − x̂(s)|

}]

≤ EPε
[
exp{λC4(δ)(1 + log(4B + δ2))}] .

By choosing λ = 1/C4(δ), the right-hand side is bounded by C5(T )ε−d for some
C5(T ) <∞ for each T > 0, from (4.1). It only remains to apply the entropy inequality
(3.14).

Lemma 4.2. Let P eqε be the process starting from equilibrium on Zd/ε−1Zd and let
Vx = τxV , where V is any local function satisfying a bound of the form (3.24). Then
there exists a constant C <∞ such that for any smooth test function φ : [0,T]×Td →
R,

EP
eq
ε

[
exp

{
ε−d

∫ t

s

∫
Td
φ(u,x)V�ε−1x�(ε−2u)dxdu

}]
≤ exp{Cε−d‖φ(u)‖2

L2([s,t]×Td)}.

Proof. By stationarity and Lemma 3.5 exp{2(t − s)Λε} is an upper bound for
the left-hand side, where

Λε = sup
Eπ� [f ]=1, f≥0

{
ε−(d+1)

∫
Td
φ(x)Eπ� [V�ε−1x�f ]dx − ε−2D(

√
f)

}
.

By (3.24) and a− b = (
√
a−√

b)(
√
a+

√
b) we obtain the result.

Theorem 4.3. P̂ε is tight.
Proof. By (3.1),

P̂ε

(
sup

0≤s<t≤T, |t−s|<δ

∣∣∣∣
∫
Td

[ζ�ε−1x�(ε−2t) − ζ�ε−1x�(ε−2s)]φ(x)dx

∣∣∣∣ ≥ 4ε

)

≤ P̂ε

(
sup

0≤s<t≤T,|t−s|<δ

∣∣∣∣
∫ t

s

∫
Td

∇eφ(x)ε−1W�ε−1x�(ε−2u)dxdu

∣∣∣∣ ≥ 2ε

)

+ P̂ε

(
sup

0≤s<t≤T
|Mφ(t) −Mφ(s)| ≥ 2ε

)
.

The third term is of order εd by Doob’s inequality. By the previous lemmas applied
to the second term we obtain (3.12). By Lemma 3.4 this suffices.
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5. Diffusion coefficient. In this section we derive formulae for the various
diffusion coefficients. For any two vector functions g,h, we write

〈g,h〉−1,� = (〈gi, hj〉−1,�)i,j .(5.1)

The current is given by W = (W η,W ξ), where

W η = (W η
0,e1

, . . . ,W η
0,ed

), W ξ = (W ξ
0,e1

, . . . ,W ξ
0,ed

).

The diffusion coefficient in each of the three models i = 1, 2, 3 is defined by the

equation W (i) − D(i)∇ζ ∈ ⊗L(i)F as elements of H(0)
−1,�. We can also define spaces

H(i)
−1,�, i = 1, 2, 3, by using the analogue of (3.25) as in (2.8) with

〈f, f〉(i)−1,� = lim
�→∞

1

(2�)d
En,m,�

[ ∑
x≤�′

τxf, (−L(i)
� )−1

( ∑
|x|≤�′

τxf

)]
.

Since the corresponding Dirichlet forms are equivalent, H(1)
−1,� and H(2)

−1,� are equivalent

to H(0)
−1,�. Hence we can solve W (i) −D(i)∇ζ ∈ ⊗L(i)F in H(i)

−1,� for i = 1, 2. Model
1 is more straightforward, so we describe the details in the case of Model 2 and leave
Model 1 to the reader.

Model 2. In Model 2, the two components of the current (3.6) read

W
(2),η
0,e =

(
γ1 +

ξ0 + ξe
2

)
(ηe − η0), W

(2),ξ
0,e =

(
γ2 + 1 − η0 + ηe

2

)
(ξe − ξ0).

For any local g and any 1 ≤ i ≤ d, we can compute explicitly

〈W (2),η
0,ei

, L(2)g〉(2)−1,� =
1

2
Eπ�

[(
γ1 +

ξei + ξ0
2

)
(η0 − ηei)∇η

0,ei

∑
x

τxg

]
,(5.2)

〈W (2),ξ
0,ei

, L(2)g〉(2)−1,� =
1

2
Eπ�

[(
γ2 + 1 − ηei + η0

2

)
(ξ0 − ξei)∇ξ

0,ei

∑
x

τxg

]
,(5.3)

〈L(2)g, L(2)g〉(2)−1,� =
1

2

d∑
j=1

E

[(
γ1 +

ξej + ξ0

2

)(
∇η

0,ej

∑
x

τxg

)2

(5.4)

+

(
γ2 + 1 − ηej + η0

2

)(
∇ξ

0,ej

∑
x

τxg

)2]
,(5.5)

〈∇ζ, L(2)g〉(2)−1,� = 0,(5.6)

〈W,W 〉(2)−1,� =

(
(γ1 + v)Id 0

0 (γ2 + 1 − u)Id

)
χ(
),(5.7)

〈W,∇ζ〉(2)−1,� = χ(
).(5.8)

Theorem 5.1. (1). D(2)(
)〈∇ζ,∇ζ〉−1,� = χ(
).
(2). For any r ∈ Rd × Rd,

rχ(
)D(2)(
)r′ = inf
g

d∑
i=1

D0,ei

(
r
∑
x

xζx −
∑
x

τxg

)
.(5.9)
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The infimum is over local functions g. Note that
∑
x τxg makes no sense alone;

however, since g is local, only finitely many terms in the sum are nonzero after applying
the discrete gradients ∇0,ei .

Proof. Since W (2) −D(2)(
)∇ζ is in the closure of LF ,

〈W (2) −D(2)(
)∇ζ,∇ζ〉−1,� = 0.

(1) then follows from (5.8). (2) then follows from (3.9) and (5.2), (5.3), and (5.5).
We still need to obtain the simpler formula (2.11) for Model 2. Note that if

r = (r11, . . . , r
1
d, r

2
1, . . . , r

2
d), then D0,ei(r

∑
x xζx −

∑
x τxg) is given explicitly by

1

2
E

[(
γ1 +

ξei + ξ0
2

)(
r1i (ηei − η0) −∇η

0,ei

∑
x

τxg

)2

+

(
γ2 + 1 − ηei + η0

2

)(
r2i (ξei − ξ0) −∇ξ

0,ei

∑
x

τxg

)2]
.

Now for any constants a, b,

(a(ηe − η0) −∇η
0,e

∑
x

τxg)
2 =

(
a− b

2

)2

(ηe − η0)
2

+

(
a+ b

2
(ηe − η0) −∇η

0,e

∑
x

τxg

)2

+
a2 − b2

2
(ηe − η0)∇η

0,e

∑
x

τxg,

(b(ξe − ξ0) −∇ξ
0,e

∑
x

τxg)
2 =

(
a− b

2

)2

(ξe − ξ0)
2

+

(
a+ b

2
(ξe − ξ0) −∇ξ

0,e

∑
x

τxg

)2

+
b2 − a2

2
(ξe − ξ0)∇ξ

0,e

∑
x

τxg.

Now we claim that for any local function g,

Eπ�
[(

ξe + ξ0
2

)
(ηe−η0)∇η

0,e

∑
x

τxg−
(

1− ηe + η0
2

)
(ξe−ξ0)∇ξ

0,e

∑
x

τxg

]
= 0.

(5.10)
To prove it we transfer the ∇0,e onto the ∇ζ to obtain Eπ�

[
(ηeξe − η0ξ0)

∑
x∈Λ τxg

]
,

where the sum is over some large but finite box Λ. Now use the translation invariance
of the measure to rewrite this as Eπ�

[∑
x∈Λ (ηx+eξx+e − ηxξx)g

]
. The first term is

a telescoping sum, and we end up with Eπ� [fg], where f is mean zero and does not
depend on variables ζx in a box A around the origin, while g depends only on ζx,
x ∈ A. Since π� is a product measure, Eπ� [fg] = Eπ� [f ]Eπ� [g] = 0, which proves
(5.10). Then (2.11) follows from this and the explicit form of D0,ei(r

∑
x xζx−

∑
x τxg)

after a little computation.
Model 3. We now show the last part of Theorem 2.4.
Proof. First, we state a general fact about matrices. Let L be an invertible matrix

and Ls = (L∗ + L)/2 its symmetrization. One can check that [(L−1)s]
−1 = L∗L−1

s L,
or, in variational form,

〈f, (−L)−1f〉 = sup
g

inf
h

{2〈f − Lh, g〉 − 〈h, Lh〉} .
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In particular, taking h = −g we have

〈f, (−L)−1f〉 ≤ 〈f, (−Ls)−1f〉.

We will apply this in our particular situation where L
(2)
� = (L

(3)
� )s. Let T� =

L
(2)
� (L

(3)
� )−1. This makes sense for any mean-zero function of configurations on |x| ≤ �

with n particles of type η and m particles of type ξ, and 〈T�f, (−L(2)
� )−1T�f〉 =

〈f(−L(3)
� )−1f〉 ≤ 〈f(−L(2)

� )−1f〉, since on such hyperplanes the operators L
(i)
l are in-

vertible. Hence T� is bounded and therefore has a limit T defined on H(2)
−1,� which has

the property that TL(3)F = L(2)F and TW (3) = W (2) and whose norm is bounded

by 1. The diffusion coefficient is defined by W (3)−D(3)(
)∇ζ ∈ ⊗2d
i=1 L

(3)F in H(2)
−1,�.

Applying T gives

W (2) −D(3)(
)T∇ζ ∈
2d⊗
i=1

L(2)F ,(5.11)

which implies that [D(3)(
)T −D(2)(
)]∇ζ ∈ ⊗2d
i=1 L

(2)F or

D(3)(
)〈T∇ζ,∇ζ〉(2)−1,� = D(2)(
)〈∇ζ,∇ζ〉(2)−1,�.(5.12)

For r ∈ Rd × Rd,

〈
T

∑
i

ri∇ζi,
∑
j

rj∇ζj
〉(2)

−1,�

=
∑
i

∑
j

〈T∇ζi,∇ζj〉(2)−1,�rirj

≤
∑
i

∑
j

〈∇ζi,∇ζj〉(2)−1,�rirj

due to the bound ‖T‖ ≤ 1. We also notice that the upper bound (in the sense of
quadratic forms) is achieved if and only if T∇ζ = ∇ζ. This would imply that T∇ζ ∈⊗2d

i=1 L
(2)F . This leads to a contradiction, due to the property that 〈T∇ζ, L(2)g〉 �= 0

(see [2, section 5]). This fact implies that D
(3)
s �= D(2).

Remark 5. The relation between the asymmetric and symmetric diffusion coef-
ficients D(3) and D(2) is discussed in the context of (one-type particles) asymmetric
simple exclusion in section 5 of [8] and the references within. In that context D(2)

is diagonal and becomes a multiple of the identity in the isotropic case, when the
transition probabilities to the neighboring sites in the exclusion process are identical
along all possible axes and not just direction-wise (which is the symmetric case). The
two properties coincide in dimension d = 1. Only in this special situation can one
derive that D(3) ≥ const I in the sense of quadratic forms. The property is significant
because it shows that the hydrodynamic limit exhibits diffusivity in excess of the one
introduced by the random walk (Laplacian). Even though we are able to prove (5.12)
we cannot derive that [D(3)]sym ≥ D(2) except in weak sense, as in Theorem 2.4,
meaning that there exist matrices Q (not necessarily symmetric) and V (symmetric)
such that D(3)Q = D(2)V and V > Qsym.

The difficulties in our model come from two sources. First, we have two types of
particles, which have distinct densities in equilibrium; henceforth the compressibility
matrix χ(
) (see Theorem 5.1) is diagonal but not proportional to the identity. Second,
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we do not have the option of proving the result in one dimension (as in the one-type
particle models).

Under general conditions, without further knowledge of the properties of the
matrices Q = 〈T∇ζ,∇ζ〉 and V = 〈∇ζ,∇ζ〉, equation (5.12) implies [D(3)]sym ≥ D(2)

is false. In order to preserve the inequality sign between two matrices in the sense of
quadratic forms we would need, for example, that the factors be commutative with
the terms of the inequality, at a minimum that QV = V Q in this case, which is not
available to us.
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Abstract. This work is concerned with diffusion processes having fast and slow components. It
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1. Introduction. This work is concerned with asymptotic properties of (Xε(t),
Yε(t)), a pair of singularly perturbed diffusions with a small parameter ε > 0, where
Xε(t) is an R

r-valued diffusion and Yε(t) is an R
d-valued diffusion. There are weak

and strong interactions between these processes such that the evolution of Xε(t) is
fast changing, whereas that of Yε(t) is slowly varying. The system of diffusions takes
the form ⎧⎨

⎩
dXε =

1

ε
b1(Xε, Yε)dt+

1√
ε
σ1(Xε, Yε)dw1(t),

dYε = b2(Xε, Yε)dt+ σ2(Xε, Yε)dw2(t),

(1.1)

where b1(·) : R
r × R

d �→ R
r, b2(·) : R

r × R
d �→ R

d, σ1(·) : R
r × R

d �→ R
r × R

r,
and σ2(·) : R

r × R
d �→ R

d × R
d are appropriate functions, and w1(·) and w2(·) are

independent standard Brownian motions taking values in R
r and R

d, respectively.
In [11], equation (1.1) and more general systems were analyzed. It was proved

that when the fast varying component is positive recurrent, the slow component Yε(·)
converges weakly to a Markov diffusion process Y (·). Owing to the importance in the
modeling and analysis of various stochastic systems arising from mechanics, climatol-
ogy, wireless communication, signal processing, manufacturing, and production plan-
ning, such systems have received renewed interest in recent years; see [18, 20, 24, 28].
In fact, as was mentioned in [25], all physical systems have a certain hierarchy in which
not all components, parts, or subsystems vary at the same rate. Some of them change
rapidly, and others evolve slowly. A convenient way of modeling such phenomena is
to note the high contrast of the fast-slow nature and to formulate the problem as a
singularly perturbed system with a small parameter such as the one given in (1.1).
The singular perturbation formulation then provides a viable alternative for treat-
ing complex systems. For example, suppose that one wishes to control a large and
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complex system. Using the singular perturbation formulation, in lieu of treating the
system directly, one can consider its limit, whose complexity is much reduced com-
pared with the original system. Based on the optimal control of the reduced system,
one will be able to construct near-optimal control of the original systems. As demon-
strated in [18], many problems arising in engineering systems are too complicated to
handle, so it is common to simplify the systems by eliminating or averaging out some
“transient” or “quickly stabilized” components. A two-time-scale controlled diffusion
has the form⎧⎨

⎩
dXε =

1

ε
b1(Xε, Yε, u)dt+

1√
ε
σ1(Xε, Yε, u)dw1(t), Xε(0) = x,

dYε = b2(Xε, Yε, u)dt+ σ2(Xε, Yε, u)dw2(t), Yε(0) = y,

(1.2)

where b1(·) : R
r×R

d×R
d1 �→ R

r, b2(·) : R
r×R

d×R
d1 �→ R

d, σ1(·) : R
r×R

d×R
d1 �→

R
r × R

r, σ2(·) : R
r × R

d × R
d1 �→ R

d × R
d, u(·) is the control taking values in some

compact subset of R
d1 , and w1(t) and w2(t) are independent Brownian motions. The

objective is to find admissible controls such that the expected cost function,

J(x, y, u(·)) = Ex,y

∫ T

0

ĉ1(Xε(s), Yε(s), u(s))ds+ Ex,y ĉ2(Xε(T ), Yε(T ), u(T )),

is minimized, where Ex,y denotes the expectation taken with respect to Xε(0) = x
and Yε(0) = y. Weak convergence methods were used in [18] to develop a framework
to handle such systems. The analytic techniques presented in this paper may provide
an alternative, although many more details have to be worked out.

In studying singularly perturbed Markov processes, weak convergence methods
were used in [11]; see also the recent work [23]. Asymptotic expansions of solutions
for the forward equations were obtained in [13] and [14]. This work considers the
adjoint problem, namely, asymptotic properties of the solutions of the Kolmogorov
backward equations. In the literature, the study of certain asymptotic properties of
the backward equations was carried out in, for example, [21, 22], with the main focus
on the leading term of the asymptotic expansion. In a related reference, multiple scale
asymptotic expansions in the nonseparable form

∑
εigi(t, t/ε, x, y) were considered in

[3] (see, in particular, the appendix of that paper). This work is devoted to the study
of developing the full asymptotic expansions of the solutions of backward equations.
As will be seen, the full asymptotic expansion is a delicate case to handle. We derive
the asymptotic expansions in a separable form, namely, the additions of the outer
expansions and initial layer corrections, which is easily applicable to various applica-
tions (e.g., consideration of functional central limit theorem results). Our asymptotic
expansions reveal the averaging principles in a more illuminating way.

The rest of the paper is arranged as follows. Section 2 presents the precise prob-
lem formulation. Using the ideas of singular perturbation theory, section 3 proceeds
with the construction of the matched asymptotic expansions such that the outer ex-
pansions are smooth and the initial layer corrections decay exponentially fast. Then
the asymptotic expansions are fully justified and uniform error bounds are obtained
in section 4. We present some probabilistic interpretation in section 5 together with
an example. Included in this section are also further remarks and extensions. Finally,
the proofs of a couple of lemmas are given in the appendix. Throughout the paper, we
often use ci to denote generic positive constants independent of ε, whose value may
change for different usages; for a diffusion process Y (t), Y y(t) means that Y (0) = y.
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2. Formulation. Let Kr and Kd be r-dimensional and d-dimensional Riemann
C∞-manifolds, respectively. Denote K = Kr ×Kd, and denote the corresponding to-
tality of C∞-vector fields by X (Kr) and X (Kd), respectively. Following the notation
of [8, p. 231], we assume that these manifolds are connected and compact throughout
the paper. Let A0(x, y), . . . , An1(x, y) ∈ X (Kr) and B0(x, y), . . . , Bn2

(x, y) ∈ X (Kd).
Suppose that x = (x1, . . . , xr) ∈ Kr and y = (y1, . . . , yd) ∈ Kd are the local coor-
dinates of x and y, respectively. For a small parameter ε > 0, consider the Markov
diffusion process on K, whose generator is given by

Aεg(x, y)

=
1

ε

[
1

2

n1∑
α=1

Aα(Aαg)(x, y) + (A0g)(x, y)

]
+

1

2

n2∑
β=1

Bβ(Bβg)(x, y) + (B0g)(x, y)(2.1)

def
=

1

ε
L1g(x, y) + L2g(x, y).

Treating y ∈ Kd as a parameter, we consider also a family of Markov diffusion
processes X(t|y) on Kr with the generator L1(x, y). We assume that L1(x, y) is
nondegenerate on Kr for all y ∈ Kd (see [8, section 5.4]). Then it is known (see
[8, Proposition 4.5, p. 278]) that for the process X(t|y) there exists a unique station-
ary density that is a solution of

L∗
1(x, y)µ(x|y) = 0,

∫
Kr

µ(x|y)dx = 1,(2.2)

where L∗
1(x, y) is the adjoint of L1(x, y) with respect to the inner product in Kr,

〈f, g〉Kr
=

∫
Kr

f(x)g(x)dx,

dx =
√

detGdx1dx2 · · · dxr,
and G = ‖gij‖ is a Riemannian metric on Kr. Our goal is to construct and justify
the asymptotic expansion in powers of ε for the solution of the Cauchy problem

∂uε
∂t

=

[
1

ε
L1(x, y) + L2(x, y)

]
uε + c(x, y)uε + f(x, y),(2.3)

where c(x, y) and f(x, y) are C∞ functions on K.
Using the local coordinates, we can write the Cauchy problem for the Kolmogorov

backward equation as⎧⎪⎨
⎪⎩

∂uε
∂t

=

(
1

ε
L1(x, y) + L2(x, y)

)
uε + c(x, y)uε + f(x, y),

uε(0, x, y) = ϕ(x, y),

(2.4)

where

L1(x, y) =

r∑
i,j=1

a1,ij(x, y)
∂2

∂xi∂xj
+

r∑
i=1

b1,i(x, y)
∂

∂xi
,

(2.5)

L2(x, y) =

d∑
i,j=1

a2,ij(x, y)
∂2

∂yi∂yj
+

d∑
i=1

b2,i(x, y)
∂

∂yi
,
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and a�(x, y) = (a�,ij(x, y)) = σ�(x, y)σ
′
�(x, y)/2 for � = 1, 2. We will use the following

condition throughout the paper.
(A) The c(·), f(·), ϕ(·), a�(·), and b�(·) (for � = 1, 2) are C∞ functions on K.

Moreover, for any λ ∈ R
r with |λ| > 0,

r∑
i,j=1

a1,ij(x, y)λiλj > 0,

(2.6)
r∑

i,j=1

a2,ij(x, y)λiλj ≥ 0.

Although it is possible to consider diffusions on the entire space, it is more conve-
nient to work with processes that are defined on a compact subset; otherwise, one has
to impose conditions to ensure the desired ergodicity. Since our main concern here is
the asymptotic expansions, it appears to be more instructive to concentrate on the
constructive methods rather than to be concerned with the existence of solutions of
the equation L1u = f in a noncompact domain.

Remark 2.1. The assumption Kd being compact allows to us obtain error bounds
for the asymptotic expansions uniform in y. For future use, for a suitable function
h(·), for (x, y) ∈ K, define

h(y)
def
=

∫
Kr

h(x, y)µ(x, y)dx

def
= 〈h(·, y), µ(·, y)〉 .

(2.7)

For references on ergodicity of diffusion processes and related problems, we refer the
reader to [12, 26] and the references therein. Since we are working with a compact
set K, the smoothness of the functions given implies that they are bounded uniformly
on K.

In what follows, we aim to construct two sequences {ui(t, x, y)} and {vi(t/ε, x, y)}
such that ui(t, x, y) are the outer expansions, vi(t/ε, x, y) are the initial layer correc-
tions, and the asymptotic expansion

u0(t, y) +

n∑
i=1

εiui(t, x, y) +

n∑
i=0

εivi(t/ε, x, y)(2.8)

well approximates uε(t, x, y), the solution of (2.4). For k = 0, 1, . . . , n, define a se-
quence of approximation errors by

eε,0(t, x, y) = u0(t, y) + v0(t/ε, x, y) − uε(t, x, y),
(2.9)

eε,k(t, x, y) = u0(t, y) +

k∑
i=1

εiui(t, x, y) +

k∑
i=0

εivi(t/ε, x, y) − uε(t, x, y).

We will show that the error term is of the order O(εn+1) uniformly in (t, x, y) ∈
[0, T ] × K for some T > 0.

The technique that we are using is singular perturbation theory; see [2, 27] and [9,
22]. However, the realizations of the construction procedure are rather involved. We
blend probabilistic methods with those of analytic techniques. The solution method
is interesting in its own right. It may shed some light on other problems involving
singularly perturbed diffusions in which the approach that we develop in this paper
can be adopted.
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3. Asymptotic expansions. This section is divided into several parts. First,
we set forth the constructive method by presenting the equations involved. Next,
we present a couple of technical lemmas to be used in the subsequent development.
Then we construct the leading term in the asymptotic expansion. The more difficult
part appears in the next stage, namely, constructions of higher order expansions. In
addition to the construction of the asymptotic expansions, we also demonstrate that
the initial layer corrections decay exponentially fast.

3.1. Differential equations satisfied by ui(t, x, y) and vi(τ, x, y). We seek
the asymptotic expansion (2.8). To get the desired error estimates (see Lemma 4.2),
we need a couple of extra terms, un+1(·) and vn+1(·). To derive the differential equa-
tions satisfied by ui(·) and vi(·), using the singular perturbation techniques, substi-

tuting the outer expansion terms u0(t, y)+
∑n+1
i=1 ε

iui(t, x, y) into (2.4), and equating
coefficients of like power of εi yield

∂

∂t
u0(t, y) = L1(x, y)u1(t, x, y) + L2(x, y)u0(t, y) + c(x, y)u0(t, y) + f(x, y)(3.1)

and

∂

∂t
uk(t, x, y) = L1(x, y)uk+1(t, x, y) + L2(x, y)uk(t, x, y)

(3.2)
+ c(x, y)uk(t, x, y), k = 1, . . . , n+ 1.

Likewise, denoting the fast time variable by τ = t/ε, we obtain

∂

∂τ
v0(τ, x, y) = L1(x, y)v0(τ, x, y)(3.3)

and

∂

∂τ
vk(τ, x, y) = L1(x, y)vk(τ, x, u) + L2(x, y)vk−1(τ, x, y)

(3.4)
+ c(x, y)vk−1(τ, x, y), k = 1, . . . , n+ 1.

The initial conditions are chosen so that

u0(0, y) + v0(0, x, y) = φ(x, y),
(3.5)

uk(0, x, y) + vk(0, x, y) = 0, k = 1, . . . , n+ 1.

In addition, we will require that vk(τ, x, y) → 0 as τ → ∞.
Our task to follow is to find the functions {ui(t, x, y)} and {vi(τ, x, y)} in a con-

structive manner. We proceed to carry out the constructions “recursively” as it should
be done in the actual computation. That is, we first determine the leading terms
u0(t, y) and v0(τ, x, y) and obtain the decay property of v0(τ, x, y). Then we find
u1(t, x, y) and v1(τ, x, y) and verify the decay property of v1(τ, x, y). Subsequently,
we carry out the procedure inductively to get ui(t, x, y) and vi(τ, x, y).

3.2. Auxiliary results. With the y suppressed, we write L(x) in this section.
It is known that if L(x) is an elliptic operator [7] on Kr, then (2.2) has a unique
solution. Note that (2.2) is the Kolmogorov–Fokker–Planck equation for the density
of invariant measure of the Markov process X(t) with generator L(x). The proba-
bility density function of the diffusion process (the Green function for the equation
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(∂/∂t)u = L(x)u) verifies the so-called Doeblin condition (see [4]): For t ≥ t0 > 0,
infx,x1∈Kr p(x, t, x1) > 0. This condition implies the exponential convergence of
p(x, t, x1) to µ(x1) in the sense that

|p(x, t, x1) − µ(x1)| ≤ c1 exp(−c2t) as t→ ∞.(3.6)

Analogues to (2.7) denote

ψ =

∫
Kr

ψ(x)µ(x)dx = 〈ψ, µ〉 .

Using (3.6), we can assert that for any bounded measurable function ψ : Kr �→ R,

|Eψ(Xx(τ)) − ψ| ≤ c1 exp(−c2τ).(3.7)

We present some preliminary results. The following lemmas will be needed in the
construction of the asymptotic expansions. Let L(x) be an elliptic operator in Kr. It
can be given in local coordinates by

L(x) =

r∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
(3.8)

with
∑r
i,j=1 aij(x)λiλj > 0 for all x ∈ Kr, |λ| > 0.

Lemma 3.1. Let L(x) be given by (3.8) and x ∈ Kr. Let µ(x) be the unique
solution of (2.2), and let ψ(x) be a continuous function satisfying ψ = 0. Then there
exists a solution of the equation

L(x)V = ψ(x).

The proof of Lemma 3.1 can be found, for instance, in [1, Theorem 2.3.12] in a
more abstract form. However, for the reader’s convenience, we provide an alternative
proof in the appendix. The following lemma gives the uniqueness of the solution
(unique up to a constant), whose proof is also in the appendix.

Lemma 3.2. Let L(x) be given by (3.8). Then any solution of

L(x)W (x) = 0, x ∈ Kr,(3.9)

is a constant.
Remark 3.3. Note that

L(x)u = ψ(x)(3.10)

has a solution only if ψ = 0 since

〈Lu, µ〉 = 〈u,L∗µ〉 = 0.(3.11)

Moreover, it follows from Lemma 3.2 that any solution of (3.10) can be written in the
form

u(x) = c+ ũ(x),(3.12)

where c is an arbitrary constant and ũ(x) is a particular solution of (3.10).
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Lemma 3.4. Suppose that x ∈ Kr and V (τ, x) is a solution of

∂

∂τ
V (τ, x) = L(x)V (τ, x) + F (τ, x), V (0, x) = ψ(x),(3.13)

where L(x) is elliptic and F (τ, x) decays exponentially fast; i.e.,

sup
x∈Kr

|F (τ, x)| ≤ c1 exp(−c2τ) for some ci > 0, i = 1, 2.(3.14)

Let µ(x) be the solution of (2.2). Then∣∣∣∣V (τ, x) − ψ −
∫ ∞

0

ds

∫
Kr

F (s, x)µ(x)dx

∣∣∣∣ ≤ c1 exp(−c2τ).(3.15)

Proof. See the appendix.

3.3. Leading terms. Let us start with the determination of u0(t, y) and v0(τ, x, y).
Using (2.4) and (3.1), choose the initial condition

u0(0, y) = ϕ(y) =

∫
Kr

ϕ(x, y)µ(x, y)dx.(3.16)

To determine u0(t, y), multiplying (3.1) by µ(x, y), integrating with respect to x, and
using 〈u1(t, ·, y),L∗

1(x, y)µ(x, y)〉 = 0 lead to

∂

∂t
u0(t, y) = 〈L1(x, y)u1(t, ·, y), µ(·, y)〉 + L2(y)u0(t, y) + c(y)u0(t, y) + f(y)

(3.17)
= L2(y)u0(t, y) + c(y)u0(t, y) + f(y),

where

L2(y) =

∫
Kr

L2(x, y)µ(x, y)dx,

(3.18)

c(y) =

∫
Kr

c(x, y)µ(x, y)dx, f(y) =

∫
Kr

f(x, y)µ(x, y)dx.

By virtue of the well-known results in parabolic partial differential equations [6, 19],
the Cauchy problem given by (3.16)–(3.18) has a unique solution. Thus u0(t, y) has
been found.

To proceed, the Cauchy problem of (3.3), together with the initial condition

v0(0, x, y) = ϕ(x, y) − ϕ(y)
def
= Φ0(x, y),(3.19)

has a unique solution v0(τ, x, y). Up to now, we have found both u0(t, y)and v0(τ, x, y).
We demonstrate that v0(τ, x, y) decays exponentially fast.

Proposition 3.5. The initial layer term v0(τ, x, y) satisfies

|v0(τ, x, y)| ≤ c1 exp(−c2τ).(3.20)

Proof. It is apparent that v0(0, x, y) is orthogonal to µ(x, y) (i.e., v0(0, y) = 0).
It follows from (3.7) that

|v0(τ, x, y)| = |Ev0(0, Xx,y(τ), y) − v0(0, y)| ≤ c1 exp(−c2τ).
The proposition thus follows.
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At first glance, the constants c1 and c2 could be y-dependent. However, the
compactness of Kd implies that these constants can be taken to be uniformly in y,
thus independent of y. For the subsequent use, we derive another lemma that is
on the bounds of the mixed partial derivatives (with respect to the variable y) of
v0(t, x, y) up to the fourth order. Using the multi-index convention (see, e.g., [5,
p. 3]), let ν = (ν1, . . . , νd) be a d-tuple of nonnegative integers, which is referred to as

a multi-index with |ν| =
∑d
i=1 νi. For y ∈ Kd, write

∂|ν|

∂yν11 · · · ∂yνdd
or

∂ν1+ν2+···+νd

∂yν11 · · · ∂yνdd
.

Lemma 3.6. The following bounds hold:

∣∣∣∣∂|ν|v0(τ, x, y)∂yν11 · · · ∂yνdd

∣∣∣∣ ≤ c1 exp(−c2τ), |ν| = 1, . . . , 4.(3.21)

Remark 3.7. First note that ci for i = 1, 2 are generic positive constants according
to our convention. Their values may be different for different appearances. The esti-
mate (3.21) is needed in the construction of v1(τ, x, y) and obtaining the exponential
bounds for v1(τ, x, y) and L2(x, y)v1(τ, x, y).

Proof of Lemma 3.6. It suffices to verify (3.21) for each 1 ≤ |ν| ≤ 4.
Step 1. Verify (3.21) for |ν| = 1. It suffices to show that for each i1 = 1, . . . , d,∣∣∣∣ ∂

∂yi1
v0(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ).(3.22)

Denote v
(i1)
0,1 (τ, x, y) = (∂/∂yi1)v0(τ, x, y), where the superscript (i1) denotes the de-

pendence on i1. Then

∂

∂τ
v
(i1)
0,1 (τ, x, y) = L1(x, y)v

(i1)
0,1 (τ, x, y) +

(
∂

∂yi1
L1(x, y)

)
v0(τ, x, y),

(3.23)

v
(i1)
0,1 (0, x, y) =

∂

∂yi1
Φ0(x, y).

Recall that Φ0(x, y) = ϕ(x, y) − ϕ(y). To derive the exponential decay property of

v
(i1)
0,1 (τ, x, y) by applying Lemma 3.4, we need to verify that

∣∣∣∣
(

∂

∂yi1
L1(x, y)

)
v0(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ).(3.24)

Owing to the boundedness of K, all coefficients of L1(x, y) and L2(x, y) are
bounded together with their derivatives. Denote by G(τ, x, ξ|y) the Green function
for (3.3) with y being a parameter. Then

v0(τ, x, y) =

∫
Kr

G(τ/2, x, ξ|y)v0(τ/2, ξ, y)dξ.(3.25)

It is well known (see [6]) that as long as s is away from 0, i.e., s ≥ s0 > 0,
(∂/∂x)G(s, x, ξ|y) and (∂2/∂x2)G(s, x, ξ|y) are bounded, where (∂/∂x) and (∂2/∂x2)
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are the gradient and Hessian with respect to the variable x, respectively. Differenti-
ating (3.25) with respect to x (twice) and using (3.20), we obtain∣∣∣∣ ∂∂xv0(τ, x, y)

∣∣∣∣+
∣∣∣∣ ∂2

∂x2
v0(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ),(3.26)

and (3.24) follows.
Next, applying Lemma 3.4 to (3.23) leads to

∣∣∣v(i1)
0,1 (τ, x, y) −A1

∣∣∣ = ∣∣∣∣ ∂

∂yi1
v0(τ, x, y) −A1

∣∣∣∣ ≤ c1 exp(−c2τ),

where A1 is given by

A1 =
∂

∂yi1
Φ0(y) +

∫ ∞

0

∫
Kr

µ(x, y)

(
∂

∂yi1
L1(x, y)

)
v0(s, x, y)dxds.

Note that A1 in fact depends on i1, but for notational simplicity we suppress the
i1-dependence. We need only show that A1 ≡ 0. Integrating (3.3) with respect to τ
and sending τ → ∞ yield

Φ0(x, y) +

∫ ∞

0

L1(x, y)v0(s, x, y)ds = 0.(3.27)

Thus,

A1 =

∫ ∞

0

ds

∫
Kr

µ(x, y)dx

[(
∂

∂yi1
L1(x, y)

)
v0(s, x, y) −

(
∂

∂yi1
L1(x, y)

)
v0(s, x, y)

−L1(x, y)
∂

∂yi1
v0(s, x, y)

]

= −
∫ ∞

0

ds

〈
L1(·, y) ∂

∂yi1
v0(s, ·, y), µ(·, y)

〉
= 0.

In the above, we have used (3.27) and the fact 〈L1w, µ〉 = 0. Thus (3.21) is proven
for |ν| = 1.

Step 2. Verify (3.21) for |ν| = 2. For each i2 = 1, . . . , d, define v
(i1,i2)
0,2 (τ, x, y) =

(∂/∂yi2)v
(i1)
0,1 (τ, x, y). Then v

(i1,i2)
0,2 (τ, x, y) satisfies

(3.28)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂τ
v
(i1,i2)
0,2 (τ, x, y) = L1(x, y)v

(i1,i2)
0,2 (τ, x, y) +

[
∂

∂yi1
L1(x, y)

]
v
(i2)
0,1 (τ, x, y)

+

[
∂

∂yi2
L1(x, y)

]
v
(i1)
0,1 (t, x, y) +

[
∂2

∂yi1yi2
L1(x, y)

]
v0(τ, x, y),

v
(i1,i2)
0,2 (0, x, y) =

∂2

∂yi1∂yi2
Φ0(x, y).

Noting the smoothness of a1,ij(x, y) and b1,ij(x, y),∣∣∣∣
(

∂2

∂yi1∂yi2
L1(x, y)

)
v0(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ)(3.29)
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by (3.26). Considering (3.23) and taking into account (3.21) for |ν| = 1 and (3.24),
by virtue of [17, Theorem 8.11.1],∣∣∣∣ ∂∂xv(i1)

0,1 (τ, x, y)

∣∣∣∣+
∣∣∣∣ ∂2

∂x2
v
(i1)
0,1 (τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ).(3.30)

Combining (3.29) and (3.30),∣∣∣∣
[
∂

∂yi1
L1(x, y)

]
v
(i2)
0,1 (τ, x, y)

∣∣∣∣+
∣∣∣∣
[
∂

∂yi2
L1(x, y)

]
v
(i1)
0,1 (τ, x, y)

∣∣∣∣
(3.31)

+

∣∣∣∣
[

∂2

∂yi1∂yi2
L1(x, y)

]
v0(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ),

so Lemma 3.4 is applicable.

By Lemma 3.4, |v(i1,i2)
0,2 (τ, x, y) −A2| ≤ c1 exp(−c2τ), where

A2 =

∫ ∞

0

∫
Kr

[[
∂

∂yi1
L1(x, y)

]
v
(i2)
0,1 (s, x, y) +

[
∂

∂yi2
L1(x, y)

]
v
(i1)
0,1 (s, x, y)

]
µ(x, y)dxds

+

∫ ∞

0

∫
Kr

[
∂2

∂yi1∂yi2
L1(x, y)

]
v0(s, x, y)µ(x, y)dxds+

∂2

∂yi1∂yi2
Φ0(y).

We proceed to prove that A2 = 0.
Integrating (3.23), we have

− ∂

∂yi1
Φ0(x, y) =

∫ ∞

0

L1(x, y)v
(i1)
0,1 (s, x, y)ds+

∫ ∞

0

[
∂

∂yi1
L1(x, y)

]
v0(s, x, y)ds.

Thus,

A2 =

∫ ∞

0

∫
Kr

[[
∂

∂yi1
L1(x, y)

]
v
(i2)
0,1 (s, x, y)+

[
∂

∂yi2
L1(x, y)

]
v
(i1)
0,1 (s, x, y)

]
µ(x, y)dxds

+

∫ ∞

0

∫
Kr

(
∂2

∂yi1∂yi2
L1(x, y)

)
v0(s, x, y)µ(x, y)dxds

−
∫
Kr

∂

∂yi2

[ ∫ ∞

0

[
L1(x, y)v

(i1)
0,1 (s, x, y) +

[
∂

∂yi1
L1(x, y)

]
v0(s, x, y)

]
ds

]
µ(x, y)dx

=

∫
Kr

µ(x, y)dx

∫ ∞

0

ds

{[
∂

∂yi1
L1(x, y)

]
v
(i2)
0,1 (s, x, y) +

[
∂

∂yi2
L1(x, y)

]
v
(i1)
0,1 (s, x, y)

+

(
∂2

∂yi1∂yi2
L1(x, y)

)
v0(s, x, y)

− ∂

∂yi2

(
L1(x, y)v

(i1)
0,1 (s, x, y)

)
− ∂

∂yi2

[(
∂

∂yi1
L1(x, y)

)
v0(s, x, y)

]}

= −
∫ ∞

0

ds

∫
Kr

L1(x, y)

(
∂

∂yi2
v
(i1)
0,1 (s, x, y)

)
µ(x, y)dx

= −
∫ ∞

0

ds

〈
L1

∂v
(i1)
0,1

∂yi2
, µ

〉
= 0.

Thus, the exponential decay in (3.21) is verified for |ν| = 2.
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Step 3. Verify (3.21) for |ν| = 3 and 4. For each i3 = 1, . . . , d, let v
(i1,i2,i3)
0,3 (τ, x, y)

= (∂/∂yi3)v
(i1,i2)
0,2 (τ, x, y). Then v

(i1,i2,i3)
0,3 (τ, x, y) satisfies

⎧⎪⎨
⎪⎩

∂

∂τ
v
(i1,i2,i3)
0,3 (τ, x, y) = L1(x, y)v

(i1,i2,i3)
0,3 (τ, x, y) + V3(τ, x, y),

v
(i1,i2,i3)
0,3 (0, x, y) =

∂3

∂yi1∂yi2∂yi3
Φ0(x, y),

(3.32)

where

V3(τ, x, y) =
∂

∂yi3

{[
∂

∂yi1
L1(x, y)

]
v
(i2)
0,1 (τ, x, y) +

[
∂

∂yi2
L1(x, y)

]
v
(i1)
0,1 (t, x, y)

+

[
∂2

∂yi1yi2
L1(x, y)

]
v0(τ, x, y)

}
+

[
∂

∂yi3
L1(x, y)

]
v
(i1,i2)
0,2 (τ, x, y).

By virtue of [17, Theorem 8.11.1], we have |V3(τ, x, y)| ≤ c1 exp(−c2τ). Then Lem-

ma 3.4 implies that |v(i1,i2,i3)
0,3 (τ, x, y) −A3| ≤ c1 exp(−c2τ), where

A3 =
∂3

∂yi1∂yi2∂yi3
Φ0(y) +

∫ ∞

0

ds

∫
Kr

V3(s, x, y)µ(x, y)dxds.

Similar to Steps 1 and 2, we can establish A3 = 0.

Likewise, for each i4 = 1, . . . , d, define v
(i1,i2,i3,i4)
0,4 (τ, x, y) = (∂/∂yi4)v

(i1,i2,i3)
0,3 (τ, x, y).

Then v
(i4)
0,4 (τ, x, y) satisfies

⎧⎪⎨
⎪⎩

∂

∂τ
v
(i1,i2,i3,i4)
0,4 (τ, x, y) = L1(x, y)v

(i1,i2,i3,i4)
0,4 (τ, x, y) + V4(τ, x, y),

v
(i1,i2,i3,i4)
0,4 (0, x, y) =

∂4

∂yi1∂yi2∂yi3∂yi4
Φ0(x, y),

(3.33)

where

V4(τ, x, y) =
∂

∂yi4
V3(τ, x, y) +

[
∂

∂yi4
L1(x, y)

]
v
(i1,i2,i3)
0,3 (τ, x, y).

By virtue of [17, Theorem 8.11.1], we have |V4(τ, x, y)| ≤ c1 exp(−c2τ). Then Lem-

ma 3.4 implies that |v(i1,i2,i3,i4)
0,4 (τ, x, y) −A4| ≤ c1 exp(−c2τ), where

A4 =
∂4

∂yi1∂yi2∂yi3∂yi4
Φ0(y) +

∫ ∞

0

ds

∫
Kr

V4(s, x, y)µ(x, y)dxds.

As in Steps 1 and 2, we can establish A4 = 0. Hence the lemma follows.

3.4. Construction of u1(t, x, y) and v1(τ, x, y). Next, subtracting (3.17)
from (3.1), we arrive at

L1(x, y)u1(t, x, y) = Ψ0(t, x, y),(3.34)

where

Ψ0(t, x, y)
def
= (L2(y) − L2(x, y))u0(t, y) + (c(y) − c(x, y))u0(t, y) + (f(y) − f(x, y)).
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Note that Ψ0(t, x, y) satisfies the condition Ψ0(t, ·, y) = 0. Thus, Lemmas 3.1 and 3.2
imply that

u1(t, x, y) = U1(t, y) + ũ1(t, x, y),(3.35)

where ũ1(t, x, y) is a particular solution of (3.34) satisfying∫
Kr

ũ1(t, x, y)µ(x, y)dx = 0.(3.36)

We proceed to determine U1(t, y), which has to be obtained via the match of the
initial layer term v1(τ, x, y). Using (3.4) with k = 1, we solve the Cauchy problem

∂

∂τ
v1(τ, x, y) = L1(x, y)v1(τ, x, y) + L2(x, y)v0(τ, x, y) + c(x, y)v0(τ, x, y),

v1(0, x, y) = −u1(0, x, y) = −U1(0, y) − ũ1(0, x, y).
(3.37)

By requiring v1(τ, x, y) → 0 as τ → ∞, Lemmas 3.6 and 3.4 yield∫
Kr

v1(0, x, y)µ(x, y)dx+

∫ ∞

0

∫
Kr

L2(x, y)v0(s, x, y)µ(x, y)dxds

(3.38)

+

∫ ∞

0

∫
Kr

c(x, y)v0(s, x, y)µ(x, y)dxds = 0.

Using the initial condition given in (3.37), we rewrite (3.38) as∫
Kr

u1(0, x, y)µ(x, y)dx =

∫ ∞

0

ds

∫
Kr

L2(x, y)v0(s, x, y)µ(x, y)dx

(3.39)

+

∫ ∞

0

ds

∫
Kr

c(x, y)v0(s, x, y)µ(x, y)dx.

Using (3.35), (3.37) can be written as

∂

∂t
U1(t, y) +

∂

∂t
ũ1(t, x, y) = L1(x, y)u2(t, x, y) + L2(x, y)U1(t, y) + L2(x, y)ũ1(t, x, y)

+ c(x, y)U1(t, y) + c(x, y)ũ1(t, x, y).

Again, multiplying through by µ(x, y) and integrating with respect to x ∈ Kr, we
arrive at

∂

∂t
U1(t, y) = L2(y)U1(t, y) + c(y)U1(t, y) + Ψ̃1(t, y),(3.40)

where Ψ̃1(t, y) is a known function given by

Ψ̃1(t, y)
def
=

∫
Kr

L2(x, y)ũ1(t, x, y)µ(x, y)dx+

∫
Kr

c(x, y)ũ1(t, x, y)µ(x, y)dx.(3.41)

In the above, we used
∫
Kr

∂
∂t ũ1(t, x, y)µ(x, y)dx = 0. To determine U1(t, y), we need

to find the initial condition U1(0, y).
Letting t = 0 in (3.34) gives us

U1(0, y) = u1(0, x, y) − ũ1(0, x, y).
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Multiplying through by the invariant density µ(x, y) and integrating over Kr, together
with (3.36) and (3.38), we have

U1(0, y) =

∫ ∞

0

ds

∫
Kr

L2(x, y)v0(s, x, y)µ(x, y)dx

(3.42)

+

∫ ∞

0

ds

∫
Kr

c(x, y)v0(s, x, y)µ(x, y)dx.

Thus, the solution of the Cauchy problem given by (3.40) and (3.42) is uniquely
determined. As a result, u1(t, x, y) is determined; so is v1(τ, x, y).

The choice of the initial condition and (3.37)–(3.42) imply

|v1(τ, x, y)| ≤ c1 exp(−c2τ).
We proceed to verify∣∣∣∣∂|ν|v1(τ, x, y)∂yν11 · · · ∂yνdd

∣∣∣∣ ≤ c1 exp(−c2τ), |ν| = 1, . . . , 4.(3.43)

Similar to the proof of (3.21), for each i1 = 1, . . . , d, define v
(i1)
1,1 (τ, x, y) =

(∂/∂yi1)v1(τ, x, y). It follows from (3.37) that

∂

∂τ
v
(i1)
1,1 (τ, x, y) = L1(x, y)v

(i1)
1,1 (τ, x, y) +

(
∂

∂yi1
L1(x, y)

)
v1(τ, x, y)

+
∂

∂yi1
(L2(x, y)v0(τ, x, y)) +

∂

∂yi1
(c(x, y)v0(τ, x, y)),

v
(i1)
1,1 (0, x, y) = −

[
∂

∂yi1
U(0, y) +

∂

∂yi1
ũ1(0, x, y)

]
.

By virtue of Lemma 3.6,∣∣∣∣ ∂

∂yi1
(L2(x, y)v0(τ, x, y)) +

∂

∂yi1
(c(x, y)v0(τ, x, y))

∣∣∣∣ ≤ c1 exp(−c2τ).

To apply Lemma 3.4, it suffices to verify∣∣∣∣
(

∂

∂yi1
L1(x, y)

)
v1(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ).(3.44)

Parallel to the argument used in Step 1 of the proof of Lemma 3.6, denoting the
associated Green’s function for (3.37) as G(τ, x, ξ|y), we obtain

v1(τ, x, y) =

∫
Kr

G(τ/2, x, ξ|y)v1(τ/2, ξ, y)dy

+

∫ τ

τ/2

ds

∫
Kr

G(s, x, ξ|y)F̃1(s, ξ, y)dy,

where F̃1(τ, x, y) = L2(x, y)v0(τ, x, y) + c(x, y)v0(τ, x, y). As in the argument in the
paragraph containing (3.25)–(3.26), we conclude that∣∣∣∣ ∂∂xv1(τ, x, y)

∣∣∣∣+
∣∣∣∣ ∂2

∂x2
v1(τ, x, y)

∣∣∣∣ ≤ c1 exp(−c2τ),

and hence (3.44) follows.
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Redefine A1 (again with the i1-dependence suppressed) as

A1 =
∂

∂yi1
v
(i1)
1,1 (0, x, y)

+

∫ ∞

0

ds

∫
Kr

µ(x, y)

[(
∂

∂yi1
L1(x, y)

)
v1(s, x, y)

+
∂

∂yi1
(L2(x, y)v0(s, x, y)) +

∂

∂yi1
(c(x, y)v0(s, x, y))

]
dx.

Lemma 3.4 implies that |v(i1)
1,1 (τ, x, y)−A1| ≤ c1 exp(−c2τ).We next show that A1 ≡ 0.

Integrating (3.37) over τ yields

−v1(0, x, y) =

∫ ∞

0

(L1(x, y)v1(s, x, y) + L2(x, y)v0(s, x, y) + c(x, y)v0(s, x, y)) ds,

and hence∫
Kr

∂

∂yi1
v1(0, x, y)µ(x, y)dx

= −
∫
Kr

µ(x, y)
∂

∂yi1

[ ∫ ∞

0

[L1(x, y)v1(s, x, y)

+L2(x, y)v0(s, x, y) + c(x, y)v0(s, x, y)]ds

]
dx.

Replacing (∂/∂yi1)v
(i1)
1,1 (0, x, y) in A1 by the right-hand side above, upon cancellation,

we obtain

A1 = −
∫
Kr

µ(x, y)
∂

∂yi1

[ ∫ ∞

0

(L1(x, y)v1(s, x, y) + L2(x, y)v0(s, x, y)

+ c(x, y)v0(s, x, y))ds

]
dx

+

∫
Kr

µ(x, y)

∫ ∞

0

[(
∂

∂yi1
L1(x, y)

)
v1(s, x, y) +

∂

∂yi1
(L2(x, y)v0(s, x, y))

+
∂

∂yi1
(c(x, y)v0(s, x, y))

]
dx

= −
∫
Kr

µ(x, y)

∫ ∞

0

L1(x, y)v
(i1)
1,1 (s, x, y)dsdx

= 0,

due to the fact that 〈L1(x, y)v
(i1)
1,1 , µ〉 = 0. Thus (3.43) is verified for |ν| = 1. Likewise,

we can define v
(i1,i2)
1,2 (τ, x, y), v

(i1,i2,i3)
1,3 (τ, x, y), and v

(i1,i2,i3,i4)
1,4 (τ, x, y) and proceed to

verify (3.43) as in the proof of Lemma 3.6 for |ν| = 2, 3, 4.

3.5. Construction of uk(t, x, y) and vk(τ, x, y) for k ≥ 2. Using simi-
lar methods as in the last section, we can obtain outer expansions and initial layer
corrections uk(t, x, y) and vk(τ, x, y) for k = 2, . . . , n+ 1. We do this inductively.

Suppose that for each k = 2, . . . , n+ 1, uk−1(t, x, y) and vk−1(τ, x, y) have been
determined such that

uk−1(t, x, y) = Uk−1(t, y) + ũk−1(t, x, y),
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where ũk−1(t, x, y) satisfying∫
Kr

ũk−1(t, x, y)µ(x, y)dx = 0(3.45)

is a particular solution of

L1(x, y)uk−1(t, x, y) = Ψk−2(t, x, y)(3.46)

and where

Ψk−2(t, x, y) =
∂

∂t
uk−2(t, x, y) − ∂

∂t
uk−2(t, ·, y)

+L2(·, y)uk−2(t, ·, y) − L2(x, y)uk−2(t, x, y)

+ c(·, y)uk−2(t, ·, y) − c(x, y)uk−2(t, x, y)

and

F (t, ·, y) =

∫
Kr

F (t, x, y)µ(x, y)dx

for an appropriate function F (·). Moreover, vk−1(τ, x, y) is a solution of

∂

∂τ
vk−1(τ, x, y) = L1(x, y)vk−1(τ, x, y) + L2(x, y)vk−2(τ, x, y) + c(x, y)vk−2(τ, x, y)

such that

|vk−1(τ, x, y)| ≤ c1 exp(−c2τ)(3.47)

and ∣∣∣∣∂|ν|vk−1(τ, x, y)

∂yν11 · · · ∂yνdd

∣∣∣∣ ≤ c1 exp(−c2τ), |ν| = 1, . . . , 4.(3.48)

We proceed to obtain uk(t, x, y) and vk(τ, x, y). Multiplying

∂

∂t
uk−1(t, x, y)

(3.49)
= L1(x, y)uk(t, x, y) + L2(x, y)uk−1(t, x, y) + c(x, y)uk−1(t, x, y)

by µ(x, y), integrating with respect to x, and noting that L1(x, y)uk(t, x, y) is orthog-
onal to µ(x, y), we obtain

∂

∂t
uk−1(t, ·, y) = L2(·, y)uk−1(t, ·, y) + c(·, y)uk−1(t, ·, y).

Next, in view of (3.2), we obtain

L1(x, y)uk(t, x, y) = Ψk−1(t, x, y),(3.50)

where

Ψk−1(t, x, y) =
∂

∂t
uk−1(t, x, y) − ∂

∂t
uk−1(t, ·, y)

+L2(x, y)uk−1(t, ·, y) − L2(x, y)uk−1(t, x, y)

+ c(·, y)uk−2(t, ·, y) − c(x, y)uk−2(t, x, y).
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It is readily seen that Ψk−1(t, x, y) is orthogonal to µ(x, y). It follows from Lemmas
3.1 and 3.2 that (3.2) has a solution of the form

uk(t, x, y) = Uk(t, y) + ũk(t, x, y),(3.51)

where ũk(t, x, y) is a particular solution of (3.50) satisfying∫
Kr

ũk(t, x, y)µ(x, y)dx = 0.(3.52)

To ensure the desired match, consider the solution of the initial layer correction

∂

∂τ
vk(τ, x, y) = L1(x, y)vk(τ, x, y) + L2(x, y)vk−1(τ, x, y) + c(x, y)vk−1(τ, x, y),

(3.53)
vk(0, x, y) = −uk(0, x, y).

We proceed with the estimate on vk(τ, x, y). By requiring vk(τ, x, y) → 0 as τ → ∞,
using (3.47), (3.48), and Lemma 3.4, we obtain∫

Kr

vk(0, x, y)µ(x, y)dx+

∫
Kr

L2(x, y)

[∫ ∞

0

vk−1(s, x, y)ds

]
µ(x, y)dx

(3.54)

+

∫
Kr

c(x, y)

(∫ ∞

0

vk−1(s, x, y)ds

)
µ(x, y)dx = 0,

and |vk(τ, x, y)| ≤ c1 exp(−c2τ). Next, similar to the proof of Lemma 3.6, define
v̂k(τ, x, y) = (∂/∂y)vk(τ, x, y). We obtain from (3.53) that

∂

∂τ
v̂k(τ, x, y) = L1(x, y)v̂k(τ, x, y) + F̂k(τ, x, y),

where

F̂k(τ, x, y) =

(
∂

∂y
L1(x, y)

)
vk(τ, x, y) +

∂

∂y
(L2(x, y)vk−1(τ, x, y))

+
∂

∂y
(c(x, y)vk−1(τ, x, y)) .

Using similar estimates as in Lemma 3.6,

|(∂/∂y)vk−1(τ, x, y)| ≤ c1 exp(−c2τ).
By induction hypothesis,∣∣∣∣ ∂∂y (L2(x, y)vk−1(τ, x, y))

∣∣∣∣ ≤ c1 exp(−c2τ),∣∣∣∣ ∂∂y (c(x, y)vk−1(τ, x, y))

∣∣∣∣ ≤ c1 exp(−c2τ).

Thus F̂k(τ, x, y) decays exponentially fast. An application of Lemma 3.4 then yields
that |(∂/∂y)vk(τ, x, y)| ≤ c1 exp(−c2τ). Similar to the proof of Lemma 3.6, we obtain
the following proposition.

Proposition 3.8. For k = 2, . . . , n+ 1,

|vk(τ, x, y)| ≤ c1 exp(−c2τ)(3.55)
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and ∣∣∣∣∂|ν|vk(τ, x, y)∂yν11 · · · ∂yνdd

∣∣∣∣ ≤ c1 exp(−c2τ), |ν| = 1, . . . , 4.(3.56)

Using (3.53), rewrite (3.54) as∫
Kr

uk(0, x, y)µ(x, y)dx =

∫ ∞

0

ds

∫
Kr

L2(x, y)vk−1(s, x, y)µ(x, y)dx

(3.57)

+

∫ ∞

0

ds

∫
Kr

c(x, y)vk−1(s, x, y)µ(x, y)dx.

Owing to (3.51), we have

∂

∂t
Uk(t, y) +

∂

∂t
ũk(t, x, y)

= L1(x, y)uk+1(t, x, y) + L2(x, y)Uk(t, y) + L2(x, y)ũk(t, x, y)

+ c(x, y)Uk(t, y) + c(x, y)ũk(t, x, y).

Again, multiplying through by µ(x, y) and integrating with respect to x ∈ Kr, we
arrive at

∂

∂t
Uk(t, y) = L2(y)Uk(t, y) + c(y)Uk(t, y) + Ψ̃k(t, y),(3.58)

where Ψ̃k(t, y) is a known function given by

Ψ̃k(t, y)
def
=

∫
Kr

L2(x, y)ũk(t, x, y)µ(x, y)dx+

∫
Kr

c(x, y)ũk(t, x, y)µ(x, y)dx.(3.59)

In the above, we used
∫
Kr

∂
∂t ũk(t, x, y)µ(x, y)dx = 0.

Using t = 0 in (3.51),

Uk(0, y) = uk(0, x, y) − ũk(0, x, y).

Multiplying through by the invariant density µ(x, y) and integrating over Kr, together
with (3.57), we have

Uk(0, y) =

∫
Kr

uk(0, x, y)µ(x, y)dx

= −
∫
Kr

vk(0, x, y)µ(x, y)dx

(3.60)

=

∫ ∞

0

ds

∫
Kr

L2(x, y)vk−1(s, x, y)µ(x, y)dx

+

∫ ∞

0

∫
Kr

c(x, y)vk−1(s, x, y)µ(x, y)dx.

Thus, uk(t, x, y) is determined; so is vk(τ, x, y). We record this into the following
theorem.

Theorem 3.9. Assume condition (A). Then for i = 0, . . . , n+ 1, the functions
ui(·) and vi(·) in the formal asymptotic expansions (2.8) can be constructed such that
ui(·) are continuously differentiable with respect to t and twice continuously differen-
tiable with respect to x and y and such that |vi(τ, x, y)| ≤ c1 exp(−c2τ).

Remark 3.10. For the asymptotic expansions, we need only k = n. The extra
terms un+1(t, x, y) and vn+1(τ, x, y) are needed for the error estimates.
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4. Error bounds. For a suitable smooth function h(·), define the operator
Lε(t, x, y) as

Lε(t, x, y)h(t, x, y) =
∂

∂t
h(t, x, y) − 1

ε
L1(x, y)h(t, x, y)

(4.1) −L2(x, y)h(t, x, y) − c(x, y)h(t, x, y).

Note that uε(t, x, y) as a solution of (2.4) is the same as Lε(t, x, y)uε(t, x, y) = f(x, y).
Recall that the estimation error sequence {eε,k(t, x, y)} was defined in (2.9). Note that
for each 0 ≤ k ≤ n,

Lε(t, x, y)eε,k(t, x, y) = Lε(t, x, y)

(
u0(t, y) +

k∑
i=1

εiui(t, x, y)

(4.2)

+
k∑
i=0

εivi(t/ε, x, y) − uε(t, x, y)

)
.

We proceed to establish the following lemma.
Lemma 4.1. Under conditions in (A), for each 0 ≤ k ≤ n+ 1,

sup
(t,x,y)∈[0,T ]×K

|Lε(t, x, y)eε,k(t, x, y)| = O(εk).

Proof. Let us begin with k = 0. By virtue of (3.1) and (3.3), it is easily seen that

Lε(t, x, y)eε,0(t, x, y)

= Lε(t, x, y)u0(t, y) + Lε(t, x, y)v0

(
t

ε
, x, y

)
− Lε(t, x, y)uε(t, x, y)

=
∂

∂t
u0(t, y) − 1

ε
L1(x, y)u0(t, y) − L2(x, y)u0(t, y) − c(x, y)u0(t, y) − f(x, y)

+
1

ε

[
∂

∂τ
v0(τ, x, y) − L1(x, y)v0(τ, x, y)

]
− L2(x, y)v0(τ, x, y) − c(x, y)v0(τ, x, y)

=
∂

∂t
u0(t, y) − L2(x, y)u0(t, y) − c(x, y)u0(t, y)

− f(x, y) − L2(x, y)v0(τ, x, y) − c(x, y)v0(τ, x, y).

Note that the smoothness of u0(t, y) and that of the coefficients of L1(x, y) and
L2(x, y) imply

sup
(t,x,y)∈[0,T ]×K

∣∣∣∣ ∂∂tu0(t, y)

∣∣∣∣ = O(1), sup
(t,x,y)∈[0,T ]×K

|L2(x, y)u0(t, y)| = O(1),

sup
(x,y)∈K

|c(x, y)| = O(1), and sup
(x,y)∈K

|f(x, y)| = O(1).

By Lemma 3.6,

|v0(τ, x, y)| ≤ c1 exp(−c2τ), |L2(x, y)v0(τ, x, y)| ≤ c1 exp(−c2τ);
it then follows that

sup
(t,x,y)∈[0,T ]×K

[|v0(τ, x, y)| + |L2(x, y)v0(τ, x, y)|] = O(1).
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Thus, we arrive at

sup
(t,x,y)∈[0,T ]×K

|Lε(t, x, y)eε,0(t, x, y)| = O(1).

Likewise, for any 1 ≤ k ≤ n+ 1, using (3.1)–(3.4) and upon cancellation,

Lε(t, x, y)eε,k(t, x, y)

= Lε(t, x, y)u0(t, x, y) +

k∑
i=1

εiLε(t, x, y)ui(t, x, y)

+

k∑
i=0

εiLε(t, x, y)vi(τ, x, y) − Lε(t, x, y)uε(t, x, y)

=
∂

∂t
u0(t, y) − L2(x, y)u0(t, y) − c(x, y)u0(t, y) − f(x, y)

+

k∑
i=1

εi
[
∂

∂t
ui(t, x, y) − 1

ε
L1(x, y)ui(t, x, y)

−L2(x, y)ui(t, x, y) − c(x, y)ui(t, x, y)

]

+
k∑
i=0

εi−1

[
∂

∂τ
vi(τ, x, y) − L1(x, y)vi(τ, x, y)

−εL2(x, y)vi(τ, x, y) − εc(x, y)vi(τ, x, y)

]

= εk
∂

∂t
uk(t, x, y) − εkc(x, y)uk(t, x, y) − εkL2(x, y)uk(t, x, y)

− εkL2(x, y)vk(τ, x, y) − εkc(x, y)vk(τ, x, y).

Then (3.47), (3.48), and the smoothness of the coefficients of L2(x, y), c(x, y), and
(∂/∂t)uk(t, x, y) yield

sup
(t,x,y)∈[0,T ]×K

∣∣∣∣εk ∂∂tuk(t, x, y)
∣∣∣∣ = O(εk),

sup
(t,x,y)∈[0,T ]×K

∣∣εkc(x, y)uk(t, x, y)∣∣ = O(εk),

sup
(t,x,y)∈[0,T ]×K

∣∣εkL2(x, y)uk(t, x, y)
∣∣ = O(εk).

By virtue of Lemma 3.8,

sup
(t,x,y)∈[0,T ]×K

∣∣εkc(x, y)vk(τ, x, y)∣∣ = O(εk),

sup
(t,x,y)∈[0,T ]×K

∣∣εkL2(x, y)vk(τ, x, y)
∣∣ = O(εk).

Thus,

sup
(t,x,y)∈[0,T ]×K

|Lε(t, x, y)eε,k(t, x, y)| = O(εk) for k ≤ n+ 1.

The proof of the lemma is concluded.
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Next, we derive a lemma, which is an estimate on a nonhomogeneous Cauchy
problem.

Lemma 4.2. Suppose that there is a function ηε(t, x, y) such that for k ≤ n+ 1,

sup
(t,x,y)∈[0,T ]×K

|ηε(t, x, y)| = O(εk).

Then the solution of the Cauchy problem

Lε(t, x, y)ζε(t, x, y) = ηε(t, x, y), ζε(0, x, y) = 0,(4.3)

satisfies sup(t,x,y)∈[0,T ]×K |ζε(t, x, y)| = O(εk).

Proof. Let Z
(x,y)
ε (t) = (Xx

ε (t), Y yε (t)) be the diffusion process whose generator is
given by L1(x, y)/ε + L2(x, y). Using the known probabilistic representation for the
solution of (4.3) (see, e.g., [10, Lemma 1], [8], [16]), we can obtain the upper bounds

sup
(t,x,y)∈[0,T ]×K

|ζε(t, x, y)| ≤ TeTC̃ , sup
(t,x,y)∈[0,T ]×K

|ηε(t, x, y)| = O(εk),

where C̃ = sup(x,y)∈K |c(x, y)|. The lemma thus follows.
Now we are in a position to obtain the desired error bounds. The result is stated

in the following theorem.
Theorem 4.3. Assume (A) holds. Then for the asymptotic expansions con-

structed in Theorem 3.9, sup(t,x,y)∈[0,T ]×K |eε,n(t, x, y)| = O(εn+1).
Proof. By virtue of Lemma 4.1, sup(t,x,y)∈[0,T ]×K |Lε(t, x, y)eε,n+1(t, x, y)| =

O(εn+1). An application of Lemma 4.2 leads to sup(t,x,y)∈[0,T ]×K |eε,n+1(t, x, y)| =

O(εn+1). The smoothness of un+1(·) implies that

sup
(t,x,y)∈[0,T ]×K

|εn+1un+1(t, x, y)| = O(εn+1).

By the exponential decay of vn+1(t/ε, x, y), it is bounded, and hence

sup
(t,x,y)∈[0,T ]×K

|εn+1vn+1(t/ε, x, y)| = O(εn+1).

Since

eε,n+1(t, x, y) = eε,n(t, x, y) + εn+1un+1(t, x, y) + εn+1vn+1(t/ε, x, y),(4.4)

we obtain, from (4.4),

sup
(t,x,y)∈[0,T ]×K

|eε,n(t, x, y)|

= sup
(t,x,y)∈[0,T ]×K

∣∣εn+1un+1(t, x, y) + εn+1vn+1(t/ε, x, y) − eε,n+1(t, x, y)
∣∣

= O(εn+1).

The theorem is proved.
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5. Interpretation, examples, and extensions.

5.1. Discussion. The asymptotic expansions obtained in this paper provide
some new insight even for the leading term u0(·). In the literature (see [11, 21, 26]),
only asymptotic behavior of the slow component Yε(t) was usually considered. By
using our asymptotic expansions, results concerning the fast component also hold.
We give some probabilistic interpretation of our theorem in what follows.

Suppose that ϕ(x, y) is any sufficiently smooth function. Denote by Y y(t) the
Markov diffusion process on Kd with the generator L2(y) defined in (3.18). Assume
that c(x, y) = f(x, y) ≡ 0 in (2.4). Then it follows from Theorem 4.3 and the proba-
bilistic interpretation of the solution of (2.4), for t > cε ln(1/ε), that

lim
ε→0

Eϕ(Xx,y
ε (t), Y x,yε (t)) = Eyϕ(Y y(t)) = E

∫
Kr

ϕ(x, Y y(t))µ(x, Y y(t))dx.(5.1)

Approximating ϕ(x, y) by the product of the indicator functions χx(A) and χy(B),
we conclude that

lim
ε→0

P (Xx,y
ε (t) ∈ A, Y x,yε (t) ∈ B) =

∫
A

dx

∫
B

P (Y y(t) ∈ dz)µ(x, z).(5.2)

In particular, for B = Y, the entire space containing the range of Y (·), we have

P (Xx,y
ε (t) ∈ A) →

∫
A

Eµ(x, Y y(t))dx as ε→ 0.

Thus the limit behavior of finite-dimensional distributions can be deduced from (5.1)
and (5.2). In fact, using the Markov property of (Xε(·), Yε(·)) and Y (·), for any t1
and t2 not depending on ε with 0 < t1 < t2, from (5.2), we have

P (Xx,y
ε (t1) ∈ A1, X

x,y
ε (t2) ∈ A2)

=

∫
A1

∫
Y

P (Xx,y
ε (t) ∈ dx1, Y

x,y
ε (t1) ∈ dy1)P (Xx1,y1

ε (t2 − t1) ∈ A2)

→
∫
A1

∫
Y

P (Y y(t1) ∈ dy1)µ(x1, y1)dx1

∫
A2

Eµ(z, Y y1(t2 − t1))dz as ε→ 0

=

∫
A1

∫
A2

Eµ(x1, Y
y(t1))Eµ(z, Y Y

y(t1)(t2 − t1))dx1dz

=

∫
A1

∫
A2

E[µ(x1, Y
y(t1))Eµ(z, Y y(t2))|Y y(t1)]dx1dz

= E

∫
A1

∫
A2

µ(x1, Y
y(t1))µ(z, Y y(t2))dx1dz.

Completely analogously, one obtains the convergence of the finite-dimensional distri-
butions. We record this in the following proposition.

Proposition 5.1. For any ti, i ≤ n, independent of ε satisfying 0 < t1 < t2 <
· · · < tn,

lim
ε→0

P (Xx,y
ε (t1) ∈ A1, . . . , X

x,y
ε (tn) ∈ An)

= E

∫
A1

· · ·
∫
An

µ(x1, Y
y(t1))µ(x2, Y

y(t2)) · · ·µ(xn, Y
y(tn))dx1dx2 · · · dxn.
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5.2. Examples.
Example 5.2. Let us consider the problem of (2.4) with

f(x, y) = 0, ϕ(x, y) = 1, c(x, y) = ιsc0(x, y),

where ι =
√−1. In this case, the solution of (2.4) is

uε(t, x, y) = E exp

(
ιs

∫ t

0

c0(X
x,y
ε (ζ), Y x,yε (ζ))dζ

)
.

This is the well-known Feinman–Kac formula. As ε → 0, using our asymptotic ex-
pansions,

uε(t, x, y) → E exp

(
ιs

∫ t

0

c0(Y
y(ζ))dζ

)
.

Thus, we have proved the following assertion.
Proposition 5.3. As ε → 0, the functional

∫ t
0
c0(X

x,y
ε (ζ), Y x,yε (ζ))dζ converges

in distribution to
∫ t
0

∫
Kr

c0(x, Y
y(ζ))µ(x, Y y(ζ))dxdζ.

Example 5.4. Consider a Markov process on a two-dimensional torus having a
fast component and a slow component. The fast component is a Brownian motion on
a circle of length 1, and the generator of the slow component is given by b2(x, y)

∂
∂y +

a2(x, y)
∂2

∂y2 . Then it follows from (5.1) that

Eϕ(Xε(t), Yε(t)) → E

∫ 1

0

ϕ(x, Y (t))dx = Eϕ(·, Y (t)).(5.3)

Let us assume that ϕ(·, y) = 0. A natural question arises: What is the main term in
the asymptotic expansion of the solution of (2.4) in this case?

Consider the Cauchy problem

∂uε
∂t

=
1

2ε

∂2uε
∂x2

+ b2(x, y)
∂uε
∂y

+ a2(x, y)
∂2uε
∂y2

, uε(0, x, y) = ϕ(x, y),(5.4)

on the surface of the two-dimensional torus, where b2(·) and a2(·) are periodic in x
and y with period 1. Assuming ϕ(x, y) to be sufficiently smooth and∫ 1

0

ϕ(x, y)dx = 0 for all y ∈ [0, 1](5.5)

yields that ϕ(·, y) = 0. It follows from (3.16) and (3.17) that u0(t, y) = 0. So the
first nonzero outer expansion term in the asymptotic expansion is εu1(t, x, y). It is
clear from (3.34) and (3.35) that ũ1(t, x, y) = 0. So the main term in the asymptotic
expansion is εU1(t, y). Note that v0(τ, x, y) is a periodic in x with period 1 solution
of

∂

∂τ
v0(τ, x, y) =

1

2

∂2

∂x2
v0(τ, x, y), v0(0, x, y) = ϕ(x, y).(5.6)

Using the Fourier expansions, we have

ϕ(x, y) =

∞∑
k=1

(
φ̃k(y) sin(2πkx) + φ̂k(y) cos(2πkx)

)
.(5.7)
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We can then write the solution of (5.6) as

v0(τ, x, y) =

∞∑
k=1

(φ̃k(y) sin(2πkx) + φ̂k(y) cos(2πkx))e−2π2k2τ .(5.8)

It follows from (3.42) that

U1(0, y) =

∫ ∞

0

ds

∫ 1

0

L2(x, y)v0(s, x, y)dx.(5.9)

We introduce the following notation:

b
(1)
2,k(y) =

∫ 1

0

b2(x, y) sin(2πkx)dx,

b
(2)
2,k(y) =

∫ 1

0

b2(x, y) cos(2πkx)dx,

(5.10)

a
(1)
2,k(y) =

∫ 1

0

a2(x, y) sin(2πkx)dx,

a
(2)
2,k(y) =

∫ 1

0

a2(x, y) cos(2πkx)dx.

Then we have, from (5.8),∫ 1

0

L2(x, y)v0(s, x, y)dx

(5.11)

=

∞∑
k=1

e−2π2k2s
[
b
(1)
2,k(y)φ̃

′
k(y) + b

(2)
2,k(y)φ̂

′
k(y) + a

(1)
2,k(y)φ̃

′′
k(y) + a

(2)
2,k(y)φ̂

′′
k(y)

]
.

It follows from (5.9) and (5.11) that

U1(0, y)
(5.12)

=

∞∑
k=1

1

2π2k2

[
b
(1)
2,k(y)φ̃

′
k(y) + b

(2)
2,k(y)φ̂

′
k(y) + a

(1)
2,k(y)φ̃

′′
k(y) + a

(2)
2,k(y)φ̂

′′
k(y)

]
,

where φ̃′k(y), φ̂
′
k(y), φ̃

′′
k(y), and φ̂′′k(y) are the first and the second order derivatives of

φ̃k(y) and φ̂k(y), respectively. The initial condition (5.12) can be written in a more
elegant form with the help of the following lemma.

Lemma 5.5. Let g(x) for x ∈ [0, 1] have a Fourier expansion

g(x) =

∞∑
k=1

(
g
(1)
k sin(2πkx) + g

(2)
k cos(2πkx)

)
.(5.13)

Then

1

2π2

∞∑
k=1

1

k2

(
g
(1)
k sin(2πkx) + g

(2)
k cos(2πkx)

)
(5.14)

=

∫ 1

0

(1 − z)2g(z)dz + (1 − 2x)

∫ 1

0

zg(z)dz − 2

∫ x

0

g(z)(x− z)dz.
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Proof. The proof uses integration by parts and is straightforward; we omit the
details here.

With j = 1, 2, ϕ(j)(x, y) = (∂j/∂yj)ϕ(x, y), we have, from (5.7),

ϕ(j)(x, y) =

∞∑
k=1

(
ϕ̃

(j)
k (y) sin(2πkx) + ϕ̂

(j)
k (y) cos(2πkx)

)
.(5.15)

Thus, from (5.14) and (5.15),

1

2π2

∞∑
k=1

1

k2

(
ϕ̃

(j)
k (y) sin(2πkx) + ϕ̂

(j)
k (y) cos(2πkx)

)

=

∫ 1

0

(1 − z)2ϕ(j)(z, y)dz + (1 − 2x)

∫ 1

0

zϕ(j)(z, y)dz − 2

∫ x

0

ϕ(j)(z, y)(x− z)dz.

Therefore, this equation and (5.12) lead to

U1(0, y) = 2

∫ 1

0

(1 − z)2dz

∫ 1

0

L2(x, y)ϕ(z, y)dx

+ 2

∫ 1

0

zdz

∫ 1

0

(1 − 2x)L2(x, y)ϕ(z, y)dx(5.16)

− 4

∫ 1

0

dz

∫ 1

z

L2(x, y)ϕ(z, y)(x− z)dx.

What we have proven is the following proposition.
Proposition 5.6. For the solution of the initial value problem (5.4) with initial

condition ϕ(x, y) satisfying (5.5) and t > cε ln(1/ε) for sufficiently large c,

uε(t, x, y) = εU1(t, y) +O(ε2),

where U1(t, y) is the solution of⎧⎨
⎩

∂

∂t
U1(t, y) = L2(y)U1(t, y),

U1(0, y) satisfies (5.16).

5.3. Extensions. The results obtained can be extended to nonhomogeneous
models and the inclusion of mixed derivatives in the operator L2(x, y). We mention
them in what follows.

(a) Certain nonstationarity may be added. In particular, the generators L1(x, y)
and L2(x, y) may depend on time t as well. That is, we may consider (2.4) with the
replacement of L1(x, y) and L2(x, y) by L1(t, x, y) and L2(t, x, y). In this case, we
assume that the coefficients of Li(t, x, y) are n + 2 times continuously differentiable
in t in addition to the conditions used in (A). One takes Taylor expansions of the
generators about the point t = 0. That is, we will need to use

Li(ετ, x, y) =

n+1∑
k=0

(ετ)k

k!

∂k

∂tk
Li(0, x, y) +O((ετ)n+2) for i = 1, 2.

Then we use this to find the initial layer terms (see the use of the Taylor expansions
in the forward equations [13, 14]) and proceed as in the previous case.
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(b) Mixed derivatives may be included in the operator. In lieu of (2.5), with
L1(x, y) and L2(x, y) defined as before, one may consider⎧⎪⎨

⎪⎩
∂uε
∂t

=

(
1

ε
L1(x, y) +

1√
ε
L3(x, y) + L2(x, y)

)
uε + c(x, y)uε + f(x, y),

uε(0, x, y) = ϕ(x, y),

where

L3(x, y) =

r∑
i=1

d∑
j=1

a2,ij(x, y)
∂2

∂xi∂yj
.

The essential ideas remain the same, but the notation will be more complex.

6. Appendix
Proof of Lemma 3.1. Let u(t, x) be the solution of

∂u

∂t
= L(x)u, u(0, x) = ψ(x).

Define v(t, x) =
∫ t
0
u(s, x)ds. Then v(t, x) satisfies⎧⎨

⎩
∂

∂t
v(t, x) = L(x)v(t, x) + ψ(x),

v(0, x) = 0.

(6.1)

In view of the stochastic representation, since u(s, x) = Eψ(Xx(s)), by using (3.6)
and (3.7),

|u(s, x)| = |u(s, x) − 〈ψ, µ〉 | ≤ c1 exp(−c2s).
As a result, the integral

∫∞
0
u(s, x)ds makes sense. Define

v(x) = lim
t→∞ v(t, x).

Due to (3.7), (∂/∂t)v(t, x) → 0 as t→ ∞.
We need only show that the derivatives of v(·) exist. In fact,

v(x) =

∫ ∞

0

Eψ(Xx(s))ds =

(∫ 1

0

+

∫ ∞

1

)
Eψ(Xx(s))ds = v1(x) + v2(x),

where

v1(x) =

∫ 1

0

ds

∫
P (x, s, y)ψ(y)dy, v2(x) =

∫ ∞

1

ds

∫
P (x, s, y)ψ(y)dy.

For v1(x), it is easily obtained that

∂

∂x
v1(x) =

∫ 1

0

∫
∂

∂x
P (x, s, y)ψ(y)dy.

As for v2(x), by virtue of the Chapman–Kolmogorov equation,

v2(x) =

∫ ∞

1

ds

∫ ∫
P (x, 1, z)P (z, s− 1, y)dzψ(y)dy.
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Now, since (∂/∂x)P (x, 1, z) is bounded,

∂

∂x
v2(x) =

∫ ∞

1

ds

∫ ∫
∂

∂x
P (x, 1, z)P (z, s− 1, y)dzψ(y)dy.

Similarly, it can be shown that (∂2/∂x2)v(x) exists. Passing the limit as t → ∞ in
(6.1), the desired result then follows.

Proof of Lemma 3.2. Let W (x) be a solution of (3.9), and x0 ∈ Kr. Then W (x)
is a solution of the Dirichlet problem in the punched region Ωx0

= Kr ∩N c
δ (x0):

L(x)W̃ (x) = 0, x ∈ Kr ∩N c
δ (x0), W̃ (x) = W (x), x ∈ ∂Nδ(x0),(6.2)

where Nδ(x0) = {x : |x−x0| < δ}, ∂Nδ(x0) denotes its boundary, and N c
δ (x0) denotes

the complement of Nδ(x0). It follows from the maximum principle that

min
x∈∂Nδ(x0)

W (x) ≤ min
x∈Kr∩Ncδ (x0)

W (x) ≤ max
x∈Kr∩Ncδ (x0)

W (x) ≤ max
x∈∂Nδ(x0)

W (x).

Letting δ shrink to 0 and using continuity of W (x) at x0 yield the desired result.
Proof of Lemma 3.4. The solution of (3.13) admits a probabilistic representation

(see, e.g., [16])

V (τ, x) = Eψ(Xx(τ)) +

∫ τ

0

EF (s,Xx(τ − s))ds,

where Xx(t) is the diffusion process associated with the generator L(x) satisfying
Xx(0) = x. It follows from (3.7) that∣∣∣∣∣

∫ τ/2

0

dsEF (s,Xx(τ − s)) −
∫ τ/2

0

ds

∫
Kr

F (s, x)µ(x)dx

∣∣∣∣∣ ≤ c1
τ

2
exp(−c2τ/2)

≤ c1 exp(−c2τ),
where we have used the convention that ci are generic positive constants, whose values
may change for different appearances. Note also that∣∣∣∣

∫ τ

0

dsEF (s,Xx(τ − s)) −
∫ ∞

0

∫
Kr

F (s, x)µ(x)dx

∣∣∣∣
=

∣∣∣∣∣
∫ τ/2

0

dsEF (s,Xx(τ − s)) −
∫ τ/2

0

ds

∫
Kr

F (s, x)µ(x)dx

(6.3)

+

∫ τ

τ/2

dsEF (s,Xx(τ − s)) −
∫ ∞

τ/2

ds

∫
Kr

F (s, x)µ(x)dx

∣∣∣∣∣
≤ c1e

−c2τ/2 +

∣∣∣∣∣
∫ ∞

τ/2

ds

∫
Kr

F (s, x)µ(x)dx

∣∣∣∣∣+
∫ ∞

τ/2

|EF (s,Xx(τ − s))|ds.

The assertion of the lemma follows from (3.14) and (6.3). The proof of the lemma is
concluded.
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NONLINEAR STABILITY OF STRONG RAREFACTION WAVES
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Abstract. This paper is concerned with the time-asymptotic behavior toward strong rarefac-
tion waves of solutions to one-dimensional compressible Navier–Stokes equations. Assume that the
corresponding Riemann problem to the compressible Euler equations can be solved by rarefaction
waves (V R, UR, SR)(t, x). If the initial data (v0, u0, s0)(x) to the nonisentropic compressible Navier–
Stokes equations is a small perturbation of an approximate rarefaction wave constructed as in [S.
Kawashima, A. Matsumura, and K. Nishihara, Proc. Japan Acad. Ser. A, 62 (1986), pp. 249–252],
then we show that, for the general gas, the Cauchy problem admits a unique global smooth solution
(v, u, s)(t, x) which tends to (V R, UR, SR)(t, x) as t tends to infinity. A global stability result can
also be established for the nonisentropic ideal polytropic gas, provided that the adiabatic exponent γ
is close to 1. Furthermore, we show that for the isentropic compressible Navier–Stokes equations, the
corresponding global stability result holds, provided that the resulting compressible Euler equations
are strictly hyperbolic and both characteristical fields are genuinely nonlinear. Here, global stability
means that the initial perturbation can be large. Since we do not require the strength of the rarefac-
tion waves to be small, these results give the nonlinear stability of strong rarefaction waves for the
one-dimensional compressible Navier–Stokes equations.

Key words. strong rarefaction waves, global stability, compressible Navier–Stokes equations
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1. Introduction and the main results. Consider the one-dimensional com-
pressible Navier–Stokes equations in the Lagrangian coordinates,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vt − ux = 0,

ut + px =
(
µ
ux
v

)
x
,(

e+
u2

2

)
t

+ (up)x =

(
κ
θx
v

+ µ
uux
v

)
x

,

(1.1)

where the unknowns v > 0, u, θ > 0, p, e, and s represent the specific volume, the
velocity, the absolute temperature, the pressure, the internal energy, and the entropy
of the gas, respectively. The coefficients of viscosity and heat-conductivity, µ and κ,
are assumed to be positive constants. We assume, as is usual in thermodynamics,
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that by any given two of the five thermodynamical variables, v, p, e, θ, and s, the
remaining three variables are expressed.

The second law of thermodynamics asserts that

θds = de+ pdv,

from which, if we choose (v, θ), (v, s), or (v, e) as independent variables and write

(p, e, s) = (p, e, s)(v, θ), or (p, e, θ) = (p̃, ẽ, θ̃)(v, s), or (p, s, θ) = (p̂, ŝ, θ̂)(v, e), respec-
tively, then we can deduce that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

sv(v, θ) = pθ(v, θ),

sθ(v, θ) =
eθ(v, θ)

θ
,

ev(v, θ) = θpθ(v, θ) − p(v, θ),

(1.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẽv(v, s) = −p(v, θ), ẽs(v, s) = θ,

p̃v(v, s) = pv(v, θ) − θ(pθ(v, θ))
2

eθ(v, θ)
, p̃s(v, s) =

θpθ(v, θ)

eθ(v, θ)
,

θ̃v(v, s) = −θpθ(v, θ)
eθ(v, θ)

, θ̃s(v, s) =
θ

eθ(v, θ)
,

(1.3)

or

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ŝe(v, e) =
1

θ
, ŝv(v, e) =

p(v, θ)

θ
,

p̂e(v, e) =
pθ(v, θ)

eθ(v, θ)
, p̂v(v, e) =

(
pv(v, θ) − θ(pθ(v, θ))

2

eθ(v, θ)

)
+
p(v, θ)pθ(v, θ)

eθ(v, θ)
,

θ̂e(v, e) =
1

eθ(v, θ)
, θ̂v(v, e) =

p(v, θ) − θpθ(v, θ)

eθ(v, θ)
.

(1.4)

From (1.3) and (1.4), we get that

p̃v(v, s) = p̂v(v, e) − p(v, θ)p̂e(v, e).(1.5)

In this paper, we are interested in showing that the strong expansion waves for
(1.1) are nonlinear stable. For this, it is convenient to work with the equations for
the entropy s and the absolute temperature θ, i.e.,

st = κ

(
θx
vθ

)
x

+ κ
θ2x
vθ2

+ µ
u2
x

vθ
(1.6)

and

θt +
θpθ(v, θ)

eθ(v, θ)
ux =

κ

eθ(v, θ)

(
θx
v

)
x

+
µ

eθ(v, θ)

u2
x

v
.(1.7)

In fact, for smooth solutions, (1.1)1, (1.1)2, (1.1)3 are equivalent to (1.1)1, (1.1)2,
(1.6) or (1.1)1, (1.1)2, (1.7). In what follows, we will consider (1.1)1, (1.1)2, (1.6)
with the initial data

(v, u, s)(t, x)|t=0 = (v0, u0, s0)(x) → (v±, u±, s±) as x→ ±∞.(1.8)
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Here v± > 0, u±, s± are constants. Since we will focus on the expansion waves to
(1.1), we assume that s+ = s− = s in the rest of this paper.

For expansion waves, the right-hand side of (1.1) decays faster than each term on
the left-hand side. Therefore, the compressible Navier–Stokes equations (1.1) may be
approximated, time-asymptotically, by the compressible Euler equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
vt − ux = 0,

ut + p̃(v, s)x = 0,

st = 0.

(1.9)

There are two families of expansion (rarefaction) waves for (1.9) which are so-
lutions of the compressible Euler equations (1.9) with Riemann data (vR0 , u

R
0 , s

R
0 )(x)

(cf. [1]):

(v, u, s)(t, x)|t=0 = (vR0 , u
R
0 , s

R
0 )(x) =

⎧⎨
⎩

(v−, u−, s−), x < 0,

(v+, u+, s+), x > 0.
(1.10)

For illustration, we consider only the 1-rarefaction wave (V R, UR, SR)(t, x), which is
characterized by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

SR(t, x) = s,

UR(t, x) −
∫ V R(t,x)√−p̃v(z, s)dz = u± −

∫ v±√−p̃v(z, s)dz,
λ1x(V

R(t, x), SR(t, x)) > 0, λ1(v, s) = −√−p̃v(v, s).

(1.11)

The case for the 3-rarefaction wave can be discussed similarly.
Before stating the main results, we first list the assumptions on the pressure

function p(v, θ) and the internal energy e(v, θ) used throughout this paper:

pv(v, θ) =
∂p(v, θ)

∂v
< 0, eθ(v, θ) =

∂e(v, θ)

∂θ
> 0(H1)

and

p̃vv(v, s) =
∂2p̃(v, s)

∂v2
> 0 and p̃(v, s) is convex with respect to (v, s).(H2)

From (1.3) and (H1), we can deduce that

p̃v(v, s) = pv(v, θ) − θ(pθ(v, θ))
2

eθ(v, θ)
< 0,(1.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẽss(v, s) =
θ

eθ(v, θ)
> 0,

ẽvs(v, s) =
θpθ(v, θ)

eθ(v, θ)
,

ẽvv(v, s) = −pv(v, θ) +
θ(pθ(v, θ))

2

eθ(v, θ)
> 0,
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and

ẽss(v, s)ẽvv(v, s) − (ẽvs(v, s))
2 = −θpv(v, θ)

eθ(v, θ)
> 0.(1.13)

Equation (1.13) implies that ẽ(v, s) is convex with respect to v and s. Conse-
quently, ẽ(v, s) + 1

2u
2 is a strictly convex function of (v, u, s). Now we can construct

the following normalized entropy η(v, u, s;V,U, S) around (V,U, S)(t, x), which is the
smooth approximation of the 1-rarefaction waves (V R, UR, SR)(t, x):

η(v, u, s;V,U, S) =

(
e(v, θ) +

u2

2

)
−
(
e(V,Θ) +

U2

2

)
(1.14) −{−p(V,Θ)(v − V ) + U(u− U) + Θ(s− S)}.

Here we have used the fact that ẽv(v, s) = −p(v, θ), ẽs(v, s) = θ. The approximate
rarefaction waves V (t, x), U(t, x), S(t, x), and Θ(t, x) are constructed as follows (cf.
[20]).

Given a suitably small but fixed constant ε > 0, let w(t, x) be the unique global
smooth solution to the Cauchy problem

⎧⎪⎨
⎪⎩

wt + wwx = 0,

w(t, x)|t=0 = w0(x) :=
λ1(v−, s) + λ1(v+, s)

2
+
λ1(v+, s) − λ1(v−, s)

2
tanh(εx);

(1.15)

then V (t, x), U(t, x), S(t, x), and Θ(t, x) are defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(V (t, x), s) = −√−p̃v(V (t, x), s) = w(t, x),

U(t, x) = u± +

∫ V (t,x)

v±

√−p̃v(z, s)dz,
S(t, x) = s,

Θ(t, x) = θ̃(V (t, x), s).

(1.16)

Under the above preparation, for the general gas, our stability result on strong
rarefaction waves (V R, UR, SR)(t, x) can be stated as in the following.

Theorem 1.1 (local stability result for general gas). Assume that (V R, UR,
SR)(t, x) is the 1-rarefaction wave solution to the Riemann problem of the compressible
Euler equations (1.9), (1.10) and that the initial data (v0, u0, s0)(x) of the compressible
Navier–Stokes equations (1.1)1, (1.1)2, (1.6) satisfies (1.8):

⎧⎪⎨
⎪⎩

0 < 2V ≤ v0(x), V (t, x) ≤ 1

2
V ,

0 < 2Θ ≤ θ0(x), Θ(t, x) ≤ 1

2
Θ,

(1.17)

for all (t, x) ∈ R+ × R and some positive constants V , V , Θ, and Θ, and

N(0) = ‖(v0(x) − V (0, x), u0(x) − U(0, x), s0(x) − s)‖H2(R)
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is sufficiently small. Then the Cauchy problem (1.1), (1.8) admits a unique global
smooth solution (v, u, s)(t, x) satisfying

lim
t→+∞ sup

x∈R
{|(v(t, x) − V R(t, x), u(t, x) − UR(t, x), s(t, x) − s)|} = 0.(1.18)

Note that the essential meaning of nonlinear stability of rarefaction waves to
the compressible Navier–Stokes equations (1.1), (1.8) in [12], [15], [20], [21], [22] is
that if (v0, u0, s0)(x) is a (small or large) perturbation of (V (0, x), U(0, x), s), the
smooth approximation of the rarefaction wave solutions (V R(t, x), UR(t, x), s), then
the Cauchy problem of the compressible Navier–Stokes equations (1.1), (1.8) admits
a unique global smooth solution (v, u, s)(t, x) which tends time-asymptotically to
(V R(t, x), UR(t, x), s). In this sense, the result obtained in Theorem 1.1 does im-
ply the nonlinear stability of strong rarefaction waves for the compressible Navier–
Stokes equations. But, due to the assumption that the initial perturbation (v0(x) −
V (0, x), u0(x) − U(0, x), s0(x) − s) should be small, the nonlinear stability result ob-
tained in Theorem 1.1 is essentially local. Then a natural question of importance and
interest is how to get the global stability result which is for large perturbation. Our
second purpose is to devote to this problem and show that, for the ideal polytropic
gas, such a global stability result indeed holds for γ near 1 without the weakness of the
rarefaction waves. To state the result precisely, we recall that for the ideal polytropic
gas, (p, e)(v, θ) have the following special constitutive relations:

p(v, θ) =
Rθ

v
= Av−γ exp

(
γ − 1

R
s

)
, e(v, θ) =

Rθ

γ − 1
,(1.19)

where R > 0 is the gas constant, γ > 1 the adiabatic constant, and A a positive
constant.

Our second result is stated as follows.
Theorem 1.2 (global stability result for the ideal polytropic gas). Assume that

(V R(t, x), UR(t, x), s) is the 1-rarefaction wave solution of the Riemann problem of the
compressible Euler equations (1.9), (1.10) and that (p, e)(v, θ) satisfy the constitutive
relations (1.19). Then for any (v0(x) − V (0, x), u0(x) − U(0, x), s0(x) − s) ∈ H2(R)
satisfying (1.17) and its H1(R)-norm to be bounded by a constant independent of 1

ε ,
the corresponding Cauchy problem (1.1), (1.8) admits a unique global smooth solution
(v, u, s)(t, x) satisfying (1.18), provided that γ − 1 is sufficiently small.

In the proof of Theorem 1.2, the assumption that γ is close to 1 is used for
obtaining the a priori assumption 0 < Θ < θ(t, x) < Θ for (t, x) ∈ [0,∞] × R so that
θ(t, x) − Θ(t, x) is small. Hence, one can imagine that for the isentropic polytropic
gas, such a smallness assumption can be removed, and this has been obtained by
Matsumura and Nishihara in [21], [22] by cleverly introducing another type of smooth
approximation of the rarefaction wave solution. That is, w0(x) in (1.15)2 is replaced
by

w(t, x)|t=0 = w0(x) =
λ1(v−, s) + λ1(v+, s)

2
(1.20)

+
λ1(v+, s) − λ1(v−, s)

2
Kq

∫ εx

0

(1 + y2)−qdy,

where Kq > 0 is a constant satisfying

Kq

∫ +∞

0

(1 + y2)−qdy = 1(1.21)
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for some suitably large constant q > 0.
Our third purpose is to show the global stability result on strong rarefaction

waves for a p-system with viscosity with a general pressure p = p(v). To state this re-
sult, we recall that the isentropic compressible Navier–Stokes equations in Lagrangian
coordinates can be written as⎧⎨

⎩
vt − ux = 0,

ut + p(v)x = µ
(ux
v

)
x
,

(1.22)

with the initial data

(v, u)(t, x)|t=0 = (v0, u0)(x) → (v±, u±) as x→ ±∞.(1.23)

Here v± > 0 and u± are given constants so that the Riemann problem of the isentropic
compressible Euler equations {

vt − ux = 0,

ut + p(v)x = 0,
(1.24)

with the Riemann data

(v, u)(t, x)|t=0 = (vR0 , u
R
0 )(x) =

⎧⎨
⎩

(v−, u−), x < 0,

(v+, u+), x > 0,
(1.25)

is assumed to admit a unique 1-rarefaction wave solution (V
R
, U

R
)(t, x).

We assume only that p(v) is a positive smooth function for v > 0 and satisfies

p′(v) < 0, p′′(v) > 0 for v > 0.(1.26)

Under the above assumptions, we have the following theorem.
Theorem 1.3 (global stability result for general isentropic gas). Assume that

the Riemann problem (1.24), (1.25) to the compressible Euler equations admits a

unique 1-rarefaction wave solution (V
R
, U

R
)(t, x) and that (V ,U)(t, x) is a smooth

approximation of the Riemann solution (V
R
, U

R
)(t, x) constructed by⎧⎪⎪⎨

⎪⎪⎩
V (t, x) = λ−1

1 (w(t, x)), λ1(v) = −√−p′(v),

U(t, x) = u± +

∫ V (t,x)

v±

√−p′(s)ds.
(1.27)

Here w(t, x) is the unique smooth solution to the following Cauchy problem:⎧⎨
⎩

wt + wwx = 0,

w(t, x)|t=0 = w0(x) =
λ1(v−) + λ1(v+)

2
+
λ1(v+) − λ1(v−)

2
tanh(εx).

(1.28)

Then for any p(v) satisfying (1.26) and (v0(x) − V (0, x), u0(x) − U(0, x)) ∈ H2(R)
satisfying 0 < 2V ≤ v0(x), V (t, x) ≤ 1

2V for all (t, x) ∈ R+ × R and some positive

constants V , V and with its H1(R)-norm bounded by a constant independent of the
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quantity 1
ε , the Cauchy problem (1.22), (1.23) admits a unique global smooth solution

(v, u)(t, x) satisfying

lim
t→+∞ sup

x∈R

{∣∣∣(v − V
R
, u− U

R
)

(t, x)
∣∣∣} = 0.(1.29)

Remark 1.4. In [21] and [22], the assumption that p(v) = v−γ (γ ≥ 1) plays
an essential role in the analysis, and it is worth pointing out that even by using
their smooth approximation of the Riemann solutions, their arguments cannot be
applied to the case when p(v) satisfies only (1.26). However, we have assumed that
the H1(R)-norm of the initial perturbation is bounded by a constant independent of
1
ε with small fixed number ε > 0. This implies that the data (v0, u0)(x) for (1.23) is

initially rather flat though (v0(x), V (0, x), u0(x) − U(0, x)) may be large. Therefore,
we should seek the global solution and its behavior for any data (v0, u0)(x) with
‖(v0(x)− v±, u0(x)− u±)‖H1(R±) bounded. This will be done under some additional
assumptions on p(v) in Theorem 1.5.

In Theorems 1.1, 1.2, and 1.3, we assume that the solutions to the corresponding
Riemann problem of the compressible Euler equations consists of only one rarefac-
tion wave. In fact, such a restriction can be removed by suitably modifying the
arguments used in the proof of the theorems. To simplify the presentation, we use
the isentropic compressible Navier–Stokes equations to explain this. Suppose that

the solution (V
R
, U

R
)(t, x) to the Riemann problem (1.24), (1.25) consists of one

1-rarefaction wave (V
R

1 , U
R

1 )(t, x) and one 2-rarefaction wave (V
R

2 , U
R

2 )(t, x). That
is, there exists a unique constant state (v, u) ∈ R2 such that (v−, u−) and (v, u)

are connected by one 1-rarefaction wave (V
R

1 , U
R

1 )(t, x), i.e., (v, u) ∈ R1(v−, u−),

while (v, u) and (v+, u+) are connected by one 2-rarefaction wave (V
R

2 , U
R

2 )(t, x), i.e.,
(v+, u+) ∈ R2(v, u). Here⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R1(v−, u−) =

{
(v, u)

∣∣∣∣∣ u = u− +

∫ v

v−

√
−p′(s)ds, u ≥ u−

}
,

R2(v, u) =

{
(v, u)

∣∣∣∣∣ u = u−
∫ v

v

√
−p′(s)ds, u ≥ u

}
.

(1.30)

Consequently,(
V
R
, U

R
)

(t, x) = (V
R

1 (t, x) + V
R

2 (t, x) − v, U
R

1 (t, x) + U
R

2 (t, x) − u).(1.31)

Let wi(t, x) (i = 1, 2) be the unique global smooth solution to the following
Cauchy problem:⎧⎨

⎩
wit + wiwix = 0,

wi(t, x)|t=0 = wi0(x) =
wi− + wi+

2
+
wi+ − wi−

2
tanh(εx), i = 1, 2;

(1.32)

then, as in [20], the smooth approximate solution (V ,U)(t, x) of (V
R
, U

R
)(t, x) is

constructed as follows:

(V ,U)(t, x) = (V 1(t, x) + V 2(t, x) − v, U1(t, x) + U2(t, x) − u),(1.33)
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where (V 1, U1)(t, x) (resp., (V 2, U2)(t, x)) is defined by

⎧⎪⎪⎨
⎪⎪⎩

λ1(V 1(t, x)) = w1(t, x) (resp., λ2(V 2(t, x)) = w2(t, x)),

U1 = u− +

∫ V 1(t,x)

v−

√−p′(s)ds
(

resp., U2(t, x) = u−
∫ V 2(t,x)

v

√−p′(s)ds
)

(1.34)

and w1(t, x) (resp., w2(t, x)) is the solution of (1.32) with w1− = λ1(v−) and w1+ =
λ1(v) (resp., w2− = λ2(v) and w2+ = λ2(v+)).

It is easy to deduce that the smooth functions (V ,U)(t, x) satisfy the system

{
V t − Ux = 0,

U t + p(V )x = g(V )x,
(1.35)

where g(V ) = p(V )−p(V 1)−p(V 2)+p(v). Hence, we need only to control g(V (t, x))x
suitably in this case. Notice that from the properties on the smooth approximation
of the rarefaction wave solution stated in section 2 (cf. [19]), we have only

∫ t

0

‖g(V (τ))x‖Lp(R)dτ ≤ O(1)ε−
1
p .(1.36)

From this observation, together with the fact that, in deducing our main results,
we need the smallness of ε, a quantity introduced in the construction of the smooth
approximation to the rarefaction wave solutions, to close the energy estimates, it seems
hopeless to use our method to deal with the nonlinear stability of the superposition
of rarefaction waves of different families.

We note, however, that g(V (t, x))x satisfies the following estimate (cf. [20]): There
exist constants C > 0, α > 0 such that for t ≥ 0, x ∈ R,

|g(V (t, x))x| ≤ Cε exp(−αε(|x| + t)).(1.37)

From (1.37), we can see that, as in [14] for the study of nonlinear stability of travelling
wave solutions to dissipative hyperbolic systems of conservation laws, if we give the

smooth approximation V (t, x) a shift, that is, if we let V
′
(t, x) = V (t + t0, x) with

t0 > 0 being a suitably chosen fixed constant, then we have for V
′
(t, x) that

∫ t

0

‖g(V ′
(τ))x‖Lp(R) ≤ O(1)ε−

1
p exp(−αεt0).(1.38)

If we let, for example, t0 = ε−2, then the right-hand side of (1.38) is controlled by

O(1)ε−
1
p exp(−α

ε ), which can be as small as we want if we choose ε > 0 sufficiently
small. Consequently, our method can indeed be applied directly to deal with the non-
linear stability of the superposition of rarefaction waves of different families, provided

that we approximate the rarefaction wave solutions by V
′
(t, x). (Note that in this

case the initial data (v0, u0)(x) of the compressible Navier–Stokes equations (1.24) is
a perturbation of (V ,U)(t0, x).)

In Theorems 1.2 and 1.3, we assume that the H1-norm of the initial perturbation
is bounded by a constant independent of 1

ε , which is excluded under the additional
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assumption⎧⎨
⎩
p(v) ≥ C−1

1 v−1, C1p(v) ≥ v|p′(v)| = −vp′(v) ≥ C−1
1 (0 < v ≤ 1),

−p′(v) ≥ C−1
1 v−C1 (v ≥ 1)

(1.39)

for arbitrarily fixed constant C1 > 2. Note that (1.39) derives⎧⎪⎪⎨
⎪⎪⎩
C−1

1 v−1 ≤ p(v) ≤ p(1)v−C1 (0 < v ≤ 1),

p(v) ≥ p(∞) +
v1−C1

C1(C1 − 1)
(v ≥ 1).

(1.40)

Hence, though (1.40) is not a sufficient condition for (1.39), the assumption (1.39),
roughly speaking, seems to be reasonable, including the typical pressure model p(v) =
v−γ (γ ≥ 1). Then we have the final theorem.

Theorem 1.5. Assume that p(v) satisfies (1.26) and (1.39) and that the solu-

tion (V
R
, U

R
)(t, x) to the Riemann problem (1.24), (1.25) is given by (1.31). Let

(V ,U)(t, x) be a smooth approximation of the Riemann solution (V
R
, U

R
)(t, x) con-

structed by (1.33)–(1.34) with wi0(x) in (1.32) being replaced by

wi− + wi+
2

+
wi+ − wi−

2
Kq

∫ εx

0

(1 + y2)−qdy

for q > 3
2 and Kq satisfying (1.21).

Then for any (v0(x) − V (0, x), u0(x) − U(0, x)) ∈ H1(R) satisfying 0 < 2V ≤
v0(x), V (t, x) ≤ 1

2V for all (t, x) ∈ R+ × R and some positive constants V , V ,
the Cauchy problem (1.22), (1.23) admits a unique global smooth solution (v, u)(t, x)
satisfying (1.29)

Before concluding this section, we point out that the large time behavior of so-
lutions to the compressible Navier–Stokes equations (1.1), (1.8) has been studied by
many people; cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24] and the references cited therein. When the initial data (v0, u0, s0)(x) is a small
perturbation of a nonvacuum constant state, i.e., v− = v+ > 0, u− = u+, s− = s+,
quite perfect results have been obtained; cf. [10] and [17]. In the case when the far
fields of the initial data are different, i.e., (v−, u−, s−) �= (v+, u+, s+), many interest-
ing results have been obtained: When the solutions to the corresponding Riemann
problem consist of only shock waves, the nonlinear stability of travelling wave solu-
tions has been established by [11], [14], [19], etc. However, when the solutions to the
corresponding Riemann problem consist of only rarefaction waves, the corresponding
nonlinear stability results are obtained by [12], [15], [21], and [22].

This paper is arranged as follows. We will give some properties of the smooth
approximation of the rarefaction wave solutions in section 2. The proof of Theorems
1.1, 1.2, 1.3, and 1.5 are given in sections 3, 4, 5, and 6, respectively.

Throughout the rest of this paper, C or O(1) will be used to denote a generic
positive constant independent of t and x, and Ci(·, ·) (i ∈ Z+) stands for some generic
constants depending only on the quantities listed in the parentheses. For two functions
f(x) and g(x), f(x) ∼ g(x) as x→ a means that there exists a positive constant C > 0
such that C−1f(x) ≤ g(x) ≤ Cf(x) in the neighborhood of a. H l(R) (l ≥ 0) denotes
the usual Sobolev space with norm ‖ · ‖l, and ‖ · ‖0 = ‖ · ‖ will be used to denote
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the usual L2-norm. For a vector a = (a1, a2, . . . , an), |a| = (
∑n
j=1 a

2
j )

1
2 . Finally,

for 1 ≤ p ≤ +∞, f(x) ∈ Lp(R,Rn), |f |p = (
∫
R
|f(x)|pdx) 1

p . It is easy to see that
| · |2 = ‖ · ‖.

2. Properties of smooth approximate solution of the Riemann problem.
In the same situation as in [12], we start with the Riemann problem for the typical
Burgers equation:⎧⎪⎨

⎪⎩
wRt + wRwRx = 0,

wR(0, x) = wR0 (x) =

{
w− ≡ λ1(v−, s) < 0, x < 0,

w+ ≡ λ1(v+, s) < 0, x > 0,

(2.1)

with w− < w+ < 0. As is well known, (2.1) has a continuous weak solution of the
form wR(xt ) given by

wR(ξ) =

⎧⎪⎨
⎪⎩
w−, ξ ≤ w−,
ξ, w− ≤ ξ ≤ w+,

w+, ξ ≥ w+.

(2.2)

The main idea in [12] is to approximate wR(xt ) by the solution w(t, x) of the
Cauchy problem (1.15). Since w0(x) is strictly increasing, we have the following
lemma (cf. [12]).

Lemma 2.1. If w− < w+, then the Cauchy problem (1.15) has a unique global
smooth solution w(t, x) satisfying the following:

(i) w− < w(t, x) < w+ < 0, wx(t, x) > 0 for all (t, x) ∈ R+ × R.
(ii) For any p (1 ≤ p ≤ ∞), there exists a constant C(p), depending only on p,

such that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|wx(t)|p ≤ C(p) min{w̃ε1− 1
p , w̃

1
p t−1+ 1

p },
|wxx(t)|p ≤ C(p) min{w̃ε2− 1

p , ε1−
1
p t−1},

|wxxx(t)|p ≤ C(p) min{w̃ε3− 1
p , ε2−

1
p t−1}.

(iii) limt→+∞ supx∈R |w(t, x) − wR(xt )| = 0.
Here w̃ = w+ − w−.

Having obtained w(t, x), we define V (t, x), U(t, x), S(t, x), and Θ(t, x) according
to (1.16). Since p̃(v, s) satisfies (H1) and (H2), one can deduce that V (t, x), U(t, x),
S(t, x), and Θ(t, x) are globally (both with respect to t and x) well defined and smooth,
and it is not difficult to check that V (t, x), U(t, x), S(t, x), and Θ(t, x) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vt − Ux = 0,

Ut + p(V,Θ)x = 0,(
e(V,Θ) +

U2

2

)
t

+ (Up(V,Θ))x = 0,

Θt +
Θpθ(V,Θ)

eθ(V,Θ)
Ux = 0,

St(V,Θ) = 0,

(2.3)
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and, due to Lemma 2.1, V (t, x), U(t, x), S(t, x), and Θ(t, x) have the following prop-
erties.

Lemma 2.2. The smooth functions V (t, x), U(t, x), S(t, x), and Θ(t, x) con-
structed above have the following properties by denoting δ = |v− − v+| + |u− − u+|:

(i) Vt(t, x) = Ux(t, x) > 0 for all x ∈ R, t ≥ 0.
(ii) For any p (1 ≤ p ≤ +∞), there exists a constant C(p), depending only on p,

such that

⎧⎪⎪⎨
⎪⎪⎩

|(Vx, Ux,Θx)(t)|p ≤ C(p) min{δε1− 1
p , δ

1
p t−1+ 1

p },
|(Vxx, Uxx,Θxx)(t)|p ≤ C(p) min{δε2− 1

p , ε1−
1
p t−1},

|(Vxxx, Uxxx,Θxxx)(t)|p ≤ C(p) min{δε3− 1
p , ε2−

1
p t−1}.

(iii) limt→+∞ supx∈R |(V,U, S,Θ)(t, x) − (V R, UR, SR,ΘR)(t, x)| = 0.

(iv) |(Vt, Ut,Θt)(t, x)| ≤ O(1)|(Vx, Ux,Θx)(t, x)|.
Similar estimates hold for the global smooth functions (V ,U)(t, x) defined by

(1.27). Moreover, (V ,U)(t, x) constructed in Theorem 1.5 have the following proper-
ties.

Lemma 2.3. The smooth functions (V ,U)(t, x) constructed in Theorem 1.5 satisfy
the following:

(i) V t(t, x) = Ux(t, x) > 0.
(ii) For any p ∈ [1,+∞], there exists a positive constant C(p, q) such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∣∣∣(V x, Ux) (t)
∣∣∣
p
≤ C(p, q) min{δε1− 1

p , δ
1
p (1 + t)−1+ 1

p },∣∣∣(V xx, Uxx) (t)
∣∣∣
p
≤C(p, q) min{δ− p−1

2pq ε(1−
1
2q )(1− 1

p )(1 + t)−1− p−1
2pq , δ

1
p (1 + t)−2+ 1

p },∣∣∣g (V )
x

(t)
∣∣∣
p
≤ C(p, q)ε1−

1
p δ2{(1 + (ελ2(v)t)

2)−
q
3 + (1 + (ελ1(v)t)

2)−
q
3 }.

Especially

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

0

∣∣∣(V xx, Uxx) (t)
∣∣∣
p
dt ≤ C(p, q)δ−

p−1
2pq for p > 1,∫ ∞

0

∣∣∣g (V )
x

(t)
∣∣∣
p
dt ≤ C(p, q)ε−

1
p δ2 for p ≥ 1, q >

3

2
.

(iii) limt→+∞ supx∈R |(V ,U)(t, x) − (V
R
, U

R
)(t, x)| = 0.

(iv) |(V t, U t)(t, x)| ≤ O(1)|(V x, Ux)(t, x)|.

3. The proof of Theorem 1.1. This section is devoted to proving Theorem
1.1. To this end, setting

(ϕ,ψ, φ, ξ)(t, x) = (v(t, x) − V (t, x), u(t, x) − U(t, x), θ(t, x) − Θ(t, x), s(t, x) − s),
(3.1)
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we can deduce that (ϕ,ψ, φ, ξ)(t, x) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt − ψx = 0,

ψt + [p(v, θ) − p(V,Θ)]x = µ
(ux
v

)
x
,

φt +
θpθ(v, θ)

eθ(v, θ)
ψx +

(
θpθ(v, θ)

eθ(v, θ)
− Θpθ(V,Θ)

eθ(V,Θ)

)
Ux =

1

eθ(v, θ)

{
κ

(
θx
v

)
x

+ µ
u2
x

v

}
,

ξt = κ

(
θx
vθ

)
x

+ κ
θ2x
vθ2

+ µ
u2
x

vθ
,

(3.2)

with initial data

(ϕ,ψ, φ, ξ)(t, x)|t=0 = (ϕ0, ψ0, φ0, ξ0)(x)
(3.3)

= (v0(x) − V (0, x), u0(x) − U(0, x), θ0(x) − Θ(0, x), s0(x) − s).

For convenience of presentation, in what follows we will choose (v, θ) as indepen-
dent variables and for some fixed T > 0, we define the solution space of (3.2), (3.3)
by

X(0, T ) :=

{
(ϕ,ψ, φ)(t, x)

∣∣∣∣∣
(ϕ,ψ, φ)(t, x) ∈ C0(0, T ;H2(R))

(ψx, φx)(t, x) ∈ L2(0, T ;H2(R))

}
.(3.4)

Under the assumptions listed in Theorem 1.1, we can get the following local
existence result (cf. [15], [21]).

Lemma 3.1. Under the assumptions stated in Theorem 1.1, the Cauchy problem
(3.2), (3.3) admits a unique smooth solution (ϕ(t, x), ψ(t, x), φ(t, x)) ∈ X(0, t1) for
some sufficiently small t1 > 0, and (ϕ(t, x), ψ(t, x), φ(t, x)) satisfies⎧⎨

⎩
0 < V ≤ ϕ(t, x) + V (t, x) ≤ V ,

0 < Θ ≤ φ(t, x) + Θ(t, x) ≤ Θ
(3.5)

and

sup
[0,t1]

(‖(ϕ,ψ, φ)(t)‖2) ≤ 2‖(ϕ0, ψ0, φ0)‖2.(3.6)

To extend the local solution obtained in Lemma 3.1 globally, we need only to get
a priori estimates. For this purpose, suppose that (ϕ,ψ, φ)(t, x) obtained in Lemma
3.1 has been extended to the time t = T > t1, i.e., (ϕ,ψ, φ)(t, x) ∈ X(0, T ), and
satisfies

N(t) := sup
0≤τ≤t

{‖(ϕ,ψ, φ)(τ)‖2} ≤ η, 0 ≤ t ≤ T,(3.7)

for some positive constant η > 0. Based on the a priori estimates (3.7), if we can
show that (ϕ,ψ, φ)(t, x) satisfies

‖(ϕ,ψ, φ)(t)‖2
2 +

∫ t

0

{‖
√
Vt(τ)(ϕ, φ)(τ)‖2 + ‖(ψx, φx)(τ)‖2

2}dτ
(3.8)

≤ C(η){‖(ϕ0, ψ0, φ0)‖2
2 + ε

1
4 },
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then, by choosing the initial perturbation N(0) and ε sufficiently small, we can deduce
that

N(t) < η, 0 ≤ t ≤ T.(3.9)

This implies that the a priori assumption (3.7) is reasonable and, consequently, The-
orem 1.1 follows immediately by the standard continuity argument.

Now, to complete the proof of Theorem 1.1, we need only to show that (3.8) is
true, provided that η > 0 is chosen to be sufficiently small.

In fact, from (3.7) and (1.17), we have from Sobolev’s inequality and by choosing
η > 0 sufficiently small that for 0 ≤ t ≤ T , x ∈ R, v(t, x) and θ(t, x) satisfy⎧⎨

⎩
0 < V ≤ v(t, x) = ϕ(t, x) + V (t, x) ≤ V ,

0 < Θ ≤ θ(t, x) = φ(t, x) + Θ(t, x) ≤ Θ
(3.10)

and

sup
0≤τ≤t, x∈R

∣∣∣∣ ∂i∂xi (ϕ,ψ, φ)(τ, x)

∣∣∣∣ ≤ O(1)N(t), i = 0, 1.(3.11)

Due to

(3.12)

ηt(v, u, θ;V,U,Θ) + {(p(v, θ) − p(V,Θ))ψ}x +

{
µΘ

ψ2
x

vθ
+ κΘ

φ2
x

vθ2

}
+ {p̃(v, s) − p̃(V, s) − p̃v(V, s)ϕ− p̃s(V, s)ξ}Ux

=

(
µ
ψψx
v

+ κ
φφx
vθ

)
x

+

(
−µUxψϕx

v2
+ 2µ

Uxφψx
vθ

− κ
Θxφϕx
v2θ

+ κ
Θxφφx
vθ2

)

+

(
µ
Uxxψ

v
+ κ

Θxxφ

vθ

)
+

(
−µVxUxψ

v2
+ µ

U2
xφ

vθ
− κ

VxΘxφ

v2θ

)
,

we have by integrating (3.12) with respect to t and x over [0, t] × R that

‖(ϕ,ψ, φ)(t)‖2 +

∫ t

0

{‖
√
Vt(τ)(ϕ, φ)(τ)‖2 + ‖(ψx, φx)(τ)‖2}dτ

(3.13)

≤ C(η)

{
‖(ϕ0, ψ0, φ0)‖2 +

3∑
j=1

Rj

}
,

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R1 =

∫ t

0

∫
R

(|ψUxx| + |φΘxx|)(τ, x)dxdτ,

R2 =

∫ t

0

∫
R

(|Uxψϕx| + |Uxψxφ| + |Θxφψx| + |Θxφφx|)(τ, x)dxdτ,

R3 =

∫ t

0

∫
R

(|VxUxψ| + |U2
xφ| + |VxΘxφ|)(τ, x)dxdτ.

Here we have used the assumption that p̃(v, s) is a convex function of v and s, the
fact that |(ϕ,ψ, ξ)|2 is equivalent to |(ϕ,ψ, φ)|2, and (3.7), (3.10), and (3.11).
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Rj (j = 1, 2, 3) can be estimated as follows:

R1 ≤ O(1)

∫ t

0

‖(ψ, φ)(τ)‖ 1
2 ‖(ψx, φx)(τ)‖ 1

2 |Uxx(τ)|1dτ

≤ O(1)

{
N(t)

∫ t

0

‖(ψx, φx)(τ)‖2dτ +

∫ t

0

|Uxx(τ)|
4
3
1 dτ

}
(3.14)

≤ O(1)

{
N(t)

∫ t

0

‖(ψx, φx)(τ)‖2dτ + ε
1
4

}
,

R3 ≤ O(1)

∫ t

0

‖(ψ, φ)(τ)‖ 1
2 ‖(ψx, φx)(τ)‖ 1

2 ‖Ux(τ)‖2dτ

≤ O(1)

{
N(t)

∫ t

0

‖(ψx, φx)(τ)‖2dτ +

∫ t

0

‖Ux(τ)‖ 8
3 dτ

}
(3.15)

≤ O(1)

{
N(t)

∫ t

0

‖(ψx, φx)(τ)‖2dτ + ε
1
4

}
,

and

R2 ≤ O(1)

∫ t

0

‖(ϕ,ψ, φ)(τ)‖ 1
2 ‖(ϕx, ψx, φx)(τ)‖ 3

2 ‖Ux(τ)‖dτ

≤ O(1)

{
N(t)

2
3

∫ t

0

‖(ϕx, ψx, φx)(τ)‖2dτ +

∫ t

0

‖Ux(τ)‖4dτ

}
(3.16)

≤ O(1)

{
N(t)

2
3

∫ t

0

‖(ϕx, ψx, φx)(τ)‖2dτ + ε
1
4

}
.

Here we have used the following inequality:

∫ t

0

∣∣∣∣ ∂i∂xiU(τ)

∣∣∣∣
a+b

p

dτ ≤ sup
[0,t]

(∣∣∣∣ ∂i∂xiU(τ)

∣∣∣∣
a

p

)∫ t

0

∣∣∣∣ ∂i∂xiU(τ)

∣∣∣∣
b

p

dτ

≤ O(1)ε(i−
1
p )a

∫ t

0

∣∣∣∣ ∂i∂xiU(τ)

∣∣∣∣
b

p

dτ.

Substituting (3.14)–(3.16) into (3.13), we have by using the fact that N(t) is
sufficiently small that

‖(ϕ,ψ, φ)(t)‖2 +

∫ t

0

{‖
√
Vt(τ)(ϕ, φ)(τ)‖2 + ‖(ψx, φx)(τ)‖2}dτ

(3.17)

≤ C(η)

{
‖(ϕ0, ψ0, φ0)‖2 + ε

1
4 +N(t)

2
3

∫ t

0

‖ϕx(τ)‖2dτ

}
.

Now we turn to dealing with the term
∫ t
0
‖ϕx(τ)‖2dτ . To do so, we have from
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(3.1) and (3.2) that

{
µ

2

(ϕx
v

)2

− ϕx
v
ψ

}
t

− pv(v, θ)
ϕ2
x

v
−
(
ψ2
x

v
+
pθ(v, θ)ϕxφx

v

)
+

(
ψψx
v

)
x

=

{
Vx [pv(v, θ) − pv(V,Θ)]

ϕx
v

+ Θx [pθ(v, θ) − pθ(V,Θ)]
ϕx
v

(3.18)

+
Uxψϕx
v2

− Vxψψx
v2

}

+µ
Vxψxϕx
v3

− µ
Uxxϕx
v2

+ µ
VxUxϕx
v3

.

Integrating (3.18) with respect to t and x over [0, t] × R, we have from (3.10),
(3.11), and pv(v, θ) < 0 that

‖ϕx(t)‖2 +

∫ t

0

‖ϕx(τ)‖2dτ

≤ C(η)

{
‖(ϕ0x, ψ0)‖2 + ‖ψ(t)‖2(3.19)

+

∫ t

0

(‖(ψx, φx)(τ)‖2 + ‖
√
Vt(τ)(ϕ, φ)(τ)‖2)dτ +

5∑
j=4

Rj

}
.

Here

⎧⎪⎪⎨
⎪⎪⎩

R4 =

∫ t

0

∫
R

(|ψUxϕx| + |Vxψψx|)(τ, x)dxdτ,

R5 =

∫ t

0

∫
R

(|Vxψxϕx| + |Uxxϕx| + |U2
xϕx|)(τ, x)dxdτ.

Since

R4 ≤ O(1)

∫ t

0

‖ψ(τ)‖ 1
2 ‖ψx(τ)‖ 1

2 ‖Ux(τ)‖‖(ϕx, ψx)(τ)‖dτ

≤ O(1)

{
N(t)

2
3

∫ t

0

‖(ϕx, ψx)(τ)‖2dτ +

∫ t

0

‖Ux(τ)‖4dτ

}
(3.20)

≤ O(1)

{
N(t)

2
3

∫ t

0

‖(ϕx, ψx)(τ)‖2dτ + ε
1
4

}

and

R5 ≤ 1

2

∫ t

0

‖ϕx(τ)‖2dτ +O(1)

{∫ t

0

‖ψx(τ)‖2dτ

+

∫ t

0

(|Ux(τ)|44 + |Uxx(τ)|21
)
dτ

}
(3.21)

≤ 1

2

∫ t

0

‖ϕx(τ)‖2dτ +O(1)

{∫ t

0

‖ψx(τ)‖2dτ + ε
1
4

}
,
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we get from (3.19)–(3.21) and the fact that N(t) can be chosen sufficiently small that

‖ϕx(t)‖2 +

∫ t

0

‖ϕx(τ)‖2dτ

≤ C(η)

{
‖(ϕ0x, ψ0)‖2 + ‖ψ(t)‖2(3.22)

+

∫ t

0

(‖(ψx, φx)(τ)‖2 + ‖
√
Vt(τ)(ϕ, φ)(τ)‖2)dτ + ε

1
4

}
.

Multiplying (3.17) by a suitably large positive constant λ and adding the resultant
inequality to (3.22), we have from the fact that N(t) is sufficiently small that

‖(ϕ,ψ, φ, ϕx)(t)‖2 +

∫ t

0

{‖
√
Vt(τ)(ϕ, φ)(τ)‖2 + ‖(ϕx, ψx, φx)(τ)‖2}dτ

(3.23)
≤ C(η){‖(ϕ0, ψ0, φ0, ϕ0x)‖2 + ε

1
4 }.

Equation (3.23) is the so-called basic energy estimate. Having obtained this, the
other higher order energy estimates can easily be obtained by exploiting the same
argument. For completeness, we show only how to estimate ‖(ψx, φx)(t)‖2 in the
following.

We first estimate ‖ψx(t)‖2. To this end, multiplying (3.2)2 by −ψxx(t, x), we have

(
ψ2
x

2

)
t

+ µ
ψ2
xx

v
− (ψtψx)x

= (pv(v, θ)ϕx + pθ(v, θ)φx)ψxx + µ
ϕxψxψxx

v2

+ {Vx[pv(v, θ) − pv(V,Θ)]ψxx + Θx[pθ(v, θ) − pθ(V,Θ)]ψxx}

+

(
µ
Vxψxψxx

v2
+ µ

Uxϕxψxx
v2

)
− µ

Uxxψxx
v

+ µ
VxUxψxx

v2
.

Integrating the above identity with respect to t and x over [0, t] × R, we have
from (3.7), (3.10), and (3.11) that

‖ψx(t)‖2 +

∫ t

0

‖ψxx(τ)‖2dτ

≤ C(η)

{
‖ψ0x‖2 +

∫ t

0

‖(ϕx, ψx, φx)(τ)‖2dτ +

∫ t

0

‖
√
Vt(τ)(ϕ, φ)(τ)‖2dτ

(3.24)

+

∫ t

0

∫
R

[|ϕxψxψxx| + |Vxψxψxx| + |Uxϕxψxx|

+ |ψxx|(|Uxx| + |U2
x |)](τ, x)dxdτ

}
.
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Due to

∫ t

0

∫
R

|(ϕxψxψxx)(τ, x)|dxdτ

≤ O(1)

∫ t

0

‖ϕx(τ)‖‖ψx(τ)‖ 1
2 ‖ψxx(τ)‖ 3

2 dτ(3.25)

≤ 1

4

∫ t

0

‖ψxx(τ)‖2dτ +O(1)N(t)4
∫ t

0

‖ψx(τ)‖2dτ,

∫ t

0

∫
R

|ψxx(τ, x)|(|Vxψx| + |Uxϕx|)(τ, x)dxdτ
(3.26)

≤ 1

4

∫ t

0

‖ψxx(τ)‖2dτ +O(1)

∫ t

0

‖(ϕx, ψx)(τ)‖2dτ,

∫ t

0

∫
R

|ψxx(τ, x)|(|Uxx| + |U2
x |)(τ, x)dxdτ

≤ 1

4

∫ t

0

‖ψxx(τ)‖2dτ +O(1)

∫ t

0

(‖Uxx(τ)‖2 + |Ux(τ)|44
)
dτ(3.27)

≤ 1

4

∫ t

0

‖ψxx(τ)‖2dτ +O(1)ε
1
4 ,

inserting (3.25)–(3.27) into (3.24), we deduce from (3.23) that

‖ψx(t)‖2 +

∫ t

0

‖ψxx(τ)‖2dτ ≤ C(η){‖(ϕ0, ψ0, φ0)‖2
1 + ε

1
4 }.(3.28)

Finally, we estimate ‖φx(t)‖2. To do so, we multiply (3.2)3 by −φxx(t, x) to get

(
φ2
x

2

)
t

+
κ

veθ(v, θ)
φ2
xx − (φxφt)x

=
θpθ(v, θ)

eθ(v, θ)
ψxφxx

+

{
κ

eθ(v, θ)

ϕxφx
v2

− µ

eθ(v, θ)

ψ2
x

v
+ Ux

[
θpθ(v, θ)

eθ(v, θ)
− Θpθ(V,Θ)

eθ(V,Θ)

]}
φxx(3.29)

+

{
κ

eθ(v, θ)

(
Vxφxφxx

v2
+

Θxϕxφxx
v2

)
− 2µ

eθ(v, θ)

Vxψxφxx
v

}

− κ

eθ(v, θ)

Θxxφxx
v

+

{
κ

eθ(v, θ)

VxΘxφxx
v2

+
µ

eθ(v, θ)

U2
xφxx
v

}
.

Integrating (3.29) with respect to t and x over [0, t]×R, we get from (3.7), (3.10),
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and (3.11) that

‖φx(t)‖2 +

∫ t

0

‖φxx(τ)‖2dτ

≤ C(η)

{
‖φ0x‖2 +

∫ t

0

‖ψx(τ)‖2dτ

+

∫ t

0

∫
R

[|φxx|(|ϕxφx| + |ψ2
x|) + |Uxφxx|(|φ| + |ϕ|)(3.30)

+ |φxx|(|Vxφx| + |Θxϕx| + |Uxψx|)

+ |φxx|(|Uxx| + |Ux|2)](τ, x)dxdτ
}
.

Since

∫ t

0

∫
R

|(ϕxφxφxx)(τ, x)|dxdτ

≤ O(1)

∫ t

0

‖ϕx(τ)‖‖φx(τ)‖ 1
2 ‖φxx(τ)‖ 3

2 dτ(3.31)

≤ 1

8

∫ t

0

‖φxx(τ)‖2dτ +O(1)N(t)4
∫ t

0

‖φx(τ)‖2dτ,∫ t

0

∫
R

|(ψ2
xφxx)(τ, x)|dxdτ

≤ O(1)

∫ t

0

‖ψx(τ)‖ 3
2 ‖ψxx(τ)‖ 1

2 ‖φxx(τ)‖dτ(3.32)

≤ 1

8

∫ t

0

‖φxx(τ)‖2dτ +O(1)N(t)
3
2

∫ t

0

(‖ψx(τ)‖2 + ‖ψxx(τ)‖2
)
dτ,

∫ t

0

∫
R

|(Uxφxx)(τ, x)|(|ϕ| + |φ|)(τ, x)dxdτ
(3.33)

≤ 1

8

∫ t

0

‖φxx(τ)‖2dτ +O(1)

∫ t

0

‖
√
Vt(τ)(ϕ, φ)(τ)‖2dτ,

∫ t

0

∫
R

|φxx(τ, x)|(|Vxφx| + |Θxϕx| + |Uxψx|)(τ, x)dxdτ
(3.34)

≤ 1

8

∫ t

0

‖φxx(τ)‖2dτ +O(1)

∫ t

0

‖(ϕx, ψx, φx)(τ)‖2
dτ,

∫ t

0

∫
R

|φxx(τ, x)|(|Uxx| + |U2
x |)(τ, x)dxdτ

≤ 1

8

∫ t

0

‖φxx(τ)‖2dτ +O(1)

∫ t

0

(‖Uxx(τ)‖2 + |Ux(τ)|44
)
dτ(3.35)

≤
∫ t

0

‖φxx(τ)‖2dτ +O(1)ε
1
4 ,
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we have from (3.30)–(3.35), (3.23), and (3.28) that

‖φx(t)‖2 +

∫ t

0

‖φxx(τ)‖2dτ ≤ C(η){‖(ϕ0, ψ0, φ0)‖2
1 + ε

1
4 }.(3.36)

Putting (3.23), (3.28), and (3.36) together, we get that

‖(ϕ,ψ, φ)(t)‖2
1 +

∫ t

0

{‖
√
Vt(τ)(ϕ(τ), φ(τ))‖2 + ‖(ϕx, ψx, φx)(τ)‖2

1}dτ
(3.37)

≤ C(η){‖(ϕ0, ψ0, φ0)‖2
1 + ε

1
4 }.

By repeating the same argument, we can deduce that

‖(ϕxx, ψxx, φxx)(t)‖2 +

∫ t

0

‖(ψxxx, φxxx, ϕxx)(τ)‖2dτ

(3.38)
≤ C(η){‖(ϕ0, ψ0, φ0)‖2

2 + ε
1
4 },

and (3.8) follows immediately from (3.37) and (3.38). This completes the proof of
Theorem 1.1.

4. The proof of Theorem 1.2. Note that for the ideal polytropic gas, p(v, θ)
and e(v, θ) satisfy the special constitutive relations (1.19). From (1.19) and the as-
sumptions listed in Theorem 1.2, we can get

‖φ0‖2 ≤ C(Θ,Θ, V , V )(γ − 1)‖(ϕ0, ξ0)‖2.(4.1)

Moreover, the entropy η(v, u, θ;V,U,Θ) defined by (1.14) takes the form

η(v, u, θ;V,U,Θ) = RΘΦ
( v
V

)
+

1

2
(u− U)2 +

RΘ

γ − 1
Φ

(
θ

Θ

)
(4.2)

with

Φ(s) = s− ln s− 1.(4.3)

Since we want to get a global stability result, the techniques used in section 3 no
longer apply. To overcome this difficulty, our main idea is the following: we look for
solution (ϕ(t, x), ψ(t, x), φ(t, x)) of (3.1), (3.2) in the solution space

X(0,∞) :=
⋃

0<m<m<∞,0<M<∞

⋂
0≤t1<t2<∞

Xm,m,M (t1, t2; Θ,Θ),

where for t1, t2 (0 ≤ t1 < t2 <∞) and m, m, M (0 < m < m <∞, 0 < M <∞),

Xm,m,M (t1, t2; Θ,Θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ϕ,ψ, φ)(t, x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ϕ,ψ, φ)(t, x) ∈ C0([t1, t2];H
2(R))

(ψx, φx)(t, x) ∈ L2(t1, t2;H
2(R))

0 < Θ ≤ φ(t, x) + Θ(t, x) ≤ Θ

0 < m ≤ ϕ(t, x) + V (t, x) ≤ m

sup
[t1,t2]

{‖(ϕ,ψ, φ)(t, x)‖2} ≤M

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(4.4)
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By the local existence result established in [15] and [21] and from the assump-
tions listed in Theorem 1.2, we know that the Cauchy problem (3.1), (3.2) admits
a unique smooth solution (ϕ,ψ, φ)(t, x) ∈ XV ,V ,M (0, t0 : Θ,Θ) for some sufficiently

small positive constant t0 > 0 with M = 2‖(ϕ0, ψ0, φ0)‖2. Now suppose that such a
solution has been extended to the time step t = T with (ϕ,ψ, φ)(t, x) ∈ X(0, T ) for
some T > 0 and satisfies the following a priori estimates: For each (t, x) ∈ [0, T ]×R,{

0 < m1 ≤ v(t, x) = ϕ(t, x) + V (t, x) ≤M1,

0 < Θ ≤ θ(t, x) = φ(t, x) + Θ(t, x) ≤ Θ.
(4.5)

Based on the a priori assumption (4.5), if we can show that there exists a posi-
tive constant C2(Θ,Θ, V , V ) which depends only on Θ, Θ, V , V , the initial data
(ϕ0(x), ψ0(x), φ0(x)), and the system but is independent of m1,M1 such that for
(t, x) ∈ [0, T ] × R,{

0 < (C2(Θ,Θ, V , V ))−1 ≤ v(t, x) = ϕ(t, x) + V (t, x) ≤ C2(Θ,Θ, V , V ),

0 < Θ < θ(t, x) = φ(t, x) + Θ(t, x) < Θ,
(4.6)

then, by combining the local existence result with the continuity argument, we can
prove Theorem 1.2 easily. Thus, in the rest of this section, we pay our attention only
to deducing (4.6) based on the a priori assumptions (4.5).

First, from (3.12), (1.19), (4.2), and (4.3), we have∫
R

{
RΘΦ

( v
V

)
+

1

2
ψ2 +

RΘ

γ − 1
Φ

(
θ

Θ

)}
(t, x)dx

+

∫ t

0

∫
R

{
µΘ

ψ2
x

vθ
+ κΘ

φ2
x

vθ2

}
(τ, x)dxdτ

(4.7)

+

∫ t

0

∫
R

{p̃v(v, s) − p̃v(V, s)ϕ− p̃s(V, s)ξ} (τ, x)Ux(τ, x)dxdτ

=

∫
R

{
RΘΦ

( v
V

)
+

1

2
ψ2 +

RΘ

γ − 1
Φ

(
θ

Θ

)}
(0, x)dx+

8∑
j=6

Rj .

Here⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R6 =

∫ t

0

∫
R

{
−µUxψϕx

v2
+ 2µ

Uxψxφ

vθ
− κ

Θxφϕx
v2θ

+ κ
Θxφφx
vθ2

}
(τ, x)dxdτ,

R7 =

∫ t

0

∫
R

(
µ
Uxxψ

v
+ κ

Θxxφ

vθ

)
(τ, x)dxdτ,

R8 =

∫ t

0

∫
R

(
−µVxUxψ

v2
+ µ

U2
xφ

vθ
+
VxΘxφ

v2θ

)
(τ, x)dxdτ.

From the assumptions listed in Theorem 1.2 and the a priori assumptions (4.5),
we have from (4.7) that∫

R

{
Φ
( v
V

)
+ ψ2 +

φ2

γ − 1

}
(t, x)dx+

∫ t

0

∫
R

{
ψ2
x

v
+
φ2
x

v

}
(τ, x)dxdτ

(4.8)

≤ C
(
Θ,Θ, V , V

) ∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥+

8∑
j=6

R′
j ,
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where R′
j = C(Θ,Θ, V , V )Rj . Note that such a C(Θ,Θ, V , V ) is independent of m1

and M1.
Now we estimate R′

j (j = 6, 7, 8) term by term. First, from the a priori estimates
(4.5)2, we have for each given α > 0 that

R′
6 ≤

∫ t

0

∫
R

(
α
ϕ2
x

v3
+
ψ2
x + φ2

x

4v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

) ∫ t

0

∫
R

(
ψ2

v
+
φ2

v

)
(τ, x)|U2

x(τ, x)|dxdτ

≤
∫ t

0

∫
R

(
α
ϕ2
x

v3
+
ψ2
x + φ2

x

4v

)
(τ, x)dxdτ

(4.9)

+C
(
Θ,Θ, V , V

)
C(m1,M1)

∫ t

0

∥∥∥∥
(
ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

‖Ux(τ)‖4dτ

≤
∫ t

0

∫
R

(
α
ϕ2
x

v3
+
ψ2
x + φ2

x

4v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

)
C(m1,M1)ε

1
2

∫ t

0

(1 + τ)−
3
2

∥∥∥∥
(
ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

dτ.

Similarly, we get

(4.10)

R′
7 ≤ 1

4

∫ t

0

∫
R

(
ψ2
x + φ2

x

v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

){
1 + C(m1,M1)ε

1
2

∫ t

0

(1 + τ)−
9
7

∥∥∥∥
(
ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

dτ

}

and

R′
8 ≤ C(Θ,Θ, V , V )

{
1 + C(m1,M1)ε

1
2

∫ t

0

(1 + τ)−
21
16

∥∥∥∥
(
ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

dτ

}
.

(4.11)

Inserting (4.9)–(4.11) into (4.8), we deduce that∫
R

{
Φ
( v
V

)
+ ψ2 +

φ2

γ − 1

}
(t, x)dx+

∫ t

0

∫
R

{
ψ2
x

v
+
φ2
x

v

}
(τ, x)dxdτ

≤ C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
(4.12)

+α

∫ t

0

∫
R

(
ϕ2
x

v3

)
(τ, x)dxdτ

+ C(m1,M1)ε
1
2

∫ t

0

(1 + τ)−
9
7

∥∥∥∥
(
ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

dτ

}
.

Now we turn to controlling the term
∫ t
0

∫
R

(
ϕ2
x

v3 )(τ, x)dxdτ . To this end, since for

the ideal polytropic gas, pv(v, θ) = −Rθ
v2 , pθ(v, θ) = R

v , we have from (3.18) and (4.5)2
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that

(4.13)∫
R

(
ϕ2
x

v2

)
(t, x)dx+

∫ t

0

∫
R

(
ϕ2
x

v3

)
(τ, x)dxdτ

≤ C(Θ,Θ, V , V )

{
‖(ϕ0x, ψ0)‖2

+ ‖ψ(t)‖2 +

∫ t

0

∫
R

(
ψ2
x + φ2

x

v

)
(τ, x)dxdτ

}

+
10∑
j=9

Rj .

Here

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R9 = C
(
Θ,Θ, V , V

) ∣∣∣∣
∫ t

0

∫
R

{
Vx

[
−Rθ
v2

+
RΘ

V 2

]
ϕx
v

+ Θx

[
R

v
− R

V

]
ϕx
v

+
Uxψϕx
v2

− Vxψψx
v2

}
(τ, x)dxdτ

∣∣∣∣ ,
R10 = C

(
Θ,Θ, V , V

) ∣∣∣∣
∫ t

0

∫
R

(
−µUxxϕx

v2
+ µ

Vxϕxψx
v3

+ µ
VxUxϕx
v2

)
(τ, x)dxdτ

∣∣∣∣ .

Now we estimate R9 and R10 term by term. First, for R9, we get by the Cauchy–
Schwarz inequality and (4.5) that

R9 ≤ C
(
Θ,Θ, V , V

) ∫ t

0

∫
R

{ |Vxϕx|
v3

(|ϕ|2 + |ϕ| + |φ|)

+
|ϕx(Θxϕ+ Uxψ)|

v2
+

|Vxψψx|
v3

}
(τ, x)dxdτ

≤ 1

3

∫ t

0

∫
R

(
ϕ2
x

v3
+
ψ2
x

v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

) ∫ t

0

∫
R

{
V 2
x

v3
(|ϕ|4 + |ϕ|2 + |φ|2)

+
Θ2
xϕ

2 + U2
xψ

2

v
+
V 2
x ψ

2

v5

}
(τ, x)dxdτ(4.14)

≤ 1

3

∫ t

0

∫
R

(
ϕ2
x

v3
+
ψ2
x

v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

)
C(m1,M1)

∫ t

0

|Ux(τ)|2∞
∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

dτ

≤ 1

3

∫ t

0

∫
R

(
ϕ2
x

v3
+
ψ2
x

v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

)
C(m1,M1)ε

1
2

∫ t

0

(1 + τ)−
3
2

∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

)
(τ)

∥∥∥∥
2

dτ.
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As to R10, we have

R10 ≤ 1

3

∫ t

0

∫
R

(
ϕ2
x

v3
+
ψ2
x

v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

) ∫ t

0

∫
R

{
V 2
x ϕ

2
x

v5
+
U2
xx

v
+
U4
x

v3

}
(τ, x)dxdτ

(4.15)

≤ 1

3

∫ t

0

∫
R

(
ϕ2
x

v3
+
ψ2
x

v

)
(τ, x)dxdτ

+C
(
Θ,Θ, V , V

)
C(m1,M1)ε

1
2

{∫ t

0

(1 + τ)−
3
2

∥∥∥(ϕx
v

)
(τ)

∥∥∥2

dτ + 1

}
.

Substituting (4.14) and (4.15) into (4.13), we deduce that

(4.16)∫
R

(
ϕ2
x

v2

)
(t, x)dx+

∫ t

0

∫
R

(
ϕ2
x

v3

)
(τ, x)dxdτ

≤ C
(
Θ,Θ, V , V

){
1 + ‖(ϕ0x, ψ0)‖2

+ ‖ψ(t)‖2 +

∫ t

0

∫
R

(
ψ2
x + φ2

x

v

)
(τ, x)dxdτ

}

+C
(
Θ,Θ, V , V

)
C(m1,M1)ε

1
2

{∫ t

0

(1 + τ)−
3
2

∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

,
ϕx
v

)
(τ)

∥∥∥∥
2

dτ + 1

}
.

Multiplying (4.12) by a suitably large positive constant λ and adding the result
to (4.16), we have by choosing α > 0 sufficiently small that

(4.17)∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

,
ϕx
v

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥
(
ϕx

v
3
2

,
ψx√
v
,
φx√
v

)
(τ)

∥∥∥∥
2

dτ

≤ C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
2

1

}

+C
(
Θ,Θ, V , V

)
C(m1,M1)ε

1
2

{∫ t

0

(1 + τ)−
9
7

∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

,
ϕx
v

)
(τ)

∥∥∥∥
2

dτ + 1

}
.

To use the method of Kanel’ (cf. [9]) to deduce a lower bound and an upper bound
for v(t, x), we need to estimate ‖( ṽxṽ )(t)‖2, where ṽ = v

V . In fact, since

ṽx
ṽ

=
ϕx
v

−
(
Vx
v

− Vx
V

)
,

we have from (4.5)1 that∥∥∥∥
(
ṽx
ṽ

)
(t)

∥∥∥∥
2

≤ 2
∥∥∥(ϕx

v

)
(t)

∥∥∥2

+ C
(
Θ,Θ

)
C(m1,M1)‖Vx(t)‖2

(4.18)

≤ 2
∥∥∥(ϕx

v

)
(t)

∥∥∥2

+ C
(
Θ,Θ

)
C(m1,M1)ε.



1584 KENJI NISHIHARA, TONG YANG, AND HUIJIANG ZHAO

Combining (4.17) with (4.18), we can deduce that there exists a positive constant
C3(m1,M1) depending only on m1, M1 such that

(4.19)∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

,
ϕx
v
,
ṽx
ṽ

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥
(
ϕx

v
3
2

,
ψx√
v
,
φx√
v

)
(τ)

∥∥∥∥
2

dτ

≤ C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
2

1

}

+C
(
Θ,Θ, V , V

)
C3(m1,M1)ε

1
2

{∫ t

0

(1 + τ)−
9
7

∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

,
ϕx
v

)
(τ)

∥∥∥∥
2

dτ + 1

}
.

By choosing ε < 1 sufficiently small such that

C3(m1,M1)ε
1
2 < 1,(4.20)

we have from Gronwall’s inequality and (4.19) that∥∥∥∥
(√

Φ
( v
V

)
, ψ,

φ√
γ − 1

,
ϕx
v
,
ṽx
ṽ

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥
(
ϕx

v
3
2

,
ψx√
v
,
φx√
v

)
(τ)

∥∥∥∥
2

dτ

(4.21)

≤ C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
2

1

}
.

It is worth pointing out that the most important thing is that the constant on the
right-hand side of (4.21) does not depend on m1 and M1.

Now we use the method of Kanel’ to deduce the desired bounds on v(t, x). To
this end, let

Ψ (ṽ) =

∫ ṽ

1

√
Φ(η)

η
dη, Φ(η) = η − ln η − 1.(4.22)

Since

Ψ (ṽ) →
⎧⎨
⎩
−∞ as ṽ → 0+,

+∞ as ṽ → +∞
(4.23)

and

|Ψ (ṽ(t, x))| =

∣∣∣∣
∫ x

−∞

∂

∂y
Ψ (ṽ(t, y)) dy

∣∣∣∣ ≤ 1

2

∫
R

(
Φ
( v
V

)
+

(
ṽx
ṽ

)2
)

(t, x)dx,(4.24)

(4.6)1 follows from (4.21)–(4.24).
Having obtained (4.6)1, we deduce from (4.21) that∥∥∥∥

(
ϕ,ψ,

φ√
γ − 1

, ϕx

)
(t)

∥∥∥∥
2

+

∫ t

0

‖(ϕx, ψx, φx) (τ)‖2
dτ

(4.25)

≤ C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
2

1

}
.
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With (4.6)1 and (4.25) in hand, similar to the argument used in section 2, we can
get from the a priori assumption (4.5)2 that

∥∥∥∥
(
ϕx, ψx,

φx√
γ − 1

)
(t)

∥∥∥∥
2

+

∫ t

0

‖(ψxx, φxx) (τ)‖2
dτ

(4.26)

≤ C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
2

1

}
.

From (4.25) and (4.26), we get from (4.1) that

‖φ(t)‖2 + ‖φx(t)‖2 ≤ (γ − 1)C
(
Θ,Θ, V , V

){
1 +

∥∥∥∥
(
ϕ0, ψ0,

φ0√
γ − 1

)∥∥∥∥
2

1

}
(4.27) ≤ (γ − 1)C(Θ,Θ, V , V ){1 + ‖(ϕ0, ψ0, ξ0)‖2

1}.

Consequently,

sup
[0,T ]

|φ(t)|∞ ≤ sup
[0,T ]

{‖φ(t)‖ 1
2 ‖φx(t)‖ 1

2 }
(4.28) ≤ (γ − 1)C(Θ,Θ, V , V ){1 + ‖(ϕ0, ψ0, ξ0)‖2

1}.

By choosing γ − 1 sufficiently small such that

(γ − 1)C(Θ,Θ, V , V ){1 + ‖(ϕ0, ψ0, ξ0)‖2
1} < min

{
Θ

2
,Θ

}
,

we have for each (t, x) ∈ [0, T ] × R that

θ(t, x) = Θ(t, x) + φ(t, x) ≤ Θ

2
+ (γ − 1)C(Θ,Θ, V , V ){1 + ‖(ϕ0, ψ0, ξ0)‖2

1} < Θ

and

θ(t, x) = Θ(t, x) + φ(t, x) ≥ 2Θ − (γ − 1)C(Θ,Θ, V , V ){1 + ‖(ϕ0, ψ0, ξ0)‖2
1} > Θ.

This proves (4.6)2. Note that the results of the above analysis also indicate that if
‖(ϕ0(x), ψ0(x), ξ0(x))‖1 is bounded by a constant independent of 1

ε , then the constant

C2(Θ,Θ, V , V ) in (4.6) can also be chosen independent of 1
ε . Thus from (4.20) and the

continuity argument, to prove Theorem 1.2, we need only to take the fixed positive
constant ε such that



1586 KENJI NISHIHARA, TONG YANG, AND HUIJIANG ZHAO

0 < ε < min{1, (C3(V , V ))−2, (C3((C2(Θ,Θ, V , V ))−1, C2(Θ,Θ, V , V )))−2}.

This completes the proof of Theorem 1.2.

5. The proof of Theorem 1.3. In this section, we use the main idea used in
proving Theorem 1.2 to prove Theorem 1.3. To do so, let (ϕ,ψ) = (v − V , u− U); it
is easy to check that (ϕ,ψ) solves

⎧⎪⎨
⎪⎩

ϕt − ψx = 0,

ψt + [p(ϕ+ V ) − p(V )]x − µ

(
ux
v

− Ux

V

)
x

= µ

(
Ux

V

)
x

,
(5.1)

with initial data

(ϕ,ψ)(t, x)|t=0 = (ϕ0, ψ0)(x) = (v0(x) − V (0, x), u0(x) − U(0, x)).(5.2)

Similar to the proof of Theorem 1.2, all that we need to do is to show that, under
the a priori assumption

0 < m1 ≤ v(t, x) = ϕ(t, x) + V (t, x) ≤M1 ∀(t, x) ∈ [0, T ] × R(5.3)

for some T > 0, one can indeed deduce that there exists a positive constant C4(V , V ) >
0 which depends only on the initial data (ϕ0(x), ψ0(x)) and the system but is
independent of m1 and M1 such that

0 <
(
C4

(
V , V

))−1 ≤ v(t, x) = ϕ(t, x) + V (t, x)
(5.4) ≤ C4

(
V , V

) ∀(t, x) ∈ [0, T ] × R.

To prove (5.4), we first perform some energy estimates. First, multiplying (5.1)1
by [p(V )−p(V +ϕ)], (5.1)2 by ψ, adding the resultant two identities, and integrating
it with respect to t and x over [0, t] × R, we have from the assumptions listed in
Theorem 1.3 and some integrations by parts that

∥∥∥∥
(√

Φ(v, V ), ψ

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥
(
ψx√
v

)
(τ)

∥∥∥∥
2

dτ

≤ C
(
V , V

){ ‖(ϕ0, ψ0)‖2
(5.5)

+

∫ t

0

∫
R

(∣∣∣∣V xψxϕv

∣∣∣∣ + |ψ|(|Uxx| + |U2

x|)
)

(τ, x)dxdτ

}
.

Here Φ(v, V ) = p(V )ϕ− ∫ v
V
p(s)ds.

By exploiting the same argument to estimate R′
j(j = 6, 7, 8), we can get from the

a priori assumption (5.3) that
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C
(
V , V

) ∫ t

0

∫
R

(∣∣∣∣V xψxϕv

∣∣∣∣ + |ψ|(|Uxx| + |U2

x|)
)

(τ, x)dxdτ

≤ 1

2

∫ t

0

∥∥∥∥
(
ψx√
v

)
(τ)

∥∥∥∥
2

dτ(5.6)

+C
(
V , V

)
C(m1,M1)ε

1
2

{
1 +

∫ t

0

(1 + τ)−
7
6

∥∥∥∥
(√

Φ(v, V ), ψ

)
(τ)

∥∥∥∥
2

dτ

}
.

Combining (5.6) with (5.5), we deduce that

∥∥∥∥
(√

Φ(v, V ), ψ

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥
(
ψx√
v

)
(τ)

∥∥∥∥
2

dτ

≤ C(V , V ){1 + ‖(ϕ0, ψ0)‖2}(5.7)

+C
(
V , V

)
C(m1,M1)ε

1
2

{
1 +

∫ t

0

(1 + τ)−
7
6

∥∥∥∥
(√

Φ(v, V ), ψ

)
(τ)

∥∥∥∥
2

dτ

}
.

Second, similar to (3.18), we have from (5.1) that

[
µ

2

(ϕx
v

)2

− ϕx
v
ψ

]
t

− ψ2
x

v
− p′

(
ϕ+ V

) ϕ2
x

v

= [p′(ϕ+ V ) − p′(V )]
V xϕx
v

− µ
Uxxϕx
v2

+ µ
V xϕxψx

v3
+ µ

V xUxϕx
v3

(5.8)

−
(
ψψx
v

)
x

− ψψxV x − ψϕxUx
v2

.

Integrating (5.8) with respect to t and x over [0, t]×R, we have by some integra-
tions by parts that

∫
R

{
µ

2

(ϕx
v

)2

− ϕx
v
ψ

}
(t, x)dx−

∫ t

0

∫
R

(
p′
(
V + ϕ

) ϕ2
x

v

)
(τ, x)dxdτ

=

∫
R

{
µ

2

(
ϕ0x

v0

)2

− ϕ0x

v0
ψ0

}
(x)dx+

∫ t

0

∫
R

(
ψ2
x

v

)
(τ, x)dxdτ

+

∫ t

0

∫
R

([
p′
(
ϕ+ V

)− p′
(
V
) ]V xϕx

v

)
(τ, x)dxdτ(5.9)

−µ
∫ t

0

∫
R

(
Uxxϕx
v2

)
(τ, x)dxdτ + µ

∫ t

0

∫
R

(
V xϕxψx

v3

)
(τ, x)dxdτ

+µ

∫ t

0

∫
R

(
V xUxϕx

v3

)
(τ, x)dxdτ −

∫ t

0

∫
R

(
V xψψx − Uxϕxψ

v2

)
(τ, x)dxdτ.
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Noticing the a priori assumption (5.3) on v(t, x), we have from the Cauchy–
Schwarz inequality that

∫ t

0

∫
R

(
[p′(ϕ+ V ) − p′(V )]

V xϕx
v

)
(τ, x)dxdτ

≤ C(m1,M1)

∫ t

0

|V x(τ)|∞‖ϕ(τ)‖‖ϕx(τ)‖dτ

≤ C(m1,M1)

∫ t

0

|V x(τ)|∞
∥∥∥∥
√

Φ(v, V )(τ)

∥∥∥∥
∥∥∥∥∥∥
⎛
⎝
√

−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥ dτ(5.10)

≤ 1

6

∫ t

0

∥∥∥∥∥∥
⎛
⎝
√

−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
2

dτ

+C(m1,M1)ε
1
2

∫ t

0

(1 + τ)−
3
2

∥∥∥∥
√

Φ(v, V )(τ)

∥∥∥∥
2

dτ,

µ

∫ t

0

∫
R

(
Uxxϕx
v2

)
(τ, x)dxdτ

≤ C(m1,M1)

∫ t

0

∥∥∥∥∥∥
⎛
⎝
√

−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
∥∥Uxx(τ)∥∥ dτ(5.11)

≤ 1

6

∫ t

0

∥∥∥∥∥∥
⎛
⎝
√

−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
2

dτ + C(m1,M1)ε
1
2 ,

µ

∫ t

0

∫
R

(
V xψxϕx

v3

)
(τ, x)dxdτ

≤ C(m1,M1)

∫ t

0

∣∣V x(τ)∣∣∞
∥∥∥∥
(
ψx√
v

)
(τ)

∥∥∥∥∥∥∥(ϕxv
)

(τ)
∥∥∥ dτ(5.12)

≤
∫ t

0

∥∥∥∥
(
ψx
v

)
(τ)

∥∥∥∥
2

dτ + C(m1,M1)ε
1
2

∫ t

0

(1 + τ)−
3
2

∥∥∥(ϕx
v

)
(τ)

∥∥∥2

dτ,

µ

∫ t

0

∫
R

(
V xUxϕx

v3

)
(τ, x)dxdτ

≤ C (m1,M1)

∫ t

0

∥∥∥∥∥∥
⎛
⎝
√

−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
∣∣V x(τ)∣∣24 dτ(5.13)

≤ 1

6

∫ t

0

∥∥∥∥∥∥
⎛
⎝
√

−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
2

dτ + C (m1,M1) ε
1
2 ,
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and

µ

∫ t

0

∫
R

(
V xψxψ − Uxψϕx

v2

)
(τ, x)dxdτ

≤ C(m1,M1)

∫ t

0

|V x(τ)|∞(‖ψx(τ)‖‖ψ(τ)‖ + ‖ϕx(τ)‖‖ψ(τ)‖)dτ

≤ C(m1,M1)

∫ t

0

|V x(τ)|∞
⎛
⎝∥∥∥∥

(
ψx√
v

)
(τ)

∥∥∥∥ ‖ψ(τ)‖
(5.14)

+

∥∥∥∥∥∥
⎛
⎝
√

−p′ (V + ϕ
)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥ ‖ψ(τ)‖
⎞
⎠ dτ

≤ 1

6

∫ t

0

∥∥∥∥∥∥
⎛
⎝
√

−p′ (V + ϕ
)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
2

dτ +

∫ t

0

∫
R

(
ψ2
x

v

)
(τ)dxdτ

+C (m1,M1) ε
1
2

∫ t

0

(1 + τ)−
3
2 ‖ψ(τ)‖2dτ.

Substituting (5.10)–(5.14) into (5.9), we arrive at∫
R

{
µ

2

(ϕx
v

)2

− ϕx
v
ψ

}
(t, x)dx−

∫ t

0

∫
R

(
p′
(
V + ϕ

) ϕ2
x

v

)
(τ, x)dxdτ

≤ C
(
V , V

){
1 + ‖(ϕ0x, ψ0)‖2

+

∫ t

0

∫
R

(
ψ2
x

v

)
(τ, x)dxdτ

}
(5.15)

+C(m1,M1)ε
1
2

{
1 +

∫ t

0

(1 + τ)−
3
2

∥∥∥∥
(√

Φ(v, V ), ψ,
ϕx
v

)
(τ)

∥∥∥∥
2

dτ

}
.

Based on (5.7) and (5.15), we conclude that there exists a positive constant
C5(m1,M1) such that

∥∥∥∥
(√

Φ(v, V ), ψ,
ϕx
v

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥∥∥
⎛
⎝ ψx√

v
,

√
−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
2

dτ

≤ C(V , V )(1 + ‖(ϕ0, ψ0)‖2
1)(5.16)

+C5(m1,M1)ε
1
2

{
1 +

∫ t

0

(1 + τ)−
7
6

∥∥∥∥
(√

Φ(v, V ), ψ,
ϕx
v

)
(τ)

∥∥∥∥
2

dτ

}
.

Furthermore, similar to the proof of (4.18), we have from (5.3) that there exists
a constant C6(m1,M1) > 0 such that∥∥∥∥

(
ṽx
ṽ

)
(t)

∥∥∥∥
2

≤ 2
∥∥∥(ϕx

v

)
(t)

∥∥∥2

+ C(V , V )C6(m1,M1)ε
1
2 .(5.17)

Here ṽ = v

V
.

From (5.16) and (5.17), if we choose ε sufficiently small such that

0 < ε < min{1, (C5(m1,M1))
−2, (C6(m1,M1))

−2},(5.18)
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then we can get from (5.16)–(5.18) and the Gronwall inequality that

∥∥∥∥
(√

Φ(v, V ), ψ,
ϕx
v
,
ṽx
ṽ

)
(t)

∥∥∥∥
2

+

∫ t

0

∥∥∥∥∥∥
⎛
⎝ ψx√

v
,

√
−p′(V + ϕ)

v
ϕx

⎞
⎠ (τ)

∥∥∥∥∥∥
2

dτ

(5.19) ≤ C(V , V )(1 + ‖(ϕ0, ψ0)‖2
1).

Here note also that the right-hand side of (5.19) is independent of m1 and M1.
Now we try to use (5.19) and the method of Kanel’ to deduce a lower and an

upper bound for v(t, x). For this purpose, we first give the following two assertions.
Assertion A. There exists a positive constant C7 > 0 such that

lim
v→0+

Φ(v, V )(1 + ṽ)

(1 − ṽ)2
≥ C7.(5.20)

Assertion B. There exists a positive constant C8 > 0 such that

lim
v→+∞

Φ(v, V )(1 + ṽ)

(1 − ṽ)2
≥ C8.(5.21)

To go directly to the proof of (5.4), we postpone the proof of the above two
assertions to the end of this section.

From (5.20) and (5.21), we can conclude that there exists a suitably large fixed
positive constant M such that⎧⎪⎪⎨

⎪⎪⎩
Φ(v, V ) ≥ C7

2

(1 − ṽ)2

1 + ṽ
for 0 < v ≤ 1

M
,

Φ(v, V ) ≥ C8

2

(1 − ṽ)2

1 + ṽ
for M ≤ v <∞.

(5.22)

Thus if we set C9 := min[ 1
M ,M ]{Φ(v,V )(1+ṽ)

(1−ṽ)2 } > 0 and let C10 := min{C7

2 ,
C8

2 , C9}>
0, we get

Φ(v, V ) ≥ C10
(1 − ṽ)2

1 + ṽ
:= Φ(ṽ).(5.23)

Here

Φ(ṽ) =
(1 − ṽ)2

1 + ṽ
∼
⎧⎨
⎩

1 as ṽ → 0+,

ṽ as ṽ → +∞.
(5.24)

Combining (5.19) with (5.23), we deduce that∫
R

Φ(ṽ(t, x))dx ≤ C(V , V )
{
1 + ‖(ϕ0, ψ0)‖2

1

}
.(5.25)

Having obtained (5.25), similar to the proof of (4.6)2, we set

Ψ(ṽ) =

∫ ṽ

1

√
Φ(η)

η
dη,
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and we get from (5.24) that

Ψ(ṽ) →
⎧⎨
⎩
−∞ as ṽ → 0+,

+∞ as ṽ → +∞.

The above observation, together with the fact that

∣∣Ψ(ṽ(t, x))
∣∣ =

∣∣∣∣
∫ x

−∞

∂Ψ(ṽ(t, y))

∂y
dy

∣∣∣∣ ≤
∥∥∥∥
√

Φ(ṽ(t))

∥∥∥∥
∥∥∥∥
(
ṽx
ṽ

)
(t)

∥∥∥∥ <∞,

proves (5.4). Having obtained (5.4), the proof of Theorem 1.3 is completely similar
to that of Theorem 1.2, and the details are omitted.

Now we turn to proving Assertion A and Assertion B. First, we prove Assertion A.
For this purpose, we need only to consider the following two cases.

Case A1. p(v) is integrable at v = 0, i.e.,
∫ V
0
p(s)ds < ∞. In such a case, we

have

lim
v→0+

Φ(v, V )(1 + ṽ)

(1 − ṽ)2
= −V p (V ) +

∫ V

0

p(s)ds.(5.26)

Since 0 < v− ≤ V (t, x) ≤ v+ (here we have used the fact that for the 1-rarefaction
wave, V x(t, x) > 0, but such an assumption is not essential) and d

dv (−vp(v) +∫ v
0
p(s)ds)=−vp′(v)>0, we can easily deduce that (5.20) holds with C7 = −v−p(v−)+∫ v−

0
p(s)ds.

Case A2. p(v) is not integrable at v = 0, i.e.,
∫ V
0
p(s)ds = ∞. In such a case,

(5.20) holds trivially.

This proves Assertion A.

As to Assertion B, since p′(v) < 0, and p(v) > 0 for each v > 0, we can conclude
that there exists a constant p∞ ≥ 0 such that

lim
v→+∞ p(v) = p∞, p∞ < p(v+) ≤ p(V (t, x)),(5.27)

for all (t, x) ∈ [0, T ] × R.

Equation (5.27) implies that there exists a suitably chosen fixed constant N >
v+ > 0 such that for v ≥ N > v+ > 0,

∫ v

N

p(s)ds <

∫ v

N

(
p∞ +

p(v+) − p∞
2

)
ds =

p(v+) + p∞
2

(v −N).
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Consequently, for v ≥ N > v+ > 0,

Φ
(
v, V

)
(1 + ṽ)

(1 − ṽ)2
=

1 + ṽ

(1 − ṽ)2

(
p
(
V
) (
v − V

)− ∫ v

V

p(s)ds

)

≥ 1 + ṽ

(1 − ṽ)2

((
p
(
V
)− p(v+) + p∞

2

)
v − V p

(
V
)

+
p(v+) + p∞

2
N −

∫ N

V

p(s)ds

)
(5.28)

>
1 + ṽ

(1 − ṽ)2

(
p(v+) − p∞

2
v − V p

(
V
)

+
p(v+) + p∞

2
N −

∫ N

V

p(s)ds

)
.

From (5.28) and (5.27), we can immediately deduce (5.21). This proves Asser-
tion B.

6. The proof of Theorem 1.5. This section is devoted to proving Theorem

1.5. For this purpose, letting (ϕ,ψ) = (v − V , u− U), we deduce that (ϕ,ψ) solves

⎧⎪⎪⎨
⎪⎪⎩

ϕt − ψx = 0,

ψt +
[
p
(
ϕ+ V

)
− p

(
V
)]

x
− µ

(
ux
v

− Ux

V

)
x

= Gx,
(6.1)

with initial data

(ϕ,ψ)(t, x)|t=0 = (ϕ0, ψ0)(x) =
(
v0(x) − V (0, x), u0(x) − U(0, x)

)
.(6.2)

Here

Gx(t, x) = µ

(
U

V

)
x

(t, x) − g
(
V
)
x

(t, x).(6.3)

Multiplying (6.1)2 by ψ, (6.1)1 by [p(V )−p(v)], adding the results, and integrating
it with respect to t and x over [0, t) × R we deduce

1

2
‖ψ(t)‖2 +

∫
R

Φ
(
v, V

)
(t)dx

+

∫ t

0

∫
R

{
µ
ψ2
x

v
− µ

V tψxϕ

vV
+
(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
V t

}
dxdτ(6.4)

=
1

2
‖ψ0‖2 +

∫
R

Φ
(
v0, V (0, x)

)
dx+

∫ t

0

∫
R

Gx(τ)ψ(τ)dxdτ.

If we put p(v)−p(V )−p′(V )ϕ = f(v, V )ϕ2 and regard the three terms in the inte-

grand in the third term of (6.4) as a quadratic equation of
√
µ ψx√

v
and

√
f(v, V )V tϕ,
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then the discriminant is

D = µ
V t

V
2
vf

(
v, V

) − 4.

Noting that from (1.26) we can deduce that

1

vf
(
v, V

) =

(
v − V

)2

v
(
p(v) − p

(
V
)
− p′

(
V
)(

v − V
))

is bounded as v → +∞ and the assumption (1.39) indicates that 1

vf(v,V )
≤ C1V

2
as

v → 0+, we have that there exists a positive constant C11 > 0 such that

1

vf
(
v, V

) ≤ C11V
2
.(6.5)

On the other hand, we get from Lemma 2.3 that∣∣∣V t(t, x)∣∣∣ ≤ C12(q)δε(6.6)

for some positive constant C12(q) > 0.
Thus if we choose ε > 0 as

ε =
2

µC11C12(q)δ
, i.e., ε = ε(δ),(6.7)

we have D ≤ −2 < 0, and, consequently, there exists a constant C13 > 0 such that∫ t

0

∫
R

{
µ
ψ2
x

v
− µ

V tψxϕ

vV
+
(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
V t

}
dxdτ

(6.8)

≥ C13

∫ t

0

∫
R

{
ψ2
x

v
+

∣∣∣∣∣V tψxϕv

∣∣∣∣∣ +
(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
V t

}
dxdτ.

Furthermore, from Lemma 2.3 we deduce that∫ t

0

∫
R

Gx(τ)ψ(τ)dxdτ ≤
∫ t

0

‖Gx(τ)‖‖ψ(τ)‖dτ

≤
∫ t

0

‖Gx(τ)‖dτ +

∫ t

0

‖Gx(τ)‖‖ψ(τ)‖2dτ(6.9)

≤ O(1)

(
1 +

∫ t

0

‖Gx(τ)‖‖ψ(τ)‖2dτ

)
.

Inserting (6.8) and (6.9) into (6.4), we have from Lemma 2.3 and the Gronwall
inequality that

1

2
‖ψ(t)‖2 +

∫
R

Φ
(
v, V

)
(t)dx

+

∫ t

0

∫
R

{
ψ2
x

v
+

∣∣∣∣∣V tψxϕv

∣∣∣∣∣ +
(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
V t

}
dxdτ(6.10)

≤ O(1)(1 + ‖(ϕ0, ψ0)‖2).



1594 KENJI NISHIHARA, TONG YANG, AND HUIJIANG ZHAO

Next we rewrite (6.1)2 to the form of ṽ = v

V
:

(
µ
ṽx
ṽ

− ψ

)
t

+ V |p′(v)|ṽx =
(
vp′(v) − V p′

(
V
)) V x

V
−Gx.(6.11)

Multiplying (6.11) by ṽx
ṽ and integrating the results with respect to t and x over

[0, t) × R gives

∫
R

(
µ

2

(
ṽx
ṽ

)2

− ψ
ṽx
ṽ

)
(τ)dx

∣∣∣∣∣
τ=t

τ=0

+

∫ t

0

∫
R

V
2|p′(v)|ṽ2

x

v
dxdτ

(6.12)

=

∫ t

0

∫
R

V x

V

(
vp′(v) − V p′

(
V
)) ṽx

ṽ
dxdτ −

∫ t

0

∫
R

Gx
ṽx
ṽ
dxdτ.

We now estimate the two terms in the right-hand side of (6.12) term by term.
First, similar to the proof of (6.9), we get that

−
∫ t

0

∫
R

Gx
ṽx
ṽ
dxdτ ≤ O(1)

(
1 +

∫ t

0

‖Gx(τ)‖
∥∥∥∥
(
ṽx
ṽ

)
(τ)

∥∥∥∥
2

dτ

)
.(6.13)

To deal with the other term, we decompose it into two parts:

∫ t

0

∫
R

V x

V

(
vp′(v) − V p′

(
V
)) ṽx

ṽ
dxdτ

=

(∫ ∫
Ω1

+

∫ ∫
Ω2

)
V x

V

(
vp′(v) − V p′

(
V
)) ṽx

ṽ
dxdτ(6.14)

= R11 +R12,

where Ω1 = {(τ, x) | 0 < v(τ, x) ≤ 1, 0 ≤ τ ≤ t}, Ω2 = {(τ, x) | v(τ, x) ≥ 1, 0 ≤ τ ≤ t}.
To bound R11 and R12, we note first from the assumption (1.39) that

R11 ≤ 1

4

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ +O(1)

∫ ∫
Ω1

V
2

x

(
vp′(v) − V p′

(
V
))2

vp′(v)
dxdτ

≤ 1

4

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ +O(1)

∫ ∫
Ω1

V
2

xv|p′(v)|dxdτ

≤ 1

4

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ +O(1)

∫ ∫
Ω1

V
2

xp(v)dxdτ(6.15)

≤ 1

4

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ

+O(1)

∫ t

0

∫
R

V t

(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
dxdτ.

As to R12, we note first from (1.26) that for v ≥ 1,

v|p′(v)| ≤ p(1) − p′(1),(6.16)
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which follows from

p(v) = p(1) +

∫ v

1

p′(s)ds ≤ p(1) −
∫ v

1

(−p′(s))ds
≤ p(1) − (−p′(v))(v − 1) = p(1) − p′(v) + p′(v)v
≤ p(1) − p′(1) + vp′(v).

Hence for σ � 1, we have from (6.16) that

R12 ≤ O(1)

∫ ∫
Ω2

∣∣∣V x∣∣∣ ṽx
ṽ
dxdτ

≤
∫ ∫

Ω2

∣∣∣V x∣∣∣ ṽdxdτ +O(1)

∫ ∫
Ω2

∣∣∣V x∣∣∣ ṽ2
x

ṽ3
dxdτ

≤ O(1)

∫ t

0

∫
R

V t

(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
dxdτ

+O(1)

∫ ∫
Ω2

( |p′(v)|
v

ṽ2
x

) 1
σ ∣∣∣V x∣∣∣ (v|p′(v)|)− 1

σ
1

v

(
ṽx
ṽ

) 2(σ−1)
σ

dxdτ(6.17)

≤ O(1)

∫ t

0

∫
R

V t

(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
dxdτ

+
1

4

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ

+O(1)

∫ ∫
Ω2

∣∣∣V x∣∣∣ σ
σ−1

(vσ+1|p′(v)|)− 1
σ−1

(
ṽx
ṽ

)2

dxdτ.

Now, taking σ = C1 − 1, we have from (6.17) and the assumption (1.39) that

R12 ≤ O(1)

∫ t

0

∫
R

V t

(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
dxdτ

+
1

4

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ(6.18)

+O(1)

∫ t

0

(1 + τ)−
C1−1

C1−2

∥∥∥∥∥
(
ṽx
ṽ

)2

(τ)

∥∥∥∥∥
2

dτ.

Substituting (6.15) and (6.18) into (6.14), we deduce that

∣∣∣∣∣
∫ t

0

∫
R

V x

V

(
vp′(v) − V p′

(
V
)) ṽx

ṽ
dxdτ

∣∣∣∣∣
≤ O(1)

∫ t

0

∫
R

V t

(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
dxdτ

(6.19)

+
1

2

∫ t

0

∫
R

V
2 |p′(v)|

v
ṽ2
xdxdτ

+O(1)

∫ t

0

(1 + τ)−
C1−1

C1−2

∥∥∥∥∥
(
ṽx
ṽ

)2

(τ)

∥∥∥∥∥
2

dτ.
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Combining (6.19) and (6.13) with (6.12), we get that

∫
R

(
µ

2

(
ṽx
ṽ

)2

− ψ
ṽx
ṽ

)
(t)dx+

∫ t

0

∫
R

V
2|p′(v)|ṽ2

x

v
dxdτ

≤ O(1)
(
1 + ‖(ϕ0, ψ0)‖2

1

)
(6.20)

+O(1)

∫ t

0

(
‖Gx(τ)‖ + (1 + τ)−

C1−1

C1−2

)∥∥∥∥∥
(
ṽx
ṽ

)2

(τ)

∥∥∥∥∥
2

dτ

+O(1)

∫ t

0

∫
R

V t

(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
dxdτ.

Equations (6.10) and (6.20), together with the Gronwall inequality, yield

‖ψ(t)‖2 +

∫
R

Φ
(
v, V

)
(t)dx+

∥∥∥∥
(
ṽx
ṽ

)
(t)

∥∥∥∥
2

+

∫ t

0

∫
R

{
ψ2
x

v
+

∣∣∣∣∣V tψxϕv

∣∣∣∣∣ +
(
p(v) − p

(
V
)
− p′

(
V
)
ϕ
)
V t

}
dxdτ(6.21)

≤ O(1)(1 + ‖(ϕ0, ψ0)‖2
1).

Having obtained (6.21), by repeating the argument used in the proof of Theorem
1.3, we can deduce that there exists a positive constant C14 such that

C−1
14 ≤ v(t, x) ≤ C14, t ≥ 0, x ∈ R.(6.22)

With (6.22) in hand, by employing the method used in [21], we can easily de-
duce that the results stated in Theorem 1.5 are true. This completes the proof of
Theorem 1.5.
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ASYMPTOTIC APPROXIMATION OF THE SOLUTION OF THE
LAPLACE EQUATION IN A DOMAIN WITH HIGHLY
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Abstract. We study the asymptotic behavior of the solution of the Laplace equation in a
domain, a part of whose boundary is highly oscillating. The motivation comes from the study of a
longitudinal flow in an infinite horizontal domain bounded at the bottom by a wall and at the top by
a rugose wall. The latter is a plane covered with periodic asperities whose size depends on a small
parameter, ε > 0. The assumption of sharp asperities is made; that is, the height of the asperities
is fixed. Using a boundary layer corrector, we derive and analyze a nonoscillating approximation of
the solution at order O(ε3/2) for the H1-norm.

Key words. asymptotic expansions, oscillating boundary
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1. Introduction. Boundary-value problems involving oscillating boundaries or
interfaces frequently arise when modelling problems in industrial applications, such as
flows over rough walls, electromagnetic waves in a region containing a rough interface,
and elastic bodies containing a rough interface. The mathematical analysis of these
problems consists of studying the large scale behavior of the solution. The goal is
to determine effective boundary conditions or to construct accurate and numerically
implementable asymptotic approximations. The main difficulty comes from the pres-
ence of boundary layers near the rough region, whose effects on correctors or error
estimates have to be taken into account.

In the present paper we consider a boundary-value problem for the Laplace equa-
tion, arising from the study of a laminar flow over a rough wall. The problem arises
also in the study of the heat transmission in winglets.

Let us consider a viscous fluid in an infinite horizontal domain limited at the
bottom by a wall P and at the top by a rough wall Rε. We assume that P moves at a
constant horizontal velocity γ = (0, g, 0), g ∈ R, and that Rε is at rest. The latter is
assumed to consist of a plane wall covered with periodic asperities whose size depends
on a small parameter, ε > 0, and with a fixed height. Let 0 < a1 < b1 < l1, and let
ηε be the εl1-periodic function defined on (0, εl1) by

ηε(x1) =

{
l′3 if x1 ∈ (εa1,εb1),
l3 if x1 ∈ (0, εl1)\(εa1,εb1)
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with l′3 > l3 > 0. The domain of the flow is

Oε =
{
(x′, x3) ∈ R3 : x′ ∈ R2, b(x1) < x3 < ηε (x1)

}
,

where x′ = (x1, x2) and b is a smooth and l1-periodic function on R such that b(x1) <
l3 in R. The domain Oε is bounded at the bottom by

P =
{
(x′, x3) ∈ R3 : x′ ∈ R2, x3 = b(x1)

}
and at the top by Rε = ∂Oε\P, where ∂Oε denotes the boundary of Oε. The profile
of the asperities is then comb shaped. Throughout the paper, we will assume that
1/ε ∈ N so that ηε is also periodic with period l1. Thus, Oε can be viewed as
generated by periodic translations of the bounded domain{

x ∈ R3 : 0 < x1 < l1, b(x1) < x3 < ηε (x1)
}
.

We consider the longitudinal flow described by the velocity field vε in the form
vε = (0, uε, 0) (and the pressure pε = 0), where uε satisfies the Laplace equation⎧⎪⎪⎨

⎪⎪⎩
∆uε = 0 in Ωε,
uε = 0 on Rε,
uε = g on P,
uε l1-periodic with respect to x1, for a.e. x3 ∈ (b (0) , l3) ,

(1.1)

where Ωε is the bidimensional section (see Figure 2.1)

Ωε =
{
x = (x1,x3) ∈ R2 : 0 < x1 < l1, b(x1) < x3 < ηε (x1)

}
,

and

P =
{
x = (x1, x3) ∈ R2 : 0 < x1 < l1, x3 = b(x1)

}
,

L =
{
x = (x1, x3) ∈ R2 : x1 = 0, b(0) < x3 < η (0)

}
,

∪{x = (x1, x3) ∈ R2 : x1 = l1, b(l1) < x3 < η (l1)
}
,

and Rε = ∂Ωε\ (P ∪ L) , ∂Ωε being the boundary of Ωε.
The aim is to study the asymptotic behavior, as ε goes to 0, of the solution uε of

(1.1).
Notice that problem (1.1) is also linked with the study of the heat transmission

in winglets. In this case, uε represents the temperature in the medium, and the
problem is to determine the asymptotic behavior of the temperature in the case where
the number of winglets to cool down a hot part are increasing and they are getting
increasingly near to each other.

The main difficulty arising in our study is due to the fact that the amplitude of
the oscillations of the boundary is large. The case where b = 0 is studied in [4]. The
assumption b = 0 allows us to consider solutions uε of problem (1.1) that are εl1-
periodic and then to construct an approximation of uε, up to an exponentially small
error, by a nonoscillating explicit function. Here we consider the situation where the
function b is not constant; hence the corresponding solution uε is not εl1-periodic with
respect to x1.

Problems involving rough boundaries, in the case where the frequency and the am-
plitude of the oscillations of the boundary are of the same order ε, have been addressed
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by many authors. In [1], an approximation at order O(ε
3
2 ) for the H1-norm is de-

rived and analyzed for the Laplace equation, using a domain decomposition argument.
In [2], Achdou, Pironneau, and Valentin consider a laminar flow over a rough wall
with periodic roughness elements. Using asymptotic expansions and corresponding
boundary layer correctors, the authors derive first and second order effective bound-
ary conditions. In [3], Allaire and Amar give a nonoscillating approximation at order

O(ε
3
2 ) for the H1-norm for the Laplace equation. In [22], Jäger and Mikelić consider

the Laplace equation on a bounded domain consisting of a porous medium, a non-
perforated domain, and an interface between them. Using boundary layers describing
the interaction between the two media, the authors derive asymptotic approximations
and establish L2 estimates. In [5], for a flow governed by the Navier–Stokes equations
in a domain Oε corresponding to the case where b = 0 and the frequency and the
amplitude of the oscillations of the boundary are of the same order ε, it is proved
that, outside a neighborhood of the rugose zone, the flow behaves asymptotically as a
Couette flow, up to an exponentially small error. The Laplace equation in a domain
with very rapidly oscillating locally periodic boundary, the amplitude of the oscilla-
tions being ε and the frequency εα (α > 1), is considered by Chechkin, Friedman, and
Piatniski in [12]. In this paper, the authors analyze a first order approximation in the
H1-norm. Asymptotic limits of boundary-value problems in oscillating domains, in
the case where the amplitude of the oscillations does not vanish as ε→ 0, are studied
in [9], [11], [15, 16, 17, 18], and [27, 28, 29, 31]. Problems in domains with fragmented
boundaries are treated in [21] and [26]. For general references about homogenization,
we refer the reader to [6, 7, 8, 10, 13, 14, 23, 32, 33].

Let

Dε =
{
x = (x1, x3) ∈ R2 : x1 ∈ R, b(x1) < x3 < ηε(x1)

}
,

and let, for m ≥ 0, the space

Hm
per(Ωε) = {u ∈ Hm

loc(Dε) ; u ∈ Hm(Ωε), u(x1+l1, x3) = u(x1, x3), x3 ∈ (b(0), l3)},
endowed with the norm of Hm(Ωε). In the present paper, we consider the slight
generalization of problem (1.1),⎧⎪⎪⎨

⎪⎪⎩
−∆uε = f in Ωε,
uε = 0 on Rε,
uε = g on P,
uε ∈ H1

per(Ωε),

(1.2)

where f is a smooth function and g is a given constant. The paper is organized
as follows. In section 2, we establish a convergence result for the sequence {uε}ε:
denoting Ω = {(x1, x3) ; 0 < x1 < l1, b(x1) < x3 < l′3}, and ũε being the zero
extension of uε to Ω, we prove (Proposition 2.1) the convergence of {ũε}ε in H1(Ω).
Section 3 is devoted to decay estimates at infinity for the solution of the Laplace
equation in an infinite vertical domain of R2 (Proposition 3.1). These estimates
play a key role in the subsequent analysis. Section 4 contains the main result of the
paper (Theorem 4.1). Using boundary layer correctors, we construct a nonoscillating
approximation of uε in Ωε and an outer boundary layer of height 2ε. We show that
this approximation is of order O(ε3/2) in the H1-norm. This generalizes the result in
[1] (see also [3]) which deals with the case where the frequency and the amplitude of
the oscillations of the boundary are of same order ε.
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Fig. 2.1. Domain Ωε.

2. A convergence result. Let uε be the solution of (1.2). We denote

M = max b,(2.1)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω+
ε = {(x1,x3) ∈ Ωε : l3 < x3 < l′3} ,

Ω+ = (0, l1) × (l3, l
′
3) ,

Ω− =
{
(x1,x3) ∈ R2 : x1 ∈ (0, l1) , b (x1) < x3 < l3

}
,

Σ = (0, l1) × {l3} ,

Ω = Ω− ∪ Ω+ ∪ Σ;

see Figure 2.1 for a summary of the main notations. In what follows we will use the
spaces Hm

per(Ω) and Hm
per(Ω

−) (for m ≥ 0); the definition is similar to that of Hm
per(Ωε)

given in the previous section. The only regularity assumptions we make here are that
b is Lipschitz-continuous and f ∈ L2(Ω). Remark that

χΩ+
ε
⇀

b1 − a1

l1
weakly- � in L∞ (Ω+

)
,(2.2)
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where χΩ+
ε

denotes the characteristic function of Ω+
ε . To describe the limit problem,

as ε→ 0, of problem (1.2), we introduce the function

u =

{
0 in Ω+,
u− in Ω−,(2.3)

where u− is the unique solution of the following problem:⎧⎪⎪⎨
⎪⎪⎩

−∆u− = f in Ω−,
u− = 0 on Σ,
u− = g on P,
u− ∈ H1

per (Ω−) .

(2.4)

Let ũε be the zero extension to Ω of uε. The following convergence result holds.
Proposition 2.1. Let uε be the solution of problem (1.2), and let u be the

function defined in (2.3), (2.4). Then

ũε → u strongly in H1(Ω).(2.5)

This convergence result was previously obtained in a more general framework by
many authors who studied optimum design problems; see, e.g., [30], [31]. We give
here a direct proof of the proposition.

Proof of Proposition 2.1. Let s ∈ C2 (R) be such that

s(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t >
M + l3

2
,

1 if t <
3M + l3

4
,

where M is given in (2.1), and let h(x1, x3) = gs(x3). Choosing uε − h as a test
function in problem (1.2), we get∫

Ωε

∇uε (∇uε −∇h) dx =

∫
Ωε

f (uε − h) dx.(2.6)

Applying the Young inequality and the Poincaré inequality, we have∫
Ωε

|∇uε|2 dx ≤ α

∫
Ωε

|∇uε|2 dx+
1

α

∫
Ω−

|∇h|2 dx

+αc

∫
Ωε

|∇uε|2 dx+
1

α

∫
Ω

f2dx+

∫
Ω−

fh dx,

for any α > 0, where c is a constant independent of ε and α, and, consequently,(∫
Ωε

|∇uε|2
) 1

2

dx ≤ c,

where c is a constant independent of ε. Then, by virtue of the Poincaré inequality, the
sequence {ũε}ε is bounded in H1(Ω). Therefore, up to a subsequence, not relabeled
for convenience, there exists a function u ∈ H1

per(Ω) (possibly depending on the
subsequence) such that u = g on P and{

ũε ⇀ u weakly in H1 (Ω) ,
ũε → u strongly in L2 (Ω) .

(2.7)
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Moreover, since

ũε = ũε χΩ+
ε

in Ω+,

from (2.7) and (2.2), it follows that

u = 0 in Ω+.(2.8)

On the other hand, letting ε go to 0 in (1.2) with test functions ϕ ∈ C∞ (Ω−) such
that ϕ is l1-periodic with respect to x1 for a.e. x3 ∈ (b (0) , l3), ϕ|P = 0, and ϕ|Σ = 0,
it follows from (2.7) that u|Ω− solves problem (2.4). Since this problem admits a
unique solution, convergences (2.7) hold for the whole sequence. To obtain the strong
convergence (2.5), by virtue of (2.7) and (2.8), it is enough to prove that

lim
ε→0

‖∇ũε‖(L2(Ω))2 = ‖∇u‖(L2(Ω−))2 .(2.9)

Relations (2.6), (2.7), and (2.8) provide that

lim
ε→0

∫
Ω

|∇ũε|2 dx = lim
ε→0

(∫
Ω

∇ũε∇h dx+

∫
Ω

f (ũε − h) dx

)

=

∫
Ω−

∇u∇h dx+

∫
Ω−

f (u− h) dx.

(2.10)

Finally, choosing u− h as a test function in problem (2.4), it follows that

∫
Ω−

|∇u|2 dx =

∫
Ω−

∇u∇h dx+

∫
Ω−

f (u− h) dx.(2.11)

The convergence (2.9) is then obtained by comparing (2.10) with (2.11).

3. Decay estimates. The asymptotic approximation of uε will involve the so-
lution of the Laplace equation in an infinite vertical domain of R2. Let Λ+ =
(a1, b1) × (0,+∞), Λ− = (0, l1) × (−∞, 0) as displayed in Figure 3.1. Let ψ± be
the functions defined by

{
ψ+ ∈ H1(Λ+),
ψ− ∈ H1

loc,per(Λ
−), ∇ψ− ∈ L2(Λ−),

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∆ψ± = 0 in Λ±,
ψ+ = 0 on ∂Λ+\Γ,
ψ− = 0 on ((0, a1) ∪ (b1,l1)) × {0} ,
ψ+ = ψ− on Γ,
∂ψ+

∂y3
=
∂ψ−

∂y3
+ 1 on Γ,

(3.2)

where Γ = (a1, b1) × {0}. Here ψ− ∈ H1
loc,per(Λ

−) means ψ− ∈ H1
per(Λ

′) for any

bounded domain Λ′ ⊂ Λ−. We denote by β the mean of ψ− over a horizontal section
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Fig. 3.1. Infinite domain Λ.

of Λ−:

β =
1

l1

∫ l1

0

ψ− (y1,−δ) dy1 ∀δ ∈ (0,+∞).(3.3)

The following result is proved in [4].

Proposition 3.1. Problem (3.1), (3.2) admits a unique solution. Moreover,

(i) the constant β is independent of δ;
(ii) for any α ∈ N2 and for any δ ∈ (0,+∞), there exist two positive constants

c and cα,δ such that

|∂αψ+(y1, y3)| ≤ cα,δ e
−cy3 ∀ (y1, y3) ∈ (a1, b1) × (δ,+∞);

(iii) for any α ∈ N
2

and for any δ ∈ (0,+∞), there exist two positive constants
c and cα,δ such that

|∂α(ψ− − β)(y1, y3)| ≤ cα,δ e
cy3 ∀ (y1, y3) ∈ (0, l1) × (−∞,−δ).

The above estimates are of the so-called de Saint-Venant type. The first is proved
by means of Tartar’s lemma (see [25, pp. 49–58]); see also [24]. The second is proved
by adapting the proof of the first one. Let us remark that (3.1) and Proposition 3.1
provide that (ψ− − β) ∈ H1

per(Λ
−).
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Proposition 3.1 implies the following result.

Corollary 3.2. Let ψ± be the functions satisfying (3.1), (3.2). Then there exist
two positive constants c and C, independent of ε, such that

∫
Ω+
ε

∣∣∣∣ψ+

(
x1

ε
,
x3 − l3
ε

)∣∣∣∣
2

dx ≤ C ε,

∫
Ω−

∣∣∣∣ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

∣∣∣∣
2

dx ≤ C ε,

∫
Ωε\Bε

∣∣∣∣∇
(
ψ

(
x1

ε
,
x3 − l3
ε

))∣∣∣∣
2

dx ≤ C e−
c
ε ,

where Bε = (0, l1) × (l3 − ε, l3 + ε), and ψ is the function defined by ψ = ψ− in Λ−

and ψ = ψ+ in Λ+.

4. A corrector result. To build a corrector for the solution uε of problem (1.2),
we need more regularity on the solution u− of problem (2.4). We then assume the
following regularity for f and b:

f ∈ H4
per(Ω

−) ∩ L2(Ω), b ∈ H6
per(0, l1).(4.1)

Let O− =
{
(x1, x3) ∈ R2 : x1 ∈ R, b(x1) < x3 < l3

}
. The extension of u− to O− by

l1-periodicity is a solution in H1
per(Ω

−) of

⎧⎨
⎩

−∆u− = f in O−,
u− = 0 on R × {l3},
u− = g on {(x1, b(x1)) : x1 ∈ R} .

Using standard regularity results (see [19, 20]), we then have

u− ∈ H6
per

(
Ω−) ⊂ C4

(
Ω−
)
.(4.2)

Let w now be the function defined by

w =

{
0 in Ω+,
w− in Ω−,(4.3)

where w− is the unique solution in H1
per(Ω

−) of

⎧⎪⎪⎨
⎪⎪⎩

∆w− = 0 in Ω−,

w− = β
∂u−

∂x3
on Σ,

w− = 0 on P,

(4.4)

where u− is the solution of problem (2.4) and β is defined by (3.3). Let us point out
that, due to assumptions (4.1),

w− ∈ C3(Ω−).(4.5)
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Indeed, the functions w− and u− being extended by l1-periodicity to O−, it follows
that w− is the solution in H1

per(Ω
−) of⎧⎪⎪⎨

⎪⎪⎩
∆w− = 0 in O−,

w− = β
∂u−

∂x3
on R × {l3},

w− = 0 on {(x1, b(x1)) : x1 ∈ R}.

Due to (4.2), we have ∂u−
∂x3

∈ H5
per(Ω

−), and, consequently, w− ∈ H5
per(Ω

−) ⊂ C3(Ω−).
This section is devoted to proving the following result.
Theorem 4.1. Assume (4.1). Let uε be the solution of problem (1.2), u be defined

by (2.3), (2.4), and w be defined by (4.3), (4.4). Then there exists a positive constant
c, independent of ε, such that

‖uε − u‖H1(Ωε\Bε) ≤ c ε(4.6)

for ε small enough, where Bε = (0, l1) × (l3 − ε, l3 + ε). If in addition f = 0 in Ω+,
there exists a positive constant c, independent of ε, such that

‖uε − u− εw‖H1(Ωε\Bε) ≤ c ε
3
2(4.7)

for ε small enough.
To prove Theorem 4.1 we need to introduce some auxiliary functions. Let τε be

the function defined by

τε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ+
ε = uε − εw+

ε − ε
∂u−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
x3 − l3
ε

)
in Ω+

ε ,

τ−ε = uε − u− − εw−
ε −ε∂u

−

∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)
in Ω−,

(4.8)

and let ρε be the function defined by

ρε =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ+
ε = w+

ε − ε
∂w−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
x3 − l3
ε

)
in Ω+

ε ,

ρ−ε = w−
ε − w− −ε∂w

−

∂x3
(x1, l3)ψ

−
(
x1

ε
,
x3 − l3
ε

)
in Ω−,

(4.9)

where uε is the solution of problem (1.2), u− is the solution of problem (2.4), w− is
the solution of problem (4.4), ψ± are the functions defined by (3.1), (3.2), and w±

ε

are functions in H1(Ω+) and H1
per(Ω

−), respectively, satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆w+
ε = 0 in Ω+

ε ,
∆w−

ε = 0 in Ω−,
w+
ε = 0 on Rε\Σ,

w−
ε = β

∂u−

∂x3
on Rε ∩ Σ,

w−
ε = 0 on P,

w+
ε = w−

ε − β
∂u−

∂x3
on Σ\Rε,

∂w+
ε

∂x3
=
∂w−

ε

∂x3
on Σ\Rε,

(4.10)
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β being defined by (3.3). Theorem 4.1 will be an immediate consequence of the two
following propositions.

Proposition 4.2. Assume (4.1). Let τε be the function defined by (4.8). Then
there exists a positive constant c, independent of ε, such that

‖τε‖H1(Ωε)
≤ c ε,(4.11)

and, if f = 0 in Ω+,

‖τε‖H1(Ωε)
≤ c ε

3
2(4.12)

for ε small enough.

Proposition 4.3. Assume (4.1). Let ρε be the function defined by (4.9). Then
there exists a positive constant c, independent of ε, such that

‖ρε‖H1(Ωε)
≤ c ε(4.13)

for ε small enough.

Proof of Proposition 4.2. Obviously, τ+
ε ∈ H1(Ω+

ε ) and τ−ε ∈ H1(Ω−). Due to the
boundary conditions of uε, u, ψ

±, and w±
ε , the functions τ+

ε and τ−ε have the same

trace on Ω+
ε ∩Ω−. Consequently, τε ∈ H1 (Ωε) .Moreover, τε is l1-periodic with respect

to x1 for a.e. x3 ∈ (b (0) , l3) and τε = 0 on Rε\ {(x1, l
′
3) : x1 ∈ (0, l1)} . Furthermore,

from the jump conditions in (3.2) and in (4.10) it follows that the normal derivatives

of τ+
ε and τ−ε on Ω+

ε ∩Ω− are opposite as elements of H− 1
2 (Ω+

ε ∩Ω−). Consequently,
∆τε is weakly defined in Ωε by

∆τε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε ∂3u−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)

+ − 2ε
∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))
− f in Ω+

ε ,

−ε ∂3u−

∂x2
1∂x3

(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)

+ − 2ε
∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)
in Ω−.

(4.14)

Since

τε|P = −ε∂u
−

∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
b (x1) − l3

ε

)
− β

)
,

τε|Rε∩((0,l1)×l′
3
)
= −ε∂u

−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
l′3 − l3
ε

)
,
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setting

τ1
ε (x1, x3) = −ε∂u

−

∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
b (x1) − l3

ε

)
− β

)
m1(x3) in Ωε,

τ2
ε (x1, x3) = −ε∂u

−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
l′3 − l3
ε

)
m2(x3) in Ωε,

where m1, m2 ∈ C2(R; [0, 1]) and

m1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t >
M + l3

2
,

1 if t <
3M + l3

4
,

m2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if t >
l3 + l′3

2
,

0 if t <
3l3 + l′3

4
,

(4.15)

M being defined by (2.1), it results that τε − τ1
ε − τ2

ε ∈ H1
per (Ωε) and vanishes on

Rε∪P. Then, multiplying (4.14) by τε− τ1
ε − τ2

ε and integrating on Ωε, it follows that∫
Ωε

|∇τε|2 dx

=

∫
Ω−

∇τε∇τ1
ε dx+

∫
Ω+
ε

∇τε∇τ2
ε dx−

∫
Ωε

∆τε
(
τε − τ1

ε − τ2
ε

)
dx

=

∫
Ω−

∇τε∇τ1
ε dx+

∫
Ω+
ε

∇τε∇τ2
ε dx

+ ε

∫
Ω−

∂3u−

∂x2
1∂x3

(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)(
τε − τ1

ε

)
dx

+ 2ε

∫
Ω−

∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)(
τε − τ1

ε

)
dx

+ ε

∫
Ω+
ε

∂3u−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)(
τε − τ2

ε

)
dx

+ 2ε

∫
Ω+
ε

∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))(
τε − τ2

ε

)
dx

+

∫
Ω+
ε

f
(
τε − τ2

ε

)
dx.

(4.16)

Let us estimate each term on the right-hand side of (4.16). We first compute the
derivatives of τ1

ε and τ2
ε :

∂τ1
ε

∂x1
(x1, x3) = −ε ∂2u−

∂x1∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
b (x1) − l3

ε

)
− β

)
m1(x3)

−∂u
−

∂x3
(x1, l3)

∂ψ−

∂y1

(
x1

ε
,
b (x1) − l3

ε

)
m1(x3)

−∂u
−

∂x3
(x1, l3)

∂ψ−

∂y3

(
x1

ε
,
b (x1) − l3

ε

)
db

dx1
(x1)m1(x3) in Ω−,

∂τ1
ε

∂x3
(x1, x3) = −ε∂u

−

∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
b (x1) − l3

ε

)
− β

)
dm1

dx3
(x3) in Ω−.



HIGHLY OSCILLATING BOUNDARY PROBLEM 1609

Then, from (4.2) and Proposition 3.1, we have∣∣∣∣∂τ1
ε

∂x1

∣∣∣∣ ≤ Ce−
c
ε ,

∣∣∣∣∂τ1
ε

∂x3

∣∣∣∣ ≤ Ce−
c
ε in Ω−,(4.17)

for ε small enough. Here and in what follows C and c denote positive constants
independent of ε. Similarly,∣∣∣∣∂τ2

ε

∂x1

∣∣∣∣ ≤ Ce−
c
ε ,

∣∣∣∣∂τ2
ε

∂x3

∣∣∣∣ ≤ Ce−
c
ε in Ω+

ε ,(4.18)

for ε small enough. For the first two terms on the right-hand side of (4.16), from the
Cauchy–Schwarz inequality, (4.17) and (4.18), it follows that∣∣∣∣

∫
Ω−

∇τε∇τ1
ε dx+

∫
Ω+
ε

∇τε∇τ2
ε dx

∣∣∣∣ ≤ Ce−
c
ε ‖∇τε‖(L2(Ωε))

2(4.19)

for ε small enough. For the third and fifth terms on the right-hand side of (4.16),
Corollary 3.2, the Cauchy–Schwarz inequality, the Poincaré inequality, (4.2), (4.17),
and (4.18) give

∣∣∣∣ε
∫

Ω−

∂3u−

∂x2
1∂x3

(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)(
τε − τ1

ε

)
dx

+ ε

∫
Ω+
ε

∂3u−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)(
τε − τ2

ε

)
dx

∣∣∣∣
≤ Cε

3
2

(∥∥τε − τ1
ε

∥∥
L2(Ω−)

+
∥∥τε − τ2

ε

∥∥
L2(Ω+

ε )

)
≤ Cε

3
2

(∥∥∇ (τε − τ1
ε

)∥∥
(L2(Ω−))2

+
∥∥∇ (τε − τ2

ε

)∥∥
(L2(Ω+

ε ))
2

)
≤ Cε

3
2

(
‖∇τε‖(L2(Ω−))2 +

∥∥∇τ1
ε

∥∥
(L2(Ω−))2

+ ‖∇τε‖(L2(Ω+
ε ))

2 +
∥∥∇τ2

ε

∥∥
(L2(Ω+

ε ))
2

)
≤ C

(
ε

3
2 ‖∇τε‖(L2(Ωε))

2 + e−
c
ε

)

(4.20)

for ε small enough. Integrating by parts the fourth and sixth terms on the right-hand
side of (4.16), it follows that

2ε

∫
Ω−

∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)(
τε − τ1

ε

)
dx

+ 2ε

∫
Ω+
ε

∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))(
τε − τ2

ε

)
dx

= −2ε

∫
Ω−

∂2u−

∂x1∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)
∂

x1

(
τε − τ1

ε

)
dx

−2ε

∫
Ω−

∂3u−

∂x2
1∂x3

(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)(
τε − τ1

ε

)
dx

−2ε

∫
Ω+
ε

∂2u−

∂x1∂x3
(x1, l3)ψ

+

(
x1

ε
,
x3 − l3
ε

)
∂

x1

(
τε − τ2

ε

)
dx

−2ε

∫
Ω+
ε

∂3u−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)(
τε − τ2

ε

)
dx.
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Consequently, Corollary 3.2, the Cauchy–Schwarz inequality, the Poincaré inequality,
(4.2), (4.17), and (4.18) imply

∣∣∣∣2ε
∫

Ω−

∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)(
τε − τ1

ε

)
dx

+ 2ε

∫
Ω+
ε

∂2u−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))(
τε − τ2

ε

)
dx

∣∣∣∣
≤ Cε

3
2

(∥∥∇ (τε − τ1
ε

)∥∥
(L2(Ω−))2

+
∥∥τε − τ1

ε

∥∥
L2(Ω−)

+
∥∥∇ (τε − τ2

ε

)∥∥
(L2(Ω+

ε ))
2 +

∥∥τε − τ2
ε

∥∥
L2(Ω+

ε )

)
≤ Cε

3
2

(∥∥∇ (τε − τ1
ε

)∥∥
(L2(Ω−))2

+
∥∥∇ (τε − τ2

ε

)∥∥
(L2(Ω+

ε ))
2

)
≤ Cε

3
2

(
‖∇τε‖(L2(Ω−))2 +

∥∥∇τ1
ε

∥∥
(L2(Ω−))2

+ ‖∇τε‖(L2(Ω+
ε ))

2 +
∥∥∇τ2

ε

∥∥
(L2(Ω+

ε ))
2

)
≤ C

(
ε

3
2 ‖∇τε‖(L2(Ωε))

2 + e−
c
ε

)

(4.21)

for ε enough small. For the last term on the right-hand side of (4.16), we observe,
using the Cauchy–Schwarz inequality, that∫

Ω+
ε

∣∣τε (x1, x3) − τ2
ε (x1, x3)

∣∣2 dx
=

1/ε−1∑
k=0

∫ l′3

l3

∫ ε(b1+kl1)

ε(a1+kl1)

∣∣τε (x1, x3) − τ2
ε (x1, x3)

∣∣2 dx
=

1/ε−1∑
k=0

∫ l′3

l3

∫ ε(b1+kl1)

ε(a1+kl1)

∣∣∣∣∣
∫ x1

ε(a1+kl1)

∂
(
τε − τ2

ε

)
∂t

(t, x3) dt

∣∣∣∣∣
2

dx

≤ ε2 (b1 − a1)
2

1/ε−1∑
k=0

∫ l′3

l3

∫ ε(b1+kl1)

ε(a1+kl1)

∣∣∣∣∣∂
(
τε − τ2

ε

)
∂x1

∣∣∣∣∣
2

dx

≤ ε2 (b1 − a1)
2
∫

Ω+
ε

∣∣∣∣∣∂
(
τε − τ2

ε

)
∂x1

∣∣∣∣∣
2

dx.

From (4.18) it then follows that∣∣∣∣
∫

Ω+
ε

f
(
τε − τ2

ε

)
dx

∣∣∣∣ ≤ C
(
ε ‖∇τε‖(L2(Ωε))

2 + e−
c
ε

)
(4.22)

for ε small enough. Combining (4.16) with (4.19) ÷ (4.22), we have

‖∇τε‖2
(L2(Ωε))

2 ≤ C
(
ε ‖∇τε‖(L2(Ωε))

2 + e−
c
ε

)
for ε small enough. Therefore

‖∇τε‖(L2(Ωε))
2 ≤ Cε(4.23)

for ε small enough. Estimate (4.11) follows from (4.23), using the Poincaré inequality.
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If f = 0 in Ω+, from identity (4.16) combined with (4.19) ÷ (4.21), we have

‖∇τε‖2
(L2(Ωε))

2 ≤ C
(
ε

3
2 ‖∇τε‖(L2(Ωε))

2 + e−
c
ε

)
for ε small enough. Therefore

‖∇τε‖(L2(Ωε))
2 ≤ Cε

3
2

for ε small enough, from which estimate (4.12) follows, due to the Poincaré inequal-
ity.

The proof of Proposition 4.3 has the same framework as the proof of Proposition
4.2.

Proof of Proposition 4.3. Obviously, ρ+
ε ∈ H1 (Ω+

ε ) and ρ−ε ∈ H1 (Ω−). Due to the
boundary conditions of w±

ε , w−, and ψ±, the functions ρ+
ε and ρ−ε have the same trace

on Ω+
ε ∩ Ω−. Consequently, ρε ∈ H1 (Ωε). Moreover, ρε is l1-periodic with respect

to x1 for a.e. x3 ∈ (b (0) , l3) and ρε = 0 on Rε\ {(x1, l
′
3) : x1 ∈ (0, l1)} . Furthermore,

from the jump condition in (3.2) and in (4.10), it follows that the normal derivatives

of ρ+
ε and ρ−ε on Ω+

ε ∩Ω− are opposite as elements of H− 1
2 (Ω+

ε ∩Ω−). Consequently,
∆ρε is weakly defined in Ωε and satisfies

∆ρε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε ∂
3w−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)

+ − 2ε
∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))
in Ω+

ε ,

−ε ∂
3w−

∂x2
1∂x3

(x1, l3)ψ
−
(
x1

ε
,
x3 − l3
ε

)

+ − 2ε
∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

))
in Ω−.

(4.24)

We have

ρε|P = −ε∂w
−

∂x3
(x1, l3)ψ

−
(
x1

ε
,
b (x1) − l3

ε

)
,

ρε|Rε∩((0,l1)×l′
3
)
= −ε∂w

−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
l′3 − l3
ε

)
,

and then, setting

ρ1
ε(x1, x3) = −ε∂w

−

∂x3
(x1, l3)ψ

−
(
x1

ε
,
b (x1) − l3

ε

)
m1(x3) in Ωε,

ρ2
ε(x1, x3) = −ε∂w

−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
l′3 − l3
ε

)
m2(x3) in Ωε,
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the functionsm1 andm2 being defined by (4.15), it follows that ρε−ρ1
ε−ρ2

ε ∈ H1
per (Ωε)

and vanishes on Rε ∪ P . Then, multiplying (4.24) by ρε − ρ1
ε − ρ2

ε and integrating on
Ωε, we find

∫
Ωε

|∇ρε|2 dx

=

∫
Ω−

∇ρε∇ρ1
εdx+

∫
Ω+
ε

∇ρε∇ρ2
εdx−

∫
Ωε

∆ρε
(
ρε − ρ1

ε − ρ2
ε

)
dx

=

∫
Ω−

∇ρε∇ρ1
εdx+

∫
Ω+
ε

∇ρε∇ρ2
εdx

+ ε

∫
Ω−

∂3w−

∂x2
1∂x3

(x1, l3)ψ
−
(
x1

ε
,
x3 − l3
ε

)(
ρε − ρ1

ε

)
dx

+ 2ε

∫
Ω−

∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

))(
ρε − ρ1

ε

)
dx

+ ε

∫
Ω+
ε

∂3w−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)(
ρε − ρ2

ε

)
dx

+ 2ε

∫
Ω+
ε

∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))(
ρε − ρ2

ε

)
dx.

(4.25)

Let us estimate each term on the right-hand side of (4.25). First, the derivatives of
ρ1
ε and ρ2

ε are

∂ρ1
ε

∂x1
(x1, x3) = −ε ∂

2w−

∂x1∂x3
(x1, l3)ψ

−
(
x1

ε
,
b (x1) − l3

ε

)
m1(x3)

−∂w
−

∂x3
(x1, l3)

∂ψ−

∂y1

(
x1

ε
,
b (x1) − l3

ε

)
m1(x3)

−∂w
−

∂x3
(x1, l3)

∂ψ−

∂y3

(
x1

ε
,
b (x1) − l3

ε

)
db

dx1
(x1)m1(x3) in Ω−,

∂ρ1
ε

∂x3
(x1, x3) = −ε∂w

−

∂x3
(x1, l3)ψ

−
(
x1

ε
,
b (x1) − l3

ε

)
dm1

dx3
(x3) in Ω−.

Then, Proposition 3.1 and (4.5) imply

∣∣∣∣∂ρ1
ε

∂x1

∣∣∣∣ ≤ C ε,

∣∣∣∣∂ρ1
ε

∂x3

∣∣∣∣ ≤ C ε in Ω−,(4.26)

for ε small enough. Similarly,

∣∣∣∣∂ρ2
ε

∂x1

∣∣∣∣ ≤ Ce−
c
ε ,

∣∣∣∣∂ρ2
ε

∂x3

∣∣∣∣ ≤ Ce−
c
ε in Ω+

ε ,(4.27)

for ε small enough. From the Cauchy–Schwarz inequality, (4.26) and (4.27), the first
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two terms on the right-hand side of (4.25) satisfy

∣∣∣∣
∫

Ω−
∇ρε∇ρ1

εdx+

∫
Ω+
ε

∇ρε∇ρ2
εdx

∣∣∣∣ ≤ C ε ‖∇ρε‖(L2(Ωε))
2(4.28)

for ε small enough. For the third and fifth terms on the right-hand side of (4.25),
Corollary 3.2, the Cauchy–Schwarz inequality, the Poincaré inequality, (4.5), (4.26),
and (4.27) give

∣∣∣∣ε
∫

Ω−

∂3w−

∂x2
1∂x3

(x1, l3)ψ
−
(
x1

ε
,
x3 − l3
ε

)(
ρε − ρ1

ε

)
dx

+ ε

∫
Ω+
ε

∂3w−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)(
ρε − ρ2

ε

)
dx

∣∣∣∣
≤ Cε

(∥∥ρε − ρ1
ε

∥∥
L2(Ω−)

+
∥∥ρε − ρ2

ε

∥∥
L2(Ω+

ε )

)
≤ Cε

(∥∥∇ (ρε − ρ1
ε

)∥∥
(L2(Ω−))2

+
∥∥∇ (ρε − ρ2

ε

)∥∥
(L2(Ω+

ε ))
2

)
≤ Cε

(
‖∇ρε‖(L2(Ω−))2 +

∥∥∇ρ1
ε

∥∥
(L2(Ω−))2

+ ‖∇ρε‖(L2(Ω+
ε ))

2 +
∥∥∇ρ2

ε

∥∥
(L2(Ω+

ε ))
2

)
≤ C

(
ε ‖∇ρε‖(L2(Ωε))

2 + ε2
)

(4.29)

for ε small enough. Integrating by parts the fourth and sixth terms on the right-hand
side of (4.25), it follows that

2ε

∫
Ω−

∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

))(
ρε − ρ1

ε

)
dx

+ 2ε

∫
Ω+
ε

∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))(
ρε − ρ2

ε

)
dx

= −2ε

∫
Ω−

∂2w−

∂x1∂x3
(x1, l3)ψ

−
(
x1

ε
,
x3 − l3
ε

)
∂

x1

(
ρε − ρ1

ε

)
dx

−2ε

∫
Ω−

∂3w−

∂x2
1∂x3

(x1, l3)ψ
−
(
x1

ε
,
x3 − l3
ε

)(
ρε − ρ1

ε

)
dx

−2ε

∫
Ω+
ε

∂2w−

∂x1∂x3
(x1, l3)ψ

+

(
x1

ε
,
x3 − l3
ε

)
∂

x1

(
ρε − ρ2

ε

)
dx

−2ε

∫
Ω+
ε

∂3w−

∂x2
1∂x3

(x1, l3)ψ
+

(
x1

ε
,
x3 − l3
ε

)(
ρε − ρ2

ε

)
dx.

Then, Corollary 3.2, the Cauchy–Schwarz inequality, the Poincaré inequality, (4.5),
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(4.26), and (4.27) imply

∣∣∣∣2ε
∫

Ω−

∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ−
(
x1

ε
,
x3 − l3
ε

))(
ρε − ρ1

ε

)
dx

+ 2ε

∫
Ω+
ε

∂2w−

∂x1∂x3
(x1, l3)

∂

x1

(
ψ+

(
x1

ε
,
x3 − l3
ε

))(
ρε − ρ2

ε

)
dx

∣∣∣∣
≤ Cε

(∥∥∇ (ρε − ρ1
ε

)∥∥
(L2(Ω−))2

+
∥∥ρε − ρ1

ε

∥∥
L2(Ω−)

+
∥∥∇ (ρε − ρ2

ε

)∥∥
(L2(Ω+

ε ))
2 +

∥∥ρε − ρ2
ε

∥∥
L2(Ω+

ε )

)
≤ Cε

(∥∥∇ (ρε − ρ1
ε

)∥∥
(L2(Ω−))2

+
∥∥∇ (ρε − ρ2

ε

)∥∥
(L2(Ω+

ε ))
2

)
≤ Cε

(
‖∇ρε‖(L2(Ω−))2 +

∥∥∇ρ1
ε

∥∥
(L2(Ω−))2

+ ‖∇ρε‖(L2(Ω+
ε ))

2 +
∥∥∇ρ2

ε

∥∥
(L2(Ω+

ε ))
2

)
≤ C

(
ε ‖∇ρε‖(L2(Ωε))

2 + ε2
)

(4.30)

for ε enough small. Combining (4.25) with (4.28) ÷ (4.30), we obtain

‖∇ρε‖2
(L2(Ωε))

2 ≤ C
(
ε ‖∇ρε‖(L2(Ωε))

2 + ε2
)

for ε small enough. Therefore

‖∇ρε‖(L2(Ωε))
2 ≤ Cε(4.31)

for ε small enough. Finally, making use of the Poincaré inequality, estimate (4.13)
follows from (4.31).

Proof of Theorem 4.1. Let ψ± be the functions satisfying (3.1), (3.2), and τε and
ρε be the functions defined in (4.8) and (4.9), respectively. Since

uε − u− εw = τε + ερε + gε in Ωε,

where

gε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂u−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
x3 − l3
ε

)

+ ε2
∂w−

∂x3
(x1, l3)ψ

+

(
x1

ε
,
x3 − l3
ε

)
in Ω+

ε ,

ε
∂u−

∂x3
(x1, l3)

(
ψ−
(
x1

ε
,
x3 − l3
ε

)
− β

)

+ ε2
∂w−

∂x3
(x1, l3)ψ

−
(
x1

ε
,
x3 − l3
ε

)
in Ω−,

estimates (4.6) and (4.7) follow from Propositions 4.2 and 4.3, Corollary 3.2, and
estimates (4.2) and (4.5).
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Abstract. The dynamics of a plane diode is described by the Vlasov–Poisson system over an
interval with inflow boundary conditions at two ends. In this article, the uniqueness and regularity of
such dynamics are investigated. It is shown that a rather general initial and boundary datum leads to
a unique solution with bounded variations (BV ). Moreover, such a solution becomes discontinuous
if the external voltage is large enough, while it can remain C1 if the external voltage is sufficiently
small or absent.

Key words. Vlasov–Poisson system, boundary problem, outward pointing electric field, BV
estimate, Harten’s lemma, C1 solution
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1. Introduction and notation. The construction of particle accelerators and
free electron lasers requires electron guns which produce relativistic electron beams
of high quality (low emission and high current). Numerical simulations of various
sophisticated models are used in the design of electron guns. The most complete
mathematical model is the boundary value problem for the Vlasov–Maxwell evolu-
tion equations in a geometrically complicated spatially three-dimensional domain, for
which global weak solutions were constructed in [8]. The boundary in such a problem
is always characteristic, so the question of uniqueness and regularity of the solution
in the presence of a boundary is very challenging mathematically. In this paper,
we study the one-dimensional Vlasov–Poisson equation over an interval, which is the
evolutional model for classical electronic conduction in a plane diode. Even in this
simplest case, the uniqueness and regularity of such dynamics have been open.

Let a dilute electron gas be emitted at x = 0 and absorbed at x = 1. Under an
external voltage, the dynamics of such a plane diode is modeled by the Vlasov–Poisson
system [7] as follows:

∂tf + v∂xf + ∂xφ∂vf = 0,(1.1)

∂xxφ(t, x) = ρ(t, x),(1.2)

f(0, x, v) = f0(x, v),(1.3)

where the macroscopic charged density ρ(t, x) and related current density j(t, x) are
given by

ρ(t, v) =

∫ ∞

−∞
f(t, x, v)dv, j(t, x) =

∫ ∞

−∞
vf(t, x, v)dv.(1.4)

∗Received by the editors January 9, 2003; accepted for publication September 5, 2003; published
electronically April 7, 2004.

http://www.siam.org/journals/sima/35-6/42113.html
†Division of Applied Mathematics, Brown University, Providence, RI 02912 (guoy@dam.

brown.edu, shu@dam.brown.edu). The research of the first author was supported in part by an
A.P. Sloan Fellowship. The research of the second author was supported by ARO grant DAAD19-
00-1-0405, NSF grant DMS-0207451, NASA Langley grant NCC1-01035, and AFOSR grant F49620-
02-1-0113.

‡LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China (tzhou@
math.pku.edu.cn). The research of this author was supported by the China State Major Key Project
for Basic Research (G1999032803).

1617



1618 YAN GUO, CHI-WANG SHU, AND TIE ZHOU

Here the boundary conditions for the electron distribution f(t, x, v) ≥ 0 are given by

f(t, 0, v) = g(t, v), v > 0; f(t, 1, v) ≡ 0, v < 0;(1.5)

and external voltages are given at x = 0 and x = 1:

φ(t, 0) = 0, φ(t, 1) = λ(t) ≥ 0.(1.6)

Mathematical study of such nonlinear boundary value problems was initiated
in the pioneering work in [7], in which stationary (independent of time t) solutions
are constructed. Such stationary solutions are generically not continuous. A higher
dimensional generalization was given in [13] and [6]. On the other hand, for the dy-
namical problem of such a plane diode (1.1)–(1.6), a weak solution can be constructed
as in [3] and [1] (see also the related works in [2], [4], and [5]).

In this article, we show that under rather general conditions on the initial and
boundary data f0(x, v) as well as g(t, v), for every fixed t, the solution f(t, x, v) is
a bounded variation (BV ) function of x and v. This implies its uniqueness for the
nonlinear plane diode (Theorem 4.2). Moreover, given smooth initial and boundary
electron distributions, we investigate the influence of the voltage λ on the smoothness
of the solutions f(t, x, v). We demonstrate that f(t, x, v) can be discontinuous if the
voltage λ(0) is large (Lemma 4.3). In the absence of the external voltage (i.e., λ(t) ≡
0), the solutions always remain C1 inside (Theorem 4.4). Furthermore, if g(t, v) is
nonvanishing and the voltage λ(t) is sufficiently small, the solution also remains C1

inside (Theorem 4.5). Our results are in interesting contrast to the stationary case.
In general, as in the stationary case, it is expected that singularity (discontinu-

ity) should develop at the boundary and then propagate into the region. This kind of
singularity was first characterized by a BV estimate in [9] for a half line problem, via
a rather complicated procedure, for which a delicate damping term was introduced.
Such a BV regularity is crucial in proving the uniqueness for the full nonlinear prob-
lem, at least in the case of one space dimension. Somewhat surprisingly, unlike in the
stationary case, it was discovered in [9] that the sign of the electric field E(t, x) ≡ ∂xφ
at the boundary can ensure the smoothness of the solution of a dynamical problem.
Both BV and C1 estimates in [9] are very delicate and depend on a so-called veloc-
ity lemma, which is the only tool so far to estimate the bouncing particles reflected
specularly at the boundary. In general, solutions to the Vlasov–Poisson system can
be classical if the electric field E(t,x) (for the multidimensional case E(t,x) ≡ ∇xφ)
points strictly outward at the boundary. In the absence of an external voltage, such
an outward condition is automatically true for a nonvanishing electron gas, which
satisfies the nonlinear Vlasov–Poisson system. Classical solutions can therefore be
constructed in [9] and [10], in a half space. Recently, regularity for the full Vlasov–
Poisson system in a smooth three-dimensional convex domain was obtained in [12].
In the presence of an external potential λ(t), however, an outward condition for ∂xφ
is not true in general. A nonvanishing g and a small voltage λ(t) guarantee that the
electric field ∂xφ always points outward at both x = 0 and x = 1 for the nonlinear
problem (1.1)–(1.6).

The main mathematical difficulty in this article lies in the linear analysis with a
given, external electric field E(t, x). The novelty of the C1 estimate here extends the
previous results to treat the case if E(t, x) points outward at x = 0 and x = 1, but
not strictly. This case has been left open in [9], which was out of reach of the velocity
lemma. A new regularity estimate is established in Theorem 2.4, via Lemma 2.3, a
weak version of the velocity lemma (see also [12]). This directly leads to Theorem 4.4
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for the nonlinear case naturally, in the absence of an external voltage. On the other
hand, based on Lemma 2.1 with an additional nonvanishing assumption for f0 and
g, an explicit upper bound (4.15) is given in Theorem 4.5 for the external voltage to
guarantee the regularity of f . As for the BV estimate, we use a more direct approach
of constructing a positive finite difference scheme. We introduce an error function to
absorb the complicated boundary contribution. By using Harten’s lemma [11], [14],
we are able to give a much simpler and straightforward BV estimate (Theorem 3.4).
We expect that our method here is very general to treat more complicated domains
in higher dimensions.

Notation. We now introduce some notation. Let T be an arbitrary positive con-
stant. We denote the region

Π = [0, T ] × [0, 1] × R, Πs = Π ∩ {t = s}, 0 ≤ s ≤ T,

and the incoming sets at the boundaries {x = 0} and {x = 1} as

γ+
0 = {(t, 0, v) | v > 0, 0 ≤ t ≤ T}, γ−1 = {(t, 1, v) | v < 0, 0 ≤ t ≤ T}.

We denote the singular set

γS ≡ {x = 0, v = 0} ∪ {x = 1, v = 0}.
We use ‖ · ‖p to denote the standard Lp norms for 1 ≤ p ≤ ∞, and let C0,1 = W 1,∞

be the space of Lipschitzly continuous functions. Let ∂ = [∂t, ∂x, ∂v], and let

|||[f0, g]||| ≡ ‖f0‖C1 + ‖g‖C1 + ‖v∂xf0‖∞ + ‖v∂vf0‖∞
(1.7)

+‖v−1∂tg‖∞ + ‖v−1∂vg‖∞.
The last two terms above are needed for our regularity analysis.

2. Linear C1 estimate. We consider the following linear problem with a given,
external electric field E(t, x):

∂tf + v∂xf + E(t, x)∂vf = 0,

f |γ+
0

= g, f |γ−
1

= 0,(2.1)

f(0, x, v) = f0(x, v).

For any point (t, x, v) ∈ Π, we define Γ(τ ; t, x, v) = (τ,X(τ ; t, x, v), V (τ ; t, x, v)) to be
the unique trajectory of

dX(τ)

dτ
= V (τ),

dV (τ)

dτ
= E(τ,X(τ)),(2.2)

such that X(t; t, x, v) = x, V (t; t, x, v) = v. Equivalently,

V (s) = v +

∫ s

t

E(τ,X(τ))dτ,

(2.3)

X(s) = x− v(t− s) +

∫ s

t

∫ t1

t

E(τ,X(τ))dτdt1.

We define the starting point of (t, x, v), (t0(t, x, v), x0(t, x, v), v0(t, x, v)), to be the
(unique) first point at ∂Π on the backward-in-time trajectory (2.2). We begin with
two basic facts for such a starting point (t0, x0, v0).
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Lemma 2.1. Let E ∈ C0,1([0, T ] × [0, 1]). Let (t, x, v) ∈ Π with v > 0 and
2x‖E‖∞ < v2. Then the starting point (t0(t, x, v), x0(t, x, v), v0(t, x, v)) satisfies

0 ≤ x0 ≤ x,(2.4)

0 ≤ t− t0 ≤ v −√v2 − 2‖E‖∞x
‖E‖∞ ,(2.5)

0 ≤ v0 ≤ v +
√
v2 − 2‖E‖∞x.(2.6)

Proof. We construct a C0,1 extension Ē(t, x) of E(t, x) to t ≤ 0 and x ≤ 0 so that
‖Ē‖∞ = ‖E‖∞.

Now we fix (t, x, v) ∈ Π with v > 0 and 2x‖E‖∞ < v2. Let the trajectory
Γ(τ ; t, x, v) satisfy (2.2) with E replaced by Ē such that

V (s) = v +

∫ s

t

Ē(τ,X(τ))dτ,

(2.7)

X(s) = x− v(t− s) +

∫ s

t

∫ t1

t

Ē(τ,X(τ))dτdt1,

where X(τ) = X(τ ; t, x, v). Notice that for

t− s ≤ v −√v2 − 2‖E‖∞x
‖E‖∞ ,

we have ∣∣∣∣
∫ s

t

Ē(τ,X(τ))dτ

∣∣∣∣ ≤ ‖E‖∞ × v −√v2 − 2‖E‖∞x
‖E‖∞ < v.

Therefore, V (s) > 0 and X(s) ≤ x. To show (2.5), we look for a root θ∗ of the
function

X(θ; t, x, v) = x− v(t− θ) −
∫ θ

t

∫ t1

t

Ē(τ,X(τ))dτdt1.(2.8)

Clearly, X(t) = X(t; t, x, v) = x > 0. Define a quadratic function

X1(θ) = x− v(t− θ) +
‖E‖∞

2
(t− θ)2,

so that X(θ) ≤ X1(θ). In the case 2‖E‖∞x < v2, an elementary analysis on the roots
of X1(θ) shows that for t−θ greater than but arbitrarily close to its first positive root

v −√v2 − 2‖E‖∞x
‖E‖∞ ,

we have

X(θ) ≤ X1(θ) < 0.

By the continuity of X(θ), this implies that there exists a root θ∗ of X(θ) which
satisfies

t− v −√v2 − 2‖E‖∞x
‖E‖∞ < θ∗ < t.
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But X(θ) is strictly increasing over such an interval since X ′(θ) = V (θ) > 0; hence
θ∗ is unique. Because X(s) ≥ 0, we recover the original (2.3) with Ē ≡ E.

Now if θ∗ > 0, then t0 = θ∗, which leads to (2.5) and (2.6) with x0 ≥ 0. On
the other hand, if θ∗ = 0, then t0 = 0, and (2.5) and (2.6) with x0 ≥ 0 are again
valid.

Lemma 2.2. Let E ∈ C1([0, T ]× [0, 1]). Fix (t, x, v) ∈ Π such that v0(t, x, v) > 0.
Then [t0, v0] are C1 functions near (t, x, v). Let ∂t0 = [∂tt0, ∂xt0, ∂vt0]; then v0∂t0 is[

v0 + E(t, x)(t0 − t) +

∫ t

t0

E +

∫ t

t0

∫ s

t

∂xE∂tX,

t− t0 +

∫ t

t0

∫ s

t

∂xE∂vX,

−1 +

∫ t

t0

∫ s

t

∂xE∂xX

]
.(2.9)

Proof. We now consider a C1 extension Ē of E so that ‖Ē‖C1 ≤ C‖E‖C1 . We
still consider (2.7) with such a new Ē. We again look for a root for X(θ; t, x, v) in
(2.8). Notice that by our assumption,

∂X(θ; t, x, v)

∂θ

∣∣∣∣
θ=t0

= v +

∫ t0

t

Ē(τ)dτ = v0 > 0.

By the implicit function theorem, there is a unique C1 function θ(t, x, v) locally, which
satisfies X(θ, t, x, v) = 0. We now claim that θ(t′, x′, v′) = t0(t

′, x′, v′) for (t′, x′, v′)
near (t, x, v). It suffices to show that

X(s; t′, x′, v′) > 0

for θ(t′, x′, v′) < s ≤ t′, for (t′, x′, v′) near (t, x, v), for this implies Ē = E in (2.3).
In fact, since θ(t′, x′, v′) ∈ C1 and ∂X

∂θ > 0 at θ = t0, it follows that there is a δ > 0,
such that

X(s; t′, x′, v′) > 0

for θ < s < θ + δ. Since X(s; t, x, v) ≥ ε0 > 0 for t0 + δ/2 ≤ s ≤ t, it follows that by
further choosing (t′, x′, v′) closer to (t, x, v),

X(s; t′, x′, v′) ≥ ε0/2 > 0

for θ+δ ≤ s ≤ t. ThereforeX(s; t′, x′, v′) > 0 for θ(t′, x′, v′) < s ≤ t′ and θ(t′, x′, v′) =
t0(t

′, x′, v′). Furthermore, (2.9) follows from differentiating (2.3) with Ē = E.
We now establish a weak version of the velocity lemma (see [9]), with E pointing

outward at x = 0 and x = 1, but not strictly. On the other hand, no explicit estimate
of (x0, v0) in terms of (x, v) can be given, as in the previous velocity lemma [9].

Lemma 2.3. Let E ∈ C0,1([0, T ] × [0, 1]). Assume E(t, 0) ≤ 0 for all 0 ≤ t ≤ T .
For any (t, x, v) ∈ Π, the following hold:

(a) If its characteristic Γ(τ ; t, x, v) ∈ Π passes through (t∗, 0, 0) for some t∗ ≥ 0,
then x = 0 and v = 0.

(b) Moreover, let (t0, x0, v0) be the starting point of (t, x, v); then

lim
(x,v)→(0,0)

(|v0(t, x, v)| + |x0(t, x, v)|) = 0.(2.10)
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Proof. We first define a constant extension Ē(t, x) of the electric field E(t, x) to
x ≤ 0 as Ē(t, x) ≡ E(t, 0). Clearly, Ē(t, x) ∈ C0,1.

To prove (a), fix (t, x, v) and consider the trajectory (τ,X(τ ; t∗, 0, 0), V (τ ; t∗, 0, 0))
emanating from (t∗, 0, 0). Notice that such a curve also satisfies

dX(τ)

dτ
= V (τ),

dV (τ)

dτ
= Ē(τ,X(τ)),

or, equivalently,

V (s) =

∫ t

t∗
Ē(τ,X(τ))dτds, X(s) =

∫ s

t∗

∫ t1

t∗
Ē(τ,X(τ))dτdst1.(2.11)

Since (t, x, v) is on the curve, it follows that X(τ) ≥ 0 between t and t∗ and

V (t) = v, X(t) = x.

On the other hand, for any ε > 0, we define an approximate field

Eε ≡ Ē − ε

and denote the approximate curve (τ,Xε(τ ; t
∗, 0, 0), Vε(τ ; t

∗, 0, 0)) to satisfy

dXε(τ)

dτ
= Vε(τ),

dVε(τ)

dτ
= Ēε(τ,Xε(τ))

or

Vε(t) =

∫ t

t∗
Ēε(τ,Xε(τ))dτ, Xε(t) =

∫ t

t∗

∫ s

t∗
Ēε(τ,Xε(τ))dτds.(2.12)

Since Eε(τ, y) ≤ −ε < 0 for all y ≤ 0 and 0 ≤ τ ≤ T , it follows from (2.12) that

Vε(τ) ≤ 0 for τ ≥ t∗, Vε(τ) ≥ 0 for τ ≤ t∗.

Therefore, for all 0 ≤ τ ≤ T , we have

Xε(τ) ≤ 0.

Since Eε → Ē as ε→ 0, we have Vε(τ) → V (τ) and Xε(τ) → X(τ). In particular,

X(τ) ≤ 0

for all τ between t∗ and t. Therefore X(τ) ≡ 0. We deduce that either t = t∗ or

E(τ, 0) ≡ 0

between t and t∗ in (2.11). Both cases imply that x = v = 0. We therefore con-
clude (a).

We now turn to part (b). If (2.10) were false, there would exist (t, xn, vn) such
that |xn| + |vn| → 0, but their corresponding starting points would satisfy

|v0(t, xn, vn)| + |x0(t, xn, vn)| ≥ δ > 0.

Up to a subsequence, let t0(t, xn,vn) → t∗0, v0(t, xn, vn) → v∗0 , and x0(tn, xn, vn) → x∗0
such that

|v∗0 | + x∗0 ≥ δ > 0.



THE DYNAMICS OF A PLANE DIODE 1623

We deduce that (t, 0, 0) connects with (t∗0, x
∗
0, v

∗
0) through a characteristic curve.

Therefore v∗0 = x∗0 = 0 by part (a), which is a contradiction.
We are now ready to establish the C1 estimate.
Theorem 2.4. Let E(t, x) be C1([0, T ] × [0, 1]) and point outward at x = 0 and

x = 1; that is,

E(t, 0) ≤ 0 and E(t, 1) ≥ 0.(2.13)

Let f0 and g be C1. Assume the following compatibility conditions are valid:

f0(0, v) = g(0, v) for v > 0, f0(1, v) = 0 for v < 0,

∂tg(0, v) + v∂xf0(0, v) + E(0, 0)∂vf0(0, v) = 0 for v > 0,(2.14)

v∂xf0(1, v) + E(0, 1)∂vf0(1, v) = 0 for v < 0.

Then the solution f(t, x, v) to (2.1) belongs to C1(Π\γS)∩C0(Π). Furthermore, there
is a numerical constant C > 0 such that

‖f‖C0,1(Π) ≤ CeT‖E‖C1 |||[f0, g]|||,(2.15)

where |||[f0, g]||| is defined in (1.7).
Proof. For any (t, x, v) ∈ Π\γS , we consider its backward trajectory Γ(τ ; t, x, v)

to (2.2) with respect to the external field E(t, x) for 0 ≤ τ ≤ t. Let (t0, x0, v0) be its
starting point. We first consider only the case of 0 ≤ x0 < 1. The case x0 = 1 at the
right boundary will be treated via a reflection at the end of the proof.

(a) If 0 < x0 < 1 so that t0 = 0, we define

f(t, x, v) = f(t0, x0, v0) = f0(X(0; t, x, v), V (0; t, x, v)).(2.16)

By standard ODE theory, we easily deduce that f ∈ C1 near such a point (t, x, v).
Moreover, differentiating with respect to (t, x, v) of (2.2) yields

|∂X| + |∂V | ≤ CeT‖E‖C1(2.17)

for ∂ = [∂t, ∂x, ∂v]. Hence (2.15) follows directly from (2.16).
(b) If x0 = 0, we now separate two cases: If t0 > 0, then by (2.3)

f(t, x, v) = f(t0, x0, v0) = g

(
t0(t, x, v), v +

∫ t

t0

E(τ,X(τ))dτ

)
.(2.18)

By Lemma 2.3, v0 > 0. Therefore, for ∂ = ∂t, ∂x and ∂v, we have

∂f(t, x, v) = ∂t0∂tg(t0, v0) − ∂t0E(t0, 0)∂vg(t0, v0).

By Lemma 2.2, since E ∈ C1, it follows from (2.17) that

|∂t0| ≤ CeT{‖E‖C1+1}v−1
0 .

Therefore, for v0 > 0, f ∈ C1 at (t, x, v), and

|f(t, x, v)| ≤ CeT{‖E‖C1+1}v−1
0 {|∂tg(t0, v0)| + |∂vg(t0, v0)|}.

Moreover, if v > 0, then v0 > 0 for t− t0 small by (2.5) in Lemma 2.1, and ∂f(t, x, v)
is continuous across the boundary {x = 0}.
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On the other hand, if x0 = 0 but t0 = 0, to show f is C1 at (t, x, v), which is
on the surface of (t,X(t; 0, 0, v0), V (t; 0, 0, v0)), it suffices to prove that f is C1 at
(0, 0, v0) by using the C1 mapping (2.2). We choose (t1, x1, v1) and (t2, x2, v2) which
are close to (0, 0, v0) but satisfy different expressions, (2.16) and (2.18), respectively.
Clearly, by f0(0, v0) = g(0, v0), f ∈ C0 at (0, 0, v0). Let

δ ≡ t1 + t2 + x1 + x2 + |v1 − v0| + |v2 − v0|.

Expanding (2.16) and (2.18) around (0, 0, v0) and (0, 0, v0), respectively, leads to

∂f(t1, x1, v1) = ∂xf∂X|(0,0,v0) + ∂vf∂V |(0,0,v0) + o(δ),

∂f(t2, x2, v2) = ∂tg∂t0|(0,0,v0) + ∂vg{[E, 0, 1] − ∂t0E}|(0,0,v0) + o(δ).

Notice that ∂X|(0,0,v1) = (v0, 1, 0), and ∂V |(0,0,v0) = (E(0, 0), 0, 1). On the other
hand, by (2.9)

∂t0 = (1,−v−1
0 , 0)

for ∂ = [∂t, ∂x, ∂v]. By using the compatibility condition (2.14), f ∈ C1 at (0, 0, v0).
(c) We show that f is continuous at x = 0, v = 0 ∈ γS . We define

f(t, 0, 0) ≡ g(0, 0) = f0(0, 0)

for 0 ≤ t ≤ T . Choose any point (t, x, v) near γS and (x, v) �= (0, 0). Let (t0, x0, v0)
be its starting point so that

f(t, x, v) = f(t0, x0, v0).

By |||[f0, g]||| < +∞, it follows that ∂tg(t, 0) ≡ 0 so that

g(τ, 0) = g(0, 0)

for all 0 ≤ τ ≤ T . By (2.13) and the weak velocity lemma (Lemma 2.3), it follows
that (x0, v0) → (0, 0) so that either

lim
x+|v|→0

f(t, x, v) = lim
v0→0

g(t0, v0) ≡ g(0, 0) = f(t, 0, 0),

or

lim
x+|v|→0

f(t, x, v) = lim
x0+|v0|→0

f0(x0, v0) = f0(0, 0) = f(t, 0, 0).

Both imply f is continuous at (t, 0, 0).
(d) The last case of x0 = 1 can be reduced to the case of x0 = 0 via a simple

reflection. We define

f̄(t, x, v) ≡ f(t, 1 − x,−v), Ē(t, x) ≡ E(t, 1 − x).(2.19)

The system (2.1) now becomes

f̄t + vf̄y + Ē(t, y)f̄v = 0,

f̄(t, 0, v) = 0 at γ+
0 , f̄(t, 1, v) = g(t, v) at γ−1 ,(2.20)

f̄(0, y, v) = f̄0(y, v),
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and its characteristic Γ̄(τ ; t, y, v) = (τ, X̄(τ ; t, y, v), V̄ (τ ; t, y, v)) satisfies

dy

dt
= v,

dv

dt
= −E(t, 1 − y).

Comparing with (2.2), we deduce X(τ ; t, x, v), V (τ ; t, x, v), and

1 − X̄(τ ; t, 1 − x,−v), −V̄ (τ ; t, 1 − x,−v)

satisfies the same ODE with the same initial condition (t, x, v). Therefore

X(τ ; t, x, v) ≡ 1 − X̄(τ ; t, 1 − x,−v),
V (τ ; t, x, v) ≡ −V̄ (τ ; t, 1 − x,−v).

Hence x0 = 1 implies that Γ̄(τ ; t, 1 − x,−v) will first intersect with {x = 0}, and
applying step (b) gives that f̄ is C1 near (t, 1 − x, v). Thus f is C1 near (t, x, v) by
(2.19). This concludes the proof of the theorem.

Corollary 2.5. Let E(t, x) ∈ C0,1 instead of C1 in the assumptions in Theorem
2.4. Then f ∈ C0,1 and satisfies (2.15).

Proof. We construct a C1 approximation for E. Let Eε be a family of C1 func-
tions such that Eε → E in C0 and ‖Eε‖W 1,∞ ≤ 2‖E‖W 1,∞ . We finally choose an
approximation of E as

Eε(t, x) + {E(t, 0) − Eε(t, 0)}(1 − x) + x{E(t, 1) − Eε(t, 1)},(2.21)

which keeps the same boundary values as E(t, x) so that the compatibility conditions
(2.14) still hold. Applying Theorem 2.4 to the above electric field (2.21), we deduce
the corollary as ε→ 0.

By the same proof of Theorem 2.4 with extra flatness assumptions for both f0
and g near {v = 0}, we easily have the following.

Remark 2.6. Let f0(x, v), g(t, v), E(t, x) be C1. Assume (2.14) and (2.13). Assume
there is a constant C > 0, such that for |v| ≤ 1,

|∇g(t, v)| ≤ C|v|1+δ,
(2.22) ∇f0(x, v)| ≤ C(|x| + |v|)1+δ, |∇f0(x, v)| ≤ C(|1 − x| + |v|)1+δ

for some δ > 0. Then the solution to (2.1), f(t, x, v), is C1(Π) and satisfies (2.15).

3. Linear BV estimate. For E(t, x) without sign conditions (2.13), the solu-
tion f to (2.1) is not continuous in general (see [9]). To characterize such singularity,
we now turn to a BV estimate of discontinuous solutions to (2.1). By using a finite
difference scheme, we first establish a BV estimate for f(t, ·, ·) under rather general
conditions on the data f0 and g. We introduce rectangular meshes in which the grid
points are

tn = n∆t, n = 0, 1, . . . , N,

xi = i∆x, i = 0, 1, . . . , I,

vj = j∆v, j = 0,±1, . . . ,

where

∆t = T/N, h ≡ ∆x = 1/I = ∆v > 0.
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We first define the initial boundary conditions as

f0
ij = f0(xi, vj);

fn0,j = gnj , j ≥ 1;(3.1)

fnI,j = 0, j ≤ −1.

We construct the following explicit up-wind scheme for n ≥ 0.

fn+1
ij − fnij

∆t
+ v+

j

fnij − fni−1,j

∆x
+ v−j

fni+1,j − fnij
∆x

(3.2)

+[Eni ]+
fnij − fni,j−1

∆v
+ [Eni ]−

fni,j+1 − fnij
∆v

= 0

for both the interior region of i = 1, . . . , I − 1, j ∈ Z, and the two parts of outgoing
boundaries: for i = 0, j ≤ 0 and for i = I, j ≥ 0. Here [·]± denotes the positive
(negative) part. It is important to note that by (3.1), both fn0,0 and fnI,0 are not

explicitly given in terms of g, and they are determined only through (3.2) via fn−1
ij .

If µ = ∆t/h, the scheme (3.2) can be written equivalently:

fn+1
ij = (1 − µv+

j + µv−j − µ[Eni ]+ + µ[Eni ]−)fnij
(3.3)

+µv+
j f

n
i−1,j − µv−j f

n
i+1,j + µ[Eni ]+fni,j−1 − µ[Eni ]−fni,j+1.

Lemma 3.1. Let f0 and g have compact support in v,

{f0(x, v) = 0, g(t, v) = 0, |v| ≥ A}.(3.4)

If

µ ≤ µ0 =
1

2[A+ ‖E‖∞]
,(3.5)

then (3.3) is a positive scheme for 0 ≤ t ≤ 1/2.
Proof. For the first time-step (i.e., from f0

ij to f1
ij), support in v of f1

ij is expanded

to [−A− h,A+ h]. In general, after k steps, the v-support of fkij grows to

|vj | ≤ A+ kh.

Notice that µ = ∆t/h. Hence for 0 ≤ t ≤ 1/2, the number of time-steps is 1
2hµ , and

support of v is bounded by

A+
1

2µ
.

Therefore, (3.3) is a positive scheme if

µ

[
A+

1

2µ

]
+ µ‖E‖∞ ≤ 1,

which is equivalent to µ ≤ µ0. We thus deduce our lemma.
From the basic property of a positive scheme, we have the following lemma.
Lemma 3.2. Let f0 ≥ 0 and g ≥ 0, and assume (3.4). If µ ≤ µ0 in (3.5), then

‖fn+1‖∞ ≤ ‖fn‖∞. Moreover, for 0 ≤ t ≤ 1/2,

max
i,j

|fnij | ≤ {max |f0| + max |g|} and fnij ≥ 0.
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In order to take into account the complicated boundary contributions at x = 0
and x = 1, we extend the boundary data to i = −1 or x = −∆x as

fn−1,j = fn0,j = gnj , j ≥ 1, fn−1,0 = fn0,0,(3.6)

and to i = I + 1 or x = 1 + ∆x as

fnI+1,j = fnI,j = 0, j ≤ −1, fnI+1,0 = fnI,0.(3.7)

We can rewrite formula (3.3) for all 0 ≤ i ≤ I and j ∈ Z as follows:

fn+1
ij = (1 − µv+

j + µv−j − µ[Eni ]+ + µ[Eni ]−)fnij
(3.8)

+µv+
j f

n
i−1,j − µv−j f

n
i+1,j + µ[Eni ]+fni,j−1 − µ[Eni ]−fni,j+1 + enij .

Here (3.8) is free of boundary conditions, and the error term enij is constructed to
contain the boundary information. In fact, enij is nonvanishing only if either i = 0 and
j ≥ 1; that is,

en0j ≡ gn+1
j − (1 − µ[En0 ]+ + µ[En0 ]−)gnj − µ[En0 ]+fn0,j−1 + µ[En0 ]−gnj+1,(3.9)

or i = I and j = −1; that is,

enI,−1 = µ[EnI ]−fnI,0.(3.10)

We denote the forward difference as

∆h(l) = h(l + 1) − h(l)

for any function h, with suitable superscripts for different variables. We then estimate
enij as follows.

Lemma 3.3.

∑
i,j

|enij | ≤
∞∑
j=1

|∆tgnj | + 2µ‖E‖∞
{ ∞∑
j=1

|∆vgnj | + ‖g‖∞ + max
i,j

|fnij |
}
.

Proof. By definitions (3.9) and (3.10),∑
i,j

|enij | =
∑
j≥1

|en0j | + |enI,−1|.

For j ≥ 2, fn0,j−1 = gnj−1 and we have

|en0j | = |gn+1
j − (1 − µ[En0 ]+ + µ[En0 ]−)gnj − µ[En0 ]+gnj−1 + µ[En0 ]−gnj+1|

≤ |gn+1
j − gnj | + µ|En0 |{|gnj − gnj−1| + |gnj+1 − gnj |}.

On the other hand, for j = 1 we have

|en01| = |gn+1
1 − (1 − µ[En0 ]+ + µ[En0 ]−)gn1 + µ[En0 ]+fn00 − µ[En0 ]−gn2 |

≤ |gn+1
1 − gn1 | + µ|En0 |{|gn2 − gn1 | + |gn1 | + |fn00|}.

Moreover, at i = I we have

|enI,−1| ≤ µ|EnI |fnI0.
Therefore, summing over j ≥ 1, we deduce the lemma.
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We now estimate the total variation of f in i and j, which is defined by

TV [fn] := TVx,v(f
n) =

∞∑
−∞

I−1∑
i=0

h|∆xfnij | +
∞∑
−∞

I∑
i=0

h|∆vfnij |.

The main idea is based on Harten’s lemma [11].
Theorem 3.4. Let E(t, x) ∈ C0,1. Assume 0 ≤ g(t, v) ∈ BV ∩L∞(γ+

0 ), gt, vgv ∈
L1(γ+

0 ), and 0 ≤ f0(x, v) ∈ BV ∩ L∞(Π0). Then

TV [f(t)] ≤ C(‖E‖C0,1)

{
TV [f0] + ‖f0‖∞

(3.11)

+

∫
γ+
0

([1 + v]|gv| + |gt|)dvdt+ ‖g‖∞
}
.

Proof. Without loss of generality, we assume f0, g ∈ C1
c satisfying (3.4). Let

µ ≤ µ0 (3.5) and 0 ≤ t ≤ 1/2 so that (3.3) is a positive scheme.
Taking ∆v onto scheme (3.8), we first estimate the variation along the v direction.

Notice that Eni does not depend on j. By the product rule,

∆v(v±j · fij) = v±j ∆vfij + ∆v[v±j ]fi,j+1,

and we deduce from (3.8)

|∆vfn+1
ij | ≤ {1 − µv+

j + µv−j − µ[Eni ]+ + µ[Eni ]−}|∆vfnij |
+µv+

j |∆vfni−1,j | − µv−j |∆vfni+1,j |
+µ[Eni ]+|∆vfni,j−1| − µ[Eni ]−|∆vfni,j+1|
+µ|∆vv+

j ||fni,j+1 − fni−1,j+1| + µ|∆vv−j ||fni+1,j+1 − fni,j+1| + |∆venij |.

We first fix j, sum over 0 ≤ i ≤ I, and then sum over j. By making changes of dummy
indices of i and j to make cancellations, we obtain

∞∑
j=−∞

I∑
i=0

|∆vfn+1
ij | ≤

∞∑
j=−∞

I∑
i=0

|∆vfnij | + µ

∞∑
j=−∞

v+
j {|∆vfn−1,j | − |∆vfnIj |}

+µ

∞∑
j=−∞

v−j {|∆vfn0,j | − |∆vfnI+1,j |}

+

∞∑
j=−∞

I∑
i=0

{µh|∆xfni,j | + |∆venij |}.

But by (3.6) and (3.7),

µ
∞∑

j=−∞
v+
j |∆vfn−1,j | ≤ µ

∞∑
j≥1

v+
j |∆vgnj |,

∞∑
j=−∞

v−j |∆vfnI+1,j | = hfnI,0.
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Moreover, applying Lemma 3.3 yields

∞∑
j=−∞

I∑
i=0

|∆venij | ≤ 2

∞∑
j=−∞

I∑
i=0

|enij |

≤ 2
∑
j

|∆tgnj | + 4µ‖E‖∞
{∑

j

|∆vgnj | + ‖g‖∞ + ‖f0‖∞
]
.

We thus conclude that

∞∑
j=−∞

I∑
i=0

|∆vfn+1
ij | − µ

0∑
j=−∞

vj |∆vfn0j | + µ

∞∑
j=0

vj |∆vfnIj |

≤
∞∑

j=−∞

I∑
i=0

|∆vfnij | + µh

∞∑
j=−∞

I−1∑
i=0

|∆xfni,j |(3.12)

+(4µ‖E‖∞ + h)

[
‖f0‖∞ + ‖g‖∞ +

∞∑
j=0

vj |∆vgnj |
]

+ 2

∞∑
j=0

|∆tgnj |.

Next we consider the variation along x direction. We now operate ∆x onto (3.8).
By the product rule,

∆x(Eni f
n
i ) = Eni (∆xfni ) + (∆xEni )fni+1,

and we have, for all 0 ≤ i ≤ I − 1 and j ∈ Z,

|∆xfn+1
ij | ≤ {1 − µv+

j + µv−j − µ[Eni ]+ + µ[Eni ]−}|∆xfnij |
+µv+

j |∆xfni−1,j | − µv−j |∆xfni+1,j |
+µ[Eni ]+|∆xfni,j−1| − µ[Eni ]−|∆xfni,j+1|
+µ|∆xEni |(|∆vfni+1,j−1| + |∆vfni+1,j |) + |enij |.

Notice that since E ∈ C0,1, |∆xEni | ≤ ‖E‖C0,1h. Summing the above over 1 ≤
i ≤ I − 1, −∞ < j <∞, we deduce

∞∑
−∞

I−1∑
i=1

|∆xfn+1
ij | ≤

∞∑
−∞

I−1∑
i=1

|∆xfnij | +
∞∑
−∞

µv+
j |∆xfn−1,j | −

∞∑
−∞

µv+
j |∆xfnI−1,j |

+
∞∑
−∞

µv−j |∆xfn0,j | −
∞∑
−∞

µv−j |∆xfnI,j |

+µh‖E‖C0,1

∞∑
−∞

I−1∑
i=1

(|∆vfni+1,j−1| + |∆vfni+1,j |) +

∞∑
−∞

I−1∑
i=1

|enij |.

Notice that from our construction in (3.6) and (3.7),

∞∑
j=−∞

µv+
j |∆xfn−1,j | =

∞∑
j=−∞

µv−j |∆xfnI,j | = 0.



1630 YAN GUO, CHI-WANG SHU, AND TIE ZHOU

We thus deduce

∞∑
−∞

I−1∑
i=0

|∆xfn+1
ij | −

−1∑
j=−∞

µvj |∆xfn0,j | +
∞∑
j=1

µvj |∆xfnI−1,j |

≤
∞∑
−∞

I−1∑
i=0

|∆xfnij | + 2µh‖E‖C0,1

∞∑
−∞

I∑
i=0

|∆vfni,j |(3.13)

+C(‖E‖∞ + 1)

∞∑
j=1

{|∆vgnj | + |∆tgnj | + ‖g‖∞ + ‖f0‖∞}.

Combining (3.12) and (3.13) and summing over n, we deduce (3.11) for 0 ≤ t ≤
1/2, since constants in (3.11) do not depend on A. By approximating f0 and g by C1

c

functions, we deduce our theorem for the time interval [0, 1/2]. For the general [0, T ],
we repeat the above estimate a finite number of times.

4. Nonlinear plane diode. We are ready to study the nonlinear plane diode
problem (1.1)–(1.6). We construct an iterating sequence Em ≡ ∂xφ

m and fm for
m = 1, 2, 3, . . . as follows:

∂tf
m+1 + v∂xf

m+1 + ∂xφ
m∂vf

m+1 = 0,(4.1)

∂xxφ
m =

∫ ∞

−∞
fm(t, x, v) dv,(4.2)

φm(t, 0) ≡ 0, φm(t, 1) ≡ λ(t),

fm+1(t, 0, v) = g(t, v), v > 0, fm+1(t, 1, v) = 0, v < 0,

fm+1(0, x, v) = f0(x, v)

with ∂xxφ
0 =

∫∞
−∞ f0(x, v) dv, starting with f1(t, x, v) ≡ f0(x, v). We have the fol-

lowing uniform estimates in m.
Lemma 4.1. The following uniform estimates are valid.

fm+1(t, x, v) ≤ max{‖f0‖∞, ‖g‖∞},(4.3)

‖fm+1(t)‖1 ≤ ‖f0‖1 + ‖vg‖1,(4.4)

‖∂xφm(t)‖∞ ≤ λ(t) + ‖f0‖1 +

∫ t

0

∫ ∞

0

vg,(4.5)

‖vpfm+1(t)‖∞ ≤ Cep{‖λ‖∞+‖f0‖1+‖vg‖1}t{‖vpf0‖∞ + ‖vpg‖∞ + 1},(4.6)

‖∂∂xφm(t)‖∞ ≤ Cp
[‖λ′‖∞ + ‖fm+1(t)‖∞ + ‖vpf0‖∞ + ‖vpg‖∞

]
,(4.7)

TV [fm+1(t)] ≤ C(‖∂xφm‖C0,1)

[
TV [f0] +

∫ t

0

∫ ∞

0

([1 + v]|gv| + |gt|)

+‖f0‖∞ + ‖g‖∞
]
,(4.8)

where ∂ = ∂t and ∂x in (4.7), and p > 2.
Proof. Both (4.3) and (4.4) are straightforward from the Vlasov equation (4.1).

The BV estimate (4.8) directly follows from Theorem 3.4.
We now consider (4.5). Notice that from (4.2),

∂xφ
m(t, x) = ∂xφ

m(t, 0) +

∫ x

0

ρm(t, y) dy.(4.9)
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Since φm(t, 1) = λ(t) and φm(t, 0) = 0, we have

λ(t) =

∫ 1

0

∂xφ
m(t, x)dx =

∫ 1

0

{
∂xφ

m(t, 0) +

∫ x

0

ρm(t, y)dy

}
dx.

Solving ∂xφ
m(t, 0) above and inserting into (4.9) yield

∂xφ
m(t, x) = λ(t) −

∫ 1

0

∫ x

0

ρm(t, y)dydx+

∫ x

0

ρm(t, y) dy.(4.10)

Therefore,

λ(t) −
∫ 1

0

∫ x

0

ρm(t, y)dydx ≤ ∂xφ
m(t, x) ≤ λ(t) +

∫ x

0

ρm(t, y) dy.

We thus deduce (4.5) by estimating two integrals of ρm(t, x), again by (4.4).
We now turn to (4.6). Multiplying (4.1) with |v|p gives

[∂t + v∂x + ∂xφ
m∂v]{|v|pfm+1} ≤ p|v|p−1|∂xφm|fm+1.

By using (4.5) and a simple inequality, |v|p−1 ≤ 1 + |v|p for p > 2, we get

[∂t + v∂x + ∂xφ
m∂v]{|v|pfm+1} ≤ p{‖λ‖∞ + ‖f0‖1 + ‖vg‖1}(1 + |v|pfm+1).

Taking the L∞ norms along the characteristic (2.2) with E = ∂xφ
m on both sides

and applying the Gronwall lemma, we deduce (4.6).
Now we prove (4.7). We first treat ∂xxφ

m as

∂xxφ
m =

∫ ∞

−∞
fm(t, x, v)dv =

∫
|v|≤1

+

∫
|v|≥1

≤ ‖fm‖∞ + ‖vpfm(t)‖∞
∫
|v|≥1

|v|−pdv

≤ ‖fm‖∞ +
1

p− 1
‖vpfm(t)‖∞.

Moreover, recalling (1.4) and (4.1), we have the charge continuity ∂tρ
m+∂xj

m =
0. This implies ∂3

txxφ
m = −∂xjm and

∂txφ
m(t, x) = ∂txφ

m(t, 0) + jm(t, 0) − jm(t, x).(4.11)

We first estimate j(t, x) on the left of (4.11) by

|jm(t, x)| ≤
∫
|v|≤1

+

∫
|v|≥1

≤ ‖fm‖∞ + ‖vpfm(t)‖∞
∫
|v|≥1

|v|1−pdv

≤ ‖fm‖∞ +
1

p− 2
‖vpfm(t)‖∞.

Taking the t derivative of (4.10) yields

∂txφ
m(t, 0) = λ′(t) −

∫ 1

0

∫ x

0

ρm(t, y)dydx = λ′(t) +

∫ 1

0

(jm(t, x) − jm(t, 0))dx.

Plugging this back into (4.11) implies (4.7).
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We now prove the uniqueness of the nonlinear dynamics of a diode, modeled by
equations (1.1), (1.5), and (1.6).

Theorem 4.2. Assume that for some p > 2, f0(x, v) and g(t, v) satisfy

TV [f0] +

∫
γ+
0

([1 + v]|gv| + |gt|) + ‖vpf0‖∞ + ‖vpg‖∞ <∞.(4.12)

There exists the unique solution f(t, x, v) to (1.1)–(1.6), which satisfies (4.3)–(4.8).
Proof. We construct the approximate solutions fm as in (4.1) and (4.2). Taking

m → ∞, by (4.3)–(4.8) we obtain a weak solution f(t, x, v) to the nonlinear plane
diode problem (1.1)–(1.6), which also satisfies the same estimates as in (4.3)–(4.8).
Assume there is another such weak solution f1(t, x, v) satisfying the same estimates.
Subtracting f − f1 yields

[∂t + v∂x + ∂xφf ]{f − f1} = −{∂xφf − ∂xφf1}fv,(4.13)

{f − f1}|γ+
0
≡ {f − f1}|γ−

1
≡ 0, {f − f1}(0, x, v) ≡ 0, and {φf − φf1}(t, 0) ≡ {φf −

φf1}(t, 1) ≡ 0. Notice that from the Poisson equation,

‖∂xφf − ∂xφf1 ||∞ ≤ C‖f − f1‖1.

Moreover, for any test function η(x, v), since ∂xφf (t) − ∂xφf1(t) does not depend on
v, we deduce for any fixed t∣∣∣∣

∫ 1

0

∫ ∞

−∞
{∂xφf (t) − ∂xφf1(t)}f∂vη

∣∣∣∣
≤ ‖∂xφf (t) − ∂xφf1(t)‖∞

∫ 1

0

∣∣∣∣
∫ ∞

−∞
f∂vη

∣∣∣∣
≤ ‖∂xφf (t) − ∂xφf1(t)‖∞

∫ 1

0

‖η(x, ·)‖C0‖f(t, x, ·)‖BV dx
≤ ‖∂xφf (t) − ∂xφf1(t)‖∞‖η‖C0‖f(t)‖BV .

Therefore, −{∂xφf − ∂xφf1}fv is a measure over [0, 1] × R, and

‖ − {∂xφf − ∂xφf1}fv‖m ≤ ‖∂xφf (t) − ∂xφf1(t)‖∞‖f(t)‖BV .

Since taking the measure norm m on both sides of (4.13), we obtain

d

dt
‖f(t) − f1(t)‖1 ≤ ‖{φf − φf1}fv‖m ≤ ‖φf (t) − φf1(t)‖∞‖f(t)‖BV

≤ C‖f(t) − f1(t)‖1.

Therefore, the uniqueness follows from the Gronwall lemma.
Now we study the question of higher regularity of f(t, x, v). We are particularly

interested in the conditions under which the solution f(t, x, v) could become classical,
without discontinuity.

Lemma 4.3. Assume f0, g ∈ C1
c such that |||[f0, g]||| < +∞, which also satisfy

(2.14) and (4.12). Furthermore, let

f0(x, v) �= f0(0, 0)
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for (x, v) �= (0, 0) and x and v small. If the external voltage further satisfies

λ(0) >

∫ 1

0

∫ ∞

−∞
(1 − x)f0(x, v)dvdx,

then f(t, x, v) is not continuous.
Proof. Since by (4.9) and (4.10),

∂xφ(0, 0) = λ(0) −
∫ 1

0

∫ ∞

−∞
(1 − x)f0(x, v)dvdx > 0,

the backward trajectory Γ(τ ; t, 0, 0) hits on initial plane {t = 0} for t sufficiently small.
Therefore

f(t, 0, 0) = f0(0, X(τ ; t, 0, 0), V (τ ; t, 0, 0)) �= f0(0, 0).

But from (2.22), we have that f(t, 0, 0) = f(0, 0, 0) = f0(0, 0), which is a contra-
diction.

Next we consider the case when the external voltage λ(t) is absent.
Theorem 4.4. Let λ(t) ≡ 0. Assume f0, g ∈ C1, such that |||[f0, g]||| < ∞,

which also satisfy (2.14) and (4.12). Then f(t, x, v) ∈ C1(Π\γS) ∩ C0(Π).
Proof. Notice that ∂xxφ = ρ ≥ 0, and φ(t, 0) = φ(t, 1) = 0. It follows that

∂xφ(t, 0) ≤ 0, and ∂xφ(t, 1) ≥ 0. By Corollary 2.5, it follows that f ∈ C0,1(Π). To
show ∂xφ is C1, we use (4.6) to get

|ρ(t, x) − ρ(t1, x1)| =

∣∣∣∣
∫
f(t, x, v)dv −

∫
f(t1, x1, v)dv

∣∣∣∣
≤
∫
|v|≤N

|f(t, x, v) − f(t1, x1, v)|dv + 2‖vpf(t)‖∞
∫
|v|≥N

|v|−pdv

≤
∫
|v|≤N

|f(t, x, v) − f(t1, x1, v)|dv + CN−p+1‖vpf(t)‖∞.

By choosing N large and then letting (t1, x1) tend to (t, x), we deduce that ρ(t, x)
is continuous. So is j(t, x), and we deduce ∂xφ(t, x) ∈ C1 by the Poisson equation
(∂2
xφ = ρ) and (4.11). Our theorem follows from Theorem 2.4.

The next theorem shows that for some given f0 and g, f ∈ C1 if the external
voltage is small enough with respect to f0 and g.

Theorem 4.5. Assume f0, g ∈ C1, such that |||[f0, g]||| < ∞, which also satisfy
(2.14) and (4.12). Furthermore, assume that f0 and g satisfy the following nonvan-
ishing condition: there are positive constants g0, d, and d1 < 1, such that

min
0≤v≤d

g(t, v) ≥ g0, min
0≤v≤d,0≤x≤d1

f0(x, v) ≥ g0.(4.14)

If we further assume

‖λ‖∞ ≤ (1 − d1)

24
min

⎧⎨
⎩ g0d

3√
a2 + (1−d1)g0d3

12 + a
,
64

3
(1 − d1)g

2
0d

3
1

⎫⎬
⎭ ,(4.15)

where a = ‖f0‖1 + ‖vg‖1, then f(t, x, v) ∈ C1(Π\γS) ∩ C0(Π).
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Proof. By the proof of Theorem 4.4, it suffices to show that ∂xφ points outward
at x = 0 and x = 1. Notice that from ∂xxφ = ρ ≥ 0 and φ(t, 0) = 0, it follows that
∂xφ(t, 1) ≥ 0̇.

To consider ∂xφ(t, 0), by integration by parts we have

∂xφ(t, 0) = λ(t) −
∫ 1

0

∫ x

0

ρ(t, y) dydx

(4.16)

= λ(t) −
∫ 1

0

∫ ∞

−∞
(1 − x)f(t, x, v) dvdx.

We consider the starting point (t0, x0, v0) of (t, x, v) by separating two cases. If

d

4‖∂xφ‖∞ ≤ d1 < 1,

we consider the following region of {0 ≤ v ≤ d
2 , 0 ≤ x ≤ v2

2‖∂xφ‖∞
}. Clearly, from

Lemma 2.1, the starting point (t0, x0, v0) of such (t, x, v) satisfies

0 ≤ x0 ≤ x ≤ d1, 0 ≤ v0 ≤ 2v ≤ d

so that by (4.14) f(t0, x0, v0) ≥ g0. Restricting the integration region in the left-hand
side (LHS) of (4.16) accordingly yields

∂xφ(t, 0) ≤ λ(t) − (1 − d1)

∫ d/2

0

∫ v2

2‖∂xφ‖∞

0

f(t0, x0, v0) dvdx

≤ λ(t) − (1 − d1)g0

∫ d/2

0

∫ v2

2‖∂xφ‖∞

0

dxdv

≤ λ(t) − (1 − d1)g0d
3

48‖∂xφ‖∞
≤ λ(t) − (1 − d1)g0d

3

48(λ(t) + ‖f0‖1 + ‖vg‖1)
,

where we have used (4.5) in the last line. By solving a quadratic inequality, we deduce
that if

0 ≤ λ(t) ≤ (1 − d1)g0d
3

24
(√

a2 + (1−d1)g0d3
12 + a

) ,(4.17)

then ∂xφ(t, 0) ≤ 0, where a = ‖f0‖1 + ‖vg‖1.
On the other hand, if

d

4‖∂xφ‖∞ > d1,

then we are restricted to the region {0 ≤ x ≤ d1, 0 ≤ v ≤ √
2‖∂xφ‖∞x}. It follows

that the starting point (t0, x0, v0) of such (t, x, v) again satisfies

0 ≤ x0 ≤ x ≤ d1, 0 ≤ v0 ≤ 2v ≤ d,
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so that f(t0, x0, v0) ≥ g0. Restricting the integration region in the LHS of (4.16)
accordingly yields

∂xφ(t, 0) ≤ λ(t) − (1 − d1)

∫ d1

0

∫ √
2‖∂xφ‖∞x

0

f(t0, x0, v0) dvdx

≤ λ(t) − (1 − d1)g0

∫ d1

0

∫ √
2‖∂xφ‖∞x

0

dvdx

≤ λ(t) − 23/2(1 − d1)g0‖∂xφ‖1/2
∞ d

3/2
1

3

≤ λ(t) − 23/2(1 − d1)g0λ(t)1/2d
3/2
1

3
.

Here ‖∂xφ‖∞ ≥ λ(t), from φ(t, 0) = 0 and φ(t, 1) = λ(t) as well as the mean value
theorem. Therefore, ∂xφ(t, 0) is nonpositive if

λ(t) ≤ 8

9
(1 − d1)

2g2
0d

3
1.

Combining this with (4.17) concludes the theorem.
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Abstract. We study axially symmetric solutions with no swirl of the three-dimensional Navier–
Stokes equations in a half-space. We prove that suitable weak solutions in this case are Hölder
continuous up to the boundary at all points except for the origin. For interior points this implies
smoothness in the spatial variables. Hölder continuity at the origin remains as an open problem.
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1. Introduction. We consider a vector field in a half-space R
3
+ which vanishes

at ∂R
3
+. If a vector field u is invariant under rotation around the x3-axis, we say

that it is axially symmetric; in other words, u(R(x)) = R(u(x)) for every rotation R
about the x3-axis. If, moreover, an axially symmetric vector field v is invariant under
reflection by every plane containing an x3-axis, we say it is axially symmetric with no
swirl; that is to say, v is axially symmetric and v(T(x)) = T(v(x)) for every reflection
T as above. In this paper we study the regularity of axially symmetric solutions
with no swirl of the Navier–Stokes equations in R

3
+ with zero boundary condition on

{x3 = 0}. When R
3
+ is replaced by R

3, it is known that such solutions are regular
(see [4], [8], and [18]).

Our main result is that suitable weak solutions of the Navier–Stokes equations are
locally Hölder continuous up to the boundary (R̄3

+ \ {0}) × (0,∞). It follows that in
R

3
+ × (0,∞) the solutions are smooth in spatial variables x.

The main tools are the partial regularity results of suitable weak solutions of the
Navier–Stokes equations (see [1], [5], and [11] for the interior case and see [14] for the
boundary case) and the maximum principle for the azimuthal component of vorticity,
which was also used to prove full regularity in the case of R

3. Our result implies that
the only possible singular point for axially symmetric solutions with no swirl in R

3
+

would be the origin. It seems to be open whether or not singularity may occur at
the origin, and so we leave it as an open problem. Our result could be also deduced
from [14] combined with [12]. However, the method of proof presented in this paper,
in order to use the maximum principle, is different from the one in [12].

The plan of the paper is as follows: In section 2, we introduce notation and
definitions, review some well-known facts for our proof, and, finally, state our main
theorem. In section 3, we present the proof of the main theorem.

2. Preliminaries and main result. In this section, we introduce notation and
definitions, recall some well-known results used later, and, finally, state our main
theorem. Let us begin with notation.
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• We denote by R
3
+ a half-space of three dimension R

3 and write the origin of R
3

as 0.
• For a given point (x, t) ∈ R

3
+ × I, we denote by Bx,r ⊂ R

3
+ the ball of radius

r centered at x, where 0 < r < dist (x, ∂R
3
+). We also denote a parabolic ball by

Q(x,t),r = Bx,r × (t− r2, t), where 0 < r < min {dist (x, ∂R
3
+),

√
t }.

• If x is located on the boundary of R
3
+, then we write a half ball of radius r as

B+
x,r = Bx,r ∩ R

3
+, where Bx,r ⊂ R

3. Similarly, if (x, t) ∈ ∂R
3
+ × I, a parabolic half

ball at (x, t) is defined by Q+
(x,t),r = B+

x,r × (t− r2, t) for 0 < r <
√
t.

• Let Ω ⊂ R
3 be a domain. For 1 ≤ q ≤ ∞, W k,q(Ω) denotes the usual Sobolev

space, i.e., W k,q(Ω) = {u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ k}. As usual, W k,q
0 (Ω)

is defined as the completion of C∞
0 (Ω) in W k,q(Ω). We also denote by W−k,q′(Ω) the

dual space of W k,q
0 (Ω), where q and q′ are Hölder conjugates.

• Let 1 ≤ q, r ≤ ∞ and I = (0,∞). Lr(I;W k,q(Ω)) is the Banach space consisting
of all measurable functions with a finite norm

||u||Lr(I;Wk,q(Ω)) =

(∫
I

||u(·, t)||rWk,q(Ω) dt

) 1
r

.

The Navier–Stokes equations are expressed in the Cartesian coordinates x, y, and
z in a half-space R

3
+ as follows:

ut − ν∆u+ (u · ∇)u+ ∇p = f
∇ · u = 0

}
in R

3
+ × (0,∞)(2.1)

with initial and boundary conditions{
u(x, 0) = u0 when t = 0,

u = 0 on ∂R
3
+ × (0,∞),

(2.2)

where u : R
3
+×(0,∞)→R

3 and p : R
3
+×(0,∞)→R are unknown vector field and pres-

sure, respectively, ν is the kinematic viscosity, and f and u0 are prescribed external
force and initial condition, respectively. From now on, f and u0 are, for simplic-
ity, assumed to be smooth and compactly supported, and we denote I = (0,∞) for
simplicity. A solution u of (2.1) and (2.2) is called a suitable weak solution if u is a
Leray–Hopf weak solution satisfying local energy inequality. In other words, u satisfies
the following:

1. u belongs to the class

u ∈ L∞(I;L2(R3
+)3) ∩ L2(I;W 1,2

0 (R3
+)3), ut ∈ L

4
3 (I;W−1,2(R3

+)3),

which is continuous in t ∈ I in the weak topology in L2(R3
+)3, and solves

(2.1) in a weak sense:∫
R3

+×I
(uξt − ν∇u : ∇ξ − (u∇)uξ + fξ) dxdt = 0

for all ξ ∈ C∞
0 (R3

+ × I; R3) with ∇ · ξ = 0 and∫
R3

+

u(·, t)∇φdx = 0

for all φ ∈ C∞
0 (R3

+) and a.e. t ∈ I.
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2. The pressure p belongs locally to the class p ∈ L
3
2

loc(R
+
3 ×I), i.e., p ∈ L

3
2 (Q+

z,r),

where z = (x, t) ∈ R
+
3 × I and Q+

z,r = B+
x,r × (t − r2, t) for any 0 < r <

√
t,

such that u and p satisfy the following local energy inequality:

∫
R3

+

|u(x, t)|2φ(x, t) dx+ 2ν

∫
R3

+×I
|∇u|2φdxdt

≤
∫

R3
+×I

|u|2(∂tφ+ ν∆φ) + (|u|2 + 2p)u · ∇φ+ 2f · uφ dxdt

(2.3)

for a.e. t ∈ I and for all nonnegative functions φ ∈ C∞
0 (Q+

z,r).
Before we go further, we make several remarks on “suitable weak solutions.”

Remark 2.1. Our weak solutions are the Leray–Hopf solutions satisfying the local
energy inequality. Therefore, these solutions also satisfy the global energy inequality
(see, e.g., [2, pp. 71–72]); i.e.,

1

2

∫
R3

+

|u(x, t)|2 dx+ ν

∫ t

0

∫
R3

+

|∇u(x, t)|2 dxdt

≤ 1

2

∫
R3

+

|u0(x)|2 dx+

∫ t

0

∫
R3

+

f(x, t) · u(x, t) dxdt

for almost all t ∈ I.
Remark 2.2. For the regularity property of the pressure p, it is known that,

under the reasonable assumption on f and u0, the pressure p is in L
5
3 (Q), where Q

is parabolic domain, which is R
3, bounded, exterior, or half-space (see [16, Theorems

3.3 and 3.4] and [3, Theorem 3.1]). Therefore, it seems reasonable to assume that the

pressure p is in L
3
2

loc(R
+
3 × I).

Remark 2.3. The existence of suitable weak solutions among weak solutions was
proved in [1], and a slightly modified definition of it was observed in other contexts (see
[5], [11], and [14]). In this paper, we follow the definition shown in [14]. As indicated
in [1, Remark 4, p. 823], we do not know whether weak solutions are “suitable weak
solutions”; in other words, it seems to be an open question whether weak solutions
obtained by Galerkin approximation satisfy the local energy inequality (2.3).

Next we first define a regular or singular point of a suitable weak solution u.
Definition 2.4. We say a point (x, t) ∈ R̄

3
+ × I is a regular point when a

suitable weak solution u is bounded in a neighborhood Q(x,t),r (or Q+
(x,t),r) for some

0 < r < min {dist (x, ∂R
3
+),

√
t } (or 0 < r <

√
t) for x ∈ R

3
+ (or x ∈ ∂R

3
+).

Otherwise it is called a singular point. In addition, we say u is regular at (x, t) if it is
a regular point. Similarly, we say u is singular at (x, t) if (x, t) is a singular point.

It is well known that weak solutions are smooth in spatial variables and Hölder
continuous in time in a neighborhood of an interior regular point (see [15]). At the
boundary such solutions are Hölder continuous at each regular point, while the higher
regularity seems to be open (see [14]).

On the other hand, it is also well known that weak solutions are smooth and
unique for a short time for given smooth data f and u0 (see, e.g., Theorem 3.2 in [17,
p. 22] or Theorem 9.3 in [2, p. 80]). Here we recall a well-known result regarding a
Hausdorff measure of possible singular set of time (see, e.g., [2], [9], [13], and [17]).
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Theorem 2.5. Let u be a weak solution of the Navier–Stokes equations (2.1).
Then there exists a closed set S ⊂ I whose 1

2 dimensional Hausdorff measure vanishes
such that u is regular in R̄

3
+ × (I \ S).

Proof. See, for example, the proof of Theorem 10.8 in [2].
Remark 2.6. It should be mentioned that if suitable weak solutions which are

axially symmetric in R
3
+ have a singular point, then singularity can occur only on

the x3-axis. This argument is based on the result that the one-dimensional parabolic
Hausdorff measure of a singular set is zero for the interior case proved in [1] (see also
[5] and [11]) and for the boundary case proved recently in [14]. Therefore, it suffices
to investigate the behavior of solutions near the x3-axis, provided that it is axially
symmetric.

We conclude this section by stating our main theorem, and its proof will be given
in the next section.

Main Theorem. Let u be a suitable weak solution of (2.1) which is axially
symmetric with no swirl in a half-space R

3
+. Then u is regular for every (x, t) ∈ R̄

3
+×I

unless x = 0. Therefore, it is Hölder continuous in (R̄3
+ \ {0}) × I.

3. The proof of the main theorem. We recall that the partial regularity
results imply that all points (x, t) with x2

1 + x2
2 	= 0 are regular because, as men-

tioned earlier, singularity cannot happen away from the axis of symmetry for ax-
ially symmetric solutions. Therefore, we have only to prove that every point in
{ (x, t) ∈ R̄

3
+ × I : x3 > 0 } is regular. In what follows, we consider only a fixed

suitable weak solution u of (2.1) which is axially symmetric with no swirl. Here we
assume that f and u0 are smooth, compactly supported, and axially symmetric with
no swirl. For convenience, we denote Z+ = {�z = (0, 0, z) ∈ R

3
+ : z > 0 }. Let us

start with a simple observation.
Lemma 3.1. There exist two sequences (z′i)

∞
i=1 and (z′′i )∞i=1 such that z′i ↘ 0 and

z′′i ↗ ∞, and every point in { (x, t) ∈ Z+ × I : x3 = z′i or x3 = z′′i } is regular.
Proof. We show only the validity in the case of a decreasing sequence (z′i)

∞
i=1. The

other part can be proved by a similar argument. Suppose there is no such sequence.
Then there is an interval JZ+ ≡ (0, δ) such that for every �z = (0, 0, z) ∈ Z+ with
z ∈ JZ+ , u is singular at (�z, tz) for some time tz ∈ I. We collect all such points and
denote them by

Sδ = {(�z, tz) ∈ Z+ × I : u is singular at (�z, tz), where �z = (0, 0, z), z ∈ JZ+}.
Note that Sδ is a subset of possible singular set and it can be easily checked that
the one-dimensional parabolic Hausdorff measure of Sδ is finite, not zero. In fact,
P1(Sδ) ≥ δ > 0. However, in [1], it was proved that the one-dimensional parabolic
Hausdorff measure of a possible singular set is zero, which leads to a contradiction.
Therefore, such a sequence must exist. The existence of an increasing sequence (z′′i )∞1=1

can be proved by a similar argument, and therefore we omit the details. This com-
pletes the proof.

Let {�z0
i = (0, 0, z′i)}∞i=1 and {�z∞i = (0, 0, z′′i )}∞i=1 be the sequences obtained in the

previous lemma. Without loss of generality, we assume that z′1 < z′′1 because z′i ↘ 0
and z′′i ↗ ∞ as i→∞. Next, we define a set Z+

l ⊂ R
3
+ as follows:

Z+
l ≡ {�x ∈ Z+ : z′l < x3 < z′′l } for each l ∈ N.

We also consider a set Sl ⊂ I, which is related to Z+
l and defined as follows:

Sl ≡ {t ∈ I : u is singular for some (�x, t) ∈ Z+
l × I} for each l ∈ N.
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Our aim is to show that Sl = ∅ for all l ∈ N, which implies our main result.
Suppose that this is not the case. Then there exists m ∈ N such that Sm 	= ∅, and
then we consider

tm ≡ inf
t∈I

Sm, Sm ≡ {t ∈ I : u is singular for some (�z, t) ∈ Z+
m × I}.(3.1)

Lemma 3.2. Suppose Sm 	= ∅ for some m ∈ N. Let tm be the number defined in
(3.1). Then tm is a strictly positive number in I and, moreover, there exists �zm ∈ Z+

m

such that u is singular at (�zm, tm).
Proof. We note first that tm is strictly bigger than 0 because u is smooth for a short

time interval depending on given smooth data f and u0 (see, e.g., Theorem 3.2 in [17,
p. 22] or Theorem 9.3 in [2, p. 80]). We claim that there exists �zm = (0, 0, zm) ∈ Z+

m

such that u is singular at (�zm, tm). Indeed, if tm is isolated in Sm, then obviously
there is a point �zm ∈ Z+

m such that u is singular at that point. On the other hand, if
tm is a limit point in Sm, then there is a sequence of point (�zm,j , tm,j)

∞
j=1 ∈ Z+

m × I
such that tm,j ↘ tm. On the other hand, since [z′m, z

′′
m] is compact, {�zm,j} must have

a limit point, say �zm, and therefore an appropriate subsequence of (�zm,j , tm,j), which
we relabel as (�zm,j , tm,j), converges to (�zm, tm). We note that zm must be located in
[z′m, z

′′
m], that is, z′m ≤ zm ≤ z′′m. However, zm cannot be z′m nor z′′m, because z′m and

z′′m were chosen at the beginning to satisfy that u is regular at (z′m, t) and (z′′m, t) for
all t ∈ I. Our assertion is completed by noting that the singular set is closed. This
completes the proof.

Remark 3.3. It is worth noting that there exists a positive number r such that
u is bounded in B�z0m,r × (0, tm] and B�z∞m ,r × (0, tm]. Indeed, according to Theorem
2.5, there exists t0 > 0 such that u(·, t) is regular everywhere, provided that t < t0.
Combining the facts that u is regular for all time at �z0

m and �z∞m and [t0, tm] is a
compact set, we can say that there exist positive numbers r1, r2 such that u is bounded
in B�z0m,r1 × (0, tm] and B�z∞m ,r2 × (0, tm], respectively. By choosing r = min{r1, r2}, we
complete our claim.

The next step is to investigate the vorticity equation. If flow is axially symmetric
with no swirl, then with the aid of the cylindrical coordinates

x = r cos θ, y = r sin θ, z = z,

velocity vector u is converted as follows:

urer + uzez = uxex + uyey + uzez,

where ex, ey, and ez are the basis vectors with unit length in the Cartesian coordinates
and er and ez are the basis vectors with unit length in the cylindrical coordinates
(note that azimuthal component uθ vanishes because it has no swirl). In addition,
each component satisfies the following relation:

ur(r, z) = ux cos θ + uy sin θ, uz(r, z) = uz(x, y, z).

We can also see that system (2.1) can be written in the cylindrical coordinates (see,
e.g., [7, pp. 48–49]).

Now we consider the vorticity vector w = ∇× u. For simplicity, we assume that
the outer force f = 0. The advantage of a flow with no swirl is that the vector w
has only an azimuthal component, i.e., wθ = urz − uzr . More precisely, w = ∇× u =
(0, wθ, 0) = (0, urz − uzr , 0), and it solves the following single equation in R

3
+ × I:

∂w

∂t
+ ur

∂w

∂r
+ uz

∂w

∂z
− ur

r
w − ν

[
∂2w

∂r2
+
∂2w

∂z2
+

1

r

∂w

∂r
− w

r2

]
= 0(3.2)
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with smooth initial condition w0 = ∇× u0 and boundary w = urz − uzr on ∂R
3
+ × I.

Now we define an axially scalar function ξ ≡ w/r, and simple calculations show that
it satisfies the following equation in R

3
+ × I:

ξt − ν

(
∂2ξ

∂r2
+
∂2ξ

∂z2

)
+ ur

∂ξ

∂r
+ uz

∂ξ

∂z
− 3ν

1

r

∂ξ

∂r
= 0.(3.3)

The last term in (3.3) has a singular coefficient, and thus we cannot apply the
maximum principle directly. The main trick is to extend ξ to be a function defined
in R

3
+ × R

2 × I by introducing another two variables z1, z2 such that the extended
one is radial with respect to the variables x, y, z1, and z2. For clarity, we denote the
extended function by ξ̃, which is defined as follows:

ξ̃(x, y, z1, z2, z, t) = ξ(r, z, t),(3.4)

where r2 = x2 +y2 + z2
1 + z2

2 . In the same manner, we can also extend ur, uz, denoted
by ũr, ũz, into R

3
+ × R

2 × I. Then, from (3.3), ξ̃ satisfies the following equation:

ξ̃t − ν

(
∂2ξ̃

∂r2
+
∂2ξ̃

∂z2

)
+ ũr

∂ξ̃

∂r
+ ũz

∂ξ̃

∂z
− 3ν

1

r

∂ξ̃

∂r
= 0.(3.5)

This can be rewritten as follows:

ξ̃t − ν∆̃ξ̃ + ũr∂r ξ̃ + ũz∂z ξ̃ = 0,(3.6)

where ∆̃ indicates the Laplace operator in five dimensions. To sum up, (3.3) is
converted to five-dimensional parabolic equation (3.6) in R

3
+ × R

2 × I with “good”
coefficients if it is considered in a neighborhood of regular points. Note that (3.5) (or
(3.6)) is reduced to (3.3) when R

3
+ × R

2 × I is restricted to R
3
+ × I.

We argue as follows. We first show that ξ̃ is regular at (�zm, 0, 0, tm), which
implies that ξ is regular at (�zm, tm), too. Therefore, u is also regular at (�zm, tm),
which is contrary to the assumption that u is singular at (�zm, tm). Therefore, Sm
must be empty, which makes our argument complete. Without any confusion, we
denote �zm = (�zm, 0, 0) ∈ R

3
+ × R

2 and R
3
+ × R

2 × I = R
4 × R+ × I by interchanging

coordinates. Now we are ready to prove the main theorem.
Proof of the main theorem. We first show that ξ̃ is regular at (�zm, tm). As

mentioned in Remark 3.3, there exists a positive number r1 such that u is bounded in
B�z0m,r × (0, tm] and B�z∞m ,r × (0, tm] for all 0 < r ≤ r1. On the other hand, there exists
r2 > 0 such that u is smooth at t = tm− r22, which is due to Theorem 2.5 because the
set of possible singular time is of 1

2 Hausdorff measure zero. Without loss of generality,
we may take r2 < r1. We denote r2 by r and define Ω = [0, r)× (z′m, z

′′
m) ⊂ R

4 ×R+,
where [0, r) = { y ∈ R

4 : |y| < r }, and consider parabolic domains

Q = Ω × (tm − r2, tm), Qε = Ω × (tm − r2, tm − ε),

where ε is an arbitrary small positive number with ε < r2/4.
We note first that ξ̃ is regular on Q0 ≡ Ω × {tm − r2} because of our choice of

r. Hence ξ̃ is bounded on Ω× {tm − r2}. For convenience we denote M0 = supQ0
|ξ̃|.

We also show that ξ̃ is bounded on another parabolic boundary of Q. Note that the
other parabolic boundary of Q is composed of three parts, which are denoted by ∂Qi
for i = 1, 2, 3,
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∂Q1 ≡ [0, r) × {z′m} × (tm − r2, tm),

∂Q2 ≡ [0, r) × {z′′m} × (tm − r2, tm),

∂Q3 ≡ {r} × (z′m, z
′′
m) × (tm − r2, tm).

It is obvious that ξ̃ is bounded on ∂Qi for i = 1, 2 because z′m and z′′m were chosen
in such a way that ξ̃ is regular on each ∂Qi, i = 1, 2. In addition, since ∂Q3 is the
part strictly away from the z-axis and boundary, ξ̃ is also regular at every point on
∂Q3, which implies that ξ̃ is bounded on ∂Q3. Let Mi = supQi |ξ̃| for i = 1, 2, 3 and

M = max{Mi : i = 0, 1, 2, 3}. Now we claim that ξ̃ is bounded by M in a parabolic
domain Qε. Indeed, ξ̃ is bounded on each parabolic boundary of Qε, denoted by ∂pQ

ε,
because they are a subset of parabolic boundaries ∂pQ.

On the other hand, since u is smooth in spatial variable and each spatial derivative
is regular inQε, so are ξ̃ and each spatial derivative of ξ̃, where we used that ξ̃ is axially
symmetric. Therefore, ξ̃t is also bounded in Qε by (3.6), which enables us to apply the
maximum principle to ξ̃ in Qε (see, e.g., Theorem 7.1 in [10, p. 156] and Chapter 3.7 in
[6]). Therefore, we obtain supQε |ξ̃| ≤ sup∂pQε |ξ̃|, which is bounded by M . Since the

upper bound M is independent of ε, passing to the limit, we obtain ess supQ |ξ̃| ≤ M.

Therefore, there exists ρ > 0 such that ξ̃ is bounded by M in Q(�zm,tm),ρ ⊂ Q,

which means ξ̃ is regular at (�zm, tm) ∈ R
4 × R+ × I. Thus, automatically ξ is

regular at (�zm, tm) ∈ R
3
+ × I, which immediately implies that u is also regular at

(�zm, tm) ∈ R
3
+ × I. However, this is contrary to the statement given in Lemma 3.2

under the assumption that Sm 	= ∅ for some m ∈ N. Hence Sl must be an empty set
for all l ∈ N. Hölder continuity follows that u is locally bounded. This completes the
proof.
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[12] J. Neustupa and M. Pokorný, An interior regularity criterion for an axially symmetric
suitable weak solution to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000),
pp. 381–399.

[13] V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math.,
66 (1976), pp. 535–552.

[14] G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near
the boundary, J. Math. Fluid Mech., 4 (2002), pp. 1–29.

[15] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch.
Rational Mech. Anal., 9 (1962), pp. 187–195.

[16] H. Sohr and W. Von Wahl, On the regularity of the pressure of weak solutions of Navier-
Stokes equations, Arch. Math. (Basel), 46 (1986), pp. 428–439.

[17] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd ed., CBMS-NSF
Reg. Conf. Ser. in Appl. Math. 66, SIAM, Philadelphia, 1995.

[18] M. R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids
filling the whole space, J. Appl. Math. Mech., 32 (1968), pp. 52–61.


	SJMAAH_V35_i1_p0001.pdf
	SJMAAH_V35_i1_p0033.pdf
	SJMAAH_V35_i1_p0061.pdf
	SJMAAH_V35_i1_p0098.pdf
	SJMAAH_V35_i1_p0123.pdf
	SJMAAH_V35_i1_p0135.pdf
	SJMAAH_V35_i1_p0148.pdf
	SJMAAH_V35_i1_p0160.pdf
	SJMAAH_V35_i1_p0172.pdf
	SJMAAH_V35_i1_p0183.pdf
	SJMAAH_V35_i1_p0211.pdf
	SJMAAH_V35_i1_p0245.pdf
	SJMAAH_V35_i1_p0268.pdf
	SJMAAH_V35_i2_p0279.pdf
	SJMAAH_V35_i2_p0304.pdf
	SJMAAH_V35_i2_p0318.pdf
	SJMAAH_V35_i2_p0357.pdf
	SJMAAH_V35_i2_p0376.pdf
	SJMAAH_V35_i2_p0389.pdf
	SJMAAH_V35_i2_p0423.pdf
	SJMAAH_V35_i2_p0453.pdf
	SJMAAH_V35_i2_p0492.pdf
	SJMAAH_V35_i2_p0520.pdf
	SJMAAH_V35_i3_p0547.pdf
	SJMAAH_V35_i3_p0561.pdf
	SJMAAH_V35_i3_p0579.pdf
	SJMAAH_V35_i3_p0596.pdf
	SJMAAH_V35_i3_p0623.pdf
	SJMAAH_V35_i3_p0639.pdf
	SJMAAH_V35_i3_p0708.pdf
	SJMAAH_V35_i3_p0759.pdf
	SJMAAH_V35_i3_p0806.pdf
	SJMAAH_V35_i4_p0823.pdf
	SJMAAH_V35_i4_p0844.pdf
	SJMAAH_V35_i4_p0868.pdf
	SJMAAH_V35_i4_p0884.pdf
	SJMAAH_V35_i4_p0922.pdf
	SJMAAH_V35_i4_p0949.pdf
	SJMAAH_V35_i4_p0974.pdf
	SJMAAH_V35_i4_p0987.pdf
	SJMAAH_V35_i4_p1005.pdf
	SJMAAH_V35_i4_p1029.pdf
	SJMAAH_V35_i4_p1042.pdf
	SJMAAH_V35_i4_p1081.pdf
	SJMAAH_V35_i5_p1099.pdf
	SJMAAH_V35_i5_p1110.pdf
	SJMAAH_V35_i5_p1133.pdf
	SJMAAH_V35_i5_p1160.pdf
	SJMAAH_V35_i5_p1177.pdf
	SJMAAH_V35_i5_p1203.pdf
	SJMAAH_V35_i5_p1213.pdf
	SJMAAH_V35_i5_p1241.pdf
	SJMAAH_V35_i5_p1250.pdf
	SJMAAH_V35_i5_p1311.pdf
	SJMAAH_V35_i5_p1347.pdf
	SJMAAH_V35_i6_p1371.pdf
	SJMAAH_V35_i6_p1394.pdf
	SJMAAH_V35_i6_p1420.pdf
	SJMAAH_V35_i6_p1451.pdf
	SJMAAH_V35_i6_p1486.pdf
	SJMAAH_V35_i6_p1512.pdf
	SJMAAH_V35_i6_p1534.pdf
	SJMAAH_V35_i6_p1561.pdf
	SJMAAH_V35_i6_p1598.pdf
	SJMAAH_V35_i6_p1617.pdf
	SJMAAH_V35_i6_p1636.pdf

